
 

 

i 

 

Faculdade de Engenharia da Universidade do Porto 

 

An Approach to Simulation of Autonomous 
Vehicles 

Miguel Cordeiro Figueiredo 

 
 

Dissertation executed under the  
Integrated Master in Electrotechnical and Computer Engineering 

Major in Telecommunications 
 

Supervisor: Prof. Dr. Rosaldo Rossetti 
Co-Supervisor: Prof. Dr. Luís Paulo Reis 

 

 

June 2009 
 



   

ii 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
 
 
 
 
 
 
 
 

© Miguel Figueiredo, 2009 

  



 

 

iii 

 

 
 
 
 
 
 

Dedicated to 

 

 

My grandfather Filipe, may he rest in peace. 



   

iv 

 

 



 

 

v 

 

 

Abstract 

The most common cause of traffic accidents is driver error. This isn't going to change any 

time soon thanks to increasingly cell-phone usage, in-car entertainment systems, and more 

traffic. Autonomous vehicles, like driverless cars, would decrease traffic accidents and traffic 

jams. 

Automakers are currently developing systems that will enable these cars to do their role. 

Some of these systems are already widespread. For example, Anti-lock brakes, a standard 

feature in most cars, are a basic form of driverless technology. But there's still much work to 

do in the field of autonomous vehicles. 

Simulations are safer, more efficient, and cheaper than live testing on vehicles. Changes 

have to meet a certain level of operation before they are put to a live test. 

This thesis is about the study and implementation of a simulator to test such vehicles. 

Included is a study of the State-of-Art in driverless car simulations, and the objectives that 

such simulators should aim for in order to help test driverless car operations. Also included is 

an implementation strategy for such a simulator, and the software used for it, as well as 

modifications made to some software, and perspectives for future development. 

 
  



   

vi 

 

 

 

 

 

 

 

 

 

 

 



 

 

vii 

 

Resumo 

A causa mais comum dos acidentes de trânsito é o erro do condutor. Isto não vai mudar 

tão cedo, graças ao crescente uso de telemóveis, uso de sistemas de entretenimento no 

interior do veículo e ao aumento do trânsito. Os veículos autónomos, tais como carros sem 

condutor, poderiam diminuir estes acidentes de trânsito e os engarrafamentos. 

Os fabricantes de automóveis estão actualmente a desenvolver sistemas que permitem 

que esses veículos desempenhem o papel desejado. Alguns destes sistemas já estão 

amplamente difundidos. O da travagem anti-bloqueio, uma característica padrão na maioria 

dos automóveis, é um exemplo de uma forma básica dessa tecnologia. Mas há ainda muito 

trabalho a fazer no campo dos veículos autónomos. 

Simulações são mais seguras, mais eficientes, e mais baratas do que testes ao vivo em 

veículos. Alterações nos veículos e no seu software devem chegar a um certo nível de 

qualidade antes de se fazerem testes ao vivo. 

Esta dissertação é sobre o estudo e implementação de um simulador cujo propósito é 

testar estes veículos. Inclui uma panorâmica do desenvolvimento actual da área das 

simulações de carros autónomos e, também, os objectivos que estes simuladores devem 

tentar alcançar, a fim de ajudar a testar o funcionamento destes automóveis. Também está 

incluída uma estratégia de implementação para um simulador, o software utilizado, assim 

como as alterações feitas, e perspectivas para futuro desenvolvimento. 
  



   

viii 

 

 

 

 

  



 

 

ix 

 

 

Acknowledgments 

Special thanks go to my family and friends for their unconditional support. 

Especially to my sister Filipa for her help in the final stages of the dissertation. Without it, I 

don't think I'd have done this. 

 

I'd also like to thank my supervisor, Prof. Dr. Rosaldo Rossetti, for assisting me with choosing 

the subject of my dissertation and for his understanding, and Rodrigo Braga for his aid with 

the conceptual issues I had. 

 

Finally, thanks to Pedro Malheiro and Paulo Ferreira for their support with the simulators they 

worked with. Their insight helped me set the appropriate scope for this thesis. 

 

 

 

  



   

x 

 

 

 

 

 

 

 

 

 

 

 



 

 

xi 

 

List of Contents 

Abstract ............................................................................................. v 

Resumo ............................................................................................ vii 

Acknowledgments ............................................................................... ix 

List of Contents .................................................................................. xi 

List of Figures ................................................................................... xiii 

List of Tables ..................................................................................... xv 

Abbreviations ................................................................................... xvii 

Chapter 1 ........................................................................................... 1 

Introduction ....................................................................................................... 1 
1.1 – Motivation ............................................................................................... 1 
1.2 – Objectives ............................................................................................... 2 
1.3 – Structure of the Document ........................................................................... 3 

Chapter 2 ........................................................................................... 5 

State of the Art .................................................................................................. 5 
2.1 – Driverless Cars .......................................................................................... 5 
2.2 – Simulation of Driverless Cars ........................................................................ 6 
2.3 – Types of Simulators .................................................................................... 6 

2.3.1 – Traffic Simulators ............................................................................... 7 
2.3.2 – Robotic Simulators .............................................................................. 8 

2.3.2.1 – Robotic Simulators Characterization .............................................. 10 
2.3.2.2 – Robotic Simulators Comparison .................................................... 12 

2.4 – Limits and Specialization of the Simulators ..................................................... 17 
2.5 – Summary ............................................................................................... 20 

Chapter 3 .......................................................................................... 21 

Solution Design ................................................................................................. 21 
3.1 – Methodology .......................................................................................... 21 

3.1.1 – Problem Statement ........................................................................... 21 
3.1.2 – Methods ......................................................................................... 22 
3.1.3 – Techniques ..................................................................................... 22 

3.2 – Proposed Architecture .............................................................................. 23 
3.2.1 – Modules’ Functionalities ..................................................................... 25 



   

xii 

 

3.2.1.1 – External Simulators ................................................................... 25 
3.2.1.2 – The Simulator ......................................................................... 30 
3.2.1.3 – Agents ................................................................................... 33 
3.2.1.4 – Viewer .................................................................................. 34 

3.2.2 – Prototype Scope............................................................................... 37 
3.3 – Summary .............................................................................................. 39 

Chapter 4 .......................................................................................... 41 

Prototypical Development ................................................................................... 41 
4.1 – MAS-Ter Labs ......................................................................................... 41 
4.2 – Intellwheels Simulator .............................................................................. 44 
4.3 – Simulation Agents.................................................................................... 47 
4.4 – Intellwheels Viewer ................................................................................. 48 
4.5 – XML Maps, Textures, and 3D Models.............................................................. 51 
4.6 – Summary .............................................................................................. 55 

Chapter 5 .......................................................................................... 57 

Preliminary Results and Analysis ............................................................................ 57 
5.1 – Simulation Performance ............................................................................ 57 
5.2 – Simulation Functionality............................................................................ 61 
5.3 – Summary .............................................................................................. 63 

Chapter 6 .......................................................................................... 65 

Conclusion....................................................................................................... 65 
6.1 – General Remarks ..................................................................................... 65 
6.2 – Main Results .......................................................................................... 66 
6.3 – Further Developments .............................................................................. 67 
6.4 – Future Work .......................................................................................... 67 

References ...................................................................................................... 69 

  



 

 

xiii 

 

List of Figures 

Figure 2.1 - Driverless car named "Junior" of Stanford University Racing Team [7] ............... 6 

Figure 2.2 - Driverless car named "Odin" of Victor Tango Team from Virginia Tech [8] .......... 6 

Figure 2.3 - Screenshot of MAS-Ter Labs Traffic Simulator (with the map designed for this 
thesis) ..................................................................................................... 7 

Figure 2.4 - U.S. Highway 280 study corridor at CORSIM Software [11] .............................. 8 

Figure 2.5 - AM peak hour traffic volumes on U.S. Highway 280 at CORSIM Software [11] ....... 8 

Figure 2.6 - Simulator of Victor Tango Team from Virginia Tech [26] ............................... 9 

Figure 2.7 - Sensors Simulation at the Simulator of Victor Tango Team from Virginia Tech 
[8] .......................................................................................................... 9 

Figure 2.8 - Live Test with "Odin", the driveless car of Victor Tango Team from Virginia 
Tech [8] ................................................................................................... 9 

Figure 2.9 - Screenshot of 3D GUI Software from The Princeton University team [27] ........... 9 

Figure 2.10 - Odin’s sensor coverage [30] ............................................................... 12 

Figure 2.11 - External view of Odin with sensors labeled [30] ...................................... 12 

Figure 2.12 - Stanford’s simulator replaying data from the Urban Challenge final event 
[26] ...................................................................................................... 12 

Figure 2.13 - Simulations in the USARSim ............................................................... 13 

Figure 2.14 - Screenshots of Crysis game ................................................................ 19 

Figure 3.1 - Architecture of the simulator and its peripheral systems ............................. 24 

Figure 3.2 - Simulation Engine High Level Architecture [2] .......................................... 26 

Figure 3.3 - Network Scenario exemplifying driver agents foci [2] ................................. 28 

Figure 3.4 - Intellwheels Simulator's architecture [28] ............................................... 31 

Figure 3.5 - Technology implemented for Intellwheels simulation [28] ........................... 32 

Figure 3.6 – Intellwheels Viewer architecture [28] .................................................... 35 



   

xiv 

 

Figure 3.7 – Screenshot of Gazebo. A Robotic Simulator with a sample Graphic Engine ....... 36 

Figure 3.8 – Screenshot of the Wheelman game ....................................................... 37 

Figure 4.1 - MAS-Ter Labs Traffic Simulator Prototype Architecture Overview [2] .............. 42 

Figure 4.2 – Modified Intellwheels Viewer 3D, 1st person view ..................................... 49 

Figure 4.3 – Screenshot of the Need for Speed game ................................................. 51 

Figure 4.4 – The XML map adapted for the Intellwheels Simulator ................................. 52 

Figure 4.5 – MAS-Ter Labs road network map used in the prototype ............................... 52 

Figure 4.6 – Ciber-Rato Viewer’s design of a XML modeled wall [28] .............................. 53 

Figure 4.7 – Modified Intellwheels Viewer 3D, free view of the car model ....................... 54 

Figure 5.1 – Chart with the Response Times (ms) as a function of the Number of Agents 
(Test1) .................................................................................................. 59 

Figure 5.2 – Chart with the Response Times (ms) as a function of the Number of Agents 
(Test2) .................................................................................................. 60 

Figure 5.3 – Chart with the CPU Loads (%) as a function of the Number of Agents .............. 60 

Figure 5.4 – Overtaking test (step 1): ―Simulated‖ vehicle with no vehicle by its side ......... 62 

Figure 5.5 – Overtaking test (step 2): ―Simulated‖ vehicle overtaking other ―Simulated‖ .... 62 

Figure 5.6 – Overtaking test (step 3): ―Simulated‖ vehicle with no vehicle by its side ......... 62 

Figure 5.7 – Overtaking test (step 4): ―Simulated‖ vehicle overtaking ―Real‖ ................... 62 

 

 

 



 

 

xv 

 

List of Tables 

Table 2.1 – Summary chart with the features of today’s Robotic simulators ..................... 14 

Table 2.2 – Summary chart with the sensors simulated by today’s Robotic simulators ......... 16 

Table 3.1 – Summary chart with the specific objectives ............................................. 38 

 

  



   

xvi 

 



 

 

xvii 

 

Abbreviations 

List of abbreviations 

 
CPU  Central Processing Unit 

DARPA  Defense Advanced Research Projects Agency 

DEEC  Departamento de Engenharia Electrotécnica e de Computadores 

FEUP  Faculdade de Engenharia da Universidade do Porto 

GPS  Global Positioning System 

LIACC  Laboratório de Inteligência Artificial e de Ciências de Computadores 

MAS  Multi-Agent System 

MAS-Ter Labs Laboratory for MAS-based Traffic and Transportation 

Engineering Research 

UDP  User Datagram Protocol 

V2I  Vehicle-To-Infrastructure 

V2V  Vehicle-To-Vehicle 

XML  Extensible Markup Language 

 

 

  



   

xviii 

 

 

 



 

1 

Chapter 1  

Introduction 

In this first chapter, the subject of this study is introduced: Simulation of driverless cars. 

How important driverless cars will become, and how important it is to simulate them. Also 

mentioned, are my personal motivations behind this study. The general objectives of this 

dissertation are also listed, as well as a short explanation of this document's structure. 

1.1 – Motivation 

Autonomous vehicles are one of the possible solutions to our most common cause of 

traffic accidents: Driver error. According to several different studies, like the one from L. 

Craig Davis in 2004, Driverless cars will substantially decrease traffic accidents and traffic 

jams even if there's just a few of them driving among the regular cars to minimize the traffic 

waves [1]. 

The first attempts to make robot cars began in the 80s, in Germany. Some of these UniBW 

cars would drive as fast as 96 km/h on empty streets. Efforts continued and one of these cars 

autonomously drove 1678 km on public highways from Munich to Denmark and back, at up to 

180 km/h, automatically passing other cars. And after that came the DARPA Grand challenge, 

in the USA. There was no traffic, but close none road markers as well. There was only a long 

course of desert. Eventually there was a similar competition with traffic, called DARPA Urban 

Challenge. 

In the latest years, with computer technology advancing fast, simulations began to be 

used more and more for this kind of project. Because simulations are safer, more efficient, 

and cheaper than live testing on vehicles. 

Having developed an interest in computer programming early in my childhood, everything 

that was computer related caught my attention. And robots (in Science Fiction) were no 

exception, and neither was that old TV Show, Knight Rider, where the star was K.I.T.T., the 

talking car that didn’t need a human driver. Later, during my university studies, one of my 



 

2  Introduction 

 

appointments was to make a small and simple 3D Application: The idea of creating a 3D mini-

videogame was irresistible. In the end, that's how programming, 3D graphics, and robot car 

simulation all came to be interests of mine, and how this subject found me. 

Nowadays, the existing robotic simulators are still insufficient when it comes to simulating 

sophisticated driverless cars in scenarios with intense traffic, as we will see in Chapter 2. And 

this project aims to change that. 

 

1.2 – Objectives 

The dissertation's main purpose is the study and specification of a realistic simulator for 

analysis of autonomous driving and semi-assisted driving on networks of intense vehicular 

traffic. This will be based on the MAS-Ter Labs traffic simulator developed at LIACC [2][3][4] 

and on a modified version of Ciber-Rato software, developed by University of Aveiro [5]. 

Ciber-Rato is a robotic simulator for a competition where the goal is to develop an agent 

which will control the simulated robot and guide it through a virtual maze [6] using sensor 

signals themselves simulated by the simulator. This modified version of Ciber-Rato is the 

Intellwheels simulator. 

The concept will be tested by implementing a prototype with some basic functions. The 

objectives of this work are the following: 

i. Study and characterization of the simulation of autonomous vehicles and semi-

assisted driving; 

ii. Concept study for the integration of a traffic simulator with a detailed 

autonomous vehicle simulator; 

iii. Communication of car positioning from MAS-Ter Labs traffic simulator to a 

modified version of Intellwheels simulator; 

iv. Simple road network XML, for use in traffic simulation tests in MAS-Ter Labs; 

v. Simple map XML, for use in modified version of Intellwheels simulator; 

vi. 3D Models and Textures for better immersion in the tests; 

vii. Functional playable type agent to demonstrate collision tests, physics and 

sensors; 

viii. Modification of Intellwheels simulator to adapt to simulation of autonomous 

vehicles; 

ix. Implement vehicle's sensor interaction with the vehicles whose positions are being 

communicated by the MAS-Ter Labs traffic simulator. 

 



  3 

 

 

1.3 – Structure of the Document 

This dissertation is organized in six chapters, the first of which is this introduction. 

The second chapter discusses the state of art of the existing traffic simulators, robotic 

simulators, simulation of driverless cars, as well as the MAS-Ter Labs simulator, and the 

Intellwheels project, and the current limitations of the simulators in general. 

In the third chapter, the solution design will be introduced: approaching the problems 

that this design aims to solve, and discussing how the design deals with the problems, as well 

as the tools used to do it. 

The development of the prototype is discussed in the fourth chapter. Specifically, the 

chapter discusses the modifications done to the existing simulators in order to implement a 

prototype of the design introduced in the previous chapter, as well as the elements created 

to increase the realism of the simulation, such as the map.  

Chapter five will briefly explain the methodology for the performance and functional 

tests, as well as expressing the results and demonstrating basic functionality. 

The sixth and final chapter of this dissertation concludes the entire project with a few 

remarks followed by the most relevant test results. Further developments are also discussed, 

followed by potential future works, approaching possible paths of additional research and 

development from this point on. 

 

 

 

  



 

4  Introduction 

 

 



 

5 

Chapter 2  

State of the Art 

In this chapter, the state of the art of the simulation of driverless cars is briefly 

described. This forcefully includes a glimpse at the state of art of driverless cars and robotic 

simulation. The different kinds of simulators that exist to simulate driverless cars and their 

main characteristics are explained here as well. These are also compared against one 

another. The MAS-Ter Labs and Intellwheels project will also be briefly introduced due to 

their roles in the simulator developed, and finally, the chapter is concluded with the limits of 

today's simulators, and a short summary. 

