
 

 
 

Faculdade de Engenharia da Universidade do Porto 

 

Arquitecturas de Hardware para um Veículo 
Eléctrico 

André Manuel Paiva e Rocha 

 
 
 
 

Dissertação realizada no âmbito do 
Mestrado Integrado em Engenharia Electrotécnica e de Computadores 

Major Automação 

Orientador: Prof. Doutor Paulo Portugal  

 

Março de 2011 



 
 
 
 

© André Manuel Paiva e Rocha, 2011



 

i 
 

Resumo 

A indústria automóvel tem vindo ao longo dos anos a sofrer uma evolução exponencial. Os 

veículos modernos estão cada vez mais a ser dotados de funcionalidades que providenciam 

uma maior segurança, conforto, eficiência e performance. Estas funcionalidades são baseadas 

não só em sistemas computacionais isolados, mas resultam também da interacção entre vários 

sistemas, que são suportados por várias redes de comunicação de dados com requisitos e 

aplicações distintas. 

À medida que os componentes mecânicos têm vindo a ser substituidos por equivalentes 

electrónicos, são exigidos a estes níveis de confiança elevados no seu funcionamento, que 

podem apenas ser atingidos com o recurso a técnicas de concepção de arquitecturas 

tolerantes a falhas. 

Este trabalho apresenta uma visão geral de várias funcionalidades que podem ser 

encontradas nos veículos modernos, das arquitecturas e redes de comunicação que suportam 

o seu funcionamento, e de algumas das técnicas de concepção que permitem aumentar a 

confiança que pode ser depositada no funcionamento destes sistemas. Por fim, é apresentada 

uma proposta para uma arquitectura de um sistema de travagem com requisitos de segurança 

crítica. 
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Abstract 

The automotive industry has been evolving over the years in an exponential fashion. 

Modern vehicles are increasingly being provided with features which provide greater security, 

comfort, safety and performance. These features are not only based in isolated 

computational systems, but also result from the interaction between various systems, which 

are supported by several data communication networks with distinct requirements and 

applications. 

As mechanical components are being replaced by their equivalent electronic, higher 

levels of dependability are being demanded from these, which can only be attained by means 

of fault tolerant design techniques. 

This work presents an overview of the various features that can be found on modern 

vehicles, the architectures and communication networks that support their operation, and 

some of the design techniques which allow an increase of their dependability. Finally, a 

proposal for the architecture of a braking system with safety critical requirements is 

presented. 
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Chapter 1  

Introduction 

1.1  Motivation 

Recent environmental concerns allied to a decrease in the available sources of fossil fuel 

are leading vehicle manufacturers to invest on the development of alternative transportation 

methods. The use of electrical energy on vehicles is promising, since it can be obtained in a 

more efficient way with a lower impact on the environment [1].  

Even when the energy which supplies electric vehicles (EVs) is obtained by means of 

polluting fuel sources such as coal, crude or oil, the efficiency provided by electric vehicle 

powertrains results in cleaner ecological footprints when comparing to internal combustion 

engine (ICE) vehicles [2, 3]. The future is even brighter, as efforts are widely being put 

together to convert carbon emitting power stations into clean renewable sources of energy, 

motivated by European Union targets of having at least 20% of the energy consumed coming 

from renewable resources until the year of 2020 [4]. 

It has been demonstrated that the acceleration, speed and handling of electric vehicles 

can equal or exceed that of ICE vehicles [5]. Moreover, electric vehicles produce less noise 

and emit zero tailpipe gases, making them the appropriate choice for use in urban 

transportation. 

 

 

Figure 1.1 - Tesla roadster, a fully electric sports vehicle   
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The department of electrical and computer engineering (DEEC) at the Faculty of 

Engineering of the University of Porto (FEUP) has just finished building a new laboratory 

which will host the development of many projects related with EVs. This new infrastructure 

will allow students to develop solutions related to EVs along their academic career.  

Several features which provide greater safety, comfort, efficiency and performance, are 

being increasingly integrated in modern vehicles. The information about such features, their 

hardware architectures, the communication networks that support their operation, and the 

techniques used by manufacturers to provide them with the required dependability levels, is 

significantly widespread.  

The agglomeration of such information on a single document will allow students to easily 

move for the actual implementation of these features. 

1.2  Objectives 

Two main objectives have been defined for this thesis. The first objective is the 

elaboration of a survey covering: 

 

 The various features that are commonly found on modern vehicles, their general 

concepts of operation, and the hardware architectures which support their 

behavior  

  The networking solutions used in the automotive industry which support the 

behavior of the identified features 

 

The second objective of this work is the proposal of a conceptual architecture for the 

braking system whose implementation can be achieved taking in consideration: 

 

 The background obtained by students along their academic career 

 The feasibility of the braking system by the students 

 The availability and cost of the components that will support the proposed 

architecture 

 The aspects of dependability in which a braking system much rely on 

1.3  Document Structure 

This document is divided into 6 chapters. 
 
Chapter 1 presents the motivation behind this work and the objectives that have been 
defined. 
 
Chapter 2 provides an overview on the systems that are commonly found in modern vehicles, 
their major requirements, and a closer look on the systems which are considered to be a 
priority for the development of projects within the context of the new automotive laboratory.  
 
Chapter 3 addresses the networking solutions which are used to interconnect the systems 
referred in Chapter 2. Controller area network (CAN), local interconnect network (LIN) and 
Flexray are presented due to their actual importance in the automotive industry. TTEthernet 
is presented as a promising solution for future vehicles.   
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Chapter 4 presents the emerging concept of by-wire systems applied to the automotive 
industry. Several techniques and ideas that can be used by students to increase the 
dependability of their systems are introduced in this chapter. 
 
Chapter 5 presents the proposed hardware architecture for the braking system architecture 
and the algorithms which support its dependability. 
 
Chapter 6 overviews all of the work that has been done and future work. 
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Chapter 2  

In-Vehicle systems 

2.1  Introduction 

The first part of this chapter starts with an overview of the different systems that can be 

usually found on vehicles. Afterwards, several of these systems which are considered to be a 

priority for the development of the EV project are explored with further detail. 

2.2  Automotive Systems 

The various subsystems that compose a vehicle can be classified into several domains 

according to their functionalities. The number and name of these domains varies along the 

literature [6, 7]. In this section, seven domains are considered and an overview of typical 

systems and requirements is presented.  

2.2.1  Powertrain 

The powertrain enclosures the systems that are responsible for converting power into the 

motion of the vehicle. Examples of systems in the powertrain domain are 

 

 the propulsion system controller  which has the task of controlling the propulsion 

device (which can be an electric motor or an internal combustion engine) 

according to the driver's inputs and requests from other systems, such as the 

electronic stability control, traction control system or adaptive cruise control. 

 automatic transmission controllers 

 battery management systems 

 

Systems belonging to this domain are characterized by: 

 

 High computational power to deal with the complex algorithms that support the 

control of the propulsion and transmission devices 

 Low sampling/actuation times to allow for smooth control 
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 Hard real-time requirements  

2.2.2  Chassis  

The chassis domain integrates the systems responsible for the interaction between the 

vehicle and the road [6]. This domain includes braking, steering and suspension systems. 

Examples of systems in the chassis domain are 

 

 Power steering which monitors the driver's steering intentions and provides an 

assisting force in steering the vehicle 

 Antilock braking system (ABS) for wheel lock-up prevention upon braking 

 Electronic Stability Control (ESC) to prevent the vehicle from skidding 

 Traction Control System (TSC) in order to control vehicle traction when 

accelerating  

 Adaptive Cruise Control (ACC) to enhance comfort by the autonomous control of 

the distance or headway time to front vehicles 

 Electronic Damper Control (EDC) to control the vertical movement of the wheels 

 

Systems which belong to this domain are characterized by having: 

 

 High computational power 

 High sampling/actuation rates 

 Hard real-time requirements 

 Fail safe constraints which allow these systems to fail in a safe way 

 Fault tolerance in the case of x-by-wire and steer-by-wire systems 

2.2.3  Body  

The body domain comprises systems that do not interfere with the vehicle dynamics. 

Examples of systems belonging to the body domain are 

 

 interior and exterior lighting systems 

 air conditioning systems which control the temperature of the cockpit 

 vehicle access systems which ease the access to the vehicle and provide security 

 seat control systems which provide more comfort 

 park distance control which monitors the distance to obstacles to aid the driver 

when parking the vehicle 

 

Systems belonging to this domain are typically characterized by having: 

 

 Low computational power 

 Low sampling/actuation rates as events are mostly triggered by human interaction 

 Soft real-time requirements 

 

It must be noted, however, that lighting systems are evolving in a way in which they do 

not share the computational requirements with other systems from the body domain. Several 

lighting systems whose requirements are most approximated with the powertrain and chassis 

requirements are presented in Section 2.6.  
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2.2.4  Passive Safety 

Passive safety systems operate in order to reduce the effects of a crash. Examples of 

systems belonging to this domain are:  

 

 Airbag systems which deploy inflatable envelops upon impact according to the 

type (front impact, lateral impact) and severity of impact, with the intention of 

reducing shocks applied to the driver 

 Seat belt pretensioners which maintain the driver in a steady position during 

crashes and sudden vehicle movements  

 

Systems belonging to this domain are typically characterized by having: 

 

 High computational power 

 High sampling/actuation rates 

 Hard real-time requirements 

 Fail safe constraints 

2.2.5  Human-Machine-Interfaces (HMI) 

HMI systems provide the interaction between the driver and the vehicle. Examples of 

systems belonging to this domain are: 

 

 Instrument panels which provide information on the status of many of the vehicle 

variables of interest such as speed, rpm, fuel level among others 

 Tire pressure management systems which monitor tire pressure and informs the 

driver of possible dangerous situations  

 

Systems belonging to this domain are typically characterized by having: 

 

 Low to high computational power depending on the complexity of the display 

systems 

 Medium sampling/actuation times, congruent with human perception 

 Soft real time requirements 

2.2.6  Infotainment and Telematics 

  Infotainment and telematics systems provide information, entertainment and the 

interaction between the vehicle and the exterior world. Examples of systems belonging to this 

domain are: 

 

 Global positioning systems that provide the driver with information on its 

location, direction and speed 

 Audio Systems 

 DVD Players 

 Fleet management systems which allows the tracking of vehicles 

 Vehicle internet connection 
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Systems belonging to this domain are typically characterized by having: 

 

 Very high computational power 

 Soft real-time requirements 

2.3  Braking Systems 

This section presents an overview of the features and architectures of braking systems.  

Braking systems are safety critical on their nature. This means that the failure of these 

systems to perform their expected operations can result in a catastrophic event, such as the 

damage of the vehicle and ultimately the injury or dead of people and environmental harm. 

The architectures of braking systems are therefore conceived taking in consideration the 

required dependability for their operation. Throughout this section, these systems are 

presented without the consideration of these issues as general references for the 

development of safety critical systems are given Chapter 4. 

The architectures presented in this chapter may reflect slight adaptations from the 

studied systems. Therefore, several details that do not contribute for the understanding or 

the concepts involved were omitted.  

2.3.1  Antilock Braking System (ABS) 

According to [8], the ABS system reduces fatal collisions with pedestrians in thirteen 

percent and achieves a twelve percent reduction in collisions between vehicles on wet roads. 

The ABS was proven to grant more efficiency in nonfatal crashes, reducing the overall crash 

rate by six percent for passenger cars and eight percent for light trucks and vans. 

The ABS is a safety-related feature that assists the driver in deceleration of the vehicle in 

poor or marginal braking conditions, such as wet, icy or sandy pavements [9].  

When the driver presses the brake pedal, a force is generated on the wheels which 

counteracts its motion. Depending on the surface in which the wheels are spinning, this 

braking force can achieve a value that can cause the wheels to slip.  

The relationship between the vehicle speed and the slip of the wheel is denominated 

brake slip and is defined as the ratio between the speed of the wheel and the speed of the 

vehicle itself 

 

 

𝜆 =
𝑆𝑣𝑒𝑕𝑖𝑐𝑙𝑒 − 𝑆𝑤𝑕𝑒𝑒𝑙

𝑆𝑣𝑒𝑕𝑖𝑐𝑙𝑒

× 100% 

 

𝑤𝑕𝑒𝑟𝑒: 

 

𝜆: 𝑏𝑟𝑎𝑘𝑒 𝑠𝑙𝑖𝑝 

𝑆𝑣𝑒𝑕𝑖𝑐𝑙𝑒 : 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡𝑕𝑒 𝑣𝑒𝑕𝑖𝑐𝑙𝑒 (𝑚𝑒𝑡𝑒𝑟𝑠/𝑠𝑒𝑐𝑜𝑛𝑑) 

𝑆𝑤𝑕𝑒𝑒𝑙 : 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡𝑕𝑒 𝑤𝑕𝑒𝑒𝑙 (𝑚𝑒𝑡𝑒𝑟𝑠/𝑠𝑒𝑐𝑜𝑛𝑑) 

 

(2.1) 

Figure 2.1 illustrates the relationship between the wheel slip and the adhesion coefficient 

of the wheels for several surfaces. The higher the adhesion coefficient is, the more braking 

force is effectively used to reduce vehicle speed and consequently its stopping distance.  
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Disregarding snowy surfaces, it can be denoted that the adhesion coefficient reaches its 

maximum value, and after decreases with the increase of wheel slip. It can be concluded that 

the higher the wheel slip is, the higher the stopping distance of a vehicle will be. 

 

 

 

Figure 2.1 - Relationship between the adhesion coefficient and wheel slip in different road conditions 
[10].   

 

The lateral friction is what enables the vehicle to steer [10]. Its value is also dependent 

on wheel slip, as illustrated by Figure 2.2. It can be seen that as the wheel slip ratio 

increases, the lateral friction coefficient decreases and so the vehicle maneuverability.  

The chart on Figure 2.2 depicts two distinct zones in respect to wheel slip: the stable and 

the unstable zone. The stable zone ends where the maximum value of the friction coefficient 

is reached. The unstable zone is characterized by a rapid deceleration of wheel speed, that 

leads to wheel lock-up, corresponding to the minimum lateral friction coefficient. At this 

point, wheels are completely blocked and the vehicle maneuverability is drastically reduced. 

 

 

Figure 2.2 - Relationship between brake slip, lateral force coefficient, and coefficient of friction [11] 
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2.3.1.1  ABS Operation 

The objective of the ABS system is to ensure that the brakes operate near their most 

efficient point, therefore granting steering control at all times and shorter stopping distances 

[12]. This is achieved by controlling wheel slip so that its value is kept below the unstable 

zone. Wheel slip is controlled by controlling the force applied to the brakes. 

The ABS constantly monitors wheel speed for situations that might indicate wheel slip 

approaching the unstable zone. If such situation is detected, the brake force applied is 

prevented to be raised any further. In case that the wheel slip steps into the unstable zone, 

the ABS reduces brake force so wheel slip is taken back into the stable zone. To avoid under 

braking and maximize braking efficiency, the brake force is then increased and the process 

repeats itself. 

An example of the braking force modeled by the ABS against the braking force that would 

be applied without ABS is illustrated on Figure 2.3. In red it can be seen the driver’s braking 

intension while at blue the actual brake intensity performed by the ABS system on one of the 

wheels in order to prevent lock-up.  

 

 

 

Figure 2.3 - ABS preventing wheel lock-up 

2.3.1.2  Types of ABS 

According to the number of wheels whose braking is individually controlled, the ABS can 

be implemented in four main distinct ways. The number of control channels on the ABS refers 

to the number of wheels that are individually controlled. 

 

 

 

Figure 2.4 - Symbolic Nomenclature 

Single Channel ABS 

The single channel ABS is the most simple and inexpensive type of ABS. It consists on a 

ABS controller, a sensor that is placed on the differential or axle of rear wheels and an 
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actuator controlling brake force in both rear wheels at the same time. No front wheel slip is 

detected and rear wheel slip is only detected when both wheels are slipping.  

 

 

 

Figure 2.5 - One channel ABS 

 

Two Channel ABS 

The different configurations of two channel ABS are organized below in Figure 2.6.  

 

 

 

Figure 2.6 - Different arrangements for two channel ABS systems. Front wheels facing down 

 

 A: The brake force applied to both front wheels corresponds to the brake force 

required for achieving the highest possible friction coefficient on any of the wheels.  

Therefore, one of the front wheels may block and rear wheels are only controlled 

when both lock-up 

 B: One rear and one front wheel is monitored. The applied braking force ensures that 

the sensed wheels do not block 

 C: Both of the front wheels are sensed separately and the braking force is applied 

diagonally  
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Three Channel ABS 

On three channel ABS both front wheels are sensed individually while rear wheels are sensed 

in the differential/rear wheel axle.  

 

 

 

Figure 2.7 - Three channel ABS configuration 

Four channel ABS 

Four channel ABS systems are found in most modern vehicles nowadays. In this system, all 

of the wheels are sensed and controlled by a dedicated control channel thus granting the 

maximum possible controllability and enabling the implementation of other features. 

 

 

Figure 2.8 - Four channel ABS system 

2.3.1.3  ABS Architecture 

Figure 2.9 illustrates the main blocks that compose an antilock braking system. 

The ABS actuates when the driver presses the brake pedal. Hence it requires the 

knowledge of the state of the brake pedal. A brake switch connected to the microcontroller 

unit (MCU) serves this purpose. 

Signal conditioning circuits are required whenever the range or type of sensors are not 

suited to the inputs of the microcontroller unit (MCU). This is usually required when the 

outputs of wheel speed sensors are not in the form of PWM signals, which can be interpreted 

directly by the MCU. 

Whenever the antilock braking system intervenes, the driver must be notified that a 

potentially dangerous situation has occurred. Furthermore, the ABS must perform self 
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diagnostics in order to detect faulty units. The network interface serves these purposes, 

interconnecting the ABS with the systems that perform driver notification. 

 

 

 

 

Figure 2.9 - Architecture of the Antilock Braking System 

 

Figure 2.10 depicts an alternative architecture for the ABS. All sensor acquisition circuitry 

are placed in a application specific integrated circuit (ASIC). A dedicated microcontroller 

computes sensor values and, through a network interface such as CAN or Flexray (discussed in 

Chapter 3) delivers the state of all variables of interest. This enables relieving the main ABS 

MCU processing requirements. The ASIC can be provided with safety related mechanisms such 

as temperature sensors, watchdog timers and other safety related devices, so more 

dependability and computational relief of the ABS is achieved. 

 

 

Figure 2.10 - Architecture of the Antilock Braking System with an ASIC for sensor processing and 
distribution 
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2.3.2  Traction Control System (TCS) 

When starting off on low frictional coefficient surfaces, excessive throttle can cause the 

driving wheels to slip, making it harder or even impossible for the driver to move the vehicle. 

This situation frequently happens when vehicles start off on icy or wet pavements, as the 

required throttle to move the vehicle is lesser than the driver with its inputs can perform. 

A single drive wheel standing in a low frictional surface is enough to immobilize a vehicle. 

This is due to the physical properties of the differential gear, the mechanical component that 

enables torque to be delivered to driving wheels spinning at different speeds. When the 

wheel which is standing on the low friction surface starts slipping, its torque is zero, which 

will induce a zero torque on the other wheel coupled to the differential. This causes the 

vehicle to be immobilized.  

 

 

Figure 2.11 - Vehicle in a split friction coefficient surface 

 

The TCS prevents wheels from spinning due to excess throttle. It improves forward 

traction and vehicle stability [13] and is specially required for preventing the situations 

mentioned above. 

TCS can be thought as being the dual of the ABS. The TCS stands for acceleration as ABS 

stands for braking and therefore, while the ABS limits braking force, the TCS limits 

acceleration. The chart on Figure 2.12 illustrates the duality between the TCS and the ABS. 

