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Resumo 

 
 Um substituto ósseo deve não só promover a regeneração óssea, mas também 

favorecer o desenvolvimento de uma rede microvascular. A hidroxiapatite modificada com 

silício é um material bioactivo e osteocondutor, que permite a proliferação e a 

diferenciação celular. 

 A primeira parte do trabalho consistiu na caracterização físico-química e estrutural 

da Hidroxiapatite (HA) e da Hidroxiapatite modificada com Silício (SiHA) como materiais 

densos e na forma de revestimentos. O titânio é usado como biomaterial em aplicações 

biomédicas. Apesar das suas boas propriedades mecânicas e de resistência à corrosão, o 

titânio não tem a capacidade de formar uma ligação ao tecido ósseo, sendo assim este deve 

ser revestido com um cerâmico bioactivo, já que estes estimulam a ligação biológica entre 

o implante e o tecido ósseo. 

 Realizaram-se estudos in vitro com culturas de células endoteliais cultivadas em 

amostras densas de hidroxiapatite (HA) e de hidroxiapatite modificada com silício (SiHA), 

assim como a avaliação dos parâmetros de crescimento celular e da actividade funcional 

em determinadas fases do período de cultura, representativas da proliferação/diferenciação 

celular. Verificou-se que a incorporação de Si4+ na malha de HA estimulou a adesão das 

células endoteliais ao substrato comparativamente com a HA. 

 O processo de angiogénese pode ser definido como a formação de uma rede 

vascular a partir de vasos sanguíneos pré-existentes e o processo de osteogénese como a 

formação de novo tecido ósseo. Estes dois processos estão intimamente relacionados, de 

modo estrutural, bioquímico e funcional. Sendo assim, após se verificar o efeito positivo 

do silício na angiogénese em amostras densas, procedeu-se ao estudo da osteogénese da 

hidroxiapatite modificada com silício, mas na forma de revestimentos da liga de titânio 

(Ti-6Al-4V). Os resultados obtidos nestes estudos corroboram os resultados descritos na 

literatura, os quais demonstram o efeito positivo do silício nas células osteoblásticas. 

 Estes estudos demonstram que a hidroxiapatite modificada com silício quer na 

forma densa, quer na forma de revestimento pode estimular a regeneração do tecido ósseo. 
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Abstract 

 

A bone graft should promote bone regeneration and stimulate the development of a 

vascular net. According to the literatures, the silicon substituted hydroxyapatite is a 

bioactive and osteoconductive material that stimulates cellular proliferation and 

differentiation.  

In the first part of this thesis the silicon substituted hydroxyapatite (SiHA) and 

hydroxyapatite (HA) in a dense and coating form were characterized.  

Titanium and titanium alloys can be used as biomaterial in several biomedical 

applications, although its good mechanical properties and corrosion resistance, titanium is 

not a bioactive material, so it should be coated with a bioactive ceramics, that can form a 

biological bond between the graft and bone tissue.  

In vitro biological studies were performed by seeding endothelial cells in dense 

samples of HA and SiHA. The colonized materials were evaluated for cellular growth 

parameters and functional activity at different time points of culture period. The Si4+ 

incorporation in HA lattice induce a positive effect on the development of the endothelial 

cells. The number of endothelial cells that adhered to SiHA substrate is higher than the 

number of cells present on the surface of HA.    

The angiogenesis process can be defined as the formation of vascular net from 

preexisting vases and the osteogenic process as the formation of new bone tissue. These 

processes are structurally, biochemically and functionally related. It has been shown that 

the presence of silicon stimulates the adhesion of endothelial cells and that in accordance 

to the literature the osteogenesis in the dense form. So, the second part of this thesis aimed 

to performed in vitro studies with human osteoblastic cells cultured on the surface 

Titanium alloy coated with HA and SiHA. The results obtained corroborate previous 

results described in the literature, which showed the positive effect of silicon on bone cells. 
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Objectives 

 
 The aim of this thesis was to study the behaviour of human umbilical vein 

endothelial cells seeded on the HA and SiHA as dense form, and to study the behaviour of 

human osteoblastic cells seeded on the HA and SiHA as coating material of titanium alloy, 

to understand the importance of the silicon incorporated into HA lattice in the angiogenesis 

and osteogenic process. 
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CHAPTER 1 

 

1. The bone  

 

 Bone is a dynamic connective tissue characterized by its hardness, growth 

mechanisms and ability to regenerate. It has the functions of support and protection the 

internal organs and provide attachment for muscles, facilitating the locomotion process. 

Besides this, bone offers protection for blood-forming marrow and it is the reservoir of 

mineral ions such as calcium and phosphorous [1]. 

 

1.1 Bone composition 

 

 Bone is a composite material consisting of an organic matrix that is strengthened by 

deposits of calcium salts. Type I collagen constitutes approximately 95% of the organic 

matrix. The remaining 5% is composed of numerous noncollageneous proteins such as: 

proteoglycans, osteonectin, osteocalcin, osteopontin, sialoprotein, glycoproteins, enzymes 

and cytokines. Bone apatite is a calcium and hydroxide deficient apatite containing 

numerous ionic substitutions, such as carbonate, magnesium, potassium, fluoride, sodium, 

phosphate and others [2-4].  

 

1.2 Bone cells  

 

 The cells that are responsible for the structural and functional properties of bone 

are: osteoprogenitors cells, osteoblasts, osteoclasts and osteocytes. 

 

Osteogenics cells (osteoprogenitors) 

This type of cells is mainly in the deepest layer of the periosteum and the 

endosteum.  They have a high mitotic potential and are recruited to repair bone defects [5].   

 

Osteoblasts   

  Osteoblasts are fully differentiated cells responsible for the bone matrix production. 

They are typical protein-producing cell, witch secrete type I collagen, noncolageneous 

proteins of bone matrix and regulate the mineralization of bone matrix. Osteoblasts are 

derived from mesenchymal stem cells.  Factors such as bone morphogenetic proteins 
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(BMPs) and transcription factors (Cbfa 1) mediate and regulate the induction of 

mesenchymal stem cells into osteoblastic cells [5,6]. 

 

Osteocytes 

The osteocyte is a mature osteoblat within the bone matrix and it is responsible for 

bone maintenance. Each esteocyte occupies a lacunae in the matrix and allows the 

diffusion of nutrients and metabolites through the mineralised matrix, they develop 

filipodia connections witch enhance communication between neighbouring osteocytes, 

bone surface and blood vessels (fig. 1) [5,6].   

 

 
Figure 1 – A microscopic image of an osteocyte [5]. 

 

Osteoclasts  

 Osteoclasts are multinucleated cells responsible for bone resorption. They 

originated from hematopoetic tissue with common differentiation pathways with 

macrophages. This type of cell has multiple circumnuclear Golgi stacks, abundant 

lysosomal vesicles and a high density of mitochondria [5].  

  

1.3 Bone Structure  

 

  Histologically there are two histologically defined bone types: dense bone (also 

known as compact or cortical bone) and cancellous bone (also known as trabecular or 

spongy bone). 
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  Cortical bone is dense and forms the surface of bones, contributing 80% of the 

weight of the human skeleton. It is extremely hard, formed of multiple stacked layers with 

few gaps. In dense bone the tissue is organized in Harvesian systems (osteons) which 

consist of a channel containing a blood vessel surrounded by concentric and interstitial 

lamellae (fig. 2) [7-9]. 

 Cancellous bone is spongy, has a low density and strength but has a very high 

surface area, it fills the inner cavity of long bones. The external layer of cancellous bone 

contains red bone marrow where the production of blood cellular components (known as 

hematopoiesis) takes place. Cancellous bone is also where most of the arteries and veins of 

bone organs are found [7-9]. 

 

 
Figure 2 – Compact and cancellous bone [5]. 

 

1.4 Bone Growth 

 

 The formation of bone during the foetal stage of development occurs by two 

methods: intramembraneous and endochondral ossification. 

 Intramembraneous ossification mainly occurs during formation of flat bones of the 

skull. The steps leading to intramembraneous ossification are: development of ossification 

centre, calcification, formation of trabeculae and development of periosteum. This type of 

bone deposition occurs in interaction with vascular tissue [8,9]. 

 Endochondral ossification occurs in long bones, such as limbs. The steps in 

endochondral ossification are: development of the cartilage model, growth of cartilage 

model, development of the primary ossification centre, development of medullar cavity, 
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development of the secondary ossification centre, formation of articular cartilage and 

epiphyseal plate. Endochondral ossification begins with points in the cartilage called 

primary ossification centres. They mostly appear during foetal development, though a few 

short bones begin their primary ossification after birth. They are responsible for the 

formation of the diaphyses of long bones, short bones and certain parts of irregular bones. 

Secondary ossification occurs after birth, and forms the epiphyses of long bones and the 

extremities of irregular and flat bones. The diaphysis and both epiphyses of a long bone are 

separated by a growing zone of cartilage (the epiphyseal plate). When a child reaches 

skeletal maturity (18 to 25 years of age), all of the cartilage is replaced by bone, fusing the 

diaphysis and both epiphyses together (epiphyseal closure). The intrinsic significance of 

blood vessels in this process is markedly evidenced by the fact that an initial avascular 

cartilage template becomes replaced by highly vascularized bone and marrow tissue [10]. 