2.1 – Driverless Cars 

The first attempts to make robot cars began in the 80s, in Germany, and were made by 

Ernst Dickmanns and his group at Univ. Bundeswehr Munich (UniBW). Some of these UniBW 

cars would drive as fast as 96 km/h on empty streets. This was followed by the largest robot 

car project ever: the pan-European Prometheus project worth almost $1 billion, it involved 

UniBW and many other groups. This started in 1987 and ended in 1995. One of these cars, the 

"VAmP" (a Mercedes 500 SEL) using vision-based sensors, drove in Paris traffic in 1994, 

tracking up to 12 other cars simultaneously. It drove more than 1000 km on the Paris multi-

lane ring, up to 130 km/h, automatically passing slower cars in the left lane. And in 1995, a 

car made by the same group, a S-class car of Dickmanns and UniBW, autonomously drove 1678 

km on public highway from Munich to Denmark and back, at up to 180 km/h, automatically 

passing other cars. A few years later, in the USA, year 2005, DARPA started its "Grand 

Challenge" in the desert. There was no traffic, but close none road markers as well. The 

course was 211 km long and the fastest team was Stanford's who did the whole course in 

almost 7 hours. This was followed in 2006 by a similar demonstration in Europe, called ELROB 

(European Land Robot Trials) that was also with autonomous off-road vehicles. In 2007 there 

was another DARPA Grand Challenge and another ELROB challenge as well, and finally in 2007 



 

6  State of the Art 

  

 

there was the DARPA Urban Challenge, which consisted of an urban scenario, with traffic, 

where the driverless cars would try and complete missions given to them in a given amount of 

time. 

 

     

Figure 2.1 - Driverless car named "Junior" of Stanford University Racing Team [7] 

Figure 2.2 - Driverless car named "Odin" of Victor Tango Team from Virginia Tech [8] 

 

2.2 – Simulation of Driverless Cars 

In the latest years, with computer technology advancing fast, simulations began to be 

used more and more for this kind of projects. Simulations are safer, more efficient, and 

cheaper than live testing on vehicles. Simulations also allowed testing more scenarios than 

those that would have been possible with real world testing, and they also allowed testing 

situations too dangerous to involve humans. Testing in the virtual world is the ideal solution 

to validate code quickly, with more possibilities, cheaply and with minimum risk. 

Up to now, many of these projects used no simulators to test changes in the 

implementation of their cars. Some did, but using simulators with minimal functionality. And 

even those were not capable of simulating the cars in crowded roads. 

Existing robotic simulators are insufficient when it comes to simulating driverless cars in 

scenarios with intense traffic, as we will see in the next section. And this project aims to 

change that. 

 

2.3 – Types of Simulators 

Simulators that are related to the study of traffic and autonomous vehicles are currently 

separated into two types: Large scale traffic simulators, and small scale robotic simulators. 

 



 

2.3 – Types of Simulators 7 

 

 

2.3.1 – Traffic Simulators 

Large scale traffic simulators simulate traffic flow over very large and/or complex road 

networks. In these simulators the movement of each car is so simplified that you almost can't 

distinguish between human drivers and robot drivers. This is also because the behavior of the 

drivers is a very simplified model, in order to allow for a simulation with thousands of 

vehicles to be able to run in a computer with reasonable resources, and within a reasonable 

timeframe. A good example of such simulators is the MAS-Ter Labs Traffic Simulator. [2][9] 

 

 

Figure 2.3 - Screenshot of MAS-Ter Labs Traffic Simulator (with the map designed for this thesis) 

 

It should be noted that these simulators are not detailed enough to simulate autonomous 

cars when it comes to their behavior, sensors, actuators, surroundings, etc. The physics in 

these simulators are over-simplified, to the point that the movement of the cars that are 

changing lanes isn't continuum: A car is either in lane A, or lane B. There's no state where the 

car is partially occupying both lanes. The point of these simulations is to simulate traffic 

flows, average waiting times, average speeds, fuel consumptions, etc. [10]. 

The MAS-Ter Labs Traffic simulator is the one used in this project to perform the role of 

traffic simulator in our design solution, because it was developed here in LIACC as well, and 

it’s not a commercial solution. The reasons why this simulator was chosen are explained in 

the section 3.1.3 of this document. 

There are other simulators with similar features [11], such as PTV’s VISUM and VISIM 

[12][13][14] (a commercial solution to simulate traffic road networks), SIMTRAFFIC 

[15][16][17], AIMSUN [18] and CORSIM [13][16][19] which is compared to the others in the 

references just mentioned. The best microscopic traffic simulators studied all rely in very 



 

8  State of the Art 

  

 

simple models (car-following model, lane-change model, and route-choice model 

[20][21][22][23] to simulate large numbers of independent, yet apparently intelligent drivers 

[24][25]. This model is pretty much the same for all of the microscopic type of traffic 

simulators, and they’re similar in the way they display the information as well. For more 

information on comparisons between them, see [11]. 

 

     

Figure 2.4 - U.S. Highway 280 study corridor at CORSIM Software [11] 

Figure 2.5 - AM peak hour traffic volumes on U.S. Highway 280 at CORSIM Software [11] 

 

Although some of them have more analysis tools than others, like graphics showing the 

traffic flow in different roads, waiting times, average speeds, etc, all this falls out of the 

scope of this dissertation, and so it is unnecessary to study and compare these differences. 

After all, the role of the traffic simulator in this project is meant to influence the simulation 

of the autonomous vehicle being simulated in detail in the robotic simulator. It is not the 

scope of this project to study road network traffic and its flows. 

 

2.3.2 – Robotic Simulators 

In order to simulate and test the performance of a driverless car, a more detailed 

simulator is required. Like a small scale robotic simulator. A lot of sensor and actuator detail 

is needed if we want to know how will the car throttle, break, and steer, when reacting to 

various things ranging from walls and other cars, to people, obstacles, animals, sidewalks, 

etc. Collision detection is also required, to know if the driverless car malfunctioned to the 

point of causing an accident. We might want to know which of the sensors are detecting (or 

not) which obstacles, and try to identify errors in its design (both hardware and software) 

from those tests. A large scale traffic simulator can't provide us with those details. 

A look has been taken at the DARPA Urban Challenge teams and what tools they used to 

simulate their cars before live-testing. To be successful in such a competition, the use of a 

simulator is basically unavoidable. Overcoming safety concerns and strict time constraints is a 

must here. And testing in the virtual world is the ideal solution to validate code quickly and 



 

2.3 – Types of Simulators 9 

 

 

with minimum risk. The teams were also able to test situations too dangerous to involve 

humans and test more scenarios than would have been possible in the real world. Simulation 

was used to find obvious problems with their software, but this was always followed by 

testing on the vehicle. 

 

    

Figure 2.6 - Simulator of Victor Tango Team from Virginia Tech [26] 

Figure 2.7 - Sensors Simulation at the Simulator of Victor Tango Team from Virginia Tech [8] 

 

    

Figure 2.8 - Live Test with "Odin", the driveless car of Victor Tango Team from Virginia Tech [8] 

Figure 2.9 - Screenshot of 3D GUI Software from The Princeton University team [27] 

 

The Intellwheels simulator [28] is a simulator that was built based on the Cyber-Rato 

simulator[5][29]. It’s one of these robotic simulators. When comparing to the others, Cyber-

Rato is mentioned instead of Intellwheels simply because it is the original. But note that this 

modified version of Cyber-Rato, known as Intellwheels simulator, is the one used for this 

project: performing its role as a robotic simulator to take care of the sensor information, 

physics and other details in our simulations. The reasons why this simulator was chosen are 

also explained in the section 3.1.3 of this document. 



 

10  State of the Art 

  

 

 

2.3.2.1 – Robotic Simulators Characterization 

These are some simulator features used as means to compare the different robotic 

simulators. Some are more important than others, depending in the field of study. Listed here 

are the ones that are more or less useful when it comes to testing driverless cars: 

 3D simulation - Some simulators run full 3D physical simulations. The calculations 

become much more complex and resource-consuming, but this results in a more 

realistic simulation; 

 3D visualization - Simulators with this feature allow the user to observe and 

better understand the events happening in the simulation by animating detailed 

3D graphics and models to represent the different elements of the simulation; 

 Large scale traffic - These simulators are able to calculate large amounts of 

elements with very simple behaviors and physics in order to be able to reproduce 

large-scale phenomena in a reasonable timeframe and using reasonable computer 

resources; 

 Multi Agent simulation - Some simulators can have multiple and independent 

Agents interact in the same simulation. The nature of these simulations can be 

simply to test how agents react to one another, but they also enable testing of 

cooperative action, or competitive action; 

 V2V / V2I communication - Simulators that can simulate communications 

between agents will allow for messages to be exchanged between the agents, and 

may simulate physical restrictions like the broadcasting radius of a certain robot; 

 Collision detection - This is a very basic feature and is implemented in almost 

every simulator out there. The point of simulations is to test for anomalies and 

undesirable events, and a collision is the most common of such events, 

independently of the field of study; 

 Sensor noise - Simulators that are able to calculate random noise at the outputs 

of sensors will allow for more realistic testing of the decision making systems that 

need to deal with non-ideal nature that real sensors have; 

 Failure simulation - Failure simulation is another feature that will help test if the 

robots are fail-safe. This is when the simulator has the ability to corrupt, or 

completely suppress, the information coming from sensors to the agents, or from 

the agents to the actuators; 

 Environment affecting sensors - Harsh weather conditions and hazardous terrains 

can affect sensors in various ways, for example, fog or darkness affecting the 

visibility of an optical camera, or intense weather causing echoes in laser 

scanners. Simulators might include these factors in the calculation of sensor 

values; 



 

2.3 – Types of Simulators 11 

 

 

 Environment affecting physics - Weather and ground conditions can also affect 

the performance and control of the vehicle in various ways, for example, loose 

gravel, rain, or snow making the roads more slippery. 

 

In the following list, the most relevant sensors and measures in this field of study are 

briefly introduced, so that we can later compare what sensors are driverless cars using, and 

which simulators are able to simulate such sensors. 

 GPS - A GPS receiver is able to determine their current location, the time, and 

their velocity, thanks to the precise microwave signals transmitted by a 

constellation of between 24 and 32 Medium Earth Orbit satellites; 

 Luminosity - There are a few kinds of sensors that simply detect the amount of 

light hitting them. A cheap and easy way of knowing if a car needs to turn the 

lights on due to the night, or tunnels and such; 

 Optical camera - There are many types of optical cameras there. The point is to 

have it send a stream of images for the robot to analyze things like movement 

flow, colors, etc; 

 Infra-red camera - It's essentially the same as a normal optical camera, except 

that it detects light in the infra-red spectrum instead of the human visible 

spectrum. Also known as night-vision camera; 

 Laser scanner (LIDAR) - This sensor emits a laser that is constantly changing its 

angle, while listening to the laser reflections. It results in an array of points 

where the laser hit a target and got reflected. This happens as fast as 12.5 times 

per second in a typical one. If used correctly, it can measure the distance, size, 

shape and speed of multiple obstacles several times per second; 

 Ultrasound - Typically used to measure short distances in a wide angle; 

 Infrared - Typically used to measure short distances in a sharp angle; 

 Inertial Measurement - An inertial measurement sensor is the main component of 

inertial guidance systems used in air-, space-, and watercraft. It works by sensing 

motion — including the type, rate, and direction of that motion — using a 

combination of accelerometers and gyroscopes. The data collected from these 

sensors allows a computer to track a craft's position, using a method known as 

dead reckoning1; 

 Radar - It emits either microwaves or radio waves that are reflected by the target 

and detected by a receiver, typically in the same location as the transmitter. 

Although the signal returned is usually very weak, the signal can be amplified. 

                                                 
1 Dead reckoning - This is when upon known speed, elapsed time and course, one estimates his current 
position by advancing on a previously determined position. It's no longer considered a primary method of 
navigation, but is widely used in complement with more complex navigation systems. 



 

12  State of the Art 

  

 

This enables radar to detect objects at ranges where other emissions, such as 

sound or visible light, would be too weak to detect; 

 Speed - The simple sensors that exist in every car that connect to the 

speedometer to let the driver know the instant car's speed. They're usually based 

in watching how many times the car's wheels complete a revolution in a given 

amount of time. 

 

 

Figure 2.10 - Odin’s sensor coverage [30] 

 

  

Figure 2.11 - External view of Odin with sensors labeled [30] 

Figure 2.12 - Stanford’s simulator replaying data from the Urban Challenge final event [26] 

 

2.3.2.2 – Robotic Simulators Comparison 

Next, the features of different Robotic simulators are compared. Some teams that 

participated in the DARPA Urban Challenge 2007 are also compared: Both their simulators' 



 

2.3 – Types of Simulators 13 

 

 

features, and the sensors that the cars had equipped. A generic game engine with the typical 

features is compared as well, because with some modifications, game engines are functional 

enough to allow real-time simulation of real applications. USARSim [31] is an example of a 

simulator that was implemented by modifying a game engine: Unreal Engine, developed by 

Epic Games (from a First Person Shooter game called Unreal Tournament) [32]. 

 

   

Figure 2.13 - Simulations in the USARSim2 

 

So we want to compare game engines to the generic robotic simulators and to the 

simulators made by the DARPA Urban Challenge teams. Included in the comparison are also 

two robotic soccer simulators known as ÜberSim [33] and EyeSim [34]. 

In Table 2.1, we compare the simulators, included those made by teams for use in the 

DARPA Urban Challenge 2007 [7][8][26][27][30][35][36][37][38][39][40][41][42]. 

While in table 2.2, these entries contain the information of which sensors their driverless 

cars had equipped during the competition. Detailed information about the different 

simulators that each team used is hard to find, and so, some of these features are marked as 

not determined. That’s specified in the table’s legend. 

It's important to remember, at this point, that large scale traffic simulators are 

insufficient when it comes to simulation detail. They lacked in all the features mentioned in 

the previous section, except for that of "Large scale traffic" (and in some cases "3D 

visualization"), so they weren't included in the following table - Table 2.1. And since they 

don't simulate sensors at all, they weren't included in Table 2.2 either: 

 

                                                 
2 Left image source: Dr. Alexander Kleiner and Dr. Sven Behnke. Institut Für Informatik Freiburg (IIF), 
Research Group on the Foundations of Artificial Intelligence, Software Laboratory. Accessed at: 
http://www.informatik.uni-freiburg.de/~ki/teaching/ss05/sopra.html 

Right image source: OxfordRescue Team 2008, RoboCup Rescue - Virtual Robots Competition. Accessed 
at: http://www.oxfordrescue.co.uk/ 

http://www.informatik.uni-freiburg.de/~ki/teaching/ss05/sopra.html
http://www.oxfordrescue.co.uk/


 

14  State of the Art 

  

 

Table 2.1 – Summary chart with the features of today’s Robotic simulators 

 

Simulator features 

3
D

 s
im

u
la

ti
o
n
 

3
D

 v
is

u
a
li
z
a
ti

o
n
 

L
a
rg

e
 s

c
a
le

 t
ra

ff
ic

 

M
u
lt

i 
A
g
e
n
t 

si
m

u
la

ti
o
n
 

V
2
V
 /

 V
2
I 

c
o
m

m
u
n
ic

a
ti

o
n
 

C
o
ll
is

io
n
 d

e
te

c
ti

o
n
 

S
e
n
so

r 
n
o
is

e
 

F
a
il
u
re

 s
im

u
la

ti
o
n
 

E
n
v
ir

o
n
m

e
n
t 

a
ff

e
c
ti

n
g
 s

e
n
so

rs
 

E
n
v
ir

o
n
m

e
n
t 

a
ff

e
c
ti

n
g
 p

h
y
si

c
s 

Game engines 

Generic x x x   x   x x 

DARPA Teams’ simulators 

1st place - ―Boss‖ x? x?    x?     

2nd place - ―Junior‖ x? x?    x?     

3rd place - ―Odin‖ x? x?    x?     

―Talos‖ x? x?    x?     

―Little Ben‖ x? x?    x?     

―Skynet‖      x?     

PAVE (Princeton’s team) x? x?    x?     

Generic robot simulators 

Ms Robotics Studio x x  x ? x     

Webots x x  x ? x     

CyberRato    x m x x    

USARSim x x     x    

ÜberSim (Robot Soccer)  x    x     

EyeSim (Robot Soccer)  x  x  x x    

Table Legend: 
x - Yes | m – Yes (considering modifications known to have been made already) 

x? – Could not be verified, and the information was not found, but assumed as being a positive 
? – Couldn’t be determined | blank – No 

 

The observation of this table reveals that most simulators nowadays lack important 

features for the simulation of autonomous vehicles. 

