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Abstract

In this work an interactive application completely controlled by the ut-
terance of 5 Portuguese vowels was developed. This application (a vowel
display) is an important complement to speech therapy or language learning
areas, as it allows to overcome many of the major drawbacks of the traditional
approaches, namely the lack of motivation, the impossibility of continuing
training after the sessions, and the fact that the feedback, that is provided
by the speech/therapist in the traditional methods, is delayed, and hence not
as effective to self-monitoring as a real-time feedback of the utterances is.

The traditional techniques for achieving a vowel display (formant plots)
have many fragilities, related with the formants estimation, that is not reli-
able for high-pitched vowels (this is the case of the vowels uttered by chil-
dren).

A basic pattern recognition process flow was followed, but a number of
variants, including the use of different features, different mapping techniques
and different classifiers was tested. Several hierarchical approaches were also
tested, and yield good indications.

The final classifier scheme comprises the use of 16 MFCCs as a parametriza-
tion of the speech signal. Then, these parameters are mapped to a 4-
dimensional space, using a linear technique (LDA or PCA). The pitch can
additionally be added as a feature to this 4-dimensional set. The result-
ing feature set is then mapped using bayesian classifiers. Both linear and
quadratic classifiers were used.

The classifier developed is hence adapted to use in real-time operations.
Although lacking further verifications, the classifier performs relatively well
for high-pitched vowels, according to tests made regarding a female speaker.

The output of the classifier is used as the controller for a simple car
race game, that is intended to be the auxiliary visual display to language
learning/speech therapy sessions.



Resumo

Neste trabalho foi desenvolvida uma aplicação completamente contro-
lada por 5 vogais do português. Este display de vogais é um complemento
importante para áreas como terapia da fala e aprendizagem de linguagem,
pois permite ultrapassar muitos dos principais problemas das abordagens
tradicionais, nomeadamente a escassez de motivação, a impossibilidade de
continuar o treino após as sessões, e o facto de o feedback dado pelo ter-
apeuta ou professor nas abordagens tradicionais aparecer atrasado em relação
à produção do som, pelo que não é tão eficaz como o feedback em tempo-real
seria para aumentar a capacidade de auto-monitorização.

As técnicas tradicionais de obtenção de displays de vogais recorrem a
gráficos de formantes. Estes apresentam muitas fragilidades, visto os pro-
cessos de estimação de formantes não serem robustos, e apresentarem falhas
para vogais produzidas com um elevado pitch (como é o caso das vogais
produzidas por crianças).

Neste trabalho, utilizou-se a sequência tradicional de operações de pro-
cessamento de padrões. No entanto, várias variantes desta abordagem geral
são testadas, incluindo o uso de diferentes caracteŕısticas, diferentes técnicas
de mapeamento, e diferentes classificadores. Foram também testadas várias
abordagens hierárquicas, que apresentaram boas indicações.

O classificador final compreende o uso de 16 MFCCs para caracterizar o
sinal de fala. Seguidamente, estes parametros são mapeados para um espaço
de 4 dimensões, usando uma técnica linear (LDA ou PCA). O pitch pode
ser adicionado nesta fase como uma caracteŕıstica alternativa. O conjunto
de caracteŕısticas resultante é finalmente classificado por métodos bayesianos
(lineares ou quadráticos).

De seguida, este classificador foi adaptado para permitir operação em
tempo-real. As primeiras indicações mostram que este classificador funciona
bem para vogais produzidas com pitch elevado.

A sáıda dos classificadores é utilizada para controlar um jogo de corridas
de carros simples, que foi criado para ser um display visual auxiliar para as
áreas de terapia da fala ou aprendizagem de linguagem.



Preface
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Chapter 1

Introduction

1.1 Overview

In this work, the problem of isolated vowel recognition is addressed. In the
last few decades, major improvements were made in the speech recognition
area. Although isolated vowel recognition appears to be a minor problem in
this context, it is also true that it represents a big challenge: most of today’s
speech recognition systems rely on the use the contextual information to
improve the system’s performance. However, in the isolated vowel recognition
environment, no contextual information exists. Therefore, the development
of a system capable of identifying the distinctive features of the vowels is
essential.

A vowel is a speech sound produced with an open configuration of the
vocal tract, therefore offering no obstructions to the flow of air from the
lungs. This definition arises from the main difference to the consonants, the
alternative class of speech sounds. Vowels are one of the most interesting
classes of sounds - in most languages speech is not possible without vowels.
Nevertheless, their importance to classification and representation of written
text is very low: there are only 5 vowels (in fact, if a written word is lacking
the vowels, one can easily derive the word from the consonants - the same
thing does not happen if there is a lack of consonants). For spoken speech,
the opposite happens - most speech recognition systems rely on vowels to
achieve high performance [4].

However, isolated vowel recognition systems remain inaccurate and are
not robust. An explanation for this may be found in the fact that the iden-
tification of the distinctive features of vowels has not yet been done. In fact,
one must not forget that the amount of variability that can be associated
with the pronunciation of a “normal” vowel is enormous: different genders,
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possibly with different regional accents exist, so defining a standard vowel
sound is impossible. The main challenge of this problem still lies in the
achievement of the correct distinctive features for the vowel class. Standard
classifiers for vowels sounds rely on the estimation of the first three formants
using the short-time Fourier spectrum derived from the speech signals. Also,
the traditional vowel displays are simple scatter plots, which use the first
two formants as axes. However, these plots show great dispersion and over-
lap between the several classes [4]: although formants contain information
regarding the distinction between classes, this information is not complete,
neither the methodologies to estimate formants are reliable to use in a real-
time framework. This is obviously incompatible with the idea of a robust
automatic vowel recognizer. Latter, the use of spectral-shape features was
proposed [5] as a valid alternative to the estimation of formants. However,
none of these techniques approaches the performance of the human auditory
system (“human performance in recognizing isolated vowels (...) is not even
approximated by current state-of-the-art technology” [3]) - in fact, one is able
to recognize without great effort an uttered vowel, regardless of the gender
of the speaker, or its regional accent. Therefore, the final goal of a “perfect”
classifier can be defined as the achievement of a human-like performance.

The use of visual displays to present the uttered vowel is a technique
very useful for speech training purposes. Visual displays find their target ap-
plication areas such as language learning and speech therapy - both groups
of “patients” need aid to correct the deviation from the correct utterance,
as it is extremely unlikely that any would be able to correct the respective
problem simply by self-monitoring the utterances [6]. Usually, some kind of
fragility on the usual feedback system, the auditory system, exists, thus an
alternative feedback has to be provided. As stated in [3], computer-based
visual feedback of speech-related features, namely vowels has the purpose
of reinforce or replace the natural acoustic feedback pathway. This visual
display must actively change with the different utterances: the necessity of
a real-time display, that reflects even the small changes in pronunciation
is immediately defined as a goal for language learning and speech therapy
computer-based applications [7]. Together with the reinforcement of acoustic
feedback, visual displays facilitate and fasten the convergence to the desired
pronunciation - extra motivation is provided to the patients, by offering op-
portunities of self-training in complement of the training performed in speech
therapy sessions.

The use of new technologies in the speech training areas represents a
abrupt change relatively to the traditional techniques, in which all lacking
feedback is provided by the teacher/therapist. These changes must be seen as
an aid to the teacher’s or therapist’s work, and not as a replacement to them.
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The aid provided by a computer-based visual feedback is indeed powerful, and
may help to overcome some important drawbacks of the traditional training
techniques, that are presented in [6]. In the following, the main drawbacks
identified are presented:

1. Insufficient motivational impact and reinforcement

The traditional teaching strategies are hardly dissociated from the idea
that a treatment is being held. However, and specially when the patient
is a child, it is extremely important to maintain a certain degree of mo-
tivation. When that does not happen, and the child is being “forced”
to do the treatment, the level of concentration is limited, and the prob-
ability of success is certainly diminished. Therefore, it is difficult to
achieve the degree of reinforcement desired.

