
Faculdade de Engenharia da Universidade do Porto

WARP - Speeding Up The

Software Development Process

José Filipe Barbosa de Carvalho

Report of Project

Master in Informatics and Computing Engineering

Supervisor: António Carvalho Brito (Assistant Professor)

July 2008

c© José Filipe Barbosa de Carvalho, 2008

WARP - Speeding Up The Software Development
Process

José Filipe Barbosa de Carvalho

Report of Project

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: António Augusto de Sousa (Associate Professor)

External Examiner: César Analide (Assistant Professor)

Internal Examiner: António Carvalho Brito (Assistant Professor)

July 17th, 2008

Contact Information:

José Filipe Barbosa de Carvalho
Mestrado Integrado em Engenharia Informática e Computação

Faculdade de Engenharia da Universidade do Porto
Rua Roberto Frias, s/n
4200-465 Porto
PORTUGAL

Tel: +351 916498040
Email: jose.carvalho@fe.up.pt
URL: http://www.fe.up.pt/~ei03067/

http://www.fe.up.pt/~ei03067/

to my mother Maria da Conceição
and to my father José Armindo

to my girlfriend Teresa

Abstract

Nowadays business operations happen very fast and they are really complex, so al-
most every organization supports its activities using information systems and other
technological instruments. Because sometimes there are no final products that fit
their needs, it is common that companies are enrolled in software development ac-
tivities. The complexity and abstract character of software implies new challenges
for these enterprises.

The success of software development process is determined by several factors, for
example the value created by the product, technical difficulties, team skills or com-
munication between stakeholders. If the organization adopts an organized process,
choosing the correct methodologies and tools to support it, we can speed up it and,
at the same time improve its quality.

This project is all about improving the software development process, looking for
three activities that improve communication: business modeling, object-relational
mapping and prototyping user interfaces.

Business modeling is a complex activity, involving the knowledge of problem do-
main and some technological background. However their common outputs, texts
and visual diagrams, are usually informal and ambiguous. WARP solution pro-
poses developing formal and executable business models, using an object-oriented
programming language. These models are testable and can be reused in following
development stages.

Most of business entities have a long life, requiring that their knowledge and data
must be safely saved. Object-relational mapping software helps the developer in the
implementation of persistency concerns, decreasing the effort to connect relational
schemas and objects.

Prototyping user interfaces provides earlier discussion with clients about concrete
things, which would detect fails on requirements or on system design. Moreover,
nowadays there are methods for automatic generation of user interfaces from models,
which increase significantly the developer’s productivity.

The WARP project studies current techniques and tools associated with these
three activities, choosing an approach to be integrated in current software develop-
ment processes. Finally this approach is applied in the development of Equipment
Database, a product that solves a Qimonda’s specific problem, to evaluate its ap-
plicability in real projects.

iii

iv

Resumo

Nos dias de hoje os negócios acontecem muito rapidamente e são cada vez mais
complexos. Para suportar as suas actividades a maioria das organizações utilizam
sistemas de informação e outros instrumentos tecnológicos. Porque muitas vezes
não existem produtos à medida das suas necessidades, estas vêem-se envolvidas em
actividades de desenvolvimento de software. A complexidade e o carácter abstracto
do software implicam novos desafios para estas empresas.

O sucesso do processo de desenvolvimento de software é determinado por diver-
sos factores, como por exemplo o valor criado pelo produto, as dificuldades técnicas,
as capacidades da equipa ou a comunicação entre os diferentes interessados. Se a
organização adoptar um processo organizado, escolhendo as metodologias e ferra-
mentas certas para o suportar, é posśıvel acelerar e ao mesmo tempo melhorar a sua
qualidade.

Este projecto tem como objectivo melhorar o processo de desenvolvimento, ex-
plorando três actividades que melhoram a comunicação: modelação de negócio,
mapeamento objecto-relacional e prototipagem de interfaces de utilizador.

Modelar o negócio é uma actividade complexa, envolvendo a compreensão do
domı́nio do problema mas também de eventuais restrições tecnológicas. No entanto,
os artefactos produzidos nesta actividade, descrições textuais e diagramas, são infor-
mais e amb́ıguos. A solução WARP propõe o desenvolvimento de modelos de negócio
formais e executáveis, usando uma linguagem orientada a objectos. Desta forma, os
modelos são verificados através de ferramentas de teste, bem como reutilizados nas
fases seguintes do processo de desenvolvimento.

A maioria das entidades de negócio tem um tempo de vida longo, obrigando as
aplicações a guardar o seu conhecimento e a sua informação. As ferramentas de
mapeamento objecto-relacional ajudam o programador na implementação da per-
sistência, diminuindo o esforço para relacionar os objectos com as estruturas das
bases de dados.

A prototipagem de interfaces de utilizador permite realizar mais cedo discussões
sobre o produto com os clientes, ajudando a encontrar falhas nos requisitos ou no
desenho da aplicação. Além disso, nos dias de hoje é posśıvel gerar automaticamente
interfaces de utilizador a partir de modelos, aumentando a produtividade de quem
desenvolve.

O projecto WARP estuda técnicas e ferramentas actuais relacionadas com estas
três actividades, definindo uma abordagem a ser integrada nos processos actuais
de desenvolvimento de software. Por fim, esta abordagem é utilizada na criação da
Equipment Database, um produto para resolver um problema espećıfico da Qimonda,
para medir a sua aplicabilidade em projectos reais.

v

vi

Preface

During the elaboration of this report, the enthusiasm and expectations were enor-
mous for two reasons: I am about to finish my master course and I am contributing
with my expertise to solve an enterprise problem.

The former has been a life objective, which I pursued many years ago. I strongly
believe that my course contributed to enrich me, personally and intellectually. But
it was a long endeavor. Five years were elapsed from the day I started my course
and I wrote this document. There are many memorable stories that can be told:
nightly work, night parties, interesting courses, boring lessons, and so on. At the
end, two important things remain: friends and knowledge.

I have been working to improve the software development process during the last
four months. By improving I mean speeding up the process with more quality. My
contribution is modest, but I would expect to change your mind about some topics
about software engineering with my visions and recommendations. I will focus more
on practice, giving examples and recommending, rather than other more theoretical
works.

This work was challenging and very motivating. The impact of my research can
be large, improving the productivity of software industry, or even inspiring others
with my ideas. Additionally a large technical expertise was acquired during this
effort.

My ideas are sympathetic with lean engineering, agile and test-driven develop-
ment, and they are quite influenced by Open Source ideals. That does not mean it
cannot be implemented, completely or partly, in business environments or with pro-
prietary tools. As you will see in this project, they can be integrated in a company
and within a Microsoft-based development environment.

However, I strictly agree with the principles of the Context-Driven School [1],
which emphasizes the importance of the context. This school starts in software
testing domain but I believe that applies to other fields of software development.
This means that any presented good practice or interesting tool could not be the
best in other contexts. Moreover corrections and comments are welcome; please use
the contact information to get in touch.

I hope this document will be an enjoyable reading for you, providing new trends
and concepts about software development.

Vila do Conde, July 2008 José Carvalho

vii

viii

Acknowledgments

I would like to express my gratitude for all who contributed, directly or indirectly,
during this project. I would like to thank my family, friends and colleagues for those
expertise, understanding and patience, adding value and providing guidance into
my work. In particular I would like to thank my parents, Maria and José, and my
girlfriend, Teresa, who gave me their personal guidance and love.

I would acknowledge Professor António Carvalho Brito of Faculdade de Enge-
nharia da Universidade do Porto, for his coordination, suggestions and revisions. I
would also like to thank other college professors that contributed with their sugges-
tions: Ana Paiva and Ademar Aguiar.

I would like to thank my English professor, Célia Arezes, for her dedication on
reviewing the syntax and semantics consistency of this report.

I have a special acknowledge word to João Cortez. He envisioned the project
and provided me the appropriate orientation during the entire project. His contri-
butions strongly influenced this project, from his references and books, to meeting
discussions and his document revisions.

Finally, I would like to thank Qimonda Portugal, S.A., which provides me knowl-
edge, infrastructure and financial support to complete this journey.

ix

x

“Programming languages are very good
in expressing what the computer should do;

they are less effective in expressing
the developer intent when the code was written.”

Ayende Rahien [2]

xi

xii

Contents

Abstract iii

Resumo v

Preface vii

Acknowledgments ix

Contents xiii

List of Figures xix

I Overview 1

1 Introduction 3
1.1 Project context . 4
1.2 Methodology . 4
1.3 Project management . 4
1.4 Document structure . 5

II WARP approach 7

2 The problem 9
2.1 Objectives . 10
2.2 Scope . 12

3 The software development process 13
3.1 Software process activities . 13

3.1.1 Requirements . 13
3.1.2 Architecture . 14
3.1.3 Design . 15
3.1.4 Implementation . 15
3.1.5 Testing . 16
3.1.6 Deployment . 16

3.2 Software life cycle models . 17
3.2.1 Waterfall model . 17

xiii

CONTENTS

3.2.2 V-Model . 18
3.2.3 Iterative models . 18
3.2.4 Agile models . 20
3.2.5 Microsoft Solutions Framework process model 22
3.2.6 Cowboy coding . 23

3.3 Trends on software development . 23
3.3.1 Guidance on improvement . 23
3.3.2 Forever beta products . 25
3.3.3 Metrics and estimation . 26
3.3.4 Tool supported and automation 26
3.3.5 Integrated collaboration environment 28
3.3.6 New programming paradigms 30
3.3.7 Code as design . 31
3.3.8 Software prototyping . 32
3.3.9 Pattern & Practices . 33

3.4 Discussion . 33

4 Business modeling 35
4.1 Types of business modeling . 36

4.1.1 Throw-away business modeling 36
4.1.2 Evolutionary business modeling 36

4.2 Modeling techniques . 38
4.2.1 Textual descriptions . 38
4.2.2 Visual models . 39
4.2.3 Formal methods and model-based testing 42
4.2.4 Domain specific languages . 43
4.2.5 Programming by contract . 45
4.2.6 Inheritance as contract . 46
4.2.7 Dynamic rules . 47
4.2.8 Generic programming . 48

4.3 WARP solution . 48
4.3.1 Modeling language . 50
4.3.2 Testability . 51

4.4 Discussion . 53

5 Object-relational mapping 55
5.1 Data access layer and ORM . 56
5.2 Advantages and disadvantages . 57
5.3 Applicability . 58
5.4 Types of ORMs . 58
5.5 Object-relational mapping tools . 59

5.5.1 SubSonic . 59
5.5.2 LLBLGen . 60
5.5.3 NHibernate . 60
5.5.4 Castle ActiveRecord . 61
5.5.5 ADO.NET Entity Framework 62
5.5.6 EUSS . 63

xiv

CONTENTS

5.6 Discussion . 63

6 Prototyping the user interface 65

6.1 Visualization techniques . 65

6.2 Scaffolding techniques . 67

6.2.1 Types of scaffolding . 67

6.2.2 Scaffolding tools . 68

6.3 Discussion . 71

III Practical work 73

7 Business# 75

7.1 Objectives . 76

7.2 Language Syntax . 76

7.3 Results . 78

7.3.1 Framework library . 78

7.3.2 Visual models synchronized with code 80

7.3.3 Code analysis . 80

7.3.4 Testable model . 81

7.4 Discussion . 81

8 Case-Study: Equipment Database 83

8.1 Objectives . 83

8.2 Functionality . 84

8.3 Documentation . 85

8.4 Architecture and Design . 85

8.4.1 Logical architecture . 86

8.4.2 Physical architecture . 88

8.5 Results . 88

8.6 Discussion . 89

IV Wrap up 91

9 Lessons learned on software development 93

9.1 Software development process . 93

9.2 People . 94

9.3 Knowledge . 95

9.4 Programming . 95

9.5 Artifact control . 96

10 Conclusion 97

10.1 Summary of contributions . 98

10.2 Future developments . 99

xv

CONTENTS

V Glossary, Appendices and References 101

Glossary 103

A Technical Reviews 107
A.1 Tool Reviews . 107

A.1.1 Spec# . 107
A.1.2 Himalia . 108
A.1.3 ADO.NET Entity Framework 109
A.1.4 FxCop . 111
A.1.5 Aspect.NET . 112
A.1.6 Aspect# . 113
A.1.7 PostSharp . 114
A.1.8 Castle ActiveRecord . 115
A.1.9 NHibernate . 116
A.1.10 SubSonic . 117

A.2 Technical Comparisons . 118
A.2.1 ORM tools . 118

B Equipment Database: implementation details 121
B.1 System structure . 121

B.1.1 Horizontal layers . 121
B.1.2 Vertical layers . 123

B.2 Interfaces . 125
B.2.1 Internal interfaces . 125
B.2.2 External interfaces . 127

B.3 Technologies . 128
B.3.1 Microsoft-based Development Environment 128
B.3.2 Programming language: C# 128
B.3.3 Business# Framework . 129
B.3.4 Microsoft SQL Server 2005 . 129
B.3.5 Castle ActiveRecord/NHibernate 129
B.3.6 ASP.NET . 130
B.3.7 Castle MonoRail . 130
B.3.8 NVelocity . 130
B.3.9 PostSharp Laos . 131
B.3.10 Apache Log4net . 131
B.3.11 jQuery . 131

B.4 Security aspects . 131
B.5 Patterns of Enterprise Application Architecture 132

B.5.1 Domain Model . 133
B.5.2 Service Layer . 133
B.5.3 Active Record . 133
B.5.4 Lazy Load . 133
B.5.5 Data Mapper . 133
B.5.6 Identity Field . 134
B.5.7 Foreign Key Mapping . 134

xvi

CONTENTS

B.5.8 Query Object . 134
B.5.9 Model View Controller . 134
B.5.10 Remote Façade . 135
B.5.11 Data Transfer Object . 135
B.5.12 Layer Supertype . 136
B.5.13 Gateway . 137
B.5.14 Separated Interface . 137

References 139

Index 149

xvii

CONTENTS

xviii

List of Figures

1.1 Project plan . 5

2.1 Communication mismatches on software development 10
2.2 WARP approach . 11

3.1 Waterfall life cycle . 18
3.2 V-Model life cycle . 19
3.3 Spiral life cycle . 20
3.4 The Scrum model . 21
3.5 Types of testing . 27

4.1 Code generation from a UML class diagram 37
4.2 Simple class diagram created using Visual Studio Class Designer . . . 38
4.3 Types of diagrams in UML 2.0 . 39
4.4 Screenshot of Relo user interface . 40
4.5 Example of an OCL constraint . 41
4.6 Example of a model-based test produced by Spec Explorer 42
4.7 Example of a fluent interface in C# 44
4.8 Example of an interface in C# . 46
4.9 Example of a class in C# . 47
4.10 Example of generic programming in C# 48
4.11 Logical design and physical design on WARP 49
4.12 Comparison of some business modeling technique 51
4.13 Testing on logical and physical designs 52
4.14 Using C# preprocessor directives to change used classes 53

5.1 SubSonic working model . 59
5.2 NHibernate working model . 60
5.3 NHibernate working model . 61
5.4 Simplified ADO.NET Entity Framework working model 62

6.1 Screenshot of IRise Studio . 66
6.2 Sample of utilization of SubSonic scaffolding 68
6.3 How Castle MonoRail works . 69
6.4 Code to create a scaffold for Equipment class 70
6.5 Screenshot of scaffold generated by Castle MonoRail 70
6.6 Screenshot of scaffold generated by ASP.NET Dynamic Data 71

xix

LIST OF FIGURES

7.1 A layered architecture using Business# 76
7.2 A typical class hierarchy using Business# 77
7.3 Building a project with PostSharp Laos 79
7.4 Implementation of an invariant in Business# 80
7.5 Business# rules in the Visual Studio 81

8.1 Equipment Database horizontal layers 87
8.2 Equipment Database vertical layers 87
8.3 Equipment Database physical architecture 88
8.4 Graphical user interface of Equipment Database 89

B.1 Data access layer components . 122
B.2 Business logic layer components . 122
B.3 Interface between business objects and data access components 125
B.4 Interface between lightweight façade and business objects components 126
B.5 Equipment Database business model 126
B.6 Interface between the web service and lightweight façade components 127
B.7 Interface between web application and web service components 127
B.8 Interface between data access and data storage components 128
B.9 Interface between web client and web applicant components 129
B.10 Equipment Database security components 132
B.11 Model View Controller pattern . 135
B.12 Remote Façade in Equipment Database 135
B.13 PageSimple interface . 136
B.14 Layer supertypes in Equipment Database 136

xx

Part I

Overview

1

Chapter 1

Introduction

This project aims the improvement of the software development process: create

faster a better product. This objective has been pursued constantly by all industries.

Information technology sector is not an exception. In the last years, many strategies

emerged to accomplish the common goals: increase developers’ productivity, reduce

the costs, focus on the customer, raise innovation, and so on. This has lead to

the creation of new methodologies, tools and standards since the first computers

were created, namely from software engineering, software quality and management

disciplines.

All these solutions, however, do not stop the research in this field. First, the

problem was not solved. Software projects are famous by its high failure rates. A

study of Standish Group in 1996 revealed that 31,1% of the information system

projects are canceled before finishing and more than 50% cost almost double of the

estimations [3]. Although a similar study in 2000 reveals enhancements [4], anyone

enrolled in software development knows that there is a lot to do. Second, it is a

natural look for solutions that produce more value and makes life of collaborators

easier.

WARP drive is the faster-than-light movement in science fiction. Therefore

WARP project intends speeding up the software process, providing a general un-

derstanding about software development process, and then showing techniques that

can improve it. These techniques concentrate on business modeling, object-relational

mapping and user interface prototyping.

This report is targeted for anyone involved in software development: project

managers, architects, developers and even clients. However a strong technical back-

ground would be required to understand some parts, namely related with design

and programming activities.

3

Introduction

1.1 Project context

The work was developed during the Project course, performed in an entrepreneurial

context, in the company Qimonda Portugal, S.A, to improve specific aspects of its

internal software development, looking for new trends to integrate on future projects.

This course is the final unit of studies of Mestrado Integrado em Engenharia

Informática e Computação, at Faculdade de Engenharia da Universidade do Porto

1.2 Methodology

The methodology adopted to achieve intended results follows the scientific method

[5]. It is an organized way of thinking and appears obvious for a research and

development project. In fact, lean development philosophies argue that is a good

way to solve problems within business world, as Toyota has been doing with its

Toyota Production System problem-solving method [6].

The scientific method adds more formality and organization to the process, and

it has the following steps:

1. Define the problem;

2. Observe, collecting data to understand better the problem;

3. Formulate a hypothesis to explain and, possibly, solve the problem;

4. Perform experiments and collect results;

5. Draw and publish conclusions.

The work went along through these phases, as it is explicit in its document

structure 1.4. First, problems to be addressed were identified and prioritized. Then

an analysis moment succeeded, by studying available techniques and tools. The

formulation of hypothesis was accompanied by reasoning, discussion and small ex-

periments. After that, two major experiments were done: Business# and Equip-

ment Database. Business# is a framework to develop evolutionary business models.

Equipment Database is an application which integrates information about manufac-

turing equipments. It has been developed for research purposes, to discuss and test

Business#. This report outlines the conclusions during the research.

1.3 Project management

The project schedule was tightly related with the methodology. The project occurred

during four months, following an estimated schedule presented in 1.1. The first

4

Introduction

week was focused in a specific company formation and in the project definition.

Following five weeks looking for improvements in software development processes,

mainly centered in business modeling. Then three weeks were dedicated to mapping

classes and relational schemas and more three about generating automatically user

interfaces from classes. During that time and in the following four weeks, were built

two implementations: Business# and Equipment Database. Finally four weeks were

dedicated to write the final report.

Figure 1.1: Project plan

Weekly meetings occurred to verify the progress and discuss ideas. Similarly,

every week, a report was written with the accomplishments, disappointments, criti-

cal items and next steps. And meetings with the college coordinator took place to

supervise the performed work.

1.4 Document structure

The structure of the report follows a traditional research document, starting by an

introduction, which contextualizes the work. Then it is presented the state of the

art in software development and the carried out experiments in the project. Finally

the achieved conclusions are presented.

This document is organized in four parts with several chapters in each part:

Part 1 introduces the project and which problems are addressed. It also presents

the context, methodology used, work plan and controlling activities, and document

structure.

Part 2 provides a general understanding about software development process,

and explains solutions to improve it. There is a focus on business modeling, object-

relational mapping and user interface prototyping.

Part 3 details performed experiments to prove the applicability of previous des-

cribed solutions.

Part 4 presents a list of lessons learned about software development process and

conclusions.

In the end of the report, there is a glossary, references and appendices.

5

Introduction

6

Part II

WARP approach

7

Chapter 2

The problem

Motto: Create Faster, Create Better

The goal of this project is to speed up the software development process. Speed

means shorter time from vision to market, with similar resources and without sacri-

ficing quality. Therefore a better process is needed, to eliminate waste and discipline

the development environment. In the same way, every process must fit to specific

business constraints and involved people.

However finding a good process is a hard mission. First because software devel-

opment is an intensive knowledge activity, where it is hard to measure productivity

[7] . Projects barely follow estimations, and metrics hardly represent the real value

produced. The artifacts are abstract entities instead of concrete items, like raw ma-

terials and final outputs on regular industries, which tangle the problem. Measuring

a report in number of pages or an application in number of lines of code appears

to be too naive. These types of metrics always have a relative value. Similarly,

an estimation based on product potential value could be performed, giving weight

percentages to activities or produced artifacts. But defining these weights is also

relative and is not free of error.

Second software development occurs on varied contexts, from companies to uni-

versities, with different objectives, constraints and people. Although business objec-

tives are usually centered on generating revenues and reducing costs, others would

be valid, like personal or organization improvement or help humanitarian causes.

Moreover context constraints influence decisions and development, as labor regula-

tions or organizational hierarchies.

The multiplicity of stakeholders enrolled to build software products is huge:

clients, final users, managers, analysts, architects, developers, testers, system ad-

ministrators, quality people, technical writers, sales people, researchers, students,

and so on. Furthermore, most of the time it could be more complicated because:

• The objectives and preferences are not the same for everyone;

9

The problem

• People have different scientific background and professional experience;

• They work in different places and companies;

• They speak using specific vocabulary, or even different languages.

Problems of communication and different interests are common, and many times

the management contributes more to increase than to mitigate them. Discussions

around specifications or between people that share responsibilities can arise easily.

Communication impedance mismatches is a term to refer barriers and noises in-

troduced during information transfers, derived from electrical impedance mismatch

concept. The mismatches generate misunderstandings between involved elements

[8].

The process of developing software has three important communication mis-

matches, which are explicit in figure 2.1. Enrolled elements are very different and

speak different languages. The analyst must listen to the customer and capture

the requirements. But the client knows much more about problem domain, and

the analyst knows much more about computers. Then the analyst transmits to the

developer the requirements. But he only gives parts of his own vision of customer

objectives. Finally, the developer must convert desired functionalities into code.

However programming languages are very good in the expressing what the computer

should do; they are less effective in expressing the developer intent when the code

was written [2].

Figure 2.1: Communication mismatches on software development

Bringing and implementing a disciplined process in these complex contexts is

challenging. Communication and synchronization difficulties happen every day, in-

terfering on the battle for speeding up processes.

2.1 Objectives

The motto is Create faster, Create better. Faster means a shorter time to develop

a system. Better means a disciplined way to create a product with higher quality.

Better also means simple, lean and more automatic, and thus quicker. Therefore the

10

The problem

main objective is to study techniques and tools, which could be incorporated on and

which improve current software development process, instead of creating a totally

new methodology. Namely, it advocates the importance of following activities:

• Connecting development phases and its results;

• Business modeling;

• Object-relational mapping;

• Prototyping the user interface.

The idea is to create a business model that guides implementation. The business

model should be formal and executable, avoiding the subjectivity inherent to textual

descriptions or visual diagrams. Informal descriptions cause misunderstandings. But

formal methods demands higher levels of expertise and it is hard to reuse them on

implementation. This way, WARP tries to establish a framework to solve these

questions. The framework should be sufficiently simple to be understood by both

business analysts and developers. But powerful enough to be used in a production

programming platform like .NET framework.

This high-level design can also be used to generate the persistence layer and

the graphical user interface. Therefore all these components are executable and

testable. The envisioned WARP approach for software development is summarized

in the figure 2.2. The triangle represents the lower levels of V-Model for software

development (described on sub section 3.2.2).

Figure 2.2: WARP approach

Additionally, a strong emphasis is given about new trends and tools on software

engineering, like task automation or artifact traceability.

11

The problem

2.2 Scope

The WARP approach does not provide a complete methodology, neither a radical

new philosophy to create software. But it provides techniques to be incorporated in

existent software development processes, which can improve them.

The work focuses on improving communication and integration through the soft-

ware development cycle. However the context is mainly technical and practical.

That is to say, it concentrates on designing, programming and testing activities,

rather than other conceptual solutions, e.g. improvement of requirements analysis

or implementation of process standards. The practical component aims concretize

the concepts, giving specific tools and explaining the implementation of executable

samples, which are unfortunately many times forgotten.

The study of tools is constrained to Microsoft development environments, but

most of the time, similar applications could be applied to other platforms.

12

Chapter 3

The software development process

Motto: Opportunity ⇒ Product ⇒ Value

A software development process is a systematic approach on the development

of a software product. It is also referred as software development life cycle and

software process [9]. The process starts from an identified opportunity, with available

resources and management encouragement, to achieve a product. The product would

create additional value in different forms, e.g. rising revenues, reducing costs or

creating knowledge.

Every software process is unique, because it occurs in a circumstantial moment,

with different people, within different organizations, different objectives, and so

on. Custom development is becoming more and more important, namely in the

business world [6], as it provides suitable solutions for companies requirements.

That contrasts with traditional pre-developed software packages, targeted usually

for a big number of unrelated users, with a regular rhythm of releases and with less

client support, as in the games industry.

3.1 Software process activities

The software development life cycle is composed by several activities with different

objectives, which could be done by the same or different people. There are six

activities commonly accepted: requirements, architecture, design, implementation,

testing and deployment.

3.1.1 Requirements

Software requirements analysis is an effort to determine the necessities and condi-

tions in the creation of a new product or an alteration of an existent product. The

analysis takes inputs from stakeholders to output artifacts that contain a high-level

13

The software development process

description of desired system. Examples of stakeholders would be the product vision-

ary, the manager of actual or potential users, the acquiring customer, the marketing

department, the funding sponsor and so on [10].

There are several techniques to capture requirements, for example interviews,

group meetings, creation and discussion of visual models, and prototyping. The

final outputs of this activity could be a mixture of text documents, use cases,

models, prototypes, descriptive storyboards, event-response tables, more or less de-

tailed, accordingly to the adopted methodologies. The level of requirements varies

from a high-level description of product objectives, the business requirements, until

functional and system requirements, which describe desired functionalities, non-

functional requirements and its subcomponents.

This phase is famous by misunderstandings, because it implies combining differ-

ent interests and points of view. For example, a customer’s definition of requirements

might sound like a high-level product concept to the developer. The developer’s no-

tion of requirements might sound like detailed user interface design to the user [10].

People have different backgrounds, some know more about the problem domain,

whereas others know more about information systems. Natural language is ambigu-

ous, causing multiple interpretations. This diversity of definitions leads to confusing

and frustrating communication problems, during and in following stages.

In fact, some advocate that different teams to capture requirements and to do

development is not so good as it appears, because intermediaries introduce noise be-

tween the client and developers [6]. In a similar way, many argue that requirements

should not be too much detailed, as they could change quickly or never implemented,

and represent a big effort.

3.1.2 Architecture

Software architecture is an activity concentrated on identifying and documenting

the sub-components that composes the system and its relationships. The term is

also applied to the documentation produced during effort [11]. The definition and

structure of software architecture process is imprecise, but it concerns on a top-down

analysis to build a system that fits the requirements, easy to develop but prepared

to grow. Its outputs could be paper diagrams, class models, interface descriptions

and a set of quality attributes (e.g. availability or reliability).

During the last years there was an attempt to collect the knowledge of this dis-

cipline, with architecture patterns, architectural styles, best practices, description

languages and formal methods. Examples of results of this effort are the notable

catalog of Martin Fowler [12] and Patterns and Best Practices for Enterprise Inte-

grations [13].