Robotic simulators nowadays don’t seem to simulate: 

 Large scale traffic or pedestrians – We want to simulate how a driverless car 

responds to crowded areas, or traffic jams; 

 V2V/V2I Communications – We want to simulate how effective can these 

communications be between vehicles and the road network infrastructures and 

how they can improve operations; 

 Sensor Noise – There’s a wide amount of sensor errors due to their non-ideal 

nature. We need to simulate as much as possible when it comes to those errors if 

we want to know if the decision-making of the driverless car can take these into 

account and avoid malfunctions. These include sensor noise, illusions, reflections 



 

2.3 – Types of Simulators 15 

 

 

and echoes. For example light reflection with LADARs: Some surfaces do not 

reflect laser pulses well, where others reflect too well: Well painted road lines 

can be picked up with an LADAR system and reported as an obstacle, when in fact 

the vehicle can drive over them; 

 Failures – Sensors and actuators can simply malfunction and stop playing their role 

in real life situations. If we want fail-safe driverless cars, we need to simulate if 

they can minimize damage, safely come to a halt, or even drive and function 

close to normality even if some of the equipment is malfunctioning. This can 

range from simple GPS failure to a more serious failure involving steering or 

breaking; 

 Atmospheric condition, terrain condition, and environment - These are all real, 

and they affect sensors, actuators, and the behavior of cars as a whole. If these 

aren’t taken into consideration when simulating driverless cars, we can’t predict 

how well they’ll operate in the non-ideal real-life situations. 

 

Some of the teams that participated in the DARPA Urban Challenge implemented their 

own simulators, while others used already existing simulators. Some of their own simulators 

had very practical features that are worth mentioning [26]. 

The simulator used by Princeton's team allowed the user to test their code in the 

simulator and then transfer it to the vehicle without the need to recompile [27], thanks to 

their use of the Microsoft Robotic Studio framework [43]. 

MIT’s simulator could play back data recorded in real life test runs, but the simulated 

obstacles reflected perfect data during those recorded runs, something that actual sensors 

didn’t obtain during the real life test runs. 

CarOLO also used their simulator to test new software implementations before adding 

them to the vehicle, as well as confirming bugs found during real world tests. That’s 

something that the previous teams also did. But further development of this simulator has 

yielded a version in which multiple instances of their autonomous vehicle could be operated. 

In doing this, their software could learn efficient driving behavior in an environment in which 

multiple traffic vehicles exist. In addition, different versions of code could be run from the 

same starting point, running the same mission file, in order to compare their performance 

[35]. 

Tartan’s simulator also had the ability to add virtual obstacles to a real world 

environment during testing. In doing this, the vehicle was made to think there were obstacles 

in front of it even though there were none. This is achieved with Augmented Reality and 

Mixed Realities, when the real world reacts to interactions between the real world and virtual 

objects, and different realities interact continuously. These features are also available in the 

Intellwheels Simulator, and explained further here [44][45]. 



 

16  State of the Art 

  

 

All these features are very time-saving when simulating and testing, and most of them 

were not easy to implement. They were developed for these simulators because time was the 

most important factor during the DARPA Urban Challenge, since the teams only had a few 

hours to update and validate their code between the events. 

 

In the next table, we can compare which sensors are simulated by these generic robot 

simulators, and the sensors equipped in the DARPA’s driverless cars. 

 

Table 2.2 – Summary chart with the sensors simulated by today’s Robotic simulators 

 

Simulator sensors 

G
P
S
 

L
u
m

in
o
si

ty
 

O
p
ti

c
a
l 
c
a
m

a
ra

 

In
fr

a
-r

e
d
 c

a
m

e
ra

 

L
a
se

rs
c
a
n
n
e
r 

(L
ID

A
R
) 

U
lt

ra
so

u
n
d
 

In
fr

a
re

d
 

In
e
rt

ia
l 

M
e
a
su

re
m

e
n
t 

R
a
d
a
r 

S
p
e
e
d
 

DARPA cars’ sensors 

1st place - ―Boss‖ x    x   x x x 

2nd place - ―Junior‖ x  x  x   x x x 

3rd place - ―Odin‖ x  x  x   x  x 

―Talos‖ x  x  x     x 

―Little Ben‖ x  x  x     x 

―Skynet‖ x  x  x    x x 

PAVE (Princeton’s team) x  x      x x 

Generic robot simulators 

Ms Robotics Studio     x     ? 

Webots x x x   x x x  ? 

CyberRato x     x    ? 

USARSim     x x    ? 

ÜberSim (Robot Soccer)          ? 

EyeSim (Robot Soccer)   x    x   ? 

Table Legend: 
x - Yes | ? – Couldn’t be determined | blank – No 

 

After a quick observation, you'll notice that car game engines aren't good enough because 

they're simply not sensor based, and they also lack some important simulation features like 

the ability to use Multi-Agents, V2V/V2I Communication, and sensor noise. They lack exactly 

what the real projects like DARPA Teams need to simulate how their cars will behave before 

testing in real situations. 

 



 

2.4 – Limits and Specialization of the Simulators 17 

 

 

2.4 – Limits and Specialization of the Simulators 

Even after so much effort in the development of simulation, we are still far away from 

having an ideal simulator. The more features they tend to have, and the more realistic they 

are, the more resources they need to do their calculations in a reasonable amount of time. 

But simulation won't help much if it's oversimplified. In other words, we need a balance 

between the realism of the simulation, and the simplicity of its calculations. There are lots of 

things that we’d love to be able to simulate, but the sheer amount of processing power those 

would require are simply too much. Let’s talk about these limits. 

Care must be taken with big quantities. When we're talking about large amounts of things 

in a simulation, they better be simple. You want to make some complex calculations, and 

many simple calculations. But you don't want to make many complex calculations. For such an 

example, let’s look at a large scale traffic simulator. The behavior of those thousands of 

vehicles is simplified to the point of the simulator being able to make thousands of 

calculations almost instantly. That’s because the decisions are simple, and their physics and 

movement are very simple as well. 

But imagine if each one of these cars was aware of its environment through individual 

sensors, affected by generated noise. And all these cars would go through complex decision-

making algorithms in order to send commands to their actuators, and then the simulation 

would have to calculate the next step based on what the actuators were ordered to do. If you 

multiply all these details by a thousand cars, it would take days to simulate a just a few 

seconds (if not less) of such a large scale scenario. 

But it's very easy for a normal computer to simulate in real-time a few of these driverless 

cars. So the most obvious solution is to try and have more detail where it matters and less 

detail where it doesn't matter, depending on the specialization of the simulator. This means, 

in the case of this project, that we could try and have some detailed cars, with detailed 

decision-making and a more detailed physics simulation to study, and surround them with a 

crowd of less detailed objects, with their very own simple simulation. 

3D simulation becomes a bit of a problem here, especially if you're adding a third 

dimension to the terrain. That’s because in this case, there's a whole lot more calculations 

involving those thousands of cars, to account for the extra dimension in their dynamic. For 

highway systems and most road networks, the changes in elevation are relatively small. So 

the simulated results are similar even without a 3D simulation. But with some cities and road 

networks, there are very drastic elevation changes. A 3D simulation is very important in these 

cases because it must be taken into account that sensors can't always look around corners, or 

down hills. 

The vehicle performance is affected by the third dimension as well. It needs more power 

to climb uphill, and more importantly, it needs to break sooner and harder if it's going 

downhill. Weather conditions such as rain and snow also affect the way the vehicle performs. 



 

18  State of the Art 

  

 

Dirt, loose gravel, and other different ground surfaces can also be simulated to test the 

vehicle's control system. Again, a normal computer can simulate effects like these for a few 

cars, but not for thousands. 

A good example of something that would be very hard to realistically implement in a 

simulation is GPS signal loss. The satellite signal can be occluded by pretty much anything 

that is big enough and in the way, like buildings, or trees. Realistic simulation of such a 

blockage would require simulation of the satellites and their orbits. The line of sight between 

the GPS receiver and the satellites would need to be tested to see if there was a signal loss or 

not. You can go as far as considering signal reflections off large buildings. But all these details 

would take a tremendous amount of processing power, and a lot of effort to implement. A 

balance between the effort and the results is essential: We can try and simulate GPS signal 

loss in various ways, from simple random time intervals, to specifying areas in the map where 

the GPS signal would be lost. As long as the result is that the GPS receiver loses the signal 

every once in a while, we get a simulator that can test the vehicle’s ability to predict its 

position roughly even if he temporarily loses the GPS signal. 

There's also a good example of something that was very hard to simulate a few years 

back, and now, with some developments in computer technology, has became easy on 

processing needs. That's the example of vision based sensors. Vision algorithms used to be 

tested by simulating the markings in the roads, but the results would differ a lot to the real-

life, where there are shadows from objects that might be out of the picture, atmospheric 

conditions like fog, storms, or even direct sunlight. Vision algorithms can now be tested more 

realistically because 3D rendering has evolved a lot lately. Now it's very common to have 

applications (any common video-game) that has a 3D engine implementing all these features, 

and can render them all in real-time with a reasonably cheap computer. It's a matter of 

streaming the result video output into a virtual camera instead of streaming it into a monitor 

screen. And you end up with a camera receiving a video that features photorealistic weather 

effects [32]. 

An ideal simulator would have to be indistinguishable from the real world. That might 

only be accomplished in an utopian future. But we can take what exists and adapt it to our 

necessities when it comes to simulation, by re-balancing the capabilities of the simulator. 

 

 



 

2.4 – Limits and Specialization of the Simulators 19 

 

 

 

 

 

Figure 2.14 - Screenshots of Crysis game3 

                                                 
3 Images source: TClms5400, ―PROJECT OFFSET vs CRYSIS vs ALAN WAKE‖, 4 Nov 2007. Accessed at: 
http://www.gamespot.com/pages/forums/show_msgs.php?topic_id=26022609&page=0&prev_button=1 

http://www.gamespot.com/pages/forums/show_msgs.php?topic_id=26022609&page=0&prev_button=1


 

20  State of the Art 

  

 

 

2.5 – Summary 

Although attempts to build driverless cars are not new, only recently has it become an 

intensive effort. Only now people are worrying with the effectiveness of the testing and 

simulating of their projects, and the simulators used are far from being ideal. The more 

features they tend to have, and the more realistic they are, the more resources they need to 

do their calculations in a reasonable amount of time. But simulation won't help much if it's 

oversimplified. And in some cases, it is. 

We need a balance between the realism of the simulation, and the simplicity of its 

calculations. When deciding the type of simulation that we need to run, we need to decide 

what aspects are important to simulate, and what aspects really don’t matter much: We 

don’t have an ideal simulator, but the next best thing would be a simulator that allows us to 

choose what we want it to simulate. 

Or, a connection between different types of simulators, that would each simulate 

different aspects and areas of a scenario to complement each other’s strengths. This is what 

this study aims for. 

 



 

21 

Chapter 3  

Solution Design 

In this chapter, the methodology of this study is discussed: The problem, the methods, 

and the tools. We’ll also describe the proposed architecture, its goals and functionalities, and 

at last, a brief analysis of which of those functionalities are implemented in the prototype. 

3.1 – Methodology 

In the following sections, the problem and the goal is described in detail, as well as the 

methods followed to reach the goals of this study. Also described are the tools and software 

used in the development, and the development environment itself. 

 

3.1.1 – Problem Statement 

The goal of this study is to achieve a simulator that, while being reasonably detailed with 

its physics calculations for the simulation of autonomous vehicles, can take into account 

influences from large amounts of entities, like the situation of driving in road network that is 

crowded with intense traffic. 

The problem is, as concluded in the end of chapter 2, that a simulator that could both 

simulate huge amounts of traffic, while at the same time being very detailed with it all, 

would take a lot of computing resources to run in a reasonable machine. But a traffic 

simulator is not detailed enough to simulate autonomous vehicles, while a robotic simulator is 

not good enough influencing a detailed autonomous vehicle with the actions of thousands of 

other cars. 

The goal is to overcome the limits of the two types of simulators by making them work 

together, cooperatively. The strengths of both types of the simulators are joined together to 

locally eliminate their flaws where we are analyzing the problem. 

The traffic simulator achieves quantity, while the robotic simulator achieves detail. We 

don't need to know the details everywhere in a simulation, so we can have the simulators 



 

22  Solution Design 

  

 

cooperate in a way where the robotic simulator calculates the details where we need them, 

while being influenced by the larger, crowded, but simpler world outside that is being 

managed by the traffic simulator. 

 

3.1.2 – Methods 

First, the general characteristics of the concept project were sketched (Chapter 3.2). 

After that, a study of the state of art was done (Chapter 2), to confirm the strengths and 

weaknesses of the existing simulators and to further develop the concept project. The 

solution design was developed afterwards (Chapter 3), having confirmed what was needed to 

complement today’s traffic and robotic simulators. A proposed architecture for the solution 

design was defined, and then the programs and tools that would be used to build it were 

chosen (Chapter 3.1.3). Afterwards, further detailed goals and functionalities were defined 

for this project (Chapter 3.2.1), from which a few were selected to be implemented in a 

prototype simulator (Chapter 3.2.2). Finally, the prototype was achieved with modifications 

and implementations of the simulators previously chosen (Chapter 4), performance and 

functional tests were made, and the results noted down (Chapter 5). 

 

3.1.3 – Techniques 

The MAS-Ter Labs traffic simulator was chosen to perform the role of traffic simulator in 

the proposed architecture. It was practically chosen before even the study of the state of art 

of traffic simulation was done. There were a few reasons for this: It was developed in LIACC 

as well, so we were in close contact with those who had developed it. Also, its source was 

immediately available, unlike the commercial solutions already available. Although some of 

them have more analysis tools than this one, like graphics showing the traffic flow in 

different roads, waiting times, average speeds, etc, all this falls out of the scope of this 

dissertation. The role of the traffic simulator in this project is meant to influence the 

simulation of the autonomous vehicle being simulated in detail, in the robotic simulator. 

Similar to the choice of the traffic simulator, the decision of the robotic simulator was 

rather quick too. The reasoning behind this decision is connected to the proven performance 

and flexibility of this simulator, as it has been used in different applications and adaptations. 

It has been successfully used for various competitions: Micro-Rato [10][46][47][48] (2001-

2008), CiberMouse@RTSS [49] (2007-2008) and CiberMouse@DCOSS [50] (2008). It is open-

sourced, so, the source code was readily available for us, and it was previously used at LIACC 

in several research projects such as a computational study on emotions and temperament in 

Multi-Agent Systems [51][52], development of cooperative rescue operations [53], and the 

already mentioned Intellwheels Project [54][55][56]. So, again, we are in close contact with 

those who had already worked with Cyber-Rato, and with those who had adapted it to various 

situations. 



 

3.2 – Proposed Architecture  23 

 

 

 

Next, the development environment was chosen: The software and libraries used to 

implement the prototype. All the simulators that were chosen for this project have been and 

are being developed under Microsoft Windows operating systems, so this simulator project 

should be developed under the same family of operating systems. This ensures better 

compatibility between interacting software and reduces the combined diversity of 

programming software requirements. 

As for the programming software suite for the Intellwheels simulator, the choice was 

Microsoft Visual Studio C++. The Intellwheels simulator is in C++ language [31], and uses the 

Qt 2.3 libraries [57] from Qt Software (formerly known as Trolltech, before being bought by 

Nokia) [58], a set of libraries, with special classes and functions. These libraries are cross-

platform (this means that they can be used in various operating systems, including Windows 

and Linux) and provide various class libraries that aid in the low level functions, allowing a 

higher level of programming. This version of Qt has direct integration with Microsoft Visual 

Studio C++, and this software provides a simple to use programming environment. This 

development environment was easy to set up too. Because of all this, that was the software 

we used to code and compile simulator-related code. 

Regarding the simulation Viewer, and the simulation Agents: The ones modified were 

developed in Borland Delphi 7 [59]. It is an integrated software development environment 

that allows visual, event-oriented programming through Pascal programming language [60]. 

For the Viewer in particular, it calls and uses external OpenGL libraries [61][62] to render the 

3D views. So a development environment using Borland Delphi 7 and OpenGL libraries was set 

up to code and compile changes to everything that was related to the simulator Viewer and 

the Agents. 

Finally, regarding the MAS-Ter Labs traffic simulator, it was programmed in C++, and 

developed using the Eclipse software suite. This development environment was already 

installed and configured at the start of the project, so we saw no reason to change it: Since 

the workplace was already ready. It also used Qt Software’s Qt [58] libraries, but the version 

used here was more recent than the version used in Cyber-Rato. The Qt libraries were already 

integrated into Eclipse as well. 

 

3.2 – Proposed Architecture 

The architecture for this simulation software and its peripheral modules was sketched out 

while guessing a few desired characteristics, after considering what was thought to be the 

limits of today’s simulators. The initially desired goal was to create a detailed robotic 

simulator that could simulate autonomous vehicles as well as vehicles with semi-assisted 

driving technologies, among a realistic scenario of intense road traffic. This goal of ours was 

confirmed after a study of the State of Art was done in the fields of traffic and robotic 



 

24  Solution Design 

  

 

simulation which showed us that this subject still had a long way to go. So we developed the 

architecture further until it became a rich composition of connected modular software, as 

described below. 

The figure below (Figure 3.1) is a simple schematic for the proposed architecture, where 

the different modules of the project are represented. The 2 greyed out ones in the centre of 

the figure are the modules which are the main focus and the point of start for the prototype: 

The Simulator, and the Simulation Viewer. 