 

 1.5 Bone remodelling   

 

 Remodelling is the process of continuous shaping of the bones, and is the skeletal 

process that allows mineral ion homeostasis. In healthy bones, the remodelling process 

involves the coupled actions of bone forming and bone resorbing cells, in an ordered 

process. The remodelling process involves recruitment of osteoclasts to a point on the bone 

surface where a resorption pit is created by the removal of bone mineral and matrix. When 

the osteoclasts moves away, osteoblasts move in and fill the pit with an osteoid which is 

then mineralised [8,9]. 

 

1.6 Bone healing 

 

 Bone healing is a proliferative physiological process that requires a timely 

recruitment of skeletal progenitor cells to the injury site, their proliferation and 

diferentiation into condrocytes and osteoblasts, the reestablishment of a vascular net to 

maintein cell viability and bone regeneration through both endochondral and 

intramembranous ossification mechanism [8].  

 Bone healing can be arbitrarily divided into overlapping phases: inflammatory, 

reparative and remodeling phases.  

 After bone fracture or graft placement, an inflammatory response can occur. 

Following an injury, the bone is torn and blood vessels are disrupted, leading to the 

Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais            15 



In vitro biological assessment of silicon substituted hydroxyapatite: Angiogenesis and Osteogenesis 
 

formation of a haematoma. Close to the fracture line, necrotic marrow and dead bone 

accumulate and elicit an inflammatory response. 

 In the reparative phase, mesenchymal progenitors are recruited and differentiate 

into chondrocytes or osteoblasts. The early reparative phase involves formation of (fibro)-

cartilage throughout the callus, particularly in domains distant from ingrowing capillaries 

(internal callus), and of immature woven (spongy) bone predominantly in subperiosteal 

areas with profound angiogenesis (external callus). Through endochondral ossification, 

(fibro)-cartilage is replaced with mineralized bone, forming a hard callus bridging the 

fracture gap. 

 In the remodeling phase, osteoclasts and osteoblasts continue to remodel the large 

callus, ultimately restoring the former shape, strength and functioning of the bone [9-11].  

 

 

2. Angiogenesis 

 

 Angiogenesis is a physiological process that leads to the formation of new blood 

vessels from pre-existing vessels, by the migration and proliferation of endothelial cells 

[12-14]. This process occurs during growth and development, wound healing, and in the 

female reproductive system. Angiogenesis also occurs in different pathological processes 

such as cancer (Carmeliet and Jain, 2000; Patan, 2004), rheumatoid arthritis, diabetes and 

cardiovascular diseases. This process is complex and the mechanism behind angiogenesis 

is not fully understood, although several stimulating factors are known.  

 

2.1 Vessel growth 

 

 Small blood vessels are only composed by endothelial cells (ECs), while larger 

vessels are composed by mural cells, pericytes in medium-sized and smooth muscle cells 

(SMCs). Endothelial cells are oblong shaped cells that cover the lumen of all blood vessels 

as a single epithelial cell layer, and they are derived from angioblasts and hemangioblasts 

[15]. These cells play a major role in vascular biology under normal or pathological 

conditions (Wiel et al, 2005), including the control of vasoconstriction and vasodilatation 

(Cosentino and Volpe, 2005), thrombosis and fibrinolysis (Wiel et al, 2005; Chen and 

Lopez, 2005), angiogenesis (Gerhardt and Betsholtz, 2005; Szekanecz and Koch, 2005), 

leukocyte adhesion/trafficking and inflammatory processes (Cook-Mills and Deem, 2005; 
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Aird, 2005; Szekanecz and Koch, 2005). Immature circulating endothelial cells derived 

from the bone marrow are being referred to as endothelial progenitor cells (Khan et al, 

2005).  

 Vessels can growth by different manners. Angiogenesis denotes the formation of 

new blood vessels from pre-existing ones, while vasculogenesis is the term used for the 

formation of new blood vessels when there are no pre-existing ones by endothelial 

progenitors, during embryogenesis. Vasculogenesis is related to in situ differentiation and 

growth of blood vessels from mesodermal derived hemangioblasts. Angiogenesis comprise 

two different mechanisms: endothelial sprouting and intussusceptive microvascular growth 

(IMG). Angiogenesis and arteriogenesis refer to the sprouting and subsequent stabilization 

of these sprouts by mural cells, and collateral growth denotes the expansive growth of pre-

existing vessels, forming collateral bridges between arterial networks [14-16]. 

Lymphangiogenesis refers to the growth and formation of new lymphatic vessels, which 

occurs in a normal development of tissues and also in pathological process (Al-Rawi et al, 

2005).  

 

2.2 Endothelial Progenitors 

 

 The endothelial progenitor cells (EPCs) contribute to vessel growth in embryo, 

ischemic conditions, malignant or inflamed tissues in adults [16].  Haematopoietic and 

other bone-marrow–derived stem cells might be recruited in the context of ischemia to 

induce neovessel formation [17]. The EPCs have been investigated as therapeutic agents in 

supply-side angiogenesis under pathological and physiological conditions [18]. ECs can be 

differentiated from angioblasts in the embryo and from EPCs, mesoangioblasts, 

multipotent adult progenitor cells, or side population cells in the adult bone marrow 

[17,19]. EPCs can also contribute to vessel growth by releasing angiogenic growth factors, 

like the vascular endothelial growth factor (VEGF), placental growth factor (PIGF), 

angiopoietin (Ang)-1, inhibitor of differentiation (Id) proteins, and different cytokines [20]. 

EPCs, haematopoietic progenitors and their descendents share common markers and are 

affected by common signals that will influence each other [21-23]. Identification of the 

signals that recruit or differentiate these progenitors offers opportunities to manipulate 

their contributions to vascular growth. The functional contribution of EPCs and 

haematopoietic stem cells (HSCs) to pathological angiogenesis still undefined [15, 22-25].  

 

Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais            17 



In vitro biological assessment of silicon substituted hydroxyapatite: Angiogenesis and Osteogenesis 
 

2.3 Vascular cell specification 

 

 Arteries and veins are distinct vessels anatomically and physiologically. They differ 

in blood pressure, thickness of their smooth muscle cells (SMC) coat and, ECs and SMCs 

have a distinct identity and origin [15]. Recent genetic studies show the signals that control 

the arterial and venous identities of ECs. The Notch pathway, with its ligants and 

receptors, promotes arterial destiny of ECs by repressing venous differentiation. Sonic 

Hedgehog and VEGF act upstream, whereas Gridlock probably acts downstream of Notch 

to determine arterial destiny, even before the onset of flow [26-28]. ECs have a phenotypic 

plasticity because they can differentiate into either arterial or venous ECs in embryonic 

development, in neonatal retina and even in adult heart. It means that a selective use of 

arterial or venous ECs or their precursors may be useful for therapeutic vasculogenesis 

[29]. 

 Blood vessels in various tissues have specialized functions and ECs have distinct 

properties, probably as many as the organs in the body. The expression and activity of 

general angiogenic factors such as VEGF or Ang-1 varies greatly in different tissues.  

Further more, organ-specific angiogenic factors determine the angiogenic switch, but in a 

restricted manner in particular organs [30,31]. 

 EPCs differentiate to arterial and venous ECs, which assemble in a primitive 

capillary plexus. Vessels then sprout and become stabilized by SMCs, differentiating from 

their progenitors. HSCs contribute to angiogenesis directly and indirectly, by 

differentiating to leukocytes or platelets. A demarcation of arterial and venous boundaries 

are required, as well as the establishment of vascular polarity. Ephrin-B2, an Eph family 

transmembrane ligand, marks arterial ECs and SMCs, whereas EphB4, a receptor for 

Ephrin-B2, marks only veins. Ephrin-B2-Eph4 participates in the formation of arterio-

venous anastomoses by arresting EC migration at the arterial-venous interface [32,33,34]. 

  

2.4 Angiogenesis and arteriogenesis 

 

 The regulation of angiogenesis by hypoxia is an important component of 

homeostatic mechanisms that link vascular oxygen supply to metabolic demand. Initially, 

cells are oxygenated by simple diffusion of oxygen, but when tissues grow beyond the 

limit of oxygen diffusion, hypoxia triggers vessel growth by signalling through hypoxia-

inducible transcription factors (HIFs) [35]. 
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 ECs built resistant channels and efficiently distribute blood to the various parts of 

the body. They have long half-lives, several years, but when triggered are capable of 

rapidly sending out sprouts in a coordinated and directional manner. Cells within the vessel 

wall communicate with each other and with cells inside and outside of vessel lumen, they 

sense changes in blood flow and pressure, and dynamically interact with the internal 

cytoskeleton and surrounding ECM. When ECs migrate during vessel sprouting, these 

contacts are transiently dissolved but later re-established, once ECs assemble a new sprout 

[15]. 

 Cellular interactions with the extracelular matrix (ECM) contribute to the 

biochemical processes that regulate angiogenesis. The ECM provides necessary contacts 

between ECs and the surrounding tissue, prevents vessels from collapsing, and regulates 

the formation of new vessel sprouts. In quiescent vessels, the vascular cells are encased by 

a basement membrane of collagen IV, laminin and other components, and pericytes and 

ECs are also embedded in the same basement membrane. An interstitial matrix of collagen 

I and elastin between vascular cells provides visco-elasticity and strength to the vessel 

wall. When vascular cells migrate to form new sprouts, the matrix network is 

proteolytically broken down and its composition is altered. The EC and SMC are induced 

to migrate because proteinases expose new cryptic epitomes in ECM proteins (such as in 

collagen IV) or change their structure (fibrillar versus monomer collagen). Further more, a 

provisional matrix of fibronectin, fibrin and other components provides a support scaffold, 

guiding ECs to their targets [36]. 