2. No immediate linking and response between the acoustics and
the articulation

In the usual training methods, the natural feedback is replaced by
the one given by the teacher. This introduces necessarily some delay
between the production of the utterance and the self-perception of the
degree of deviance from the desired production. A real-time feedback
provides a patient with the ability to become self-aware of the quality
of his/her utterances, and, consequently, to anticipate and correct a
bad utterance.

3. Practice does not continue after the speech training session

The traditional techniques usually require the presence of a teacher/therapist.
Even when there are specific exercises that can be taught to a patient
and performed on his own, they usually lack the capability of motivat-
ing the patient to continue training after a session.

4. Too much time and patience are required from both the teacher
and the students

The training does not bring immediate results. First it will gradually
approximate the patient to the desired production, and latter will help
the patient to maintain the desired production. That is specially true
if no training is held at home between the sessions. Additionally, the
sessions are usually expensive.

The use of a computer-based visual display gives an augmented form of
feedback for the patient, as it provides a real-time feedback that can replace
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or increase the natural acoustic feedback, but also for the teacher/therapist,
as it gains improved insight regarding the utterances held by the patient.

Regarding the visual displays, some essential requirements have to be
met in order to the feedback provided by such elements can be helpful for
both patient and teacher/therapist, as mentioned earlier. Many of these re-
quirements naturally arise from the compensation of the drawbacks of the
traditional methodologies, described above. As stated in [6], the main re-
quirements of such a display are:

Real-time operation The visual feedback provided must be immediate,
i.e., the patient must see the effect of small changes in an utterance
in the visual display, so that he can be aware of the effect of changing
the articulation. Also, if the feedback is immediate, it is more easily
associated with the production made, and hence the patient becomes
aware of how to correct deficient productions. Although utility can be
drawn from delayed operation, for some specific purposes, the real-time
requirement is essential in training application, such as the one that is
intended to be developed in this work.

The level and amount of detail extracted There are displays that fo-
cus only in one feature, and displays that show a big amount of infor-
mation, such as spectrograms. These high-detailed displays are very
useful for professional analysis, however they can be overwhelming, con-
fusing and incomprehensible for patients. Ideally, the display should
provide the amount of detail necessary to reinforce the learning.

Characteristics of visual representation The chosen visual representa-
tion must be related with the speech attribute to be taught - the display
should give intuitive representations. Child patients have limited con-
centration capabilities, so the display must be simple.

Visual instructions The game must be intuitive, but there also should
exist visual indications of how to reach the intended goal, so that the
patient can correct his errors and achieve a correct vowel utterance.

Meaningful contrasting models The feedback provided by different ut-
terances must be different, so that the effect of each utterance is per-
fectly clear, and that no confusions are made.

A metric to measure speech quality The visual feedback must provide
some kind of information relative to the quality of the current produc-
tion (similar to the evaluative feedback a teacher/therapist can give,
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i.e. good, excellent, etc.). Therefore, some metrics to compute the
quality of the utterance must be derived.

Motivational impact and reinforcement of visual feedback The visual
display must be attractive enough to provide an interesting training
framework to the patient, so that he/she is motivated to continue the
training at home. Therefore, as more training is done, the results are
also better.

Flexibility and suitability The visual display must be adaptable to the
current needs of the patient, i.e., the training process should be increas-
ingly difficult, as the patient improves its condition.

Accurate and reliable The visual display must give accurate feedback re-
garding the current utterance. Errors can result in a disincentive for the
patient, hence resulting in the opposite of the effect intended. In worst
case scenario, wrong feedback can even reinforce bad productions.

Ideally, these requirements must be met while developing a visual display
for speech therapy or language learning purposes.

Different approaches to speech-recognition related problems, such as the
isolated vowel recognition problem, can be considered. In [4], three ap-
proaches to the speech recognition problem are presented:

Acoustic-phonetic approach The basic idea behind this approach is that
distinctive phonetic units exist in spoken language, that are character-
ized by properties existing in the speech signal or in its spectrum. It
is assumed that the variability existing regarding both the amount of
speakers and the effect of co-articulation of sounds depends on straight-
forward rules, and thus can be easily learned.

Pattern recognition approach In this approach, speech patterns are used
to train a classifier. these patterns can be used directly without the
explicit feature determination required by the previous technique. If
the training set is representative of the general population, the classifier
will be able to identify correctly new patterns.

Artificial intelligence approach This methods can be seen as a hybrid
of the previous two approaches, as ideas and methods from both are
exploited.

In this work the pattern recognition approach was followed, as it has many
advantages, such as the simplicity of use, the robustness and the proven high
performance.
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1.2 Motivation

Children are naturally motivated to use interactive displays. Further-
more, the use of games controlled by the utterance of vowels provides means
to facilitate the motivation needed to induce a child to follow a regular train-
ing program.

This motivation mainly comes from the fact that, in an interactive game
framework, the child can actually see his/her progress - they attempt to
change the articulatory patterns until the produced utterance allows the
accomplishment of the game goals. However, traditional vowel classification
techniques tend to fail for high pitched vowels - as is often the case of child
speakers.

The occurrence of errors in classification can have a very negative impact
in training, as child may be led to think that an incorrect utterance is in
fact correct, and vice-versa. Therefore, the development of a new classifier,
capable of correctly identify high-pitched vowels is necessary.

1.3 Objectives

The purpose of this work is thus to build an automatic vowel classifier,
suited for be used by children, regarding 5 of the 8 oral European Portuguese
vowels. The classifier should be able to work in real-time, and should further
be integrated in a simple computer game. Signal processing techniques are
used to obtain distinctive features from the speech utterances, and pattern
recognition techniques will then be used to achieve the classification in vowels.
The final application must give real-time visual feedback regarding the vowels
uttered by the patient (that will be preferentially a child). Also, this visual
feedback must be given in the form of an attractive and intuitive game, as
the target audience for such a system are children. Throughout this thesis
the main steps followed to accomplish these goals are presented.

1.4 Organization of the Thesis

In Chapter 2, the main signal processing concepts and techniques are pre-
sented. An overview of the basic properties of the speech signal is presented,
with special care regarding voiced signals, the class to which vowels belong.
Then, a summarized presentation of the concept of formants is made, as
these are the traditional features used to characterize vowels. The concept
of cepstrum is defined, with the basic description of how the concept arised,
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and the presentation of the formulas regarding both the real and the com-
plex cepstrum. The clarification of this concept is necessary to complement
the definition of the Mel-Frequency Cepstrum Coefficients, that are subse-
quently defined, and that constitute the main features used to characterize
the speech signals in the present work. Another important concept is the
pitch, as the perceptual equivalent of the fundamental frequency, presented
in this chapter. Also, an overview of the basic concepts related with the
Linear Prediction Coding are presented.

Chapter 3 presents a review of the main pattern classification concepts.
The dimensionality reduction, feature extraction and pattern classification
concepts are defined. A large amount of techniques regarding the feature
extraction step are presented. For the pattern classification step, two main
methods were used and are defined: bayesian classifiers and nearest-neighbor
classifiers. The concept of Artificial Neural Networks is approached on a
different section, because this is a very important and complex method, used
in many of the applications regarding the use of vowel displays.

A summarized state-of-the-art review is presented in Chapter 4, with
references to the main applications in this area.

In Chapter 5, the results of preliminary experiments regarding the vowel’s
spectral shape are presented. These experiments intend to give some insight
regarding the connection between the spectral structure of these signals and
the human recognition ability.

Chapter 6 provides an overview of the several simulations regarding the
development of the most suited classifier for high-pitched vowel identification
purpose. These simulations were done in Matlab®.

Details regarding the implementation in C++ of the selected classifier,
and the development of the final application (a car race game) are presented
in Chapter 7.

In Chapter 8, the main conclusions drawn from this work are presented
together with suggestions regarding further work to enhance the application.