14

The software development process

3.1.3 Design

Software design is an associated activity of architecture, preparing and detailing

a solution to be implemented. It includes reasoning about the components and

their relationships, finding solutions and establishing their interfaces, allowing the

concurrent development. It concerns about lower levels of detail, as well, algorithms,

class diagrams, platform-specific constraints, and suitable programming paradigms

and tools. It also aims improvement in several software aspects, like extensibility,

compatibility and reliability.

As software architecture, this activity was undisciplined and only based on de-

signer experience and intuition. There is no defined process that explains how to

achieve a good architecture or a good design. However nowadays there is a good

common knowledge, mainly organized in form of patterns or best practices, fol-

lowing its well-known predecessor GoF Design Patterns [14]. Nevertheless many

knowledge remains dispersed around the Web and technical documentation, so the

designer experience maintains its important role.

3.1.4 Implementation

Software implementation, also called software programming, concretizes all the rea-

soning and analysis into code, which can be executable and deployed to the cus-

tomer’s environment. In this phase the developer writes code using one or more

programming languages and related platforms, e.g. Java and its class libraries.

This task is usually supported by an integrated development environment, which

provides several functionalities, as an editor, a compiler, a debugger, a source code

control application and a testing framework. Choosing a good set of tools is a critical

decision, with consequences in all aspects, including project progress and product

quality.

Implementation is a difficult task, as the programming languages are good to

express what the computer should do, but they are less effective in expressing the

developer intent [2]. It demands expertise and knowledge in many areas, including

product domain, algorithms, data structures and formal logic; sometimes a certain

degree of imagination, creativity and passion to solve new problems. That leads

to many different programmer backgrounds, joining mathematicians, physicians,

engineers, visual designers and even biologists. Although this activity emerged in

scientific and engineering environments and the effort in the last years to bring it

discipline and automation, some continue defending that programming is a type of

art.

15

The software development process

3.1.5 Testing

Software testing is an activity to evaluate and ensure the quality of software prod-

ucts. Quality is an abstract concept, but usually it measures how much a product

fulfills agreed requirements, functional and non-functional, and to verify faults or

defects in any artifact. Nowadays it is mainly concentrated on implementation

outputs[15]. However testing should be an ongoing activity, as eliminating defects

early reduce the cost of their repairing.

The traditional testing methods are divided into black box and white box. The

former stands for testing software without knowing its internals, to check if require-

ments were accomplished. The second advocates the importance of comprehend the

data structures and algorithms, as well how code coverage can find an unused code.

The current practice is a mix of these two [16], known as grey box testing .

Different types of tests have emerged, with specific objectives and scope:

• Unit testing verifies small components or functionalities, e.g. methods or

classes behavior;

• Integration testing examines and identifies defects in the interfaces and between

integrated components;

• Acceptance testing, also called system testing, checks if the product meets its

requirements;

• Graphical user interface testing focuses on testing user interfaces, following

the record and playback method, or providing inputs and defining expected

changes on interface;

• Non-functional aspect testing tries to evaluate some characteristics of the sys-

tem, as performance, usability and security.

There is a enormous controversy in software testing, namely about who takes the

responsibility for testing, programmers or specialized testers, about the tradeoffs of

using scripted tests instead of exploratory, and between manual and automated tests

[17].

3.1.6 Deployment

Software deployment is a set of related tasks to put the product into production, that

is to say, available for use. As any software product is unique, the precise processes

or procedures to perform deployment are difficultly defined [18]. However, they

usually include a release of a stable version of the code repository and install it on

targeted machines. This installation could occur in a server machine or in scattered

16

The software development process

workstations, and usually requires some type of configuration. In some cases it

even requires changing implementation to accommodate specific incompatibilities.

Updating and uninstalling are also deployment activities.

3.2 Software life cycle models

Despite the disparity of situations on software development, since the first years of

software engineering have appeared many models which try to give a common struc-

ture to the projects, improving their management and its organization. Some are

formal and imply heavy and long processes, while others are considered lightweight

methodologies. For example, some have less focus on documentation or in man-

agement tasks. This section intends to present the best-known models, providing a

critical analysis about them.

3.2.1 Waterfall model

Waterfall model is the best-known and oldest software process model, where activ-

ities occur one after another, in discrete stages. The next phase should not start

until results of previous are approved. Freezing parts of the development permits

an ongoing development, where detected issues on previous stages were ignored or

left for later resolution. That makes easier planning, tasks concurrency, specializa-

tion, and reduces the rework of producing and approving new documents and the

discussion about specifications.

The waterfall life cycle is composed by five activities: requirements definition,

system and software design, implementation and unit testing, integration and system

testing, operation and maintenance. Figure 3.1 outlines these activities and their

sequence. As you could see, the activities described in the section above are tightly

related with this model.

Curiously the first mention of the term waterfall was published in an article of

Winston Royce, which criticizes it and presents it as non-working model [19]. It is

based on concepts of industries that produce physical items where the value of raw

materials and the cost of redoing is prohibitive, as in the construction sector. How-

ever software development produce abstract products, composed by a set of zero and

ones to be executed in computers. At least, it is possible completely to change them

after they are built (although that does not mean easier). This abstract character

also leads to communication problems and incorrect specifications. Therefore the

software development has evolved to more iterative models, which consent changes

and the unpredictability.

17

The software development process

Figure 3.1: Waterfall life cycle, based on [15]

Waterfall model is a classic model and it is taught in all software engineering

courses. However nowadays it is barely used, at least, in a strict way, which does

not admit modifications on results of previous activities. Nevertheless it is a good

didactic concept, giving a general understanding about software development for

beginners.

3.2.2 V-Model

V-Model makes explicit the importance of verification and validation phases, and

how they relate each other. All testing activities have a correspondent development

phase, where accordingly tests are planned and defined. So, for example, require-

ments are used to create acceptance tests, and integration tests are defined during

the architecture stage. To show these relations a chart in form of V was created (fig-

ure 3.2). However the stages occur sequentially, which made V-Model an extension

of waterfall.

V-Model was developed by German Federal Armed Forces, and is widely used in

Germany, namely in the public sector [20]. It was a good step to show the importance

of relating phases, and to emphasize the importance of testing. However it is a weight

model, composed by sequential activities, which do not accept easily modifications.

3.2.3 Iterative models

Iterative models were created to accept changes, while maintaining a structured

model. They are based on two main ideas: incremental delivery and iterative de-

velopment. The former defends that any activity occurs by increments, each one

adding value to the project, e.g. a release for any added functionality. The second

18

The software development process

Figure 3.2: V-Model life cycle, retired from [10]

defends the importance of producing through iterations, which are repeated in a

constant cadence, and providing feedback each other.

Two well-know iterative models are Spiral and Rational Unified Process (RUP) .

The Spiral model was proposed by Boehm [21], integrating the concept of iteration

with the waterfall model. Each iteration is like an entire waterfall process, recog-

nizing the importance of planing and giving feedback to next iterations. He also

alleged the importance of design and prototyping in software development. Figure

3.3 shows how these ideas are joined.

Rational Unified Process (RUP) is a framework created by Rational Software

Corporation. It includes an iterative model, recommendations and tools. It is based

on the six key principles of Business-Driven Development [23]:

1. Adapt the process;

2. Balance stakeholder priorities;

3. Collaborate across teams;

4. Demonstrate value iteratively;

5. Elevate the level of abstraction.

The RUP model is composed by four phases: inception, elaboration, construc-

tion and transition. Inception phase establishes product objectives, based on its

potential value. Elaboration phase consists of thinking about the problem without

any implementation, including domain analysis, business modeling, risk estimation,

elaboration of use cases, prototyping, architecture and design of components. RUP

also includes descriptions of engineering disciplines, similar to process activities des-

cribed above, recommendations and tools to guide and bring discipline. Rational

19

The software development process

Figure 3.3: Spiral life cycle [22]

Software provides many different tools, like Rational Software Analyzer and Rational

Rose.

3.2.4 Agile models

Iterative models are more adaptive to change, but some of them are so heavy and

complex processes, that reduce the focus on producing valid software: people have

lost with the burden of documentation and management activities. Agile models

are iterative models which argue the importance of simplicity, communication and

adaptability.

Agile methodologies are more people-centric, relying on trust, motivation and

teamwork. The highest priority is the customer satisfaction, delivering him contin-

uously working software for approval and discussion. Changing requirements are

welcome, and the capability to accept them is seen as competitive advantage. Ag-

ile models favors oral communication, rather than written documentation, putting

together business people and developers to work daily throughout the project. It

also advocates the importance of technical excellence and good design, as well as

continuous improvement. The Agile Manifest, promoted by some honorable and

senior specialists, contains a good set of their principles [24].

20

The software development process

Notable agile models are Scrum and Extreme Programming (XP). Scrum divides

the process in sprints, a fifteen-thirty day period, where the team produces an

executable increment to the product . Requirements are prioritized in the product

backlog, and on each sprint the team takes from it the features that believe they

could accomplish - the sprint backlog [25]. During the period the sprint backlog

does not change (figure 3.4).

Figure 3.4: The Scrum model [26]

The model has some interesting curiosities, like the group of roles: pigs (product

owner, facilitator and the team) for who are engaged on produce the software and

chickens (users, customers and managers) which are related to the project. This

nomenclature came from a joke, where a pig and a chicken would open a restaurant

named Hams and Eggs, but the pig strongly refuses because it is committed while

the chicken is only involved [26]. It also advocates realization of daily meetings to

discuss the progress and difficulties arise. In these meetings people stands to ensure

that they will be short. Scrum is remarkably simple, easing its implementation.

Extreme Programming follows the agile philosophy, but it is really critic about

documentation tasks. It has four basic activities: coding, testing, listening and

designing. Coding is the main activity of XP, which advocates that the code is most

important result of software development. Without any runnable piece of software,

the process does not produce anything with real value. Coding would be any task

that creates executable code: class diagrams that will generate code, work flows

that will be converted to running algorithms, and scripting code to be interpreted

or compiled.

Testing is an important activity too: without perform tests, unit or acceptance

tests, there is not certainty about the feature works as expected. Unit tests checks

small units of code, while acceptance tests verify customer requirements. There-

21

The software development process

fore, Extreme Programming is usually implemented with test-driven development.

Listening involves the understanding of problem domain, through communication

between developers and business people, and designing is an ongoing process to

improve implemented system, easing future changes and eliminating dependencies.

Other practices are included in Extreme Programming, like pair programming,

continuous integration and refactoring. However it remains a controversial model,

which many companies avoid implementing it completely, mainly because it is too

risky and it is targeted for small teams. And managers tend to run away from risks.

Meanwhile many of these techniques have been adapted to traditional models, with

considerable benefits.

Agile models are seen as unmanageable and undisciplined; however their goal is

the reverse. They argue that planning in detail the next phases, which are uncertain

to happen and where requirements could change, is costly and unnecessary. More-

over their simplicity eases their implementation, in contrast with heavy processes

that most of the times are partially followed. And many support the idea that they

cannot be applied to large or distributed teams. However usually a project could be

decoupled and its sub projects allocated to small teams [27]. Similarly, the distance

between them could be minimized by techniques like kick-off meetings in one loca-

tion, travelers that transmit information from one point to another and sharing tools

[28]. Nevertheless agile philosophies usually do not succeed on command-and-control

company cultures and when they are forced to people [29].

3.2.5 Microsoft Solutions Framework process model

Microsoft Solutions Framework (MSF) is a deliberate and disciplined approach to

technology projects based on a defined set of principles, models, disciplines, con-

cepts, guidelines, and proven practices from Microsoft [30]. Its objectives are to

develop information technology solutions faster, with fewer people, less risk and

higher quality results. It results from well-known industry best practices, and either

25 years of Microsoft experience.

MSF includes descriptions of process models fitted to Microsoft technologies,

from the management concepts up to providing tools like Visual Studio Team Sys-

tem. These descriptions are very concrete, explaining potential artifact types, team

roles, and actions to take. These process models are foundations, which could be

customized to fit organization culture.

Although most of MSF concepts are not really new, it resumes many of the

knowledge about software development. Tool-supported methodologies have many

advantages, establishing rules, automating routine tasks and raising cooperation.

Microsoft software development tools, namely the Visual Studio family of products,

22

The software development process

have pioneered many ideas into software engineering. This approach to improve the

software development process is remarkably, as Microsoft has a strong influence in

the information technology sector.

3.2.6 Cowboy coding

Cowboy coding is a term to refer the absence of any structure in software devel-

opment, without organized teams or an adopted process model [31]. The decisions

are left for coders, raising the uncertainty and unpredictability. Therefore it usually

applies to individuals or small teams, where their passion and effort supersede the

standards and best practices.

Surprisingly many successful entrepreneurial projects emerged in this type of

environments, as academic and hobbyist projects. A good example is Adobe Photo-

shop which was created by Knoll brothers, because of their enthusiasm on photogra-

phy [32]. In fact many organizations create small spin-offs to develop specific ideas

and surpass organizational barriers and constraints on innovation [33]. That makes

questionable the real value of bureaucracy, hierarchies, standards and regulations,

and even process models.

3.3 Trends on software development

Software development is a recently activity, and it has been suffering a rapid mat-

uration. There are a lot of ideas and techniques to improve development, however

they are not really models. This section presents some of today trends about the

software process.

3.3.1 Guidance on improvement

In the last years, models or techniques to guide process improvement have appeared

within organizations. This sub-section presents two of these models for software

engineering: lean software development and Capability Maturity Model Integration.

Lean development

Lean software development is a translation of manufacturing and supply chain man-

agement to software development, performed by Mary and Tom Poppendieck [6]. It

is mainly adapted from the Toyota Product Development System, bringing terms like

Just-in-Time and Autonomation into software development. Just-in-Time advocates

the importance of producing only when products are necessary. And Autonomation,

23

The software development process

also called stop-the-line, is a way of organizing things that minimizes human inter-

vention, where the work only stops when some irregularity happens. Their book is

full of concepts and real stories, from both industries, which help to understand it.

Lean ideas are agile-friendly, and arguing that software development is an em-

pirical process that must create some type of value. The seven principles of lean

software development are:

1. Eliminate waste;

2. Build quality in;

3. Create knowledge;

4. Defer commitment;

5. Deliver fast;

6. Respect people;

7. Optimize the whole.

These principles drive multiple lessons in lean philosophy. For example, elimi-

nating waste try to identify common problems on software development, which have

similar meaning in manufacturing sector: partially done work, extra features, time

between phases, relearning, handoffs, task switching, delays and defects. This prin-

ciple provides mottos like Write Less Code and Justify Every Feature. In the same

way defer commitment said that every product should be designed and built with

change tolerance in mind. It also focuses the importance of create and maintain the

knowledge, through scientific method, Kaizen events and simplicity on documenta-

tion.

Lean software development is more a philosophy, a set of principles that guides

the improvement, rather than a true methodology. However most of their key ideas

could be incorporated into any organizational culture.

Maturity models

Capability Maturity Model Integration (CMMI) is a process improvement approach

that provides organizations with the essential elements of effective processes. It is

composed by proven models and methods to be adapted accordingly business objec-

tives. In most of the cases, the implementation of CMMI raises productivity, quality

and customer satisfaction; while it decreases the costs. However many criticize its

complexity, and small companies are less likely to get benefits from it [34].

24

The software development process

Many organizations have been submitted to CMMI appraisals, namely the larger

ones, to identify areas of improvement and, in some cases, because clients require a

certain level of maturity.

There are subsets of CMMI applied to specific aspects of software engineering.

Personal Software Process (PSP) aims to improve the quality and productivity of

individual engineers [35]. Team Software Process (TSP) aims to improve team work

and management of software projects [36]

3.3.2 Forever beta products

Forever beta products have been a new trend on software development, where com-

panies deliver incomplete and unfinished applications to users for a long time. The

idea behind is that solving 80% of a problem provides much more value than improv-

ing remainder 20% [33]. Additionally users would test the product, giving their

feedback. The unique compromise is that the product will improve if users like it.

Estimations about the product value and repair of problems were done under user

testing, much more accurately than research markets or technical experts could do.

The beta state does not mean, however, worse quality. All updates are carefully

performed and documented. They work better in web-based applications, which

ease deployment and frequently upgrades. Sometimes older versions were main-

tained, giving the user hypothesis to choose. And users have time to learn the new

incremental functionalities. Beta state merely means under ongoing development,

which in many cases means forever.

The most famous examples are Google applications. Google News [37] (English

version) was created in 2001 and left beta stage only in 2006. Gmail [38], the Google

mail service, starts in 2004 and remains beta. Google Docs [39], which provides

editing of word documents, spreadsheets and presentations, is beta too. And there

is another level of product development: Google Labs projects [40]. They are a

first public appearance of favorite Google ideas, and could be considered an alpha

version. Most of new features and products appeared firstly in Google Labs, and

then the most successful graduated to beta version.

Many view the beta products as an excuse to avoid commitment and customer’s

support. In the same way, they are usually targeted for the general public products:

signing contracts about forever beta products appears unrealistic in the business

world. Nevertheless exposing their state is a way to inform users and establish

expectations. Interestingly the users are enthusiastic about beta products, following

the product roadmap and being happy to contribute to create a better tool. After

all, most of applications, targeted for entertainment or for professionals, are under

development forever.

25

The software development process

3.3.3 Metrics and estimation

Estimation is widely used in software processes. Estimation tries to forecast the

future and to do planning, based on historical archive of previous projects and their

metrics. These metrics measure things like lines of code, function points, median

time to perform some type of tasks or common delay in risky projects.

Metrics are also used to evaluate software quality. For example, NDepend [41]

analysis assemblies to find dependencies between components and to remove com-

plexity, while NCover [42] measures the percentage of code not tested.

Metrics and estimation are popular techniques, which help people manage their

teams and projects. However they should be used carefully. Estimation techniques

transform the work in quantities, forgetting the importance of qualities. Comparing

numbers, e.g. the number of lines of code, to evaluate developer’s productivity is

too naive. That approach does not capture the potential value, the level of difficulty

and quality of implementation [7]. In the same way, software with less dependencies

does not mean necessarily better software.

3.3.4 Tool supported and automation

Nowadays most software development processes are supported by tools, which help

the developer, automate routine tasks and raise communication. That leads the

team focus on customer and problem solving, increasing overall productivity.

Project management has a lot of tools available too. Microsoft Project [43] is a

general and widely used application. Mingle [44] is a solution of ThoughtWorks for

management and team communication on agile environments.

In the same way, the process of compiling and joining components is usually

automated using building tools, like Apache Ant [45] or MSBuild [46].

Software testing has improved very much in the recent years, particularly due to

automation on tests. Figure 3.5 shows that today most tests could be scripted and

then executed without any human intervention. Acceptance tests, or story tests,

measure the customer’s satisfaction. Unit tests check the validity of small pieces of

code. Property tests evaluate general characteristics of the system, like performance.

The exceptions are some quality attributes as usability, which requires understanding

human beings.

Examples of these tools are:

• FitNesse [47] - is an acceptance testing framework, integrated with a wiki for

team and customer collaboration. Tests are based on visual tables with inputs

and expected outputs, and fixture code that calls correspondent Java or C#

classes;

26

The software development process

Figure 3.5: Types of testing [6]

• NUnit [48] - is a unit-testing framework for all .NET languages (for a more

complete list of available unit-testing frameworks see [49]);

• Selenium [50] - is a test framework for web applications, based on record and

play concept. It works like a normal browser, making requests and verifying

the responses;

• WatiN [51] - is another test framework for web applications, but where the

tests are scripted in C#;

• Visual Studio Team System Test Edition [52] - is the testing framework

included in Visual Studio Team System, including support for unit-tests, web

tests, load tests and code coverage analysis.

Human code reviews to enforce standards and find defects is a waste[6]. Today

code analysis tools, as FxCop [53], do that in an automatic and systematic manner.

And they could be customized adding specific rules of the organization.

However many software engineering tools are still too expensive, erecting barriers

to their utilization. Fortunately there are alternatives from Open Source, and some

could be considered better than proprietary solutions. For example, Subversion

(SVN) is a widespread, free and usable tool to source control. Tools do not substitute

people, but they can make their life much easier.

27

The software development process

3.3.5 Integrated collaboration environment

Integrated collaboration environments (ICEs) [54] are an extension of tool supported

processes, providing a set of related tools which support development, including

team communication and source control. They are a natural evolution of integration

development environments (IDEs). Automation and information integration rises

when different types of tools communicate with each other. For example, when an

item is added to bug list, the project planning is automatically updated and warn

involved people.

Process templates

One of the notable characteristics of Microsoft Solutions Framework is process tem-

plates [55]. They bring discipline to software development based on tools that assist

and follow the adopted process model. Process templates establish working rules

and constraints in development, including the types of artifacts and team roles.

Microsoft Team Foundation Server and its client Visual Studio Team System

provide tools like source control, item tracking, bug lists, status report, guidance,

and planning tools. Their behavior is based on the adopted process template. MSF

version 4.0 includes two different templates:

• MSF for Agile Software Development;

• MSF for Capability Maturity Model Integration (CMMI) Process Improve-

ment.

As expected MSF for agile is simpler than MSF for CMMI, with less roles and

less types of artifacts. Other templates are created by Microsoft partners and Open

Source world, for Scrum, Extreme Programming and V-Model XT (the successor of

V-Model). These models are customizable to fit specific aspects of organizations,

using the Process Template Editor, included in Visual Studio 2005 Team Foundation

Server Power Tools.

Artifact traceability

The number of artifacts used and produced in the context of software development is

enormous, and usually there are too many disparate types of items: interview sum-

maries, requirements documents, project plan, technical reviews, code files, compiled

assemblies, XML files, relational schemas, test reports, etc. And usually they have

multiple versions. The challenge is to relate the artifacts to each other and man-

age and update these relationships afterwards. The traditional approach is textual

28

The software development process

references between items, which imply manual updates and spare readings around

different files. Finding and exploring relationships is a hard effort in this context.

Fortunately, nowadays there are tools that relate artifacts. Microsoft Team Foun-

dation Server has a tracking feature for work items, that is, artifacts which are not

code, and source code. Work items could be requirements, bugs, tasks or change

requests. For example, when the developer checks in his code, he can notify that one

bug is resolved. The team easily follows the progress, by visualizing the lists of work

items and summarizing charts. That makes the communication and management

much easier.

Continuous integration

Continuous integration is a widespread software development practice promoted by

Martin Fowler. It advocates that developers should integrate their work frequently,

at least every day [56]. An automated build and the subsequent tests are performed

to find integration errors as quickly as possible. This approach substitutes big-bang

integration phases, which are usually long and risky. The system is viewed as a

whole, where everyone knows how components interact. And it enables frequent

deployment, providing new features quickly, and then a faster customer’s feedback.

The key practices of continuous integration are:

• Maintain a single source repository;

• Automate the build;

• Make your build self-testing;;

• Everyone commits every day;

• Every commit should build the mainline on a integration machine;

• Keep the build fast, e.g. creating different building stages or using mock ob-

jects;

• Test in a clone of the production environment;

• Make it easy for anyone to get the latest executable, e.g. from integration

machine;

• Everyone can see what is happening;

• Automate deployment.

29

The software development process

ThoughtWorks, where Martin Fowler works, has developed two continuous in-

tegration servers: CruiseControl and CruiseControl.NET. The former runs on Java

platform and the second on .NET framework, however both have similar function-

ality. They works with many different tools, as Subversion, NAnt, NUnit, FitNesse,

FxCop, NDepend and NCover.

3.3.6 New programming paradigms

Programming paradigms have an important role in software development. There are

a lot of paradigms, with multiple levels of abstraction and different objectives. Each

paradigm usually has a large list of possible programming languages and related

frameworks.

From the first days of low-level programming, where the code was tightly related

with hardware, much has changed. Compilers or interpreters transform more ab-

stract languages into machine code. Today it is common that developers do not care

about processor, memory, network, and even operating system constraints.

Higher abstraction boosts developer productivity. Most of the time, the perfor-

mance penalty of abstraction is neglected due to advantages during development.

And after all, it is not guaranteed that human made better resource management

than automatic algorithms. Therefore, these new paradigms have been adopted

by software industry increasingly. Even in embedded systems like mobile phones,

which usually have very limited resources, the development is moving to different

paradigms.

Procedural and imperative programming is widely adopted, with ancient lan-

guages as C and Cobol, and some recent languages which tolerate this paradigm,

like C++ and PHP. Nowadays, however, object-oriented programming (OOP) be-

came a ”de facto” standard. It uses objects and their interactions as base concepts

to design applications, including techniques like inheritance, encapsulation, modu-

larity, and polymorphism. Java and C#, two object-oriented languages, are largely

used and documented. In fact, nine of the first ten languages listed on TIOBE Pro-

gramming Community Index for June 2008 [57], a ranking which measures language

popularity on the web, has some kind of support for objects (the exception is C).

Aspect Oriented Programming (AOP) has appeared to solve some problems

of object-oriented paradigm, namely on implementation of cross-cutting concerns.

They are concerns scattered around the code and hard to isolate in components,

which cut across multiples components. Examples of cross-cutting concerns are log-

ging and consistent error handling. Aspects are implemented defining the code and

when that code is executed. However they do not substitute objects: they are a

30

The software development process

complement of them. AspectJ and their associated tools constitute the most no-

table aspect framework, to weave aspects to Java objects. Nowadays adoption of

aspect oriented paradigm is quite risky, because it is a technology in development,

with lack of tool support and people with knowledge about it.

Very high-level programming languages have emerged, like Pyhton, Ruby and

Scheme [58]. They are usually minimalist and multi-paradigm including procedu-

ral, functional and object-oriented. The developer chooses the more appropriate

paradigm accordingly to his context. With few lines the developer can create pow-

erful applications. However some advocate that this flexibility leads indiscipline to

coding activities and makes hard code understandability.

There are a lot of other programming paradigms [59]: event-driven, logic pro-

gramming, process-oriented, based on constraints, and so on. Some are created to

accomplish particular problems, while others maintain a research status. Although

most are confined into specific areas, all of them deserves attention when evaluate

new paradigms to adopt on software development process.

Service Oriented Architecture (SOA) is not really a programming paradigm, but

it is a way of thinking to organize and guide software development adopted by many

organizations. Business processes are modeled as services, favoring separation of

concerns and distributing.

The multiplicity of programming paradigms, and associated technologies, confuse

software engineers. The controversy, with disparate comparisons and definitions,

around them are messy. That makes it harder to choose the most suitable solution to

fulfill business requirements. Additionally, the effort to move to different paradigms

is considerable, because it implies a change on developer’s mindset. Nonetheless,

all these new paradigms have been contributing to increase developer’s productivity

and software quality.

3.3.7 Code as design

Code as design was an idea exposed in 1994 by Jack W. Reeves about software

development [60]. The article is highly controversial, arguing that coding is design.

The main idea is devaluate the importance of activities that occur before coding.

He advocates that programming is still part of design activities. The code is the

detailed design, which is based and influences the high-level design.

Good top level design is important, but never should include too much detail.

Formal documentation should be delayed as much possible, namely design docu-

ments. It is frequent that a programmer finds a problem that implies changes on

high-level design. Designers can use anything that helps them in reasoning and

31

The software development process

communication: structure charts, class diagrams, and so on. But for him that is not

software design.

This idea emerged as a response from who felt that bureaucracy has been slowing

software engineering processes. People spend much of their time in management and

documentation activities, which add nothing into customer environment. In today

changing environments, producing detailed documentation before coding appears

ingenuous. Businesses, technologies and people change every day. And feedback

provided by implementation probably will change the design. Revising documen-

tation, or even throwing away it, after implementation is a waste. Moreover it is

known that many people spent their precious time producing documentation which

nobody will read or retrieve value from it.

Albeit the author was exaggerated in some points of views, and he was too

scrupulous about definitions, his text explains how programming and the built/test

cycle are central to the process of engineering software, instead of remaining activi-

ties.

In fact, this idea has been reinforced is the last years. Extreme Programming

centers on coding activities. Interestingly many Open Source projects have min-

imum requirement and design stages, their management is lightweight, and code

repositories plays a central role. And Microsoft strategy for Visual Studio 2005 rec-

ognizes the limitations of visual modeling, e.g. UML diagrams, good for sketching

and expose conceptual abstractions, but bad for detailed specifications [61].