  The cell-surface receptors of specific ECM molecules known as integrins are 

crucial for vascular cells to build new vessels. Integrins are involved on the regulation of 

proteolytic enzymes activity which degrades the basement membrane (the initial barrier to 

surrounding tissue). Integrins are essential for cell migration and invasion, not only 

because they directly mediate adhesion to the extracelular matrix, but also because they 

regulate intracellular signalling pathways that control cytoskeleton organization, respond to 

intracellular cues and modify the way they interact with the extracelular environment. The 

binding to ligands in the extracelular matrix initiates several pro-survival mechanisms to 

prevent apoptosis [37]. The αvβ3 and αvβ5 integrins have been considered to positively 

regulate the angiogenic switch. However, genetic deletion studies suggest that vascular 

integrins inhibit angiogenesis by suppressing VEGF and Flk-1 mediated EC survival, by 

trans-dominantly blocking other integrins or by mediating the antiangiogenic activity of 
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thrombospondins (TSPs) and other angiogenesis inhibitors (such as tumstatin, endostatin, 

angiostatin and PEX) [38]. 

 Remodelling of the ECM during vessel sprouting requires breakdown by 

proteinases, including plasminogen activators, matrix metalloproteinases (MMPs and 

tissue inhibitors of metalloproteinases (TIMPs)), heparinases, chymases, tryptases and 

cathepsins [39-41]. Proteinases also facilitate EC sprouting by liberating matrix-bound 

angiogenic activators (basic fibroblast growth factor (FGF), VEGF and transforming 

growth factor (TGF) -β) and proteolytically activating angiogenic chemokines. In 

proteolytic remodelling of the ECM, insufficient breakdown prevents vascular cells from 

leaving their original position, but excessive breakdown removes critical support and 

guidance cues for migrating ECs and, in fact, inhibits angiogenesis. Proteinases can also 

have a role in the resolution of angiogenesis, as they liberate matrix-bound inhibitors (TSP-

1, canstatin, tumstatin, endostatin and platelet factor (PF)-4) and inactive angiogenic 

cytokines [41,42].   

 Establishment of a functional vascular network further requires that nascent vessels 

mature into durable vessels. Nascent vessels initially only consist of ECs and vessel 

maturation requires a mix of angio- and arteriogenic factors for a sufficient duration, so 

that ECs can tighten up and become covered by mural cells and ECM. Flow is a critical 

determinant of vessel maintenance and durability. When insufficient angio- and 

arteriogenic factors are present and angiogenesis inhibitors are present, EC channels 

remain naked, leaky and fragile, are easily ruptured and bleed, what reduce flow and result 

in vessel regression. The association of pericytes and SMCs with newly formed vessels 

regulates EC proliferation, survival, migration, differentiation, vascular branching, blood 

flow and vascular permeability. Platelet-derived growth factor (PDGF)-BB and its 

receptor, PDGF-β, have essential roles in the stabilization of nascent blood vessels by 

recruiting PDGF-β-positive mesenchymal progenitors [43,44]. 

 Tie-2 receptor is involved in vessel maintenance, growth and stabilization, which 

binds to angiopoietins (Ang-1 and Ang-2) [45,46]. Members of the TGF-β superfamily 

contribute to the resolution and maturation phases of angiogenesis, but in a pleiotropic 

manner [47]. 
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2.5 Collateral growth 

 

 When an artery is occluded its vascular territory becomes ischemic. Arterial 

systems are often interconnected by pre-existing collateral vessels that can enlarge and 

save the ischemic region [48]. The mechanisms of angiogenesis and collateral growth 

differ significantly, due to the large pressure difference between the perfusion territories. In 

collateral growth, the increased shear stress activates ECs, which then recruit monocytes. 

These cells produce growth factors and proteinases, which enables SMCs to migrate and 

divide [49, 50]. Cytokines that attract monocytes or prolong their life span, enhance 

collateral growth, whereas anti-inflammatory cytokines are inhibitory [51]. PIGF also 

enhances collateral growth, not only because it recruits monocytes, but also because it 

stimulates EC and SMC growth [52]. Delivery of acidic FGF, FGF-4 or basic FGF 

(together with PDGF-BB) stimulates collateral growth, in part by upregulating PDGFR 

expression [53]. 

 

2.6 Leukocytes and angiogenesis 

 

 Inflammation and immune driven angiogenesis affect numerous disorders (cancer, 

vascular malformations, obesity, psoriasis, diabetic retinopathy, arthritis, synovitis, 

osteomyelitis, osteophyte formation, endometriosis, osteoporosis, Alzheimer disease, 

atherosclerosis, and others) in part because most leukocyte subtypes produce a myriad of 

angiogenic factors such as VEGF, PIGF, PDGF, basic FGF, Ang-2, epidermal growth 

factor, TGF-β1, MCP-1 and various interleukins and proteinases (tryptase, chymase, 

MMPs, heparanase and uPA) [54,55]. Leukocytes affect many angiogenic processes. 

Monocytes are a source of EPCs and can differentiate into endothelial-like cells [56]. 

Leucocytes and vascular cells influence each other in other ways. Angiogenic factors 

amplify the inflammatory process by recruiting leukocytes and affecting their function.  

 

2.7 Coagulation and angiogenesis 

 

 Homeostasis and angiogenesis are closely linked. Fibrin-rich clot formation and 

platelet aggregation precede infiltration of blood vessels into a wound. Platelets release 

large stores of angiogenic factors such as VEGF, PDGF, TGF-β, IL-6, thrombin and 

sphingosine-1-1phosphate, which stimulates the growth and stability of nascent vessels by 
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tightening their junctions and recruit mural cells. Platelets also contain antiangiogenic 

factors (TSP-1, PF-4 and others) that may have a role in the resolution of angiogenesis 

once the wound has healed [57,58].  

  

2.8 Vessel regression 

 

 Vessel regression occurs when the nascent vasculature consists of too many vessels, 

and also constitutes the basis of many antiangiogenic therapeutic strategies. Abnormal 

vessel regression also contributes to the pathogenesis of numerous disorders. Removal of 

angiogenic stimulus causes vessels to regress, as in tumours and in heart, especially when 

vessels have only been recently assembled and are still immature. When angiogenic 

stimulus are provided for a sufficient length of time, new vessels mature and persist for 

months, even after the angiogenic stimulus are withdrawn. Flow may have an important 

role in determining whether neovessels regress or persist, by affecting several factors 

(including MMPs, PDGF, basic FGF, integrins and nitric oxide (NO)). Flow stimulates 

hyperplasia of ECs and SMCs, and induces the reorganization of endothelial junctions and 

deposition of ECM, all of which contribute to vessel maturation. Thus, insufficient 

perfusion may lead to regression, whereas sufficient perfusion promotes vessel persistence. 

Pericytes also determine the susceptibility of vessels to regression, because once vessels 

are surrounded by pericytes, they become resistant oxygen-induced regression. In contrast, 

disruption of endothelial-pericyte associations results in regression of vessels [43,44,47].  

 Angiogenesis inhibitors also contribute to vessel regression. TSP-1 inhibits 

angiogenesis through direct effects on ECs and indirect effects on growth factor 

mobilization or activation. Upregulation of endogenous TSP-1 and TSP-2 contributes to 

the resolution of angiogenesis and vessel stabilization after ischemia, and overexpression 

of TSP-1 or TSP-2 in cancer cells results in reduced tumour vascularisation and tumour 

growth. Macrophages contribute to vessel regression by releasing TGF-β1. Inhibitory PAS 

dominate protein functions as a dominant-negative regulator of hypoxia-induced 

angiogenesis to maintain an avascular phenotype in certain tissues. Additional inhibitors 

include chemokines binding CXCR3, soluble receptors (Flt-1 and Tie-2), clotting 

antagonists and others. It is being discovers inhibitors including cleavage products of 

matrix components, proteinases, enzymes or plasma proteins [43,44]. 
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2.9 Types of angiogenesis 

  

There are tow types of angiogenesis: sprouting angiogenesis and intussusceptive 

angiogenesis [41,42]. 

 

 2.9.1 Sprouting angiogenesis 

 

 In the sprouting angiogenesis the angiogenic growth factors activate receptors 

present on endothelial cells in pre-existing venous blood vessels. The activated endothelial 

cells begin to release enzymes called proteases that degrade the basement membrane in 

order to allow endothelial cells to escape from the original vessel walls. After that the 

endothelial cells proliferate into the surrounding matrix and form solid sprouts connecting 

neighbouring vessels. As sprouts extend toward the source of the angiogenic stimulus, 

endothelial cells migrate in tandem, using integrins. These sprouts then form loops to 

become a full-fledged vessel lumen as cell migrate to the angiogenesis site. Sprouting 

occurs at a rate of several millimetres per day, and enables new vessels to grow across gaps 

in the vasculature [59]. 

 

 2.9.2 Intussusceptive angiogenesis 

 

 In the intussusceptive angiogenesis the capillary wall extends into the lumen to split 

a single vessel in two. The two opposing capillary walls establish a zone of contact, the 

endothelial cell junctions are reorganized and the vessel bilayer is perforated to allow 

growth factors and cells to penetrate into the lumen. A core is formed between the two new 

vessels at the zone of contact that is filled with pericytes and myofibroblasts. These cells 

begin laying collagen fibres into the core to provide an extracelular matrix for vessel lumen 

growth. Finally, the core is fleshed out with no alterations in basic structure. 