 

Figure 3.1 - Architecture of the simulator and its peripheral systems 

The basics of the modules and their connections are as follows: 

 The Simulator connects to MAS-Ter Labs Traffic Simulator and to the Pedestrian 

Simulator [63] and receives traffic information from both the simulators 

mentioned above, adding that information to its calculations. It is also able to 

send information of its agents back to those simulators, so that they, in turn, can 

take that information into consideration when calculating the outcomes of their 

own simulations. By default, the map is loaded from the MAS-Ter Labs Traffic 

Simulator, and a parser reformats the map into the format needed to the 

Simulator calculations, as well as sending the map to the remaining peripheral 

simulators, like the Pedestrian Simulator; 

 The 3D Simulation Viewer connects to the simulator, and receives information 

from it to render the 3D representation of the simulation. It also has the 

functionality to send information of rendered images back to the Simulator for 

optical sensors like cameras (to test vision-based algorithms), including infrared 

cameras. Those rendered images, or video streams, are in turn sent to the 

relevant Agents so that they may analyze it. The 3D Viewer will also load the map 

from the Simulator for rendering purposes; 

Simulator

Driver

Agent

Infrastructure

Agent

Driver

Agent

MAS-Ter Labs

Traffic Simulator

Pedestrian

Simulator

3D 
Simulation 

Viewer



 

3.2 – Proposed Architecture  25 

 

 

 

 Agents connect to the simulator and send all the information it takes for the 

simulation to know the necessary characteristics about the Agent. This includes 

component positioning and type of Agent. It can be a Driver Agent, in which case 

it will have a car assigned to it. It can also be an Infrastructure Agent, like traffic 

lights, intelligent street signs, communications access point, or obstacles. 

 

3.2.1 – Modules’ Functionalities 

Below, the specific objectives and functionalities of the different parts of this 

architecture are briefly described. 

 

3.2.1.1 – External Simulators 

MAS-Ter Labs Traffic Simulator can be defined as a multi-agent traffic simulator following 

a microscopic approach, and in this section, its solution design is described. This content is 

largely based in the third chapter of [2], which resulted in two papers that were accepted 

into two different conferences: Readers are referred to [4] and to [64]. 

Note that this is not the implementation of the MAS-Ter Labs Traffic Simulator prototype 

that was made, but the concept behind it. The development of the prototype of the MAS-Ter 

Labs Traffic Simulator is approached in section 4.1 of this document, just before the 

modifications made to the prototype.  

The Simulation Engine is at first described in [2] as the MAS-Ter Lab framework Virtual 

Domain sub-system. Its high level architecture and all its main components are illustrated in 

Figure 3.2. Each of the represented components can be run in a different processing unit, and 

can be interpreted as independent applications. 

 



 

26  Solution Design 

  

 

 

 

Figure 3.2 - Simulation Engine High Level Architecture [2] 

 

As shown in the diagram of Figure 3.2, the simulation engine is highly distributed and is 

formed of several independent applications, making it very flexible. 

The Simulator Engine Controller (SEC) illustrated in the middle of the diagram is 

responsible for receiving all allowed actions provided by all its features and for executing 

them. It is also responsible for sending simulation state updates every time it is necessary. 

The Moveable Agent (MA) components are agents that control network entities that are 

allowed to move (for instance a driver of a car, or a pedestrian). Basically, they receive 

information in regular time intervals about its surrounding and decide what actions they wish 

to perform upon the entities that they control. Each Moveable Agent controls one single 

network entities and the control actions he wishes to perform on the respective entity must 

be sent to the Mediator application that will be responsible for executing them. 

The Graphical User Interface applications are responsible for receiving the simulated 

network state in regular time intervals and render it in a human readable graphical interface.  

The Semaphore Agent (SA) applications are basically agents that are responsible for 

controlling traffic light intersections with the objective of improving the overall traffic flow. 

Each Semaphore Agent only controls and regulates one single intersection. Their decisions are 

not solely based on the information they retrieve from their controlled intersection but also 

are based on information sent by other agents as well as negotiations between them. Instead 

of having as their only objective the improvement of the traffic flow of the downstream of a 



 

3.2 – Proposed Architecture  27 

 

 

 

traffic light intersection the Semaphore Agents also try to improve the overall traffic flow of 

the network by negotiating between each other before making decisions. These agents also 

provide, in regular time intervals, information about their decisions and intersection traffic 

flow state to the Semaphore Graphical User Interface Applications (Semaphore GUI’s) that 

represent this information in a human readable graphical interface. 

The Mediator application is responsible for coordinating a certain number of Moveable 

Agents that control a physical entity in the simulation. This coordination includes translating 

the received world state information sent by the Simulator Engine Controller in regular time 

intervals into the surrounding environment perceptions (objects that surround and influence 

the behaviors of the simulator entities co-habiting in a common environment) of each agent it 

coordinates. It also includes receiving agents’ actions, aggregating them, calculating and 

updating the entities affected by those actions and sending the updated information back to 

the Simulator Engine Controller. The Mediator application is also responsible for launching 

new agents in the network entry points that populate its control area, as well as to kill agents 

that reach any of the network exit points (also inside its control area). 

 

To achieve a desired perception of a part of the environment, an agent becomes a 

listener of all perceptible properties of entities that are inside an attention range (let us 

name it the agent’s foci) that the agent sends to the mediator. All objects within the range of 

the listener foci become its casters. This means that the mediator must create a perception 

message describing all the features of those objects, in other words it must translate the 

main information that defines all the objects that are considered to be casters of the listener 

agent into agent understandable information. 

After the Mediator sent all the required perceptions to all agents within its controlled 

zone, it sends updated information on entities affected by the agent’s actions to Simulator 

Engine Controller. Finally, the Simulator Engine Controller can update all the changes that 

were provoked by the agents’ actions into its own network representation.  

The example network illustrated in Figure 3.3 describes the concept of the agent foci in a 

typical simulation time step. 

 



 

28  Solution Design 

  

 

 

 

Figure 3.3 - Network Scenario exemplifying driver agents foci [2] 

 

Imagine that in this example several time steps have already passed. So let us focus our 

attention on the driver of vehicle A. Based on the perception of the previous time step 

received, the driver decided to focus his attention on the front of his vehicle as illustrated by 

the gray sector of the figure. Now, assume that its desired action is to maintain its current 

velocity. The driver will send the mediator a message informing that it desires to maintain its 

velocity by inducing in its vehicle the necessary acceleration (assuming that friction exists) 

and that it desires to receive perceptions information about all objects inside its line of sight 

(foci). 

In the described case, the only object that will be affected by the driver of vehicle A 

action is its own vehicle. The mediator then updates, in its control zone data structure, 

vehicle A’s position based on the acceleration provided by its driver. After finishing updating 

vehicle A’s position, it will search for all the objects within the received line of sight (foci) 

sent by the driver. Looking at the example scenario it is possible to identify four objects 

inside the agent foci:  

 The "Go ahead" arrow sign on its lane;  

 The "Turn left" arrow sign on its left lane;  

 The "Turn right" arrow sign on its right lane;  

 And a car at his front, on the same lane.  

The characteristics that define these four objects are gathered by the mediator that 

translates them into a language that can be understood by the driver agent of vehicle A. 

Notice that the car in its front has the breaking lights on. Finally the mediator will send the 

constructed perception back to the driver of vehicle A.  



 

3.2 – Proposed Architecture  29 

 

 

 

The described sequence of actions that happened between vehicle A’s driver and the 

mediator will happen with all other drivers. While another simulation time step is not started 

the driver of vehicle A will reason on received perception to decide its next action. Since it 

received the information that the front vehicle is reducing its velocity it will probably decide 

also to reduce its velocity. Whatever its decision, the action will only be executed in the next 

simulation time step. 

 

This ends the explanation of how the MAS-Ter Labs Traffic Simulator runs the simulation 

and a suggestion to how the many agents in it take decisions. The suggested architecture is 

composed of several different types of applications that can be distributed across several 

processing units. This kind of modularity enables this sub-system with the capacity of being 

an extendable and scalable solution. It is also believed to be the best solution to guarantee a 

good system performance when simulating large networks highly populated.  

The developed prototype described in section 4.1, in the next chapter, only contains a 

few of the described features. Nevertheless, the prototype presents itself as the first stage of 

the development of the conceptualized sub-system where some of the nuclear concepts 

introduced in this chapter were implemented. 

 

So, to conclude, some details on how this simulator connects to our solution design is 

briefly explained now. The Simulator connects to MAS-Ter Labs Traffic Simulator and receives 

traffic information from it. Specifically, the positions and other characteristics of the Agents 

(Moveable Agents, Semaphore Agents, etc.) are sent to the Simulator. The Simulator will send 

back to the MAS-Ter Labs Traffic Simulator the information about the agents connected 

directly to it. And both the simulators include that information in their calculations. This 

way, the agents in both simulators will perceive the agents from the other simulator, and 

react accordingly. 

So that we can run a very big and complex scenario with this solution design, we have to 

make sure that the Simulator won’t get unnecessary information sent to it. The MAS-Ter Labs 

Traffic Simulator is very scalable, and so, can deal with the traffic simulation of a road 

network as big as the world’s biggest metropolises [2]. So, a module should be created in 

between the simulators, that keeps information about the Agents connected to the Simulator, 

and that filters the information from the MAS-Ter Labs Traffic Simulator, only letting 

information pass to the Simulator if it’s about Agents that are somehow in the range of the 

Agents connected to the Simulator. 

In short, this connection will make the numerous traffic cars react to the autonomous cars 

that are being simulated in detail, without the need for many complex calculations involving 

sensors. In turn, the autonomous cars being simulated in detail will have their sensors detect 

the numerous traffic cars and react accordingly. Thus we achieve our main goal of being able 



 

30  Solution Design 

  

 

to simulate, in detail, one or a few complex autonomous vehicles in the middle of heavy 

traffic situations in huge cities. 

 

3.2.1.2 – The Simulator 

The main objective of the Intellwheels Simulator was to develop simulation software to 

function as a test board for control algorithms for intelligent wheelchairs. This following 

section will be based in Chapter 4 of [28]. It introduces the basics of the Intellwheels 

Simulator, in order to better explain its role in our global design solution. 

The Intellwheels Simulator expanded the Ciber-Rato project that it was based on, 

acquiring important features which are critical for intelligent wheelchair simulation. As core 

functions, this application creates a virtual world, complete with map definition, where 

robotic agents can connect to. The simulator regulates the connection attempts, handles the 

communications and returns the perception of the world to the agents, similarly to what a 

real robot would get from the real environment around it, through its sensors. 

The robot control software should treat the awareness information not discriminating it 

from real or simulated, therefore producing the result independently: it produces orders for 

every connected actuator, being real or virtual. This scenario leads to the subject of reality 

definitions. In fact, the usage of the same software for real situations as for virtual tests, 

suggests a leap forward into the augmented reality concept [44], in which virtual world 

objects interact with the real world. 

This chapter will go through the simulator’s conceptual architecture, including how the 

support for mixed reality [45] was implemented. It goes through the modifications made to 

Ciber-Rato simulation environment and the new algorithms implemented to correctly simulate 

Intellwheels’ wheelchairs. 

Being essentially based in the Ciber-Rato source code, the Intellwheels Simulator has its 

main basic architecture. Conceptually it is illustrated in Figure 3.4. 

In a higher abstraction level, it consists of a central simulation server to which every 

agent, independently of its type, will connect to. Furthermore, to have a structure as 

modular as possible, the agents are external applications, developed in any kind of language 

and running in any type of operating system, must connect via IP and UDP protocols [65]. 

Through this obligation, the spectrum of possibilities for agent development is greatly 

broadened. 



 

3.2 – Proposed Architecture  31 

 

 

 

 

Figure 3.4 - Intellwheels Simulator's architecture [28] 

The simulator server is responsible for all calculations concerning simulation (collision 

detection, position calculation, wheel motor emulation and world perception sensors’ 

values). It is also the assurance of communications between every intelligent agent 

(independently of their type). Viewer agents are able to graphically draw the modeled world, 

as the simulator sends them map definition, and robotic agents’ positions. These agents, on 

the other hand, have a more intense interaction with the server. They not only receive 

information concerning their virtual sensors’ perception but also need to send power input 

orders to their virtual motors. 

The physical implementation of this architecture resulted in the usage of laptop 

computers. They house the simulation and agent applications, which connect through a Wi-Fi 

wireless network under protocol 802.11g and cabled Ethernet connections, as illustrated in 

Figure 3.5. 



 

32  Solution Design 

  

 

Intellwheels Simulator Server

Ethernet

UDP/IP

Real Wheechair 

Control Agent

Wi-Fi 

Viewer Agent
Virtual Door Agent

Virtual Wheelchair Control Agent

Ethernet

RS-232

 

Figure 3.5 - Technology implemented for Intellwheels simulation [28] 

The core of the system is a central computer that runs the simulator server, to which 

every agent application connects to. The information exchange is made through XML 

messaging which ensure human and machine-readable content [66].  

The system is composed by a simulator server, which can be a Linux OS or a Windows OS 

(although, during this project, it was only compiled a Windows version of Intellwheels 

Simulator). It sets a UDP listen port, to which it will await agents’ registration requests. 

Through specifically ports, attributed individually to each agent, it sends information of their 

concern: sensor perception (in case of robotic agents) and map, collisions and positioning 

information (in case of viewer agents). The simulator is also capable of accepting incoming 

messages to these ports to update the simulation: robot action orders and simulation 

commands from the viewers. 

 

Now we have an overview of the Intellwheels conceptual architecture and the technology 

it used for its development and implementation. It presented the concepts of the multi-agent 

system and the support for external application connection. Intellwheels provides a new 

mode of Intellwheels simulation where it is possible to connect not only agents for virtual 

robots but, at the same time, real Intellwheels controllers which can, themselves, work on 

augmented reality mode. The simulator, on the other hand, will be under an augmented 

virtual environment, receiving information of real wheelchairs and calculating their 

interaction result with the virtual objects modeled. 



 

3.2 – Proposed Architecture  33 

 

 

 

Every Agent is modeled with a rectangle shaped body, with configurable center of 

movement, height and width. Additional physical characteristics, such as the acceleration 

curve and the maximum speed it can achieve were also modeled. The proximity sensors can 

be defined by their opening cone of sight and their orientation, in degrees, and can be placed 

through X and Y coordinates relatively to the robot’s center. 

 

Now, it’s easy to understand why this simulator is the choice for the role as the robotic 

simulator that is the center of our solution design. There’s great potential considering its 

great abilities to work with mixed realities and its great overall flexibility with 

communications and modeling. So, to conclude this section, the functionalities that extend to 

it in our solution design are as follows: 

It does the detailed simulation of the autonomous vehicles that are to be simulated. It 

directly tests for collisions, calculates sensor values, receives information from the Agents’ 

actuators and uses it in its calculations, validates V2V/V2I communication between the 

Agents connected to it, and the agents that are connected to other connecting simulators 

(like the MAS-Ter Labs Traffic Simulator). 

It receives information about relevant Agents connected to the other simulators, and 

takes them into account for its own simulation’s calculations (for example, receiving 

information about nearby cars that are in the traffic, being controlled by the MAS-Ter Labs 

Traffic Simulator, and taking them into account when calculating collisions, Agent’s sensor 

values, etc.). 

It can be modified to simulate detailed physics and mechanics details such as the 

environment being able to affect Agents’ movements and sensors, affecting the random 

sensor noise, and also affecting wireless V2V and V2I communications. 

It can also be modified to simulate failures, for example, not sending information to an 

Agent regarding a sensor value, or sending corrupt data, or ignoring actuator commands, etc. 

This would help test Agents that are programmed with critical systems, to see how they’d 

react to such failures: Invaluable if our lives are to be trusted to autonomous vehicles. 

Also, it could receive and load simulation maps from other simulators. 

 

3.2.1.3 – Agents 

The Agents connect to the simulator and send all the information it takes for the 

simulation to know the necessary characteristics about the Agent. This includes component 

positioning, and type of Agent. It can be a Driver Agent, in which case it will have a car 

assigned to it. It can also be an Infrastructure Agent, like traffic lights, intelligent street 

signs, communications access point, obstacles, malfunctioned vehicles, etc. Some of these 

agents are an integral part of the road network, and will connect to the MAS-Ter Labs Traffic 

Simulator instead of connecting to the Intellwheels simulator, but those Agents communicate 



 

34  Solution Design 

  

 

with the Intellwheels Simulator’s Agents and with the Viewer (essentially another Intellwheels 

Agent, explained further in 3.2.1.4) through V2V and V2I communication. 

During the development of the Intellwheels Simulator, some simple and generic 

controlling agents were created to overcome the initial difficulties in the Ciber-Rato study, to 

test UDP [65] communications with Ciber-Rato as well as to test XML messaging [66]. The 

main purpose of this application was to have the ability to connect to the original Ciber-Rato 

as a robotic agent and as a simulation viewer agent [28]. This game type Agent, is a simple 

Agent that doesn't have decision-making abilities. It has an interface to the user so that he 

can directly control a vehicle in the simulator. This will come in hand for testing and 

debugging the simulator. The Agent is able to send its characteristics (from size, center of 

movement, acceleration to top speed and sensor definition) and basic commands for 

movement (forward, back, turn left and right), as well as receiving information (for various 

types of sensors) which allows full test of autonomous vehicles. 