Analogously to what was described when discussing the ABS, stable and unstable values of 

wheel slip during acceleration exist. When wheel slip during acceleration reaches the 

unstable zone, the affected wheel experiences a rapid acceleration, and a consequently 

lower friction coefficient. 

The computational unit controlling the TCS monitors wheel speeds during acceleration. 

Upon detection of a wheel that is spinning or accelerating faster than the others, the TCS 

enables corrective actions by braking the wheel and requesting for a torque reduction to the 

motor control unit, so that wheel slip is maintained at all times in the stable zone of the 

friction/wheel slip chart. 
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Figure 2.12 - Duality between ABS and TCS [11].  

 

In vehicles equipped with electronic throttle control (ETC), torque reduction is achieved 

by controlling the throttle electronically. In internal combustion engine vehicles which are 

not equipped with ETC, torque reduction is achieved by means of reducing/suppressing the 

spark of one or more cylinders.   

As the TCS main composing blocks and principles are shared with the ABS, generally both 

units operate in the same electronic control unit (ECU). 

2.3.3  Electronic Stability Control (ESC) 

The electronic stability control (ESC) is an active safety system developed by Bosch in the 

90’s and, according to [14], it is extremely successful in reducing not only fatal crashes but 

also other crash involvements. The United States National Highway Traffic Safety 

Administration issued a report pointing a reduction in 35% in passenger car accidents and 67% 

reduction in SUV accidents, both for single car accidents [14]. This crash reduction rate in 

vehicles equipped with the ESC, made it that every new automobile sold in the United States 

from 2012 on will have ESC mandatorily.  

In optimal conditions where no wheel slip is observed, when a driver steers a vehicle a 

yaw momentum is generated. This yaw momentum is responsible for the change in the vehicle 

direction. However, when the vehicle is skidding, i.e. its direction is not congruent with the 

wheels direction, the generated yaw is diminished and consequently the steering effect. This 

may result in loss of the vehicle control by the driver. 

The slip angle is a measure of the amount of skidding a vehicle is experiencing. Figure 

2.13 depicts a skidding vehicle in which the slip angle β can be observed. 
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Figure 2.13 - Vehicle side slip angle 

The relationship between the yaw moment and the slip angle for a set of steering 

angles varying from -4 to +4 is given on the chart on Figure 2.14.  

It can be noticed that the greater the slip angle is, the less effect a steering action by 

the driver will be actually turned into the pretended steering effect. Also, two different 

situations can happen: when the required yaw moment is bigger than the actual yaw moment 

(understeering) and when the required yaw moment is smaller than the actual needed 

(oversteering). These situations are depicted in Figure 2.15. 

 

 

 

 

Figure 2.14 - Relationship between the yaw moment and the side slip angle [11]  
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Figure 2.15 - Vehicle experiencing under and over steering 

The objective of the ESC system is to guarantee that the driver steering intentions are 

actually performed by the vehicle. 

 

2.3.3.1  ESC Operation 

Firstly through vehicle dynamics calculations, the ESC must determine how the vehicle 

should be behaving with the driver’s inputs. These are the steering wheel angle, the brake 

pedal pressure and the throttle position.  

The vehicle's ideal behavior is then compared with its actual behavior. The actual 

behavior of the vehicle is obtained with aid of yaw moment sensors, lateral acceleration 

sensors and wheel speed sensors. If the actual behavior of the vehicle differs from the ideal 

behavior by a certain amount, called the threshold, the ESC kicks in by sending commands to 

the motor control ECU and to the brake actuators so a counteracting yaw that compensates 

the skidding effect is generated.  

In case of oversteering and understeering situations, the brake forces applied to 

stabilize the vehicle are as high as the deviation between the ideal and the actual behavior of 

the vehicle. 

Figure 2.16 illustrates an oversteering situation. As the vehicle direction starts pointing 

to the center of the curve, the ESC system detects the discrepancy between the driver inputs 

and the vehicle behavior and tries to minimize it by applying a counteracting yaw moment. 

This counteracting yaw moment is achieved by applying brake pressure on the right front 

wheel. As expected, if this discrepancy raises, so the counteracting yaw must raise and 

therefore the brake pressure is increased on sequence 3. As the vehicle goes back to the 

desired direction, the brake pressure on the right front wheel is progressively decreased until 

the vehicle behavior corresponds to the driver inputs. 
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Figure 2.16 - ESC operation during over steering 

Figure 2.17 depicts an understeering situation. Despite the driver's intention to steer the 

vehicle, the vehicle doesn’t respond in the way it should and it starts moving towards the 

outer part of the curve. Once the ESC detects this behavior it tries to compensate by creating 

a counteracting yaw by applying brake pressure on the rear left wheel. Just like in the 

previous example this force is as big as the difference between the actual behavior and the 

desired.  

 

 

 

 

Figure 2.17 - ESC operation during understeering 

2.3.3.2  ESC Architecture 

Figure 2.18 illustrates a possible architecture for an ESC system. Due to the fact that the 

value of lateral acceleration and yaw sensors can be required by other systems, these might 

be placed on a dedicated ASIC embedding all the requiring components for their acquisition. 

Being dependent on other systems for its operation, the ESC is connected to the required 

systems by means of a network interface. The steering wheel position value is often 

transmitted by the power steering ECU.   
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Figure 2.18 - Electronic Stability Control architecture 

2.3.4  Electronic Brake Force Distribution (EBD)  

EBD allows vehicles to stop in shorter distances by distributing brake force according to 

the distribution of weight among the vehicle [15]. 

Due to the fact that weight is not evenly distributed in vehicles, each wheel supports a 

different load. The load that a wheel has to support is also dependent on the dynamics of the 

vehicle. When braking in a straight line the weight shifts from the rear to the front of the 

vehicle while when braking during turns the weight is shifted to the outer part of the vehicle 

in relation to the turn. The more weight a wheel is supporting, the better grip it has and 

therefore the more braking force can be applied to it. The EBD takes advantage of this 

physical fact. 

The EBD adjusts the ratio between front/rear or left/right brake forces so the braking 

effect is maximized. Wheel speeds are constantly monitored and, upon detection of wheel 

slip due to low load, brake force is increased on higher loaded wheels. 

The EBD can be seen as an upgrade of the ABS system as it uses the same components and 

therefore only a change in the algorithm is needed to implement an EBD braking system [16]. 
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Figure 2.19 - EBD applying more brake force at the front wheels in a front engine car 

2.3.5  Electronic Brake Assist (EBA)  

When facing a sudden obstacle the driver has a limited time to react and press the brakes 

to avoid a collision. Even if the driver's reaction is promptly, the force which is applied to the 

brake pedal might not be enough to stop the vehicle on time. Several studies have concluded 

that drivers do not apply sufficient brake force in emergency situations [17]. This fact can be 

originated by several factors, such as emotional stress created by the unexpected situation, 

bad seat position and many others. 

 Assisted braking minimizes braking distance in critical situations by detecting emergency 

braking intentions and applying maximum braking force. Emergency braking can be detected 

as drivers tend to press the brake pedal much faster in critical situations. Analogously, when 

the throttle pedal is quickly released, the EBA control unit can detect this situation and apply 

brake force. More complex approaches consist in building a model of the driver's behavior 

under normal circumstances and monitor for abnormal behavior such as the situations 

described.  

Figure 2.20 illustrates the principle of operation of the EBA. The system detects an 

abnormally fast brake pedal depression and outputs maximum brake force, which is 

afterwards modulated by the ABS. 

 

 

  

Figure 2.20 - EBA actuation  
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2.3.6  Architecture of Braking ECUs 

All of the systems described from Sections 2.3.1 through Sections 2.3.5 are usually 

embedded in the same ECU. Hence, an architecture capable of serving the operation of the 

referred systems was already presented in Figure 2.18. 

In a small minority of the studied wiring diagrams from different manufacturers, it was 

observed that the ESC and TCS can be implemented in separate control modules. In these 

cases, the interaction between the ESC or TCS and the ABS brake unit, where the BA and EBD 

are implemented, is done by means of a communication network. When required, these 

systems request braking actions to the ABS unit so its task can be accomplished. 

2.4  Instrument Panels 

Displaying the right information to the driver is crucial for the good handling and 

management of the vehicle. It permits the driver to have a better perception of his driving, 

adapt it according to the surrounding conditions and be aware of problems with the vehicle 

that can result in undesirable or dangerous situations.  

In this section, the data that must be presented to the driver, its sources and how these 

interconnect with the instrument panel are presented. 

2.4.1  Information to Display 

2.4.1.1  Vehicle Speed 

Drivers naturally sense vehicle speed through a combination of their sensations: their 

vision, engine noise, and handling feel, or road feel as it is commonly known.  However, 

vehicles are becoming more comfortable and some of the features that contribute to a more 

comfortable vehicle are enemies from the drivers' speed perception. Vehicles are becoming 

less noisy due to a better engine/motor performance and a better cabin noise insulation. At 

the same time almost every vehicle is equipped with power steering or steer by wire systems 

(in the near future) which shades or eliminates road feel.  

This means that the driver's sensorial input signals are being attenuated. In this way, 

drivers are becoming less likely to have a good prediction about their travelling speed. Also, 

drivers tend to underestimate their travelling speed which can lead to not respecting speed 

limits which may lead to a dangerous driving behavior [18]. Therefore, it is crucial for the 

driver to know its travelling speed as this information serves as feedback for its control 

attitudes over the vehicle.  

The speed of a vehicle is generally acquired in two different ways: 

 
1. Through a vehicle speed sensor that is placed on the transmission and connected 

to the motor/engine ECU.  

 

2. By means of wheel speed sensors used in braking systems. 
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2.4.1.2  Motor Revolutions per Minute (RPM) 

Motor revolutions per minute provides the driver with an estimation of the effort that is 

being performed by the motor. It enables the driver to keep that effort below its nominal 

value and not overload the motor.  

RPM can be acquired by means of a rotational speed sensor placed in the motor shaft. 

This value serves as feedback for the motor control unit and thus, the instrument panel 

obtains its value by means of a network connection to the motor control ECU. 

2.4.1.3  Battery Levels 

The driver must be at all times aware of the amount of energy available in the vehicle in 

order to avoid unpleasant situations. This can be displayed either by means of battery level 

percentage or/and by an estimation of the number of kilometers. In order to do that the ECU 

that controls the batteries must be connected to the instrument panel ECU (directly or 

indirectly). 

2.4.1.4  Braking Systems Information 

Whenever the ABS, TCS or ESC systems are required to intervene is because the vehicle is 

facing possible dangerous situations. Despite these systems can avoid certain situations they 

cannot change the laws of physics to avoid accidents. Therefore the driver must be notified 

whenever these systems take actions as this is a direct consequence of road conditions and 

driving style. The computational elements in braking systems are aware of the driving surface 

and therefore can provide the driver with data that he might not be aware of. 

On most of the instrument panels available, this information is displayed in the form of a 

brake system activity lamp(s), which will be on its on-state when one of the braking system 

features intervenes or in case of any fault detected upon diagnostic. 

2.4.1.5  Tire Pressure 

The display of anomalies in tire pressure is a critical matter. Lower than nominal tire 

pressure causes abnormal heating of the tires, which may result in tire rupture. On the other 

hand, higher than nominal tire pressure causes excess wear. Tire pressure management 

systems perform periodic acquisitions of tire pressure and by means of a network connection 

with the instrument panel ECU, display tire pressures and diagnostics. 

2.4.1.6  Lights Status 

The status of the vehicle lights is important as the driver might not be able to detect it in 

certain environments. During daytime and in places where the use of lights is mandatory the 

driver might not be aware of the lights status due to the abundant luminosity. Also, during 

the night the type of active lights might not be easily distinguishable depending on luminosity 

conditions. Therefore, the awareness of lights' status is considered to be important as lighting 

plays an important role in safety. 

2.4.1.7  Motor Diagnostics 

The driver should be notified upon detection of any failure or abnormal state on the 

motor. Diagnosis such as computational failure, excessive motor temperature or sensor failure 
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(among all other critical variables) should be in the origin of possible driver alerts, in order 

for the driver to take appropriate actions to avoid or solve the problem.  

2.4.1.8  Systems Status 

When vehicles possess features like cruise control systems, speed limitation and others 

that might affect the control of the vehicle, the driver must be aware of these systems' 

status. 

 

2.4.2  Instrument Panel Architectures 

The following examples of instrument panel architectures are based on real 

implementations and were adapted for a better understanding of the philosophies involved. 

Consequently, the number and type of systems connected to the instrument panel is variable 

and serve as an example only. Although the following diagrams contain more components, 

only the systems that require its information displayed to the driver are illustrated.  

In this section, two different architectures regarding two different philosophies are 

presented. These are represented in their pure form for a better understanding, as 

manufacturers often implement solutions that reflect a mixture between these architectures 

according to their necessities.  

2.4.2.1  Point-to-point Architecture 

 

 

 

Figure 2.21 - Instrument panel point-to-point architecture example 
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The philosophy behind this architecture consists in hardwiring all the sensors whose 

variables are to be displayed to the instrument panel ECU. Sensor acquisition is performed by 

the instrument panel ECU, which controls digital displays, gauges and warning lamps 

according to the values provided by the sensors. For instance, the engine ECU provides the 

crankshaft sensor output to the instrument panel ECU so the value of RPM can be computed 

and displayed.  

Warning lamps can be directly actuated by the sources of information. Systems like the 

supplemental  restraint system, ABS, TCS, ESC, lighting systems among others, are commonly 

hardwired to their respective warning lamps, which are activated upon activity or diagnostic 

reasons. Warning lamps can also be actuated by the instrument panel ECU, when the input 

signal provided by the sensor is not in the form of an on/off state and needs to be computed. 

As an example, the connection between the engine coolant temperature sensor and the 

instrument panel ECU enables the instrument panel MCU to analyze the engine coolant 

temperature and actuate the warning lamps accordingly.  

2.4.2.2  Networked Architecture 

 

 

Figure 2.22 - Instrument panel networked architecture example 
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The philosophy inherent to the architecture described on Figure 2.22 consists on 

integrating the instrument panel ECU in a network connection with the sources of 

information. 

 Two different types of networks are connected to the instrument panel ECU. The first, as 

seen on the left part of Figure 2.22 is a high speed network where  the engine ECU, brake ECU 

and all the dynamic controllers of the vehicle are connected. The second network at the right 

part of Figure 2.22 is a low speed network where components mainly belonging to the body 

domain are connected. Just like it was referred on the previous architecture, controllers are 

directly connected to the lamps as necessary.  

The fuel level sensor, lighting switches and others whose values are not required by any 

ECUs are computed by a multifunction ECU, which transmits its values over the network to 

the instrument panel.  

Variables of interest which have to be displayed and are produced within an ECU are 

transmitted over the network to the instrument panel ECU. As an example, the crankshaft 

position sensor is required by the engine ECU as the value of RPM is required for controlling 

the engine. RPM is computed on the engine control ECU and sent over network so it can be 

displayed to the driver. 

This solution has many advantages comparing to the architecture demonstrated on Section 

2.4.2.1: 

 

1 .  The number and complexity of wiring is drastically reduced 

2 .  The number of elements that may be connected with the instrument panel is only 

limited by the type of network 

3 .  The complexity of the information that is displayed is higher 

4 .  The flexibility is higher, as the information to display is not dependent on the 

number and type of interfaces present on the instrument panel controller. 

 

By integrating the instrument panel ECU in a network with other systems, the ECU can 

capture messages that are being traded between other systems. For instance, when loss of 

traction is detected by the TCS, a message is transmitted by the TCS to the motor ECU to 

reduce torque. The instrument panel ECU can capture this message and display the TCS 

activity to the driver. In this way, network load and computational efforts are optimized. 

Additional systems can be integrated by simply connecting them to the corresponding 

network. Extra sensors that are required for displaying information to the driver can be 

connected to multifunction ECUs that are connected to the network.  

2.5  Steering Systems 

The steering system is responsible for transforming the driver's steering intentions into the 

actual change of vehicle direction. Steering systems have evolved from rather simple 

mechanical systems to sophisticated intelligent systems that ease the driving, provide more 

comfort and offer more security.  

Steering systems started as purely mechanical systems in which no assistance was 

provided to aid the driver in steering the wheels. In these systems the driver was the unique 

source of the force required for overcoming the friction coefficient between the surface and 

the tires. When the vehicle is stopped or moving slowly, the effort demanded to the driver for 
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steering the wheels can cause the driving experience to be quite unpleasant. The heavier a 

vehicle is or the largest its tires are, the more this issue is aggravated.  

This situation was later overcame by power steering systems, which are available in the 

vast majority of vehicles sold nowadays and consist on mechanisms to assist the driver in 

turning the wheels by amplifying the driver's steering torque inputs [19]. Power steering 

systems exist mainly in three different kinds: hydraulic, hybrid i.e., a mixture between 

hydraulic  and electric, and electric.  

These systems allowed that heavier vehicles or equipped with wider tires could be easily 

maneuvered, despite the higher frictional forces associated with these characteristics. The 

mechanical details of such systems are not in the scope of this document, but a simple 

explanation of each these systems will aid the understanding of the factors and issues 

involved later in this section.  

The last trend in steering systems are the steer-by-wire systems, in which on the contrary 

of other systems mentioned above, is based on the removal of all mechanical connections 

between the steering inputs and the steering actuators. Steer-by-wire concepts are described 

later on Chapter 4.  

Four wheel steering is another concept whose popularity is gaining ground, and 

therefore is also referred in this section.  

2.5.1  Hydraulic Power Steering 

In hydraulic power steering systems, the assisting force is provided by pressurized fluids. 

Hydraulic fluid pressure is controlled by a pump which is mechanically coupled  with the 

engine. Therefore, the rotation speed of the pump's rotor depends on engine speed. Figure 

2.23 and Figure 2.24 illustrates a hydraulic power steering system applied in a rack-and-

pinion configuration.  

 

 

 

Figure 2.23 - Hydraulic power steering system applied to a rack-and-pinion configuration [20] 
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Figure 2.24 - Power steering hydraulic pump [20] 

 

Hydraulic power steering systems are made in such a way that when the vehicle is idle, 

there is enough pressure for the steering to be comfortable. This has the consequence that 

when the vehicle moves faster, more pressure than needed is created, inducing the feeling 

that the steering is too soft. In order for this pressure not to raise to dangerous levels that 

could damage the hydraulic circuitry, a pressure relief valve is inserted the hydraulic circuit. 

A mechanical system that senses the steering intention is connected to hydraulic pressure 

valves, for enabling the system to provide assistance only when there is an intention to steer 

the vehicle [21].  

As it can be denoted, these systems do not integrate any electronic device and were 

referred only for contextual reasons.  

2.5.2  Hybrid and Electric Power Steering 

Both hybrid and electrical power steering systems share the same principles. The 

difference between them resides on the source of the assisting force. On hybrid power 

steering systems, the assisting force is provided by hydraulic pressure, by means of an 

electric pump, while in electrical power steering systems the same is provided by means of an 

electrical motor.  

When the driver intends to steer, it applies a force on the steering input device. Along 

with the speed of the vehicle, this torque is fed onto the power steering control ECU and the 

required assistance is evaluated taking these parameters into account. An example of an 

assisting curve can be depicted on Figure 2.25.  
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Figure 2.25 - Power steering assist curve [22] 

 

The assisting force must be higher when the vehicle is stopped and tend to zero as speed 

increases. This enables the driver to have a more precise control of the vehicle.  

Power steering systems are mechanically connected in such a way that a computational 

failure in the system does not cause the driver to lose control of the vehicle, as there is 

always a mechanical connection between the steering input system and the wheels. However, 

a faulty element can lead the force providing mechanism to develop a force when it is not 

supposed to. Such a situation can be dangerous and therefore, steering systems must be 

provided with fail safe mechanisms.  