Intussusceptive angiogenesis allows a vast increase in capillaries number of without a 

corresponding increase in endothelial cells number [59].  

 

2.10 Vascular endothelial growth factor 

 

 Vascular endothelial growth factor (VEGF) is an important signalling protein 

involved in both vasculogenesis and angiogenesis. It is a key regulator of physiological 
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angiogenesis during embryogenesis, skeletal growth and reproductive functions. VEGF 

activity is restricted mainly to cells of the vascular endothelium, although it has effects on 

a limited number of other cell types (e.g. stimulation monocyte/macrophage migration). In 

vitro VEGF has been shown to stimulate endothelial cell mitogenesis and cell migration. 

VEGF has also been implicated in pathological angiogenesis associated with tumours, 

intraocular neovascular disorders and other conditions. Upregulation of VEGF is a major 

component of the physiological response to exercise and its role in angiogenesis is 

suspected to be a possible treatment in vascular injuries. In vitro studies demonstrate that 

VEGF is a potent stimulator of angiogenesis because in the presence of this growth factor, 

plated endothelial cells will proliferate and migrate, eventually forming tube structures 

resemble capillaries [60-64]. 

 VEGF covers a number of proteins that result from alternative splicing of mRNA 

from a single, 8 exon, VEGF gene. The different VEGF splice variants are referred to the 

number of amino acids they contain (in human: VEGF121, VEGF145, VEGF165, VEGF189, 

and VEGF206). These proteins differ by the presence or absence of short C-terminal 

domains encoded by exons 6A, 6B and 7 of the VEGF gene. These domains have 

important functional consequences for the VEGF splice variants as they mediate 

interactions with heparan sulfate proteoglycans (HSPGs) and neuropilin co-receptors on 

the cell surface, enhancing their ability to bind and activate the VEGF signalling receptors 

(VEGFRs) [60-64]. 

 The VEGF splice variants are released from cells as glycosylated disulfide-bonded 

homodimers. Structurally VEGF belongs to the PDGF family of cystine-knot growth 

factors. Subsequently, several closely-related proteins were discovered (Placenta growth 

factor (PIGF), VEGF-B, VEGF-C and VEGF-D) which together comprises the VEGF sub-

family of growth factors. VEGF is sometimes referred to as VEGF-A to differentiate it 

from these related growth factors [65]. 

 All members of the VEGF family stimulate cellular responses by binding to 

tyrosine kinase receptors (the VEGFRs) on the cell surface, causing them to dimerize and 

become activated through transphosphorylation. The VEGF receptors have an extracelular 

portion consisting of 7 immunoglobulin-like domains, a single transmembrane spanning 

region and an intracellular portion containing a slit tyrosine-kinase domain. VEGF-A binds 

to VEGFR-1 (Flt-1) and VEGFR-2 (KDR/Flk-1). VEGFR-2 appears to mediate almost all 

of the known cellular responses to VEGF [66-69]. VEGF causes a massive signalling 

cascade in endothelial cells.  Binding to VEGFR-2 starts a tyrosine kinase signalling 
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cascade that stimulates the production of factors that variously stimulate vessel 

permeability (eNOS, production NO), proliferation/survival (bFGF), migration 

(ICAMs/VCAMs/MMPs) and finally differentiation into mature blood vessels. The 

increased flow also causes a large increase in the mRNA production of VEGF receptors 1 

and 2 [60]. The function of VEGFR-1 is less well defined, although to modulate VEGFR-2 

signalling. Another function of VEGFR-1 is to act as a dummy/decoy receptor, 

sequestering VEGF from VEGFR-2 binding. A third receptor has been discovered 

(VEGFR-3), however, VEGF-A is not a ligand for this receptor. VEGFR-3 mediates 

lymphangiogenesis in response to VEGF-C and VEGF-D [66-69]. 

 VEGF production can be induced in cells that are not receiving enough oxygen. 

When a cell is deficient in oxygen, it produces HIF, Hypoxia Inducible Factor, a 

transcription factor. HIF stimulates the release of VEGF, among other functions. 

Circulating VEGF then binds to VEGF receptors on endothelial cells, triggering a Tyrosine 

Kinase Pathway leading to angiogenesis [70,71]. 

 VEGF has also effects on bone marrow-derived cells. It promotes monocyte 

chemotaxis and induces colony formation by mature subsets of granulocyte-macrophage 

progenitor cells. [72,73]. VEGF delivery to adult mice inhibits dendritic cell development 

and increases production of B cells and generation of immature myeloid cells [74,75]. 

VEGF is known also as vascular permeability factor, based on its ability to induce vascular 

leakage. It induces an increase in hydraulic conductivity of isolated microvessels, and this 

effect is mediated by increased calcium influx [76-78]. 

 

2.11 Matrix Metalloproteinase 

 

 The matrix metalloproteinase (MMP) help to degrade the proteins that keep the 

vessel walls solid. This proteolysis allows the endothelial cells to escape into the interstitial 

matrix as seen in sprouting angiogenesis. Inhibition of MMPs prevents the formation of 

new capillaries, and these enzymes are highly regulated during the vessel formation 

process because wanton destruction of the extracellular matrix would destroy the integrity 

of the microvasculature [60, 79].  
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 2.12 Angiogenesis and bone 

 

 The VEGF have the ability to induce neovascularisation. Studies had show that 

neutralizing VEGF receptor decreased angiogenesis, bone formation, and callus 

mineralization in femoral fractures. Exogenous VEGF enhanced blood vessel formation, 

ossification, new bone (callus) maturation in mouse femur factures, and promoted bone 

bridging of a rabbit radius segmental gap defect [80].  

 Fracture of bone disrupts its circulation and leads to necrosis and hypoxia of 

adjacent bone. Under normal circumstances, fractured bone undergoes the orderly 

regeneration of its component tissues with complete restoration of mechanical properties. 

Reestablishment of the circulation is an early event in fracture healing. Bone repair is a 

multistep process involving migration, proliferation, and activation of several cell types. 

Expression of particular growth factors, such as FGFs, PDGFs, TGF-βs, VEGF, and bone 

morphogenetic proteins (BMPs), during the course of healing suggests a possible role for 

these secreted factors in bone repair [81,82]. VEGF is expressed in the fracture callus in 

animal models in much the same temporal and spatial pattern as during long bone 

development. Although VEGF can control hypertrophic cartilage structure and vascularity 

within the development growth plate, the role of VEGF in bone repair has not yet been 

determined [80, 83-85]. The fracture callus contains many factors that could promote bone 

healing by coordinating angiogenesis with bone homeostasis [86]. 

 

2.13 Osteogenesis and angiogenesis 

 

 Bone formation is dependent on the signalling of BMPs, molecules initiating 

vascularisation (e.g. VEGF) and osteogenic precursor cells capable of responding to these 

cues and forming bone tissue [87]. Tissue development and regeneration are regulated by 

interplay among various tissue inductive growth factors, formation of an appropriate 

vascular bed to support the metabolic needs of the forming tissue mass, and a cell 

population capable of responding to the chemical cues and creating the new tissue. BMPs 

are responsible for initiating cartilage and bone progenitor cell differentiation and 

sequencing new bone formation through endochondral ossification [88,89]. Angiogenesis 

is also involved in the initiation of fracture healing and promotion of endochondral and 

intramembranous ossification in bone growth. These factors must act on a population of 

cells capable of responding to local factors and forming bone tissue. Multipotent stem cells 
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originating from the bone marrow stroma, or bone marrow stromal cells (BMSCs), are a 

particularly attractive source for osteogenic precursors for bone tissue engineering, because 

they can be easily harvested and expanded in vitro and induced to differentiate into bone-

forming cells [87,90]. 

 

 

3. Bone Tissue Engineering   

 

Biomaterials can be defined as a natural modified or synthetic material that 

interacts with the biological system to improve, cure or substitute any tissue, organ or 

function of the body (Williams, 1999) [2].  Biomaterials should be biocompatible, absence 

of harmful or toxic effect for the organism and have biomechanics properties to support the 

dynamic and static requests that will be subject during its useful life [91].   

Medical problems can emerge from bone trauma, diseases and ageing. In order to 

solve these problems, autografts (autogenous grafts), allografts (tissue harvested from a 

different human patient) and xenografts (tissue harvested from an animal) have been used 

in bone surgery [91]. The main advantage of an autograft is related to its osteogenic, 

osteoinductive and osteoconductive properties.  This graft contains cartilage matrix 

minerals, osteogenic proteins and precursor cells [91].  Allografts can lead to the 

transmission of viral diseases as HIV, hepatitis B and hepatitis C, and can induce 

immunological reactions. Although, these risks can be diminished through sterilization 

with gamma radiation, its structure can be affected and the bone graft may lose its 

osteoinductive and osteogenic properties because most of the cells can be damaged during 

the sterilization process.  Xenografts can give rise to unfavourable immune response and 

viral contamination. Due to the limitations described above related to autografts, allografts 

and xenografts, researchers have been focus on the  development of  synthetic alternatives, 

as metals, polymers, ceramic, and composites [91].   

 

3.1 Biomaterials    

 

Several materials can be used as biomaterials, namely metal, polymer, ceramic, and 

composites.  

Metal and metal alloys such as titanium, titanium alloys, aluminium, chromium and 

cobalt alloys, are able to support mechanical loads. However, these materials do not have 
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bioactive properties required for a proper osteointegration into the host tissue; they are 

hard and have toxic effect, due to the release of several ionic species, which can induce 

metallises, inflammatory reactions and fibrosis encapsulation [91].  