1.5 Original Contributions

This work addresses the problem of isolated vowel recognition regarding
child speakers. Although some solutions for vowel training using speech
displays exist, the development of the classifying and mapping techniques
does not explicitly regard the problem of high pitched vowels (this problem
is usually addressed by providing different classifiers for each gender). In the
present work, an attempt to create a robust classifier is addressed, by using
a database mainly composed of high-pitched vowels.
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Furthermore, the relevance of the use of several classical pattern recogni-
tion techniques, including feature extraction, bayesian classifiers and nearest-
neighbor classifiers is addressed, by applying these techniques to the vowels
database. The resulting classifier was then adapted to real-time operation.
Although some experiments regarding the use of these techniques to vowel
classification have already been made, no concern with the possibility of
adapting to real-time operation was taken. In this work, the use of these
techniques is approached regarding this requirement, together with the ne-
cessity of finding a robust classifier.

The use of hierarchical approaches to vowel classification, both by sep-
arating the vowels accordingly to their spectral characteristics in different
stages, and by using different types of features is tested, and has provided
good indications.



Chapter 2

Fundamentals of Digital Speech
Processing

2.1 Introduction

The first step in any speech recognition system is the signal processing.
This step comprises the parametrization of the input speech signal. In this
chapter, the main signal processing techniques for speech signal analysis are
presented.

For vowel classification purposes, this parametrization of the input speech
signal comprises the computation of speech-related features that are able to
characterize the signal, regarding the distinction between vowels. There are
many features that can be computed from an input speech signal: from the
raw features like pitch or amplitude, to more complex features like MFCCs or
LPCs. Therefore, in the remainder of this chapter, the techniques regarding
the computation of parameters that are helpful for vowel identification are
characterized.

Primarily, however, a brief overview of the speech signal is provided.

2.2 Speech

In human beings, the speech production/perception process involves sev-
eral steps. First, the message is formulated, then it is converted into a
language code. Finally, neuromuscular actions have to be taken in order to
allow the production of the correct sounds, by making the vocal cords vibrate
and adjusting the shape of the vocal tract. The acoustic wave is then formed,
and travels around the acoustic channel. Hopefully, it will reach the listener:
thus, the speech recognition process begins.
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Regarding the speech recognition process, the acoustic signal is first pro-
cessed along the basilar membrane in the inner-ear. This provides a spectrum
analysis of the incoming signal. Next, a neural transduction occurs, convert-
ing this spectral signal “into activity signals on the auditory nerve, corre-
sponding roughly to a feature extraction process” [4]. Next, a conversion to
a language code is made, and the message comprehension is finally achieved.
It is a very complex process, and not fully understandable by the present
knowledge. Therefore, machines are still unable to replicate this behavior,
despite the enormous efforts made in the last decades.

In the process of human speech production, the source signal is the glottal
pulse. An air flow then arises, and accordingly to the state of the vocal cords,
different classes of sounds are produced: if they are tense, this air flow makes
them vibrate, thus producing the so-called voiced speech sounds. On the
other hand, if the vocal cords are relaxed, and the air passes by a constriction
in the vocal tract, it becomes turbulent, and unvoiced sounds are produced,
or, alternatively, it builds up pressure behind a point of total closure, and
when it is opened, this pressure is suddenly released, causing a plosive. The
voiced sounds are particulary interesting, as they resemble periodic signals.
Examples of voiced sounds are the vowels.

Although speech is a time-varying signal, when considering short amounts
of time (between 5 and 100 ms), one can consider it as a stationary signal:
that assumption is often made for simplicity reasons on the calculations.

2.3 Formants

The formants correspond to the resonance frequencies of the vocal tract,
determined by how its cross-sectional area varies. These frequencies are
related to those that allow the passage of most of the energy from the source
to the output, and thus match peaks in the spectrum. Changing the position
of the tongue, lips, jaw and velum influence the sound produced. Therefore,
the formants can be seen as a reflex of the position of these articulators -
i.e., the first two formants are primarily determined by the position of the
tongue. Accordingly, vowels are mainly affected by the position of the tongue
- therefore, it is usual to use the first two (or three) formants to identify a
vowel.
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2.4 Cepstrum

The cepstrum has its origin in the problem of deconvolving two or more
signals - in fact, the cepstrum was first defined as a technique for finding the
echo delay. This definition was motivated by the fact that the logarithm of
the Fourier spectrum of a signal containing an echo has an additive periodic
component that is dependent only on the echo size and delay [8].

The original definition regards the cepstrum, that will be further referred
as the real cepstrum, for disambiguation purposes. Later, a generalization of
the concept was achieved with the notion of the complex cepstrum. The two
concepts will be described in the following subsections.

2.4.1 Real Cepstrum

The cepstrum can be defined as the inverse Fourier transform of the log
magnitude spectrum of a signal (Equation 2.1).

c[n] =
1

2π

∫ π

−π
log |X(ω)|ejωndω (2.1)

As stated previously, the root of the definition of cepstrum lies in the
attempt of deconvolving different components of a signal. Voiced speech
(s(n)) is composed of the convolution of the excitation sequence e(n) and
the vocal system response θ(n), s(n) = e(n) ∗ θ(n). Therefore, in the Fourier
domain, S(ω) = E(ω)Θ(ω).

If instead of a convolution, our voiced signal was obtained by simply
adding the components, i.e. s(n) = x1(n)+x2(n), a simple Fourier transform
would allow a separation in frequency of both signals: S(ω) = X1(ω)+X2(ω).
Therefore, a the separation of both components would be easily achieved
simply by applying a filter, and then transform the resulting signal back to
the time domain. That is not the case: the convolution does not allow such
simplicity. However, if we define Cs(ω) as Cs(ω) = log |S(ω)|, using the prop-
erties of the logarithm, it is obvious that Cs(ω) = log |E(ω)| + log |Θ(ω)| =
CE(ω) + Cθ(ω). We are now in the presence of a linear combination of both
signals. Thus, the same techniques of filtering can be applied to separate the
signals.

The creators of this concept also defined a new terminology to avoid
confusions: quefrency, cepstrum and liftering, are the terms that prevailed.
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2.4.2 Complex Cepstrum

The real cepstrum has the major flaw of discarding the phase information
(it only uses the magnitude of the spectrum). Therefore, it is not allowed
the inverse transformation to the original nonlinear domain. With a simple
generalization of this concept, this problem is resolved, and the complex
cepstrum of a signal is defined (Equation 2.2):

x̂[n] =
1

2π

∫ π

−π
log{S(ω), }ejωndω (2.2)

where
log{X(ejω)} = log |X(ejω)|+ jarg[X(ejω)]. (2.3)

The cepstrum is the even part of the complex cepstrum.
Although the complex cepstrum has a series of interesting properties when

compared to the real cepstrum, the latter is still the one widely used.

2.5 Pitch

Psychoacoustics is a branch of psychophysics that studies the human
auditory perception. The studies made in this field have shown that there are
differences between the physical frequency content of sound, and the human
perception of these frequencies. Although the term pitch is usually used
interchangeably with the term fundamental frequency, this term actually
represents the perceived fundamental frequency of a sound, that may or not
correspond to the actual fundamental frequency.

The fundamental frequency is related with the vibration of the vocal
cords: when voiced sounds are produced, the glottis is opened and closed.
This movement makes the vocal cords vibrate. The rate of this vibration is
the fundamental frequency.

The pitch is one of the basic parameters that characterize a sound. There
are “normal” ranges of pitches for the speech of each gender (man, female and
child). Also, vowels have intrinsic pitches [9], and can be further classified
according to it.

There are several proposed methods for detecting pitch, namely methods
regarding time-domain waveform similarity and methods regarding frequency
domain spectral similarity. Only a brief overview of two methods regarding
each of these groups will be presented.



Interactive Game for the Training of Portuguese Vowels 25

2.5.1 Autocorrelation Method

The autocorrelation of a signal s(n) assumed stationary can be defined
by the expression in Equation 2.4.