2.5.2.1  Electro-Hydraulic Power Steering 

The electro hydraulic power steering system was developed with two main objectives. 

The first was the reduction of fuel consumption, associated with the ineffective arrangement 

consisting on having the hydraulic pump coupled with the engine. Secondly, extra comfort 

and controllability were demanded, as hydraulic power steering systems' natural assisting 

curve (in which the steering force rises with vehicle speed) did not offer a satisfactory 

behavior. 

In electro hydraulic power steering systems, the hydraulic pump is driven by an electric 

motor and not by the engine. Therefore, the hydraulic pressure applied to assist the steering 

can be regulated by controlling the electric motor. 

2.5.2.2  Electric Power Steering (EPS)  

Electric power steering systems take advantage of electric motors to provide the assisting 

steering force. Its working principle is similar to the hybrid power steering system. Comparing 

with the other solutions discussed,  EPS reduces energy consumption, the steering system's 

weight, provides easier and more powerful control methods [23], and is more environmental 

friendly due to the elimination of the hydraulic fluid [24].  
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Figure 2.26 - Electric power steering [24] 

2.5.3  Power Steering Architecture 

In Figure 2.27 the architecture of a basic power steering architecture can be observed. 

Although only the basic sensors are represented, other variables can be taken in account to 

enhance the performance of the power steering system such as a steering angle sensor, 

steering speed, lateral acceleration, motor temperature among others. 

 

 

Figure 2.27 - Power steering architecture 

Vehicle speed is either obtained by connecting the vehicle speed sensor to power steering 

MCU or by means of a network connection between the power steering control unit and the 

motor or brake ECUs. 

The power steering ECU is commonly connected to the instrument panel ECU so that 

diagnostic data can be exchanged. The failure of the power steering system can have 

catastrophic consequences. Therefore the power steering control unit is commonly suited 

with fault detection mechanisms which de-energize the steering actuators in case of 

computational failure. 
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2.5.4  Four Wheel Steering (4WS) 

Ackerman driving is the driving configuration of cars and 4x4 motorcycles. It consists of 

two wheels that do not steer in the rear and two wheels that steer in the front. Ackerman's 

principle relies on intersecting at all times the axis of all of the wheels in one point. In case 

this intersection is not observed, slippage of the wheels occurs [25].  

The point where the axis of all wheels intersect is denominated the instantaneous point of 

curvature. Therefore, as it can be observed by Figure 2.28, inner wheels turn sharper than 

outer wheels in respect to the curve. 

 

 

Figure 2.28 : Ackerman drive geometry 

 

Four wheel steering can reduce the instantaneous point of curvature (21% referred on 

[26]) and provide more mobility to a vehicle. This is useful when the vehicle is moving slowly, 

so that maneuvers can be made more easily. 4WS enables the reduction of the instantaneous 

center of curvature by steering the rear wheels in the opposite direction than the front 

wheels. 

 

 

Figure 2.29 : 4WD decrease of turning radius 

 

At high speeds, 4WS increases vehicle stability [27]. To achieve that, rear wheels steer in 

the same direction as the front wheels. 
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Figure 2.30 - 4WD at high speeds 

 

 

 

 

 

 

Figure 2.31 - Increased stability of the 4WS system when compared to 2WS [28] 

 

 

 

 

Figure 2.32 - 4WS Jeep Hurricane [29] 
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2.5.4.1  4WS architecture 

The four wheel steering architecture is depicted on Figure 2.33. The 4WS MCU analyses 

the steering wheel position and vehicle speed. After computing the desired rear wheel 

position, rear wheels are orientated by means of an electric motor. 

The steering wheel position can be shared by the power steering ECU by means of a 

network connection or the steering wheel position sensor can be directly connected to the 

4WS control unit.  

 

 

 

Figure 2.33 - 4WS architecture 

2.6  Exterior Lighting Systems 

Lights have the task of illuminating the path to the driver and to assist in evidencing the 

vehicle's shape, so other drivers are aware of it with the minimum possible effort. According 

to an issued report by the United States department of transportation, vision contributes with 

90% of the information needed to the driver, hence the fact that most of the accidents 

happen at night, or during bad visibility periods due to poor weather conditions such as rain 

or fog. 

The types of lights that shall be present in a vehicle and the situations that their use is 

mandatory varies from country to country. The various types of lights that are commonly 

found in vehicles are: 

 
1. Low beam - Cruising lights that do not obfuscate other drivers and provide 

enough illumination for night driving 

2. High beam - Intense lights that can only be used when the vehicle is not crossing 

with other vehicles as it produces considerable amounts of glare  

3. Daytime running lamps - Mandatory in some countries. Low intensity lights that 

enable a better perception of the vehicle  

4. Directional indicators - Blinking lights that indicate other drivers the intention in 

changing direction.  

5. Brake lights - Give other drivers the information that the vehicle is braking 

6. Reverse lights - Provide other drivers with the indication that the vehicle is 

driving on reverse 
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7. Fog lights - Provide better illumination on foggy environments  

 

Lighting systems have been suffering a deep evolution in the past years. The lighting 

system is changing from being a static system, to a dynamic system that actively contributes 

to safety and comfort.  

In this section, several emergent features regarding lighting systems are presented. The 

names in which these systems are known vary from manufacturer to manufacturer. 

Therefore, adaptations or mixes between system names are used.   

This section would not be complete without a brief comment on light-emitting-diode 

(LED) lighting systems, due to their potential of becoming the most widely used lighting 

solution. LED lighting systems offer space reduction, less energy consumption, longer lasting 

life and faster rise to full intensity than standard bulbs. Due to the massification of its 

production, prices are dropping which means that it is expected that in the future the vast 

majority of the cars will run on led lights. Despite of what can be thought at first sight, the 

task of implementing LED lights on a vehicle is not trivial, due to the fact that in combustion 

engine vehicles the battery voltage can vary between 9 to 16 Volt. Therefore, the traditional 

way of driving a LED which consists in connecting a series resistor is not applicable, since 

variations in voltage cause variations in the LEDs' currents, which in turn will cause a variation 

on light intensity. Instead, buck-boost controllers are commonly implemented, which typically 

requires a microcontroller to generate the duty cycle signal and perform monitoring on LED's 

current so it doesn't exceed its rated value. 

2.6.1  Automatic Lighting 

Automatic lighting systems activate low beam lights upon detection of darkness or rain. 

This is achieved by sensing ambient light and rain through specific sensors that are connected 

to the lights ECU. 

2.6.2  Fused Light Detection 

The fused light detection system operates by monitoring the current fed to each bulb. 

When the lights ECU sends a signal to activate a certain bulb and no current flowing to it, it 

may indicate that the bulb is fused. In case of LED lights are used in series, an increase in the 

LED's current may also indicate led failure. 

2.6.3  Dynamic Headlight Range Adjustment 

Vehicle dynamic motion on the vertical axis causes the range of the headlights to change. 

When the vehicle is tilting forward, the range is reduced thus reducing the driver's sight. 

Upon forward tilt, the range is augmented, in which glare can be induced and blind other 

drivers. Vehicle front and rear tilting happens for several reasons: heavy load on the rear or 

front of the vehicle, bumps on the road or upon fast accelerations or decelerations. 

The objective of the dynamic headlight range adjustment system is to grant that the 

vertical motion of the vehicle does not affect the headlights range.  
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Figure 2.34 - Vehicle with headlights on 

Figure 2.34 depicts a vehicle with its low beam headlights turned. Due to  the flat surface 

of the road and the vehicle's weight distribution, the light rays are pointing down, not causing 

glare to the front vehicle. 

 

 

Figure 2.35 - Range of headlights increased due to forward tilt 

It can be seen on Figure 2.35 that a forward tilt caused by a bump on the road increases 

the level of the headlights, which can cause the front driver to dazzle.   

In a vehicle with dynamic headlight range adjustment, sensors monitor the vertical 

dynamics of the vehicle and, upon detection of front or rear tilts, the direction of the lights is 

adjusted, granting a constant range.  

  

 

Figure 2.36 - Dynamic headlights range adjustment maintaining headlight range despite of vehicle tilt 

 

2.6.3.1  Dynamic Headlight Range Adjustment Architecture 

Figure 2.37 depicts the architecture of light system with dynamic headlight range 

adjustment.  

Switches are responsible for acquiring the driver's commands. In some of the studied 

systems these are connected to a dedicated unit responsible for acquiring their state and 

sharing it by means of a network connection with the lights ECU. 

 The front and rear level sensors are responsible for acquiring information relative to the 

vertical dynamics of the vehicle. In some vehicles the value of these sensors is computed in 

another ECU which has the task of controlling the vertical dynamics of the vehicle and shared 

via network (dynamic suspension ECU).  

Upon detection of a forward or rear tilt, the MCU which controls the lighting system 

request the motor controllers to assume a predetermined position. 

Light intensity controllers receive commands via communications network to 

enable/disable the controlled lights and adjust their intensity. 
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Figure 2.37 - Dynamic Headlight Range Adjustment Architecture 

2.6.4  Adaptive Cornering Light 

Having a good light source is not enough for the driver to have a good visibility. If lights 

are not pointed to the vehicle's path, the driver might not be aware of obstacles within its 

trajectory. Figure 2.38 depicts a vehicle turning without adaptive cornering light. It can be 

seen that the lights are pointing to the front of the vehicle while the vehicle is having a 

circular motion.  

 

 

Figure 2.38 - Vehicle without adaptive cornering light system 
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Figure 2.39 illustrates a vehicle equipped with the adaptive cornering light system. The 

lights ECU analyzes vehicle dynamics and calculates where the lights should be pointed at. 

Electric motors adjust the determined swivel angle so the lights are always pointed to the 

direction of motion of the vehicle. 

 

 

Figure 2.39 - Vehicle equipped with adaptive light cornering system 

The swivel angle is determined based on three variables: vehicle speed, steering wheel 

position and yaw rate. The steering wheel position is used to compute the swivel angle for 

low speeds (typically below 40 Km/h), while for high speeds both the vehicle speed sensor 

and yaw rate are used to compute the swivel angle. 

2.6.4.1  Adaptive Cornering Light System's Architecture 

An architecture able of implementing the adaptive cornering light system is similar to that 

given on Figure 2.37, with the addition of motors and their respective controllers to adjust 

the horizontal position of the lights. The value the yaw sensor is typically shared by the brake 

ECU while the steering wheel angle is typically shared by the power steering ECU.  

2.6.5  Camera Based Lighting Systems 

This section provides a brief description of the upcoming (and already available in some 

high end models) lighting systems that provide extra safety and comfort. All of the systems 

described in this section rely on image analysis. 

2.6.5.1  High Beam Assist 

Several studies point out that high beam lights are rarely used even in situations when 

these do not cause other drivers to glare. This can be seen as a waste of illumination 

potential as high beam lights illuminate much further ahead, giving extra time for the driver 

to perceive potential dangerous situations and react accordingly.  
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The high beam assist system captures images of the surrounding environment such as road 

lights, headlights and rear lights of other vehicles and decides whether high beam lights are 

required or not. In case that the road light is sufficient or in case other vehicles are in risk of 

perceiving glare, high beam lights are disabled.  

2.6.5.2  Adaptive Cutoff Line 

Adaptive cut-off line system can be seen as an upgrade of the high beam assist. It has the 

task of optimizing the driver's visibility. A camera analyses front vehicles, and light angle is 

adapted so the cut-off line ends as far as possible, while not blinding the front vehicle's 

driver. If the system does not detect any drivers ahead, low beam lights are switched to high 

beam. Figure 2.40 illustrates an adaptive cut-off regulating the cut-off line according to the 

front vehicle. 

 

 

Figure 2.40 - Adaptive cutoff line 

2.6.5.3  Glare Free Systems 

Glare free systems are another update of the high beam assist system. With it, vehicle's 

can drive with high beam lights on without affecting other drivers. Glare free systems analyze 

the position of other vehicles and block parts of the light that can disturb other drivers.  

 

 

Figure 2.41 - Glare free system 
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In Figure 2.41 is represented a vehicle with a glare free system that controls a multiple 

LED light source. According to the information acquired through the analysis of camera 

images, the LED modules that have its light rays targeting other vehicles are pointed in a 

direction in which they do not induce glare on other drivers. 

2.6.5.4  Marking Light Systems 

While drivers might be with their attention focused on several light sources, some 

situations might happen that require the driver's sudden attention. Events such as a 

pedestrian crossing or an incoming vehicle in a crossroad might not be flashy enough to get 

the driver's attention.  Marking light systems have the task of illuminating objects that appear 

suddenly, thus shifting the driver's attention for situations that might impose danger.  

 

 

Figure 2.42 - Marking light system evidencing a pedestrian 

Figure 2.42 illustrates a light marking system in action. While the vehicle is driving 

straight ahead, a pedestrian (represented by a red circle) is standing near the crosswalk. The 

marking light system identifies this situation and illuminates the pedestrian so the driver can 

be aware of it. 

2.6.5.5  Night Vision Systems 

Night vision systems take advantage of infra red light to capture what the human eye 

cannot. In a vehicle equipped with a night vision system, an infrared light source emits 

infrared light, which hits objects and reflects back to an infrared camera that is connected to 

an image analysis system and a monitor. The image analysis system performs routines in order 

to detect potential dangerous situations, and upon detection of these engages actions so the 

driver can be aware of it.  
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Figure 2.43 - BMW night vision system 

 

2.6.6  Lighting Systems Architecture 

Figure 2.44 depicts an architecture capable of handling all the described features. Image 

processing tasks are generally achieved in a microcontroller with an embedded digital signal 

processor (DSP) due to the high computational power required. 

 

 

Figure 2.44 - Lighting systems' architecture 
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2.7  Propulsion System 

In this section a brief description of electrical propulsion systems is presented. Electrical 

propulsion systems consist of five main elements: the motor controller, an electronic power 

conversion unit, the electric motor (or motors), transmission (if required) and wheels.  

The motor controller determines the desired torque/speed values according to the system 

inputs, and actuates the power drivers in order to achieve the desired performance. The 

inputs to the propulsion system MCU are the throttle and brake pedals (refer to Section 2.7.1) 

positions and requests from other ECUs. 

Among others that might arise from the systems installed in the vehicle, typical requests 

are torque reduction requests from the TCS system, speed setpoints by the adaptive cruise 

control system, or regenerative braking requests by the braking ECU. Such systems are 

interconnected to the motor ECU by means of a network connection. The outputs of the 

motor ECU and feedback sensor variables are conditioned by the type of motor used and the 

chosen control method. Figure 2.45 depicts an illustration of the typical architecture of an EV 

propulsion system. 

 

 

 

Figure 2.45 - Propulsion system architecture 

2.7.1  Regenerative Braking 

The electric motor has the task of converting the electrical energy provided by the 

batteries/ultracapacitors into the motional energy that is responsible for moving the vehicle. 

Also, the opposite can happen as electric motors can act as generators, proving energy back 

to the source. When a motor is acting like a generator, a torque which counteracts the 

rotation of the motor is induced. The use of this torque to aid in braking the vehicle is called 

regenerative braking.  

Regenerative braking is important as huge amounts of energy are wasted in the form of 

temperature in frictional brakes, and energy is considered to be the main problem that needs 

to be overcome in order to make EVs commercially viable. As an example, in [30] is claimed 

an increase of 8-25% in EV's driving range by the use of regenerative braking and its efficiency 
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is empowered in stop-and-go driving conditions such as in city environment. Moreover, it 

prevents wear on mechanical brakes.  

Energy regeneration happens when the motor's back electromotive force (EMF) is greater 

than the voltage supplied by the power driver. In this way, instead of flowing from the 

batteries to the motor, current flows from the motor to the batteries. This happens when the 

speed of the motor is higher than the demanded speed.  

Regenerative braking alone does not provide enough braking force [31]. Hence, frictional 

braking systems must coexist and work together with the motor ECU, which controls 

regenerative braking to generate the desired braking force altogether.  

Only the axles/wheels that are connected to the motor/s can capture energy. When 

braking, in order to regenerate the maximum amount of energy, the regenerative braking 

force value must be the maximum value that can be provided without provoking wheel lock-

up. In situations where high intensity braking is demanded, in which the amount of braking 

force surpasses the value that regenerative braking can provide, the remaining brake force is 

provided by frictional brake systems. Hence, regenerative braking relies on a strong 

cooperation between the motor and braking control units.  

2.7.2  Cruise Control 

The cruise control system enables vehicle speed to be automatically controlled. This 

results in higher comfort and ultimately in safety, as drivers tend to drive faster if the speed 

is not automatically controlled with the increase of the journey time.   

Typically, it requires no additional hardware as the control can be achieved by software 

in the motor controller.  

2.8  Adaptive Cruise Control (ACC) 

The adaptive cruise control system is an enhancement of the cruise control system. 

Besides maintaining a constant speed when no vehicles are located ahead, the ACC measures 

the travelling speed of vehicles ahead, their distance and angle by means of a radar sensor 

and actuates the throttle pedal and brakes automatically in order to maintain a constant 

distance or headway time [32]. 

 

 

 

Figure 2.46 - Adaptive Cruise Control maintaining a constant headway time [33] 
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 The adaptive cruise control is a complex system which relies not only on the radar sensor 

but also in values provided by other ECUs, as detecting objects alone is not enough for 

performing a correct evaluation of the situation.  

The objects that must be considered for the adaptive cruise control operation are the 

ones traveling in the same lane as the vehicle. Situations where the vehicle is turning, and 

consequently in which front vehicles are also turning, demand the cooperation between 

several control units, which provide the values of interest variables such as speed of the 

vehicle, steering angle and yaw momentum that enable the ACC system to evaluate the 

situation. Such variables are also used for performing calculations when the vehicle is 

changing lanes, as the ACC is required to track objects on the lane in which the vehicle is 

moving to.  
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Chapter 3  

In-Vehicle Networks 

3.1  Introduction 

This section presents the major networking solutions used by manufacturers to 

interconnect the systems referred in the previous chapter.  

The first computational based features that were implemented in the automotive industry 

relied on centralized architectures, consisting of a set of sensors and actuators connected to 

a microcontroller.  

Due to the low interaction between ECUs, in the cases that data exchanges were 

required, this would be achieved by means of point-to-point connections between the 

corresponding ECUs. Upon appearance of more complex features that demanded a strong 

cooperation between multiple ECUs, allied to a significant increase in the number of sensors 

and actuators connected to ECUs, the huge number of wires present in vehicles started to 

compromise their overall competitiveness: cost, complexity, reliability and weight were the 

major concerns [34].  

Soon, the automotive market started to demand solutions that that could enable multiple 

ECUs to transmit data over the same transmission medium.  

 

 

 

Figure 3.1 - Reduction of number of wiring by means of interconnecting ECUs in a network 
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Due to their importance in the automotive market, the controller area network (CAN), the 

local interconnect network (LIN) and Flexray are introduced with further detail.  