3.3.8 Software prototyping

Prototyping has been used since the first software days. It is a technique of fast

developing raw products, that could be presented to the customer and analyzed, but

are not prepared to be deployed on customer’s site. That technique is used in many

domains, from building architecture to electrical engineering. Prototyping became

a popular and widely used technique due to the abstract value of the software.

Most of process models advocate the importance of prototyping. When the

development starts many unexpected problems arise, which must be discussed and

solved. Prototypes could be functional, or they only expose the interfaces. A visual

prototype eases its understandability. Prototypes could be throwaway, or used as

code basis to start the development. Creating prototypes raises awareness of software

constraints and improves the knowledge about problem domain, which consequently

helps in project estimation and scheduling.

Nowadays new techniques have arisen to help prototyping. For example, scaffolf-

ing techniques generate simple graphical user interfaces based on classes or relational

32

The software development process

tables. Other tools create prototypes using visual and drag-and-drop features, with-

out any coding involved. Techniques like these have been reducing the costs of

prototyping.

Prototyping reduces the costs and lowers the risk of software process. However,

as any technique, its misusing can be disadvantageous. Many times customers think

that a prototype is an almost finished system, and they do not understand that

is a lower quality output. Moreover people lose many time prototyping or lose

focus on other analysis and design problems. Nevertheless prototyping is a powerful

technique, recommended for most of software projects.

3.3.9 Pattern & Practices

Resuming the knowledge about software development is not an easy task. The ex-

perience and intuition yet plays an important role. Each software has unique char-

acteristics, making hard to communicate the expertise acquired in previous works.

Patterns and best practices descriptions on software development appeared to

describe and transmit knowledge owned by the specialists. They give a general solu-

tion for a common problem, showing examples and possible variations. Additionally

they provide a common vocabulary for developers. Design and architectural pat-

terns are the best-known in software development. Good references on these topics

are [12] [13] [14] [62]. Interestingly, anti-patterns emerged too, describing obvious

but inefficient solutions.

The initiative Patterns & Practices [63], from Microsoft, guide architects and

software developers on their tasks. Although they are fitted to Microsoft technolo-

gies, most of them provide good lessons to every software engineer. In the same

context Guidance Automation Toolkit (GAT) [64] provides tools and methods to

distribute expertise and educate developers, including recipes and wizards.

3.4 Discussion

There is not a silver bullet in software development. Many processes and techniques

were experimented, in many different contexts, and there is not a unique solution.

The controversy about this topic was scattered around books, thesis and the Web.

Some defend their approach as a religion, without recognizing their disadvantages.

Others neither remember the importance of improving the processes, and blame

developers for the lower productivity.

The discussion about process models happens mainly because they are abstract

concepts, which generate different interpretations, and therefore different imple-

mentations. However is not necessarily bad, as the business, people and tools are

33

The software development process

different; a different process realization is expectable. But this confusion generated

strange implementations, e.g. the requirements phase is long and weight but then

development processes are agile.

Although iterative processes are commonly accepted as better than standard

waterfall processes, and agile philosophies have been embraced in the last years,

there is no general agreement. Post-Agilism [65] and Context Driven School [1]

have emerged, as informal movements which prefer adopting methods and ideas

from various methodologies, avoiding constraints and dogmas of existent models, as

well as the discussions about which is better. These schools propose that people can

create their own processes, models and techniques.

There is not the best process. The trick is to study possible alternatives, and

adopts the ones that resolve a specific development problem. The methodologies

should not be copied, but criticized and adapted to the context, beware of their

tradeoffs - this is the motto of context-driven school. For example, in a team of

two developers, using a complex project management tool is nonsense. Besides, a

good software development process does not guarantee success: involved people and

potential product value play also important roles in this equation.

34

Chapter 4

Business modeling

Motto: Words ⇒ Logic ⇒ Code

In the context of software development, business modeling is an activity that

captures and transforms the organizational reality into conceptual entities. Its ob-

jective is mapping textual and oral visions to some type of logic and more formal

specifications, which then would be converted to code. The business is summa-

rized in form of models and rules. The capacity to understand the problem is a

determining factor to the success of any project.

WARP approach advocates that business modeling should drive software de-

velopment. An abstract and formal business model could build a communication

bridge between conceptual specifications, created by analysts, and source code, pro-

duced by developers. The formal business model can be executable, creating an

opportunity for reusing and testing. Implementation reuses the executable business

logic and a new type of tests can be created over business model, more focused on

business concerns.

As business model is executable, it can be used to drive the creation of persistence

layer and simple user interfaces. In this way two techniques are studied: object-

relational mapping and user interfaces prototyping. The former minimizes the effort

to manipulate persistent data, mapping objects to relational schemas. The second

creates user interfaces which help understanding the system.

In fact, this idea is not new. Since the 1980s, model-driven engineering (MDE)

[66] have promoted the systematic use of models through the software process, sup-

ported by CASE tools. The models are visual, e.g. UML use cases, and can be

easily understood. However most of these models are not executable and are not

easily synchronized with production code. All changes must occur in both models

and code. Maintaining these models afterwards could be a tedious and worthless

task. Therefore models rapidly become outdated. Although these techniques are

35

Business modeling

very popular, in practice model-driven engineering tools are more fitted to sketch

and explain certain aspects of software, rather than create full specifications.

Meanwhile Eric Evans suggested domain-driven design (DDD) in his book [67].

Domain-driven design advocates the importance of knowing the whole domain and

understands domain logic to create better applications. Creating a good domain

model is a master key to achieve success. It is a way of thinking and creating a

ubiquitous language about the problem domain, easing the communication between

team members, linking model and implementation more deeply. It explains how to

model, but it is technological agnostic. WARP approach was strongly influenced by

domain-driven design ideals.

4.1 Types of business modeling

Business modeling is an important activity of software development. However two

different types could be perceived: throw-away and evolutionary.

4.1.1 Throw-away business modeling

The traditional techniques of business modeling are mainly based on textual de-

scriptions and visual charts. They create a general understanding of the system,

but become easily desynchronized with the implemented system. Therefore these

types of business modeling must be updated in later stages of software development,

or even thrown-away.

4.1.2 Evolutionary business modeling

Evolutionary business modeling is an effort to integrate business model with design

and coding activities. It relies on mechanisms to automatically convert between

models and code, easing the maintenance and synchronism of both. There are two

approaches to synchronize them: code generation and reverse engineering. Both

could exist in the same environment.

Code generation

Code generation techniques create automatically a code to targeted platforms, e.g.

C++ or Java, from charts and higher level specifications. For example, in figure

4.1, one UML class diagram origins a set of class skeletons with right attributes and

methods. Then these skeletons could be edited or called as independent components.

Model-driven architecture (MDA) has promoted this approach to solve the prob-

lems of model-driven engineering. The abstract specifications and visual diagrams

have an internal syntax, which could be converted into code using appropriate tools

36

Business modeling

Figure 4.1: Code generation from a UML class diagram

[68]. Rational Rose applications [69] have integrated several generative techniques.

Likewise Generative Modeling Technologies (GMT) [70] project of Eclipse Founda-

tion has been producing a set of prototypes on model-driven engineering area.

Most of the time, however, the generated code is a simple code skeleton, which

is easily coded in a few hours. Likewise most of the time a change on business

model breaks completely the compatibility with an older code. Finally, in some

cases reflecting changes on code into specifications is a nearly impossible or painful

task.

Reverse engineering

Reverse engineering techniques follow the reverse direction: they generate visual

diagrams and other specifications from source code. The source code is the primary

representation. Any change on code is immediately reflected on models, as any

change on models affects directly the code.

For example, Visual Studio Class Designer supports this type of modeling. The

code is the original representation, which could be edited through a richer graphical

user interface. It provides the following features:

• A visual representation of classes, synchronized with the code;

• Visually edition of fields, properties, methods and even events;

• The object test bench feature permits instantiate objects and call methods;

• Supports the managed languages: C#, VB.NET and J# in VS 2005, and

VS2008 adds support for native C++ code with some limitations [71].

Figure 4.2 shows a simplified chart with entities involved in bank business.

37

Business modeling

Figure 4.2: Simple class diagram created using Visual Studio Class Designer

Reverse engineering techniques is always synchronized with a code, and helps

people understand it. However reverse engineering techniques are highly coupled

with technological constraints. Creating more complex, higher-level and imaginative

models is restricted, namely because of programming languages limitations. For

example, generate work flows or use cases diagrams from code is quite challenging.

4.2 Modeling techniques

4.2.1 Textual descriptions

The easiest way to transmit intentions is through words. Oral communication is

great, but sometimes it is necessary to record and to summarize these intentions.

Therefore people have written texts, as vision and requirement documents, which

explain the problem domain and the desired software. The business is modeled with

descriptive descriptions, e.g. goal lists, use cases statements, or executive summaries.

Nowadays almost everyone can read texts, so this is a universal technique. Every

customer and every developer understands them, better or worse. Ultimately the

communication between people occur using words, even when they talk about com-

plex models. Although the inherent ambiguity of natural language causes multiple

interpretations, the power of textual descriptions should not be underestimated.

38

Business modeling

4.2.2 Visual models

Visual modeling is a way to explain and organize knowledge through images. Af-

ter all, an image can transmit much more information than thousands of words.

Creating images to model the business is a clever option.

Probably the best-known modeling technique in software development is Unified

Modeling Language (UML), and their associated CASE applications [72]. UML

is a visual language promoted by Object Management Group (OMG), targeted to

do specification and documentation of software systems. It provides a common

representation to describe structure and behavior of systems. Figure 4.3 shows the

diagram types available in UML 2.0.

Figure 4.3: Types of diagrams in UML 2.0 [73]

The creation of UML diagrams is usually supported by CASE software, like

Rational Rose Modeler [69] or Microsoft Office Visio [74].

Model-driven engineering is highly focused on visual models. People draw and

maintain their models, while implementing the application. Generative techniques

produce automatically code from models, reducing the mismatch between them.

Structure diagrams are appropriate for generative techniques, because most of the

time there are correspondent elements in the programming platform. For example,

a UML class diagram is easily mapped to object-oriented languages. However trans-

lating behavior diagrams is trickier, mainly because they are ambiguous and it is

hard to transform those behaviors into executable code.

Nevertheless there are interesting initiatives. Windows Workflow Foundation

(WF) uses work flow diagrams to map application behavior. The Workflow Designer,

one of their components, allows a visual creation of these work-flows [75]. It is a

part of .NET framework 3.0 and could be used to develop .NET applications. In

39

Business modeling

contrast with other work-flow engines, Workflow Foundation is quite reliable and

customizable [76].

Business Process Modeling Notation [77] is a graphical language for defining

business processes in work-flows. It is promoted by Object Management Group,

as a possible standard for communication between all stakeholders. Although it

has the same lacks of all visual models, it appears to be more complete and more

business-oriented rather than its competitors, namely UML.

Reverse engineering techniques enabled the possibility to create models from

source code. Visual Studio Class Designer shows and edits .NET code in a visual

way. Likewise Relo [78] is a code visualization application to Java and Eclipse,

developed by Massachusetts Institute of Technology. The developer cans explore the

code, navigating through packages, classes, attributes and methods. He cans zoom

out to get a broader view of the system, or zoom in until reading the correspondent

code. Figure 4.4 shows a screenshot of Relo user interface.

Figure 4.4: Screenshot of Relo user interface [78]

Visual models are very popular in software development. Many people, namely

those with business background, are very reluctant on using programming languages.

But they understood the limitations of textual descriptions. Visual models support

reasoning and knowledge organization. That is, they are great to establish general

understandings, namely to explain complex issues.

40

Business modeling

However visual models are not formal, executable or testable, which means that

they are ambiguous like natural language. An activity diagram could be interpreted

differently by the analyst and the developer. Moreover maintaining models and code

synchronized is a heavy and tedious task. It is impossible to use diff tools with visual

models, and it is difficult to perform searches. Therefore driving the development

only through these models could be prejudicial. Likewise, code as design apologists

argue that they are only a support for reasoning (for more see section 3.3.7).

Visual models with constraints

The specifications based on visual models are ambiguous and incomplete. Therefore

new languages appear to extend them. The best-known example is Object Con-

straint Language (OCL), which enables the definition of rules about UML items.

OCL is mainly based in constraints about classes’ attributes and methods. A

constraint has a context, properties, operations and languages keywords. Figure 4.5

shows an example of an OCL constraint. It defines an invariant for the income of

every person. If the person is employed, the income is equal or higher than 100. If

not, the income is less than 100.

context Person inv :
l e t income : Integer = s e l f . job . sa la ry−>sum () in
i f isUnemployed then

income < 100
else

income >= 100
endif

Figure 4.5: Example of an OCL constraint [79]

There are three types of constraints in OCL: invariants, preconditions and post-

conditions. The former are eternal truths, which must be ensured during all object

life. The second are conditions that must be ensured before executing a certain code.

And the third defines conditions that must be matched after execute the code.

The development of OCL is supported by Object Management Group, and it

is highly documented. And there a lot of tools which support OCL [80]. How-

ever it is questionable to learn a quite complicated language only to write or read

documentation. The process of map OCL constraints to software code is complex

and error prone. Therefore using traditional programming languages to define these

constraints could be a better approach.

A great effort has been done to create OCL compilers and parsers, which trans-

form it to another language, e.g. C#, or to machine binaries. OCL Compiler for

41

Business modeling

.NET is an example of this effort [81]. Alternatively, programming languages have

started to support definitions of constraints, namely through programming by con-

tract approaches (see more on 4.2.5).

4.2.3 Formal methods and model-based testing

Formal methods appeared to help analysts in the specification and validation of soft-

ware. They are highly based on mathematics concepts. Business analysts produce

executable models, to understand better the behavior of the system and discover po-

tential defects. Vienna Development Method (VDM) is a well-known formal method.

It is composed by a formal and object-oriented language and tools to test the va-

lidity of software. The language also support programming by contract techniques

(see more on sub-section 4.2.5).

Similarly, model-based testing helps analysts to be aware of all system behaviors

and consequences. It advocates the generation of test cases to verify models [82].

However unit tests are not enough: exploratory testing techniques should be used,

to ensure that a good set of possibilities will be tested.

Microsoft Research has developed a tool to do model-based testing: Spec Ex-

plorer [83]. It generates finite states machines, with possible application states and

transitions. These diagrams help finding many errors, but also generate confusion

due to their complexity. Figure 4.6 shows the state machine produced for by Spec

Explorer for a system with two actions: turn on and turn off.

Figure 4.6: Example of a model-based test produced by Spec Explorer

Unfortunately, both methods, formal methods and model-based testing, have

emerged to do thrown-away business modeling. That makes them expensive tech-

niques, making them more applicable in the production of critical software. They

are great to do business modeling, as well as to discover failures. But by now, they

are not integrated with traditional development environments, and map has the

same risks of other modeling techniques.

42

Business modeling

4.2.4 Domain specific languages

A domain specific language (DSL) is a computer language that is targeted to a par-

ticular kind of problem, rather than a general purpose language that is aimed at any

kind of software problem[84]. It is implemented for particular contexts, reducing the

complexity of general-purpose languages and defining the vocabulary of the problem.

For instance, SQL is a domain-specific language for data manipulation.

Domain specific languages have become popular because they are very good in

their tasks, and usually are quite simple to use. However creating one domain specific

language is quite more complex. But it is becoming more and more accessible, with

extensive documentation and easier frameworks to create compilers.

Domain specific languages could be divided in four categories [2]:

1. External DSL;

2. Graphical DSL;

3. Fluent Interfaces;

4. Internal/Embedded DSL.

External DSL

An external domain specific language is a separate language used to solve a specific

problem, but used in cooperation with traditional programming languages. XML,

SQL and Regular Expressions are examples of external domain specific languages.

The key characteristic of external DSLs is that they were written using traditional

and complex compiler technology. That provides flexibility on the language syntax,

but increases implementation complexity. Besides they lack symbolic integration

with other programming languages, that is, they could not be linked into base

language [85].

Graphical DSL

Graphical domain specific languages explain the domain through visual models.

They are very good for documentation, but they are less effective to implement

software (see section 4.2.2).

Microsoft has been promoting a framework to develop graphical DSLs: Domain-

Specific Language Tools. It is based on the concept of Visual Studio Class Designer:

the developer uses a graphical designer for editing domain models, within Visual

Studio 2008. These models are saved as XML files and can generate code. New

domain specific languages are defined using Visual Studio 2008 SDK[86].

43

Business modeling

Domain Builder [87] is an envisioned project to create a graphical domain-specific

language to guide software development, using Microsoft Domain-Specific Language

Tools. Additionally it would use CSLA [88] to generate the business persistence layer

and NHibernate [89] to create the data access layer. Although it is an interesting

project, it is in a preliminary state of development.

Fluent Interfaces

Fluent interface is a technique to organize application programming interfaces in

a way that operations flow in a natural manner, making the code more readable

and powerful. For example, figure 4.7 shows how a fluent interface is useful in the

context of a car simulator.

Figure 4.7: Example of a fluent interface in C#, based on [2] examples

However creating fluent interfaces is a hard effort, involving not only a strong

knowledge about complex language features, as generics and operator overloading,

but also an extra design effort to accept operations through a flow.

Internal DSL

Internal domain specific languages, also called embedded domain specific languages,

are defined on base languages, e.g. Java or Python. That provides symbol integra-

tion and better access to development environment, including available frameworks

and tools.

Many specialists recommend internal domain specific languages to model do-

mains. They could be more abstract, with the semantics of problem domain, but

maintain the same syntax of base language. That eliminates synchronization issues,

because the models are represented with final code.

It is commonly accepted that mainstream languages as Java and C# are not

suitable for internal DSLs. More flexible languages, like Ruby and Lisp, are often

cited as the best to create an internal domain specific language. However not always

developers change easily their mindset and adopt new programming paradigms.

This section is a short summary about domain specific languages, more details

about them could be found in [2] and [90].

44

Business modeling

4.2.5 Programming by contract

Programming by contract is an approach to design software based on compromises

between the components. It is also known by Design by Contract (DbC), a registered

trademark of Eiffel Software (previously known as Interactive Software Engineering,

Inc.) in the United States [91] [92].This company promotes the Eiffel Development

Framework, strongly influenced by programming by contract techniques.

Definition of contracts in the code is a way to avoid misunderstandings between

components. Defining conditions and expectations for every method, that is to

say, their possible inputs, outputs, exceptions and side effects, limits the chances of

implementation errors. For example, a contract could be that the amount of a bank

account must be always equal or higher than zero.

Programming by contract is very similar to OCL approach, including the focus on

constraints: preconditions, postconditions and invariants. The advantage of using

programming by contract is that models are executable and easily connected with

the implementation code.

Programming languages can support programming by contract natively or using

third-party tools. The former is easy to use and more supported by tools and

documentation. However few languages have natively included programming by

contract. Obviously, Eiffel language supports it natively. A Microsoft research

project created Spec#, a language for .NET that supports it too (see more in section

A.1.1). Nevertheless they are not widespread languages.

Traditional programming languages have simpler contracts techniques, like code

assertions, which throw exceptions or exit the current method. Most of their con-

cepts, like preconditions and postconditions could be encapsulated in classes. The

exception is invariants, which require a static verifier during program execution.

Nevertheless it would be preferable to use a framework which support program-

ming contract. Common approaches include preprocessors or libraries. Preproces-

sors analyze the code, to find special contract syntax, which must be converted

into regular code. Libraries expose interfaces to establish contracts. For example,

Contract4J [93] provides programming by contract for Java. Contracts are defined

using Java annotations. The static verifier was implemented using aspects written

in AspectJ. Java Modeling Language (JML) [94] adds contracts in form of Java

code comments, which can be processed and transformed to Java bytecode, using

the JML compiler.

The most powerful technique of programming by contract is invariants. After

all, utilization of preconditions and postconditions is an organized and systematic

technique, but does not add much more of common checking done before and after

executing a method. Essentially, this programming technique shines because it

45

Business modeling

avoids erroneous interactions through detailed code specifications, improving the

software quality.

4.2.6 Inheritance as contract

This technique appeared in context of object-oriented programming. Inherit the

properties and methods of a parent class or interface is a kind of contract. The

component obtains a status, but it must implement the rules defined by predecessors.

This idea is highly aligned with programming by contract. But it is barely outlined

as a business model technique, because it is inherent to object-oriented paradigm.

These kinds of contracts are stronger, because components share similar genetic

code. The advantage is more commitment between them, but the trade off is less

separation of concerns.

Interface based

Interfaces appeared in object-oriented languages exactly to establish contracts rules.

Objects must implement certain interfaces to participate in certain relationships. For

example, all vehicle share the same operations: turn on, turn off, accelerate, brake,

and so on (figure 4.8). Defining these common characteristics is a way to organize

the knowledge.

Figure 4.8: Example of an interface in C#

An interface resumes the common behavior and properties of a different set of

objects. The process to establish an interface could be long, because time is needed

to understand enough about problem domain. Therefore building an interface could

be considered a modeling activity: it captures the knowledge about real objects,

establishing connections between them.

Interface inheritance is supported by most object-oriented languages, including

multiple inheritance. As some languages, e.g. C# and Java, forbid multiple class

inheritance, interfaces are a way to establish multiple contracts by the same class.

46

Business modeling

Class based

Inheritance based on interfaces is limited to definition of methods and properties

signatures. However it does not allow add some functionality or business constraints

into the code. Therefore, class inheritance is used to maintain business logic shared

by multiple types in one place, favoring code reusing.

The vehicle interface, presented in figure 4.8, let to create a base class for cars.

Obviously there are specific restrictions. The car cannot be turned off while is

moving. And the direction is changed using the steering wheel. Figure 4.9 shows

a possible generic class for a car, where additional code defines the appropriate

constraints.

Figure 4.9: Example of a class in C#

4.2.7 Dynamic rules

Dynamic rules are a technique to add and remove business rules during software

execution. After all, business rules change much more frequently than the rest of the

application code [95]. This is the idea behind business rule engines.

Implementing a business rule engine is a frightening task, but in some cases it

is strictly necessary. For instance, imagine a customer relationship management

software that processes clients accounts. Admit that premier clients are allowed

to have a maximum debit of 5000e, but now management has decided to change

the limit to 2000e. Change code is not practical, when business rules change too

quickly. A small rule engine should be implemented to accommodate these types

47

Business modeling

of problems. The rules of these engines can be defined using a new domain specific

language [2].

Modeling a system with dynamic rules is preparing it for coming changes, which

could emerge during implementation or afterwards. Together with adaptive object

models[96] , dynamic business rules could make a system very extensible. However

this flexibility has critical impacts on system performance, understandability and

stability, which must be considered.

4.2.8 Generic programming

Business modeling is all about capturing the business logic without going into many

details. As previous demonstrated it does not mean that coding activities should be

avoided. Generic programming focuses on the class behavior, delaying the selection

of primitive data types. For example, generic programming is suitable to define the

behavior of a state finite machine, independently of data types that represents its

states and transitions (figure 4.10).

Figure 4.10: Example of generic programming in C#

Generic programming provides a good way to create a high-level design without

defining data types. However generic programming syntax is not technological neu-

tral and makes the code harder to understand and maintain, due to its higher-level

of abstraction.

4.3 WARP solution

Every modeling technique has advantages and drawbacks. However most of them

are neglected because they are costly and hard to synchronize with final code. The

WARP solution proposes a mixture of previous techniques, connecting high-level

design and source code.

48

Business modeling

The high cost of modeling techniques is tolerable, because to understand new

domains is a complex and not automated activity. However the utilization of differ-

ent techniques, tools and people to do analysis and development can raise this cost

significantly.

High-level design tries to define the components that compose a system, including

class model and component relations. Although technological restrictions play an

important role in this level of analysis, people are afraid of testing their ideas in the

target platform. They prefer to use all modeling techniques presented above, from

visual models to formal methods, but never the development platform.

WARP solution proposes the utilization of a programming language to do busi-

ness modeling. Like formal methods, WARP suggests the creation of an executable

and testable business model, to explore components behavior and their dependen-

cies. In this model the business logic and rules are defined, in a high-level way.

Techniques as programming by contract would be useful and then implementation

stage reuses this business logic, using inheritance as contract or object composition.

WARP also advocates the separation between business and implementation code:

logical design and physical design (figure 4.11). This division eases the reusing of

business code and changing the implementation part. In fact, Martin Fowler defends

this approach with the Separated Interfaces architecture pattern [97].

Figure 4.11: Logical design and physical design on WARP

In the object-oriented paradigm, logical design is composed by business classes.

They define proper properties and methods, as well some logic and constraints of

the business. Physical design is composed by concrete classes, which deal with

more technical concerns as object persistence, security or user interfaces. Usually a

concrete class inherits a business class, establishing a contract between them. Ideally

49

Business modeling

the interface exposed by the business model would be the same interface exposed

by implementation code.

The synchronization between two parts occurs as in code development, using

source repositories and diff tools. At any moment, developers can request changes

on high-level design. Because it is represented as source code, they can submit

a patch through source repository, which analysts would accept or not. Similarly

analysts can change high-level design and evaluate immediately the consequences

on implementation part.

Reverse engineering techniques allow generating visual models from executable

business model, which help understanding the system. But the source code is the

primary representation of business models. Visual Studio Class Designer shows

classes and their relations in a visual way, through analysis of source code. Maybe in

the future, it will be possible generate more complex charts, as work-flow diagrams,

from the source code.

4.3.1 Modeling language

The language used to do modeling should be as much similar as possible with target

language. The utilization of two different languages, one for logical design and

other to physical design, creates difficulties on communication. It is like writing

the requirements in Portuguese and then they are given to French people to do

implementation.

Nevertheless two different languages is a tempting approach: the logical language

is more flexible and focuses in domain rules, while physical language takes care of

all implementation details. In this scenario, there are two interesting hypothesis:

• A logical language based on OCL syntax;

• An internal domain specific language.

However these approaches imply staff training, both for analysts and developers.

They need time to change their mindset and practice to consolidate their knowledge

in new languages.

Therefore WARP proposes the utilization of the target programming language,

e.g. C# or Java, to do business modeling. The language syntax should be restricted,

to maintain the focus on modeling activities and to avoid going into too many

implementation details. Obviously developers understand the language and analysts

can easily learn it, due to its simplicity. Moreover, it is not exceptional that business

analysts have some technological background. Many of them have done software

development in the past, or at least they had one programming course in college.

50

Business modeling

The utilization of the target programming language supports an important ad-

vantage: the business model can be easily reused during implementation, without

any complex mapping process. In addition developers can criticize and request

changes on business model in an easier way. That is, it simplifies the process of

synchronization between business models and source code.

4.3.2 Testability

One of strengths of WARP solution is testability. In comparison with other tech-

niques (figure 4.12), WARP offers a way to do analysis and design, in a formal

and testable way. That is to say, both logical and physical designs are formal and

testable.

Figure 4.12: Comparison of some business modeling techniques [82]

The ability to write tests to both parts, open a door to create tests that validate

the business classes: logical tests. Afterward, this type of tests can also verify the

implementation part, by running over concrete classes. Using Continuous Integra-

tion techniques, developers and analysts can test easily the consequences of their

changes.

Traditional programming languages have several tools to do automated testing,

namely unit tests frameworks, which are easily adapted to implement logical tests.

Logical tests verify classes’ behavior, accordingly business rules. They are written

by analysts with two possible purposes: ensure the validity of achieved business

model or ensure the validity of concrete classes. The former pretends ensure the

validity of analyst work, while second look for errors on developer efforts.

51

Business modeling

Although logical tests can be considered a type of integration tests, the boundary

between them is quite blurred. A logical test can test a small functionality, so it

would be named a unit test. But it can test a business rule, and therefore it is a

logical test. In the same way, developers can write integration tests that are not

logical tests. Moreover not only analysts but also developers can write logical tests.

Strictly, all tests that verify business logic in an agnostic technical way are logical

tests.

When logical tests are written, business classes are not implemented and their

behavior is quite undefined. This uncertainty decreases the testability options. Mock

frameworks [98] can address this problem, providing a way to build a fake world

where the business model can run. Moreover they are very practical in testing

abstract classes.

Connected tests

WARP approach advocates the importance of separate logical and physical parts in

different components, e.g. different assemblies. This division guarantees a real sepa-

ration between business and concrete classes. In the same way, and accordingly with

good practices on software development, tests are written in independent assemblies

(figure 4.13).