As is mentioned in the previous section, real vehicles (and other agents that have a 

physical manifestation in the real world) can connect to the simulator thanks to the 

implementation of the ―Real‖ type of robot in the Intellwheels Simulator. And send and 

receive information regarding the mixed realities of both the virtual world and the real world. 

This allows for simulations where a real vehicle is able to avoid virtual obstacles. 

 

3.2.1.4 – Viewer 

Visualization is a very important aspect in simulation. It is the means to easily understand 

the large quantity of information that results from a simulation, which would otherwise be 

too great or complex for most people to fully grasp in a reasonable amount of time. Graphical 

representation is now taken for granted and it would be unconceivable to develop a simulator 

without some sort of visuals. Humans construct and comprehend the world in a graphical way 

for we have an innate ability to process graphic information in a preconscious, involuntary 

fashion, similar to breathing [67]. Visualization is, therefore, the foundation for our 

understanding of the results of a simulation. 

This section will explain the architecture and workings of the Intellwheels Viewer, and is 

heavily based on chapter 6 of [28]. The viewer is a very important part of the simulation, and 

must be credible if the simulation is to be useful. There must be enough interactivity during 

the simulation, in order to easily display the information the user intends to see. The 3D 

camera, or perspective, must be easy to manipulate, and the animation and movements 

should be free of glitches so that it’s easier to take results and conclusions from the 

simulation. It should be possible to view the entire simulation as if one was sitting on the real 

vehicle. 



 

3.2 – Proposed Architecture  35 

 

 

 

Taking these concepts into consideration, it became clear that the original viewer for 

Ciber-Rato [68] would not fit the needs of the Intellwheels Simulator. So, the decision to 

develop a new viewer from scratch was made. 

 

 

Figure 3.6 – Intellwheels Viewer architecture [28] 

Conceptually, the viewer developed contains 5 main software modules (Figure 3.6): 

 The main module (Main Form) is where everything comes together. It allows the 

communication configuration activation, robot selection (for selected information 

display) and visualization selections. This main module is also responsible for 

storing the information concerning the map’s characteristics and wall definitions; 

 The Communications module contains the IP/UDP configurations and handling and 

XML message parsing. This module ensures that the messages sent by the 

simulator are correctly received and transformed into system variables for use by 

the other modules; 

 The Robot module is where all the robots’ information is stored. Their physical 

characteristics, status, position and orientation are stored here. It is through this 

module that the rest of the application will access updated and ordered 

information on the robots, either for show purposes or for calculations; 

 The 2D and 3D Visualization modules have similar functioning modes. They access 

the map and robot’s information and reproduce them graphically. The only special 

characteristic of the 3D module is that it calls and uses external OpenGL libraries 

[61][62]. Since the simulator only provides 2D information, the 3D viewer will 

generate the Z axis coordinates in such a way that will make it easier to perceive 

the simulation. 

The developed viewer successfully creates credible graphical representation of the 

simulation and contributes to the entire simulation project with an evolved scenario. The 

Intellwheels Viewer implements drawing algorithms and 3D model loading functions that 



 

36  Solution Design 

  

 

produce a fluid and realistic visual representation of the simulation. Moreover, the 

application itself is flexible enough so that it can be easily expanded for increased 

performance or modified for different purposes. 

 

To further improve our solution design, it should be able to send information of rendered 

images back to the Simulator for optical sensors like cameras (to test vision-based 

algorithms), including infrared cameras. Those rendered images, or video streams, are in turn 

sent to the relevant Agents so that they will analyze the images and make decisions based on 

those, with their own Artificial Intelligence algorithms. This will improve the simulation of 

autonomous vehicles a lot, especially if the 3D Viewer graphic engine is updated for very 

realistic video output. Other sensor information should be used by the viewer to display, for 

example, the ranges of the sensors and the range of wireless communications. And finally, it 

should be able to render the visualizations differently according to the environment 

conditions like weather effects, luminosity, daylight or nighttime, fog or clear sky. All these 

conditions, if rendered correctly, will greatly increase the accuracy and realism of the tests 

done in term of vision-based systems and their abilities to recognize objects and signs in 

conditions far from the ideal. 

 

 

Figure 3.7 – Screenshot of Gazebo. A Robotic Simulator with a sample Graphic Engine4 

 

                                                 
4 Image source: http://playerstage.sourceforge.net/index.php?src=gazebo 

http://playerstage.sourceforge.net/index.php?src=gazebo


 

3.2 – Proposed Architecture  37 

 

 

 

 

Figure 3.8 – Screenshot of the Wheelman game5 

 

As you can imagine from the above pictures (Figure 3.7 and Figure 3.8), object 

recognition and identification in each of the two screenshots above, are totally different 

matters. A vision-based system that is successful in a simulation using the graphic engine 

depicted in Figure 3.8 is much more likely to perform well in the real world, than a system 

that is only successful in a simulation that is running a graphic engine similar to the one in 

Figure 3.7. 

 

3.2.2 – Prototype Scope 

The solution design is very complex and comprehensive. The idea now is to develop a 

prototype with some of the basic functionalities in order to test the basics of the proposed 

architecture. The complementary functionalities will be part of further development and 

future work. 

There are two main reasons for this: 

 The implementation of a solution design like this would hardly fit in a Master's 

thesis; 

 Testing should be done as new functionalities are added, while developing a 

complex application. 

                                                 
5 Image source: japamd, ―Wheelman‖. 6 Apr 2009. Accessed at: 
http://www.adrenaline.com.br/forum/pc/249430-wheelman-topico-oficial-3.html 

http://www.adrenaline.com.br/forum/pc/249430-wheelman-topico-oficial-3.html


 

38  Solution Design 

  

 

 

The following table presents some relevant specific objectives and functionalities of the 

solution design, sorted by groups, and then by relevance to the project. The relevance is 

based on how related the specific objective is to our main goals. It is also a bit based in the 

novelty of the given feature, as well as if any other relevant features depend on that one. 

There's also a very rough estimation of how easy they are to implement, but that's very 

subjective.  

 

Table 3.1 – Summary chart with the specific objectives 

 Relevance Easiness Specific objective description 

S
im

u
la

to
r 

10 7 Collision detection (done) 

8 3 Map reformatting 

4 4 V2V/V2I communication controlled by the simulator 

2 3 Environment affecting physics and/or sensors 

3 4 Failure simulation 

2 4 Sensor noise 

2 4 Communications degradation 

A
g
e
n
ts

 

10 10 Agents connecting to the simulator (done) 

9 9 Agents sending actuator values (done) 

9 9 Agents receiving sensor values (done) 

9 8 Game type Agent (done) 

9 8 Agents send their traits (done) 

1 3 Real vehicle connecting as an agent 

1 3 Real vehicle reacting to virtual sensor responses  

7 5 Infrastructure Agents 

4 4 Obstacles Agent 

3
D

 V
ie

w
e
r 10 5 Implementation of a 3D Simulation Viewer (done) 

10 9 3D simulation viewer connects to the simulator (done) 

5 6 Range indicators for Sensors and Communications 

5 3 3D simulation viewer streaming images back to the optic sensors 

3 5 Environment affecting visualization 

T
ra

ff
ic

 

S
im

u
la

to
rs

 10 8 Connects to the MAS-Ter Lab Traffic Simulator 

8 6 Loads a road network map from MAS-Ter Lab traffic simulator 

8 5 Traffic information received from the MAS-Ter Labs simulator 

8 4 Agent information sent to MAS-Ter Labs traffic simulator 

4 7 Connects to pedestrian simulator 

2 3 Receives information about pedestrian traffic 

Relevance: Highest relevance from 10, to the lower relevance, 1. 

Easiness: Highest easiness to implement from 10, to the highest difficulty, 1. 

Some of these functionalities happen to be implemented already, in the latest versions of 

the simulators that we're using. Those that made it to the prototype are marked with 

―(done)‖ after the description field in the above table (Table 3.1). 

But for the implementation of the prototype done during this thesis, another set of 

functionalities was done, ones less relevant for the simulation functionalities, but more 

relevant to testing the concept during the time-frame of this dissertation. 

 



 

3.3 – Summary  39 

 

 

 

The following functionalities are those that we considered to be fundamental for these 

first tests: 

 Simple XML maps to use during the prototype’s simulators’ tests (the same map, 

in different formats, for each simulator); 

 3D Models and Textures for better immersion in the tests; 

 Functional playable type agent to demonstrate collision tests, physics and 

sensors; 

 Modification of Intellwheels simulator to adapt to simulation of autonomous 

vehicles; 

 Implement vehicle's sensor interaction with the vehicles whose positions are being 

communicated by the MAS-Ter Labs traffic simulator. 

 

The changes that were implemented during this thesis are explained in the next chapter 

(Chapter 4), and the tests that were done are described in Chapter 5, along with the 

importance of those tests. 

3.3 – Summary 

In this chapter, the concept of the solution design was developed, as well as the 

ambitions of the global project. Recently, there's been a lot of simulators being developed 

here in LIACC, and it was about time we tried to connect them all together to increase their 

capabilities. The steps taken during the dissertation were also discussed, as well as the tools 

that were used. 

The scope of this whole study is mainly about the inter-connectivity between different 

functional simulators and their modules. This wide theoretical scope required a very 

comprehensive study and we can't try to do everything at once when it comes to 

implementing something as complex as this, because testing needs to be done as the 

functionalities are steadily incremented. To balance out the wide scope that was set for the 

concept, a narrow one needed to be defined for the prototype implementation so that the 

efforts would not go astray for the tests. After all, the point was to develop a prototype with 

some of the basic functionalities, so that the concept could be tested. 

 

 



 

40  Solution Design 

  

 

 

 

  



 

41 

Chapter 4  

Prototypical Development  

In this chapter, the development of the prototype is discussed. The functionality, the 

architecture, and the basic workings of each of the simulators software used are explained. 

Also discussed are the changes and implementations made to the existing software in order to 

implement the prototype of the solution design exposed in the previous chapter. Also 

explained here is the creation and usage of exterior elements like the XML road network 

maps, XML Intellwheels maps, 3D models and textures. 

Also suggested at the end of each of the following sections are hypothetical 

implementations to the software to achieve the solution design described in the previous 

chapter. These could serve as a guide should this work be continued and developed in the 

direction of implementing the full solution design. 

4.1 – MAS-Ter Labs 

Here, the prototype implementation of the MAS-Ter Labs Traffic Simulator will be briefly 

described. Note that the implementation is far simpler than the solution design of that same 

simulator. Only the relevant differences between the implementation and the design will be 

introduced. For more information about the implementation of the MAS-Ter Labs Traffic 

Simulator prototype, see Chapter 4 of [2]. The next part of this section will be heavily based 

on that chapter. 



 

42  Prototypical Development 

  

 

 

 

Figure 4.1 - MAS-Ter Labs Traffic Simulator Prototype Architecture Overview [2] 

There are four main modules, as illustrated by Figure 4.1, in the simulator application: 

 Network Loading Module – The network loading module contains all classes 

responsible for loading networks from files or geo-referenced databases into the 

simulator. The developed prototype allows only networks to be loaded from an 

XML file. Nevertheless, it’s constructed in a very modular way to allow an easy 

implementation of loaders for other type of files or databases; 

 Graphical Interface Module – The graphical interface module contains all classes 

responsible for the graphical user interface. The visualization of the simulation is 

made in 3D by using the Qt framework inner module that provides access to 

OpenGL library features. This module has been logically separated from the 

Simulator Engine Module so that more graphical interfaces can be implemented 

and easily included in the current developed prototype. The objective of this 

separation is to allow the physical separation of this module into autonomous 

applications in the future, which can display different graphical representations 



 

4.1 – MAS-Ter Labs  43 

 

 

 

of the information output provided by the simulator engine module. This will 

allow having several graphical interfaces illustrating one single simulation; 

 Simulator Engine Module – The simulator engine module contains all classes 

responsible for the simulation execution and information retrieval. The current 

section details the network model used in this module and the execution cycle of 

a simulation time step; 

 Communication Message Handler Module – The communication message handler 

contains all classes that are responsible for handling outgoing/incoming messages 

from or to other applications. The prototype handles only messages for traffic 

light intersection control; nonetheless, these features were constructed in a very 

modular way to allow an easy integration of other type of messages that can be 

developed in the future; 

 Traffic Light Manager Application – The Traffic Light Manager Applications are 

allowed to connect to the simulator, request a list of traffic light intersection and 

register as a traffic controller of a specific traffic light intersection. After 

registering the simulator sends this type of applications information about the 

ongoing and outgoing traffic flow of the controlled intersection. These 

applications may also change the traffic light plan of a controlled intersection. 

 

This implementation of the prototype works rather well for what we want, considering 

that it wasn’t originally designed for it. See [2] for the test results and conclusions drawn 

from it. 

Unfortunately, the way it was implemented makes it harder to test it for the desired 

purposes when it comes to testing the global design solution studied here. The way that the 

Moveable Agents are processed stops us from being able to directly affect them with inbound 

messages. In order to accomplish that, heavy modification of the main module of the 

prototype is required. And that isn’t the scope of this study. But it’s still possible to extract 

information from its Moveable Agents using outbound messages. And fortunately, the 

Intellwheels Simulator has the ability to update its ―Real‖ type of Agent with inbound 

messages, and so, the functionality of loading traffic cars into the Intellwheels Simulator 

could be tested if the connection between the two simulators had been successfully 

implemented. 

One modification that occurred to this prototype, prior to this dissertation, was part of 

another study, about V2V and V2I communications [9]. Among the modifications during that 

study, was one that consisted of communicating the positions of all the Moveable Agents in 

the traffic simulation through a TCP stream socket connection through port 8000. 

Unfortunately, the successful communication between the modified MAS-Ter Labs Traffic 

Simulator and the Intellwheels Simulator was not successfully accomplished by the time of 



 

44  Prototypical Development 

  

 

this study’s conclusion, and this hindered the amount of tests done to our prototype, as well 

as the results achieved. 

The difficulty lied in a few facts, the main one being that while the output message was 

implemented as a single string being sent through a stream socket via TCP, the input format 

of the Intellwheels Simulator is XML messaging sent via UDP. A module to convert one format 

into the other would have to be implemented in one of the sides, and that was not 

accomplished on time. 

 

Further implementations to get us closer to the solution design would be: 

 Changing the main module of the MAS-Ter Labs Traffic Simulator to allow its 

Moveable Agents to be moved through an outside source, to enable the 

communication of the positions of Intellwheels Simulator Agents to the MAS-Ter 

Labs Traffic Simulator, and have those be perceived by the rest of the Agents 

being controlled by the MAS-Ter Labs Traffic Simulator; 

 Changing the Communication Message Handler Module so that it could send road 

networks imported from XML files to other simulators connected to it. Those 

could include traffic light information, so that the Intellwheels simulator could 

import and use that information to load a map from it, for its own simulation; 

 Exchange of V2V and V2I messages between the Moveable Agents inside the MAS-

Ter Labs Traffic Simulator and the Agents connected to the Intellwheels 

Simulator. 

 

4.2 – Intellwheels Simulator 

To explain the modifications needed in this simulator, some of its aspects must be further 

analyzed, namely, its Real type Agents, and its XML communications. 

An important part of the simulator is its capability of admitting the connection of 

different robotic agents. Specifically, it is possible to distinguish an agent that controls a 

virtual robot from an agent that controls a real robot, meaning that the simulator can register 

two types of robotic agents: ―Real‖ and ―Simulated‖. 

If a ―Simulated‖ type robotic agent connects to the server, it will treat it as a controller 

for a purely virtual robot. The simulation will then provide it with the world perception, 

through the modeled virtual sensors. It will also accept incoming XML messages containing 

actions that set the desired input power to be given to the motors which, consequently, will 

be a parameter that the simulation engine itself will use to calculate the robot’s following 

position. It is a completely virtual environment. 

But in a case where the robot’s type is ―Real‖, the simulator will regard this agent as an 

application controlling a real robot, in a mixed reality mode. It is expected that the agent 



 

4.2 – Intellwheels Simulator  45 

 

 

 

provides the simulation with the robot’s X and Y coordinates (in meters) as well as the angle 

(in degrees). This allows the virtual world modeled in the simulator to expand with 

information concerning the real wheelchair. On the other hand, knowing the real 

wheelchair’s position, direction and physical characteristics, the simulator can virtually insert 

sensors on to it and calculate their values. As an example, the simulator could detect the 

proximity of the real wheelchair to any other object in the simulation, being virtual or real, 

like another robot. In sending this new data to the real wheelchair, the simulator is 

augmenting its reality perception, now acknowledging more information than it could by 

itself.  

This kind of scenario confers the simulator a mixed reality support characteristic that 

greatly increases the testing capabilities of the software. The robot prototype numbers and 

costs are no longer obstacles in cooperative and complex experimentations. And these 

capabilities that the Intellwheels Simulator has are a great potential for our solution design. 

These ―Real‖ type Robots can be used to simulate our traffic cars. Since their characteristics 

and status are updated from external applications, changes are implemented so that this 

information comes from the MAS-Ter Labs Traffic Simulator. With the module described near 

the end of section 4.1, to filter the information between the two simulators, this will allow 

the solution design to be able to deal with immense amounts of traffic, since only the 

relevant traffic vehicles are present in the detailed simulation’s calculations. 