3.2  Network Requirements for the Different Automotive 
Domains 

The different vehicle domains discussed in Chapter 2 impose different requirements on 

the networks that support their operation. In [7], the following requirements are considered:  

 

 Fault tolerance - the ability of the communication network to withstand 

behaviors that are not congruent with its specification. Fault tolerant networks 

embed a series of mechanisms such as bus guardians, which prevent nodes to 

transmit in time frames that are reserved for other nodes, and redundant 

hardware and software which provide error detection, confinement and recovery 

 

 Predictability - the ability of a communication system to know when messages 

will be transmitted. Predictable communication systems are usually achieved by 

enforcing messages to be sent at predefined time instants or time intervals 

 

 Bandwidth - the data rate supported by the network system 

 

 Flexibility - the ability of the network to cope with both event and time-triggered 

messages, various scenarios of network load and network scalability 

 

 Security - the ability to prevent unauthorized access 

 

 

Table  3.1 presents the automotive domains referred on Chapter 2 and their major 

requirements 

 

Table  3.1 - Automotive domains and their major requirements. Based in [7] 

Subsystem Fault 

tolerance 

Predictability Bandwidth Flexibility Security 

Powertrain YES YES HIGH NO NO 

Chassis YES YES HIGH SOME NO 

Body SOME SOME MEDIUM SOME NO 

Passive Safety YES YES HIGH NO NO 

HMI/Infotainment NO SOME HIGH YES SOME 

Telematics NO SOME MEDIUM YES YES 
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3.3  In-vehicle Network Classifications 

The Society for Automotive Engineers (SAE) classifies the types of networks which are 

commonly found in vehicles according to their bitrates into four different classes that are 

described in this section. 

3.3.1  Class A Networks 

Class A networks are typically low cost networks characterized by transmission rates lower 

than 10 Kbps, that are used to transmit control data in the body domain [34]. Systems 

integrated in the body domain such as door control, climate control, seat adjustment among 

others, do not impose strict timing requirements or high transmission bitrates, as 

communications are mainly event-triggered. Examples of class A networks are the local 

interconnect network (LIN) and time-triggered protocol A (TTP/A). 

 

3.3.2  Class B Networks 

Class B networks operate at bitrates ranging from 10 to 125 Kbps and are mainly used to 

support data exchanges between ECUs to reduce the number of sensors by sharing 

information [6]. Low-speed CAN and J1850 are examples of class B networks. 

 

3.3.3  Class C Networks 

Class C networks are characterized by having transmission rates from 125 to 1 Mbps, and 

have been used over the years to integrate systems from the powertrain and chassis domain. 

An example of a class C network  is the high-speed CAN. 

 

3.3.4  Class D Networks 

Class D networks operate with bitrates higher than 1 Mbps and are oriented for advanced 

powertrain and chassis systems, supplemental restraint systems, drive-by-wire systems and 

multimedia data [34].  

Examples of class D networks are Byteflight, time-triggered protocol C (TTP/C), Flexray, 

Media Oriented Systems Transport (MOST) and FireWire (IEEE 1394). 
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3.4  Communication Networks for the Automotive Industry 

To overcome the perceived limitations of the I2C and D2B networks which were used in 

automobiles [35], Bosch started the development of the network that would revolutionize the 

hole automotive industry in 1983: the controller area network (CAN). The first specifications 

were publicly presented in 1986 at the society of automotive engineers congress, and the 

protocol was widely implemented in the beginning of the 90's.  

CAN was designed to be a high performance communication system to support the 

operation of the powertrain and chassis domain, gifted with powerful arbitration, fault 

detection, error confinement mechanisms, and bit rates ranging from 10 Kbps up to 1 Mbps. It 

is also used as the communication protocol for systems belonging to the body domain, serving 

as the backbone for LIN, a low cost network targeted for the requirements of the body 

domain. Due to its success, CAN became an international standard: ISO 11898 [36].  

As new generations of vehicles started to carry more sophisticated electronic systems, 

along with the upcoming drive-by-wire systems, higher bit rates, strict determinism and more 

reliability started being demanded. 

The necessity for higher bitrates is a consequence of the increase in the number, 

complexity and the level of interaction between the different systems within a vehicle. Bit 

rates up to 10 Mbps are expected to be required [37], as opposed from the 1 Mbps top bitrate 

offered by CAN. 

The upcoming drive-by-wire systems and other critical features require levels of 

determinism which CAN is unable to provide as an event triggered protocol [37]. First of all, 

due to the fact that nodes are allowed to produce messages asynchronously, the number of 

collisions a frame faces with high priority frames is unknown. High priority frames with no 

errors might be sent by a faulty node continuously, giving lower priority frames no chance to 

be transmitted (the babbling idiot problem). Such situations can lead to the miss of deadlines 

of hard real time tasks as well as dangerous jitters that affect control algorithms. 

Furthermore, CAN does not allow a bus guardian to be implemented as a consequence of the 

uncertainty of when a message will be transmitted. Consequently, erroneous nodes 

outputting high level priority messages cannot be disabled, thus blocking the entire network.  

The reliability required by safety critical systems in vehicles demands the support of a 

redundant transmission medium, as critical systems cannot rely on single points of failure. On 

its specification, CAN does not address the implementation of redundant transmission 

mechanisms.  

Several attempts were made to overcome CAN's referred limitations. The most popular 

protocols that were developed in order to overcome CAN limitations were TTCAN, Byteflight 

and TTP [37].  

Exhaustive technical analysis were performed by a group of automotive companies to 

discover whether any of these protocols was capable of meeting all the requirements for the 

upcoming generation of vehicles. It was proved that none of them could fulfill those 

requirements, which led to the development of a new communications network called Flexray 

[38]. Flexray is now starting to be adopted but its cost is still considered to be high and 

therefore it is still used in conjunction with CAN. 

TTEthernet is also able to provide the deterministic behavior and fault tolerance 

mechanisms as Flexray, with the addition of supporting bitrates up to 10Gb/s. Given its 

potential, TTEthernet is discussed in Section 3.8.   
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3.5  Controller Area Network 

Controller area network (CAN) is the most widely used network in the automotive industry 

[39]. Due to its importance, more emphasis is put on this document in the presentation of this 

network. Due to space and time requirements, the vast majority of details behind this 

protocol were omitted, given the amount and complexity of many of the questions involved. 

A detailed description of the protocol can be found in [40]. 

CAN is a multi-master protocol that uses a CSMA/CD (carrier sense multiple 

access/collision detection) mechanism with a non destructive arbitration concept. It is fitted 

with many error detection and recovery features, while granting enough bitrate to be 

adequate to be used as the transfer protocol between high dependability subjects of today's 

vehicles.  

Due to the fact that the frame transmission system in the CAN protocol is based on the 

priority of messages to be transmitted, the CAN protocol enables its nodes to be configured to 

suit the necessities of real time operation, despite being an event-triggered protocol. 

Therefore, CAN has been actively being used as the protocol to transfer information 

between engine, braking systems, power steering, among other ECUs. In [40],  the following 

two layers of the OSI reference model are specified: 

 
1. Physical layer: Description of bit timing, encoding and synchronization. It must 

be empathized the that the transmission medium or drivers are not specified, to 

give room for optimized solutions according to any application. 

 

2. Data link layer 

a. MAC sublayer: Responsible for framing, arbitration, acknowledgement, 

error detection and signaling.  

b. LLC sublayer: message filtering, overload notification and recovery 

management 

 

Gross bitrates achieved by CAN depend on the physical medium and transmission distance. 

Two ISO standards define the electrical characteristics, based on two different speed targets 

according to Table  3.2. 

Table  3.2 - CAN standards 

Group Standard Bit rate 

Low speed CAN ISO1189-3 10 Kb/s to 125 Kb/s 

High speed CAN ISO11989-2 125 Kb/s to 1Mb/s 

 

 

Throughout the following descriptions the same nomenclature of the CAN 2.0 specification 

is used regarding bit values. The transmission medium must be in its recessive state when no 

node is transmitting or is transmitting a recessive bit, and in its dominant value when at least 

one node is transmitting a dominant value even if other nodes are transmitting recessive bits. 

This behavior is denominated as a wired-and logic.  
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3.5.1  CAN Nodes Interaction Model 

Flexibility was one of the major concerns upon the design of the CAN specifications. 

Hence, to outfit each node with a physical address and route messages with the basis of that 

address would not provide the desired elasticity, as changing the network configuration would 

require the reconfiguration of all of the nodes.  

Therefore, CAN nodes transmit messages in a publisher-subscriber fashion. This implies 

that all messages are broadcasted into the network. Upon reception of a message, each node 

decides whether the message is to be processed or not. This decision is based on the message 

identifier, placed on the arbitration field of each frame. 

3.5.2  Bus Access 

In a multimaster network like CAN each node is free to start the transmission of a frame. 

However, multiple nodes can start transferring data at the same time. CAN frames are 

provided with a specific field (the arbitration field) for handling arbitration between 

transmitting nodes. 

During the arbitration phase each sender compares the value present in the transmission 

medium with the value that it has transmitted. In case these values do not match, which 

uniquely happens in the case where the node has outputted a recessive level and a dominant 

level was observed in the line, the sender stops transmitting, as this implies that other node 

is sending a message with higher priority. It is important to note that the presence of multiple 

senders at the same time in the same network does not destroy the content of the higher 

priority frame. This form of arbitration is called non-destructive.  

Figure 3.2 depicts an example of the arbitration procedure between three emitting 

stations.  

 

 

Figure 3.2 - CAN arbitration procedure in a wired-and bus [38] 

The arbitration procedure implies that in a wired-and bus, in which the logical one 

assumes the zero bus value, and a logical zero assumes the one bus value, the lesser a 

message identifier is, the higher priority is granted to the frame. 
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3.5.3  CAN Frames 

3.5.3.1  Data and Remote Frames 

Data frames are types of frames used for different nodes to exchange data. Figure 3.3 

depicts the structure of a CAN 2.0 data frame.  

Remote frames are structurally similar to data frames but do not carry data, and are used 

to request a data frame with the same identifier. 

Every time a data or remote frame is transmitted, an interframe space composed by 3 

recessive bits is present.  

Data and remote frames' identifiers were originally designed with an eleven bit length. 

However, for certain applications, this number was proved to be insufficient. CAN 2.0B 

specification presents an extended version of data and remote frames, using an identifier 

composed of 29 bits.  

Both standard and extended frames can coexist in the same network, making extended 

frames to be an option only when it is actually needed, as the unnecessary number of extra 

bits in the identifier field represents extra overhead. 

 

 

 

Figure 3.3 - CAN data frame [40] 

 

Start of Frame 

The start of frame field is composed by one dominant bit and has the task of informing all 

nodes that a frame is about to be transferred. 

Arbitration Field 

Bits contained in this field are the basis for the arbitration procedure already discussed. 

The structure of this field in a standard frame is depicted on Figure 3.4. 
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Figure 3.4 - Standard format of CAN frame arbitration and control fields [40] 

 

In the standard frame format, the arbitration field carries the 11 bit message identifier, 

plus a bit known as remote transmission request (RTR). This bit signals whether the frame is a 

data or remote frame. Its value is dominant in the case of a data frame and recessive in the 

case of a remote frame. This implies that data frames have priority over remote frames with 

the same identifier.  

The arbitration field of an extended frame is illustrated on Figure 3.5. 

 

 

 

Figure 3.5 - Extended format of CAN arbitration and control fields [40] 

As it was already mentioned, the identifier field of an extended frame is composed of 29 

bits. The first 11 bits are denominated the base ID while the remaining bits of the identifier 

are denominate the extended ID.  

The base and the extended ID bits are separated by two bits: the substitute remote 

request (SRR) and the identifier extension bit (IDE).  

The SRR is recessive in an extended frame and overlaps the RTR bit in the standard frame.  

The identifier extension (IDE) bit informs whether a frame is in its extended form or not. 

In the case of a standard frame this bit is dominant, while in the case of an extended frame 

this bit is recessive. In this way, when two data frames with the same base ID are sent over 

the network, in which one of them is in the standard format and the other in the extended 

format, the standard frame will gain access to the bus. 
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Control Field 

The control fields of standard and extended frames are composed of 6 bits.  

Both standard and extended frames are composed of a section named data length code 

(DLC) which is used to specify the number of bytes present in the data field. Due to the fact 

that the maximum number of bytes in the data field is 8, the DLC is made of 4 bits.  

The first two bits of the control field are different for each frame. The control field of 

standard frames is composed of the IDE and a reserved bit (R0) for future uses, while the 

control field of extended frames is composed of the R0 and R1 bits, both reserved for future 

uses. 

It should be noted that the IDE bit is present on the control field of standard frames while 

in extended frames this bit is present on the arbitration field. 

In both types of frames, the reserved bits are sent as dominant.  

Data Field 

The data field is the section where the data is carried. 8 bytes can be transferred from 

the most significant bit (MSB) to the least significant bit (LSB).  

Cyclic Redundancy Check Field (CRC field) 

This section carries an error detection code discussed in Section 3.5.5.3. 

Acknowledge Field (ACK)  

The acknowledge field is similar in both standard and extended frames. It is composed of 

two sections: the ACK field and the ACK delimiter. When transmitting this field, the sender 

switches to listening mode, thus outputting a recessive level on the transmission medium. All 

the nodes in the network which received a successful frame containing no errors output a 

dominant level in the ACK field. This procedure informs the sender that the frame was 

correctly received by at least one node. 

End of Frame 

The end of frame field consists of seven recessive bits, which indicate that the 

transmission of the frame has ended. 

Error Frames 

Error frames are sent immediately on the next bit after the error detection. Upon 

detection of CRC errors, error frames are sent on the first bit after the ACK delimiter. Error 

frames have purposely a structure that violates the stuffing rule (refer to Section 3.5.5.2). 

Therefore, when an error frame is sent by a node which has detected an error, this will cause 

other nodes to detect a stuffing error, which will cause them to output their own error 

frames.  

The structure of error frames is illustrated on Figure 3.6.  

Error frames are composed of an error flag and an error delimiter fields. There are two 

kinds of error flags in the error frames: active and passive flags. The situations whether each 

of the flags is transmitted by a particular node is related to CAN's fault confinement strategy 

which is discussed in Section 3.5.6.  
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Figure 3.6 - CAN error frame structure [40] 

Active error frames are composed of 6 dominant bits, while passive error flags are 

composed by 6 recessive bits. When a node detects a transmission error, it starts emitting its 

own error flag. Therefore, the error flag segment has variable size as it might represent the 

superposition of various error flags between nodes. This superposition will have the maximum 

number of twelve bits, which happens in the case of a node detecting an error after a 

transition from dominant to recessive, which will cause other nodes to only detect the bit 

stuffing violation in the sixth bit of the error flag.  

After outputting an error flag, each station transmits recessive bits.  

Upon detection of a recessive bit in the transmission line, implying that all of the stations 

are transmitting recessive bits, which in turn mean that all nodes have transmitted error 

flags, each node transmits seven more recessive bits. Hence, the error delimiter section is 

composed by eight recessive bits. 

3.5.4  Overload Frames 

Overload frames have the task of creating a delay between the delivery of frames so data 

is not lost by an overloaded node. The structure of overload frames is similar to active error 

frames and two overload frames can be sent consecutively by a particular node.  

Overload frames consist of an overload flag and an overload delimiter, and are 

transmitted by any node under the following circumstances:  

 
1. In case that additional time is required to compute last operations, the overload 

frame is transmitted at the first bit time of the upcoming intermission 

 

2. Upon detection of a dominant bit at the first and second bits of intermission, or a 

dominant bit at the eight bit of the error delimiter, the overload frame is transmitted 

in the next bit after the dominant bit detected 

 

Upon detection of an overload flag, each node outputs its own overload flag.  

The overload delimiter operation is analogous to what was described in the error frame 

section. 

 

3.5.5  Error Detection, Processing and Management 

Due to the fact that CAN serves as the path for the exchange of safety critical messages, 

the protocol is equipped with several error detection mechanisms that are described in this 

section. 
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3.5.5.1  Bus Monitoring 

Disregarding the arbitration and acknowledge fields, when bus access has been granted to 

a node, it compares the value present in the line with the value that it is outputting. In case 

that these do not match, a bit error is present.  

3.5.5.2  Bit Stuffing 

The bit stuffing method consists in having the transmitter of a frame adding an extra bit 

after the detection of five consecutive bits with the same value, whose value is the 

complement of those bits. 

In this way, errors in which the node's outputs stay fixed in a dominant or recessive level 

are detected. Due to the fact that the CRC delimiter, ACK field and end of frame have fixed 

structures, these are not stuffed. 

3.5.5.3  Cyclic Redundancy Check (CRC) 

The cyclic redundancy check code is the rest of the division formed by treating the stream 

of bits since the start of frame until the end of the data field as a polynomial (with fifteen 

zeros added to the less significant coefficients and not stuffed) by the polynomial 𝑔 𝑥 =

 𝑥15 + 𝑥14 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥4 + 𝑥3 + 1 (BCH code). This value is sent on the CRC field.  

Upon reception of a frame, the receiver calculates the CRC value of the received message 

and compares with the received CRC value. In case that these values do not match, a 

transmission error has occurred.  

3.5.5.4  Message Frame Check 

Transmission errors can affect the frame's structure. Hence, each node monitors messages 

and checks whether incoming messages respect the frame's structure. In case this structure is 

not respected an error is signaled. 

3.5.5.5  Acknowledgement Field 

The acknowledgment of messages serves as the confirmation that a frame was correctly 

transmitted over the network (disregarding the unlikely event that an error might assume the 

form of a positive acknowledge). In case that the sender does not receive any positive 

acknowledgement, it can conclude that the message was not correctly transmitted and thus 

outputs an error frame. 

3.5.5.6  Error Frames Dispatch 

Error frames dispatching is discussed in Section 3.5.3.2. 

 

3.5.6  Fault Confinement Strategy  

The CAN protocol tries to minimize the effect of erroneous nodes on the network by 

confining their behavior. For this purpose, two kinds of counters are present  in each node: 

one for counting transmission errors and other for counting reception errors.  

Every time a transmission or reception error is detected the respective counter is 

incremented. On the contrary, upon successful reception or transmission the respective error 

counters are decremented. The increment/decrement of counters do not follow a 
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proportional rule, as errors cause the counters to be incremented by a greater value than the 

decrease of its value upon detection of a successful transfer. 

This provides a better perception of the fail distribution among the network as well a 

more strict confinement rule. Figure 3.7 illustrates the error confinement strategy: 

 

 

 

Figure 3.7 - Transitions between error states in CAN 

 

If error counters are both below 128 the node is said to be on the active error state. Being 

in the active error state means that the node operates normally and, upon detection of an 

error, the node will output an active error flag, causing other nodes to detect this error flag.  

If both counters are below 255 and at least one of the counters is above 127 the node is 

said to be on the passive error state. Likewise, the node will operate normally but upon 

detection of an error the node will output an error frame with a passive error flag, thus not 

interfering with the rest of the network.  

Nodes enter the bus off mode when transmission error counters are higher than 255. In 

the bus off mode nodes are not allowed to transmit. This prevents a faulty node to block the 

entire network. In this state the node is not allowed to transmit, but it monitors the network 

as 128 occurrences of 11 successive recessive bits trigger the node back to the active error 

state.  

3.6  Flexray 

Flexray is a communication system targeted for high-speed control applications in vehicles 

such as advanced powertrain, chassis, and by-wire systems [41]. Flexray is able to offer bit 

rates up to 10 Mbps and provides the support for dual-channel communication systems, which 

can either be used to provide redundancy if the same frames are carried in both 

communication channels, or double the available bandwidth, in case that the secondary 

channel is used for the transmission of additional data. 

Not only it does it enable bus topologies, but also other complex approaches such as 

active and passive stars, and mixes between these topologies to be implemented. Examples 

of topologies supported by Flexray can be found in Figure 3.8. 
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In addition to this, Flexray is able to grant bounded latencies and jitter through the aid of 

a TDMA based approach, a basic requirement for distributed control systems, while not 

leaving behind the support of event driven occurrences. 

 

 

 

 

Figure 3.8 - Flexray topologies [42] 

3.6.1  Bus Access 

Bus access within the Flexray protocol occurs taking as basis a communication cycle 

where two different bus access mechanisms take place. The first mechanism occurs in a 

section called the static segment and is based on the TDMA approach, able to guarantee fixed 

latencies and jitter in which distributed control systems rely on. The dynamic segment is 

responsible for handling events which are not periodic in its nature. The transfer of frames 

within this segment is subject to a prioritizing rule based on the frame identifiers. 