Figure 4.13: Testing on logical and physical designs

An interesting aspect of WARP is that analysts contribute with tests for the

final software. These are logical tests, which could be integration or unit tests. In

the same way, developers write their own tests, to check the validity of their work.

In this situation tests can verify both logical and physical designs. That is, they are

connected.

52

Business modeling

A decision arise in this scenario: which tests should test physical part, and which

tests should test logical part. However some tests are useful to test both parts. But

that does not mean write two different tests. The tests could be reused in both

parts.

For example, using Visual Studio and C#, it is possible to change the used

classes with the preprocessor directives #if/#endif (figure 4.14). Therefore, a simple

change on project options allows the choice between business and concrete classes.

The change of classes would not produce big problems, as business and concrete

classes have similar public interfaces.

Figure 4.14: Using C# preprocessor directives to change used classes

4.4 Discussion

Business modeling is a hard effort, and it will continue to be. The number of tech-

niques is large and seems natural that people do not know what adopt. WARP

solution was a compromise between previous presented techniques and industry

constraints, helping to bring part or completely some techniques into software de-

velopment process. However WARP solution is a complement to existent techniques,

and it will not pretend substitute them entirely.

53

Business modeling

54

Chapter 5

Object-relational mapping

Motto: Objects ⇒ Tables

Software executes instructions on computers in the context of threads or pro-

cesses. Applications manipulate data on main memory, which is quicker but also

volatile and it disappears after to finish the process. The only way to guarantee is

save data on permanent storage supports, as hard disks or magnetic tapes. There-

fore, developers must care of persistence of data.

Most of programming frameworks provide low-level methods of persistence, as

saving data in text files or using object serialization. However they are not reli-

able, being inadequate to most business applications [99]. Data access is slow and

complicate, and they lack support for security, replication, data consistency and

concurrency access. Database management systems (DBMS) came out to address

this problem. They were widely adopted by software industry, due to their capacity

to manage persistent data. Oracle, Microsoft SQL Server and MySQL are examples

of well-known databases.

Database systems are based on relational algebra, organizing the information in

logical tables, views and stored procedures. They expose their interface through a

domain specific language: Structured Query Language (SQL). This interface encap-

sulates and hides the internals of databases, which ensure the correct processing and

saving of data.

Although databases have proved their utility, integrate them with software appli-

cations is not easy. Access and save persistent data are common operations, leading

to the creation of many SQL code scattered in the system. Layered architectures

have tried to solve this issue, isolating database accesses on persistence layers. But

maintain this component is a complex and prolonged mission, taking time and focus

of developers in the problem domain.

This concern becomes more challenging on the context of object-oriented pro-

gramming. Coders represent the business model in form of objects, writing classes.

55

Object-relational mapping

Some of these objects are persistent, that is, they exist between different process

instances. Save and retrieve them on databases appear to be natural. However map-

ping between classes and tables is not easy, as they have different characteristics. For

example, data types available in the two systems are different. Relational schemas

do not support inheritance, and associations are static and globally defined. Object

identity is usually a reference. In relational schemas, identity is ensured through

primary keys. After all, object-oriented programming focuses on behavior, while

relational schemas centers on structure. This difficulty in relate classes and tables

is known as object-relational impedance mismatch[100].

Object-relational mapping (ORM) software try to mediate the interaction be-

tween databases and object-oriented programming. Object-relational mappers pro-

vide a way to map classes to tables, defining the points where they are related, and

hiding the specificities of relational schemas. For instance, a integer property in a

class could be the primary key in the table. Therefore, developers only do opera-

tions over objects, which are reflected in the persistence layer. The data loaded from

database is returned as objects and a simple call to a method can directly delete table

tuples. In fact, object-relational mappers provide intermediary and object-oriented

querying languages, thus the developer does not need to known SQL.

Additionally most of ORM tools have support for transactions, caching, concur-

rent control, class associations, querying, dirty checking, lazy loading and pagination

of results. A more complete list of features provided by object-relational mappers

could be found in [101].

5.1 Data access layer and ORM

Confusion data access layer and object-relational mapping concepts is a common

mistake. Data access layer is a set of components that provides communication

between classes and relational schemas. It maps data types of original programming

languages to database types, and it provides methods to access and save data. That

is to say, it abstracts the database for classes use.

A data access layer can do object-relational mapping, but that is not mandatory.

ADO.NET and Enterprise Library Data Access Application Block provide access to

data, but they are not object-relational mapping software, because do not help to

map database entities directly to classes. Real object-relational mapping software

avoids the knowledge about SQL language and the underlying relational schema.

The developer can work with persistent objects as with normal objects.

56

Object-relational mapping

5.2 Advantages and disadvantages

Object-relational mapping techniques have several advantages and disadvantages,

which make them a controversial topic on software development. The common

referenced advantages are:

• Rising of developer’s productivity;

• Decrease of costs in maintaining the data access layer;

• Abstraction of database operations;

• A more maintainable system, with less lines of code;

• Interchangeability of underlying database.

Nevertheless there are some drawbacks generally well accepted:

• The effort to learn the tool could be large;

• The developer is not aware of performance consequences, because he does not

known how database accesses occur;

• Batching operations usually perform better inside database environments, for

example using stored procedures;

• Recent technique, in ongoing development;

• Lack of support by software industry.

A common criticism about object-relational mappers is performance degradation.

Critics said that manual persistence could perform better rather than automated

persistence through an ORM. However this is a false question, as programming

assembly code could perform better than with higher level languages [99]. That is,

not always more abstraction means lower performance. In fact, with some features

included as caching and unit of work pattern, object-relational mapping software

can really improve performance.

The lack of support by software industry, especially large vendors like Microsoft

and Oracle, was pointed as a drawback of this technique. In fact, many of mature

object-relational mappers arose in the Open Source community, like Hibernate and

NHibernate. Information technology people is usually afraid to accept the risk of

choosing a software without support. However this technique has been adopted by

large vendors, as Microsoft and its LINQ to Entities project [102].

57

Object-relational mapping

5.3 Applicability

Although object-relational mapping is a useful programming technique, there are

cases where they are not applicable.

In most of new object-oriented software, object-relational mapping would be

recommended. That is true especially for applications that need data persistence

and have a richer business model. However, in data intensive software, which do

simple data accesses and saves, their utilization has little benefits. Similarly, the

benefit for small-size applications should be evaluated, due to the effort to learn new

technologies.

Another situation where object-relational mapping is not recommended is in

the software that has the business logic in the database, using stored procedures or

object-relational databases. Most of the ORM tools do not support these techniques,

making their mapping painful, usually requiring cross-cutting calls.

The adoption of an ORM in a legacy software depends on its quality. In an ideal

situation, if software was developed using object-oriented design, with a good level

of encapsulation in the database access, it could easily move for a ORM. But these

ideal situations are quite rare.

5.4 Types of ORMs

Object-relational mapping software could be classified according their working prin-

ciples. One type of classification describes the way how the relation is established:

• Top-down: Classes ⇒ Tables;

• Bottom-up: Tables ⇒ Classes;

• Bidirectional: Classes ⇔ Tables.

In the top-down approach, the developer writes classes, and then the ORM pro-

duces the relational schema. In the bottom-up type, the developer scripts relational

schema, and then classes are generated. And in the bidirectional, the developer

writes both classes and tables, and then uses the object-relational tool to relate

each other.

Another way to classify object-relational mapping tools is to analyze how they

provide their functionality. Code generators and libraries are the common ap-

proaches. Code generators analyze the primary representation and produce re-

spective code in the other representation. Libraries expose an interface to define

relations between the two representations.

58

Object-relational mapping

5.5 Object-relational mapping tools

At the moment of start using object-relational mapping tools, the developer must

choose between to use an existing framework or to build a new one. The temptation

to build custom object-relational mapping software could be high. Most of current

tools are under development, missing features or stability. However, implementing

a functional and complete object-relational mapping tool is a hard task. Barely a

company has the necessity to implement one. After all, the productivity gains with

their adoption would be lost on producing that new component.

The range of available object-relational mappers is large, with different work-

ing models, advantages and drawbacks. A presentation of six ORM tools for .NET

development environment is presented below: SubSonic, NHibernate, Castle Ac-

tiveRecord, LINQ to Entities, EUSS and LLBLGen.

5.5.1 SubSonic

SubSonic [103] generates the data access layer from relational schema (figure 5.1).

It could be considered a bottom-up object-relational mapper, as it generates objects

from tables. The data access layer uses SubSonic classes and ADO.NET providers.

If the developer wants the Enterprise Library provider could be used. The business

logic could be implemented extending data access objects, using partial classes or

object composition.

Figure 5.1: SubSonic working model

SubSonic is open source and it is incredibly simple. Setting up the application

is easy and the configuration requires few lines of XML. It does not introduce many

layers on the software, avoiding big performance penalties. The code of data access

layer could be viewed, to understand its behavior or to tune its performance. Nowa-

days it supports Microsoft SQL Server 2000/2005, MySQL and Oracle. Appendix

A contains a review of SubSonic (see section A.1.10).

59

Object-relational mapping

However its bottom-up approach does not make much sense. The developer must

define first the business model, and then implement manually the relational schema

to generate the data access layer.

5.5.2 LLBLGen

LLBLGen [104] is object-relational mapper that generates the data access layer and

part of business objects tier from an existent relational schema. The working model

is very similar with SubSonic. The generated code is available to be analyzed and

tuned. However, in contrast with SubSonic, stored procedures and database views

could be easily accessed through simple method calls, and it has a visual interface

to configure and execute the code generation.

LLBLGen is a mature and well-tested framework, with five years on the market.

It supports the following databases: Microsoft SQL Server, Oracle, PostgreSQL,

FireBird, Microsoft Access, IBM DB2 UDB, MySQL and SyBase. However it is

proprietary software and the license costs are not insignificant.

5.5.3 NHibernate

NHibernate [89] is an open source port of Hibernate, a object-relational mapper for

Java. It acts as a intermediary between classes and the relational schema (figure

5.2). The developer writes XML files that define how classes are mapped to existent

tables, specifying the properties to map and their respective data types.

Figure 5.2: NHibernate working model

The maturity and completeness of NHibernate make it an excellent tool. The

separation between business classes and mapping files provides a better maintain-

ability. Similarly, bidirectional approach eases both the initial creation and future

changes.

The control over mapping is bigger, but it demands more effort to do. Moreover

the excess of XML code, which is not easily debuggable, could burden developer’s

60

Object-relational mapping

work. For more information, consult the tool review of NHibernate in the appendices

(section A.1.9).

NHibernate supports following database systems: Microsoft SQL Server 2000/2005,

Oracle, Microsoft Access, Firebird, PostgreSQL, DB2 UDB, MySQL and SQLLite

[105].

5.5.4 Castle ActiveRecord

Castle ActiveRecord [106] implements the Active Record pattern[12] on top of

NHibernate. The developer writes the business classes with attributes that define

the mapping to the relational schema. For example, to say that property name does

not allow duplicate items, an attribute signs that it is a unique property. Castle

ActiveRecord generates the NHibernate XML mappings and respective relational

schema (figure 5.3). A tool review of Castle ActiveRecord is available as appendix

(section A.1.8)

Figure 5.3: NHibernate working model

The developer work with objects transparently, using the exposed interface with-

out know nothing about relational schema. Castle ActiveRecord provides a set of

classes for CRUD operations and data validations. For more complex queries, the

developer would use NHibernate. As Castle ActiveRecord is built on top of NHiber-

nate, it supports the same collection of databases.

The top-down process is very natural: write business classes and then generate

automatically underlying layers. It seems like a coding and compiling process. And

it frees developers of write complicate XML files and SQL code. Although the

mapping had woven with code, imposing design constraints, Castle ActiveRecord

really accelerate the implementation of persistence concerns. Note, however, that the

61

Object-relational mapping

top-down process is not mandatory: it could define mappings for existent relational

schemas.

5.5.5 ADO.NET Entity Framework

ADO.NET Entity Framework [107] is a framework from Microsoft to solve the

object-relational impedance mismatch. The developer defines an entity model,

through XML files, which are a object representation of relational schema. And

then he could use entities in the code as they are normal types (figure 5.4). Their

strong points are ADO.NET Entity Designer and LINQ for Entities.

Figure 5.4: Simplified ADO.NET Entity Framework working model

ADO.NET Entity Designer is a graphical user interface to manage entity models,

with a level of completeness that is uncommon in object-relational mapping software.

The entities are created in a visual way, relating them with existent tables and

stored procedures. Next-and-finish wizards are common, like automatic generation

of entities from relational schema and interfaces to update entities.

Language Integrated Query (LINQ) allows to write queries over different types

of data using the same syntax, directly from C# 3.0 or Visual Basic 9.0 code. It

was released as part of .NET Framework 3.5, and its roadmap foreseen LINQ to

Entities. Its major advantage is that queries are compilable and Intellisense could

help in their development. By now there are support for querying objects, XML,

SQL and ADO.NET DataSets. Nevertheless anyone could implement a provider to

query a specific item.

Microsoft announced support only to Microsoft SQL Server, but some companies

declared their intentions to implement providers for others databases, like Oracle,

PostgreSQL and MySQL. For more details see the tool review of ADO.NET Entity

Framework on section A.1.3.

The framework follows the Microsoft policy of have good visual interfaces to

help the developer. However, in contrast with other tools, the framework is quite

immature, without any stable release and with lack of documentation. Therefore the

risk of adopt it now is high, but certainly it would be a excellent software engineering

tool.

62

Object-relational mapping

5.5.6 EUSS

Evaluant Universal Storage Services (Euss) [108] is a open source persistence in-

frastructure promoted by Evaluant. Its concepts are very similar with NHibernate:

the developer writes XML files to map objects to the persistence items. However,

its concept of persistence engine is notably. Developers define entities, relationships

and attributes that could be mapped to any support, according chosen persistence

engine. That is to say, the mapping could occur not only with databases, but also

with memory databases or XML files.

EUSS supports Microsoft SQL Server, Microsoft Access, Oracle, MySQL and

SQLite.

5.6 Discussion

Object-relational mapping increases de facto developer’s productivity. The effort

and cost to build and maintain persistence layer is considerably reduced. Bottom-

up approaches seem very good for legacy software, which already have a relational

schema. On the contrary top-down tools appear to be very natural in the creation

of new systems, creating first the business model and then generating the schema.

The best way would be the bidirectional approach, which permits mapping between

two existent sides, combined with code generative techniques of bottom-up and

top-down.

The choice of the best object-relational mapping software is questionable. More-

over those tools are evolving quickly. But, by now, NHibernate and Castle Ac-

tiveRecord together could be considered the best framework to do object-relational

mapping in .NET environments. They are open source and mature projects. Both

are well-documented and widely used. Castle ActiveRecord avoids the complicate

mapping of NHibernate with XML files, as well as a set of useful development fea-

tures.

63

Object-relational mapping

64

Chapter 6

Prototyping the user interface

Motto: Objects ⇒ User interfaces

Prototyping is a widely software engineering technique, as a way of communi-

cation between different stakeholders. One of the difficulties of people enrolled on

software projects is to talk about abstract things. Textual project vision, class

diagrams, work-flow charts, domain specific languages are examples of conceptual

descriptions that are hard to understand, especially for those without software engi-

neering background. The customers and analysts understand much better a system

when they see the user interface. Final users easily provide feedback about a tangi-

ble thing, finding defects or improvements. Their feedback would correct problems

not only in the user interface but also in the whole system.

Prototyping the user interface has costs, especially if it is a graphical user in-

terface (GUI), requiring the definition of application look and feel and components

layout. However the saving costs of founding defects prematurely definitely super-

sede prototyping expenditures.

Nevertheless two techniques were emerged to do prototyping: visualization and

scaffoling. The first focuses on the creation of images of user interface, while second

produces automatically an interface from existent models.

6.1 Visualization techniques

Visualization techniques emerged since first days, to sketch the user interface and

to define how the visual components are displayed. The simplest way is to draw in

paper the application layout. The utilization of a painting program could make more

professional the aspect of drawings. But they do not capture the flow of activities,

neither the system behavior.

The option is to use existent development environments. In the case of web

applications, a simple HTML editor could be used to do that. Similarly Visual

65

Prototyping the user interface

Studio enables prototyping windows forms or web applications, by dragging and drop

controls and coding some simple functionality. But that demands a considerable

amount of time and technical knowledge.

Interestingly, model-driven development was adapted to the creation of user in-

terfaces. Himalia (see A.1.2) allows to model user interface visually and then it

generates the code of user interfaces. However the project is in a preliminary stage

and similar tools are not known.

Fortunately some simpler applications appeared to let business analysts build

prototypes of users interfaces. For example, iRise [109] is a proprietary simulation

tool that works as a CAD system for software, through inserting text and drag and

drop controls. The flow of activities could be modeled through work flow diagrams,

as well some business rules, without any code involved. The aspect of application

could be configurable in a similar way of what you see what you get (WYSWYG)

editors for web applications, allowing the utilization of templates and master pages.

The prototype could be packaged and executed in client machines, using a plug-

in. Figure 6.1 shows a screenshot of IRise Studio, the application to develop the

prototypes.

Figure 6.1: Screenshot of IRise Studio

Visualization techniques help people in the understanding of software require-

ments, without requiring too much technical background. Analysts could build

prototypes in the earlier stages of project, even before create the development team.

These prototypes could be a reference for the following phases. Similarly, they

provide a way to evaluate system usability before build it.

66

Prototyping the user interface

6.2 Scaffolding techniques

Establishing the flow of user’s activities in the system is a modeling activity. Unfor-

tunately, most of the time, prototyping starts without any knowledge about business

logic. Additionally the absence of an underlying structure, namely an executable

business model, complicates this effort. That leads to a undesirable waste: throw-

away prototypes.

Scaffolding techniques allow create user interface prototypes based on underlying

structure, creating a code skeleton to the developer. These prototypes are useful

for discussions with final users and to insert testing data by developers. These

techniques were popularized by Ruby on Rails framework and they have been ported

to other platforms [110].

Scaffolding provides the automatic generation of user interfaces from existent

models, usually from relational schema or from a set of classes. At least, it builds

an interface for the basic CRUD operations (Create, Read, Update and Delete).

Commonly it detects the relations between entities and allows define them, e.g. an

interface to choose a existent client to fulfill a order.

6.2.1 Types of scaffolding

Scaffolding techniques could be categorized according their working model and the

original model.

Following the Ruby on Rails denomination, there are two working models: dy-

namic scaffolding and scaffolding generation. The first type creates at runtime the

user interface based on configuration points and on the original model. The scaf-

fold is based on a monolithic piece and it is hardly modifiable. In the scaffolding

generation, the user interface is generated as code, allowing future changes.

Another classification of scaffolding defines the original model from it produces

the user interface: relational schema or classes. Although creating a user interface

from tables and stored procedures would be interesting, producing from classes

could be more powerful. Relational schema defines the data structure, specifying

data types and relations. However it does not capture objects behavior.

For example, in a hypothetical Employee class there is a method to calculate

the salary, based on years of experience and on job position. Similarly when the

company admits a new employee, a new account is created in the internal information

system. A user interface based on classes would be much richer. But doing that is

also much more challenging. Objects are dynamic entities, which would disappear

after program execution.

Moreover the degree of freedom on object programming paradigm complicates

generation techniques. The developer could use inheritance, object composition,

67

Prototyping the user interface

collections, generics, recursive methods, and so on. Likewise methods signatures

are not enough descriptive to produce user interfaces. Although they are relatively

clear about user inputs, describe their consequences is more tricky. For example,

the output of a method that returns a boolean type can represent a answer of the

system or a failed operation.

6.2.2 Scaffolding tools

In the case of Ruby on Rails, the scaffolding support is quite mature. However, to

other platforms, namely for .NET development, there is a scarcity of tools. Moreover

most of them are experimental and in ongoing development. This section presents

three tools that have some kind of scaffolding techniques for web applications: Sub-

Sonic, Castle MonoRail and ASP.NET Dynamic Data.

SubSonic

SubSonic is an object-relational mapping software that generates the data access

layer from relational schema (see section 5.5.1). It supports dynamic scaffolding

through a user control, a user interface component for ASP.NET framework. That

user control allows to create, read, update and delete items saved on the underlying

database through a web interface. The 6.2 shows a sample of ASP.NET code to call

the Scaffold control, and respective produced user interface.

Figure 6.2: Sample of utilization of SubSonic scaffolding [111]

Although the available user control is very simple and easy to configure, it is a

monolithic component, hardly changeable. Therefore it is perfect to fulfill data on

the database and to build throwaway prototypes, but it is not recommendable to

create the initial skeleton of user interface.

68

Prototyping the user interface

Castle MonoRail

Castle MonoRail [112] is an open-source Model-View-Controller (MVC) framework

similar to Ruby on Rails. This type of frameworks aims separation of concerns,

separating models, views and controllers. The model represents a business entity.

The view defines how to render the page. And the controller processes and responds

to events, typically user actions, invoking models. MVC frameworks are emerging

as a standard for web applications in software industry. In fact, Microsoft have

released ASP.NET MVC [113], which is very similar to Castle MonoRail.

Castle MonoRail works over ASP.NET and could run with a small configuration

in Internet Information Services (IIS). It provides many interesting techniques like

data binding from form inputs to objects, or caching. Figure 6.3 explains briefly

how it works: a client send a request for a page, the IIS recognizes that need to call

the MonoRail handler which creates a controller and invoke a method, accordingly

the requested URL. This method could interact with models and pass data to the

view. Finally the view is processed and the result is sent back to IIS, which forward

the response to the client.

Figure 6.3: How Castle MonoRail works [114]

Primarily Castle MonoRail have supported dynamic scaffolding. Using models

produced with Castle ActiveRecord, an object-relational mapping software (section

5.5.4), it generates at runtime the controllers and their views to do the basic CRUD

operations. Figure 6.4 shows how to create a scaffold controller for Equipment class,

while figure 6.5 shows the result.

69

Prototyping the user interface

Figure 6.4: Code to create a scaffold for Equipment class

As dynamic scaffolding is hardly extensible, there is an effort of Castle MonoRail

community to support scaffolding generation, through Generator project started by

Marc-Andre Cournoyer [115].

Figure 6.5: Screenshot of scaffold generated by Castle MonoRail

ASP.NET Dynamic Data

ASP.NET Dynamic Data [116] is a scaffolding framework, included in the .NET

Framework 3.5 Service Pack 1 Beta [117]. The interest of Microsoft in scaffolding

techniques reflects how software industry is receptive for this concept. Although

ASP.NET Dynamic Data is under development and only with a beta release, the

actual functionality is very promising.

ASP.NET Dynamic Data includes an object-relational mapping designer that

generates classes from an existent relational schema. That data model could be

extended using partial classes and attributes, e.g. to perform data validation. The

graphical user interface is generated based on the model and a set of customizable

templates. It is a dynamic scaffolding, but quite customizable.

Figure 6.6 shows a user interface created with ASP.NET Dynamic Data and

Visual Web Developer 2008 Express Edition.

ASP.NET Dynamic Data is very simple and tightly integrated with Visual Studio

development environment. Several wizards are available and the documentation has

70

Prototyping the user interface

Figure 6.6: Screenshot of scaffold generated by ASP.NET Dynamic Data

been growing during the last year. Microsoft partners have been developing com-

ponents based on ASP.NET Dynamic Data. For example, Infragistics, a specialized

enterprise on developing components for presentation layers, announced plans to

support ASP.NET Dynamic Data in their controls [116]. Therefore this technology

probably will be highly supported by software industry.

6.3 Discussion

Prototyping the user interface is an expensive activity. But the quickly feedback

given by it avoids many misunderstandings and defects. Late repairing has an

exponential cost, much greater than prototyping costs. Unluckily, by now most of

prototypes are thrown away, because they have extensibility problems.

Visualization techniques that have not coding activities could be cheaper, but it

is impossible reuse them in later stages. And if they have, they are expensive and

bad designed: not prepared to change, neither to accommodate the technological

constraints.

Scaffolding techniques are a way to create more real prototypes, according exis-

tent models. Dynamic scaffolding is practical but it is not extensible. Scaffolding

generation would be the more convenient approach, as it produces changeable code.

But it seriously constraints the system design and the range of solutions is small

and under development. Moreover the current available tools are unstable and have

several defects.

The drawback of current scaffolding techniques is that most of them are based

on structure rather than on behavior. That is to say, they are mainly based on the

relational schema, which does not capture all business logic. A more convenient

approach would be scaffolding based on classes, but there are some challenges to

solve as showed in this chapter.

71

Prototyping the user interface

Nevertheless scaffolding is a singular tool, as it is quite inexpensive and quick

technique. And maybe in the near future the technology allows more component

reusing.

72

Part III

Practical work

73

Chapter 7

Business#

The WARP solution is a theoretical description of an approach to do business mod-

eling. However lacking experimentation, it would be an unsupported idea, without

any proof of concept. Therefore Business# emerged as a framework to support

business modeling and subsequent development according WARP vision. Remem-

ber that WARP advocates the utilization of a traditional programming language,

e.g. Java or C#, to do business modeling. However this high-level design should only

capture business logic, without any implementation detail. This approach allows a

easier synchronization between the model and the code.

Business# provides a high-level language to do business modeling, accompanied

by a set of tools to assist analyst work. It would be compatible with Microsoft .NET

Framework, allowing to build applications in this platform afterwards.

The intent of Business# is to become the basis infrastructure to develop an ap-

plication according WARP way. It would be the core of application, while business

model defines the behavior and functionality of the system. The implementation

components expose the software interface, based on underlying layers (figure 7.1).

Ideally the public methods are only defined in business classes but there are times

where that is impractical. However, as rule of thumb, the added logic in the imple-

mentation should be as minimal as possible.

Business classes inherit from BaseObject. Similarly implementation classes in-

herit business classes (figure 7.2).

Business classes define components and their relationships. Some business rules

could be defined, by implementing some methods and using programming by con-

tract. Similarly they could use template methods to delegate into subclasses some

behavior. The implementation classes use business logic using inheritance, overrid-

ing properties and methods, and using object composition.

One of the great properties of Business# is lack of ambiguity. Its language is for-

mal and clearly defined. Business# models are represented as code, avoiding textual

75

Business#

Figure 7.1: A layered architecture using Business#

and visual descriptions that are differently understood by people. The communica-

tion through code eliminates many misunderstandings. Additionally modeling with

code means easier change management. Source control and diff tools could be user to

manage the evolution of business code. The developer can request an inconsistency

in business model through submitting a patch in the code repository.

7.1 Objectives

The main goal of Business# is to prove the utility of WARP solution for business

modeling, as well as its applicability. The challenge of WARP is to integrate high-

level design with low-level design and at the same time provide a testing framework.

Therefore the Business# would be composed by:

• A simple, high-level and formal language;

• Useful classes to do modeling;

• Guidance on coding;

• Automatic generation of visual models from code;

• A testing framework.

7.2 Language Syntax

As explained in the WARP solution (section 4.3), traditional programming languages

are an adequate syntax to do business modeling. As they are used in later stages of

development, they allow the integration between business code and implementation

code.

76

Business#

Figure 7.2: A typical class hierarchy using Business#

In the context of .NET platform, the most famous language is C#. It is a

mature language, well documented and it is widely used. This syntax is formal

and easily understandable by people with experience in object-oriented languages,

as Java and C++. However Business# classes must be simple, without bundled

implementation details. Therefore a restricted C# language emerges as a natural

choice to do modeling.

The syntax of the Business# language is constituted by:

• C# operators (arithmetic, logical, assignment, and so on);

• C# basic types;

• C# statements, namely selection statements, e.g. if and switch, and iteration

statements, e.g. while and foreach;

• C# classes, interfaces, enumerations and structures.

Although Business# wants to restrict the C# usage, its syntax is flexible. The

analyst is allowed to include drawing algorithms in the business code, using according

.NET libraries, if he considers that they are critical to the application. Nevertheless

the framework would emit warnings about the consequences of mixing up business

logic and implementation code.

Generation techniques have been thought since first days of the project. The an-

alyst would do models in one language, which it is convertible to the target language

of implementation. This method is widely used to generate skeletons of code from

visual models in the Model-driven architecture . But if the analysis language should

be formal, using two different languages would create a mismatch point between

high-level and low-level designs [118].