The Extensible Markup Language (XML) is now a widely used standard, mainly due to its 

characteristic of facilitating communications across different systems [66]. Specifically in the 

Intellwheels Simulator’s environment, it is expected that different applications, developed in 

different platforms exchange data in an easy human understandable way. Ciber-Rato 

originally made usage of this with proven success, so, the concept was kept for the 

Intellwheels Simulator. XML tags were defined for every kind information exchange between 

the simulator and the agents to register their physical characteristics, sensors (there is a limit 

of 8 sensors in the current implementation of the Intellwheels Simulator), to move the robot, 

etc. But the way the robot is moved depends on its type. 

For a ―Simulated‖ robot type, the simulator will be responsible for new position 

calculation. It will also handle the modeling of the motors and thus the translation of the 

input power to robot’s speed. As such, to move the robot, its controlling agent must send a 

XML message, sending the power values to give to each motor. 

In case the connecting agent is "Real" robot type (in augmented reality mode) the 

simulator relinquishes the task of position determination to the agent itself. Conceptually, 

the simulator is working in augmented virtual mode and so, the agent must inform it, at all 

times, it’s X and Y coordinates (in meters) and orientation (in degrees). Through this action it 

is possible to allow interaction between the real and virtual world, particularly updates on 

virtual sensor value calculation and collision detection. 



 

46  Prototypical Development 

  

 

 

Not only these functionalities enable us to move traffic cars around while simulating a 

complex autonomous car, but it also allows us to merge realities by having a real car, 

equipped with sensors and actuators, participating in the simulation. The Intellwheels 

Simulator takes care of merging the information of the virtual sensors into the information 

coming from the real sensors so that the real car can perceive virtual objects as well as real 

objects. The simulator can also test for collisions between the real car and the virtual objects 

to detect Agent failures. 

Unfortunately, as stated in the end of section 4.1, the implementation of the module that 

would allow the communication between the Intellwheels Simulator and the MAS-Ter Labs 

Traffic Simulator was not complete, and so, we could not test the ability of moving traffic 

cars in the Intellwheels Simulator. 

Fortunately, some aspects of the solution design can still be tested. If it is shown that the 

―Simulated‖ vehicles (with the simulated sensors) detect the ―Real‖ vehicles (whose 

information would be updated with the position of traffic cars), then it is proven that the 

―Simulated‖ autonomous vehicle detects traffic vehicles and can react accordingly once the 

connection between both the simulators is made, and it is also proven that collision tests are 

also performed on the vehicles. For further information about the tests, refer to the next 

chapter. 

Another implementation that could be done to further achieve the solution design’s goals 

would be: 

 Altering the physical and mechanical calculations of the simulation so that the 

movements and behaviors of the robots would be closer to a car’s, rather than a 

wheelchair’s; 

 Implementing new sensors, to adequately test autonomous vehicles, such as: 

Luminosity, Optical camera, Infra-red camera (the viewer has the ability to 

render images and videos and stream them directly to these sensors), Laser 

scanner (LIDAR), Ultrasound, Inertial Measurement, Radar, and speed 

measurement, to complement the ones already implemented in the Intellwheels 

Software; 

 Creating a XML parser that would read the XML files that are loaded to the MAS-

Ter Labs Traffic Simulator and transferred to the Intellwheels Simulator. This 

parser would read the roads from those XML files and calculate the positions of 

the obstacles, or walls (the spaces in the map that are not the roads) to create a 

map in the Intellwheels Simulator format. By defining different parameters, it 

could create different obstacles automatically by creating the sidewalks by the 

road, and, only further away, blocks of buildings. 



 

4.3 – Simulation Agents  47 

 

 

 

 Receiving information from the traffic lights, and other infrastructure agents that 

are not connected to the Intellwheels Simulator, but are instead connected to the 

MAS-Ter Labs Traffic Simulator, and being able to both use that information in its 

calculations, and send it to the Intellwheels Viewer; 

 Achieving V2V/V2I communication between agents connected in the different 

simulators; 

 And all the other features that were suggested in Section 3.2.1.2. regarding 

environment variables, weather variables, sensor noise and failure, and sending 

all that information to the Intellwheels Viewer. 

 

4.3 – Simulation Agents 

The information it takes for the simulation to know the necessary characteristics about 

the Agent is sent to the simulator through the connection between them. This includes 

component positioning and type of Agent. During the development of the Intellwheels 

Simulator, simple and generic controlling agents were created to overcome the initial 

difficulties in the Ciber-Rato study, to test UDP [65] communications with it as well as to test 

XML messaging [66]. These are simple Agents that don't have decision-making abilities. 

There’s an interface to the user so that he can directly control a vehicle in the simulator. The 

Agent is able to send its characteristics, and basic commands for movement, as well as 

receiving information which allows full test of autonomous vehicles. 

 The simulator, by default, is listening to every communication sent to port 6000. Once it 

receives a message, it is analyzed and checked for a Robot or Viewer agent XML registering 

message. If the message does not match with any of these, the message will be ignored. If it 

is a robot connecting and if the Id is specified, it must not already be in use in the simulation, 

otherwise the registry will be denied. In a successful registration, the simulator will send a 

XML message confirming it. In this first message, the UDP datagram sent will specify a new 

port, to which every robot action (or viewer command, depending on which agent type is 

connected) must be sent. The simulator binds the robotic agent’s sending IP and port to this 

new port. No communication can be done to any other port, from this point forward. The 

main reason for this behavior is to ensure that port 6000 remains free for new robot 

registration [28]. The application also allows custom message sending. This permits that any 

message can be sent to the simulator, testing its response. 

The only changes made regarding tests was that the Agent’s characteristics like size and 

speed were changed to approach those of an autonomous vehicle instead of an electric 

wheelchair. And these changes don’t require programming as this characteristics can be 

directly inserted in the dialog of the Agent interface window. 

 



 

48  Prototypical Development 

  

 

Things that could be implemented to further approach the prototype to the solution 

design would be: 

 Developing this interface to behave more like a car’s handling, instead that of a 

wheelchair; 

 Improving the agent interface so that it could connect to a real vehicle reporting 

as an agent; 

 Adding the functionality of connecting other types of robotic Agents, for example, 

intelligent traffic signs, obstacles like broken vehicle and emergency traffic signs, 

road infrastructures, etc. 

 

4.4 – Intellwheels Viewer 

All the major changes to the code of this application were in the 3D Visualization Module. 

It is the module responsible for accessing the simulation’s information and reproducing it 

graphically. It calls and uses external OpenGL libraries [61][62] to render a 3D imagery output 

of the simulation. Since the simulator only provides 2D information, the 3D viewer will 

generate the third dimension’s coordinates in such a way that will make it easier to perceive 

the simulation. 

Taking Matthew Rohrer’s conclusions [67] on the preconscious image processing 

capabilities of human beings, the visualization for this simulation is more effective if we have 

the option to see the simulation from inside the vehicle. 

 



 

4.4 – Intellwheels Viewer  49 

 

 

 

 

 

Figure 4.2 – Modified Intellwheels Viewer 3D, 1st person view 

 

Through OpenGL libraries, it became possible to draw the objects by defining their 

surfaces, and vertexes, relatively to a given center. As an example, drawing a cube is done by 

indicating the corner coordinates of each of the six faces. When the camera viewing point is 

set, the OpenGL motor itself automatically handles the complete redrawing of the shown 

image. It continues to do so automatically, once the camera view position changes. The cycle 

is repeated many times per second so that the animation seems fluid, like watching a movie 

or playing a video-game. 

As for the 3D models, the simulator models the vehicles as simple 2D horizontal rectangles 

with no height, and as long as they occupy the same space in X and Y coordinates on the 3D 

viewer, there is no restriction on how the object itself is drawn. In fact, if one actually sees 

the car, instead of a mere cube, it makes the visualization (and consequently the simulation 

itself) much more credible. More information regarding the 3D model of the vehicle used in 

the simulator is in the next section of this document (Section 4.5). 

With the map and the 3D objects loaded, the drawing of the simulation is done by resizing 

and translating the objects according to the information stored for each robot (position, 

dimensions, orientation, etc.). 

 



 

50  Prototypical Development 

  

 

Various modifications were done to the Intellwheels viewer in order to improve its 

functionality: 

 The function that draws each agent was changed for the car to appear with the 

correct orientation, since the wheelchair’s model had different axis information; 

 The function that draws the floor, the sky, and walls was changed as well, to 

adapt those to the big difference in the simulation area required to simulate a 

road network, since the Intellwheels Viewer was initially prepared to draw a 

simulation that ran inside a room; 

 The function that renders the 3D world of the simulation had to be modified in 

order for it to be able to draw objects that were further away from a room’s 

length, it now should be able to draw objects that are 10 kilometers away from 

the camera, as opposed to the previous 50 meters; 

 Changed the functions related to keyboard input and to the camera controls in 

order to increase the speed at which one can move the perspective being 

rendered, since that the old camera speeds were adapted to navigating around a 

room, it would take literally hours to move the camera to the other side of a 

small town. 

 

The following changes should be done in order to further improve the viewer and to get it 

closer to the functionalities proposed in the solution design. Specifically, changes in the way 

that the Main Form module and the Communications module are implemented, in order to 

make it possible to pass more information from the Intellwheels Simulator to the 3D Viewer, 

and also changes in the 3D Visualization module that would enable it to render aspects of the 

simulation based on that information, for example: 

 Range of robot sensors and communications, in order to draw a representation of 

those as shapes around the vehicle, so that the user can quickly grasp when 

obstacles are or not in the range of the sensors or communication devices; 

 Rendering the environment, weather effects, daylight, fog, nighttime, etc. 

Other functionalities could be implemented by allowing the 3D Visualization module to 

send information back to the Intellwheels simulator, through the Communications Module. 

That would enable it to render more than one 3D imagery output, from different perspectives 

(an optical camera, for example) allowing the Viewer to send a video stream back to the 

simulator, destined for a specific Agent, so that it analyzes the video stream and makes 

decisions based on those, with its own Artificial Intelligence algorithms. This, allied with a 

major graphic engine upgrade, would make the testing of vision-based algorithms much 

better. 

 



 

4.5 – XML Maps, Textures, and 3D Models  51 

 

 

 

 

Figure 4.3 – Screenshot of the Need for Speed game6 

 

 

4.5 – XML Maps, Textures, and 3D Models 

Let’s introduce the five XML files that describe a road network for the MAS-Ter Labs 

traffic simulator, since most of them were modified for the prototype to work properly. The 

usage of XML files allows an easy processing by the programs, it is concise, formal and human-

legible [66]. 

 Network Main XML file – This is the main XML file of the network. It contains the 

name and paths to the other four XML files that describe the road network. It also 

contains information about other simulation parameters like the value of the time 

step, time multiplier value, and the priority rule that drivers should follow in a 

prioritized intersection.  

 Road XML file – This file contains all the necessary information about the entire 

roads network. For each road, it contains information about the two intersections 

that are connected by the road, the road segments that belong to it, as well as 

information about how they are connected to each other, the number, positions, 

length, width and direction of lanes in each road segment, as well as information 

about which are adjacent to the two intersections.  

                                                 
6 Image source: http://recensioni-videogiochi.dvd.it/images/Need_For_Speed_Pro_Street/need-for-
speed-pro-street-04-l.jpg 

http://recensioni-videogiochi.dvd.it/images/Need_For_Speed_Pro_Street/need-for-speed-pro-street-04-l.jpg
http://recensioni-videogiochi.dvd.it/images/Need_For_Speed_Pro_Street/need-for-speed-pro-street-04-l.jpg


 

52  Prototypical Development 

  

 

 Intersections XML file – This file contains all the necessary information about the 

entire intersections network. For each intersection, it defines the position 

coordinates, the area that it occupies, the source and drain roads, as well as the 

directions allowed. Based on such directions and the intersection area, the 

intersections inner road segments are dynamically built by the MAS-Ter Labs 

traffic simulator. In case of being a source node, it also specifies the traffic flow 

that it should generate, percentage of cars and trucks among the vehicles, and 

the trip assignments set, or routes set, that it should assign to the vehicles 

spawning there. If the intersection is controlled by a traffic light, then the id of 

the traffic lights’ plan is specified and read from the traffic light XML file.  

 Traffic Light XML file – This file contains all the information of the traffic light 

plans that will be used in all of the intersections controlled by traffic lights, like 

all the information about position, direction, and internal timers of those traffic 

lights.  

 Trip Assignment XML file – This file contains the information about all the 

possible trip assignment vector sets (also known as predetermined routes) for all 

the source intersections (network entry points, where the vehicles will be 

generated). A percentage is associated to each trip assignment vector, 

representing the probability for a driver to choose one of the trip assignment 

vectors as its desired path, ending in a drain type of node. This decision happens 

when a vehicle enters the network in one of the source intersections. 

 

    

Figure 4.4 – The XML map adapted for the Intellwheels Simulator 

Figure 4.5 – MAS-Ter Labs road network map used in the prototype 

 

All the existing road network maps had their origin coordinates somewhere near the 

center of the map. But the Intellwheels simulator doesn’t deal well with negative 

coordinates. So, an existing map was modified to ensure compatibility with the Intellwheels 

simulator. In short, the whole network was moved to the first quadrant (+,+) so that only 

positive coordinates existed in the map. The Network Main XML file remained unchanged 



 

4.5 – XML Maps, Textures, and 3D Models  53 

 

 

 

since the simulation parameters didn’t change, but the coordinates of the roads were 

changed in the Road XML file to reflect their new positions. The same was done with the 

intersections and with the traffic lights, in the Intersections XML file and Traffic Light XML 

file, respectively. The Trip Assignment XML file remained unchanged as well, because it has 

no references to coordinates whatsoever. 

 

The Intellwheels simulator uses a different kind of XML file to create a map. The main 

difference between the previous map and this one, is that while the MAS-Ter Labs traffic 

simulator creates the map from a series of roads and intersections, the Intellwheels simulator 

creates the map from a series of walls and obstacles. The map outer limits are a rectangle 

defined by its height and width. Inside the limits there can be walls which are defined by the 

coordinates of their corners and by its height. For competition purposes, a wall can have 

different heights, which affect the compass sensor of the robot: if the wall is high the beacon 

will not be in the robot’s line of sight, thus disabling compass sensor readings. An ordered 

sequence of consecutive corner coordinates (minimum of three corners) defines a wall and 

one map can contain any amount of walls. 

 

[…] 

<Wall Height="1.00"> 

  <Corner X="16.50" Y="10.00" /> 

  <Corner X="16.50" Y="5.50" /> 

  <Corner X="21.00" Y="5.50" /> 

  <Corner X="21.00" Y="6.50" /> 

  <Corner X="17.50" Y="6.50" /> 

  <Corner X="17.50" Y="10.00" /> 

</Wall> 

[…] 

 

Figure 4.6 – Ciber-Rato Viewer’s design of a XML modeled wall [28] 

 

Since there was no existing map that resembled a road network, one was made from 

scratch. It is coinciding with the map loaded in the MAS-Ter Labs traffic simulator, since the 

agents in both simulators move in both of the maps at the same time. Care was taken with 

the sizes of the intersections, and the length and width of the roads, in order to create a map 

that is basically the walls that are limiting the roads. Be them buildings, or simply off-road 

terrain. 

 



 

54  Prototypical Development 

  

 

As for the textures, they were simple bitmaps already existing in the Intellwheels 

simulator. Their size was modified, and the resolution decreased, so that their pattern 

appears larger thus using less resources from the graphics card of the machine running the 3D 

Viewer. The main reason for this change was to make the textures look more natural when 

looked at from greater distances, since the dimensions of this map are much bigger than the 

typical Intellwheels map. 

 

Finally, a model of a big car, already included in a modification of the MAS-Ter Labs 

traffic simulator [9], was imported into the Intellwheels simulator in order to replace the 

wheelchair. This kind of modeling is too complex to be made ―by hand‖ through low level 

programming. It is saved in a stereolithography file type (STL) [69][70][71]. This kind of file 

stores the coordinates of the 3D object’s vertexes (X, Y and Z coordinates), as well as the 

orientations of the surfaces. 

 

 

Figure 4.7 – Modified Intellwheels Viewer 3D, free view of the car model 

 



 

4.6 – Summary  55 

 

 

 

4.6 – Summary 

In short, from all the features needed to test various things about this concept, many 

were already done, a few of them were implemented, one didn’t quite make it to the 

prototype, and there were also a few of them that didn’t fall into the scope of the thesis. 

While verifying the different functionalities of the simulators we worked with, the point 

was to modify or add to them if we required them for the tests. One example of the 

important functionalities that were already implemented before the thesis began was 

collision detection being modified for rectangular shapes, to replace the shapes of the 

circular Cyber-Rato robots. But of course, some of the programs didn’t have the required 

features for the testing, and the most serious case was that of the 3D Viewer. Some of the 

implementations done to it, to make testing possible, were alterations to make it capable of 

dealing with the big distances and numbers involved in the testing of autonomous vehicles. 

Such modifications included the rendering routine for the camera for an increased draw 

distance, alterations to the drawing routines of the map, agents, etc. Other details were 

created and adapted, like the maps, while others were simply imported from other simulators 

of the same project, like the car model. 