Polymer bone grafts are easily tolerated by the host tissue. However they can 

induce necrosis of the surrounding tissue and can be toxic for the organism [2].  

Polyethylene, polypropylene, polyurethane, acid polyactinic (PLA) and the poli(methyl 

methacrylate) (PMMA) are examples of polymers used in implantology. Some of these 

polymeric grafts can cause a pathological response through the release of toxic monomers 

or allergic sensitization. The use of polymeric materials is better then the metallic ones, 

because the difference in the elasticity modulus between graft and bone is reduced, and 

polymers can be degraded in vivo [7]. 

Composites are synthesized to improve the properties and the biological behaviour 

of a biomaterial in clinical applications [92].  The bone tissue is composed of collagen 

fibres and minerals, being a good example of a natural composite with excellent 

biomechanics properties.   

Ceramics are defined as inorganic, non-metallic materials which consist of metallic 

and non-metallic elements bonded together primarily by ionic and/or covalent bonds. The 

ceramic materials are fragile, hard, highly resistant to acid attack, stable at high 

temperatures and are electric insulators [92]. 

 Bioceramics play an extensive role in biomedical materials. The development of 

these materials and diversity of manufacturing techniques has broadened the applications 

that can be used in the human body, such as dental, maxillofacial and orthopaedic 

applications. They can be in the form of thin layers on metallic implants, composites with a 

polymer component, or even just porous networks. Common materials used for 

bioceramics include alumina, zirconium, calcium phosphate, glass ceramics, and pyrolytic 

carbons.  

 

3.2 Interaction between bone tissue and bioceramics   

 

The bioceramics when are implanted in the body elicit a response of the host tissue, 

and both can suffer physical and chemical modifications. This response between 

bioceramic and host tissue is related to implant site, material properties and surface 

treatment, implant design, surgical procedures and patient conditions. Bioceramics can be 
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divided in tree different types based on different attachments and interactions between the 

implant and tissue [91].   

Bioinert ceramics (or nearly inert), for example Al2O3 or ZrO2, are nontoxic and 

biologically inactive, causing the formation of fibrous tissue. The interface between 

ceramic and host tissue is not chemically or biologically bonded, therefore there is a 

relative movement which cause the development of a nonadherent fibrous capsule. These 

materials attach by bone growth onto surface irregularities, by cementing or by 

morphological fixation [91]. 

Biodegradable ceramics can be chemically dissolved or digested by macrophages 

being gradually replaced by the natural host tissue. The main purpose of these materials, 

for example, β-TCP and some bioactive glasses, is the regeneration of tissues instead of 

their replacement. However, there are two main problems with the use of resorbable 

materials: the maintenance of strength and stability of the interface during degradation 

period and the difficulties of materials resorption rate with body tissues repairing rate.  The 

degradation can be due to: the solubility of the material and local pH, fragmentation into 

small particles and biological factors (biological dissolution) [91].  

Bioactive ceramics are nontoxic and biologically active forming an interfacial bond 

which is called bioactive fixation. The interfacial bond seems to be a hydroxycarbonate 

apatite layer, which is chemically and structurally similar to the mineral phase of bone. 

Bioactive ceramics include HA, some composites such as polyethylene-HA, some glasses 

and glass-ceramics. 

 

3.3 Hydroxyapatite 

 

The synthetic HA can be prepared by several methods, one of them is the chemical 

precipitation, through the reaction of calcium hydroxide and orthophosphoric acid with a 

molar ratio calcium/phosphorus of 1.67, corresponding to a phase pure HA.  The HA has 

as the following chemical formula [Ca10(PO4)6(OH)2], a molecular weight of 1004.8 g/mol 

and its crystalline system is hexagonal having a space group of P63/m. The axles lengths of 

the HA lattice are  a=b=9.423Å and c=6,875Å, and finally its density  is 3,16g/cm3 

[10,91].   

 The HA lattice contains two kinds of calcium positions, assigned for Ca(1) and 

Ca(2) (fig. 3).  Ca(2) is surrounded  by six atoms of O that belongs to the PO4
3- group and 

one OH- group,  while the atom of Ca(1) is almost octahedral and surrounded for six O 
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atoms. The Ca(2) atoms form triangles that are piled up on axle c, encircled mutually by 

60º in relation to each one.  The OH - group is next to the centre of the Ca(2) triangle and 

atom P is encircled by four O atoms and forms a tetrahedron.  The PO4
3- tetrahedron is 

practically regular, with only one small distortion [10].   

 

 
Figure 3 – HA structure [10]. 

 

 The HA allows the graft osteointegration and is osteoconductive in vivo allowing its 

use in medical applications of orthopaedic and verbal surgery, for example [91]. However, 

its dissolution rate is very slow when is compared with the bone regeneration rate.    

 

3.4 Silicon substituted hydroxyapatite 

 

 The silicon (Si4+) is an agent of bone mineralization, increasing the 

biocompatibility and bioactivity of the HA adding Si4+ [94-96].  

 Si has atomic number 14, the atomic weight is 28.09, and the parameters of its 

unitary cells are a = b = c = 543,09 pm, α = β = γ = 90,00º [92] (fig. 4). 
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Figure 4 - SiHA structure [10]. 

 

Combining the properties of HA and Si a new material was developed and called 

silicon substituted hydroxyapatite (SiHA), that can be prepared by a chemical 

precipitation, with similar procedure of the HA preparation, but in this case there is the 

addition of silicon tetra-acetate [Si(CH3CO2)4] as source of silicate ions.  The substitution 

of silicon in the HA, Ca10(PO4)6-x(SiO4)x(OH)2-x (x is the moles number of silicon), 

reduces the number of the hydroxyl groups to compensate the extra-negative load of the 

silicate group [97].   

 PO4
3- group is located preferentially on the surface of HA, and the substitution of 

these ions for SiO4
4- results in a reduction of the surface charge, indicated by its zeta 

potential [98].  The more electronegative surface of SiHA can promote a preferential place 

for the amorphous calcium phosphate apatite nucleation to occur, through the absorption of 

Ca2+ ions into the electronegative surface, resulting in a surface charge increase and in the 

attraction of the phosphate groups [98]. 

 The incorporation of Si4+ in HA lattice increases the hydrophobicity of the material 

and increases its surface tension.  Si4+ is more easily polarized than the P5+ due its low 

atomic number. The phosphate group in SiHA has a smaller symmetry what can increase 

its polarity [99]. The silicon incorporation did not affect only the HA chemical properties 

but also its physical properties, as the size of grain, number of grain boundaries and triple 

junctions.  

 Another study demonstrated that silicon has a preferential dissolution from the 

SiHA material, promoting the carbonate apatite nucleation surrounding the graft [100].  

The bioactivity increase in the SiHA can be due to changes in protein adhesion [101]. In a 

dense form SiHA increases the proliferation of osteoblastics cells when compared with HA 

[102].   Therefore, the human osteoblastics cells are affected by the presence of silicon in 
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HA lattice and the duration of these effects can depend on the degree of substitution by 

silicon [103]. SiHA also has a stimulator effect in the osteoclasts [104].   

 The increased structural defects in SiHA can be very important in the increase of 

the material solubility and in bond between bone and ceramic.  The in vivo dissolution  

decreases in the following order 1.5 wt% SiHA > 0.8 wt% SiHA pure > HA and it is 

particularly observed on the grain boundaries and triple junctions [105-107].   

An in vivo study [108] demonstrated that the morphology of the apatite deposition 

and the sequence of events in the interface between bone/HA and between bone/SiHA are 

different.  The organized staple fibres of collagen appear earlier in the interface bone/SiHA 

then in the synthetic HA grafts. It was observed a trabecular zone in bone in contact with 

the SiHA graft and the collagen staple fibres form a strong bond with SiHA ceramic graft 

[108].  The beneficial effects of silicon have been reported for many years, namely by 

Schwarz [109] and Carlisle [100], whom demonstrated that a deficient diet in silicon in rats 

and chicks retarded the growth and disturbed the development of bone structure. Reffit et 

al (2003) [111] showed that at a physiologic concentration, silicon stimulates collagen I 

synthesis, differentiation and alkaline phosphatase activity in human osteoblastic like cells. 

Botelho et al [103] demonstrated that dense SiHA stimulated the adhesion, 

proliferation and differentiation of human osteoblasts. It was also possible to observe 

calcium phosphate mineral deposits on cell layer. Additionally, Botelho et al [112] 

demonstrated that this material allows the differentiation of osteoclasts precursors into 

mature osteoclasts. These cells grown on the surface of the material expressed typical 

phenotype characteristics, such as: actin rings, several nuclei, TRAP expression and 

expression of vitronectin receptors.  

It is know that titanium or titanium implants have a low bioactivity, so one way to 

improve its bioactivity is by coating its surface with a ceramic biomaterials. Therefore, in 

order to take advantage of the positive effect of the SiHA, a titanium alloy was coated with 

SiHA and its biological behaviour assessed. 

 

3.5 Coating techniques 

 

Many techniques are available for the deposition of ceramic coatings, including 

physical vapour deposition techniques, conversion of superficial metallic fractions to 

ceramic-like oxides, immersion in a ceramic melt, direct melting or chemical reaction of 

components placed directly onto the surface, electroforming, gas-pressure bonding, 
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welding by diffusion, ultrasound or field-assisted diffusion bonding, reaction with gas 

induced by laser, and covering with refractory salts or metallic oxides by plasma spraying 

[91]. 