Formal languages, as VDM++ and Spec#, were not adapted because they would

maintain analysts and developers talking in different idioms. Moreover VDM++ has

77

Business#

not a automatic method to convert their classes for .NET assemblies and Spec# is

not a mature framework.

7.3 Results

The modeling uses a new framework, named Business#, which provides to the an-

alyst a set of tools to create a better business model, namely:

• A base class that guides the persistence implementation;

• Generic and richer containers;

• A class that supports the design by contract development;

• Visualization of business classes through class diagrams;

• A code analysis component which guides the analyst to avoid going further

than logical design.

• Testable models.

7.3.1 Framework library

The framework library supports the development according WARP solution. There

is available a class that would be the parent class of business classes, named BaseOb-

ject. Although it does not provide a special functionality, it establishes a standard

interface to implement persistence. In addition it provides a method that checks if

any field or property is in the null state.

The framework provides rich containers: List, Map, Queue, Set and Stack. They

are similar to collections available in .NET framework class library. However they

have quantifiers’ methods, which allows verify some statements about the collection

items. For example, there are a method named ForAll that checks if all collection

elements verify a condition. This condition is defined as a C# delegate method.

Additionally, a class was built with common rules on business modeling. For

example, there are method to validate an email and a generic method to verify

ranges.

Programming by contract

C# does not support programming by contract natively, thus a custom implementa-

tion is needed. The Business# library supports programming by contract through

a class to define preconditions and postconditions and a technique to implement

invariants.

78

Business#

The conditions are configurable, allowing to raise assertions or exceptions. More-

over they could be disabled, through .NET conditional compilation [119].

The support for invariants is more complex, as it requires runtime checking of

application state. The common approaches to implement them are:

• A Check method that is explicitly called in the beginning and ending of each

operation;

• Macros and preprocessors;

• Inversion of control containers with interception features;

• Aspect-oriented programming languages.

Calling explicitly the method is impractical as it produces many lines of code,

which are hardly maintainable. Writing macros to be processed and add automati-

cally the checking methods in the code would be interesting, but requires a new tool,

which analysts and developers must learn. Some inversion of control containers have

interception features that detect when certain parts of the code is executed. But

this technique seriously constrains the software design, as objects must be registered

in the container. An aspect-oriented language would be perfect, where people define

the invariants as aspects.

Unfortunately .NET platform misses a mature and complete aspect-oriented pro-

gramming framework. However there is an interesting tool, that is a mixture of

preprocessor and aspect-oriented programming: PostSharp Laos. PostSharp is a

post compiler processor of assemblies that could manipulate directly intermediate

code, which could be integrated with MSBuild, thus with Visual Studio (figure 7.3).

PostSharp Laos is a subset to support aspect-oriented programming. It provides a

high level and programmatic interface to add cross-cutting functionalities, based on

attributes.

Figure 7.3: Building a project with PostSharp Laos

79

Business#

The analyst could define the class invariants in a method. Then he decorates the

class with the aspect CheckInvariants, which runs the integrity check method every

time a method or property of an object of this class is accessed. Figure 7.4) shows

an example of this technique.

Figure 7.4: Implementation of an invariant in Business#

7.3.2 Visual models synchronized with code

Class or activity diagrams are not formal languages. They could be misinterpreted

as they are ambiguous. However visual models are important because they help

people get a general image of the system. Using the Visual Studio Class Designer

developers could view and edit the class diagram of the existent code. Moreover in

the future more tools would appear with other types of visual models.

7.3.3 Code analysis

The business modeling should not care of implementation details. But limiting the

syntax of language takes the liberty of analysts. Therefore a code analysis module

was developed to warn analysts that they are going further than business modeling.

For example, persistence and security concerns are out of scope of analysts.

It was implemented using FxCop, a framework to analyze .NET assemblies and

emit warnings to developers. FxCop can be extended implementing new modules

and integrating them with Visual Studio. In fact, the Business# rules applied in

each verification are configurable in Visual Studio (figure 7.5). For more information,

consult the tool review in section A.1.4.

The Business# rules implemented are:

• Recommend using BaseObject as base class;

• Recommend do not use abstract classes as they are harder to test;

• Warning the utilization of classes from .NET namespaces that are commonly

used to do implementation: System.Collections, System.IO, System.Configuration,

80

Business#

Figure 7.5: Business# rules in the Visual Studio

System.Threading, System.Media, System.Net, System.Security, System.Timers,

System.Data, System.Xml, System.Web, System.Windows.Forms, System.Reflection,

System.Globalization, System.Runtime.Remoting, System.Runtime.Serialization,

System.Drawing, Microsoft.DirectX and Microsoft.SqlServer.

7.3.4 Testable model

Business# models the business through C# classes. Therefore, any unit testing

framework compatible with .NET would be acceptable to test these classes. In the

context of the experimentation, the Visual Studio Team System for Testers was

used.

7.4 Discussion

Business# is an instance of WARP solution for .NET platform. It has proved that

WARP vision could be implemented in a existent development environment. In

fact, WARP ideas could be adapted to any object-oriented environment, e.g. Java

or PHP, with more or less effort.

Nevertheless the feasibility of WARP does not means real world applicability.

Only creating a real project that uses Business# is possible evaluate their advantages

and drawbacks.

81

Business#

82

Chapter 8

Case-Study: Equipment Database

Equipment Database is a master database, which stores representation of all equip-

ments used in memory manufacturing (Qimonda’s core business), integrating sparse

information around different information systems, such as:

• FAB300 for equipment tracking, scheduling and dispatching;

• SAP for plant maintenance, purchasing and asset depreciation;

• EBS for engineering data analysis.

Equipment Database is a case study, which serves as proof of concept of Busi-

ness# and WARP solution ideas. That is, it is like the ”white rat” used in the

laboratory. Nevertheless it would provide value for Qimonda, its implementation

has only research purposes.

8.1 Objectives

The application has no intention to be released to production and its main goal

was to experiment and learn the impact introduced by some techniques on software

development process, namely:

• Evaluate the applicability of Business#;

• Develop executable and testable business models;

• Testability on all stages of software development lifecycle according the V-

model;

• Design by contract methodology;

• Creating adaptable, pattern-based and decoupled application architectures;

83

Case-Study: Equipment Database

• Utilization of object-relational mapping tools;

• Prototyping and scaffolding techniques;

• Impact of code analysis and refactoring tools;

• Aspect oriented programming.

8.2 Functionality

Equipment Database manages the information about the manufacturing equipments,

allowing multiple clients through different interfaces. Equipment Database would

implement the following features:

1. Information editor - A simple user interface to create, list, update and

delete equipments and associated entities: model, equipment type, vendor,

unit processing type and persons;

2. Equipment clustering - The equipment can be composed by other sub equip-

ments. Provide an easy way to attach, detach and move equipments;

3. Equipment searching and filtering - The equipments can be searched and

filtered by attributes, e.g. by vendor, equipment type, and any state from any

state model;

4. Equipment type attributes - The equipment type has a list of user-defined

attributes (numeric or string) which user could add and remove;

5. Equipment state models - The equipments can have multiple state models,

that is, finite state machines, which represents possible state flows. A finite

state machine has an entry state, multiple target states, optional end-states

and finite state transitions. The user could change any state model according

predefined transitions;

6. Equipment transactions logging - Each modification on equipments should

be logged, and can be consulted through user interface;

7. Business service - Separate the business logic and data access layers from

user interface/presentation layers creating a web service;

8. Web client - Create one user interface to perform operations, based on built

business service;

84

Case-Study: Equipment Database

9. General logging - The system records history of all performed transactions,

including state transitions and attribute updates, registering the user that

performs that operation;

10. Authentication - There is no separate login for the users. They should use

the existing Windows account;

11. Role management and special permissions - Any operation or transaction

could require special permissions by role from current user to be executed;

12. Create a executable business model based on Business# framework

- The application uses an executable, and thus testable, business model that

can be easily reused in next projects. This business model is independent of

implementation and represents a common knowledge about part of company

business.

8.3 Documentation

This case-study is documented by two internal files: requirements specification [120]

and system specification [121]. The former contains a detailed description of re-

quirements. The second presents the architecture, the design and other technical

decisions. The information presented in this chapter is a summary of these doc-

uments and it is only for research purposes. For further details about Equipment

Database read these documents.

Additionally code comments were written using standard XML notation. Then

they are used to produce automatically documentation of the application program-

ming interface (API). Sandcastle Help File Builder was used to generate this docu-

mentation.

8.4 Architecture and Design

The chosen system architecture and design options have a profound impact in its

modularity, maintainability and capacity to grow. Simultaneously, it affects the

process of capture adequately the business rules and provide high value to customer.

As a research project, the main goal is to get a well designed system rather than a

robust and reliable system. The driven characteristics to build the system were:

• Repository architecture style [122];

• Independent components architecture style [123];

• Modular system, composed by several decoupled components;

85

Case-Study: Equipment Database

• Rich, reusable and testable business model.

The creation of architecture was a careful and iterative process. Fundamentals

about software architecture were studied to get the best software possible. In fact,

the architecture has bundled several application patterns, as showed in appendix

B.5.

8.4.1 Logical architecture

The logical architecture describes the system in terms of logical components. The

separation in independent components is a hard task, but rewards the team with

more maintainability and concurrent development. A useful technique is to create

layers horizontally and vertically, creating boundaries that separate the pieces that

compose the system.

Horizontal layers

Horizontal layers separate an application by level of abstraction: a layer call lower

layers to provide a new higher-level functionality. A layer maintains clean and stable

interfaces with its neighbors, avoiding cross-cutting calls, which means that changes

on a layer have low impact on remainder layers.

Equipment Database is organized in five layers: data and storage management,

data access, business logic, user interface and presentation (figure 8.1). The lower

level ensures data persistence, concretized by a database management system. The

data access is a tier that provides to upper levels a way to communicate with

database. Business logic contains the domain entities and business rules, providing

services in a high-level way. The user interface provides a human friendly applica-

tion to interact with business logic, while presentation layer defines how display the

information. Note the calls described by arrows, representing calls that occurs using

messages between different processes, even different machines.

The business logic layer is composed by three internal components: business

objects, a lightweight façade and a web service. Business objects are a representation

of problem domain entities. The façade is a thin layer that transforms the fine-

grained interface of business objects into a coarse-grained interface, composed by

stateless and transactional methods. The web service exposes the façade through a

standard interface.

86

Case-Study: Equipment Database

Figure 8.1: Equipment Database horizontal layers

Vertical layers

Vertical layers separate an application by functionalities and system properties,

which cross all horizontal layers. They are deeply connected with functional re-

quirements, categorizing them. Equipment Database involves, mainly, changing

information of different entities. Thus six layers were created to represent these

entities: equipment, model, vendor, equipment type, unit processing type and per-

son (functional layers). Additionally there are layers concerned with management

and security (infrastructural layers): authentication, role management and logging

(figure 8.2).

Figure 8.2: Equipment Database vertical layers

87

Case-Study: Equipment Database

8.4.2 Physical architecture

The Equipment Database is a typical client-server application, where one web server

responds to client requests through intranet/internet, using HTTP protocol. A web

service holds all business logic, and a web server request its services through SOAP,

to create the graphical user interface, a web application. The web service uses a

database management system, to store and retrieve data quickly and safely (figure

8.3). In all the cases, the interaction starts by the element at left in the figure, that

is, the caller are in the left side of connection. For example, the client starts the

communication to web server, which answers based in calls to components at right.

Figure 8.3: Equipment Database physical architecture

The connection between physical components through industry standards guar-

antees compatibility, and their possible independent deployment favors decoupling

and scalability.

All business services are provided by the web service, in a high-level way. The

authentication and role management is performed from there, which eases creation

of new clients, like Windows and mobile applications.

8.5 Results

The Equipment Database software was implemented successfully. João Cortez, the

project supervisor, acted as a fictitious customer, participating in frequently discus-

sions about requirements, architecture and design concerns. The application was

developed incrementally, favoring oral communication and delaying detailed docu-

mentation. Although equipment transaction logging was not implemented and parts

of the system were not well tested, the system is quite mature and stable, even when

it was not meant for productive release.

The business model was coded using Business# framework and WARP ideas.

The early building of models as code found prematurely requirement and design

errors. Programming by contract and inheritance as contract established a bridge

between business code and implementation code, finding fails of communication and

88

Case-Study: Equipment Database

synchronization. During the development, it was common that business precondi-

tions detected an error on implementation code.

Equipment Database implementation was quite complex, especially by the range

of new technologies explored. Castle ActiveRecord and NHibernate were used as

object-relational mapping software. The implementation of user interface was sup-

ported by Castle MonoRail framework. General logging was created through a

aspect-oriented programming tool, PostSharp Laos. Moreover the implementation

of security concerns was challenging, based on specific ASP.NET technology. Chap-

ter B contains more technical details about Equipment Database implementation.

The resulting application is composed by three physical components: base li-

brary, web service and web application. The former contains business classes and

respective implementation classes. The web service exposes a coarse-grained in-

terface over base library. The web application connects with the web service to

provide a graphical user interface. Figure 8.4 shows the web application interface of

Equipment Database.

Figure 8.4: Graphical user interface of Equipment Database

8.6 Discussion

Equipment Database case-study provided an enormous feedback about Business#

framework and WARP ideas. In fact, during Equipment Database implementa-

tion, Business# was changed to accommodate some flexibility. For example, some

methods are left as virtual, allowing their re-implementation by subclasses.

Surprisingly, Equipment Database revealed that modeling problem domains as

code is quite simple. These models are very understandable, exposing clearly and for-

mally the interface and relations between objects. They miss the common ”plumbing

89

Case-Study: Equipment Database

code” of implementation, e.g. code to ensure persistency or security. Business an-

alysts can understand them as they understand UML class diagrams. In fact, the

generated visual models are useful to create a general view of classes.

Nevertheless the project found some limitations in WARP ideas. Firstly their

application constraints severely the software design. The lack of multiple inheritance

in most of today object-oriented languages, as C#, complicates the development. As

implementation classes inherit business classes, they cannot inherit from classes of

other frameworks. For example, Castle ActiveRecord has a base class with generic

persistency methods. However implementation classes cannot use it, because they

already inherit business classes.

A fragile aspect of WARP exposed during this case study is testing. Logical tests

intend to verify business logic, independently of implementation. But the boundary

between logical and physical tests is very blurred. Most of the time logical tests

need an underlying structure to run, that is, the implementation code.

Lastly, Equipment Database demonstrated that WARP business modeling is not

suitable for every project. Some applications are very simple, requiring only few

classes and the basic CRUD operations. In these cases, the risk of creating an

anemic domain model [124] is very high. That is, the software will probably have a

model without any business logic. For example, Equipment Database business logic

is quite simple, mainly with persistency methods to retrieve and save data. In these

cases, separate logic from implementation has no real advantage.

The studies about Equipment Database architecture achieved a good general

software structure, logical and physical, that can be reused in future applications.

Moreover the range of new technologies explored can be integrated in next projects.

Castle ActiveRecord and NHibernate proved that are a mature and complete object-

relational mapping solution. Similarly, Castle MonoRail emerged as a very good

MVC framework. Finally PostSharp Laos, an aspect-oriented programming tool,

decreased significantly the effort to do general logging.

Finally, the case study demonstrated the value of code analysis and refactoring

tools. Visual Studio Code Analysis, the integrated version of FxCop, verifies if

.NET assemblies follow good design practices. Resharper [125] is a refactoring tool,

with code completion and showing suggestions to improve and to clean the code.

Both are used in the project, really improving developer productivity and software

quality.

90

Part IV

Wrap up

91

Chapter 9

Lessons learned on software

development

This chapter presents some good practices on software development learned during

WARP project. In opposition of most texts about this topic, it would give sim-

ple and practical advices that can be applied in everyday developments. Most of

them are applicable on Qimonda development activities but also to most of soft-

ware companies. Although it is only presented examples of tools and technologies

explored in the context of the project, probably there are similar applications on

other platforms.

9.1 Software development process

Context-driven school

This ideas follow the Context-Driven School [1]. Any practice recommended below

can be good or bad according the context.

Keep it simple

The processes should be simple. A small set of simple guidelines for your software

development process would be enough. The development team must be aware and

follow these guidelines. If some guideline proves that is unfeasible in the context, it is

better discarding it. Sometimes the team profile or project specificities make harder

implement some guidelines. Similarly, a small number of artifact types is a good

sign. As a reference when more than 20 different types of artifacts are identified in

the development process or one person must work with more than 5 types, maybe

something has been going wrong.

Agile requirements

Avoid to perform a long requirements analysis phase or to create large requirement

documents without any implementation. After create the system vision, one or two

93

Lessons learned on software development

weeks to create one small requirement document, with less than 30/40 pages, would

be enough. Requirements change very quickly, so detailing requirements that will

never be implemented is a waste. Moreover, it is very probably the first prototypes

showed to the client would change the requirements.

Keep it fun

Fun and creative environments increases the innovation, a competitive advantage

for every company. For example, putting two Java lamps [6], red and green, in

the development room to inform that build server has errors or not makes the

environment more relax. The famous Google white boards around the office, with

sketches and new concepts would make the environment more fun and creative.

However developers should be heard during the implementation of these measures:

they can think that it is a measure to control them, like in a factory. Instead, a

better solution would be give a list of possible measures and ask for new ideas.

Keep it automated

A person should not do repetitive tasks, as running tests or deploying systems.

A software development process using continuous integration techniques provides

a real competitive advantage, leaving developers to focus on problem domain and

customer satisfaction.

9.2 People

Training in software engineering tools

Teaching developers how to use software engineering tools is critical. It is not rarely

that people do not understand how use a certain software in their development

tasks. Moreover many do not understand why that tool is adopted. Therefore

training must explain the specific features that make the company adopt it.

Technology experts

Every company has people that know everything about one programming language

or a database system. However when their knowledge is needed, most of people do

not know how to find them. Creating the role of technology experts and establishing

a simple process to request their help would solve this problem.

Everyone knows how to design

Software design is an ongoing activity. Therefore teaching design to developers

would improve software quality. If they know something about design they will

understand architecture compromises and they will collaborate to improve software

design. ”Design Patterns: Elements of Reusable Object-Oriented Software” [14] and

”Patterns of Enterprise Application Architecture” [12] are two good books to create

small presentations about this topic.

94

Lessons learned on software development

9.3 Knowledge

Do not reinvent the wheel

A common error on software development is to create things that already exist.

This applies both for new products and for used software engineering tools. In

most cases there are existing applications, open source or commercial, that provides

desired functionality.

Information repositories

Information repositories stores the knowledge acquired in the past. They should

be available for all users with different levels of detail. Ideally their content can

be searched. Repositories increase reusing in all aspects of software development.

For example, the following archives would be interesting: code repositories (e.g.

Google Code), architecture repositories, business object repositories, requirement

documents repositories and portfolio of products.

Distribute information transparently

The information should be published as much quickly and transparently as possible.

If developers understand the global context of business, they can make smarter

choices. For example, a dashboard of organization can be created, including current

projects and product portfolio.

Bottom-up and Top-Down approaches

Bottom-up approach is usually better to produce documentation and coding, but

top-down approach is easier to read and to create a common understanding[126].

9.4 Programming

Test carefully a new tool

A new tool must be tested carefully before adoption. Sometimes the product seems

magic, but then problems arise when it needs some type of customization. ASP.NET

controls are a good example these type of situations.

Code coverage

A testing framework with a code coverage feature provides a simple way to know

how much of the code is tested and to find unused code.

Code analysis

A code analysis tool inspects the code for potential errors on design, naming, glob-

alization, maintainability, security and so on. It provides to developers a full set of

coding good practices without much effort, eliminating potential errors automati-

cally. For example, Microsoft Visual Studio 2005 Team System has bundled a code

analysis feature. Similarity, FxCop provides the same functionality in a standalone

and free application.

95

Lessons learned on software development

Refactoring tools

Developers spend much time with code layout, checking imports, creating class or

methods skeletons and so on. Refactoring tools help them in this task. Although

most of integrated development environments (IDEs) have some features, many

of that are too simple. For instance ReSharper adds to Visual Studio powerful

refactoring features.

Code comments

Formal documents do not substitute code comments, which are critical on the main-

tainability of application. Commenting the code with a standard syntax allows

generating documents with application programming interface (API), e.g Sandcas-

tle Help File Builder for .NET languages and Javadoc for Java. Moreover code

scattered in the code explains used data structures and algorithms.

Coding standards

Coding standards are important, as they improve code readability and cleanness.

Developers should learn internal coding standards, like they learn other organiza-

tional policies. Ideally these rules would be added into a code analysis tool. The

documents [127] and [128] are examples of coding standards.

Common Libraries

Common libraries are a set of classes and methods that can be reused in other

applications. These libraries are shared from different projects, but they are not

a specific product. Usually they are too general to have an allocated team and

too company specific to exist as third-party software. They can be managed as an

Open Source project, where programmers of different teams collaborate and discuss

changes. They could be called the common code knowledge.

9.5 Artifact control

Document control

Nowadays it is mandatory use source control software, not only for code but also

for documents. For example, Visual Studio Team Foundation Server or Subversion

would be perfect for that.

Artifacts traceability

Text artifacts must be related with code, using a tool, e.g. Team Foundation Server,

or simple comments on code. For instance, if you have a non-functional requirement

as application security you should explain in your code that some variable checks

are related with this requirement.

96

Chapter 10

Conclusion

The WARP approach is a set of techniques that definitely can improve existent soft-

ware development processes. The study of current techniques and experimentation

of new concepts allowed to consolidate ideas and to achieve a general approach.

WARP intended to be one step to increase the level of abstraction in software

development. Since the first days of software engineering, people have created new

languages and tools, trying to be closer of human thinking and far off hardware be-

havior. Nowadays compilers allow developers write code in higher-level languages,

increasing their productivity. Now it is the moment to look for new ways of ab-

straction. That does not mean to eliminate completely programming tasks, but

create new tools and methods that automate or reduce the effort of certain activi-

ties. WARP dreams a process where a formal business model generates the basis of

persistency and user interface layers. Although it is not completely successfully, it

can lay the foundations for further developments in this domain.

Business modeling through programming languages proved to soften the sepa-

ration between analysts and programmers. The reutilization of business models in

the implementation stage establishes a contract between the two parts, highly man-

ageable afterwards. Especially in the case of complex business logic, decoupling the

business model and implementation code can really improve discipline and reusing.

However, in the case of small and simple applications, the benefits would be lesser

than their drawbacks.

Although WARP ideas are not appropriate to build all software, part of these

ideas is widely accepted. The formality of design through the code allows eliminating

ambiguity, the separation of interfaces definition and implementation in different

assemblies is a famous architecture pattern and programming by contract is adopted

as a way to define expectations.

Object-relational mapping demonstrated to be a very useful programming tech-

nique, improving developer’s productivity significantly. The process of mapping is

97

Conclusion

simple and systematic, providing an object-oriented interface to communicate with

persistency layer. The developer can implement most of operations without be aware

about specificities of relational schemas. Moreover the business logic is defined as

objects instead of as tables and stored procedures. Therefore, applications become

independent of underlying databases, reducing the risk of a later port.

Prototyping the user interface attested as a way to improve communication be-

tween development team and customers. Scaffolding techniques emerged to avoid

throwaway prototyping, generating automatically the code of user interfaces from

models. Ideally these models would be classes with embedded business logic, but

there are several challenges to address. Therefore current tools generate from static

relational schemas and they are quite immature. Nevertheless this technique will

evolve quickly in the next years.

The adoption of open source software is not necessarily risky. Most of the time, it

is very mature and well-documented, produced by large communities and tested on

multiple different projects. Erroneously software industry is still reluctant in adopt-

ing this type of software. NHibernate, Castle ActiveRecord and Castle MonoRail

have proved their qualities, being a reference in their domain.

Finally, these ideas are more conceptual than technical, which means they can

be applied to other development platforms. Although WARP, with Business# and

Equipment Database implementations, tried to adapt to .NET framework applica-

tions, its theories can easily ported for other environments, as Java or C++.

The integration of WARP concepts and explored technologies in existent software

processes will definitely speed up and improve the quality of produced systems.

10.1 Summary of contributions

This project contributes with a summary of current knowledge about the software

development process. The listing of software engineering trends is an original text,

resulting from the effort during the project analysis stage. In fact, this updated

information can be included in lessons of a software engineering course.

The project outlines the importance of communication and how intermediate

and ambiguous specifications are potential sources of errors. In the same way, it

explained the central role of business modeling activity in software development. A

possible path to improve it was presented, together with generative techniques to

produce persistency and user interface layers from business models. Additionally it

provides a common vocabulary and classification for multiple different and unrelated

techniques in these topics.

98

Conclusion

The exploration of technologies and tools emerged a set of discussions and recom-

mendations, which can help development teams to choose the suitable environment

for them.

The project focus was not creating a new product, ready for production. However

Equipment Database software achieved a good level of maturity, after a disciplined

and iterative process. Moreover it made available references for documentation and

code samples of explored technologies.

In addition, Equipment Database brought a new architecture for integration

systems, with defined components and technologies. Surprisingly, most of the time

experts are reluctant in presenting a general good architecture with a respective

implementation. However Equipment Database was proposed this solution, based

on WARP ideas and architecture patterns.

The lessons learned on software development presents some general advices for

companies enrolled in this activity and it was a result of the knowledge and experi-

ence acquired during the project.

10.2 Future developments

The WARP approach is a result of a four months master project. Obviously there

is place for future developments, which would mature the ideas and techniques

presented. Publishing and discussing these ideas with other people probably will

originate conceptual and technical improvements.

Although WARP methodologies have proven to be beneficial, they should be

tested in bigger projects. In Equipment Database only one person played as ana-

lyst and programmer. Moreover the project conditions are favorable, with a stable

vision by one customer. In fact, WARP approach for business modeling would be

more valuable in large projects, with more complex requirements and more people

enrolled. The formality of WARP fits perfectly in this scenario, where misunder-

standings emerge easily.

Business# is a very young framework, which needs more usage and consolidation.

The integration between business and implementation classes can be improved, for

example using new types of contract. Specialized editors would appear to support

coding business classes, as well as tools to generate different types of visual models,

e.g. work-flow diagrams. In the same way, ports to other platforms would be

interesting.

The utilization of a domain specific language to do business modeling, instead

of a traditional programming language, should be evaluated. The simplicity and

flexibility of domain specific languages would be interesting. The WARP project

99

Conclusion

was considered that, but the effort of creating a new domain specific language,

compatible with target platform, is considerable.

The WARP techniques can be considered types of Model-driven engineering, as

both advocate the central role of models. The main difference is that WARP requires

formal and executable models. The body of knowledge on Model-driven engineering

is very large, so some of these ideas can be used with WARP concepts.

Finally, Equipment Database can evolve to production software, providing value

for Qimonda with little effort.

100

Part V

Glossary, Appendices and

References

101

Glossary

Annotation (programming) - it is a code declarative tag, which adds addi-
tional information and behavior to certain entities, like classes or methods. The
correspondent in C# is attribute.

Attribute (programming) - it is a code declarative tag, which adds additional
information and behavior to certain entities, like classes or methods. The correspon-
dent in Java is annotation.

Business-Driven Development - it is a methodology to create information
technology systems that satisfy the business requirements. It starts from business
strategy, requirements and goals, and then transforms then into a solution.

Computer Aided Software Engineering (CASE) tool - it is a tool that
assists the developer in their tasks.

Code analysis - it is an automated inspection of the code to find common de-
sign or programming errors not found by the compiler. Usually they are based on
recommended practices for adopted framework, finding prematurely many defects
without the human effort of manual reviews.

Code coverage - it is a metric that outlines the executed code during testing,
providing related statistics. It could be good to detect useless or untestable code.

Code repository - it contains large amounts of code, for public or private use.
Usually it contains a way to control changes and handle multiple versions, and some
have a search feature.

Delegate method - it is a type that references a method. It allows the selection
of a method to call at runtime.

Design by contract (DbC) - it is an approach to design computer software,
that defends the creation of precise and verifiable interface specifications, that en-
sures contracts between system components.

Domain Driven Design (DDD) - it is a school in software engineering that
emphasizes the importance of domain and domain logic in software development.

103

Event-response table - it is a way of organize and document user requirements,
describing all events and expected system responses [10].