R(τ) =
N−1∑
n=0

s(n)s(n+ τ) (2.4)

It is straightforward to understand that, if the signal is periodic, then
s(n) = s(n + T ), where T is the period. Therefore, the autocorrelation of a
periodic signal will have a maximum for τ = T . As was already mentioned,
voiced signals can be seen as quasi-periodic signals with period equal to the
pitch. Therefore, the autocorrelation can be used to achieve estimations of
the pitch period, by determining its maxima.

The main problem with the use of this technique is that the first formant
frequency often is near or bellow the pitch frequency, and thus can interfere
with this detection. Also, as the signal is simply quasi-periodic, the peaks
can be less prominent, and its identification can be difficult.

2.5.2 Harmonic-peak detection

Frequency analysis methods can also be employed to determine the pitch
frequency by noting that the distance between harmonics is the reciprocal of
the pitch period. Hence, an obvious form of determining pitch is to detect
the harmonic peaks and measure the pitch as the spacing between harmonics.

2.6 Linear Predictive Coding

Linear Predictive Coding (LPC) is one of the most important speech
analysis methods. It is used for estimating basic speech parameters: pitch,
formants, spectra, vocal tract area functions, and for representing speech
for low bit rate transmission or storage. This method models short-term
correlation between speech samples (the long term correlation are modeled
by pitch prediction models).

The LPC analysis basically states that “a speech sample can be approx-
imated as a linear combination of past speech samples” ([10]). In order to
understand LPC analysis, one should be aware of the source filter model of
speech production (see Figure 2.1). In this model, the time varying filter
incorporates the influences of the vocal tract, radiation, and excitation. Its
steady-state system function is presented in Equation 2.5, where G represents
the gain.
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Figure 2.1: Source Filter model of Speech Production [1]

H(z) =
S(z)

X(z)
=
G(1−∑M

j=1 bjz
−j)

(1−∑N
i=1 aiz−i)

(2.5)

This equation can be simplified if we consider an all-pole system. In fact,
this is only true for non-nasal voiced sounds. However, if the order of the
denominator considered is high enough, the resulting model provides a fairly
good representation for almost all sounds. In Equation 2.6, the simplified
all-pole model system equation is presented:

H(z) =
G

(1−∑p
j=1 ajz−j)

=
G

A(z)
(2.6)

where

A(z) = (1−
p∑

j=1

ajz
−j). (2.7)

The corresponding sampled-time domain formula, commonly referred as
LPC difference equation (Equation 2.8) shows what was previously men-
tioned: the value of the present output, s(n) may be determined by the
weighted sum of the present input, x(n) and the past output samples. The
problem of the LPC analysis consists in determining the parameters aj, j =
1, . . . p, given the input signal s(n).

s(n) = Gx(n) +
p∑

j=1

ajs(n− j) (2.8)

The derivation of the LPC Analysis Equation, together with the presen-
tation of the most used methods to derive the solutions for the problem, are
presented in Appendix A.
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2.7 Mel-Frequency Cepstrum

As stated in the previous section, there are differences between the physi-
cal parameters (such as the Fundamental Frequency), and the perceived ones
(such as the pitch). This perception does not follow a linear scale. Therefore,
the “mel” scale was created, a perceptual scale of pitches, that was derived
from measures obtained from listeners, who were asked to change the physi-
cal frequency, until the perceived pitch was doubled. The reference point is
the pitch of a 1 kHz tone, defined arbitrarily as 1000 mels.

With the definition of a perceptual pitch scale, variants of the standard
cesptrum appeared: mel-frequency cepstral coefficients, proposed by Davis
and Mermelstein [11] are one of the most popular approaches. The design
of this representation was motivated by perceptual factors: the desired char-
acteristic of such a representation is the ability to capture the perceptually
relevant information. The computation of the MFCCs uses the discrete co-
sine transform (DCT). In Equation 2.9, the form of computation of these
coefficients as described in [11] is presented.

MFCCi =
N∑

j=1

Xj cos(i(j − 1

2
)
π

N
), i = 1, 2, ...,M (2.9)

In 2.9, M is the number of cepstrum coefficients, Xk, k = 1, . . . , N rep-
resents the log-energy output of the kth filter (Fig. 2.2).

Figure 2.2: Filters for generating MFCCs [1]

The MFCCs are hence a parametric representation of acoustic data based
on the Fourier spectrum, that preserve information that LP (Linear Predic-
tion) features (see 2.6) omit. Furthermore, the MFCC has proven advantage
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over the linear frequency cepstral coefficients [11], and allow a better sup-
pression of perceptually less important spectral variation on higher frequency
bands.

2.8 Conclusions

In the present chapter, a general overview of the signal processing tech-
niques regarding speech analysis was presented.

The human auditory system performs an analysis of the speech signal
regarding recognition that is still a mystery. Therefore, the replication of this
process by machines is not yet achievable: no complete knowledge regarding
which speech features are used by the human auditory system to perform
vowel recognition exists.

In this chapter, the main techniques regarding the computation of the
principal parameters for speech recognition are presented. Linear prediction
coefficients appear as the most traditional technique to parameterize a speech
signal. MFCCs arise as the most used state-of-the-art speech features. Pitch
is a raw feature of speech but with proven impact on vowel recognition. These
parameters will be used further in this work, and the corresponding ability
to characterize vowels will be studied.



Chapter 3

Pattern Recognition
Techniques

3.1 Introduction

Pattern Recognition can be understood as “the act of taking in raw data
and making an action based in the “category” of the pattern” [12]. Such
techniques are employed by humans, with no apparent effort. Transposing
such capability to machines is of extreme importance - areas such as isolated
vowel recognition (the aim of the present work) are good candidates to be
solved with these techniques. What is being said is that the isolated vowel
recognition problem can be seen as a problem of simply classifying a certain
pattern, derived from a speech frame. This pattern is obtained using the
signal processing techniques referred in the previous chapter.

A pattern is, in this context, a quantitative description of an object (in
this work, the object is a vowel utterance). Hence, the pattern is a vector,
containing several components, that are features extracted from the input
speech signal, somehow chosen to reflect the distinctive characteristics of the
several sounds.

Each object is associated to a class (i.e., vowel), and objects belonging to
the same class should have similar patterns. The classifier goal is to assign a
class to a given object, accordingly to the pattern associated to this object.
This is done by first creating a series of discriminant functions, that will give
a numeric result for each pattern fed to them. The classifier assigns an object
to a class if the value obtained by the respective discriminant function is the
highest of the values obtained by all the discriminant functions (see Equation
3.1).
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x ∈ Classi ⇒ gi(x) = max
forallj∈K

gj(x) (3.1)

In 3.1, x is the pattern (i.e. a vector of features) one wishes to classify,
gi is a given discriminant function, and K is the set of classes.

The derivation of the discrimination functions is usually made using train-
ing samples, i.e., labeled patterns, that are supposed to provide a good char-
acterization of the generality of the data. However, care has to be taken to
keep the classifier from overfitting to the training samples, i.e., the discrimi-
nation functions must also work well for similar patterns that are not in the
training set - the classifier must have a good generalization capability.

Automatic pattern recognition systems comprises several steps. The first
step usually regards the simple extraction of important parameters from the
input. In our system, signal processing techniques, described in the previous
chapter, were used to obtain parameters that provide good representations of
the important and distinctive features of the speech signal. However, in this
step the parameters obtained often comprise more information than the dis-
tinctive one: redundant or not distinctive information, that serves mainly to
difficult the classifier task. Therefore, an intermediate step between parame-
ter extraction and classification exists, often referred as feature extraction or
dimensionality reduction1. With this step, one intends to achieve representa-
tions of the input that keep only the distinctive features to the classification
task. The basic flowchart of such a process is presented in Fig. 3.1.