 Plasma spraying technique is used to coat a metal substrate surface with ceramic 

through a plasma flame. In the coating process an electric arc is struck between two 

electrodes and stream of gases is passed through the arc. The coating powder is injected 

into the plasma with a carrier gas (usually argon or nitrogen), and the heated powders melt 

and reach the substrate with high velocity. There are many variables in the process 

including the gases used, the electrical settings, the nozzle/substrate separation and the 

morphology, particle size, and particle size distribution of the powder [91,109]. 

 Plasma spray process parameters affect the structure of the coatings, specially the 

crystallinity, porosity, density, adhesion, cohesion, and as a consequence the bone bonding 

mechanism and the rate of bone formation [91, 92, 113]. The structure of the coatings will 

depend on the time of performance of the particles in the flame, and on the solidification 

and cooling conditions. The high temperatures of the plasma flame and the high cooling 

rates promote the formation of amorphous phases. The way by which a coating adheres to 

a substrate is very complex and it is not fully understood. However, many factors seem to 

influence the establishment of coating-to-substrate adhesion: mechanical anchorage, Van 

der Waals physical interaction forces, chemical interaction and metallurgical process [114]. 

 

3.6 In vitro biological studies 

 

The most important characteristics that will allow the selection a material for 

medical use are its biocompatibility, absence of harmful or toxic effect for the organism 

and its biomechanics properties capable to answer to the dynamic and static requests that 

will be subject during its useful life. Cell death, reduced cell adhesion, altered cell 

morphology, reduced cell proliferation and reduced biosynthetic activity are examples of 

toxicity in vitro [115].  

 In vitro research is used to assess the good performance of a biomaterial. With 

fewer variables and perceptually amplified reactions to subtle causes, results are more 

discernible. Evaluation under in vitro conditions may provide rapid and not expensive data 

on biological interaction. However, these results may allow us to partially predict its 

performance in vivo, because there are many variables that are not controlled. The 

biomaterials must include biocompatibility studies, cell cultures, prior to any in vivo testing 
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[116] due to the legal and ethical rules that restrict animal experimentation and because the 

correlations between in vitro and in vivo tests provide a quite good results of the expected 

biological performance of a biomaterial. 

 The studies in vitro are important because it can have an important influence for the 

studies in vivo and also because the in vitro approach is the unique possibility to test 

human cells reaction on the material. 
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Chapter 2 

 

 

 Introduction 

 

  

 The objective of this chapter is to describe the laboratorial procedures: 

 1. The preparation and characterization of HA and SiHA as dense samples and as 

plasma-sprayed coated disc of Ti; 

2. In vitro biological studies with Human Umbilical Vein Endothelial Cells; 

3. In vitro biological studies with Human Osteoblastic Cells; 

 

 The HA and SiHA powders were prepared through a precipitation method. 

 The physico-chemical and structural characterization of the bioceramics prepared 

were performed using the X-ray diffraction (XRD), Fourier transform infrared (FTIR) and 

Scanning Electron Microscopy (SEM) techniques. 

  

 In vitro biological studies with human umbilical vein endothelial cells cultured in 

dense samples of HA and SiHA were evaluated through MTT assay and Confocal laser 

scanning microscopy (CLSM). 

 

 In vitro biological studies of human osteoblastic cells cultured on the surface of Ti 

alloy coated with HA and SiHA, were evaluated through MTT assay, CLSM and SEM.  
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1. Preparation of HA and SiHA  

 

1.1 HA preparation  

 

HA was prepared through a precipitation method consisting on the reaction 

between calcium hydroxide (Ca(OH)2) and  orthophosphoric acid (H3PO4), following the 

reaction: 

 

10Ca(OH)2 + 6H3PO4 → Ca10(PO4)6(OH)2 + 18H20 

 

During the synthesis process 0.500 moles of calcium hydroxide (Ca(OH)2) were 

dissolved in 1 litre of deionised water, and 0.299 moles of orthophosphoric acid (H3PO4) 

in 1 litre of deionised water. The solution of orthophosphoric acid was added drop to drop 

to the calcium hydroxide solution, at room temperature, for a period of 3 hours, and the pH 

of the suspension was kept at 10.5 by the addition of ammonia (NH4OH).  The suspension 

was stirred for one hour and left aging for 6 hours.   

 

1.2 SiHA preparation 

 

The method used in the preparation of SiHA was similar to that used in preparation 

of HA, but in this case silicon tetra-acetate [Si(CH3COO4] was added to the mixture, as a 

source of silicate ions.   

In the preparation of SiHA the amount of reagents used to prepare was calculated 

on the basis of the following equation:   

10Ca2+ + (6-x)PO4
3- + xSiO4

4- + (2-x)OH- → Ca10(PO4)6-x(SiO4)x(OH)2-x

 (x is the moles number of silicon tetra-acetate)  

 

To prepare 0.8 wt (%) of SiHA each reagent was dissolved in 1 litre of deionised 

water: 0.500 moles of (Ca(OH)2), 0.285 moles of (H3PO4) and 0.014  moles of 

[Si(CH3COO4].  The solutions were mixed for 30 minutes and the orthophosphoric acid 

solution was added drop to drop to the Ca(OH)2  solution, for a period of 3 hours. Such as 

in the preparation of HA, during the precipitation reaction, the pH of the suspension was 

kept above 10.5 by the addition of ammonia. The suspension was stirred during one hour 

and left aging for 6 hours.   
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1.3 Dense Samples 

 

 HA and SiHA dense samples of approximately 15 mm of diameter of  were 

prepared by filling a cylindrical die with 1g of powder of each material, and then they were 

pressed using a uniaxial press until 180 Bar. The HA and SiHA dense samples were then 

sintered in a furnace at 1300ºC using a heating rate of 2.5ºC/min with 120 min dwelling 

time, followed by natural cooling inside the furnace.  

 

1.4 Milling and sieving 

 

After uniaxial pressing and sinterization, the samples were, milled and sieved until 

obtain the following distribution (optimize to for plasma spray): 

30% - 90 µm and 125µm 

40% - 75µm-90µm 

20% - 63µm-75µm 

10% - 45µm-63µm.   

 

1.5 Plasma-spray 

 

A commercial Ti rod (Ti-6Al-4V) of 14 mm of diameter was coated with HA and 

SiHA. The thickness of the coating was 120 µm. 

 

 

2. Physical-chemical and structural characterization of HA and SiHA 

 

X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning Electron 

Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM) were used to 

characterize the HA and Si-HA samples. 

 

 X-ray powder diffraction (XRD) 

 To determine the phase purity of the  HA and SiHA, the samples were grounded to 

a fine powder and analysed using a Rigaku Dmax-III-VC X-ray diffractometer, with CU-

Kα radiation (Kα = 1.54056 Aº). Data was collected from 4º to 80º (2θ), with step size of 

0.02º/s.  
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 Fourier transform infrared (FTIR) 

 The infrared spectra analysis was performed with a System 2000 FT-IR, Perkin 

Elmer, with a 4cm-1 resolution and 100 scans.  

 

 Scanning electron microscopy (SEM) 

 For morphological evaluation, the HA and SiHA samples were coated with gold 

and were observed in a JOEL JSM-63 10F scanning electron microscope, with detection of 

secondary electrons and Backscattered electrons. 

 

 

3. In vitro biological studies of Human Umbilical Vein Endothelial Cells 

 

3.1 Human Umbilical Vein Endothelial Cells   

 

Human Umbilical Vein Endothelial Cells (HUVECs) (5º passage) were cultured in 

M199 medium, supplemented with 10% of Simulated body fluid (SBF), 1% of 

Penicillin/Streptomycin, 1% of heparin (10mg/ml) and 2 µl/ml of ECGS. After cells 

reached confluence, they were enzymatically released by trypsin-EDTA solution and 

cultured on the HA and SiHA dense surface at a density of 3x104 cells/cm2. The samples 

were previously coated with 0.2% gelatine (1hour immersion at 37ºC). 

 

3.2 Cell proliferation 

 

For cell proliferation evaluation, the colonized samples were incubated with 3-[4,5-

dimethylthiazol-2-yl]-2,5-diphenyltetrasodium bromide (MTT) (5mg/mL) at 37º C for 4 

hours. After treatment with DMSO, the absorbance of the solution was evaluated at 610 

nm, at day 1 and 3.  

 

 3.3 Morphologic Evaluation  

 

Cells were fixed with 4% formaldehyde (methanol free), permeabilized with 0.1% 

triton and incubated in 10 mg/ml bovine serum albumin (BSA) with 100µg/ml RNAse. F-

actin filaments were stained with Alexafluor®-conjugated phalloidin and nuclei were 

counterstained with 10µg/ml propidium iodide. Samples were washed with phosphate 
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buffered saline (PBS) and covered with Vectashield. Images were acquired on a Leica TCP 

SP2 AOBS with a LCS software. 

 To prove that the cells in the material surface were in fact endothelial cells, they 

were staining with a platelet/endothelail cell adhesion molecule-1 (PECAM-1). After cells 

fixation with 4% formaldehyde, the cells were permeabilized with triton 0.1% during 5 

minutes, after which they were incubated with the primary antibody, Pecam-1 anti-rabbit, 

in 1:50 dilution on 1% BSA/PBS solution during 45 minutes. The samples were then 

washed with PBS and incubated with secondary antibody AlexaFlour 488 anti-rabbit in 1% 

BSA/PBS solution, in a 1:1000 dilution for 45 minutes. The nucleus was stained with 

1.5µg/ml propidium iodide for 7 minutes.  