Function points - it is a unit to measure how much business functionalities are
implemented functionality, from a point of view of customer.

Integrated Development Environment (IDE) - it is a software application
that helps the programmer in its tasks, providing a source code editor, a compil-
er/interpreter, build automation tools, etc.

Inversion of control - it is a programming technique that changes the way
how components are called. Objects are registered in containers, allowing that any
object could find other [129].

Kaizen event - Kaizen is a Japanese word for improvement. Kaizen events puts
together people to discuss and solve a key problem of the organization.

Mock framework - it provides methods to create fake objects, which simulate
real objects.

Namespace (programming) - it is a concept used by several programming
languages to group related logical entities, as classes or interfaces.

Object-Relational Mapping (ORM) - it is a programming technique for
converting data between relational databases and object-oriented programming lan-
guages [130].

Pair programming - it is a software development technique where two pro-
grammers work side by side, using the same computer. One of them typing whereas
the other review the code.

Partial class - it is a feature supported by some object-oriented languages,
where a class definition could be scattered in multiple files.

Scaffolding - it is a type of prototyping that aims to generate automatically
user interfaces from domain models or relational schemas.

Software pattern - it is a structured way to describe a good solution to solve
a specific problem. It resumes the knowledge and experience captured in previous
projects, giving to software engineers guidance in their work.

Stakeholder - represents all the persons and organizations interested in or af-
fected by a product.

Task concurrency - this term could be used in two different contexts: project
management and computation. In the former, it means the possibility to do things

104

at the same time, dividing small pieces of work among different people. In compu-
tation, task concurrency is related with different processes or threads that struggle
for the system resources.

Template method - it is a method that classes leave unimplemented, expecting
that subclasses concretize it (see Template Method pattern [14]).

Test-Driven Development (TDD) - it is a software development technique
that advocates the importance of write before test cases and then produce the code
to pass these tests.

WARP - it is the short name of this project, which aims accelerate the software
development process. This name was inspired on WARP drive, the faster-than-light
movement in science fiction, as used in Star Trek [131].

105

106

Appendix A

Technical Reviews

During the project, several techniques and tools were assessed to evaluate their
potential utility. This chapter presents summaries of these reviews.

A.1 Tool Reviews

A tool review summarizes the knowledge about it, after read documentation and
trying to use it. This section presents the tool reviews performed during the project.

A.1.1 Spec#

Summary

The Spec# programming system is a new attempt at a more cost effective way to
develop and maintain high-quality software. The Spec# system consists of:

• The Spec# programming language. Spec# is an extension of the object-
oriented language C#. It extends the type system to include non-null types
and checked exceptions. It provides method contracts in the form of pre- and
postconditions as well as object invariants;

• The Spec# compiler. Integrated into the Microsoft Visual Studio development
environment for the .NET platform, the compiler statically enforces non-null
types, emits run-time checks for method contracts and invariants, and records
the contracts as metadata for consumption by downstream tools;

• The Spec# static program verifier. This component generates logical veri-
fication conditions from a Spec# program. Internally, it uses an automatic
theorem prover that analyzes the verification conditions to prove the correct-
ness of the program or find errors in it.

A unique feature of the Spec# programming system is its guarantee of main-
taining invariants in object-oriented programs in the presence of callbacks, threads,
and inter-object relationships [132].

Date of review: 28th February 2008 (updated on 15th June 2008)
Homepage: http://research.microsoft.com/specsharp/

107

http://research.microsoft.com/specsharp/

Technical Reviews

Actual version: preliminary
Last release: 11th April 2008
Tested: Yes
Owner/Sponsor: Microsoft Research
License: Microsoft Research Shared Source License Agreement

Advantages:

• Several tools and documentation available that support Spec# utilization;

• Spec# is a superset of C# (easy to learn);

• OCL-like constraints supported (object invariants, method pre- and post-conditions);

• Support for checked exceptions (that C# doesn’t support);

• Tight integration with Visual Studio.

Disadvantages:

• It is a research project: is quite risky incorporate a research tool in production
software;

• There are no guarantees about the future developments and support;

• There is no guarantee that callees from other languages of framework (C#,
VB.NET, etc.) will work;

• A new language: demands time to learn;

• Lower performance: the constraints require run-time checks;

• It is not clear if Spec# is a programming language only for specification, or to
implement all the application using it.

Conclusion:

The Spec# programming system is a promising tool, but for now it is clever not use
it for production systems. Probably Spec# will be incorporated in future releases of
Visual Studio, as new language or as a new feature of C#. However some concepts,
namely Design by Contract and OCL constraints, could be incorporated in Warp
framework.

A.1.2 Himalia

Summary:

Himalia provides a way to develop application focusing in user interfaces, estab-
lishing paths that the user will follow (Navigation Model), division of screen and
relationships among different areas (layout behavior) and themes and styles. It is
based in Microsoft DSL Tools.

Date of review: 5th March 2008 (updated on 21st June 2008)

108

Technical Reviews

Homepage: http://www.himalia.net

Actual version: 0.8 (beta)
Last release: 12th December 2006
Tested: Yes, it was tested in the laptop, as it requires .NET framework 3.0. A

new project was created using the open Pet Shop example. The diagrams in Pet
Shop example are pretty, but when trying work with application, multiple problems
have arisen. It is quite unstable, crashing Visual Studio 2005 several times, and
many features are not implemented, e.g. Navigation Model Toolbox does not exist.

Owner/Sponsor: Leonardo Vernazza
License: not founded

Advantages:

• Provides good practices to create user interfaces;

• The concept, model-driven user interfaces, is quite interesting, namely for cap-
ture user requirements. User interfaces are very concrete items that user can
easily observe and discuss;

• Integrated with Visual Studio 2005 and created using Microsoft DSL Tools;

• Free to download, however license is not specified.

Disadvantages:

• It is closed source and apparently it is an individual project: forum community
has 4 or 5 posts, most of them from author;

• The list of known issues is big, and include sentences like ”Some controls may
not behave as expected under certain circumstances”;

• During testing the application is very disappointing - many bugs and not im-
plemented features;

• Most of planned releases had been failed last year and appears that project
was abandoned.

Conclusion:

The concept, Model-Driven user interfaces, is really interesting and could be applied
to real software projects, namely where user interfaces have an important role. How-
ever, the tool available is not recommendable: it is in a early beta version, closed
source, with many bugs and features that are not implemented. Besides Himalia
appears to be a discontinued project.

A.1.3 ADO.NET Entity Framework

Summary:

The ADO.NET Entity Framework, part of the ADO.NET components of the .NET
Framework, is an object-relational mapping technology from Microsoft. It is geared

109

http://www.himalia.net

Technical Reviews

towards solving the mismatch between the formats in which data is stored in a
database and in which it is consumed in an object-oriented programming language
or other front ends.

Date of review: 5th March 2008 (updated on 16th June 2008)
Homepage: http://msdn2.microsoft.com/en-us/data/default.aspx

Actual version: Beta 3 (final version will be available in 2008 1st semester)
Last release: 12th June 2007
Tested: No. It requires installing Visual Studio 2008 and then installing ADO.NET

Entity Framework Tools (see below). However several demonstrations were watched
to understand this tool.

Owner/Sponsor: Microsoft - ADO.NET team
License: Microsoft Pre-Release Software License (until final release)

Associated Tools

ADO.NET Entity Framework Tools CTP 2 (for Beta 3): contain tools to
enable developers making use of Entity Framework within Visual Studio 2008 (Visual
Studio 2005 hasn’t support in last releases), namely the ADO.NET Entity Designer.
However this tool does not support (yet) all the features of Entity Framework, but
it is expected that it will support.

Advantages:

• The Entity Data Model (EDM) Designer provides a simple, flexible and graph-
ical way to make mappings;

• Intellisense support that helps the developer;

• The tool addressed maintainability issues;

• The code to access database is succinct, understandable and object oriented:
we iterate objects instead of iterate rows;

• Related objects can be loaded using references;

• Lazy loading: the framework only retrieves data when needs the data;

• Common interface to query different artifacts: LINQ to Objects, LINQ to
DataSets, LINQ to SQL, LINQ to Entities and LINQ to XML;

• The project sponsor: Microsoft;

• Planned support for other DBMS within 3 months the release of ADO.NET
Entity Framework: some companies manifested their intentions to implement
ADO.NET providers to Oracle, MySQL, PostgreSQL, IBM DB2, Informix and
others [133];

• Drag-and-Drop an GridView or DataSet can be considered a scaffolding tech-
nique (an old feature of Visual Studio);

• It works very well with stored procedures;

• It helps very much in software maintenance and evolution.

110

http://msdn2.microsoft.com/en-us/data/default.aspx

Technical Reviews

Disadvantages:

• The tool is, in its essence, a mapping tool: relates objects to tables, or reverse-
engineering database schemas (tables, views and stored procedures) to create
non-behavioural objects (only with methods to access database). Business
logic is added using partial classes feature, but it is questionable if that is a
disciplined way;

• Microsoft only supports Microsoft SQL Server;

• Requires C# 3.0 and Visual Studio 2008 to compile and .NET Framework 3.5
to run. The license costs and deployment costs could be significant to upgrade
legacy systems to support these frameworks;

• Traditionally, Microsoft data access technologies change (sometimes, a huge
change) every 3 years.

• Final version is not released;

• It is not possible generate one database schema from business classes - only do
mapping with existent tables. In July 2006, the authors did not plan provide
this feature [134].

Conclusion:

The framework is very good and, in my opinion, should be adopted in future projects
- namely whom connects Microsoft SQL Server or in projected upgrades in software
that uses ADO.NET. However, there are uncertainties about how it would perform
in a disciplined software development process.

A.1.4 FxCop

Summary:

FxCop is an automatic code analysis tool for .Net assemblies which targets eliminate
developments errors during implementation, providing to developer useful guidelines
when detects a possible error.

Date of review: 31st March 2008 (updated on 16th June 2008)
Homepage: http://code.msdn.microsoft.com/codeanalysis

Actual version: 1.35 (stable) or 1.36 Beta (development)
Last release: 10th October 2007
Tested: Yes. It was used during the entire project, and custom rules was

implemented to support Business# development.
Owner/Sponsor: Microsoft
License: Microsoft Public License (Ms-PL)

Advantages:

• Easy to use: any developer could start using it;

• Using the tool, the developer learns most of guidelines inside it;

111

http://code.msdn.microsoft.com/codeanalysis

Technical Reviews

• If the developer follows its advices, he will avoid many programming errors;

• User-friendly interface, both in Visual Studio or in standalone application;

• Sponsored by Microsoft;

• Support for all .NET languages: it runs over assemblies;

• Extensible: creating custom rules is quite easy [135];

• Supports the new generation to improve quality: avoid the defects using auto-
matic code reviews, instead of manual reviews;

• Tight integration with Visual Studio Team System.

Disadvantages:

• Sometimes warnings can be annoying. However they could be disabled in
project properties menu (all, by type or individually);

• It slows the building process;

• This tool removes some of developer’s freedom. Although that could be good
(improvised solutions would be eliminated), it would decrease chances for pos-
sible innovative solutions;

• Documentation is incomplete and sparse. It is hard find information to create
custom rules, and sometimes that can be a tricky experience;

• Although sponsored by Microsoft, it had lack of advertising and visibility in
the last years;

• Some advices do not mention the line/file where the problem occur. It is a
known bug of FxCop, caused because it relies over PDB files generated in
Visual Studio projects;

• No integration for other Visual Studio versions.

Conclusion:

FxCop is a great tool and it is recommendable for any software project. Its included
guidelines are great lessons of programming in .NET environment, and extensibility
features are great to create custom rules that fit specific organization rules. It
eliminates errors in first phases of development: is like have a code review in every
compilation.

A.1.5 Aspect.NET

Summary:

Aspect.NET is an Aspect-Oriented Programming framework for .NET, based in
AspectJ principles. It is tightly integrated with Visual Studio 2005 and is supported
by Microsoft Research.

112

Technical Reviews

Date of review: 28th March 2008
Homepage: https://www.academicresourcecenter.net/curriculum/pfv.aspx?

ID=6801

Actual version: 2.1
Last release: 21th April 2007
Tested: Yes. It was installed, as such Microsoft Phoenix, which is required to

run this tool. One aspect was implemented but it do not weave into application:
Visual Studio add-in does not work properly.

Owner/Sponsor: Vladimir O. Safonov, St. Petersburg University. Supported
by Microsoft Research.

License: Not found.

Advantages:

• Follow the AspectJ approach, creating a new language named Aspect.NET.ML
to implement aspects. It is simpler for people that know AspectJ;

• Supported by a big team of researchers at St. Petersburg University and by
Microsoft Research;

• Tight integration with Visual Studio 2005;

• Good user’s guide.

Disadvantages:

• Closed project;

• Lack of information available in Internet;

• During testing, the aspect was not woven into application.

Conclusion:

Aspect.NET could be a good tool in the future. The similarities with AspectJ are
obvious and support by Microsoft Research reveals that it could be integrated within
future releases of Visual Studio. For now it is a research project and does not work
so well, so it is only recommendable for research activities.

A.1.6 Aspect#

Summary:

Aspect# is an Aspect-Oriented Programming framework for .NET, based on Wind-
sor/MicroKernel features of Castle Project.

Date of review: 31st March 2008 (updated on 21st June 2008)
Homepage: http://www.castleproject.org/aspectsharp/

Actual version: Dead project [136]
Last release: Not found.
Tested: No. After reading documentation, it was discovered that the project

was discontinued.

113

https://www.academicresourcecenter.net/curriculum/pfv.aspx?ID=6801
https://www.academicresourcecenter.net/curriculum/pfv.aspx?ID=6801
http://www.castleproject.org/aspectsharp/

Technical Reviews

Owner/Sponsor: Open source project (Castle Project)
License: Not found.

Advantages:

• Open project, someone could restart it in future;

• Castle support/community.

Disadvantages:

• Dead project (the most relevant);

• Lack of documentation.

Conclusion:

Aspect# was a promising project but now is a dead project. Nowadays Castle
supporters defend interception capabilities of Windsor/MicroKernel project as al-
ternative to Aspect#. However these features imply saving most of the objects in
the inversion control container, one requirement that is hard to meet for all software
projects. Moreover, this option does not provide a full AOP framework and there
are lack of development tools. So, neither Aspect# nor Windsor/MicroKernel are
acceptable AOP frameworks.

A.1.7 PostSharp

Summary:

PostSharp is a post compiler for .NET, that is, it could change IL code after compila-
tion of one assembly. It includes PostSharp Laos library, a simple Aspect-Oriented
Programming (AOP) framework to add aspects to our applications using custom
attributes.

Date of review: 28th March 2008 (updated on 21st June 2008)
Homepage: http://www.postsharp.org

Actual version: stable version 1.0.8.316 (Release Candidate 2) and develop-
ment version 1.0.8.331

Last release: 11th March 2008 (version 1.0.8.331)
Tested: Yes. It was tested and a used to implement invariants.
Owner/Sponsor: Open source project, lead by Gael Fraiteur
License: GPL/LGPL v3

Advantages:

• PostSharp Laos really works: it is the first AOP framework for .NET where I
could implement something;

• Language agnostic: it works over IL code;

• It is simple to use and it is easy understand its underlying principles;

114

http://www.postsharp.org

Technical Reviews

• Based in one .NET feature: custom attributes;

• Alive project: last release this month;

• Mature project: more than 2 years of developments;

• Open source project;

• It has a growing community and one forum that provides good support.

Disadvantages:

• Documentation available is quite small and lacks of examples;

• Sometimes it is difficult debug our applications (but it is a common problem
in AOP development);

• Although integrated with Visual Studio, one tool to explicit the pointcuts
would be great;

• Subclasses do not inherit aspects of their parents;

• The performance implications of PostSharp are uncertainty. It degrades the
application execution because it adds many operations in several points of
assembly and it uses reflection. But that does not mean that is worse than
manual code.

Conclusion:

PostSharp is a good tool and deserves a special attention of .NET community. At
least that I can find, it is the best AOP tool for .NET. However it should be used only
when it is really necessary. It was used on invariants implementation of Business#.

A.1.8 Castle ActiveRecord

Summary:

Castle ActiveRecord is an open source ORM (object-relational mapping) library
that relies on NHibernate. It uses class inheritance and attributes to decorate a
class with persistent methods, avoiding XML configuration files of NHibernate.

Date of review: 11th April 2008 (updated on 21st June 2008)
Homepage: http://www.castleproject.org/activerecord/

Actual version: stable version is Release Candidate 3 and development version
the Build 880

Last release: 19th June 2008
Tested: Yes. It is used in the implementation of Equipment Database case

study.
Owner/Sponsor: Open source project (Castle Project)
License: Apache License, Version 2.0

115

http://www.castleproject.org/activerecord/

Technical Reviews

Advantages:

• The process makes sense: develop business classes and then relational schema;

• It is simple and clear;

• Open source project;

• Mid-size community and good forum;

• Schema generation - it is possible create a simple application without learn
SQL;

• Almost XML free;

• Scaffolding possibilities, with easy Castle MonoRail integration;

• Number of databases supported: Microsoft SQL Server 2005/2000, Oracle,
Microsoft Access, Firebird, PostgreSQL, DB2 UDB, MySQL and SQLite (the
same that NHibernate);

• Open source contributors use it in several production applications, so it is
relatively well tested.

Disadvantages:

• The mapping is code intrusive: it relies on inheritance and attributes;

• The library have been evolving very quickly and because that many of its
interfaces have not frozen yet. Likewise some minor bugs were found (or what
could be called an unexpected behaviour) and unimplemented features;

• The performance could worsen, as it introduces several abstraction layers
(NHibernate + CastleActiveRecord). However that would be minimized by
other ORM features, like caching and lazy loading;

• For the beginner it is hard understand how it works and relationships among
their components.

Conclusion:

Castle ActiveRecord is a great tool and it really abstracts relational operations for
a developer. It seems work very well in mid-size applications, and when they release
version 1.0 could be used by any enterprise application. It is a really developer
productivity booster.

A.1.9 NHibernate

Summary:

NHibernate is an ORM (object-relational mapping) tool. It uses XML mapping
files to relate classes and relational tables, providing a common API to connect to
databases.

116

Technical Reviews

Date of review: 11th April 2008 (updated on 21st June 2008)
Homepage: http://www.hibernate.org/343.html

Actual version: stable version is NHibernate 1.2.1GA and development version
is NHibernate 2.0.0.Alpha1

Last release: the stable version was released on 27th November 2007 and the
development version was released on 30th March 2008

Tested: No, directly. In fact, it is used when during Castle ActiveRecord utiliza-
tion to perform complex queries and debugging. But it is not used directly through
its API, neither XML mappings were performed.

Owner/Sponsor: Open source project (port of Hibernate for Java)
License: LGPL v2.1

Advantages:

• Mature project and big community;

• The business classes and mapping documents are separated (no code intrusive);

• The control over mapping is bigger, however demands more effort to learn;

• Well documented;

• Number of databases supported: Microsoft SQL Server 2005/2000, Oracle,
Microsoft Access, Firebird, PostgreSQL, DB2 UDB, MySQL and SQLite;

• Open source project.

Disadvantages:

• XML burden;

• The framework is enormous and sometimes it is hard know how to start;

• No scaffolding possibilities.

Conclusion:

NHibernate is a powerful and mature tool, in contrast with most of their competitors.
It provides a good set of classes to access databases and to provide object persistence.
However its XML burden is quite annoying and decreases developer productivity.
Fortunately there are applications as MyGeneration [137], which could generate
automatically those XML.

A.1.10 SubSonic

Summary:

SubSonic is tool that generates the Data Access Layer from relational schema, which
can be extended to incorporate business logic using partial classes. It has an awesome
scaffolding control.

Date of review: 11th April 2008 (updated on 21st June 2008)

117

http://www.hibernate.org/343.html

Technical Reviews

Homepage: http://subsonicproject.com/

Actual version: stable version is SubSonic 2.0.3
Last release: 11th July 2007
Tested: Yes, but only with a simple sample.
Owner/Sponsor: Open source project (mainly maintaned by Rob Conery)
License: Mozilla Public License 1.1

Advantages:

• It is simple;

• Scaffold feature is great;

• Its performance could be better than its competitors;

• It could rely on Microsoft Enterprise Library providers;

• Open source project;

• Almost XML free.

Disadvantages:

• The process does not make sense: start creating relational schema and then
write business classes;

• Young project and smaller community;

• Less databases supported: Microsoft SQL Server 2005/2000, MySQL and Or-
acle.

Conclusion:

Subsonic is great tool, but it has a design disadvantage: it starts from relational
schema and not from business logic. Because ADO.NET Entity Framework would
probably do the same with pretty wizards, probably SubSonic will have a limited
success.

A.2 Technical Comparisons

Technical comparisons is a way to resume and compare the characteristics of similar
tools, to help people decide the best one in their context.

A.2.1 ORM tools

Object-relational mapping tools (ORM) help the programmer to relate objects to
relational schemas. This technical comparison tries find out the similarities and
differences between some well-known ORM tools for .NET environments, which are
explicit in table A.1.

Date of review: 11th April 2008 (updated on 21st June 2008)

118

http://subsonicproject.com/

Technical Reviews

Table A.1: Table with object-relational mapping tools comparison
Castle ActiveRecord SubSonic Hibernate

Method to relate
objects with tables
and objects

inheritance and attributes Generate code of Data Ac-
cess Layer from relational
model

XML documents

ORM input business classes with at-
tributes

relational schema mapping XML documents

ORM output business classes with adi-
tional methods that pro-
vide persistency

Generated namespace
with classes that access
original relational schema

Interface to provide
persistency for business
classes pre-configured on
XML documents

Requires that busi-
ness class inherits
certain class

no, but is preferable no no

Create relational
tables from classes

yes n/a no

Create a DDL
script (relational
schema) from
classes

yes n/a yes (you can generate
schema from mapping
files, using Schema Ex-
port tool)

Create business
objects from rela-
tional schema

yes (using Active Record
Class Generator - third
part tool)

yes (using partial classes
you could extend gener-
ated classes)

n/a

Easy binding to
.NET controls

yes yes yes

Scaffolding yes (integrating with
Monorail)

yes (using Scaffold control
or AutoScaffold)

no

Support stored pro-
cedures

no (although you can
use ADO.NET methods or
Named Queries, their use
is not so easy)

yes (configuring xml files
and generating wrapper
classes)

yes (using Named
Queries)

Tested yes yes no
Open source yes yes yes
Databases sup-
ported

The same that NHiber-
nate

Microsoft SQL Server
2005/2000, MySQL,
Oracle

Microsoft SQL Server
2005/2000, Oracle, Mi-
crosoft Access, Firebird,
PostgreSQL, DB2 UDB,
MySQL, SQLite

119

Technical Reviews

120

Appendix B

Equipment Database:
implementation details

This chapter presents implementation details of Equipment Database application.
Although Equipment Database was not the focus of the project, the technical
achievements are useful for any development project.

Section B.1 describes the structure of the system in more detail, while section
B.2 defines its interfaces. Section B.3 presents used technologies and potential al-
ternatives. Section B.4 explains security aspects of the system. Finally section B.5
shows some implemented architecture patterns.

B.1 System structure

This section describes, component by component, its responsibilities, applied tech-
niques and used technologies.

B.1.1 Horizontal layers

Data and Storage Management

The data and storage management layer is responsible to save and retrieve persistent
data, in a relational schema. It will be ensured by a database system, Microsoft SQL
Server 2005, which provides data consistency, quickly access, security, transactions
and concurrency support.

The database should not include any business logic avoiding, as possible, to build
database objects, stored procedures or product-specific features. The upper layers
should communicate with it using standard SQL, easing interchangeability to others
databases.

Data Access

The data access layer is a bridge between the data layer and business logic. It
provides a meaningful interface to help mapping objects to tables and to abstract
the data layer, easing the change of database.

The Equipment Database access layer uses two related object-relational mapping
tools: Castle ActiveRecord and NHibernate. Castle ActiveRecord is built on top

121

Equipment Database: implementation details

of NHibernate. At the other hand, NHibernate is based on ADO.NET, the default
access layer of .NET framework (figure B.1).

Figure B.1: Data access layer components

Castle ActiveRecord provides an interesting way to map objects to tables, using
attributes, going together with a set of useful methods to save and retrieve data, in
a very object-oriented way. It helps the developer focus on business logic, relying
on ActiveRecord to ensure the persistence. However, to implement more complex
queries, knowledge of NHibernate was required.

Business Logic

The business logic contains the knowledge about company organization and opera-
tions, providing high-level services to upper layers.

The business logic is composed by a web service, a façade and business objects
(figure B.2). The web service exposes business services, which are transactional and
stateless. The lightweight façade coordinates business objects to provide a stateless
interface to the web service. Ideally, the façade would provide the same interface
than web service, so a component can directly access it to improve performance.
Business objects represent the knowledge about the business, representing the enti-
ties, their behavior and relationships that make part of it. They were implemented
following WARP approach and using Business#.

Figure B.2: Business logic layer components

122

Equipment Database: implementation details

The lightweight façade is group of stateless and atomic methods, which instan-
tiates and coordinates the business objects. The web service exposes the façade to
external and independent components, using the ASP.NET web services technology.

User Interface

User interface is an independent component, communicating with business layer
using SOAP protocol. It means that it is easy create new and different graphical
user interfaces in Equipment Database. For a proof-of-concept, it was implemented
a web application, using ASP.NET framework. However WebForms methodology
was discarded, in favor of a promising Model-View-Controller (MVC) framework,
Castle MonoRail.

An MVC framework helps the separation in models, views and controllers. In
Equipment Database, models mean services provided by business logic layer. Views
define how the information is displayed. And controllers manage the interaction
with the user, views and models, coordinating the page flow. So, in this context,
the user interface is composed by controllers. Section 6.2.2 explains in more detail
Castle MonoRail working model.

Presentation

Presentation layer define how to render the information to the user. This layer
is usually tightly coupled with user interface, but the used MVC pattern helps
creating a more independent component. The presentation layer is composed by
views, images, JavaScript and CSS documents. The views contain a mix of XHTML
1.0 and rendering instructions processed by a view engine, NVelocity, generating a
browser compliant file.

B.1.2 Vertical layers

Vertical layers components have strong connection with functional requirements and
use cases described in [120]. So the description here is merely contextual and do not
intends to be a full definition. Vertical layers cross all horizontal layers, namely in
the following cases:

• In data and storage management component, they create relational tables to
persist data;

• They use the data access layer to connect with databases;

• They use the business model to create stateless and atomic methods, exposable
through web services;

• The controllers call the business logic, to provide the services in a user interface;

• The views are processed to show information returned by the services.

Equipment Service

Equipment service provides a set of methods to consult and manage equipments,
including clustering, searching, and support for state models.

123

Equipment Database: implementation details

Model Service

Model service provides a set of methods to consult and manage models.

Vendor Service

Vendor service provides a set of methods to consult and manage vendors.

Equipment Type Service

Equipment type service provides a set of methods to consult and manage equipment
types, including adding and removing attributes.

Unit Processing Type Service

Unit processing type service provides a set of methods to consult and manage unit
processing types.

Person Service

Person service provides a set of methods to consult and manage persons, which can
be responsible for equipments.

Authentication

The authentication guarantees that only permitted users accede to the system.
Equipment Database relies on Integrated Windows Authentication (IWA) to au-
thenticate users based on current account running and configured users in the ma-
chine. Because it uses IWA, it provides an easy way to integrate with existent active
directories that manage company Windows accounts.

The web service performs the authentication, allowing ASP.NET impersonation,
a feature to control the identity under which code is executed. This is a technique
that provides to clients of web services, e.g. the web application, authenticate users
and pass its data to web services. That means maintain the authentication control
on the web service and simplify the implementation of authentication through upper
layers.

Role Management

The role management verifies if the current user is allowed to execute the requested
service. In Equipment Database, it is implemented using ASP.NET Role Manage-
ment on the web service. The web service defines, for each method, permissions.
These permissions can be defined using attributes or calling methods to check user
roles. The roles and users are stored in the database, using a custom role provider.

Integrated Windows Authentication and impersonation ensures that role man-
agement is always performing about the user that runs in the client.

124

Equipment Database: implementation details

Logging

There are two types of loggers in the system: general and specific for equipments.
The former records all business operations performed in a text file, and it was
designed due security reasons. The second stores all operations over equipments in
the database, to maintain their history.