Figure 3.1: A simple pattern recognition flowchart

The idea of seeking among the several parameters extracted from the
input the distinctive features for a certain classification task has the purpose
of easing the following classification task. As defended in [12], there is no rigid
boundary between feature extraction and classification, as the ideal feature
extraction should be able to construct features from the input parameters

1The notion of dimensionality reduction is more wide than the feature extraction, as it
comprises also the feature selection techniques. However, the first group (feature extraction
techniques) has the advantage of allowing a combination of features in order to obtain
new and more distinctive features, while the feature selection techniques simply choose
among the several parameters the ones that provide better discrimination. Therefore, the
first have obvious advantages over the second, and in this work only feature extraction
techniques will be used for dimensionality reduction. Therefore, the two terms will be
used interchangeably.
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that would make the classification task extremely easy. Ideally, a perfect
classifier would also be able to distinguish between the several features fed
to him and perform a good classification despite of the quality of the feature
extractor. However, as is often the case, the reality differs from the ideal
concept. Therefore, several approaches to these problems, each one having
advantages and flaws, arise. In the following sections, the main techniques
to feature extraction and pattern classification will be described.

3.2 Feature Extraction and Dimensionality Re-

duction

Dimensionality Reduction is composed of both the feature extraction
techniques, and the feature selection techniques. As mentioned early, only
the feature extraction techniques will be addressed in the present work. The
purpose of the feature extraction step is to derive, from the several param-
eters extracted from the input, a set of features, such that these features
have similar values when the corresponding objects belong to the same class,
and distinct values when that is not the case. Several approaches to this
problem exist, including linear and nonlinear methods. Linear methods,
including Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA), assume that the data lie in a near linear subspace of a
high-dimensional space, and have the advantage of allowing a simpler imple-
mentation. As for the nonlinear techniques, they do not rely on the linearity
assumption, and can be grouped in three sets [2]: global nonlinear methods,
local nonlinear methods and global alignment of linear models.

3.2.1 Linear Techniques

Linear Feature Extraction Techniques provide new features by making
linear combinations of the several parameters. These techniques are very
easy to implement, and thus are very attractive. The traditional linear fea-
ture extraction techniques are the Principal Component Analysis (PCA) and
the Linear Discriminant Analysis (LDA) or Multiple Discriminant Analysis
(MDA). Both will be presented following.

Principal Component Analysis

The Principal Component Analysis technique finds a lower dimensional
representation of the data by maximizing the resulting variance of the data.
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The main goal of the technique is hence to find representations in a lower-
dimensional space of the data. Considering a multi-dimensional set of sam-
ples, a good zero-dimensional representation of this set is its mean value.
However, the mean value gives no information about the dispersion of the
samples. If instead of a point the data is mapped to a line, the representation
can be more interesting. By minimizing the squared-error function between
the samples and their projection along the line, a direction will be found as
the one where the data dispersion is higher. These directions are hence the
ones were most of the information is represented - the PCA technique uses
these directions (the Principal Components) to achieve the new representa-
tion of the data. A graphical representation of what was said is presented in
Fig. 3.22, where the original 3-dimensional data can be seen together with
the lower dimensional representation.

Figure 3.2: The PCA technique: A.The 3-dimensional original representation
B.The representation of the directions of the 3 principal components C.The
2-dimensional representation, using the 2 principal components

Mathematically, the problem can be addressed by considering a set of n d-
dimensional samples, X = [x1, . . . ,xn], and a one-dimensional representation
of the data as a line running through the sample mean m = 1

n

∑n
k=1 xk, x =

m+ae. The goal is hence to find the direction e that allows a minimization of
the squared-error between the original samples, and the data projected onto
this line. The solution for this problem involves the scatter matrix S, defined
in Equation 3.2. This matrix is simply n − 1 times the sample covariance
matrix.

S =
n∑

k=1

(xk −m)(xk −m)t (3.2)

2This image was obtained from http://cnx.org/content/m11461/latest/
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In Equation 3.2, xk represents each of the samples, and m the mean of
all the samples.

It can be proven [12] that the direction where the dispersion is higher (and
hence the squared-error is minimized) is the one given by the eigenvector cor-
responding to the higher eigenvalue of the scatter matrix. Generalizing this
result, a mapping in a subspace with k dimensions is achieved by making a
linear transformation using the k eigenvectors matching the k higher eigen-
values of the scatter matrix, which are hence called principal components.

Linear Discriminant Analysis

LDA, or Fisher’s Linear Discriminant, was primarily derived for problems
with two classes. When the number of classes is more than two, some authors
also address to this natural generalization of Fisher’s linear discriminant by
Multiple Discriminant Analysis (MDA). In this work, for simplicity reasons,
the term Linear Discriminant Analysis will be used to refer to the general
method.

In contrast with the previously described technique, LDA is a supervised
technique (the mapping is done considering the class labels of the train-
ing data), that has the goal of maximizing the linear separability between
classes, maximizing the Fisher criteria: the ratio between the variance be-
tween classes to the variance within the classes.

The former mapping (PCA) gives rise to components that are useful for
compact data representation, but has no concerns in whether these compo-
nents are suitable for discriminating the different classes. This problem is
addressed in Fig. 3.33, where it can be seen that the mapping achieved by
the PCA techniques does not provide the intended separation between the
classes: in fact, the technique induces the mixture of the samples.

3This image was obtained from http://www.cc.gatech.edu/ dminn/mini-proj.html
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Figure 3.3: The LDA technique: The purple line is the principal component
derived by the PCA technique, the cyan line is the vector found by LDA

The LDA approach tries to project the data in directions such that the
different classes are well-separated. We will first address this problem con-
sidering only two classes.

Consider a set of n d-dimensional samples, X = [x1, . . . ,xn], where n1

samples belong to class ω1 and n2 samples belong to class ω2. A linear
combination of the components of a sample x is obtained by the scalar dot
product y = wtx. Therefore, each of the new samples y1, . . . , yn is also
divided in two subsets, accordingly to the class they belong. Geometrically,
these new samples, yi, are simply the projection of the initial samples xi onto
a line in the direction of w. Therefore, the problem can be defined as finding
the best direction w that allows a bigger separation between classes, hence
simplifying the classification process.

A measure of separation between classes can be given by the distance
between the projected means of each class. In the original high-dimensional
space, the mean is given by Equation 3.3, where ωi represents the current
class, ni the corresponding number of samples, and x the samples. In the pro-
jected space, the mean is given by Equation 3.4, and is simply the projection
of the mean regarding the high-dimensional samples. In 3.4, ωi represents
the current class, ni the corresponding number of samples, y the samples in
the low-dimensional space and w the transformation matrix.

mi =
1

ni

∑
x∈ωi

x (3.3)

m i =
1

ni

∑
y∈ωi

y =
1

ni

∑
x∈ωi

wtx = wtmi (3.4)
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Therefore, one can obtain a measure of separation between classes in the
projected space by calculating |m1 − m2| = |wt(m1 − m2)|. Hence, if we
define the scatter for the projected samples as presented in Equation 3.5, the
criterion function presented in 3.6 can be defined. This function is maximized
when the projection w that provides a better separation between classes is
found.

s2
i =

∑
y∈ωi

(y −mi)
2 (3.5)

Jw =
|m1 −m2|
s2
1 + s2

2

(3.6)

The Equation 3.6 can be rewritten as an explicit function of w, by defining
the scatter matrices Si, the between-class scatter SB and the within-class
scatter (SW ).

The scatter matrices represent the scatter of the data in the original high-
dimensional space (Equation 3.7). The within-class scatter is defined in 3.8.

Si =
∑
x∈ωi

(x−mi)(x−mi)
t (3.7)

Sw = S1 + S2 (3.8)

The projected-space scatter matrix can hence be rewritten as shown in
Equation 3.9, and the separation between means as Equation 3.10:

s2
i =

∑
x∈ωi

(wtx−wtmi)
2 =

∑
x∈ωi

wt(x−mi)(x−mi)
tw = wtSiw (3.9)

(m1 −m2)
2 = (wtm1 −wtm2)

2 = wt(m1 −m2)(m1 −m2)
tw = wtSBw

(3.10)
where

SB = (m1 −m2)(m1 −m2)
t. (3.11)

Hence, the criterium function can be rewritten as in Equation 3.12. This
criterium function is referred to as Fisher’s criterion. This criterium basically
states that the between-class scatter (SB) should be maximized as the within-
class scatter (Sw) is minimized. In other words, one should increase the
difference between the projected means of each class, and minimize the data
separability within each class.