And then, there’s the case of the functionalities that could be implemented next to 

improve the prototype and to approach it to the solution design, like implementing further 

connections between the different components of the architecture, as well as improvements 

to each individual software that is part of the solution design. 

The prototype is ready for some tests, and those are described in the next chapter. 

 
  



 

56  Prototypical Development 

  

 

 

 

 



 

57 

Chapter 5  

Preliminary Results and Analysis 

This chapter contains the tests and results done during the study. It also contains the 

methodology used for the tests, information about the testbed and environment and the 

expected results, and analysis of the results. 

Two kinds of tests were done: A performance test, and a functionality test. 

5.1 – Simulation Performance 

The performance test basically consists of finding out how the Intellwheels Simulator, 

Viewer, and Agents perform as the amount of information they have to deal with increases. 

The main goal of this test was to find out how many Traffic cars (―Real‖ type Agents) the 

Simulator can deal with in a Simulation with one ―Simulated‖ type of Agent acting as the 

autonomous vehicle being simulated. Note that Cyber-Rato was originally built for just 3 

Agents, and later adapted to 5. It’s not optimized to deal with many more Agents than that. 

 

The methodology consists of the following: The Intellwheels Simulator is started, and the 

Intellwheels Viewer is connected to it. Then we start the simulation, and slowly connect more 

and more Agents to it, up to 100. The Intellwheels Simulator is run in a Desktop Computer, 

while the Intellwheels Viewers and Intellwheels Agents are run in a Laptop Computer, both 

with average characteristics considering the computer technologies to date. They are 

connected through the FEUP network. Response times are measured with a timer (starting the 

timer when connecting a new agent, and stopping the timer when the simulator’s 

confirmation is received back) five times and the average time is noted down, while the 

computer load, memory usage and network usage are monitored using Windows Task 

Manager’s performance monitor. 

 

Desktop computer: 

 Intel Pentium Core2 6400 @ 2,13GHz; 

 2 Gb of RAM,; 



 

58  Preliminary Results and Analysis 

  

 

 Nvidia Geforce 7300 GS; 

 Running Windows Vista Ultimate Service Pack 1 (32bits version). 

 Network Interface: 100Mbps  

 

Laptop computer: 

 Intel Pentium Dual-Core T4200 @ 2,00GHz; 

 4 Gb of RAM,; 

 Nvidia Geforce G 105 M; 

 Running Windows 7 Ultimate (64bits version).  

 Network Interface: 54Mbps (wireless) 

 

The simulator calculates the sensor values for the 100 Agents and communicates those 

values to them (400 sensors). In practice, we wouldn’t need any sensor in those traffic cars, 

because their decisions will be made by the MAS-Ter Labs Traffic Simulator, using other 

information. We only need the sensors in the simulated autonomous vehicles. So, the 

expected result is higher response latency after adding enough Agents to the simulation, 

much higher than it would be if the implementation was optimized for the solution design. 

The logic applies to the CPU loads and memory. 

 

The results of the test (Test1) were the following: Through the whole test, up to 100 

Agents connected, the frames per second of the Intellwheels 3D Viewer were fluid, above 20 

frames per second in the worst case. That’s good considering the 3D Viewer still has a long 

way to go when it comes to optimizing the code for better performance. Also the Simulator 

didn’t use many computer resources: The CPU load was fixed at 50% throughout the whole 

test, and the memory used by it was at most, 13 MB. The only thing worth mentioning is that 

the network bandwidth used was, at most (when the 100 Agents were connected), less than 

2% of the capacity in the desktop machine and a bit over 3% in the laptop machine. That 

corresponds to just over 200 KB/s considering the total bandwidth of the machines’ network 

interfaces. Comfortable in a local network, but not so good if the simulation was distributed 

by different machines over the internet, considering today’s technologies. 

With just 1 ―Simulated‖ Agent connected, the response times of the agent and sensors 

were instant. When we started adding ―Real‖ type Agents to the simulation, the response 

times increased. By the time we had 100 agents added to the simulator, trading sensors 

information with it, the latency had reached an average of 400 ms. Considering the speed at 

which a vehicle can travel, more than 0.4 seconds is a lot of time for a reaction, and is 

unacceptable. For details on these results check Figure 5.1. 

 



 

5.1 – Simulation Performance  59 

 

 

 

The test was repeated again (Test2), the only difference being that the Intellwheels 

Simulator, the Intellwheels Viewer, and the Intellwheels Agents are all run in the Laptop 

computer. The results: The CPU was close to full load roughly at 17 Agents connected, since 

the Intellwheels Simulator, Intellwheels Viewer, and the Intellwheels Agents were all fighting 

for CPU resources (See Figure 5.2 for the CPU Load on both tests). Interestingly enough, even 

at 100% CPU load, with the 100 Agents connected, the simulation had no glitches or crashes. 

And the Viewer frame rate was very fluid, over 20 frames per second. The latency measured 

was better than the previous test too: The range of the values was roughly the same, but the 

measured values were less chaotic on the second test, since the first test depended in 

external interference from the network traffic. Response times were almost instant with 10 

Agents: less than 20ms in both cases. (More results in Figure 5.1 and 5.2) The simulation time-

steps appeared to be suffering slowdowns by the time we had 100 agents connected. 

 

 

 

Figure 5.1 – Chart with the Response Times (ms) as a function of the Number of Agents (Test1) 

 



 

60  Preliminary Results and Analysis 

  

 

 

Figure 5.2 – Chart with the Response Times (ms) as a function of the Number of Agents (Test2) 

 

 

Figure 5.3 – Chart with the CPU Loads (%) as a function of the Number of Agents 

 

Analyzing the results of both tests, it is apparent that although the Simulator is not 

optimized for large amounts of Agents, it can deal easily with many Agents. Having 100 

Agents connected to it, each of them requesting sensor information the whole time, is like 

simulating the 100 detailed vehicles. The goal of the previously explained solution design is to 

test a few vehicles in detail, in the middle of traffic vehicles, which means that, ideally, 

those 100 Agents that were tested would involve no communications at all when it comes to 



 

5.2 – Simulation Functionality  61 

 

 

 

sensor information, that would improve the latency a lot when it comes to the messages 

between the Intellwheels Simulator, Intellwheels Viewer and the Intellwheels Agents. 

A suggested implementation to optimize this simulator for our solution design is, 

registering no sensors at all when registering an Agent of the type ―Real‖, if the Agent is 

meant to represent a vehicle from the MAS-Ter Labs Traffic Simulator. That would cut down 

the communications bandwidth and latency a lot, and make it possible to simulate one 

autonomous vehicle in the middle of hundreds of traffic vehicles without performance issues. 

 

5.2 – Simulation Functionality 

The functionality test basically consists of finding out if an Agent of the type ―Simulated‖, 

performing as an autonomous vehicle in the Intellwheels Simulator, can detect an Agent of 

the type ―Real‖, performing as a traffic vehicle (coming from the MAS-Ter Labs Traffic 

Simulator). The main goal of this test was to find out if the current implementation of the 

simulator, regarding sensors, can deal with simulating a car that reacts to the type of agents 

whose positions are updated by an external application. In reality, the module that would 

allow the MAS-Ter Labs Traffic Simulator to update the ―Real‖ Agent’s position in the 

Intellwheels Simulator was not implemented, but the test is still valid when it comes to 

testing the sensors detecting cars whose positions are externally controlled. The only real 

downside to the module not being implemented is that the traffic car will be stopped. 

In addition, we’ll have the Agent detect another ―Simulated‖ type Agent, since our design 

solution predicts that more than one autonomous car can be present in the same simulation. 

 

 The methodology consists of the following: The Intellwheels Simulator is started, and the 

Intellwheels Viewer is connected to it. Then we start the simulation, and connect the three 

Agents needed for the test: two ―Simulated‖ ones, and one ―Real‖ one. The ―Real‖ one is 

positioned in front of one of the ―Simulated‖ ones, and the third agent, type ―Simulated‖, 

will be overtaking the two previously mentioned vehicles. And we’ll record the sensor value 

of the proximity sensor of the right side of the vehicle to see if it detects the vehicles being 

overtaken. 

 

If all goes well, the Agent that will be overtaking the other two vehicles will detect first 

nothing to his right side, then the first vehicle being overtaken (one ―Simulated‖ type Agent), 

and then nothing again, and then the second vehicle being overtaken (the ―Real‖ type Agent). 

This will be translating in the value for the right-side sensor increasing as the vehicle is 

overtaking the others, since the higher the value in the proximity sensor, the closer the 

distance from the sensor to the obstacle is. 



 

62  Preliminary Results and Analysis 

  

 

   

 

Figure 5.4 – Overtaking test (step 1): ―Simulated‖ vehicle with no vehicle by its side 

Figure 5.5 – Overtaking test (step 2): ―Simulated‖ vehicle overtaking other ―Simulated‖ 

 

   

Figure 5.6 – Overtaking test (step 3): ―Simulated‖ vehicle with no vehicle by its side 

Figure 5.7 – Overtaking test (step 4): ―Simulated‖ vehicle overtaking ―Real‖ 

The right-side sensor indicated the following values: 

 Step 1 (Figure 5.1) – Right-side sensor value: 0.170409 

 Step 2 (Figure 5.2) – Right-side sensor value: 1.29558 

 Step 3 (Figure 5.3) – Right-side sensor value: 0.43369 

 Step 4 (Figure 5.4) – Right-side sensor value: 1.52454 

 

Analyzing the results, they do make perfect sense. The lowest number, during the step 1 

(Figure 5.1), is due to the fact that the road is wider in that zone, and so there is a lot of 

room to the right of the vehicle. The value rises over one during step 2 (Figure 5.2), due to 

the close proximity to the car being overtaken. Note that the vehicle being overtaken here is 



 

5.3 – Summary  63 

 

 

 

an Agent of the type ―Simulated‖. During step 3 (Figure 5.3), the vehicle is not overtaking 

anyone, and to his right side is only a building wall. But the street is still narrower than in 

step 1 (Figure 5.1). That explains why the sensor value decreased to 0.43369, instead of 

decreasing a low as it did in the first step. Finally, our autonomous vehicle overtakes another 

one. This time the vehicle that is an Agent of the type ―Real‖ (the one performing the role of 

a traffic vehicle being controlled from an external simulator). The sensor value increases to 

1.52454, meaning that it is detecting an object that is very close. 

These are very good news. These results tell us that the functionality test was successful. 

An Agent of the type ―Simulated‖, performing as an autonomous vehicle in the Intellwheels 

Simulator, successfully detected an Agent of the type ―Real‖, performing as a traffic vehicle 

(whose position would be updated by the MAS-Ter Labs Traffic Simulator). In addition, we 

verified that the agent detected another agent of the type ―Simulated‖, meaning that an 

autonomous vehicle detects others like it, as was expected. All the goals of this test were 

achieved. 

 

5.3 – Summary 

After the performance tests were done, we can conclude that although the Intellwheels 

Simulator is not optimized for large amounts of Agents, it can deal easily with many of them 

before it starts getting slow. Results would easily improve with simple implementations like 

making the "Real" type Agents connect with no sensors at all, instead of the default 4 sensors 

each. With that improvement alone, it's very reasonable that the autonomous vehicle can be 

simulated along hundreds of traffic cars with little to no slow-downs, since the bottleneck of 

the simulations seemed to be the communications between the numerous agents and the 

simulator. 

And with the functionality tests, we learned that vehicle sensors work fine detecting the 

traffic vehicles that would be controlled by the MAS-Ter Labs Traffic Simulator, as well as 

other autonomous vehicles. 

We can conclude from both types of tests that further development of this solution design 

is feasible and worthwhile. The next step would be improving the prototype to approach the 

solution design, and run further tests to the different modifications to see if they're feasible. 

 
  



 

64  Preliminary Results and Analysis 

  

 

 

 



 

65 

Chapter 6  

Conclusion 

This chapter concludes the entire project with a few general remarks, followed by the 

most relevant test results and the achieved objectives. Further developments are also 

discussed, followed by potential future works, approaching possible paths of additional 

research and development from this point on, as well as suggesting how the simulation 

concepts presented in this study can be applied in totally different fields of study. 

6.1 – General Remarks 

Only recently did the concern arise about the effectiveness of the testing and simulating 

of autonomous vehicle projects. The simulators used are far from being ideal: The more 

features they tend to have, and the more realistic they are, the more resources they need to 

do their calculations in a reasonable amount of time. But simulation won't help much if it's 

oversimplified. 

A balance between the realism of the simulation, and the simplicity of its calculations, is 

needed. When deciding the type of simulation that we need to run, we need to decide what 

aspects are important to simulate, and what aspects really don’t matter much: We don’t have 

an ideal simulator, but a nice thing to have is a connection between different types of 

simulators, that would each simulate different aspects and areas of a scenario to complement 

each other’s strengths. This is what this study aimed for. 

Many simulators of different natures have been developed lately at LIACC, and we tried to 

create a solution design where we could put them all together connected to work 

cooperatively for a scenario that would otherwise be hard to simulate. So, we came up with 

this solution design. 

The wide theoretical scope required for this study forced us to balance it out with a 

narrow focus for the modifications implemented, because it required a very comprehensive 

study as it is. After all, the point was to develop a prototype with some of the basic 



 

66  Conclusion 

  

 

functionalities, so that the concept could be tested. It is always best to do some testing as 

the functionalities are increased, before developing further. 

While verifying the different functionalities of the simulators we worked with, the point 

was to modify or add to them if we required new functionalities for the tests. Some 

important ones were already implemented, while others had to be implemented during this 

thesis. The functionalities that could be implemented next to improve the prototype and to 

approach it to the solution design, were also discussed. 

Having tested the performance and functionality of the prototype, it was concluded that 

it can deal with a reasonable number of agents without any optimizations, but that it still 

requires a few simple modification to make it able to deal with hundreds of traffic cars 

without slowdowns. We also concluded that vehicle sensors work fine detecting the traffic 

vehicles that would be controlled by the MAS-Ter Labs Traffic Simulator, as well as other 

autonomous vehicles. 

We can conclude from both types of tests that further development of this solution design 

is feasible and worthwhile. The next step would be improving the prototype to approach the 

solution design, and run further tests to the different modifications to see if they're feasible. 

 

6.2 – Main Results 

A study was done about the state of art of the simulation of autonomous vehicles and 

semi-assisted driving. And having confirmed the strengths and weaknesses of the existing 

simulators, and having also confirmed what was needed to complement today’s traffic and 

robotic simulators, the concept study for the integration of a traffic simulator with a detailed 

autonomous vehicle simulator was developed. After the programs and tools that would be 

used to build it were chosen, maps, 3d models and textures were created and adapted to aid 

with the testing of the prototype. The concept was tested by implementing a prototype with 

some basic functions, and performing tests to it with a user-controlled agent to demonstrate 

the vehicle’s sensors’ interactions with the vehicles whose positions would be updated by the 

MAS-Ter Labs traffic simulator. Those tests proved successful: The prototype showed us that 

with some further development, it can be used to simulate autonomous vehicles in intense 

traffic scenarios. Additionally, performance tests were made with the prototype to ensure 

that an average computer is able to run the simulation even thought the prototype is not 

optimized to perform well with the extra functionalities. 

 



 

6.3 – Further Developments  67 

 

 

 

6.3 – Further Developments 

The next step in implementing the prototype would no doubt be implementing some of 

the functionalities of the communication filtering module mentioned in section 3.2.1.1. 

Specifically, the one that would send information from the MAS-Ter Labs Traffic Simulator to 

the IntellWheels Simulator. 

That step, allied with making those traffic cars connecting with zero sensors on them, 

would greatly increase the functionality of the prototype. With that done, we'd be able to run 

a very big and complex scenario with this solution design, and do further testing with it. The 

MAS-Ter Labs Traffic Simulator is very scalable, and that module would keep information 

about the Agents connected to the Intellwheels Simulator, filtering the information from the 

MAS-Ter Labs Traffic Simulator, only letting information pass to the Simulator if it’s about 

Agents that are somehow in the range of the Agents connected to the Simulator. So the 

simulations would be much bigger, but taking less computer and network resources. We'd still 

need the whole module implemented as well as having many changes made in the MAS-Ter 

Labs Traffic Simulator if we want to test traffic cars avoiding the Intellwheels Agents. But 

that's something for Future Works. 

 

6.4 – Future Work 

The natural evolution steps from here are pretty obvious. Incrementally implementing 

more and more functionalities from the solution design described in Chapter 3, and test them 

appropriately, until the prototype simulators have the same functionalities as the solution 

design. And from there, optimize it for better performance in every way. 

This includes implementing the solution designs of the other simulators, since they'd be 

more functional than their respective prototypes. At some point, this would be necessary to 

achieve this study's solution design. 

 

The kind of approach studied here has great potential in other fields. With simulators that 

simulate huge amounts of simple entities, and simulators that simulate few identities with 

complex details, coming together for a rich simulation of a big scenario by working 

cooperatively. This is a great way to solve problems and test theories where there are great 

amounts of information on different scales. This concept is not necessarily related to the 

simulation of autonomous vehicles. 