The implementation of general logging could be simple, but tedious. Add a call to
the logger in all operations is a manual task and it is hard to maintain. Because that,
the system uses an aspect that adds a log per any method call of business classes.
For that reason, it was used an aspect-oriented programming (AOP) framework,
named PostSharp Laos. The logger was implemented using the log4net framework.

Equipment logging was not implemented, but it also would use log4net, with
unique messages for each operation.

B.2 Interfaces

This section presents Equipment Database interfaces between components. Due to
the fact that it is research project the interfaces are loosely defined. An interesting
point to look on interfaces is that they usually occur between horizontal layers, to
build a vertical layer. The interfaces related with security concerns are described in
section B.4.

B.2.1 Internal interfaces

Business Objects - Data access layer

A business object interacts with data access layer using the .NET API (Application
Programming Interface) exposed by Castle ActiveRecord and NHibernate, by object
composition or class inheritance (figure B.3).

Figure B.3: Interface between business objects and data access components

Lightweight Façade - Business Objects

The lightweight façade instantiates business objects to invoke methods exposed by
them, providing a transactional and stateless interface to the upper layers (figure
B.4).

125

Equipment Database: implementation details

Figure B.4: Interface between lightweight façade and business objects components

The interface exposed by business objects represents logical entities and their
relationships, which are related with company domain. Figure B.5 shows the domain
model of Equipment Database.

Figure B.5: Equipment Database business model

Web Service - Lightweight Façade

The web service uses the lightweight façade API to implement its services, avoiding
implement any logic in the web service. Ideally, the interface exposed by the web
service is equal to interface exposed by façade, in a one-to-one relationship (figure
B.6).

126

Equipment Database: implementation details

Figure B.6: Interface between the web service and lightweight façade components

Web Application - Web Service

The web application communicates with the web service using ASP.NET web ser-
vices infrastructure. The underlying protocol is SOAP, which enables any applica-
tion able to establish HTTP connections and parse XML to be compliant with the
web service (figure B.7).

Figure B.7: Interface between web application and web service components

B.2.2 External interfaces

Data access layer - Data and storage management layer

The data access layer calls the data storage management layer via available protocols
by adopted database (figure B.8). In case of SQL Server 2005 it connects using
shared memory, named pipes or TCP/IP. The data access layer produces compatible
SQL to store and retrieve data in the current database. But it can be configured to
generate SQL compliant with other databases.

Web Client - Web Application

The web client is a browser that communicates through HTTP protocol (figure
B.9). The web application generates XHTML 1.0 files, which may include standard
JavaScript, CSS 2.0 and multimedia files.

127

Equipment Database: implementation details

Figure B.8: Interface between data access and data storage components

B.3 Technologies

This chapter describes technologies used in Equipment Database project, explaining
their adoption and potential alternatives.

B.3.1 Microsoft-based Development Environment

The chosen development environment is based in Microsoft tools, namely Microsoft
Visual Studio Team System and .NET framework 2.0. That follows an internal
company strategy, which believes these tools would be the better to accomplish
organization objectives, favoring technological specialization.

Additionally the project was a special interest to study specific software engi-
neering tools and get practical conclusions. It makes sense study tools targeted for
the principal company development environment. For example, the study of object-
relational mapping, scaffolding, features of Visual Studio Team System for Testers,
code analysis, and aspect-oriented programming.

Potential alternatives

The potential alternatives, which can compete in maturity, quality and complete-
ness, are scarce. The first alternative would be Java framework, using Eclipse
as integrated development environment. Another possibility is use MonoDevelop
or SharpDevelop, development environments based on open-source project Mono,
which tries to create a .NET framework that runs in different operating systems.
All these alternatives are open-source, without any license costs.

B.3.2 Programming language: C#

The choice of adopted programming language usually has great impact, not only on
programmer productivity but also on many design issues. However in the case of
.NET framework this is not a problem, because it abstracts the programming lan-
guage to an intermediate language, Microsoft IL. So it is possible create components
in different languages. In fact all generated assemblies in the project are compatible
to be called by different .NET languages. The C# was chosen mainly because:

• Well known language;

• Extensively documented;

128

Equipment Database: implementation details

Figure B.9: Interface between web client and web applicant components

• Easy from who migrates from other well known languages like C++ and Java;

• Code cleanness;

• Personal experience.

Potential alternatives

Nowadays there are a few alternative languages targeted to .NET environment.
Despite well known and supported VB.NET and Managed C++, there are other
new languages appearing like Boo, Spec# and F#, and Microsoft encourages that
with initiatives like Phoenix Academic Program [138].

B.3.3 Business# Framework

Equipment Database serves as proof of concept of WARP solution and Business#
framework, to evaluate their applicability and utility in a real software project.

B.3.4 Microsoft SQL Server 2005

Microsoft SQL Server 2005 was chosen because it is easier to deploy and configure
in development environment. It is a know database management system, well doc-
umented and has good support in the industry. Moreover it has good management
and tuning tools, like SQL Server Management Studio and SQL Server Profiler.

Potential alternatives

The natural choice for a database management system was Oracle systems, widely
used by company software. However the utilization of an object-relational mapping
tool minimizes this decision. Despite a small experience was performed to check
compatibility with Oracle databases.

B.3.5 Castle ActiveRecord/NHibernate

Castle ActiveRecord is an open source object-relational mapping tool, connect-
ing classes and relational schemas through programmatic attributes, and provid-
ing database interchangeability. It relies on NHibernate, but avoids the creation of

129

Equipment Database: implementation details

metadata as XML, which usually is more difficult to learn and to maintain, and
provides a set of useful methods to save and retrieve data.

Castle ActiveRecord is very intuitive for programmers with object-oriented back-
ground, but can be strange for who has more database knowledge: the way your
work with your persistent objects is really simple and transparent. Moreover, it
includes advanced features as lazy loading and data validation. However Castle Ac-
tiveRecord does not provide all functionality and it is expected use NHibernate to
implement complex queries.

Potential alternatives

The principal advantage of Castle ActiveRecord is starting from domain model to
generate the relational schema, unlike other tools that go from relational schema
(SubSonic) or only help doing the mapping (ADO.NET Entity Framework). Other
options would be using NHibernate only, building XML metadata manually or with
some available tools, or do not use any object-relational mapping tool, performing
accesses directly to ADO.NET.

B.3.6 ASP.NET

ASP.NET is a web application framework developed by Microsoft, to build dynamic
web sites and web services. Equipment Database uses ASP.NET to implement web
services and to perform authentication and role management; however it does not
use its famous Web Forms development model to create web sites but uses Castle
MonoRail.

B.3.7 Castle MonoRail

Castle MonoRail is an open-source framework, that allows the creation of web user
interfaces according the Model-View-Controller pattern. Its working mode is descri-
bed in section 6.2.2. As it is a promising tool, integrated with Castle ActiveRecord,
seems natural choose it to implement the Equipment Database project.

Potential alternatives

The obvious alternative is the utilization of Web Forms development model. How-
ever MVC frameworks had been supporting by more and more experts. The major
reason is because it improves the system testability, but also because provide higher
separation of concerns. Microsoft had recognized and had launched an ASP.NET
MVC framework, but it is under development (at the moment, it is in version Pre-
view 3).

B.3.8 NVelocity

NVelocity is the used view engine used by Castle MonoRail to render the contents
back to the browser, that is, to render views. It is a port of Velocity, used in Java
projects, and provides a language named Velocity Template Language (VTL), with
simple operators to display logic (e.g. iterators and logical operators). It is chosen
because it has good documentation, with many samples, and it is easy to learn.

130

Equipment Database: implementation details

Potential alternatives

Castle MonoRail has several other available view engines: WebForms, Brail, As-
pView and StringTemplate. In fact, you could implement your view engine. See
[139] for a discussion about these alternatives.

B.3.9 PostSharp Laos

In Equipment Database PostSharp Laos was used to provide general logging, reg-
istering all calls to every methods of business model. For more about PostSharp
consult sections 7.3.1 and A.1.7.

Potential alternatives

Aspect oriented programming has not a very good tool in .NET environment, as
Java has AspectJ [140]. There are the research and promising project Aspect.NET
and dead Aspect# project, but both are immature and lack many functions.

B.3.10 Apache Log4net

Log4net [141] is a framework to help the programmer output log statements to a
variety of output targets. It is port of log4j to the .NET runtime. It is chosen due
its simplicity, extensibility and thread-safety.

Potential alternatives

There are a lot of logging frameworks, which the most famous for .NET runtime
would be the Logging block of Enterprise Library. However it is complex to learn
and introduce some dependencies.

B.3.11 jQuery

Creating usable and simple web applications is not easy only with HTML. JavaScript
is a powerful language to add some functionality in the client side but it does not
provide a richer API. jQuery [142] is a library with many built-in effects and ani-
mations. Equipment Database has used jQuery Datepicker to allow a more friendly
selection of dates by user.

B.4 Security aspects

The security aspects are mainly related with authentication and role management.
They are based on following Microsoft technologies:

• Integrated Windows Authentication (IWA);

• ASP.NET impersonation;

• ASP.NET role management and a custom role provider.

131

Equipment Database: implementation details

The Integrated Windows Authentication provides a way to integrate the applica-
tion authentication with Windows authentication. ASP.NET impersonation allows
change the user which the code is executed. And ASP.NET role management helps
adding special permissions for each method, based on roles. Role management uses
a custom role provider to get and change the user’s roles (figure B.10).

Figure B.10: Equipment Database security components

The authentication guarantees that only permitted users accede to the system.
Equipment Database relies on Integrated Windows Authentication (IWA) to authen-
ticate users based on current account running and configured users in the machine.
Because it uses IWA, it provides an easy to integrate with existent active directories
that manage company Windows accounts.

The web service performs the authentication, allowing ASP.NET impersonation,
a feature to control the identity under which code is executed. This is a technique
that provides to clients of web services, e.g. the web application, authenticate users
and pass its data to web services. That means maintain the authentication control
on the web service and simplify the implementation of authentication through upper
layers.

The role management controls if current user is allowed to execute the requested
service. In Equipment Database, it is implemented using ASP.NET Role Manage-
ment on the web service. The web service defines, for each method, permissions.
These permissions could be defined using attributes or calling methods to check user
roles. The roles and users are stored in the database, using a custom role provider.

Integrated Windows Authentication and impersonation ensures that role man-
agement is always performed about the user that runs in the client.

B.5 Patterns of Enterprise Application Architecture

A well-designed system is commonly rich of patterns, rules-of-thumbs that guide the
resolution of common problems. There are a lot of published patterns on software
industry, namely about system architecture and design. They are very useful, be-
cause transmit knowledge about techniques applied in previous systems that could

132

Equipment Database: implementation details

work your new application. They should not be abused. They should only be used
when really needed.

This chapter aims to describe the architecture patterns of Fowler’s catalog [12]
identified in Equipment Database, after their implementation, to resume learned
lessons and to teach the reader more about these patterns. Excluded patterns do not
mean they are not there: just means they are not identified or considered relevant.

B.5.1 Domain Model

The domain model captures the behavior and relationships of entities related with
business where building system would operate. It is composed by objects, where each
one is an abstract representation of a real element, like a medicament prescription
or a customer profile. These objects should be sufficient abstract and hide system
specificities: it would be much preferable work with a meaningful object than with
a relational record in a database.

Equipment Database project was focused to look the way we get a domain model
and how it is mapped in the implementation. It also aims advocating its advantages:
captures the business logic, raises its understandability in all stages of software de-
velopment, and favors reusing and maintainability. The domain model of Equipment
Database is concretized in Business Objects component.

B.5.2 Service Layer

The service layer operates over domain model to provide a set of available operations,
responding to other components, as user interfaces and external applications. It
defines a boundary, encapsulating the business logic, which increases the component
decoupling and interchangeability. Equipment Database creates a service layer to
achieve these objectives.

B.5.3 Active Record

An active record is an object that wraps a record in a database table or view,
encapsulating the database access, and adding business logic on that data. This
pattern was applied on Equipment Database using a framework targeted to do this
task: Castle ActiveRecord.

B.5.4 Lazy Load

An object that supports lazy loading do not holds all the data, but knows how to
get it. This pattern is particularly useful when we have complex objects, which
persists their data in several different resources, like different database tables. To
increase performance, the object only retrieves the data when it needs it. The Castle
ActiveRecord supports lazy loading easily, configured through attributes. Currently
the system does not use this feature but could be enabled with small effort.

B.5.5 Data Mapper

A data mapper is layer that separates the in-memory objects and persistency reposi-
tories, namely databases. It tries smoothing problems as object-relational impedance

133

Equipment Database: implementation details

mismatch [100], caused by different representations, for instance the standard rela-
tional schemas have not inheritance neither pointers.

Equipment Database uses the data mapper NHibernate, which transfers data
between objects and a database, keeping them independent of each other. However
Castle ActiveRecord abstracts the mapping process of NHibernate, making its use
practically transparent. In fact, Castle ActiveRecord can also generate the database
schema, hiding to the programmer many details of the data layer.

B.5.6 Identity Field

Objects are usually distinguished by reference while table rows by identifiers, also
known by primary keys, making harder map them. This pattern recommends saving
the database identifier in the in-memory object to maintain identity. Equipment
Database uses this pattern, somewhat because one component of the persistency
layer, Castle ActiveRecord, enforces its application.

B.5.7 Foreign Key Mapping

This pattern suggests mapping an association between objects to a foreign key ref-
erence between tables, ensuring data integrity on the database and simplifying the
management of related data in the database, as performance tuning or cascade
deletes. Equipment Database uses this pattern, somewhat because one component
of the persistency layer, Castle ActiveRecord, recommends its application.

B.5.8 Query Object

A query object represents a database query, in an object oriented style, hiding to the
programmer SQL language details and existent relational schema. That increases
maintainability and interchangeability.

Equipment Database uses a namespace of NHibernate, NHibernate.Criterion, to
implement complex queries over the mapped business model.

B.5.9 Model View Controller

The model view controller (MVC) is a popular presentation pattern, which advocates
the separation of user interface in three distinct roles: View, Controller and Model
(figure B.11). The view defines how to render the information to the user. The
model characterizes the entity data and behavior. And the controller processes and
responds to events, using models and views.

Relationships between these three types of components can differ significantly in
distinct implementations.

Equipment Database uses a framework targeted to the implementation of this
pattern to the web: Castle MonoRail. Views were written using Velocity Template
Language (VTL) and XHTML 1.0, and controllers are classes that inherit from
MonoRail framework classes. The model is the service layer.

134

Equipment Database: implementation details

Figure B.11: Model View Controller pattern

B.5.10 Remote Façade

A remote façade transforms a fine-grained interface, desirable in oriented object
paradigm (OOP) due its flexibility and extendibility, to a coarse-grained interface,
minimizing the calls between the layers, due performance reasons. It should not
add any functionality, but only instantiate, coordinate and invoke underlying fine-
grained objects.

Equipment Database has an instance of this distribution pattern inside the busi-
ness logic (figure B.12). The lightweight façade defines a interface fitted to remote
calls, using the business objects.

Figure B.12: Remote Façade in Equipment Database

B.5.11 Data Transfer Object

A data transfer object carries data between processes in order to reduce the number
of method calls. When we need to transmit data with a remote interface, like a
remote façade, we should reduce the number of calls. So, the data is encapsulated
in an object, avoiding pass multiple parameters and resolving the limitations of some
languages that only permits return single values, like Java or C#. This object needs
to be serializable to be transmitted over connections.

Equipment Database makes use of these objects intensively, namely in the web
service. The ASP.NET web services framework generates stub objects that clients
use to pass data and the web services to return the results.

One interesting example is PageSimple class (figure B.13). It returns a page
of objects, for instance a list of equipments. It is used to perform pagination in

135

Equipment Database: implementation details

database, passing to user interface the list of objects (Page), the number of the page
(CurrentPage) and the total number of items in the database (TotalItems).

Figure B.13: PageSimple interface

B.5.12 Layer Supertype

A layer supertype is a type that is parent of all types in its layer (or most of them).
It is useful when these types have similar behaviors. Equipment Database uses this
pattern extensively, as presented in figure B.14.

Figure B.14: Layer supertypes in Equipment Database

136

Equipment Database: implementation details

B.5.13 Gateway

A gateway is an object that encapsulates access to an external system or resource,
usually involving multiple processes and machines, or communication through mes-
sages.

The web service in Equipment Database can be considered a gateway, where
several different clients can connect to accede to business logic. The data access
layer can be considered a gateway too, which encapsulates the database.

B.5.14 Separated Interface

The separated interface pattern advocates the creation of an interface in a sepa-
rate package from its implementation. Equipment Database project was tightly
connected with this pattern, due to WARP solution defends this approach.

137

Equipment Database: implementation details

138

References

[1] Unknown author. The Seven Basic Principles of the Context-Driven School.
http://www.context-driven-testing.com. [Online; accessed 11-June-
2008].

[2] Ayende Rahien. Building Domain Specific Languages in Boo. Manning Publi-
cations Co. http://www.manning.com/rahien/, unedited draft edition, 2008.
[Online; accessed 17-June-2008].

[3] Standish Group. Chaos Charting the Seas of Information Technology. The
Standish Group International, West Yarmouth: MA, 1996.

[4] António Miguel. Gestão de Projectos de Software. FCA, segunda edição actu-
alizada edition, 2006.

[5] Steven D. Schafersman. An Introduction to Science - Scientific Thinking and
the Scientific Method. http://www.freeinquiry.com/intro-to-sci.html,
January 1994. [Online; accessed 11-June-2008].

[6] Tom Poppendieck Mary Poppendieck. Implementing Lean Software Develop-
ment - From Concept to Cash. Addison-Wesley Professional, 2006.

[7] Martin Fowler. Cannot Measure Productivity. Martin Fowler Bliki http://
martinfowler.com/bliki/CannotMeasureProductivity.html, 2003. [On-
line; accessed 16-June-2008].

[8] Kailash Awati. Communication impedance mismatches on projects.
Eight to Late http://eight2late.wordpress.com/2008/06/07/

communication-impedance-mismatches-on-projects/, 2008. [Online;
accessed 25-June-2008].

[9] Wikipedia Contributors. Software development process. Wikipedia, The Free
Encyclopedia http://en.wikipedia.org/wiki/Software_development_

process, 2008. [Online; accessed 16-June-2008].

[10] Karl E. Wiegers. Software Requirements. Microsoft Press, second edition
edition, 2003.

[11] Software Engineering Institute. How Do You Define Software Archi-
tecture? Carnegie Mellon http://www.sei.cmu.edu/architecture/

definitions.html, 2008. [Online; accessed 18-June-2008].

139

http://www.context-driven-testing.com
http://www.manning.com/rahien/
http://www.freeinquiry.com/intro-to-sci.html
http://martinfowler.com/bliki/CannotMeasureProductivity.html
http://martinfowler.com/bliki/CannotMeasureProductivity.html
http://eight2late.wordpress.com/2008/06/07/communication-impedance-mismatches-on-projects/
http://eight2late.wordpress.com/2008/06/07/communication-impedance-mismatches-on-projects/
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process
http://www.sei.cmu.edu/architecture/definitions.html
http://www.sei.cmu.edu/architecture/definitions.html

REFERENCES

[12] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley Professional, 2002.

[13] Gregor Hohpe. Patterns and Best Practices for Enterprise Integration. http:
//www.enterpriseintegrationpatterns.com/. [Online; accessed 18-June-
2008].

[14] Ralph Johnson John Vlissides Erich Gamma, Richard Helm. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional,
1994.

[15] Ian Sommerville. Software Engineering. Pearson Education Limited, seventh
edition edition, 2004.

[16] Jiantao Pan. Software testing. Carnegie Mellon University http://www.ece.

cmu.edu/~koopman/des_s99/sw_testing/, 1999. [Online; accessed 18-June-
2008].

[17] Wikipedia Contributors. Software testing. Wikipedia, The Free Encyclo-
pedia http://en.wikipedia.org/wiki/Software_testing, 2008. [Online;
accessed 19-June-2008].

[18] Antonio Carzaniga et all. A Characterization Framework for Software
Deploymnet Technologies. http://www.inf.unisi.ch/carzaniga/papers/

CU-CS-857-98.pdf, 2008. [Online; accessed 18-June-2008].

[19] Winston W. Royce. Managing the development of large software systems.
Proceedings of IEEE WESCON, 1970. http://www.cs.umd.edu/class/

spring2003/cmsc838p/Process/waterfall.pdf [Online; accessed 19-June-
2008].

[20] Manfred Rieck. Project (Change) Management News from Germany. PM
World Today http://www.pmforum.org/library/RegionalReports/2008/

PDFs/Rieck-5-08.pdf, 2008. [Online; accessed 20-June-2008].

[21] Barry W. Boehm. A Spiral Model of Software Development and Enhance-
ment. IEEE Computer http://www.cs.usu.edu/~supratik/CS5370/r5061.
pdf, 1988. [Online; accessed 19-June-2008].

[22] Wikipedia Contributors. Spiral model. Wikipedia, The Free Encyclopedia
http://en.wikipedia.org/wiki/Spiral_model, 2008. [Online; accessed 19-
June-2008].

[23] Wikipedia Contributors. IBM Rational Unified Process. Wikipedia,
The Free Encyclopedia http://en.wikipedia.org/wiki/IBM_Rational_

Unified_Process, 2008. [Online; accessed 19-June-2008].

[24] Ward Cunningham et all. Manifesto for Agile Software Development. http:

//agilemanifesto.org, 2001. [Online; accessed 20-June-2008].

[25] Softhouse Consulting. Scrum in five minutes. http://www.softhouse.se/

Uploades/Scrum_eng_webb.pdf, 2006. [Online; accessed 20-June-2008].

140

http://www.enterpriseintegrationpatterns.com/
http://www.enterpriseintegrationpatterns.com/
http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/
http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/
http://en.wikipedia.org/wiki/Software_testing
http://www.inf.unisi.ch/carzaniga/papers/CU-CS-857-98.pdf
http://www.inf.unisi.ch/carzaniga/papers/CU-CS-857-98.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://www.pmforum.org/library/RegionalReports/2008/PDFs/Rieck-5-08.pdf
http://www.pmforum.org/library/RegionalReports/2008/PDFs/Rieck-5-08.pdf
http://www.cs.usu.edu/~supratik/CS 5370/r5061.pdf
http://www.cs.usu.edu/~supratik/CS 5370/r5061.pdf
http://en.wikipedia.org/wiki/Spiral_model
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
http://agilemanifesto.org
http://agilemanifesto.org
http://www.softhouse.se/Uploades/Scrum_eng_webb.pdf
http://www.softhouse.se/Uploades/Scrum_eng_webb.pdf

REFERENCES

[26] Wikipedia Contributors. Scrum (development). Wikipedia, The Free Encyclo-
pedia http://en.wikipedia.org/wiki/Scrum_(development), 2008. [On-
line; accessed 20-June-2008].

[27] Scott Ambler. Supersize Me. Dr. Dobb’s Portal http://www.ddj.com/

architect/184415491, 2006. [Online; accessed 20-June-2008].

[28] Scott Ambler. Bridging the Distance. Dr. Dobb’s Portal http://www.ddj.
com/architect/184414899, 2002. [Online; accessed 20-June-2008].

[29] Wikipedia Contributors. Agile software development. Wikipedia,
The Free Encyclopedia http://en.wikipedia.org/wiki/Agile_software_

development, 2008. [Online; accessed 20-June-2008].

[30] Geoffrey Lory et all. Microsoft Solutions Framework version 3.0
Overview. http://www.microsoft.com/technet/solutionaccelerators/

msf/default.aspx, 2003. [Online; accessed 20-June-2008].

[31] Tim Dysinger Lasse Mirkovic. Cowboy coding. Cunningham & Cunningham,
Inc. http://c2.com/cgi-bin/wiki?CowboyCoding, 2007. [Online; accessed
19-June-2008].

[32] Tom Hormby. How Adobe’s Photoshop Was Born. Internet Archive
http://web.archive.org/web/20070717193315/http://siliconuser.

com/?q=node/10, 2007. [Online; accessed 19-June-2008].

[33] Gary Hamel. O Futuro da Gestão, como a gestão 2.0 ultrapassará mentalidades
que limitam a inovação estratégica. Actual Editora, 2007.

[34] Wikipedia Contributors. Capability Maturity Model Integration. Wikipedia,
The Free Encyclopedia http://en.wikipedia.org/wiki/CMMI, 2008. [On-
line; accessed 23-June-2008].

[35] Personal Software Process (PSP). Software Engineering Institute, Carnegie
Mellon http://www.sei.cmu.edu/tsp/psp.html. [Online; accessed 23-June-
2008].

[36] Team Software Process (TSP). http://www.sei.cmu.edu/tsp/tsp.html.
Software Engineering Institute, Carnegie Mellon [Online; accessed 23-June-
2008].

[37] Google News. http://news.google.com/. [Online; accessed 21-June-2008].

[38] Gmail. http://mail.google.com/. [Online; accessed 21-June-2008].

[39] Google Docs. http://docs.google.com/. [Online; accessed 21-June-2008].

[40] Google Labs. http://labs.google.com/. [Online; accessed 21-June-2008].

[41] NDepend. http://www.ndepend.com/. [Online; accessed 23-June-2008].

[42] NCover. http://www.ncover.com/. [Online; accessed 23-June-2008].

141

http://en.wikipedia.org/wiki/Scrum_(development)
http://www.ddj.com/architect/184415491
http://www.ddj.com/architect/184415491
http://www.ddj.com/architect/184414899
http://www.ddj.com/architect/184414899
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://www.microsoft.com/technet/solutionaccelerators/msf/default.aspx
http://www.microsoft.com/technet/solutionaccelerators/msf/default.aspx
http://c2.com/cgi-bin/wiki?CowboyCoding
http://web.archive.org/web/20070717193315/http://siliconuser.com/?q=node/10
http://web.archive.org/web/20070717193315/http://siliconuser.com/?q=node/10
http://en.wikipedia.org/wiki/CMMI
http://www.sei.cmu.edu/tsp/psp.html
http://www.sei.cmu.edu/tsp/tsp.html
http://news.google.com/
http://mail.google.com/
http://docs.google.com/
http://labs.google.com/
http://www.ndepend.com/
http://www.ncover.com/

REFERENCES

[43] Project Homepage Microsoft Office Online. http://office.microsoft.com/
project. [Online; accessed 22-June-2008].

[44] Mingle: Team Collaboration and Project Management Made
Easy. ThoughtWorks Studios http://studios.thoughtworks.com/

mingle-project-intelligence. [Online; accessed 22-June-2008].

[45] Apache Ant. http://ant.apache.org/. [Online; accessed 22-June-2008].

[46] MSBuild Reference. http://msdn.microsoft.com/en-us/library/

0k6kkbsd.aspx. [Online; accessed 22-June-2008].

[47] FitNesse Acceptance Testing Framework. http://fitnesse.org/. [Online;
accessed 22-June-2008].

[48] NUnit. http://www.nunit.org/. [Online; accessed 22-June-2008].

[49] Wikipedia Contributors. List of unit testing frameworks. Wikipedia,
The Free Encyclopedia http://en.wikipedia.org/wiki/List_of_unit_

testing_frameworks, 2008. [Online; accessed 18-June-2008].

[50] Selenium. http://selenium.openqa.org/. [Online; accessed 22-June-2008].

[51] WatiN, Web Application Testing in .NET. http://watin.sourceforge.net/.
[Online; accessed 22-June-2008].

[52] Visual Studio Team System Test Edition. http://msdn.microsoft.com/

en-us/library/ms182409.aspx. [Online; accessed 22-June-2008].

[53] FxCop. http://msdn.microsoft.com/en-us/library/bb429476(VS.80)

.aspx. [Online; accessed 22-June-2008].

[54] Wikipedia Contributors. Integrated Collaboration Environment. Wikipedia,
The Free Encyclopedia http://en.wikipedia.org/wiki/Integrated_

Collaboration_Environment, 2008. [Online; accessed 23-June-2008].

[55] Process Templates and Tools. MSDN Team Suite Developer Center http:

//msdn.microsoft.com/en-us/vsts2008/aa718795.aspx. [Online; accessed
23-June-2008].