Jw =
TtSBT

TtSwT
(3.12)



Interactive Game for the Training of Portuguese Vowels 36

In this equation, T is the transformation matrix.
This criterium function is a generalized Rayleigh quotient. The vector w

that maximizes this quotient must satisfy SBw = λSww, that is easily iden-
tified as a generalized eigenvalue problem. Therefore, one should solve the
eigenvalue problem S−1

w SBw = λw by finding the eigenvalues and eigenvec-
tors of S−1

w SB. That is not necessary, because a solution can be easily found
by noting that SBw is always in the direction of (m1 − m2), and that the
scale factor for w is not important [12]. Therefore, a solution that optimizes
the criterium function is w = S−1

w (m1 −m2).
When there are c classes, the problem can be easily generalized by defining

the scatter matrices for each of the c classes. Therefore, the within-class
scatter is given by Equation 3.13.

Sw =
c∑

i=1

Si (3.13)

As for the between-class scatter, one must find the generalization by not-
ing that a total scatter matrix is such that ST = Sw + SB

ST =
∑
x

(x−m)(x−m)t (3.14)

where m is the total mean. This equation can be rearranged as

ST =
c∑

i=1

∑
x∈ωi

(x−mi + mi −−m)(x−mi + mi −−m)t (3.15)

ST =
c∑

i=1

∑
x∈ωi

(x−mi)(x−mi)
t +

c∑
i=1

∑
x∈ωi

(mi −m)(mi −m)t (3.16)

ST = Sw +
c∑

i=1

ni(mi −m)(mi −m)t. (3.17)

Therefore, the generalized between scatter matrix is obtained in Equation
3.18;

SB =
c∑

i=1

ni(mi −m)(mi −m)t. (3.18)

3.2.2 Global nonlinear techniques

The Global nonlinear techniques, similarly to the linear techniques, at-
tempt to preserve the global properties of the data, while constructing non-
linear transformations between the high dimensional data X and the low
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dimensional data Y . Therefore, global approaches attempt to preserve the
geometry at all scales, mapping nearby points on the high-dimensional space
to nearby points in low-dimensional space, and faraway points to faraway
points [13]. Therefore, these techniques tend to provide a faithful represen-
tation of the data’s global structure.

Multidimensional Scaling (MDS)

This method comprises a set of techniques that attempt to determine
a mapping between a high dimensional space and a low dimensional space,
trying to preserve the pairwise distance between points. The quality of the
mapping is expressed using a stress function, that is simply a quantification
of the error between the pairwise distance in the high dimensional space and
in the low dimensional space. Examples of stress functions are the raw stress
function (Equation 3.19) and the Sammon cost function (Equation 3.20).

φ(Y ) =
∑
i,j

(‖xi − xj‖ − ‖yi − yj‖)2 (3.19)

φ(Y ) =
1∑

i,j(‖xi − xj‖)
∑
i,j

(‖xi − xj‖ − ‖yi − yj‖)2

‖xi − xj‖
(3.20)

In Equations 3.19 and 3.20, ‖xi−xj‖ is the euclidian distance between two
points of the high dimensional space, and ‖yi − yj‖ is the euclidian distance
between two points in the low dimensional space. The Sammon cost function
represents an attempt to maintain the distances that originally were smaller.

Minimizing the stress functions can be made using various methods, like
the conjugate gradient method.

Stochastic Proximity Embedding (SPE)

This is an iterative algorithm that attempts to minimize the raw stress
function previously presented. The initial positions in the low-dimensional
space yi are randomly selected in [0, 1]. In each iteration, these coordinates
are updated, by randomly selecting s pairs of points (yi, yj)) and computing
the low-dimensional Euclidean distance for the selected pairs of points. Then,
the coordinates of yi and yj are updated in order to decrease the difference
between the distance in the low dimensional space dij and the corresponding
distance in the high-dimensional space rij:

yi = yi + λ
rij − dij

2dij + ε
(yi − yj), (3.21)
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yj = yj + λ
rij − dij

2dij + ε
(yj − yi). (3.22)

where λ is a learning parameter that decreases with the number of itera-
tions, and ε is a regularization parameter to prevent divisions by zero. This
procedure is repeated for a large number of iterations (i.e. 105 iterations).
The enormous amount of iterations is not is not a major disadvantage as the
computational cost of the update procedure is very small.

Isomap

The MDS set of techniques has the fragility of using euclidian measures.
That means that, if the data points are disposed along a curve surface, these
techniques could consider two points to be close, although the distance along
the curve surface could be much bigger. The Isomap technique attempts to
maintain the pairwise curvilinear or geodesic distances. These distances are
computed by first constructing a neighborhood graphG where each datapoint
xi is connected to its k nearest neighbors xij . Then, the shortest path between
two points in the graph can be easily computed using Dijkstra’s shortest-
path algorithm, and provides a good overestimate of the geodesic distance.
When the geodesic distances between all datapoints are computed, a pairwise
distance matrix is obtained. The low dimensional representations yi is finally
computed by applying MDS algorithm to this matrix.

Fast Maximum Variance Unfolding (FastMVU)

This technique is similar to the Isomap technique: it defines a neigh-
borhood of each point and stores the point-to-point distances. The main
difference is that this technique explicitly tries to unfold the data surfaces,
by maximizing the euclidian distances between points, with the restriction
of keeping the distances in the neighborhood (not distorting the geometry
of the data surface). The first step of this technique is the definition of
a neighborhood graph G, where each point xi is connected to its k closest
neighbors. Next, we try to maximize the euclidian distances between every
point, keeping the distances in the neighborhood graph G:

max
∑
ij

‖yi − yj‖2 restricted to ‖yi − yj‖2 = ‖xi − xj‖2 ∀(i, j) ∈ G.

(3.23)
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Kernel PCA

This technique is a reformulation of the linear PCA technique on a higher
dimensional space constructed using a kernel function. The first step is hence
to transpose the data into a higher dimensional space (using, i.e., Support
Vector Machines). The entries of the kernel matrix K are defined by kij =
κ(xi, xj), where κ is a kernel function. Next, the matrix is centered, using
the modified entries presented in Equation 3.24.

kij = kij −
1

n

∑
l

kil −
1

n

∑
l

kjl +
1

n2

∑
lm

klm (3.24)

Finally, the d principal components (eigenvectors) vi of the kernel matrix
are calculated.

The performance of this method is highly dependent on the choice of the
kernel function.

Generalized Discriminant Analysis (GDA) or Kernel LDA

Like the previous technique, this is a reformulation of the LDA technique
in a high dimensional space using a kernel function. This technique tries to
maximize the Fisher’s criterium in the high dimensional space, constructed
using a kernel function. The main purpose of this technique is to maximize
the separability of the data in the high dimensional space by using nonlinear
mappings.

Diffusion Maps

These maps are based in the definition of a random Markov walk in
the data graph. By performing the random walk for a certain number of
timesteps, a measure of proximity between datapoints is obtained. Using
this measure one can obtain the diffusion distance. In the low dimensional
space, the pairwise diffusion distances are retained as well as possible.

In this method, the first step is to construct a graph of the data, which
edges have weights computed using the Gaussian kernel function. A matrix
W is computed, with entries:

wij = exp−
‖xi−xj‖

2

2σ2 , (3.25)

where σ is the variance of the Gaussian. Next, a normalization of the matrix
W is performed, so that its rows add up to 1. Therefore, a matrix P (1) is
formed, with entries:
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p
(1)
ij =

wij

sumkwik

. (3.26)

This is considered a Markov matrix that defines the forward probability of
a transition between datapoints in a single timestep. The forward probability
matrix regarding t timesteps P (t) is given by P (t) = P (1t). The diffusion
distance matrix can hence be defined as

D(t)(xi, xj) =
∑
k

(p
(t)
ik − p

(t)
jk )2

ψ(0)(xk)
(3.27)

where ψ(0)(xi) = mi

sumjmj
, mi =

∑
j pji is a term whose purpose is to give

more weight to parts of the graph with bigger density. Pairs of datapoints
with high forward transition probability have small diffusion distance. This
measure of distance is more robust to noise, as it is based on many paths
through the graph. In the low-dimensional representation Y , one tries to
maintain these diffusion distances. This representation is formed by the d
principal eigenvectors of P (t)Y = λY .