 

 

Figure 3.9 - Flexray communication cycle 
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3.6.2  Static Segment 

The static segment is where time-triggered frames are scheduled. It is divided in an equal 

number of sections called slots where each frame is carried. The number of slots present in 

the static segment is the number of frames that are exchanged periodically. 

 In order to ensure that two nodes do not communicate at the same time, slots are 

associated with frame identifiers which cannot be shared. Allocation of the frames to the 

respective slots is a process done offline. To maintain the periodicity of the communication 

cycle, if a frame is not sent in the respective slot, other frames are not anticipated and the 

slot time will carry no data.   

 

 

 

 

Figure 3.10 - Flexray static segment 

 

Due to the fact that a node is only allowed to communicate in a given slot if its frame ID 

is associated with that slot, nodes must keep track of the current slots in order to schedule 

the release of its frames. This is done by means of a local variable that starts with the value 1 

in the beginning of each static segment and is incremented at each slot time. 

The static segment enables control loops to be implemented in a single static segment. 

This scheme is known as in-cycle control [43].  

Figure 3.11 illustrates an example of what can be done using this technique in an ABS 

system. 

 

 

Figure 3.11 - Flexray in-cycle control 

Assuming that wheel speed sensors are connected in a Flexray network, frames carrying 

the values of wheel speed sensors are transmitted to the ABS ECU in the first slots of the 

static segment. Slots after the sensor acquisition that might carry or not useful data for other 

processes, enable the ABS ECU to have to time to process the desired brake values. After 

processing the wheel speed sensors' values, the ABS ECU can share the brake pressure values 

with the network. This control approach enables a tighter control of the processes within the 

vehicle. 
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3.6.3  Dynamic Segment 

The dynamic segment has a fixed length and is composed by subsections called minislots. 

Similarly to what was described in the static segment, each minislot is associated with one 

frame ID. If a node desires to transmit a determined frame it may only start its transmission 

within the associated minislot, and the access to the medium is granted until the end of the 

transmission, or the end of the dynamic segment. Hence, minislots grow taking the time of 

minislots with lower priority. Therefore, the closer to the beginning of the dynamic segment a 

minislot is, the higher priority a frame associated with that minislot will have. 

Figure 3.12 depicts an example which contains a schematic of its minislots and associated 

frame IDs, in the case that no frame is transmitted within its associated minislot.  

 

 

 

 

Figure 3.12 - Minislots in the dynamic segment 

 

If it is assumed that frames 2 and 4 are to be dispatched, once the dynamic segment 

reaches minislot 2, the node responsible for frame ID 2 takes control of the bus and starts 

transmitting. As the time required to transmit frame 2 is higher than the duration of the 

minislot, this will cause the minislot to expand. 

 

 

Figure 3.13 - Minislot expansion 

Therefore, the dynamic segment has no time left for transmitting frame 4, which must be 

transmitted within the next dynamic cycle.  

3.6.4  Symbol Window 

The symbol window is used for the transfer of specific protocol messages, denominated 

symbols. 

3.6.5  Network Idle Time 

The network idle time is as long as the remaining time between the sum of the static 

segment, dynamic segment and the symbol window lengths until the communication cycle 

time is achieved. Clock synchronization between nodes is performed during this time. To 

reduce network's wasted time, this field must be kept as minimum as possible. The minimum 

value permissible for this segment takes into account the maximum clock deviations that 

might occur between nodes.  
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3.6.6  Flexray Frame 

The Flexray frame is composed by three main sections: the header, payload and trailer 

segments. Figure 3.14 depicts the structure of a Flexray frame. 

 

 

 

Figure 3.14 - Flexray frame [42] 

3.6.6.1  Header Segment 

The header segment is composed by the following bits/sections: 

 

 Reserved bit - reserved for future developments of the protocol. 

 

 Payload preamble indicator bit - in static frames this bit signals whether the 

payload field contains a network management vector at its beginning. In case of 

dynamic frames, it is used to indicate the presence of a message ID in the 

beginning of the payload field. This bit is set to zero when none of the mentioned 

data is present.  

 

 Null frame indicator bit - indicates whether the payload field contains data or 

not.  In case that the payload field is empty this bit is set to zero. In case that the 

payload field contains useable data, it is set to one. The null frame indicator bit 

serves as a way of providing the receiving nodes with information such as whether 

the transmitting node had its data ready at the time of transmission of the frame 

or not. 

 

 Sync frame indicator bit - is set to one if the frame is a synchronization frame 

and is set to zero in the case that the frame is not a synchronization frame.  

 

 Start-up frame indicator bit - in case that the transmitted frame is a startup 

frame, this bit is set to one. Startup frames are only sent by nodes during cold 

start. The startup mechanism is not described in this document due to its 

specificity. More information on the startup mechanism can be found in [42]. 



 

 
Flexray 59 

 

 
 

 

 Frame ID - identifies the content and sender of the frame. Each communication 

slot has a frame ID associated to it. Hence, it is not allowed for nodes to share the 

same frame IDs. 

 

 Payload length  field - carries the number of words (sets of 16 bits) in the 

payload field. Since the maximum number of bytes in the payload field is 254, this 

section comprises 7 bits. 

 

 Header CRC - contains the CRC code calculated taking as basis the bits comprised 

between the sync frame indicator until the end of the payload length field.  

 

 Cycle count - the cycle count field contains the number of the communication 

cycle viewed from the transmitting node's perspective.  

3.6.6.2  Payload Segment 

The payload segment contains the data to be transferred in the frame. It can contain 

from 0 to 254 bytes of data. Due to the fact that the payload length field specifies the 

number of bytes to be carried as a mean of words, the payload segment always carries an 

even number of bytes. 

 As it was mentioned in previous sections, the first bits of this section can either contain 

the network management vector in case of frames transmitted in the static section or the 

message ID, in the case of a dynamic frame. The inclusion of a message ID on the payload 

field permits nodes to filter data based on the contents of this field. 

3.6.6.3  Trailer Segment 

The trailer segment contains a 24 bit CRC code for fault detection. A particular note on 

the effectiveness of this code must be taken into account as the hamming distance offered by 

this code depends on the length of the payload field. For payload fields which length is less or 

equal to 248 bytes, the hamming distance offered by the CRC code is 6 whether in the case 

that the payload length is higher than 248 bytes, the hamming distance offered is 4. 

 

3.6.7  Error Processing,  Management and Transmission Security 

3.6.7.1  Bus guardian 

The bus guardian is a device which monitors the communication channels. It is 

independent from the communications controller and grants extra reliability to the system. 

By knowing the frame schedule of the static section, it is able to detect if nodes erroneously 

try to access the bus on instants where they are not allowed to. Upon detection of such 

situations, the bus guardian can disable the bus drivers and notify the controller.  

3.6.7.2  CRC codes 

The CRC code mechanism is described on Section 3.5.5.3. 
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3.6.7.3  Dual Channel Transmission  

The multichannel ability of the Flexray protocol is able to provide even more reliability 

and fault tolerance to the system if the same data is carried on both communication 

channels. Safety critical systems might not be able to withstand the failure of the 

communication network. By having two distinct communication channels carrying the same 

data, the interruption of one of the communication channels is compensated by the non 

faulty channel. In case of transient faults, the redundant transmission channel is able to 

deliver the affected frames correctly.  

The delay of one of the communication channels allows an enhancement in fault 

tolerance. Figure 3.15 depicts an example where frames are being transmitted with a delay 

under the occurrence of a transient fault in both communication channels.  

 

 

Figure 3.15 - Message delay in a two channel Flexray network 

Due to the imposed delay, the error caused two different sections of the frame on each 

channel to be corrupted. Hence, it is possible to reconstruct the transmitted frame by 

utilizing the segments that have not been affected by the transient error.   

3.7  Local Interconnect Network (LIN) 

Different features demand for different network requirements. Vehicle systems mainly 

belonging to the powertrain and chassis domain demand high bitrates accompanied by 

powerful error detection and recovery mechanisms, as the processing of a miss value can lead 

to serious consequences. Because of its non criticality and low time constraints, some systems 

do not require the amount of functionalities and speeds that CAN or Flexray can offer. 

Furthermore, by implementing such functionalities in a system that does not require them, 

and given the fact that these functionalities are naturally associated with higher costs due to 

extra hardware/software components, the overall price of vehicles is raised without any 

added value. In order to overcome this issue, a group of vehicle manufacturers got together 

and formed the LIN consortium, with the objective of creating a low cost network for 

supporting the mecatronic elements of  a vehicle such as doors, windows, heating, seating 

adjustment among others [39].  

Local Interconnect Network (LIN) is master-slave network able to achieve bit rates up to 

20 Kb/s. Its concept of operation is based on the introduction of tasks. The master node 

contains a master and a slave task, while slave nodes only contain slave tasks. 
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Many of the details presented in the LIN specification package are not discussed in this 

section. More information is found in [44]. 

 

 

 

Figure 3.16 - LIN as a sub-bus of CAN [38] 

 

 

3.7.1  LIN Frames 

LIN frames are composed of two main sections: the header and the response field. The 

two sections are separated by a response space. The header is transmitted by the master 

task, while responses are provided by slave tasks.  

 

 

 

Figure 3.17 - LIN frame [44] 

LIN frames are composed of the following fields: 

 

 Break field - composed of at least 13 dominant bits and serves to signal all nodes 

that a frame transfer is about to start. This field is delimited by one recessive bit 

and is always transmitted by the master node. 
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 Synchronization field - enables nodes which use automatic baud rate detection 

to perform synchronization with the master node. In this section the master 

outputs the value 0x55 (1010101) so nodes can measure bit time through a 

capture counter and adjust their baudrates accordingly. 

 

 Identifier - composed of 10 bits: 1 start bit, 6 identifier bits, 2 parity bits and 1 

recessive delimiter bit. The identifier bits make it possible to address 64 possible 

messages. However, addresses 60 and 61 are reserved for diagnostic data, address 

62 for user defined extensions and 63 for future protocol enhancements. Parity 

bits provide the header with a basic fault detection mechanism with 2 hamming 

distance. The aggregation of the identifier and the parity bits is denominated the 

protected identifier. 

 

 Data field - consists of up to a maximum 8 bits of data. It is outputted by slave 

tasks in response to a given identifier.  

 

 Checksum - transmitted by the slave after the data field. It serves as the fault 

detection mechanism for the data field. Upon arrival of the frame, the master 

calculates the checksum in the same way and compares with the received value 

to check for errors.  

3.7.1.1  Types of LIN Frames 

Despite that the structure of all frames is the same, the following types of frames are 

listed in the LIN specification: 

 

 Unconditional  

 Event triggered 

 Sporadic 

 Diagnostic 

 User-defined 

 Reserved 

The difference between frames types resides in the timing and content of the data. 

Unconditional, event triggered and sporadic frames have particular bus access mechanisms 

that are referred in Section 3.7.2. 

3.7.2  BUS Access 

The LIN protocol follows a master-slave approach. Slaves are not allowed to transmit 

unless prompted. The determinism of the LIN protocol arises due to the fact that all of the 

communication in the bus is controlled by the master.  Following its schedule table, when the 

master intends to cause a slave task to transmit a particular message, it outputs an header 

whose ID is associated with that message.  

By analyzing the header's identifier and upon a positive parity check, each slave task 

determines whether if it is a publisher or subscriber of that particular ID. In case that the 
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slave task is a publisher, it outputs a response. In the case that it is a subscribers, it listens to 

the bus so the information can be processed. 

 

 

Figure 3.18 - LIN bus access [44] 

The master itself can send messages (responses) to other slaves. That is achieved by 

placing a slave task in the master node. The slave task captures the header provided by the 

master task and outputs its response. 

3.7.2.1  Unconditional Frames Transfer 

Unconditional frames are the data carrying frames. Figure 3.19 depicts an example of 

three different situations upon the transfer of unconditional frames: 

 

 

Figure 3.19 - Unconditional frames transfer [44] 

 
1. Frames transfer between slave to master -  the master outputs the header whose 

identifier triggers the slave response. Upon reception of the header, slave 1 identifies 

itself as the publisher of the data and replies with the appropriate data. 

 

2. Frames transfer between master to slaves - the master outputs an header whose 

identifier triggers the response from its own slave task 

 

3. Frames transfer between slaves - the master outputs a header which will trigger 

slave 1 to be the subscriber of the message and slave 2 to be the publisher. Upon 

transmission of the frame by slave 2, slave 1 will capture and process the transmitted 

data. 

3.7.2.2  Event Triggered Frames Transfer 

Figure 3.20 illustrates an example of an event triggered transfer. The purpose of event 

triggered frames is to save bandwidth. This is achieved by associating multiple slave tasks to 

the same ID. In case that an event has occurred in a particular slave, it sends its protected ID 

(the ID which would be sent to query an unconditional frame) in the first data byte, so the 

master task can identify the node where the event has occurred.  
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Figure 3.20 - Event triggered frames transfer [44] 

In case that two slaves had received an event and start transmitting simultaneous in 

response to the master's header a collision occurs, leading to an error. Then, according to 

slave priorities, the master queries them for unconditional frames.  

3.7.2.3  Sporadic Frames Transfer  

Although event-triggered frames might seem sporadic, the query from the master comes 

in a periodic schedule. Sporadic frames are used to embed a dynamic behavior in the 

network. Hence, sporadic headers are only sent by the master when new data was updated. 

3.7.2.4  Diagnostic, User Defined and Reserved Frames 

Bus access of diagnostic, user defined and reserved frames is similar to the bus access of 

unconditional frames. In these kind of frames, only the content of the ID and data changes.  

3.7.3  Error Processing and Management 

Error detection is handled by slave tasks. It consists of analyzing frame structure, parity 

bits and checksum. Upon detection of an erroneous frame, the processing of that frame is 

aborted. 

 Each slave is provided with a status bit named Response_Error. Nodes set the 

Response_Error bit to logical one upon detection of transmission or reception errors in 

response fields. The value of this bit is sent to the master slave periodically in one of the 

transmitted frames and cleared after transmission. In this way, the master gets to know some 

information about the status of a node. In the case that a node does not reply, it is assumed 

that a serious error has occurred. 

Due to the fact that slaves are unable to transmit data unless prompted, the signaling of 

errors is uniquely done after a diagnostic header has been sent by the master.  

3.8  Time Triggered Ethernet (TTEthernet) 

The application of Ethernet in vehicles is an interesting solution mainly due to its cost 

effectiveness and high bandwidth, which can reach up to 10 Gb/s, an exuberating value 

compared to the bitrates offered by the other discussed protocols throughout this chapter. 

 Ethernet's original objective was the connection of multipurpose computers in local 

networks. Being designed in CSMA/CD approach, it does not grant in any way that a particular 

node will be able to access the transmission medium in order to perform a transmission. Time 

constraints, determinism or fault tolerance were aspects not taken into consideration upon its 
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design. Therefore, in its original form, Ethernet is not able to fulfill the requirements that 

support its integration in vehicle control systems. 

TTEthernet expands the classical Ethernet to meet these requirements [45]. It achieves 

this by generating services on top of unchanged Ethernet. The concept behind TTEthernet is 

the transformation of messages from higher layer protocols into time-triggered messages 

without changing its content. Therefore, it can be said that TTEthernet concerns only the 

instants when these messages are sent. 

TTEthernet permits that messages with different levels of determinism can coexist in the 

same network. It is possible for strict control data to be placed in the same network with 

media data, which does not require strict determinism but instead a defined maximum 

latency, or even webservices in a best effort scheme, where determinism is not required at 

all. Furthermore, it may achieve this while granting high levels of reliability and fault 

tolerance.  

3.8.1  Operational Principles and Architectures 

TTEthernet's basic architecture assumes the star form, in which a router is the central 

element. Multiple stars can be cascaded, even with segments with different bandwidths. 

Redundancy, which is discussed in Section 3.8.3 can also be implemented in order to achieve 

extra reliability and fault tolerance.  

 

 

 

 

Figure 3.21 - TTEthernet redundant architecture [45] 

 

Switches act as the core of the protocol, being responsible for the organization of 

incoming frames and posterior transmission in the appropriate instants, according to the 

predefined schedule. 

The transmission of time-triggered (TT) messages requires a common sense of time 

between the interacting nodes. This implies that  all nodes involved in the transmission and 

reception of time triggered frames must be synchronized. The synchronization process is 

quite extensible for the matters of this work and a detailed explanation of it can be found in 

[46].  
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Upon reception of scheduled time-triggered messages, switches immediately route frames 

to the respective network segment. Due to the fact that the transmission of these messages is 

scheduled offline, in error free operation the output transmission segment is always free. 

Rate constrained (RC) messages are routed immediately if no TT messages are awaiting to 

be transmitted, and best effort (BE) messages take the remaining bandwidth. Switches have 

buffers for each kind of messages. In the case of high network load, the switch can notify the 

sending nodes that its buffer is full.  

3.8.2  Types of Messages 

There are three different kinds of messages that may be exchanged in TTEthernet which 

are presented as follows. 

3.8.2.1  Time Triggered Messages (TT messages) 

TT messages are messages sent by nodes at predefined instants. These messages have the 

maximum priority over the other types of messages, and used for exchanging strict 

deterministic control data. 

3.8.2.2  Rate Constrained Messages (RC messages) 

Not all control data requires strict determinism. A limited delay and temporal deviation 

can be enough to fulfill some applications' requirements. RC messages are used to carry these 

messages, which can vary from automotive applications with moderate timing requirements 

to multimedia data. The transfer of RC messages is not synchronized taking as basis a 

common schedule. Hence it is possible that different nodes transmit these messages at the 

same point in time, which may lead to queues on the switching devices, which will result in 

jitter. 

3.8.2.3  Best Effort Messages (BE messages) 

Best effort messages are the classical Ethernet messages. These messages do not rely in 

any of the services provided by TTEthernet and have the lowest value of priority comparing to 

the other kind of messages described. There is not an upper boundary on the time that will 

take for a message of this kind to get to the destination, or even it will actually get there. 

Best effort messages are transmitted in free network times between transmission of TT and 

RC messages, thus optimizing the use of bandwidth. 

 

3.8.3  Reliability and Fault Tolerance 

Being the central element in the network topology, switches have the ability to behave 

like bus guardians. Due to the fact that these are directly connected to nodes, errors can be 

detected and appropriate measures can be taken, such as disabling of communication drivers 

of the erroneous node or the masking of the error, depending on whether redundancy is 

present or not.  

The network structure can be designed to accommodate the desired level of reliability 

and fault tolerance. This can be achieved by adding redundancy to the switch and to the 

communication channels in each node. Figure 3.22 depicts an example of a network structure 

offering three redundancy channels.  
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Figure 3.22 - TTEthernet multiple redundant channels [45]
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Chapter 4  

Drive-by-wire systems and guidelines for 
fault tolerant hardware design 

4.1  Motivation for this Chapter 

At the present moment, no vehicle available in the market employs a full by-wire scheme. 

Given the importance that this subject will have on the next generation of vehicles, some of 

the concepts behind this philosophy are presented in this chapter. The development of safety 

critical systems is complex and requires a profound study on the matter. However, it is 

possible for students to build simple dependable systems by exploring the concepts and ideas 

presented in this section.  

4.2  Introduction to Drive-by-wire Systems 

The first vehicles in the market were entirely dependent on the use of mechanical and 

hydraulic components. The introduction of electronic components in these systems, allowed 

major improvements in the automotive industry in terms of safety, economy and comfort.  