[56] Martin Fowler. Continuous Integration. http://martinfowler.com/

articles/continuousIntegration.html, 2006. [Online; accessed 23-June-
2008].

[57] TIOBE Programming Community Index for June 2008. http://www.tiobe.

com/index.php/content/paperinfo/tpci/index.html, 2008. [Online; ac-
cessed 24-June-2008].

[58] Wikipedia Contributors. Very high-level programming language. Wikipedia,
The Free Encyclopedia http://en.wikipedia.org/wiki/Very_high-level_

programming_language, 2008. [Online; accessed 24-June-2008].

142

http://office.microsoft.com/project
http://office.microsoft.com/project
http://studios.thoughtworks.com/mingle-project-intelligence
http://studios.thoughtworks.com/mingle-project-intelligence
http://ant.apache.org/
http://msdn.microsoft.com/en-us/library/0k6kkbsd.aspx
http://msdn.microsoft.com/en-us/library/0k6kkbsd.aspx
http://fitnesse.org/
http://www.nunit.org/
http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
http://selenium.openqa.org/
http://watin.sourceforge.net/
http://msdn.microsoft.com/en-us/library/ms182409.aspx
http://msdn.microsoft.com/en-us/library/ms182409.aspx
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx
http://en.wikipedia.org/wiki/Integrated_Collaboration_Environment
http://en.wikipedia.org/wiki/Integrated_Collaboration_Environment
http://msdn.microsoft.com/en-us/vsts2008/aa718795.aspx
http://msdn.microsoft.com/en-us/vsts2008/aa718795.aspx
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://en.wikipedia.org/wiki/Very_high-level_programming_language
http://en.wikipedia.org/wiki/Very_high-level_programming_language

REFERENCES

[59] Wikipedia Contributors. Programming paradigm. Wikipedia, The Free En-
cyclopedia http://en.wikipedia.org/wiki/Programming_paradigm, 2008.
[Online; accessed 24-June-2008].

[60] Jack W. Reeves. What Is Software Design? C++ Journal and
available in http://www.developerdotstar.com/mag/articles/reeves_

design.html, 1992. [Online; accessed 17-June-2008].

[61] Unknown author. Visual Studio 2005 Team System Modeling Strategy
and FAQ. Microsoft Visual Studio 2005 Technical Articles http://msdn.

microsoft.com/en-us/library/ms379623(VS.80).aspx, 2005. [Online; ac-
cessed 17-June-2008].

[62] Steve McConnell. Code Complete: A Practical Handbook of Software Con-
struction. Microsoft Press, 2nd edition edition, 2004.

[63] patterns & practices. Microsoft patterns & practices Developer Center
http://msdn.microsoft.com/pt-br/practices/default(en-us).aspx,
2008. [Online; accessed 24-June-2008].

[64] Guidance Automation Extensions and Guidance Automation Toolkit. Team
Suite Developer Center http://msdn.microsoft.com/en-us/vsts2008/

aa718948.aspx, 2008. [Online; accessed 24-June-2008].

[65] Jason Gorman. Post-Agilism - Beyond the Shock of the New. ITarchitect http:
//www.itarchitect.co.uk/articles/display.asp?id=280, 2006. [Online;
accessed 19-June-2008].

[66] Wikipedia Contributors. Model-driven engineering. Wikipedia, The Free En-
cyclopedia http://en.wikipedia.org/wiki/Model_Driven_Engineering,
2008. [Online; accessed 25-June-2008].

[67] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 2003.

[68] John D. Poole. Model-driven architecture: Vision, standards and emerging
technologies. ECOOP 2001, 2001.

[69] Rational Rose Product Line. http://www-306.ibm.com/software/

awdtools/developer/rose/index.html, 2008. [Online; accessed 26-June-
2008].

[70] Generative Modeling Technologies project. http://www.eclipse.org/gmt/,
2008. [Online; accessed 25-June-2008].

[71] Unknown author. Working with Visual C++ Code in Class Designer. Mi-
crosoft Visual Studio 2008 Developer Center http://msdn.microsoft.com/

en-us/library/bb385735.aspx, 2008. [Online; accessed 17-June-2008].

[72] Carlos Videira Alberto Silva. UML - Metodologias e Ferramentas CASE. Cen-
tro Atlântico, Rua da Misericórdia ,76 - 1200-273 Lisboa - Portugal, segunda
edição edition, 2005.

143

http://en.wikipedia.org/wiki/Programming_paradigm
http://www.developerdotstar.com/mag/articles/reeves_design.html
http://www.developerdotstar.com/mag/articles/reeves_design.html
http://msdn.microsoft.com/en-us/library/ms379623(VS.80).aspx
http://msdn.microsoft.com/en-us/library/ms379623(VS.80).aspx
http://msdn.microsoft.com/pt-br/practices/default(en-us).aspx
http://msdn.microsoft.com/en-us/vsts2008/aa718948.aspx
http://msdn.microsoft.com/en-us/vsts2008/aa718948.aspx
http://www.itarchitect.co.uk/articles/display.asp?id=280
http://www.itarchitect.co.uk/articles/display.asp?id=280
http://en.wikipedia.org/wiki/Model_Driven_Engineering
http://www-306.ibm.com/software/awdtools/developer/rose/index.html
http://www-306.ibm.com/software/awdtools/developer/rose/index.html
http://www.eclipse.org/gmt/
http://msdn.microsoft.com/en-us/library/bb385735.aspx
http://msdn.microsoft.com/en-us/library/bb385735.aspx

REFERENCES

[73] Wikipedia Contributors. Unified Modeling Language. Wikipedia, The Free En-
cyclopedia http://en.wikipedia.org/wiki/Unified_Modeling_Language,
2008. [Online; accessed 26-June-2008].

[74] Microsoft Office Visio. http://office.microsoft.com/visio, 2008. [Online;
accessed 26-June-2008].

[75] Windows Workflow Foundation. http://netfx3.com/content/WFHome.aspx,
2007. [Online; accessed 26-June-2008].

[76] José Formiga. As vantagens reais do Windows Workflow Founda-
tion(WF). José Formiga’s Blog http://mdalab.wordpress.com/2007/

11/11/as-vantagens-reais-do-windows-workflow-foundation-wf/,
2007. [Online; accessed 26-June-2008].

[77] OMG Object Management Group. Business Process Modeling Notation, V1.1.
http://www.omg.org/docs/formal/08-01-07.pdf, 2008. [Online; accessed
17-June-2008].

[78] Relo. Massachusetts Institute of Technology http://relo.csail.mit.edu,
2007. [Online; accessed 26-June-2008].

[79] OMG Object Management Group. UML 2.0 OCL Specification. http://www.
omg.org/docs/ptc/03-10-14.pdf, 2003. [Online; accessed 17-June-2008].

[80] José L. Alemán Ambrosio Toval, Victor Requena. OCL Tools. Ingenieŕıa
del Software, Universidad de Murcia http://www.um.es/giisw/ocltools/,
2006. [Online; accessed 17-June-2008].

[81] Hassan Charaf László Lengyel, Tihamér Levendovszky. Implementing an OCL
Compiler for .NET. .NET Technologies’2005, 2005. http://dotnet.zcu.cz/
NET_2005/Papers/Full/A19-full.pdf [Online; accessed 27-June-2008].

[82] Ana Paiva. Model-based testing. Teste e Qualidade de Software, Faculdade
de Engenharia da Universidade do Porto http://paginas.fe.up.pt/~jpf/

teach/TQS0708/ModelBasedTesting.pdf, 2007. [Online; accessed 25-June-
2008].

[83] Spec Explorer. Microsoft Research http://research.microsoft.com/

specexplorer/, 2008. [Online; accessed 28-June-2008].

[84] Martin Fowler. Domain Specific Language. http://www.martinfowler.com/
bliki/DomainSpecificLanguage.html. [Online; accessed 27-June-2008].

[85] Martin Fowler. Language Workbenches: The Killer-App for Domain Specific
Languages? http://martinfowler.com/articles/languageWorkbench.

html, 2005. Work in progress book [Online; accessed 28-June-2008].

[86] Visual Studio SDK. Visual Studio Extensibility Developer Center http://

msdn.microsoft.com/en-us/library/bb166441.aspx. [Online; accessed 27-
June-2008].

144

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://office.microsoft.com/visio
http://netfx3.com/content/WFHome.aspx
http://mdalab.wordpress.com/2007/11/11/as-vantagens-reais-do-windows-workflow-foundation-wf/
http://mdalab.wordpress.com/2007/11/11/as-vantagens-reais-do-windows-workflow-foundation-wf/
http://www.omg.org/docs/formal/08-01-07.pdf
http://relo.csail.mit.edu
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.um.es/giisw/ocltools/
http://dotnet.zcu.cz/NET_2005/Papers/Full/A19-full.pdf
http://dotnet.zcu.cz/NET_2005/Papers/Full/A19-full.pdf
http://paginas.fe.up.pt/~jpf/teach/TQS0708/ModelBasedTesting.pdf
http://paginas.fe.up.pt/~jpf/teach/TQS0708/ModelBasedTesting.pdf
http://research.microsoft.com/specexplorer/
http://research.microsoft.com/specexplorer/
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
http://msdn.microsoft.com/en-us/library/bb166441.aspx
http://msdn.microsoft.com/en-us/library/bb166441.aspx

REFERENCES

[87] Domain Builder. CodePlex http://www.codeplex.com/domainbuilder,
2008. [Online; accessed 25-June-2008].

[88] Rockford Lhotka. Expert C# 2005 Business Objects. Apress, second edition
edition, 2006.

[89] NHibernate for .NET. http://www.hibernate.org/343.html, 2008. [Online;
accessed 27-June-2008].

[90] Martin Fowler. Domain Specific Languages. 2008. Work in progress book,
http://martinfowler.com/dslwip/ [Online; accessed 27-June-2008].

[91] Wikipedia Contributors. Design by contract. Wikipedia, The Free Encyclope-
dia http://en.wikipedia.org/wiki/Design_by_contract, 2008. [Online;
accessed 27-June-2008].

[92] Eiffel Software. http://www.eiffel.com/, 2008. [Online; accessed 27-June-
2008].

[93] Contract4J: Design by Contract for Java. http://www.contract4j.org/,
2008. [Online; accessed 25-June-2008].

[94] Yoonsik Cheon Gary T. Leavens. Design by Contract with JML. 2006. http:
//www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf [Online; accessed 27-June-
2008].

[95] Wikipedia Contributors. Business rules engine. Wikipedia, The Free Ency-
clopedia http://en.wikipedia.org/wiki/Business_rules_engine, 2008.
[Online; accessed 26-June-2008].

[96] Federico Balaguer and Joseph W. Yoder. Adaptive Object-Model Architecture.
OOPSLA 2001, 2001. http://www.adaptiveobjectmodel.com/OOPSLA2001/
AOMoopsla2001Tutorial.pdf [Online; accessed 26-June-2008].

[97] Martin Fowler. Separated Interface. Catalog of Patterns of of En-
terprise Application Architecture http://martinfowler.com/eaaCatalog/

separatedInterface.html, 2008. [Online; accessed 4-July-2008].

[98] Martin Fowler. Mocks Aren’t Stubs. http://martinfowler.com/articles/

mocksArentStubs.html, 2007. [Online; accessed 29-June-2008].

[99] Christian Bauer Pierre Henri Kuaté and Gavin King. NHibernate in Action.
Manning Publications Co. http://www.manning.com/kuate/, unedited draft
edition, 2007.

[100] Scott W. Ambler. The Object-Relational Impedance Mismatch. Ambysoft Inc.
http://www.agiledata.org/essays/impedanceMismatch.html, 2006. [On-
line; accessed 29-June-2008].

[101] Ayende Rahien. 25 Reasons Not To Write Your Own Object Relational Map-
per. http://www.ayende.com/Blog/archive/7615.aspx, 2006. [Online; ac-
cessed 29-June-2008].

145

http://www.codeplex.com/domainbuilder
http://www.hibernate.org/343.html
http://martinfowler.com/dslwip/
http://en.wikipedia.org/wiki/Design_by_contract
http://www.eiffel.com/
http://www.contract4j.org/
http://www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf
http://www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf
http://en.wikipedia.org/wiki/Business_rules_engine
http://www.adaptiveobjectmodel.com/OOPSLA2001/AOMoopsla2001Tutorial.pdf
http://www.adaptiveobjectmodel.com/OOPSLA2001/AOMoopsla2001Tutorial.pdf
http://martinfowler.com/eaaCatalog/separatedInterface.html
http://martinfowler.com/eaaCatalog/separatedInterface.html
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html
http://www.manning.com/kuate/
http://www.agiledata.org/essays/impedanceMismatch.html
http://www.ayende.com/Blog/archive/7615.aspx

REFERENCES

[102] Billy McCafferty. NHibernate Best Practices with ASP.NET, 1.2nd Ed. http:
//www.codeproject.com/KB/architecture/NHibernateBestPractices.

aspx, 2008. [Online; accessed 30-June-2008].

[103] SubSonic. http://subsonicproject.com/, 2008. [Online; accessed 30-June-
2008].

[104] LLBLGen Pro. http://www.llblgen.com/, 2008. [Online; accessed 30-June-
2008].

[105] Databases supported by NHibernate. http://www.hibernate.org/361.html,
2006. [Online; accessed 30-June-2008].

[106] Castle ActiveRecord. http://www.castleproject.org/ActiveRecord/,
2008. [Online; accessed 30-June-2008].

[107] The ADO.NET Entity Framework Overview. Visual Studio 2005 Technical Ar-
ticles http://msdn.microsoft.com/en-us/library/aa697427.aspx, 2006.
[Online; accessed 30-June-2008].

[108] Evaluant Universal Storage Services. http://euss.evaluant.com/, 2008.
[Online; accessed 30-June-2008].

[109] iRise - Innovation Through Innovation. http://www.irise.com/. [Online;
accessed 22-June-2008].

[110] Wikipedia Contributors. Scaffold (programming). Wikipedia, The Free Ency-
clopedia http://en.wikipedia.org/wiki/Scaffold_(programming), 2008.
[Online; accessed 1-July-2008].

[111] Jon Galloway. Microsoft should ship SubSonic (formerly called Action-
Pack) with Atlas. http://weblogs.asp.net/jgalloway/archive/2006/

08/30/SubSonic-_2800_formerly-ASP.NET-ActionPack_2900_-_2D00_

-Microsoft-should-ship-this-with-Atlas.aspx, 2006. [Online; accessed
2-July-2008].

[112] Castle MonoRail. http://www.castleproject.org/monorail/index.html.
[Online; accessed 2-July-2008].

[113] Microsoft ASP.NET MVC. http://www.asp.net/mvc/, 2008. [Online; ac-
cessed 2-July-2008].

[114] How it works, Castle MonoRail Documentation. http://www.

castleproject.org/monorail/documentation/trunk/manual/

howitworks.html, 2008. [Online; accessed 26-June-2008].

[115] Generator. Castle Project http://www.castleproject.org/others/

contrib/generator/index.html, 2006. [Online; accessed 2-July-2008].

[116] Microsoft ASP.NET Dynamic Data. http://www.asp.net/dynamicdata/,
2008. [Online; accessed 2-July-2008].

146

http://www.codeproject.com/KB/architecture/NHibernateBestPractices.aspx
http://www.codeproject.com/KB/architecture/NHibernateBestPractices.aspx
http://www.codeproject.com/KB/architecture/NHibernateBestPractices.aspx
http://subsonicproject.com/
http://www.llblgen.com/
http://www.hibernate.org/361.html
http://www.castleproject.org/ActiveRecord/
http://msdn.microsoft.com/en-us/library/aa697427.aspx
http://euss.evaluant.com/
http://www.irise.com/
http://en.wikipedia.org/wiki/Scaffold_(programming)
http://weblogs.asp.net/jgalloway/archive/2006/08/30/SubSonic-_2800_formerly-ASP.NET-ActionPack_2900_-_2D00_-Microsoft-should-ship-this-with-Atlas.aspx
http://weblogs.asp.net/jgalloway/archive/2006/08/30/SubSonic-_2800_formerly-ASP.NET-ActionPack_2900_-_2D00_-Microsoft-should-ship-this-with-Atlas.aspx
http://weblogs.asp.net/jgalloway/archive/2006/08/30/SubSonic-_2800_formerly-ASP.NET-ActionPack_2900_-_2D00_-Microsoft-should-ship-this-with-Atlas.aspx
http://www.castleproject.org/monorail/index.html
http://www.asp.net/mvc/
http://www.castleproject.org/monorail/documentation/trunk/manual/howitworks.html
http://www.castleproject.org/monorail/documentation/trunk/manual/howitworks.html
http://www.castleproject.org/monorail/documentation/trunk/manual/howitworks.html
http://www.castleproject.org/others/contrib/generator/index.html
http://www.castleproject.org/others/contrib/generator/index.html
http://www.asp.net/dynamicdata/

REFERENCES

[117] ASP.NET in .NET 3.5 Service Pack 1 Beta. http://www.asp.net/

downloads/3.5-SP1/default.aspx, 2008. [Online; accessed 2-July-2008].

[118] Wikipedia Contributors. Model-driven architecture. Wikipedia, The Free En-
cyclopedia http://en.wikipedia.org/wiki/Model-driven_architecture,
2008. [Online; accessed 3-July-2008].

[119] Conditional compilation in C# - Explaining Sys-
tem.Diagnostics.ConditionalAttribute. B# .NET Blog http://bartdesmet.

net/blogs/bart/archive/2006/08/30/4368.aspx, 2006. [Online; accessed
3-July-2008].

[120] José Carvalho. Equipment Database - Requirements Specification. Qimonda
Internal Document, 2008.

[121] José Carvalho. Equipment Database - System Specification. Qimonda Internal
Document, 2008.

[122] David Garlan and Mary Shaw. An Introduction to Software Architecture.
School of Computer Science, Carnegie Mellon University http://www.cs.

cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf, 1994. [On-
line; accessed 3-July-2008].

[123] Rick Kazman Len Bass, Paul Clements. Software Architecture in Practice.
Addison-Wesley Professional, first edition edition.

[124] Martin Fowler. Anemic Domain Model. Martin Fowler Bliki http://

martinfowler.com/bliki/AnemicDomainModel.html, 2003. [Online; ac-
cessed 25-June-2008].

[125] ReSharper 4.0. http://www.jetbrains.com/resharper/, 2008. [Online; ac-
cessed 4-July-2008].

[126] Wikipedia Contributors. Top-down and bottom up design. Wikipedia,
The Free Encyclopedia http://en.wikipedia.org/wiki/Top-down_and_

bottom-up_design, 2008. [Online; accessed 18-June-2008].

[127] Vic Hartog and Dennis Doomen. Coding Standard: C#. Philips Medi-
cal Systems - Software / SPI http://www.tiobe.com/content/paperinfo/

gemrcsharpcs.pdf, 2005. [Online; accessed 17-June-2008].

[128] Juval Lowy. C# Coding Standard, Guidelines and Best Practices. IDesign
Inc. http://www.idesign.net, 2008. [Online; accessed 17-June-2008].

[129] Martin Fowler. Inversion of Control Containers and the Dependency Injec-
tion pattern. http://martinfowler.com/articles/injection.html, 2004.
[Online; accessed 2-July-2008].

[130] Wikipedia Contributors. Object Relational Mapping. Wikipedia, The Free En-
cyclopedia http://en.wikipedia.org/wiki/Object-relational_mapping,
2008. [Online; accessed 11-June-2008].

147

http://www.asp.net/downloads/3.5-SP1/default.aspx
http://www.asp.net/downloads/3.5-SP1/default.aspx
http://en.wikipedia.org/wiki/Model-driven_architecture
http://bartdesmet.net/blogs/bart/archive/2006/08/30/4368.aspx
http://bartdesmet.net/blogs/bart/archive/2006/08/30/4368.aspx
http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf
http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf
http://martinfowler.com/bliki/AnemicDomainModel.html
http://martinfowler.com/bliki/AnemicDomainModel.html
http://www.jetbrains.com/resharper/
http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
http://www.tiobe.com/content/paperinfo/gemrcsharpcs.pdf
http://www.tiobe.com/content/paperinfo/gemrcsharpcs.pdf
http://www.idesign.net
http://martinfowler.com/articles/injection.html
http://en.wikipedia.org/wiki/Object-relational_mapping

REFERENCES

[131] Wikipedia Contributors. Warp Drive. Wikipedia, The Free Encyclopedia
http://en.wikipedia.org/wiki/Warp_drive, 2008. [Online; accessed 11-
June-2008].

[132] K. Rustan M. Leino Mike Barnett and Wolfram Schulte. The Spec# Program-
ming System: An Overview. 2004. [Online; accessed 16-June-2008].

[133] ADO.NET team. The ADO.NET Entity Framework - Not Just For
SQL Server! http://blogs.msdn.com/adonet/archive/2007/12/17/

the-ado-net-entity-framework-not-just-for-sql-server.aspx, 2007.
[Online; accessed 16-June-2008].

[134] ADO.NET team. ADO.NET Entity Framework: What.
How. Why. http://channel9.msdn.com/shows/Going+Deep/

ADONET-Entity-Framework-What-How-Why/#217633&d=0, 2006. [Online
video; accessed 16-June-2008].

[135] Jason Kresowaty. FxCop and Code Analysis: Writing Your Own Custom
Rules. http://www.binarycoder.net/fxcop/, 2008. [Online; accessed 16-
June-2008].

[136] Best AOP Framework with Castle. Castle Project Support Forum http://

forum.castleproject.org/viewtopic.php?t=2690, 2007. [Online; accessed
19-June-2008].

[137] MyGeneration - Code Generation, O/R Mapping, and Architectures. http:

//wwww.mygenerationsoftware.com/, 2008. [Online; accessed 2-July-2008].

[138] Phoenix Academic Program. Microsoft Research http://research.

microsoft.com/Phoenix/default.aspx, 2008. [Online; accessed 26-June-
2008].

[139] View Engines Comparison. Castle MonoRail documentation
http://www.castleproject.org/monorail/documentation/trunk/

viewengines/comparisson.html, 2008. [Online; accessed 2-July-2008].

[140] The AspectJ Project. http://www.eclipse.org/aspectj/, 2008. [Online;
accessed 2-July-2008].

[141] Apache log4net. http://logging.apache.org/log4net/. [Online; accessed
2-July-2008].

[142] jQuery. http://jquery.com/, 2008. [Online; accessed 2-July-2008].

148

http://en.wikipedia.org/wiki/Warp_drive
http://blogs.msdn.com/adonet/archive/2007/12/17/the-ado-net-entity-framework-not-just-for-sql-server.aspx
http://blogs.msdn.com/adonet/archive/2007/12/17/the-ado-net-entity-framework-not-just-for-sql-server.aspx
http://channel9.msdn.com/shows/Going+Deep/ADONET-Entity-Framework-What-How-Why/#217633&d=0
http://channel9.msdn.com/shows/Going+Deep/ADONET-Entity-Framework-What-How-Why/#217633&d=0
http://www.binarycoder.net/fxcop/
http://forum.castleproject.org/viewtopic.php?t=2690
http://forum.castleproject.org/viewtopic.php?t=2690
http://wwww.mygenerationsoftware.com/
http://wwww.mygenerationsoftware.com/
http://research.microsoft.com/Phoenix/default.aspx
http://research.microsoft.com/Phoenix/default.aspx
http://www.castleproject.org/monorail/documentation/trunk/viewengines/comparisson.html
http://www.castleproject.org/monorail/documentation/trunk/viewengines/comparisson.html
http://www.eclipse.org/aspectj/
http://logging.apache.org/log4net/
http://jquery.com/

Index

Adaptive Object Model, 48
ADO.NET Entity Framework, 62, 109
Adobe Photoshop, 23
Agile Manifest, 20
agile models, 20
Apache Ant, 26
Application Programming Interface, 85
architecture, 14
ASP.NET, 68, 69, 89
ASP.NET Dynamic Data, 70
ASP.NET impersonation, 131
ASP.NET MVC, 69
ASP.NET role management, 131
aspect-oriented paradigm, 30
Aspect.NET, 112
Aspect#, 113
AspectJ, 31, 45
Autonomation, 23

Capability Maturity Model Integration,
24

Castle ActiveRecord, 61, 89, 90, 98, 115,
133

Castle MonoRail, 69, 90, 98, 134
code generation, 36
code reviews, 27
Comboy coding, 23
Communication impedance mismatch, 10
Context-Driven School, vii, 93
Continuous Integration, 94
Continuous integration, 29
Contract4J, 45
CruiseControl, 30
CruiseControl.NET, 30
CSLA, 44

Data access layer, 56
Database management system, 55
deployment, 16

design, 15
Domain specific language, 43, 48, 50
Domain-driven design, 36

Eiffel language, 45
estimation, 9, 26
Evaluant Universal Storage Services, 63
Extreme Programming, 21, 32

FitNesse, 26
FxCop, 27, 80, 90, 95, 111

Generative Modeling Technologies, 37
Generic programming, 48
generic programming, 48
German Federal Armed Forces, 18
Gmail, 25
Gof Design Patterns, 15
Google Docs, 25
Google Labs, 25
Google News, 25
Guidance Automation Toolkit, 33

Himalia, 66, 108

imperative programming, 30
implementation, 15
Infragistics, 71
Integrated collaboration environment, 28
Integrated Windows Authentication, 131
Internet Information Services, 69
iRise, 66
iterative models, 18

Java Modeling Language, 45
Javadoc, 96
Just-in-Time, 23

Knoll brothers, 23

Lean software development, 23

149

INDEX

life cycle models, 17
LINQ, 62
LINQ to Entities, 57
LLBLGen, 60
low-level programming, 30

metric, 9
metrics, 26
Microsoft DSL Tools, 108
Microsoft Office Visio, 39
Microsoft Project, 26
Microsoft Solutions Framework, 22
Microsoft SQL Server, 55
Microsoft Team Foundation Server, 28,

29, 96
Mingle, 26
Model-driven architecture, 36, 77
Model-driven engineering, 35, 39, 100
MSBuild, 26
MySQL, 55

NCover, 26
NDepend, 26
NHibernate, 44, 60, 89, 90, 98, 116, 134
NUnit, 27

Object Constraint Language, 41, 45, 50
object-oriented paradigm, 30, 46
Object-relational impedance mismatch, 56
Object-relational mapping, 56
Oracle, 55

Personal Software Process, 25
Post-Agilism, 34
PostSharp, 114
PostSharp Laos, 79, 89, 90
procedural programming, 30
process template, 28
Process Template Editor, 28
Productivity, 9
productivity, 30
Programming by Contract, 42, 45, 78
programming paradigm, 30
prototyping, 32
Python, 31

Rational Rose Modeler, 39
Rational Unified Process, 19
Relo, 40

requirements analysis, 13
ReSharper, 96
Resharper, 90
Reverse engineering, 37
Ruby, 31
Ruby on Rails, 67

Sandcastle Help File Builder, 85, 96
scaffolding, 32, 67, 98
Scheme, 31
Scientific method, 4
Scrum, 21
Selenium, 27
Service Oriented Architecture, 31
Software development process, 13
Spec Explorer, 42
Spec#, 45, 77, 107
Spiral model, 19
stakeholder, 9, 13, 65
Structured Query Language, 43, 55
SubSonic, 59, 68, 117
Subversion, 27, 96

Team Software Process, 25
testing, 16, 26
TIOBE Programming Community Index,

30
Toyota Product Development System, 23

UML, 35, 39

V-Model, 18
VDM++, 77
Vienna Development Method, 42
Visual Studio Class Designer, 37, 40, 43,

80
Visual Studio Team System, 28, 95
Visual Studio Team System Test Edition,

27
visualization techniques, 65

waterfall model, 17
WatiN, 27
Windows Workflow Foundation, 39

150

	Início
	Abstract
	Resumo
	Preface
	Acknowledgments
	Contents
	List of figures
	Part I - Overview
	1. Introduction

	Part II - WARP approach
	2. The problem
	3. The software development process
	4. Business modeling
	5. Object-relational mapping
	6. Prototyping the user interface

	Part III - Practical work
	7. Business#
	8. Case-study: Equipment database

	Part IV - Wrap up
	9. Lessons learned on software development
	10. Conclusion

	Part V - Glossary, appendices and references
	Glossary
	Appendix A - Technical Reviews
	Appendix B - Equipment database: implementation details
	References
	Index