One of the characteristics of endothelial cells is the capacity to form tubular 

structures, so 1.5% of collagen gel was added to the samples. The gel was added during 24 

hours.  As control positive, endothelial cells were cultured in specific cell culture material.  

 

 

4. In vitro biological studies of Human Osteoblastic Cells  

 

 4.1 Human osteoblastic cells  

 

The human osteoblastic cells were isolated from bone marrow of the kneecap of a 

28 years old male patient. Trabecular bone samples were mechanically disaggregated and 

washed with standard culture medium, as result a single-cell suspension was obtained. The 

cells were cultured in minimum essential medium Eagle, alpha modification (α-MEM) 

containing 10% foetal bovine serum (FBS), 100µg/ml penicillin, 10IU/ml streptomycin 

and 2.5 µg/ml fungizone. Incubation was carried out in a humidified atmosphere of 95% 

air and 5% CO2 at 37ºC.  The passage was made when primary culture was near 

confluence. Adherent cells were enzymatically released by trypsin-EDTA solution and 

counted using a hemocytometer. The human bone marrow cells (first subculture) were 

seeded on surface biomaterials at a density of 2x104/cm2 for 28 days, at conditions 

favouring osteogenic differentiation.  The cells were cultured at 37ºC in a humidified 

atmosphere of a 95% air and 5% CO2 in plates containing 10% of foetal bovine serum 

(protein source), 1% of fungizone and streptomycin/penicillin (antibacterial), 50µg/ml 

ascorbic acid (vitamin C source for collagen formation), 10nM dexamathasone (increases 
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the cellular proliferation and it induces osteoblasts differentiation) and 10mM β-

glycerolphosphate.  The culture medium was changed every three days.  

 

 4.2 Cell proliferation 

 

For cell proliferation evaluation, the colonized samples were incubated with MTT 

(5mg/mL) at 37º C for 4 hours. After treatment with DMSO, the absorbance of the solution 

was read at 610 nm, at days 7, 14, 21 and 28. 

 

 4.3 Morphologic Evaluation  

 

For the morphologic evaluation, the cells were analyzed by Confocal Laser 

Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM).  

 

Confocal laser scanning microscopy (CLSM) 

In this case a similar method to the HUVECs was used. Cells were fixed with 4% 

formaldehyde (methanol free), permeabilized with 0.1% triton and incubated in 10 mg/ml 

bovine serum albumin (BSA) with 100µg/ml RNAse. F-actin filaments were stained with 

Alexafluor®-conjugated phalloidin and nuclei were counterstained with 10µg/ml 

propidium iodide. Samples were washed with PBS and covered with Vectashield. Images 

were acquired on a Leica TCP SP2 AOBS with a LCS software. 

 

Scanning electron microscopy (SEM) 

For SEM observation the cells were fixed with 1.5% glutaraldehyde in 0.14 M 

sodium cacodylate, and then dehydrated in graded series of alcohols and critical-point 

dried. Specimens were mounted onto aluminium supports using araldite and then sputter-

coated with gold and observed in a Joel JSM 35C scanning electron microscope equipped 

with an X-ray energy dispersive spectroscopy voyager XRMA System, Noran Instruments, 

at days 3, 7, 14, 21 and 28.  
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RESULTS 

 

1. Hydroxyapatite and Silicon substituted apatite characterization 

 

XRD analysis 

 XRD analysis showed that HA and SiHA were both phase pure. Phase 

identification was carried out by comparing the peak positions of the diffraction patterns 

with ICDD (JCDS) standards. The incorporation of silicon into the HA lattice did not 

affect phase composition, as no secondary phases, such as tricalcium phosphate (TCP) or 

calcium oxide (CaO), were formed (figure 5). 

 

 
 
 
HA 
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Figure 5 – XRD spectrum of phase pure SiHA. 

 

 

FTIR analysis  

 In the spectrum of HA (fig. 6) is possible to observe the peaks that co

PO3-
4 groups at 1089, 1046, 958, 600 and 569 cm-1 and to the OH- group 630

wavelengths are in accordance with literature values [117].   

 For the 0.8wt % SiHA two additional peaks were detected at 888 and 5

can be assigned to the SiO4
4- group. It is also worth noting that the peak that co

the OH- group at 630cm-1 underwent a significant decrease in intensity (fig. 7). 
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Figure 6 – FTIR spectrum of phase pure HA. 
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igure 7 – FTIR spectrum of phase pure 0.8 wt% SiHA. 

e analysis of the FTIR pattern and XRD it was possible to see that the 

mpositions prepared were phase pure. Additionally, due to the decrease 

 the band corresponding to the OH- group and the presence of a band at 

cm-1 on the FTIR spectra it was possible to identify the proposed 

licon substitution by phosphorous, in accordance with the results 

d [97]. 

sis 

s from SEM analysis showed difference between HA and SiHA 

s possible to see a significant difference on the grain size present on the 
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HA and SiHA. The grains on the SiHA sample are considerably smaller (fig. 8). Thian et 

al [123] showed that the incorporation of Si into the HA lattice inhibited grain growth. 

 

 
Figure 8 – SEM image of HA dense (a) and SiHA dense (b). 

 

 

SEM analysis showed that the surface of the HA and SiHA plasma-sprayed coated 

samples are very rough and have small spherical particles (fig. 9). 

 

 
Figure 9 - SEM appearance of the (a) HA plasma-sprayed coated disc and (b) SiHA 

plasma-sprayed coated disc (original magnification, x 2000). 
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2. In vitro biological studies of Human Umbilical Vein Endothelial Cells  

 

MTT assay 

The number of HUVECs that adhered to SiHA substrate was higher in comparison 

to the number of cells present on the HA substrate, being this difference statically 

significant for day 1 and day 3 (p<0.05), (fig.10).  

 

 
Figure 10 – Cell viability/proliferation (MTT assay) of endothelial cells cultured on 

the surface of dense samples of HA or SiHA. 

 

CLSM analysis 

After 1 day of culture, the samples were covered with endothelial cells (fig. 11 a) 

and showed a positive staining for Pecam-1 (fig. 11 b). It was also seen that after 3 days of 

culture, cells had formed tubular structures on the surface of the control samples (tissue 

culture slides) (fig. 11 c) and showed a positive staining for Pecam-1 (fig. 11 d).   
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Figure 11 - Morphology of endothelial cells after 1 day and 3 days of culture; (a 

and c) actin staining and (b and d) Pecam-1 staining. 

           

The results obtained by confocal microscopy analyses, confirm the results obtained 

on the cellular proliferation assay. After 1 day of culture, it was possible to observe the 

presence of endothelial cells in HA and SiHA samples (fig. 12). In both cases cells showed 

a positive stain for Pecam-1.  

Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais            47 



In vitro biological assessment of silicon substituted hydroxyapatite: Angiogenesis and Osteogenesis 
 

 
Figure 12 – Morphology of endothelial cells after 1 day of culture; (a and c) actin 

staining of endothelial cells in HA and SiHA respectively and (b and d) Pecam-1 staining 

of endothelial cells in HA and SiHA respectively.  

 

 

These results showed again the positive effect of the incorporation of silicon into 

the HA lattice. 

 

 

3. In vitro biological studies of human osteoblastic cells  

 

MTT assay 

Cultures grown on the surface of SiHA and HA coated titanium samples showed an 

increase in the cell proliferation untill day 21, and a decrease afterwards (fig.13). At day 7, 
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MTT reduction values were similar in both materials, although the rate of cell proliferation 

was higher on the SiHA samples. At day 21, MTT values in SiHA samples were 

significantly higher than those observed for the HA samples (fig. 13).  

 

 
Figure 13 – Cell viability/proliferation (MTT assay) of human osteoblastic bone 

marrow cells cultured on the surface of Ti alloy coated with HA or SiHA. 

 

 

SEM analysis 

Through SEM analysis it was possible to see that at 3 days of culture cells adhered 

to the substrate and established contact points between them. At 7 days, the osteoblasts 

appear to be flattened on the substrate surface presenting a fibroblastic morphology with 

several cytoplasmic processes contacting directly with the coating material (fig. 14 (a)). 

 The cell culture reached confluence around day 14 (fig. 14 (b)) and formed cell 

multilayers (fig. 14 (c,d)). Mineral deposition, closely associated with the established cell 

layer, was verified from day 21 onwards (fig. 14 (d)). At a high magnification it is possible 

to mineral deposits that can be related to the formation of an apatite layer on the surface of 

Si-HA coated samples (data not shown). 
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Figure 14 – SEM images of human osteoblastic bone marrow cells grown on the surface of 

Ti alloy coated with SiHA, at different periods of the culture: a - 7 days, b – 14 days, c – 

21 days and d –28 days. 

 

 

CLSM analysis 

CLSM showed similar results regarding cell morphology and growth. The 

immunostaining of the actin cytoskeleton revealed a characteristic morphology with 

distinct microfilaments being visualized at day 3 (fig. 15). Active proliferation was verified 

with the coating being completely covered by an exuberant cell layer after two weeks of 

incubation (fig. 15 (b,c)).  