X-by-wire is the designation of a field of studies that has the ultimate goal of replacing all 

mechanical transmission linkages by communication networks and mechanical actuators by 

electrical actuators [47]. The reduction of mechanical components in vehicles allows for new 

vehicle designs due to an increase of available space, lower maintenance, decrease assembly 

time and improve safety, as mechanical components like for instance the steering column are 

a potential deadly element to the driver in case of impact [48].   

X-by-wire systems are gradually being introduced in a two stage process. The first stage is 

the introduction of x-by-wire systems in which mechanical backup systems are automatically 

activated in the event of erroneous operation. The control units that operate such systems 

must possess self checking mechanisms that are able to detect errors. Such units are named 

fail-silent units (FSU). The second stage of the implementation of x-by-wire systems is their 

integration without mechanical backup. By having no mechanical backup, these systems must 

be fault tolerant. As it will be seen, fault tolerance is achieved by means of component 

redundancy. Multiple FSUs working together form a fault-tolerant unit (FTU). 
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Figure 4.1 - Citroen C5 by wire: acceleration and braking integrated in the steering wheel [48] 

 

 

 

 

 

 

 

Figure 4.2 - General Motors  Hy-wire concept car [49] 
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Figure 4.3 - Fault tolerant architecture [50] 

Throttle-by-wire is already a reality in vehicles sold nowadays, as vehicle's modern 

engines are fully electronically controlled. There is no mechanical connection between the 

throttle pedal and the engine. Instead, sensors determine the throttle pedal position and an 

electronic unit commonly known as Electronic Throttle Control (ETC) actuates on the throttle 

based on other variables such as engine RPM, engine load, vehicle speed, temperature, 

atmospheric pressure among others. This permits an enhanced engine control resulting in 

greater performance and optimized fuel consumption which would be impossible in any other 

way, due to the fact that the driver as a human being is unaware of these variables [51]. 

Furthermore, the implementation of throttle-by-wire in the automotive industry permitted 

systems such as the ESC, TCS or cruise control to be implemented.  

 

 

Figure 4.4 - ETC mechanism in internal combustion engines [52] 

 

The absence of connection between the driver's inputs and the actuators in x-by-wire 

systems removes the so called "road feel", required for the accurate control the vehicle. 

Hence, haptic actuators are usually added to emulate the sensations that the driver would 

have in a non by-wire system. The concept of haptic feedback can be further explored, as a 
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synergy with other systems such as radars or cameras can be made to detect potentially 

dangerous situations and increase the driver's responsiveness and perception.  

4.2.1  Obstacles on the Implementation of Drive-by-wire Systems 

Braking and steering systems are good candidates to follow the "by-wire" trend. However, 

there are several objections in their way. Both the braking and steering systems are safety 

critical due to the fact that a faulty operation of one of such systems can lead to a loss of 

control of the vehicle, which can have devastating consequences. Moreover, pure drive-by-

wire systems do not have safe states. Therefore, brake-by-wire and steer-by-wire systems 

must ensure high dependability. As it will be seen, this is achieved by means of component 

redundancy, which results in more complex systems, with higher development times and 

consequently in higher prices. 

 Currently, all the systems in vehicles are manufactured to operate at 14 Volt, the 

industry standard for automotive power buses. With the increase of electronic systems in 

vehicles, the current demanded to the batteries for the vehicle's operation is reaching 

intolerable levels [50]. For instance, if brake-by-wire systems are implemented in a 14 Volt 

bus and a high brake force is demanded, currents on the bus can reach astonishingly high 

values.  

Convincing drivers that drive-by-wire systems are safe is another issue that manufacturers 

face, as people worry about possible electronic malfunctions that might lead to catastrophic 

consequences [53].  

Despite all the referred drawbacks, there are plenty of research groups working in order 

to overcome the referred problems at is believed that the drive-by-wire will eventually 

become a de-facto solution in the market. 

4.3  Drive-by-wire Systems 

4.3.1  Brake-by-wire 

In a brake-by-wire system the brake pedal is not directly connected to the brake 

actuators. Instead, the brake pedal position is sensed, and according to its position the brake 

ECU determines the amount of braking force on each wheel, taking as basis the features 

described on Chapter 2, and commands the actuators to develop the corresponding braking 

force. 

 In conventional vehicles, the braking features described in Chapter 2 work in parallel 

with the main hydraulic circuitry. By integrating them in a brake-by-wire topology, further 

results can be achieved, such as the improvement of stability and brake control due to use of 

electric motors to provide the braking force. Moreover it allows an easier implementation of 

systems such as the ABS, ESC or TCS, and the elimination of environmental concerns due to 

the removal of the hydraulic fluid [54]. Furthermore, the vibration caused in the brake pedal 

of conventional braking systems upon the actuation of the ABS is removed. 

Two different types of brake-by-wire systems are discussed in this section. 
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4.3.1.1  Electro Hydraulic Brakes (EHB) 

Electro hydraulic brakes are the first evolution of conventional brakes to brake-by-wire 

systems. These systems cannot be called pure by-wire systems, due to the fact that a backup 

hydraulic connection between the brake pedal and the hydraulic modulator exists, and is 

enabled in the case of erroneous operation of the brake ECU. 

 The brake force is generated by hydraulic means, but lacks the direct connection 

between the brake pedal and the hydraulic modulator under normal operation.  Signals from 

the brake pedal sensors travel to the brake ECU, which determines the appropriate brake 

value on each wheel taking as basis the braking features described in Chapter 2. The 

determined braking values for each wheel are transferred to the hydraulic control unit (HCU), 

which actuates the hydraulic circuits to generate the desired braking force [50]. 

 

 

Figure 4.5 - Electro hydraulic brakes scheme [50] 

4.3.1.2  Electro Mechanical Brakes (EMB) 

Electro mechanical brakes reflect the pure concept of x-by-wire systems due to the fact 

that a mechanical connection between the brake pedal and the brake actuators is absent. 

The EMB operation is similar to the EHB but, instead of transmitting the brake signals to the 

HCU, the brake ECU transmits braking forces by wire to individual wheel brake modules 

placed on each wheel, which have the task of providing the determined brake force by means 

of electro-mechanical actuators. A scheme of electro mechanical brakes can be found in 

Figure 4.6:  

 

 

Figure 4.6 - Electro mechanical brake-by-wire [50] 
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Figure 4.7 - Continental electro mechanical brake [55] 

4.3.2  Steer-by-wire 

Steer-by-wire expands the by-wire concept to the vehicle's steering system. Hence, no 

mechanical connection between the steering wheel and the tires exist.  

Sensors placed in the steering wheel transmit its position and torque to an ECU which in 

turn actuates electric motors in the front axle to steer the wheels. A unit called hand wheel 

actuator is responsible for providing the haptic feedback to the driver [56].  

4.4  Fault Tolerant Hardware Architectures Design 

Many of the systems described along this document are safety critical. Being safety 

critical means that the failure or malfunction of such systems can lead to potential 

catastrophic situations such as the death of people, significant damage or loss of equipment, 

and environmental harm [57]. Hence, it must be assured that these systems grant appropriate 

levels of dependability, the level of confidence in which the system can be expected to 

perform its functions.  

The brief discussion of the development of safety critical systems that follows takes as 

basis the standard IEC 61508 which addresses multipurpose safety related systems. ISO 26262 

is a standard that is currently being developed uniquely for the automotive industry based on 

IEC 61508. Given the fact that ISO 26262 standard is not yet available [58], the classifications 

that follow are based on IEC 61508. 

The development of safety critical systems starts by the analysis of the ways in which the 

target system can be the source of hazards. Hazards can be defined as situations that have 

the potential to cause harm to people or the environment. There are several methodologies 

that aid the identification of the events that lead to hazards and their consequences such as 

the FMEA (failure modes and events analysis), ETA (event tree analysis), FTA (fault tree 

analysis) among others [57]. Once the sequences of events that lead to hazards are 

determined, the frequency of occurrence of each hazard can be calculated. 

The frequency of each hazard combined with its consequences make up what is called 

risk. IEC 61508 provides the classification for both the consequences, frequency and 

associated risk of hazards. 
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Table  4.1 - Risk classification according to IEC 61508 

Consequences 

Frequency Catastrophic Critical Marginal Negligible 

Frequent I I I II 

Probable I I II III 

Occasional I II III III 

Remote II III III IV 

Improbable III III IV IV 

Incredible IV IV IV IV 

 

Table  4.2 - Interpretation of the various risk levels according to IEC 61508 

Risk class Interpretation 

I Intolerable risk 

II Undesirable risk, and tolerable only if risk reduction is impracticable or if 

the costs are grossly disproportionate to the improvement gained 

III Tolerable risk if the cost of risk reduction would exceed the improvement 

gained 

IV Negligible risk 

 

Risk classification serves as basis for the determination of a safety integrity level. Safety 

integrity levels reflect the level of dependability of safety systems and condition not only the 

system's architecture but its development process.  

 IEC 61508 provides target failure rates for the four proposed integrity levels according to 

different modes of operation: a continuous mode and a low demand mode. As an example, 

the braking system would be considered for the continuous mode operation SIL levels, while 

the airbag system would be considered for the demand mode of operation. The classification 

on the continuous mode of operation takes as basis the number of failures per hour, while the 

on demand mode of operation takes as basis the probability of the system not to respond 

appropriately to the request. 

 

Table  4.3 - IEC 61508 safety integrity levels for continuous mode of operation 

Safety Integrity Level Failures per hour 

4 10−8 to 10−9 

3 10−7 to 10−8 

2 10−7 to 10−6 

1 10−5 to 10−6 
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Table  4.4 - IEC 61508 safety integrity levels for on demand mode of operation 

Safety Integrity Level Failures per hour 

4 10−4 to 10−5 

3 10−3 to 10−4 

2 10−2 to 10−3 

1 10−1 to 10−2 

 

 

IEC 61508 provides three different methods for determining the appropriate SIL level for 

an application, however the discussion of these methods go beyond the objectives of this 

document.  

The main question to keep in mind is that safety critical systems must grant determined 

levels of safety so they can be trusted. Moreover, systems which are safety critical and were 

not designed with safety critical requirements, are not likely to offer the desired 

dependability. Therefore, it is necessary to increase their dependability, so the risks 

associated with the equipment malfunction are reduced to tolerable levels. 

4.4.1  X-by-wire Requirements for the Automotive Industry 

The x-by-wire consortium issued a report in 1998 titled "Safety Related Fault Tolerant 

Systems in Vehicles". Section 3.6 of the report refers to the safety requirements that x-by-

wires shall obey. The referred requirements apply to steer-by-wire systems, but can serve as 

the basis for the development of other drive-by-wire systems. The following marks are a 

transcription with minor adaptations of the points discussed in that section [59]: 

 

 Systems shall not lead to a state in which human life, economics or environment 

are endangered 

 In the presence of faults, it is required that the system is at least able to tolerate 

one major critical fault without loss of the functionality, for a time long enough 

to reach a safety parking area 

 There must be a provision to maintain safe (reduced) operation for a limited 

period 

 A single failure of the system must not lead to a fault of the whole system 

 Each of the subsystems input, process and output must be fault tolerant by itself 

 Reduced functionality in the case of a failure is permissible as long as there is no 

risk to the safety of the driver or other traffic participants 

 In case of non critical faults, the system shall maintain the full operational state 

but has to advise the driver 

 The system must memorize the error codes of intermittent faults for 

maintenance  

 The systems must provide information about their internal status (example: stop 

immediately, service required or correct operation) 

 The probability of encountering any of the safety-critical failure modes shall not 

exceed 5 × 10−10 per hour per system 
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By the analysis of these requirements it can be concluded that automotive drive-by-wire 

systems must be highly dependable. In fact the integrity level required for x-by-wire systems 

is even higher than SIL 4, the highest integrity level referred on IEC 61508. 

4.4.2  Increasing Dependability 

The two most common ways of increasing a systems' dependability are: fault avoidance 

and fault tolerance [60]. 

4.4.2.1  Fault Avoidance 

Fault avoidance is based on the concept of ensuring quality in all aspects: system design, 

components and their protection such as electromagnetic interference (EMI) shielding and 

system maintenance. The amount of extra dependability provided by fault avoidance methods 

is somewhat limited to the demands of safety critical systems [60].  

4.4.2.2  Fault Tolerance 

Given the fact that any element despite of its quality will eventually fail, fault tolerance 

mechanisms must be employed to ensure that no fault can result in system failure, as 

required by drive-by-wire design requirements. Fault tolerance is achieved by means of 

redundancy. The objective of redundancy is that the overall system to achieve higher 

reliability than the parts that compose it, and the elimination of single points of failure [60]. 

There are three different kinds of hardware redundancy: static, dynamic, and hybrid 

redundancy [57]. Static and dynamic redundancy are usually applied in drive-by-wire systems 

and therefore are discussed in this section.  

The discussion on hybrid redundancy is left behind as it is mostly used in the aircraft 

industry. Hybrid redundancy reflects the combination between static and dynamic 

redundancy. Despite achieving the best results in terms of reliability, it usually requires a 

large amount of components and high complexity.  

The following examples of architectures reflect simplifications of the questions involved. 

A more detailed approach on a solution for a brake-by-wire system is given in Chapter 5. 

Static Redundancy 

Static redundancy uses fault masking as its basic principle. It consists on having several 

elements performing the same functions in parallel and a voting mechanism which is 

responsible for outputting a single value out of the values provided by the units in parallel. 

Static redundant systems do not perform reconfiguration upon faults. The voting 

mechanism can either be another device or the process itself.  

N-modular Redundancy (NMR) Architectures 

N-modular redundancy reflects the general concept of static redundancy. These 

architectures are constituted by N odd elements in parallel. In order for the voter to find an 

agreement, this system has to be built with at least three working units. This system is able 

to tolerate failures within 
𝑁−1

2
 different modules. 
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Figure 4.8 - N modular redundancy  

It should be noted that although in Figure 4.8 the voter is itself a single point of failure, 

to achieve fault tolerance the voter itself needs to be replicated. 

The output of a voter can be computed in several ways such as the majority, median, 

mean among others.  

Figure 4.12 depicts this philosophy applied in the acquisition of the steering wheel 

position. Three sensors are working in parallel (Triple Modular Redundancy) and the steering 

controller performs voting over the three values provided by the sensors.  

The voter can also be the process itself, as Figure 4.9 depicts. 

 

 

Figure 4.9 - Static redundancy applied to steer-by-wire  

Figure 4.9 illustrates this concept applied to a steer-by-wire system by adding three or 

more motors in series to control the steering torque. In the event of failure of one of the 

steering actuation modules, the system would operate in a degraded mode but it would be 

possible to control the vehicle and lead it to a safe state. 
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Dynamic Redundancy 

Static redundant systems rely on a high number of parts to achieve fault masking, which 

can lead to intolerable costly solutions. On the other hand, dynamic redundant architectures 

rely on fault detection mechanisms and system reconfiguration to employ fault tolerance.  

Despite of requiring more processing power due to required fault detection mechanisms, 

the number of elements required for fault tolerant operation is decreased. In fact, dynamic 

redundancy can be achieved with two units. Under fault free operation, processing spare 

elements do not generate outputs but can either be actively processing information (hot 

standby), or be with limited activity (cold standby).  

Upon detection of a faulty element, the system is reconfigured to substitute the faulty 

element by a spare element. During the reconfiguration phase the processes are uncontrolled, 

hence it must be evaluated if the reconfiguration time can or not lead to potentially 

dangerous situations. The choice whether to use hot or cold standby spare units conditions 

the system's reconfiguration time, which is less in the case of hot standby.  

Standby Spare Architectures 

Standby spares are the most basic form of dynamic redundant architectures. In this 

scheme, only one unit is actively producing outputs. In case that a fault is detected, the 

faulty unit is removed from operation and substituted by a spare element.  

 

 

Figure 4.10 - Standby spare architecture concept 

 

The concept of standby sparing can be applied to the steering motors of a steer-by-wire 

system as the example on Figure 4.12 suggests. In this example the steering control module is 

responsible for controlling motors that steer the wheels. Sensors provide the feedback of the 

motor's behavior into the steering control module. Upon detection of a faulty motor, the 

steering control module de-energizes the faulty motor and controls the spare motor.  

It must be noted however that the steering control module needs itself to be fault 

tolerant with the risk of erroneous commands being sent to the steering motors. 
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Figure 4.11 - Standby sparing applied to steering actuators 

The same idea can be applied to steer-by-wire systems as Figure 4.12 suggests. A steering 

controller is checked by a dedicated unit. Whenever a fault is detected on the active steering 

controller the checker element requests the spare unit to assume control. 

 

 

 

Figure 4.12 - Standby sparing applied to brake-by-wire 

Pair and Spare Architecture 

Standby spare architectures have a major drawback: if the active unit produces erroneous 

but plausible outputs, the faulty operation might not be detected. Pair and spare 

architectures correct this drawback by having two units working in parallel over the same 

inputs. The outputs are then compared and, if in case of disagreement extra units are called 

to operate. Therefore, pair and spare architectures require at least three units. Although 

more costly due to the extra hardware requirements, this unit grants even higher levels of 

dependability. 
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Figure 4.13 - Pair and spare architecture 

Figure 4.14 depicts the pair and spare philosophy applied to the a set of sensors in a 

brake-by-wire system. Two sensors are actively being compared by the brake controller. 

When the brake controller finds a disagreement between the two active sensors it enables an 

extra sensor, checks which of the active sensors is faulty and excludes it.  

 

 

 

Figure 4.14 - Pair and spare architecture applied to brake-by-wire 

4.5  Fail Safe Units 

Some systems might not be able to withstand an erroneous operation with the risk of the 

of occurrence of a catastrophic event. In such cases, the erroneous operation must be 

detected and the system must be lead to a safe state.  

The braking and steering features which were discussed in Chapter 2 have the ability to 

cause potentially dangerous situations in case of erroneous operation. An incorrect brake 
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operation by the ABS, TCS or ESC has the potential of affecting the stability of the vehicle. 

Similarly, erroneous steering assistance provided by power steering systems have the 

potential to cause the driver to lose control of the vehicle. Therefore, it must be granted that 

these systems fail in a safe way. Failing in a safe way in systems which have mechanical 

backup is achieved by making computational units to stop producing outputs. Units that 

behave in this way are denominate fail safe units.   

Two main hardware strategies that rely on multiple cores can be applied to detect 

failures and lead the system to  a safe state: a master/checker approach and a comparative 

duplication mechanism.   

4.5.1  Master/checker Approach 

The master/checker approach consists on having a main microcontroller be periodically 

checked by another microcontroller, typically with less computational power for the sake of 

cost saving. Upon detection of erroneous behavior by the checking unit, measures are taken 

to prevent the master from producing outputs. 

4.5.2  Duplication with Comparison 

Duplication with comparison consists on having two microcontrollers performing the same 

operations and comparing the outputs. The two microcontrollers can run the same software 

or employ different software versions, in which case software faults can also be detected. 

 In any case, if the outputs from both microcontrollers do not match, the system is lead to 

a safe state.  

4.6  Hardware for Safety Critical Systems 

As more dependability is being demanded to computational units, manufacturers are now 

offering on-chip solutions to meet the requirements of safety standards [61].  

Some of the most popular features are presented in this section.  

4.6.1  Integrated Voltage Regulators 

Improper voltage fed to the microcontroller can lead to unexpected behavior and 

consequently, to faulty operation. Integrated voltage regulators have the task of feeding a 

constant voltage to the microcontroller components regardless of the voltage fluctuations in 

the source. 

4.6.2  Voltage Monitors 

Voltage monitors supervise the voltage fed to the microcontroller and engage safety 

measures in case of high or low voltage detected. 