Stochastic Neighbor Embedding (SNE)

This is an iterative technique that tries to maintain the pairwise distances
in the low dimensional space. The main differences between this technique
and MDS are the distance measure used and the cost function it minimizes.

The probability pij that datapoints xi and xj are generated by the same
gaussian is computed for all combinations of datapoints possible, and stored
in a matrix P . These probabilities are calculated using the Gaussian kernel
function. Next, the low-dimensional coordinates yi are set to random val-
ues close to zero, and the probabilities qij that the datapoints yi and yj are
generated by the same Gaussian are computed for all possible combinations
and stored in matrix Q. A perfect low-dimensional representation would
be achieved if P=Q. SNE then attempts to minimize the sum of Kullback-
Leibler divergences (a natural distance measure between two probability dis-
tributions):

φ(Y ) =
∑
ij

pij log
pij

qij
. (3.28)

This minimization can be achieved by using, i.e., the gradient descent
method. To avoid problems with local minima, a decreasing amount of Gaus-
sian jitter is added in every iteration.
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Multilayer Autoencoders

These are feedforward neural networks, with an odd number of hidden lay-
ers. The mid hidden layer has d nodes, where d is the target dimensionality.
Both the input and the output layer have D nodes, where D is the original
dimensionality. The network is trained to minimize the mean squared error
between the input and the output (ideally, they would be equal). Hence,
the d-dimensional representation is obtained by extracting the node values
in the middle layer. This gives a representation that preserves as much in-
formation of the original representation as possible. The schematic structure
of an autoencoder is presented in Fig. 3.4.

Figure 3.4: Schematic structure of an autoencoder [2]

This approach has the main drawback of tending to be stuck in local
minima. There are some techniques to overcome this difficulty, namely the
use of Restricted Boltzmann Machines (RBMs) for pre-training the network.

3.2.3 Local nonlinear techniques

These techniques, contrarily to the previously presented ones, do not
attempt to maintain the global properties of the data. They actually attempt
to preserve the properties of small neighborhoods of each point - the main
idea is the preservation of the local properties of the data, seeking to map
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nearby points on the high-dimensional space to nearby points in the low-
dimensional representation. Although the main idea behind these approaches
may appear strange, as no care is being taken to preserve the global structure,
they have important advantages, such as the computational efficiency and the
representational capacity [13].

Local Linear Embedding (LLE)

This technique is somehow similar to the Isomap technique, as the con-
struction of a neighborhood graph is also the first step of the LLE technique.
However, being a local technique, here the attempt is to preserve the local
properties. This is done by writing the datapoints xi as a linear combina-
tion Wi of its k nearest neighbors xij . When computing the low-dimensional
representation, this technique attempts to retain Wi - the local linearity as-
sumption implies that these values can also be obtained when combining the
low-dimensional datapoints yi. Mathematically, this technique corresponds
to minimizing the cost function presented in Equation 3.29.

φ(Y ) =
∑

i

(yi −
k∑

j=1

wijyij)
2 (3.29)

Laplacian Eigenmaps

In this technique, the local properties are based on the pairwise distances
between datapoints. The low-dimensional representation is computed by
minimizing the distances between a datapoint and its k nearest neighbors,
in a weighted manner (the distance between the datapoint and its nearest
neighbor contributes more to the cost function that the distance between the
datapoint and its second nearest neighbor.

The first step of this technique is also the construction of a neighborhood
graph G, where every datapoint xi is connected to its k nearest neighbors.
For each set of points xi and xj connected in G, a weight is associated to its

edge, using the Gaussian kernel function wij = exp−
‖xi−xj‖

2

2σ2 . These weights
are the entries of a matrix W . The computation of the low-dimensional
representations yi are obtained by minimizing the cost function presented in
Equation 3.30.

φ(Y ) =
∑
ij

(yi − yj)
2wij (3.30)

Therefore, as large weights wij correspond to small distance in the high-
dimensional space, the distances between the corresponding datapoints in
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the low-dimensional representation contribute highly to the cost function.
Therefore, nearby points in the high dimensional space are brought closer in
the low dimensional representation.

Hessian LLE

This technique is a variant of the LLE, that tries to minimize the “curvi-
ness” of the high-dimensional representation when constructing the low-
dimensional representation. The first step is identifying, for each datapoint
xi, the k nearest neighbors xij , using Euclidean distance. In this neighbor-
hood, local linearity is assumed. Therefore, a basis for this tangent space
of a datapoint can be found applying the PCA technique on the nearest
neighbors. Thus, one can define the matrix M that contains the d principal
eigenvectors computed with PCA technique for the tangent space. The es-
timator for the Hessian of the high dimensional representation at the point
xi is computed by first calculating a matrix Zi that contains in its columns
all the cross products of M up to the dth order. Next, Zi is normalized
applying Gram-Schmidt orthonormalization. The tangent Hessian Hi is ob-
tained transposing the last d(d+1)

2
columns of Zi. Hence, having the Hessian

estimators, one can construct matrix H with entries:

Hlm =
∑

i

∑
j(Hi)jl ×Hi)jm). (3.31)

By performing a eigenanalysis of matrix H, the low-dimensional data
representation is found.

Local Tangent Space Analysis

This technique has some similarities with the Hessian LLE, has it also
describes the local properties of the high-dimensional representation by using
the tangent space of each datapoint. As local linearity is assumed, a linear
mapping between the high-dimensional representation to its local tangent
space must exist, together with a linear mapping from the low dimensional
datapoint to the same tangent space. These local tangent spaces at each
datapoint xi are obtained by applying PCA on the k nearest neighbors.
Hence, a mapping Mi is constructed, in order to map data between the
high-dimensional representation and the tangent space Θi. The linearity
assumption allows to consider a linear mapping Li between the local tangent
space coordinates θij and the low-dimensional representations yij . Therefore,
this technique preforms the following minimization:
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min
Yi,Li

∑
i

‖YiJ − k − LiΘi‖2, (3.32)

where Jk is the centering matrix of size k. This minimization finds its solution
in the eigenvectors of the alignment matrixB that correspond to its d smallest
nonzero eigenvalues. The entries of this matrix are obtained for iterative
summation, for all matrices Vi, and starting from bij = 0 ∀ij:

BNiNi
= BNiNi

+ Jk(I − ViV
T
i )Jk, (3.33)

where Ni is a selection matrix that contains the indices of the nearest neigh-
bors od datapoint xi.

The low dimensional representation is obtained by computing the d small-
est nonzero eigenvectors of the symmetric matrix 1

2
(B +BT ).

3.2.4 Extensions and variants of local nonlinear tech-
niques

In [2], a third group of nonlinear techniques is presented, containing tech-
niques that are derived from the local nonlinear ones.

Conformal Eigenmaps (CCA)

This technique tries to overcome a restriction of the local nonlinear tech-
niques, that do not employ the information regarding geometry of the high-
dimensional data representation, that is contained in the eigenvectors corre-
sponding to small eigenvalues, since these eigenvectors are discarded. The
CCA technique first employs LLE or other local nonlinear technique, reduc-
ing the original dimensionality D to dt, where d < dt < D. Then, this
intermediate solution is used to construct a d-dimensional solution that is
conformal.