 

Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais            50 



In vitro biological assessment of silicon substituted hydroxyapatite: Angiogenesis and Osteogenesis 
 

 
Figure 15 – Confocal laser scanning microscopy of the human osteoblastic bone marrow 

cells grown on the surface of Ti alloy coated with SiHA, at different periods of the culture: 

a – 3 days, b – 7 days, c – 21 days. Cytoskeleton and nuclei staining magnification: a – 

250x, b and c - 100x. 

 

          

 These studies show the positive effect of silicon in the adhesion of endothelial and 

osteoblastic cells. So, this material, as in dense form as a coating material, probably will 

stimulate in vivo angiogenesis and osteogenesis.  
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DISCUSSION 

 

 In this thesis it was proposed to characterise Hydroxyapatite and Silicon Substituted 

Hydroxyapatite, in a dense form, regarding its ability to stimulate angiogenesis and HA 

and SiHA as a coating material regarding its ability to stimulate osteogenese. 

 The angiogenesis was evaluated by in vitro cultures with human umbilical vein 

endothelial cells, which were seeded on the surface of HA and SiHA. Several parameters 

were assessed, namely cellular growth and functional activity at time points of the culture. 

The osteogenesis evaluation was performed by culturing human osteoblastic cells on the 

surface of Ti alloy coated samples with HA and SiHA.  

  

 If a coating material is too soluble, there is high probability that it will dissolve 

completely into the physiological environment, even before it is able to accelerate the 

promotion of direct attachment at the bone/implant interface [118]. Variables like 

temperature, pH, dissolution time, reagent type, must be controlled because small changes 

in these variables can be responsible for disarrangement of chemical reaction. According to 

the literature, [119, 120] the XRD pattern of the Si-HA powder before plasma spraying has 

a similar pattern to crystalline phase pure HA and after plasma spraying the SiHA coating 

becomes more amorphous and suffers some conversion to secondary phases, having the 

following chemical composition: HA (34.1%), calcium oxide (CaO: 12.6%) and tri-

calcium phosphate phases (α-TCP:  27.4% and β-TCP: 25.9%). 

On the FTIR spectra it was possible to see the characteristic wavelengths for the 

phosphate groups present on the HA lattice. When comparing the FTIR spectra of HA and 

SiHA it was possible to observe a decrease on the intensity of the band corresponding to 

the OH- group. It is known that PO3-
4 groups are preferentially located at HA surface and 

therefore the substitution of these ions for SiO4
4- groups results in a decrease in surface 

charge [121]. The decrease in intensity of the peak on the FTIR spectra that corresponds to 

the OH- group on the SiHA was expected since according to the mechanism described by 

the following equation: 10Ca2+ + (6-x)PO4
3- + xSiO4

4- + (2-x)OH- → Ca10(PO4)6-

x(SiO4)x(OH)2-x, the substitution of the phosphate group for the silicate group leads to the 

loss of some OH- to maintain the charge balance [122]. Si4- ions are structurally 

incorporated into the HA lattice in solid solution, and are not segregated as a secondary 

phase.  
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Thian et al [123] showed that with increasing Si addition, the crystalline size of 

SiHA decreased and the incorporation of Si inhibited grain growth, being the effect more 

significant as the level of Si increased. These results are in agreement with the results 

obtained through SEM analysis, that showed a significant difference between the grain size 

of HA and SiHA dense sample, being smaller in the SiHA. Additionally, it would be 

expected that an increased of Si would cause HA crystals to be more soluble, releasing 

more Ca2+ and P5+ ions into the culture medium. A rapid re-precipitating and formation of 

a newly-formed CaP-rich layer on the coating surface, with features very similar to the 

mineral phase of bone, would be an ideal site for osteoblast cells to attach, grow and form 

new bone [124].   Thian et al [123] showed that although the addition of Si increased the 

unit cell parameters and reduced the crystalline size, the XRD showed no changes in the 

relative intensities. In this work, XRD also showed no changes in the relative intensities 

what can be explained because Si4+ and P5+ are adjacent in the Periodic Table (differ by 

only 1 in atomic number) and the Si level is relatively low (< 5 wt.%), although such 

changes are normally expected when there is an atomic substitution [123].  

 

 Implantation involves tissue trauma, which evokes an inflammatory response, 

coupled to a wound healing reaction, involving angiogenesis, fibroblast activation and 

matrix remodelling. Three principal fields of research can yield useful data to better 

understand these phenomena: physical-chemical studies of biomaterials, in vitro studies 

and animal models. Until now the type and extent of such reactions to give optimal 

integration of various biomaterials are practically unknown [125].  In vitro biological 

studies with endothelial cells allows a better understanding of mechanisms involved in the 

interactions between cells and a material surface, important for the rational development of 

medical devices with optimal biocompatibility [126,127]. The success of biomaterial 

applications is not only dependent on the growth and function of the tissue-specific cells on 

the biomaterials but is also dependent in most cases on successful vascularization after 

implantation [128]. So, there is a significant importance to characterise the biological 

response of HA and SiHA in the presence of HUVECs. 

 The MTT assay measures the metabolic activity of the cells, which can be 

correlated with the number of viable cells. The number of endothelial cells that adhere to 

SiHA substrate was superior to the number of endothelial cells that adhere to HA substrate, 

being this difference statistically significant at day 1 and day 3 (p<0.05). Similar result was 

obtained at day 3 of culture. On the surface of the control used in this study (tissue culture 
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plastic), the HUVECs formed tubular structures and also showed a positive stain for 

Pecam-1, which proved that the cells culture on the surface of these materials expressed 

the endothelial phenotype. Therefore, the results obtained by confocal microscopy analyses 

confirm the results obtained in cellular proliferation assay. These results showed again the 

positive effect of the incorporation of silicon into the HA lattice. 

 

Bone formation is dependent on several molecules such as BMPs, molecules that 

will initiate vascularization and osteogenic precursor cells.  BMPs are also involved on the 

molecular cascade that will lead to the formation of cartilage and bone progenitor cell 

differentiation. Multipotent stem cells originating from bone marrow stromal cells are a 

particularly attractive source for osteogenic precursors for bone tissue engineering, because 

they can be easily harvested and expanded in vitro and can differentiate into bone-forming 

cells. Human osteoblastic cells were used to evaluate osteogenesis on coated HA and 

SiHA. In vitro studies with human osteoblastic cells showed that cultures grown on the 

surface of SiHA coated titanium had an increase in cell proliferation untill day 21, and a 

decrease afterwards. This behaviour is in accordance with the literature, where it is 

described the in vitro development of osteoblastic phenotype. At day 14 and 21, cell 

growth on the SiHA was higher (statistically significant) compared with the HA as 

expected according to the literature [94,95,102,108].  

Ferraz et al [129] showed that the resulting surface modifications improved 

osteoblasts growth, probably due to the formation of a relatively stable calcium-

phosphorous rich layer on the coatings surface that is a strong indicator of bioactivity. 

Furthermore, the adsorption of biological molecules from the culture medium by the 

material, have an important role in the adhesion process and functional behaviour of the 

osteoblasts cells [123,130]. The differences in the proliferation behaviour of human 

osteoblasts seeded into the surface of HA and of SiHA, are probably related to differences 

in surface characteristics, as their chemical composition and physical properties differ 

[94,95,102,108, 98-101, 130].  

 

Although, in this study, no osteoblastic differentiation markers were assessed, the 

cell morphology and the formation of a mineralized matrix indicate that the cell culture 

reached a differentiated stage on the SiHA coated substrate. Compared to the HA coated 

titanium, the enhanced behaviour of the SiHA coating might be explained by the presence 

of silicon into the culture medium. It is known that the formation of an apatite layer is 
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preceded by a dissolution stage, which indicates that the silicon could be released into the 

culture medium and incorporated by the osteoblasts. Similar results were reported by 

Botelho et al [103] who showed that the SiHA, in a dense form, stimulates osteoblasts 

proliferation, differentiation and formation of mineral deposits. Thian et al [123] also 

reported that a SiHA coating prepared by magnetron co-sputtering can also stimulate the 

proliferation of osteoblasts. This is in line with that reported by several authors suggesting 

that silicon is a key element for bone regeneration [102,107]. 

 

These results clearly demonstrate the beneficial effect of silicon on the adhesion of 

endothelial cells and osteoblastic cells. 
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CONCLUSIONS 

 

 The main conclusions of this work are: 

 

 Analysis of the SiHA compositions prepared for this study using XRD and FTIR 

confirmed the substitution mechanism of silicon by phosphorous, in accordance with the 

results reported previously. 

 

In vitro biological studies of human umbilical vein endothelial cells cultured in 

dense samples of HA and SiHA showed the positive effect the incorporation of Si into the 

HA lattice.   

 

 The SiHA coating allowed the adhesion, proliferation and differentiation of human 

bone marrow osteoblastic cells, which suggest that this coating is suitable to be used in 

several biomedical applications. Although, this study revealed an enhanced activity of the 

osteoblasts cultured on the SiHA coating, the mechanism behind this behaviour is still 

unknown and further evaluation is required. 

The results achieved in this work are in agreement with previous in vitro studies 

suggesting that SiHA has better characteristics for bone cell growth and function than HA, 

using human osteoblasts to evaluate the biological response of the materials.  

 

SiHA is suitable material to be used as bone graft, as in dense form or as a coating 

material. This material elicits a positive response in different cell types, such as: human 

umbilical vein endothelial cells and human osteoblastic cells. 

 

As future work it is proposed to optimize the ideal amount of Si to incorporate into 

the HA lattice in order to improve the response of human umbilical vein endothelial cells 

to the material in a dense form and as a coating. 
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