4.6.3  Memory Protection Unit (MPU) 

The memory protection unit is a hardware feature that splits the physical memory into 

several slots, and assigns different rights to each of the memory accessing entities (CPU, 

communication interfaces etc..), preventing overlapping, unauthorized access and protecting 

memory sections. 
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4.6.4  Error Correction Code Protected memories (ECC) 

In ECC memories data is stored with additional redundancy so its accuracy can be tested 

when saving or retrieving data from the memory. Several mechanisms can be employed in 

protected memories such as parity bits, duplication codes, checksums, cyclic redundancy 

check codes among others. Some of the coding mechanisms allow corrupt data to be 

recovered, at the cost of higher overhead. 

4.6.5  Clock Monitoring Units 

Clock monitoring units check for deviations on the generated clock frequency. In the case 

that the clock frequency deviates from a determined threshold, safety measures are engaged. 

4.6.6  Peripheral Components Replication 

Component replication enables the outputs from components such as analog to digital 

converters, counters among others to be compared. In case of non matching outputs between 

two redundant units, microcontrollers or special safety related units are signaled so safety 

measures can be carried. 

4.6.7  Watchdog Timers 

Watchdog timers are special safety related timers with the goal of ensuring that the 

supervised unit is actively performing its operations. The supervised unit periodically resets 

the watchdog timer value. In the case that the watchdog reaches its maximum value, which 

may happen in case of erroneous operation in the supervised unit, safety measures such as 

resetting the microcontroller are carried. Watchdog timers are able to detect not only 

hardware lack of response or overload failures but also software faults, in which programs 

may fail to reset the watchdog timer due to erroneous operation. 

4.6.8  Dual Core Microcontrollers for Safety Applications 

In safety dual core microcontrollers the processors and other critical components are 

replicated in order to attain higher integrity levels. Figure 4.15 depicts the block diagram of 

the Freescale MPC564xL microcontrollers family, designed specifically for the needs of 

automotive safety related systems.  

The replicated elements are bounded by redundancy checking units, whose aim is to 

supervise the consistency between the two sets of replicated units. Every time a 

disagreement between the outputs of the replicated modules is observed, the redundancy 

checker signals the fault collection and control unit (FCCU), which in turn enables safety 

measures depending on the nature of the detected fault. 

The processors from dual core microcontrollers can be configured to operate into two 

distinct modes: the lock step mode (LSM) and the decoupled parallel mode (DPM). 

4.6.8.1  Lock Step Mode (LSM) 

In lock step mode the two processors operate synchronously. The same instructions are 

executed at the same by each of the processors. The outputs of both processors are compared 

by hardware and in case of deviation the system is lead to a safe state. 

In this way, failures affecting one of the processors are widely detected and signaled in 

short amounts of time, without any software intervention.   
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4.6.8.2  Decoupled Parallel Mode (DPM) 

In the decoupled parallel mode, processors work independently. Hence, no hardware fault 

detection is possible without the implementation of specific fault detection software. 

Software fault detection mechanisms using the DPM are described in [62]. 

 

 

 

 

Figure 4.15 - MPC5643L block diagram [63]
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Chapter 5  

Architecture Definition 

In this Chapter, the concepts and ideas explored in previous chapters are put together to 

form a conceptual architecture for the backbone architecture of the vehicle. Afterwards, a 

proposed architecture for the braking system is explored in detail, along with the algorithms 

which support the correct behavior of its hardware elements. 

The objective of the development of the FEUP's EV is not the creation of a vehicle to be 

driven on the public road. Instead, the main goal of this project is the development of a 

vehicle that can be designed and assembled by students taking in consideration the price of 

components and availability, the students learning curve and the knowledge obtained in the 

various courses along their academic career. Therefore, the proposed architecture does not 

include most of the de-facto solutions present in most of the commercially available vehicles. 

Most of the systems described in this document are too complex to be developed by a 

single working group in a reasonable amount of time. In order for this project to be feasible 

by students, the proposed architecture is based on the idea of isolating the boundary of each 

feature up to the maximum degree possible. This means that functionalities that would 

normally share a single ECU (like for instance most of the discussed braking functionalities) 

must be divided to form a network of less complex control units. In this way, students will not 

be restrained on the use of a particular hardware/software platform and are free to make 

their own decisions.  

However, given the fact that multiple dependencies between functionalities and systems 

exist, it is not possible nor practical for all functionalities/systems to be completely 

independent. Several functionalities, such as the TCS which relies both on the brake and 

motor ECUs operate in a distributed fashion. Therefore, in order for the implementation of 

distributed algorithms to be possible, the software specification on each module must include 

a set of services that allow the interaction between ECUs. Global awareness of variables that 

might interest several ECUs should also be provided. These issues should be solved by means 

of appropriate software and middleware specification. 

 Although the main focus of this work is hardware, brief references to software have to be 

made to aid the explanation of concepts behind the proposed architectures.  
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5.1  High Level Architecture 

The following set of requirements were considered for the definition of the proposed 

architecture: 

 

1. Networks interconnecting vehicle systems must be within those which are 

lectured in the students curricular plan, or be congruent with the students 

learning curve 

2. It shall be possible for students to easily integrate their systems with any other 

systems present in the vehicle 

3. The architecture must be scalable 

4. Network components shall be inexpensive 

 

From these requirements, CAN and Ethernet were considered to be viable options to serve 

as the communication backbone for the EV. However, as it is discussed in Chapter 3, CAN's 1 

Mb/s bandwidth might impose limitations on the system's scalability. Hence, to give room for 

the maximum number of systems to be integrated Ethernet shall be used as the 

communication backbone for the EV.  

Figure 5.1 depicts the high level view of the proposed architecture. This architecture 

consists on having the main systems discussed in Chapter 2 connected to each other on a star 

topology by means of an Ethernet switch.  

 

 

 

 

Figure 5.1 - High level view of the proposed architecture 

It must be noted however, that if the bandwidth required for the various systems to 

exchange data is less than 1 Mbps, CAN is considered to be a viable solution to serve as the 

backbone for the EV. Instead of a star topology, all the systems would be simply integrated in 

a bus topology. This solution allows for real-time behavior of distributed control algorithms, 

at the cost of requiring a study on the schedulability and CAN priority assignment of all 

frames that are expected to be exchanged. 
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5.1.1  Architecture Limitations 

Ethernet was not tailored to support the exchange of data in real time. Hence, it cannot 

provide the desired level of determinism required for the operation of systems which rely on 

data exchanges between multiple ECUs.  

The fact that that the switch is a central element connecting all ECUs implies that its 

failure will lead to the failure of all the features which rely on data exchanges between 

multiple ECUs. Hence, the failure of the switch will eventually lead to the failure of systems 

such as the ACC, power steering, TCS, ESC, instrument panel among others. In order for this 

issue to be minimized, such systems must be provided with software mechanisms which 

detect the failure of the Ethernet switch and engage safety measures such as vehicle speed 

limitation, so the driver can lead it to a safe state. 

5.1.2  Data Exchange between ECUs 

Certain functionalities require the knowledge of variables that might not be produced 

within the ECU where the feature is implemented. Vehicle's speed for instance, is a variable 

that can be either produced on the motor or brake ECUs and is required by functionalities 

that operate in other ECUs such as steering, lights and instrument panel ECUs.  

A possible solution for this issue that would also allow the integration of additional 

systems with minimum effort, would be the transmission of several variables of interest in a 

publisher/subscriber pattern. This would allow for a scalable solution which permits the 

integration of additional systems that require those variables in a plug-and-play fashion.  

A deep study regarding the functionalities to be implemented must be carried in order to 

determine all the variables of interest to be published. The following tables depict several 

examples: 

 

Table  5.1 - Motor variables of interest 

Variable Potential Subscriber(s) Function 

Vehicle Speed Instrument Panel ECU Vehicle speed display 

Brake ECU Wheel slip detection 

Steering ECU Steering assist force adjustment 

Lights ECU Adaptive Cornering light function 

RPM Instrument Panel ECU RPM display 

Motor Torque Brake ECU Electronic Stability Program, Traction 

Control System 

Motor 

Temperature 

Instrument Panel ECU Motor Temperature Display 

 

Table  5.2- Lights ECU variables of interest 

Variable Potential Subscriber(s) Function 

Lights status Instrument Panel Light Status display 
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Table  5.3 - Brake ECU variables of interest 

Variable Potential Subscriber(s) Function 

ABS, TCS, ESC, EBD and 

BA activity  

Instrument Panel ECU Activity display 

Adaptive Cruise Control Adaptive cruise control disable 

Cruise Control Cruise Control disable 

Brake activity Adaptive Cruise Control Adaptive cruise control disable 

Cruise Control Cruise Control disable 

Brake Diagnostics Instrument Panel ECU Diagnostic Message Display 

Motor ECU Speed limitation upon bad diagnostic 

Yaw Momentum Lights ECU Adaptive Cornering Light Function 

Lateral Acceleration  Lights ECU Adaptive Cornering Light Function 

 

 

Table  5.4 - Steering ECU variables of interest 

Variable Potential Subscriber(s) Function 

Steering Wheel Position Brake ECU Electronic Stability Program 

Lights ECU Adaptive cornering light 

 

5.1.3  ECU Services 

In order for the development of distributed functionalities to be possible, ECUs must be 

accept service requests from other units. Moreover, the existence of services makes it 

possible to enhance functionalities by taking advantage of the cooperation between different 

ECUs. This section provides some examples of services and synergies that can be developed. 

5.1.3.1  Steering ECU 

Yaw Request Service 

Whether the steering system is a power steering or a steer-by-wire system, it is possible 

to generate vehicle yaw momentums by steering the wheels. A service provided by the 

steering ECU that would generate a desired amount of yaw momentum would be valuable for 

enhancing the safety of the vehicle. 

ABS Synergy 

When braking in split friction coefficient surfaces, the ABS induces asymmetrical brake 

forces which induce a yaw moment on the vehicle. 

A synergy between the steering systems and the braking system would enable an 

enhancement on the vehicle's response to the induced yaw. By knowing the braking force on 

each wheel, the induced yaw can be easily calculated. The braking ECU could then request 

the steering ECU to develop a counteracting yaw that would compensate for the ABS induced 

yaw. 
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ESC Synergy 

The effectiveness of the ESC can be further enhanced by taking advantage of the yaw 

generated by the steering system 

Autonomous Driving 

The creation of a yaw generating service would allow the implementation of autonomous 

driving systems such as automatic parking, collision avoidance and autonomous driving.  

 

5.1.3.2  Brake ECU 

Brake Force Request Service 

A brake force request service would allow other control units to request the brake control 

unit to develop a determined brake force. 

Such service is required for the implementation of the adaptive cruise control system. 

Collision avoidance systems automatically actuate the brakes in case of a eminent 

collision. Thus, a brake force request service is also mandatory for the operation of such 

systems. 

Autonomous driving functionalities also require a brake force request service. 

 

5.1.3.3  Motor ECU 

Torque Request Service 

A torque request service would allow ECUs to request a determined torque that would be 

provided by the propulsion system. 

This service is required by the TCS and the ESC.  

Speed Request 

A speed request service enables the definition of a target setpoint speed by other ECUs. It 

is required by the operation of the cruise control, adaptive cruise control and autonomous 

driving systems. 

Speed Limitation 

Upon detection of a critical system failure, a service that would inhibit the driver from 

exceeding a pre determined speed would enhance vehicle safety. For instance, the failure of 

one or more of the wheel braking modules would impose a limitation of the vehicle's speed, 

which would allow the remaining brake modules to compensate more easily for the faulty 

module. 
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5.1.3.4  Lights ECU 

Emergency Light Activation  

An emergency lights activation service would allow a safety enhancement of the vehicle 

and its occupants. Several situations could lead to a request of this service: 

 

 Detection of a critical fault in any of the vehicle's systems, such as 

braking, steering or propulsion systems 

 Emergency braking detected by the BA system 

 Impact detection 

 Collision avoidance system 

 

5.1.3.5  Instrument Panel 

Message Display Service 

This service would offer the possibility of any ECU to display messages to the driver such 

as diagnostics, notifications among others. 

5.2  Braking System Architecture 

This section presents the proposed braking architecture for a brake-by-wire system to be 

developed in the EV project by students.  

Commercial braking systems usually have all of the functionalities described on Chapter 2 

implemented in a single ECU. A braking system encompassing all of the described 

functionalities in a single ECU is considered to be an extremely complex system. Given the 

impracticability of such a system to be developed by a single working group during the 

duration of a semester, it was decided to grant each feature a dedicated control module as 

Figure 5.2 depicts.  

The presented architecture is conceived with the objective that any of the components 

inserted in the architecture, cannot in any way cause the complete loss of the brakes or the 

ability to provoke the loss of vehicle control.  

Due to the fact that all elements belonging to the braking system are safety critical, all 

modules are built with two redundant elements.  

The brake pedal position module is responsible for the acquisition of the brake pedal 

position sensors and the transmission of the brake pedal position over the network to the 

interested entities.  

Each wheel is provided with a brake actuator module, which receives the brake pedal 

position from the brake pedal position module and braking requests from the ABS, TCS and 

ESC modules, and command the actuators to generate the desired braking force. 

The ABS, TCS and ESC modules capture wheel speed values made available by the wheel 

speed acquisition module and the brake pedal position value, compute the required 

interventions and, if necessary transmit braking requests to the brake actuator modules.  

The gateway is the element responsible for providing the interface between the modules 

and exterior systems. It enables outside systems to request braking services (ACC or 
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autonomous driving), and enables modules from the braking system to output diagnostics and 

request services such as torque reduction or speed limitation. 

The internal structure of these modules and several algorithms that grant the appropriate 

behavior of the hardware are discussed with further detail over the next sections. 

The proposed architecture is based on the principle that although the functionalities are 

separated throughout different modules, the entire braking system is seen as one from the 

exterior systems. This is important for the following reasons: 

 

1. The braking system architecture can be modified according to the students' needs 

without having to reconfigure the exterior systems. 

2. It enables the replacement of this architecture with a single chip system that can be 

developed by any student or research group without any modification on the higher 

level network. 
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Figure 5.2 - Braking system architecture 
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5.2.1  Braking Architecture Network Proposal 

When implemented in a single ECU and due to hard real time requirements, braking 

functionalities must be scheduled by a real time operating system. By having them distributed 

into different hardware modules it is not enough to provide a real time operating system for 

ensuring deterministic responses. The communication network must be itself deterministic, 

otherwise it can jeopardize the efficiency of distributed control algorithms and the meeting 

of hard real time deadlines. 

 Choosing an appropriate network for the braking system requires a deep study of each 

individual feature to be carried, so that timing requirements can be specified. Due to the fact 

that this work serves as the first introduction to the EV project, the requirements for these 

systems are not yet known. Therefore, at this moment it is impossible to ensure that the 

proposed networking solution is able to meet the timing requirements of such functionalities. 

Given the impossibility of taking the functionalities' timing requirements into account, the 

specification of the networking solution uniquely considers the feasibility of this architecture.  

As it was discussed in Chapter 3, deterministic, multi-channel and high speed network 

would be required for the braking system, such as Flexray, TTP/C, or TTEthernet. However, 

given its cost and the required time for students to get familiarized with such protocols, it is 

not realistic to propose such solutions. Despite a detailed study on the timing constraints of 

each feature being required, CAN appears to be a good networking solution to be applied in 

this academic project for the following reasons: 

 

 It enables the definition of priorities between messages 

 It is possible to guarantee the scheduling of periodic messages  

 It is taught on the available courses  

 It is present in many low cost microcontrollers available in the market 

 It is a widely adopted solution in the automotive industry for control 

applications - proven efficiency  

 It provides a low cost implementation 

 It is robust 

 

However, safety critical elements cannot be dependent on a single transmission medium, 

as its failure would lead to the loss of the brakes. Therefore, it was decided to provide the 

proposed architecture with redundant transmission mediums.  

 

5.2.2  Gateway 

The internal structure of the gateway is illustrated on Figure 5.3. The gateway is divided 

into three distinct modules: the main element, and elements 1 and 2. Units shall be 

connected internally by means of dedicated transmission channels as Figure 5.3 suggests.  
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Figure 5.3 - Gateway 

The main element is responsible for routing messages between the exterior systems and 

the braking modules, by means of elements 1 and 2.  

Elements 1 and 2 are responsible for providing the interface between the main element 

and the braking system modules. The introduction of elements 1 and 2 prevent that a single 

unit connected to both communication channels can cause both network channels to fail, 

which would result in brake loss.  

5.2.2.1  Routing Messages From Exterior Systems 

Upon arrival of an Ethernet package into the main element, the main element has the 

task of transmitting its content to elements 1 and 2, which in turn will transmit the content 

as CAN messages to the respective CAN channel. All messages transmitted by the main 

element to Elements 1 and 2 shall be provided with error detection mechanisms, to prevent 

that a faulty main element can cause elements 1 and 2 to jam both CAN channels. 

The format of incoming messages from exterior systems can assume two distinct forms.  

The first, consists in embedding CAN messages inside Ethernet frames. This enables the 

main element to extract the CAN frame from the received Ethernet frame, and transmit it 

directly to elements 1 and 2. This approach requires the assignment of CAN identifiers to be 

done globally.  

The second method consists on having transmitters to send data encapsulated into pure 

Ethernet frames. Upon reception of an Ethernet package, the main element is required to 

assign an identifier to the received data according to its content, and transmit it to elements 

1 or 2.  

5.2.2.2  Routing Messages from the Braking Systems 

Due to the fact that not all frames exchanged in channels 1 and 2 are to be delivered to 

exterior systems, elements 1 and 2 require the knowledge of the frames that must be 

delivered to exterior systems, to after transmit them to the main element. 

Messages transmitted by elements 1 and 2 can arrive to the main element in distinct time 

instants. Therefore, a time frame in which messages are considered to be valid must be 

defined. This prevents that a safety procedure might be engaged in case of transient faults. 
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Figure 5.4 -Time frame of messages delivered to the main element 

Upon reception of a frame from elements 1 or 2, the main element shall start counting 

the time frame. If the second frame is received in the mean time or the time window expires, 

the main element proceeds the transmission to the Ethernet segment according to Table  5.5. 

Table  5.5 - Output of the main element according to incoming messages 

Element 1 Element 2 Main element 

Output 

𝐶𝐴 𝐶𝐴 𝐶𝐴 

𝐶𝐴 𝐼 𝐶𝐴 

𝐼 𝐶𝐴 𝐶𝐴 

𝐼 𝐼 𝐹𝑎𝑢𝑙𝑡 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 

𝐶𝐴 𝐶𝐵 𝐹𝑎𝑢𝑙𝑡 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 

 

 

where: 

 

𝐶𝐴 , 𝐶𝐵 : 𝑒𝑟𝑟𝑜𝑟 𝑓𝑟𝑒𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒  

𝐼: 𝑒𝑟𝑟𝑜𝑛𝑒𝑜𝑢𝑠 𝑜𝑟 𝑛𝑢𝑙𝑙 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

 

5.2.3  Brake Pedal Position Module  

The brake pedal position module consists of two elements which operate independently 

and synchronized. Each brake pedal position unit has the task of acquiring the value of a 

redundant set of brake pedal position sensors, compute one value out of the measured values 

by means of a software voting mechanism, and output the brake pedal position to the 

interested entities. The brake pedal position shall be sent periodically, so faults within this 

module can be detected by other units. Despite in Figure 5.2 and Figure 5.5 three sensors are 

represented, any number of sensors can be connected to ensure the desired level of 

dependability and any of the techniques presented on Chapter 4 can be applied. 

 

 



 

 
96 Architecture Definition 

 

 
 

 

Figure 5.5 - Brake pedal position module 

 

5.2.3.1  The Necessity of Synchronism 

If both elements operate unsynchronized it can happen that the sampled value of the 

sensors can differ significantly, as Figure 5.6 illustrates. The faster the driver presses or 

releases the brake pedal, the higher the difference will be. 