An example of a completely different situation that could benefit tremendously from this 

concept is the simulation of complex astrophysical events. In such events, there's a big 

amount of bodies that can be approximated in groups when it comes to their influence 

(gravitational pulls or other forces). Such can be the case of solar systems, clusters of solar 



 

68  Conclusion 

  

 

systems, entire galaxies, and even clusters of galaxies. These are big and relatively easy to 

predict and model. Big bodies like these can influence small but detailed bodies or events, 

like the formation of moons, planets, and solar systems. Today, the planet-forming theories 

are always changing as new observations and simulations reveal new aspects of our reality. A 

set of simulators connected in a configuration like the one studied in this thesis would help a 

lot with solving such a problem, because while one simulator could take care of the many, 

but far bodies and send their influential information to another simulator, that other 

simulator could take that information to simulate in detail an unpredictable, and complex 

event. Using the outside information to calculate gravitational pulls and tidal forces, sources 

of radiation, end everything else that could possibly affect that complex event. 

 



 

69 

References 

 

[1] L. C. Davis, "Effect of adaptive cruise control systems on traffic flow," Physical Review, 
vol. 69, no. 6, 2004. 

[2] P. Ferreira, "Specification and Implementation of an Artificial Transport System," Thesis 
for Master in Informatics and Computing Engineering, Informatics Engineering, FEUP, 
Porto, 2008. 

[3] R. J. F. Rossetti, E. C. Oliveira, and A. L. C. Bazzan, "Towards a specification of a 
framework for sustainable transportation analysis," in Workshop on Artificial Intelligence 
Applied to Sustainable Transportation Systems, 13th Portuguese Conference on Artificial 
Intelligence, Guimarães, 2007, pp. 3-4. 

[4] P. A. F. Ferreira, E. F. Esteves, R. J. F. Rossetti, and E. C. Oliveira, "A Cooperative 
Simulation Framework for Traffic and Transportation Engineering," in 5th International 
Conference on Cooperative Design, Visualization and Engineering, Mallorca, 2008, pp. 
89-97. 

[5] N. Lau, A. Pereira, A. Melo, A. Neves, and J. Figueiredo, "Ciber-Rato: Um Ambiente de 
Simulação de Robots Móveis e Autónomos," Revista do DETUA, vol. 3, no. 7, pp. 647-650, 
Sep. 2002. 

[6] N. Lau, A. Pereira, A. Melo, J. Neves, and J. Figueiredo, "Ciber-Rato: Uma Competição 
Robótica num Ambiente Virtual," in Workshop Entretenimento Digital e Jogos 
Interactivos, Games-2004, vol. 3, Lisboa, Sep. 2004. 

[7] Stanford Racing Team. (2007, Nov.) DARPA Challenge invites Stanford Racing team to 
build a robotic car. [Online]. http://cs.stanford.edu/group/roadrunner/ 

[8] Team Victor Tango, Virginia Tech. (2009, Feb.) Victor Tango Urban Challenge. [Online]. 
http://www.me.vt.edu/urbanchallenge/ 

[9] J. F. B. Gonçalves, "Arquitectura Baseada em Serviços para Redes Veículo-a-Veículo," 
Thesis for Master of Electrotechnical and Computer Engineering, FEUP, Porto, 2009. 

[10] E. B. Lieberman and B. Andrews, "The Role of Interactive Graphics When Applying Traffic 
Simulation Models," in Proceedings of the 22nd conference on Winter simulation, New 
Orleans, 1990, pp. 753-758. 

[11] S. L. Jones, A. J. Sullivan, N. Cheekoti, M. D. Anderson, and D. Malave, "Traffic 
Simulation Software Comparison Study," Civil & Environmental Engineering, University of 
Alabama, Birmingham, Technical Report, 2004. 

[12] L. Bloomberg and J. Dale, "Comparison of VISSIM and CORSIM traffic simulation models on 
a congested network," in The 79th annual meeting of the Transportation Research 
Board, Washington, 2000, pp. 52-60. 

[13] F. Choa, R. T. Milam, and D. Stanek, "CORSIM, PARAMICS and VISSIM: What the manuals 
never told you," in ITE Conference, Philadelphia, 2002. 

[14] L. Bloomberg, M. Swenson, and B. Haldors, "Comparison of Simulation Models and the 
HCM," in Transportation Research Board, 82nd Annual Meeting, Washington, 2003. 

[15] E. Barrios, M. Ridgway, and F. Choa, "The Best Simulation Tool For Bus Operations. 

http://cs.stanford.edu/group/roadrunner/
http://www.me.vt.edu/urbanchallenge/


70   

 

Improving Transportation System Safety and Performance," in ITE Spring Conference and 
Exhibit, 2001. 

[16] M. Trueblood, "CORSIM...SimTraffic: What's the Difference?," PC-TRANS, 2001. 

[17] Z. Z. Tian and N. Wu, "Probabilistic Model for Signalized Intersection Capacity with a 
Short Right-Turn Lane," Journal of Transportation Engineering, vol. 132, no. 3, pp. 205-
212, Mar. 2006. 

[18] S. A. Boxill and L. Yu, "An Evaluation of Traffic Simulation Models for Supporting ITS 
Developments," Southwest Region University Transportation Center, Report, 2000. 

[19] M. D. Middleton and S. A. Cooner, "Evaluation of Simulation Models for Congested Dallas 
Freeways," Texas Transportation Institute, Austin, Technical Report, 1999. 

[20] D. P. Watling, "Urban traffic network models and dynamic driver information systems," 
Transport Reviews, vol. 14, no. 3, pp. 219-246, Jul. 1994. 

[21] G. E. Cantarella and E. Cascetta, "Dynamic process and equilibrium in transportation 
networks: towards a unifying theory," Transportation Science, vol. 29, no. 4, pp. 305-
309, 1995. 

[22] R. Liu, D. Van Vilet, and D. P. Watling, "DRACULA: dynamic route assignment combining 
user," in Proceedings of the 23rd European Transport Forum, vol. E, Warwick, 1995, pp. 
143-152. 

[23] A. S. Rao and M. P. Georgeff, "Modeling rational agents within a BDI architecture," in 
Proceedings of the 2nd International Conference on Principles of Knowledge 
Representation and Reasoning, Cambridge, 1991, pp. 473-484. 

[24] M. Treiber, A. Hennecke, and D. Helbing, "Congested Traffic States in Empirical 
Observations and Microscopic Simulations," Physical Review E, vol. 62, no. 2, pp. 1805-
1824, Aug. 2000. 

[25] M. Treiber and D. Helbing. (2007, Feb.) The Lane-change Model MOBIL. [Online]. 
http://www.vwi.tu-dresden.de/~treiber/MicroApplet/MOBIL.html 

[26] T. Alberi, "A Proposed Standardized Testing Procedure for Autonomous Ground Vehicles," 
Thesis for Master of Science, Mechanical Engineering, Virginia Polytechnic Institute and 
State University, Blacksburg, Virginia, 2008. 

[27] A. L. Kornhauser, et al. (2007, Jun.) DARPA Urban Challenge Princeton University 
Technical Paper. [Online]. 
http://www.darpa.mil/grandchallenge/TechPapers/Princeton_University.pdf 

[28] P. Malheiro, "Intelligent Wheelchair Simulation," Thesis for Master of Electrotechnical and 
Computer Engineering, Electrical Engineering and Computers, FEUP, Porto, 2008. 

[29] Departamento de Electrónica, Telecomunicações e Informática. (2008, Mar.) CiberMouse 
at DCOSS08. [Online]. 
http://www.ieeta.pt/lse/ciberdcoss08/docs/ciberDCOSS08_Rules.pdf 

[30] C. Reinholtz, et al. (2007, Apr.) DARPA Urban Challenge Technical Paper. [Online]. 
http://www.darpa.mil/GRANDCHALLENGE/TechPapers/Victor_Tango.pdf 

[31] B. Stroustrup, The C++ programming language, 2nd ed.. USA: Addison-Wesley Longman 
Publishing Co., Inc, 1991. 

[32] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, "USARSim: a robot simulator 
for research and education," in IEEE International Conference onRobotics and 
Automation (ICRA), 2007, pp. 1400-1405. 

[33] B. Browning and E. Tryzelaar, "ÜberSim: A Multi-Robot Simulator for Robot Soccer," 
Carnegie Mellon University, 2003. 

[34] T. Bräunl, "The EyeSim Mobile Robot Simulator," University of Auckland, CITR at Tamaki 
Campus, 2000. 

[35] C. Basarke, C. Berger, and B. Rumpe, "Software & Systems Engineering Process and Tools 
for the Development of Autonomous Driving Intelligence," Journal of Aerospace 
Computing, Information, and Communication, vol. 4, no. 12, pp. 1158-1174, Oct. 2007. 

[36] Carnegie Mellon Tartan Racing. (2009, Feb.) Boss at a Glance. [Online]. 
http://www.tartanracing.org/press/boss-glance.pdf 

[37] Stanford Racing Team. (2007, Oct.) All about Junior. [Online]. 

http://www.vwi.tu-dresden.de/~treiber/MicroApplet/MOBIL.html
http://www.darpa.mil/grandchallenge/TechPapers/Princeton_University.pdf
http://www.ieeta.pt/lse/ciberdcoss08/docs/ciberDCOSS08_Rules.pdf
http://www.darpa.mil/GRANDCHALLENGE/TechPapers/Victor_Tango.pdf
http://www.tartanracing.org/press/boss-glance.pdf


 

  71 

 

 

 

http://cs.stanford.edu/group/roadrunner/pdfs/final_factsheet_junior.pdf 

[38] Carnegie Mellon Tartan Racing. (2009, Feb.) Tartan Racing @ Carnegie Mellon. [Online]. 
http://www.tartanracing.org/ 

[39] Ben Franklin Racing Team. (2009, Feb.) Building Fast Autonomous and Safe Robotic 
Vehicles for Urban Environments. [Online]. http://www.benfranklinracingteam.org/ 

[40] Cornell University DARPA Urban Challenge Team. (2009, Feb.) Cornell DARPA Urban 
Challenge. [Online]. http://www.cornellracing.com/ 

[41] MIT DARPA Grand Challenge Team. (2008, Aug.) MIT DARPA Urban Challenge. [Online]. 
http://grandchallenge.mit.edu/ 

[42] I. Miller and M. Campbell, "Team Cornell’s Skynet: Robust Perception and Planning in an 
Urban Environment," Field Robotics, vol. 25, no. 8, p. 493–527, Accessed in ??/???/????, at 
http://www3.interscience.wiley.com/cgi-bin/fulltext/120846938/PDFSTART. 

[43] Microsoft. (2009, Feb.) Microsoft Robotics. [Online]. http://msdn.microsoft.com/en-
us/robotics/default.aspx 

[44] R. Azuna, et al., "Recent Advances in Augmented Reality," IEEE Computer Graphics and 
Applications, vol. 21, no. 6, pp. 34-37, Nov. 2001. 

[45] P. Milgram and F. Kishino, "A Taxonomy of Mixed Reality Visual Displays," in IEICE 
Transactions on Information Systems, vol. E77-D, 1994, pp. 1321-1329. 

[46] Universidade de Aveiro. (2009, Feb.) Concurso Micro-Rato. [Online]. 
http://microrato.ua.pt 

[47] L. P. Reis, "Ciber-Feup - Ensino de Robótica e Inteligência Artificial através da 
Participação em Competições Robóticas," Electrónica e Comunicações, vol. 7, no. 3, Sep. 
2002. 

[48] L. Almeida, P. Fonseca, L. J. Azevedo, and B. Cunha, "The Micro-Rato Contest: Mobile 
Robotics for All," in CONTROLO 2000, The Portguese Control Conference, Guimarães, 
Portugal, 2000. 

[49] RTSS - Real-Time Systems Symposium. (2008, Jun.) RTSS - Real-Time Systems Symposium. 
[Online]. http://www.rtss.org/ 

[50] Universidade de Aveiro. (2007, Nov.) CiberMouse at DCOSS08. [Online]. 
http://www.ieeta.pt/lse/ciberdcoss08/ 

[51] D. Barteneva, N. Lau, and L. P. Reis, "Implementation of Emotional Behaviors in Multi-
Agent System using Fuzzy Logic and Temperamental Decision Mechanism," in Proceedings 
of EUMAS 2006, Lisbon, Portugal, 2006, pp. 5-15. 

[52] D. Barteneva, N. Lau, and L. P. Reis, "Bylayer Agent-Based Model of Social Behavior: How 
Temperament Influences on Team Performance," in 21st European Conference on 
Modelling and Simulation – ECMS 2007, Prague, Czech Republic, 2007, pp. 181-187. 

[53] L. Lemos, F. Cruz, and L. P. Reis, "Sistema de Resgate e Salvamento Coordenado 
Utilizando o Simulador Ciber-Rato," in CISTI 2007 - 2ª Conferência Ibérica de Sistemas e 
Tecnologias de Informação, Novas Perspectivas em Sistemas e Tecnologias de 
Informação, Porto, Portugal, 2007. 

[54] R. A. M. Braga, M. Petry, E. Oliveira, and L. P. Reis, "Multi-Level Control Of An Intelligent 
Wheelchair In a Hospital Environment Using A Cyber-Mouse Simulation System," in 5th 
International Conference on Informatics in Control, Automation and Robotics, Funchal, 
Madeira, Portugal, 2008, pp. 179-182. 

[55] R. A. M. Braga, M. R. Petry, A. P. Moreira, and L. P. Reis, "Platform for intelligent 
wheelchairs using multi-level control and probabilistic motion model," in 8th Portuguese 
Conference on Automatic Control, Controlo 2008, Vila Real, Portugal, 2008. 

[56] R. A. M. Braga, M. Petry, A. P. Moreira, and L. P. Reis, "INTELLWHEELS - A Development 
Platform for Intelligent Wheelchairs for Disabled People," in 5th International 
Conference on Informatics in Control, Automation and Robotics, vol. I, Funchal, Madeira, 
Portugal, 2008, pp. 115-121. 

[57] M. K. Dalheimer, Programming with Qt, 2nd ed.. O'Reilly, 2002. 

[58] Qt Software. (2009, Mar.) Qt - A cross-platform application and UI framework. [Online]. 
http://www.qtsoftware.com/ 

http://cs.stanford.edu/group/roadrunner/pdfs/final_factsheet_junior.pdf
http://www.tartanracing.org/
http://www.benfranklinracingteam.org/
http://www.cornellracing.com/
http://grandchallenge.mit.edu/
http://msdn.microsoft.com/en-us/robotics/default.aspx
http://msdn.microsoft.com/en-us/robotics/default.aspx
http://microrato.ua.pt/
http://www.rtss.org/
http://www.ieeta.pt/lse/ciberdcoss08/
http://www.qtsoftware.com/


72   

 

[59] Borland Software Company. Borland Software Company. [Online]. 
http://www.borland.com 

[60] M. Cantù, Mastering Delphi 7, 1st ed.. Sybex, 2003. 

[61] OpenGL. (2008, May) The Industry's Foundation for High Performance Graphics. [Online]. 
http://www.opengl.org/ 

[62] M. Woo, J. Neider, and T. Davis, OpenGL Programming Guide, Third Edition: The Official 
Guide to Learning OpenGL, Version 1.2. Addison-Wesley, 1999. 

[63] E. F. Esteves, "Utilização de agentes autónomos na simulação pedonal em interfaces 
multi-modais," Thesis for Master in Informatics and Computing Engineering, Informatics 
Engineering, FEUP, Porto, 2009. 

[64] P. Ferreira, E. Esteves, R. Rossetti, and E. Oliveira, "Extending microscopic traffic 
modelling with the concept of situated agents," in Proceedings of the 5th Workshop in 
Agent in Traffic and Transportation, AAMAS’08, Estoril, Cascais, 2008, pp. 87-93. 

[65] D. P. Reed. (1980, Aug.) Internet Engeneering Task Force. [Online]. 
http://tools.ietf.org/html/rfc768 

[66] J. C. Lopes and C. Ribeiro. (2008, Feb.) João Correia Lopes | Homepage. [Online]. 
http://paginas.fe.up.pt/~jlopes/teach/2007-08/LAPD/lectures/01-XML-intro.pdf 

[67] M. R. Rohrer, "Seeing is Believing: The Importance Of Visualization in Manufacturing 
Simulation," in Winter Simulation Conference, 2000, pp. 1211-1216. 

[68] A. Neves, J. Figueiredo, N. Lau, A. Pereira, and A. Melo, "O Visualizador do Ambiente de 
Simulação Ciber-Rato," Revista do DETUA, vol. 3, no. 7, pp. 651-654, Sep. 2002. 

[69] E. Béchet, J. C. Cuilliere, and F. Trochu, "Generation of a finite element MESH from 
stereolithography (STL) files," Computer-Aided Design, vol. 34, no. 1, pp. 1-17, Jan. 
2002. 

[70] M. Burns, "The StL Format," in Automated Fabrication. Prentice Hall, 1989, ch. Section 
6.5. 

[71] M. Burns, "The STL File Format," in Automated Fabrication - Improving Productivity in 
Manufacturing. Prentice Hall, 1993, ch. Section 6.5. 

 

 

 

http://www.borland.com/
http://www.opengl.org/
http://tools.ietf.org/html/rfc768
http://paginas.fe.up.pt/~jlopes/teach/2007-08/LAPD/lectures/01-XML-intro.pdf