 Fault tolerant software mechanisms that operate in the brake actuator modules can 

interpret the difference between both values as a fault, with the aggravation of being unable 

to distinguish which of the elements is providing the erroneous value. In such a situation, the 

brake output module would not be able to perform a correct decision on the brake force to 

produce. 

 

 

Figure 5.6 - Unsynchronized units 

By synchronizing the acquisition time between both units, the system minimizes the 

deviation between the acquired values in both units.   

A Simple Synchronism Method 

A simple synchronism method which can be easily built by students, only requiring two 

digital ports on the microcontroller and two wires connected as Figure 5.7 illustrates.  
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Figure 5.7 - Synchronism diagram 

The synchronism algorithm consists on the idea that each element must expect a change 

on its sync in port after changing its sync out port. After two level changes the two units are 

synchronized. The algorithm is presented on Figure 5.8. 

 

 

 

Figure 5.8 - Synchronism algorithm 

If any component of the synchronism mechanism becomes faulty, such as digital ports or 

wires, its operation becomes unavailable. To reduce the negative effects of the lack of 

synchronism between the two elements, the sample rate and network dispatch of each 

element can be raised and safety measures such as speed limitation should be carried. 

5.2.3.2  Plausibility Tests on the Brake Pedal Position 

To avoid erroneous brake pedal values to be transmitted to other modules, plausibility 

tests on the brake pedal position sensors should be performed. Plausibility tests should be 

performed before the voting mechanism, so faulty sensors do not influence the result of the 

brake pedal position. 

This section provides some examples of plausibility tests that can be performed to detect 

faulty sensors 
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Range Testing 

Range testing relies on the fact that the brake pedal position must be within a range of 

plausible values. For instance, if it is considered a depressing value between 0 and 100 

percentage, a negative value or a value above 100 would indicate a erroneous operation. 

Furthermore, if for instance the analog to digital converter responsible for acquiring the 

sensor values with a 10 bit resolution, values higher than 1023 would also indicate a 

erroneous operation. 

Derivative Testing 

Derivative testing relies on the dynamics of the driver pressing the pedal. The pressing of 

a brake pedal follows a natural curve, with a maximum physical variation. If the rate of 

variation is exceeded it might indicate an erroneous value and the value provided by the 

sensor can be excluded. 

 

 

Figure 5.9 - Brake pedal depression dynamics 

Threshold Testing 

A threshold test can be applied for the exclusion of faulty sensors in the following way: 

 

1. Calculate the average/median of all sensor acquisition values 

2. If one sensor differs from a predetermined amount from the average/median, this 

sensor is excluded and marked as faulty 

5.2.3.3  Elements Operation 

The operation of the braking system cannot be dependent on a single brake pedal 

element, as its failure leads to the loss of brakes. Hence, it is advisable to provide each 

element with self checking mechanisms. Whenever it is considered that an element is faulty, 

the driver must be notified and vehicle's speed should be limited. 

It should be noted that as both elements operate independently, it is possible that both 

can transmit different brake pedal positions. However, as it was mentioned, the dynamics of 

a driver pressing or releasing the brake pedal follows a natural curve, and therefore, the 

receiving modules can detect and choose which value is plausible by performing the 

appropriate tests, and after notify the driver and request for vehicle's speed limitation. 
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Figure 5.10 - Fault detection by observation of a plausible brake pedal depression 

Figure 5.8 illustrates the suggested algorithm for the brake pedal position elements 

operation. 

 

 

 

Figure 5.11 - Brake pedal position module algorithm 
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5.2.4  Wheel Speed Acquisition Module 

It would not be practical to connect wheel speed sensors to all of the requiring 

functionalities. Therefore, a extra unit named wheel speed acquisition module was added. 

Wheel speed values are made available in the network channels by this module. 

The calculation of vehicle dynamics taking as basis erroneous wheel speeds values may 

affect the stability of the vehicle as the ABS, TCS and ESC systems can perform erroneous 

brake requests taking as basis wrong wheel speed values. Therefore, it must be granted that 

wheel speed values are always correct, or no wheel speed values are transmitted over the 

network.  

Many of the architectures and philosophies presented in Chapter 4 can be used to 

overcome this issue. The simpler method consists on the replication in a duplication with 

comparison topology of the computational elements of the wheel speed acquisition module. 

This method consists on having two redundant units performing the same operations and 

comparing results. If a disagreement between the two units is found, the entire module is 

considered as faulty. Upon this situation, diagnostic messages would be sent by the error 

detecting unit(s) and their operation would be ceased.  

 

 

 

Figure 5.12 - Wheel speed acquisition module 

 

To ensure that the transmitted wheel speed values are always correct, the wheel speed 

acquisition module should be composed by two elements which compute the values of wheel 

speed sensors at the same instants, perform plausibility tests on the acquired sensor values, 

and exchange the values with the other redundant unit. Congruence tests have to be made to 

check whether the values acquired by both elements are in consonance. This can be done by 

means of threshold tests, which check whether the differences between wheel speeds vary 

from a determined range which is considered faulty. If congruence is verified, a voting 

mechanism is performed between the two units so the same wheel speed values are 

transmitted to the respective CAN channels. 

Similarly to what was discussed for the brake pedal position module, wheel speed sensors 

require redundancy so faults within a sensor can be detected or compensated.  
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In case of disagreement between the results, the module is considered faulty. As the ABS, 

TCS and ESC modules are unable to operate without the knowledge of wheel speed values, 

the driver should be notified. 

 

 

 

 

Figure 5.13 - Algorithm for ensuring fail safe behavior of wheel speed acquisition modules 
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5.2.5  ABS, TCS and ESC Modules 

The ABS, TCS and ESC have the ability of causing catastrophic situations by requesting 

erroneous brake services to the actuator modules. Therefore, these units must grant a fail 

safe behavior, which means that upon failure, no brake requests are allowed to be sent by 

these units.  

Similarly to the wheel speed acquisition module, ABS, TCS and ESC modules are 

constituted by two redundant elements which perform the same calculations and compare 

the results before transmitting brake requests. 

However, if both elements would compare the results of a brake force request only when 

an intervention was required, a disagreement in the brake forces to request could be found, 

and no intervention would be outputted. This could result in a dangerous situation in which 

the driver would only be aware on a faulty unit when its intervention would be required. 

Therefore routine checking mechanisms are mandatory. A suggested mechanism which 

can be applied in the ABS, TCS and ESC modules when no intervention is required, consists on 

performing calculations over the received wheel speed values and the comparison between 

the obtained results from both elements. A simple calculation in the form of: 

 

𝐶 =  𝑊𝑆𝐹𝐿 × 𝑘1 + 𝑊𝑆𝐹𝑅 × 𝑘2 + 𝑊𝑆𝑅𝐿 ×  𝑘3 + 𝑊𝑆𝑅𝑅 ×  𝑘4 

 

where: 

 

𝐶: 𝑐𝑕𝑒𝑐𝑘𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝑊𝑆𝐹𝐿 : 𝑤𝑕𝑒𝑒𝑙 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑓𝑟𝑜𝑛𝑡 𝑙𝑒𝑓𝑡 𝑤𝑕𝑒𝑒𝑙 

𝑊𝑆𝐹𝑅 : 𝑤𝑕𝑒𝑒𝑙 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑓𝑟𝑜𝑛𝑡 𝑟𝑖𝑔𝑕𝑡 𝑤𝑕𝑒𝑒𝑙 

𝑊𝑆𝑅𝐿 : 𝑤𝑕𝑒𝑒𝑙 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑟𝑒𝑎𝑟 𝑙𝑒𝑓𝑡 𝑤𝑕𝑒𝑒𝑙 

𝑊𝑆𝑅𝑅 : 𝑤𝑕𝑒𝑒𝑙 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑟𝑒𝑎𝑟 𝑟𝑖𝑔𝑕𝑡 𝑤𝑕𝑒𝑒𝑙 

𝑘1, 𝑘2, 𝑘3 , 𝑘4: 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠  

 

(10.1) 

would allow the detection of a faulty element within the module. 

Figure 5.14 depicts a generic algorithm which will ensure the fail safe operation of the 

ABS, TCS and ESC modules.  
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Figure 5.14 - Algorithm for achieving fail safe operation applicable to the ABS, ESC and TCS systems 



 

 
104 Architecture Definition 

 

 
 

5.2.6  Braking Actuator Modules 

Braking actuator modules are responsible for receiving braking requests and effectively 

actuate the brakes to generate the required braking force. Brake requests are received 

periodically by the brake pedal module, and sporadically by other units such as the ESC, ABS, 

TCS, ACC and other implemented systems as required. Several brake requests can be sent at 

the same instants by these units. Such issues have to be dealt with appropriate software 

specification. 

5.2.6.1  The Safe State of a Brake Actuator 

The braking actuator modules are responsible for actuating directly on the brake 

actuators. Although it was mentioned in Chapter 4 that a brake-by-wire system does not have 

a safe state, the difference between the safe state of the entire braking system and a single 

brake actuator must be understood.  

When designing fault tolerant architectures, one of the most important things is that its 

safety must be self-sustainable. Thus, during this discussion we exclude the hypothesis of 

intervention from the Electronic Stability Program in case of vehicle destabilization provoked 

by erroneous brake actuation.  

A faulty braking actuator module can cause two distinct situations: performing an 

unsolicited brake force and the contrary, not performing a solicited brake force. The former 

situation can lead to catastrophic situations such as the loss of vehicle control, as the 

creation of an unsolicited brake force creates an undesired yaw moment. In case of  

occurrence of the latter situation, a yaw moment is also generated but with the advantage 

that the effects of a non braking wheel can be detected and compensated. It must be kept in 

mind that brake compensation can only be performed up to a certain brake force. However, if 

we consider that the odds of a brake actuator failing at the same instant that the driver 

performs an emergency braking, the non braking state can be considered the safe state of a 

braking actuator.  

 

 

 

Figure 5.15 - Erroneous operation of the brake actuator 
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5.2.6.2  Braking Actuator Modules Operation 

Similarly to the wheel speed acquisition module,  ABS, ESC and TCS modules, the brake 

actuator modules are constituted by two elements working in a duplication with comparison 

topology. Although both elements perform the same calculations, only one element 

commands the actuator. Upon abnormal behavior from either the actuator or any of the 

elements, the detecting element de-energizes the actuator and engages safety measures.  

A more detailed view of the braking actuator modules and the interacting units is seen on 

Figure 5.16. 

 

 

 

Figure 5.16 - Detailed view of brake actuator module connections 

Figure 5.17 depicts an algorithm that ensures the fail safe behavior of the brake actuator 

modules when performing brake requests upon reception of the brake pedal position.  

The algorithm for performing brake request from units such as the ABS, TCS and ESC is 

similar to that described in Figure 5.17, but in case that both elements receive different 

brake requests, the command shall be ignored as this implies that a fault has occurred in the 

ABS, TCS or ESC modules. Upon such situation, a diagnostic message should be sent. 
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Figure 5.17 - Algorithm which ensures the fail safe of brake actuator elements 
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5.2.6.3  Wrap Around Testing 

Once the controller outputs the appropriate signal to generate a certain brake force, it 

cannot be expected that the actuator will actually perform the desired brake force, as faults 

can occur in the actuator and on the interfaces between the controller and the actuator. 

Therefore, it must be tested at all times that the desired brake force is actually being 

generated. This implies that there must any kind of feedback between the controlling and the 

actuating units. On the impossibility of measuring the brake force directly, several indirect 

analytical ways can be performed such as: 

 

1. Measuring the current applied to the actuator (current proportional to torque) 

2. Observing wheel speed when brakes are applied 

 

The suggested algorithm is illustrated in Figure 5.18. 

 

 

 

Figure 5.18 - Algorithm which checks if actuator behavior corresponds to desired behavior 

 

5.2.7  Power Supplies  

The connection of all controllers and actuating units on the braking system to the same 

power supply would result in loss of the brakes in case of power outage. The ideal situation is 

to provide each component of the system  with a dedicated power supply. Due to unfeasibility 

of such idea, due to cost, complexity and available space, and following the same philosophy 

of reducing the number of components on the maximum while granting safety, the minimum 

number of power supplies suggested is two.  

Both elements from the brake pedal position module must be powered by different power 

supplies, as the failure of a single power supply would lead to brake loss, given the inability 

of the brake pedal position to be transmitted to the actuators. 

Due to the fail safe behavior of the ABS, TCS, ESC and wheel speed acquisition modules, 

these can be powered by the same supply, as a power outage on any of the elements will 

cause the whole modules to stop working due to the comparison mechanisms for fault 

detection. 
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To minimize the effects of power outage on vehicle dynamics, brake controllers/actuators 

belonging to the same side of the vehicle cannot be supplied by the same power source. The 

fundaments of this idea can be visualized on Figure 5.19, which depicts undesirable situations 

in all power configurations. 

 Situation 1 reflects a situation that happens upon power outage of the brake actuators 

when two brake actuators from the same side are connected to the same source. In this 

situation, if the driver is pressing the brake pedal and the power supply fails, a yaw 

momentum is generated, which can cause the driver to lose the control of the vehicle. 

Although in situations 2 and 3 the available brake force can be diminished, the failure of 

the power source does not induce an undesired yaw.  

The diagonal configuration on figure two has the potential of providing additional brake 

force comparing to the front/rear power supply configuration. For instance, if the vehicle is 

heavier on its front side, rear wheels cannot perform as much brake force as front wheels. 

Hence, in case of a power outage on the front brake wheels, the available brake force will be 

diminished. In case of the diagonal arrangement, if the front wheel provides more braking 

force and if a steering yaw compensation service is available, the effects of the generated 

yaw can be reduced, while the brake force is increased.  

 

 

 

Figure 5.19 - Different responses from the vehicle according to different configurations of power 
supplies upon power outage 
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5.2.8  Braking System Fault Analysis 

This section provides a brief overview of the types of faults than can occur within the 

braking system, the respective consequences and its effect on brake control. The following 

tables summarize the concepts and ideas that have been discussed throughout this chapter. 

Table  5.6 - Gateway fault analysis 

Component Fault Consequence Brake loss 

Main Element Component fail or power 

outage 

  Braking system unable to interact 

with exterior systems 

 TCS and ESC unable to operate 

No 

Erroneous messages 

transmitted to elements 1 

and 2 

 None: erroneous messages detected 

by elements 1 and 2 and not 

transmitted to braking modules 

No 

Elements 1 or 2 Component fail  None: interaction with exterior 

systems is done by means of non faulty 

element 

No 

Power outage    Braking system unable to interact 

with exterior systems 

 TCS and ESC unable to operate 

No 

 

Table  5.7 - Network channels fault analysis 

Component Fault Consequence Brake loss 

CAN transmission 

medium 1 or 2  

Communication 

channel mishap 

  None: units are able to 

communicate by means of redundant 

transmission medium 

No 

Network jam by any 

unit connected to the 

channel 

 None: units are able to 

communicate by means of redundant 

transmission medium 

No 
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Table  5.8 - Brake pedal position fault analysis 

Component Fault Consequence Brake loss 

Element 1 or 2  Component fail   None: brake pedal position is 

transmitted by other element 

No 

Erroneous brake pedal 

position transmitted 

 None: receiving modules detect 

erroneous brake pedal position and 

consider the value sent by the 

redundant element 

No 

Power outage  None: brake pedal position is 

transmitted by redundant element 

which is not affected by power 

outage 

No 

Sensors Erroneous value 

provided 

 None: fault detected by plausibility 

tests or natural curve and masked by 

voting mechanism 

No 

 

Table  5.9 - ABS, TCS and ESC modules fault analysis 

Component Fault Consequence Brake loss 

Element 1 or 2  Component fail   Module unable to operate: detected 

by redundant element 

No 

Erroneous brake request 

transmitted  

 Required intervention not performed: 

brake actuator modules detect 

discrepancy between the two received 

brake requests and do not perform any 

intervention (very unlikely due to 

routine checks) 

No 

Power outage  Module unable to operate No 

 

Table  5.10 - Brake actuator modules fault analysis 

Component Fault Consequence Brake loss 

Element 1 or 2  Component fail   Loss of brake force provided by the 

controlled actuator: detected by 

redundant element, which can request 

brake compensation 

Limited 

Power outage   Loss of brake force provided by the 

controlled actuator 
Limited 

Brake Actuator Component fail  Loss of brake force provided by the 

actuator: erroneous behavior detected by 

brake actuator elements and actuator de-

energized 

Limited 
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Table  5.11 - Wheel speed acquisition module fault analysis 

Component Fault Consequence Brake loss 

Element 1 or 2  Component fail   ABS, TCS and ESC unable to operate: 

detected by redundant element 

No 

Erroneous wheel speed 

values calculated 

 ABS, TCS and ESC unable to operate: 

detected by redundant element 

No 

Erroneous wheel speed 

values transmitted 

 None: ABS, TCS and ESC modules 

detect discrepancy between the two 

received values 

No 

Power outage   ABS, TCS and ESC unable to operate No 

Wheel speed sensors Erroneous value provided  ABS, TCS and ESC unable to operate No: fault detected 

by plausibility 

tests or natural 

curve and masked 

by voting 

mechanism 

 

 

Table  5.12 - Power supply fault analysis 

Component Fault Consequence Brake loss 

Power Supply Component fail   All elements connected to power supply 

fail 

 Loss of brake force provided by actuators 

powered by the faulty power supply 

Limited 
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Chapter 6  

Conclusions and Future Work 

6.1  Conclusions 

Throughout this work, several functionalities that are usually found in modern vehicles 

and which have the potential to be developed along the various courses available have been 

identified, and their operation and hardware architectures have been documented. Despite 

the intent of providing this document with more information about the computational 

platforms that are used by manufacturers to implement the described features, the lack of 

information resulting from the fact that such information represent trade secrets, made it 

impossible for providing this document with such data.   

The most widely used communication networks in the automotive industry have been 

studied and documented, which will allow students to understand the concepts and their 

applicability on the projects that will be developed. Although TTEthernet is not actually used 

in the automotive industry, its capabilities and features granted it a spot in this document 

due to its potential of becoming the future solution for the problems that the new generation 

of vehicles will face. 

During this study, it was found that many efforts are being put together by manufacturers 

for the implementation of drive-by-wire systems. Although it was not on the objectives of this 

work, it is my belief that this document would be incomplete without a brief reference to the 

concepts of this emergent philosophy. Not only the drive-by-wire systems were referenced, 

but also some guidelines and techniques that will enable students to develop their own 

solutions. 

The architecture and ideas that were proposed in Chapter 5 for the braking system, 

enables that a system which is usually integrated in a single module to be developed by 

several working groups. Despite being conceptualized taking as basis a network protocol that 

was not designed with the intent of being implemented for safety critical applications, the 

proposed architecture and algorithms that support its operation are able to achieve a fair 

amount of dependability, which is required for a system whose malfunction can lead to 

catastrophic consequences.   
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6.2  Future Work 

As it was mentioned in Chapter 5, Ethernet as a the communications backbone for the EV 

does not guarantee in any way the desired level of determinism which is required for the 

distributed control algorithms that will depend on it. This issue could be solved by the 

creation of a middleware layer that would allow the different systems within the vehicle to 

exchange data in a TDMA scheme, based on the Ethernet infrastructure.  

The proposed architecture for the braking system requires a detailed study on the timing 

requirements of each feature, so the schedulability of all the messages that are expected to 

travel within both CAN channels can be proved.  

Being the EV an academic project, it is expected that the architecture of the systems 

installed will change over time. To avoid constant reconfigurations on the devices that are 

expected to communicate, a middleware layer which would hide the details of the hardware 

architecture would be a valuable asset. 
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