One can define conformality by considering a triangle (xh, xi, xj) and its
low dimensional counterpart (yh, yi, yj). Conformality occurs if

‖yh − yi‖2

‖xh − xi‖2
=
‖yi − yj‖2

‖xi − xj‖2
=
‖yh − yj‖2

‖xh − xj‖2
. (3.34)

Hence, a measure Ch is defined to measure conformality of the triangles
present in the neighborhood graph of datapoint xh:

Ch =
∑
ij

ηhiηij(‖yi − yj‖2 − sh‖xi − xj‖2)2, (3.35)
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where ηij is a variable that is 1 if xi and xj are connected in the neighborhood
graph, and sh is a variable for scaling corrections. Summing over Ch yields
a measure C(Y ), that this technique tries to minimize.

Maximum Variance Unfolding (MVU)

MVU is a technique very similar to the FastMVU technique previously
mentioned, as both share the same optimization problem. However, this
technique starts from an intermediate solution obtained with LLE with di-
mensionality dt, with d < dt < D. Then, the FastMVU procedure is applied
to this intermediate solution. The main advantage of applying MVU instead
of FastMVU, is that in MVU the FastMVU procedures are applied to a much
smaller problem, minimizing the computational effort.

Linearity Preserving Projection (LPP)

This and the following two techniques represent an attempt to combine
the advantages of both linear and local nonlinear techniques. This is done
by finding a linear mapping that minimizes the cost function of Laplacian
Eigenmaps.

Neighborhood Preserving Embedding (NPE)

Like LPP, this technique minimizes the cost function of a local nonlinear
technique, namely LLE, by applying a linear mapping.

Linear Local Tangent Space Analysis (LLTSA)

This technique uses a linear mapping to minimize the cost function of
LTSA.

3.2.5 Global alignment of linear models

This set of models represent a group of techniques that attempt to com-
bine the global nonlinear models and the linear models, by computing a
collection of linear models and perform an alignment on these models.

Locally Linear Coordination (LLC)

The LLC technique can be seen as a two-step process. In the first step, a
mixture of local linear models, namely factor analyzers or probabilistic PCA,
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is computed by means of an Expectation-Maximization(EM) algorithm. Sec-
ondly, these models are aligned to obtain the low dimensional data represen-
tation. This is done by minimizing the LLE cost function.

Manifold Charting

As the LLC technique, Manifold Charting constructs a low-dimensional
representation of the data by aligning a mixture of factor analyzers (MFA).
This alignment is done, not by the minimization of a cost function of another
dimensionality reduction technique, but by minimizing a convex cost function
that measures the amount of disagreement between linear models on the
global coordinates of datapoints.

Coordinated Factor Analysis (CFA)

CFA is somehow similar to the previous techniques, as it also constructs
the low dimensional representation of the data by performing a global align-
ment of a mixture of factor analyzers. However, a main difference from the
previous techniques arises from the fact that, in CFA, the mixture and the
alignment are made in a single stage, using an EM algorithm that maxi-
mizes the normal MFA log-likelihood function minus a term that measures
the resemblance between the mixture and the Gaussian.

3.3 Artificial Neural Networks

Artificial Neural Networks are state-of-the-art classifying tools [4]. They
can be seen as a adaptative system that changes its structure according to
internal or external information. They are very useful for modeling complex
relations between inputs and outputs - that is done by connecting simple
elements, that together can model very complex relations. The name artificial
neural network arises from the main inspiration for such system: the central
nervous system.

Through training, the heights associated to each connection is changed
until the desired behavior is reached. The output, f(x) is obtained by com-
bining functions gi(x), that can also be defined by combining other function.
Mathematically, this notion is represented in Equation 3.36.

f(x) = k(
∑

i

ωigi(x)) (3.36)

In 3.36, k() represents a pre-defined function.
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The most interesting characteristic of a neural network is its learning
ability: using a set of observations, the weights to achieve the “perfect”
mapping between input and output are derived.

3.3.1 Neurons

Neurons are the basic processing unit of an Artificial Neural Network.
They have an input from where signals are received from other units, a
body were the inputs are somehow integrated, passed through a threshold
function and directed to the output, that is connected to other units. This
thresholding function can be one of several alternatives, i.e. linear, ramp, step
or sigmoid. The sigmoid functions follow the relation S(x) = (1+exp(−x))−1.
The relation between the input and output nodes of a neuron is given by the
expression in Equation 3.37, where S(.) is the thresholding function, and y′i
represents each of the inputs, and ωki the weight of the connections between
node k and node i. Sometimes an additional thresholding bias has to be
considered, therefore adding an extra input to the neuron, θk.

yk = S(
N∑

i=1

(ωkiy
′
i)− θk) (3.37)

ANNs consist of connections between these simple units. These inter-
actions between many simple nonlinear elements result in a very powerful
tool. There are two basic concepts regarding the type of connections allowed
between units: the feedforward concept regards the fact that no connections
between a cell output and its inputs are allowed. The recurrent concept
regards networks were feedback is allowed.

3.3.2 Multi-Layer Neural Network

There are an unlimited number of possible connections between neurons,
hence the amount of architectures regarding ANNs is enormous. However,
the architecture most used in Speech Recognition applications is the Multi-
layer Neural Network [4]. In this architecture, the neurons are organized in
layers. A layer can be defined as a set of neutrons for which the inputs are
the weighted outputs of the previous layer (and possibly a thresholding bias).
Hence, the first layer receives the external inputs, and the final layer provides
the external outputs. The hidden layers are those which the outputs cannot
be directly accessed by the outside world.

These organization in layers usually requires sequential connections, there-
fore the recurrent concept is excluded (there are some deviations from this
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concept, but will not be addressed). The term Multilayer Perceptron (MLP)
or Feedforward ANN regards a nonrecurrent layered network.

3.3.3 Backpropagation Algorithm

The learning ability is one of the most precious characteristics of ANNs.
The backpropagation algorithm is a learning algorithm commonly used. This
algorithm has the goal of finding the weights that minimize the total squared
output error. That derivation is based on a set of training parameters. Al-
though the main idea is very simple, one must not forget that the MLP
implements nonlinear mappings, thus there will be generally multiple min-
ima in the error surface. Our point is therefore to find the global minimum.
In practice, the weights are adjusted to a local minimum, and the procedure
is repeated until a good local minimum is achieved.

The backpropagation algorithm is a recursive algorithm, that converges
after an unknown number of iterations. The behavior is highly dependent
on the initial choice of weights.

3.4 Classification

3.4.1 Bayesian Decision Theory

Bayesian Classifiers are one of the most simple kind of classifiers. The
Bayesian Decision Theory is a statistical approach to the pattern recognition
problem [12]. These classifiers are based on the computation of the posterior
probabilities, for each class. According to the Bayes formula (Equation 3.38),
the posterior probabilities can be calculated from the prior probabilities and
the class conditional probabilities [12].

P (wj|x) =
p(x|wj)P (wj)

p(x)
(3.38)

In this equation, wj represents class j and x represents the current sam-
ple. In order to achieve a decision, one has to decide to which class a cer-
tain sample belongs. Defining discriminant functions (gi(x)) as the posterior
probabilities P (wi|x), it is straightforward that for minimizing the average
probability of error we should choose the class based on the following rule
(wi denotes class i):

x ∈ wi ⇒ gi(x) > gj(x) ∀j 6= i. (3.39)
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Developing a classifier basically consists in defining the set of discrimi-
nant functions. According to the assumptions made, different discriminant
functions may be devised. In this work, two functions were considered. Thus,
two different bayesian classifiers were used.

Linear discriminant classifier Assumes that the covariance of each class
is equal. Equation 3.40 presents the corresponding discriminating func-
tion.

gi(x) = − 1

2σ2
[xtx− 2mt

ix + mt
imi] + lnP (wi) (3.40)

where σ is the standard deviation and mi is the mean of class i.

Quadratic discriminant classifier Assumes that the covariance matrices
are different for each category. The surfaces delimiting each class space
are hyperquadrics.

gi(x) = xtWix + wt
ix + wi0 (3.41)

where

Wi = −1

2
Σ−1

i (3.42)

wi = Σ−1
i mi (3.43)

wi0 = −1

2
mt

iΣ
−1
i mi −

1

2
ln |Σi|+ lnP (wi) (3.44)

Σ = E[(x−m)(x−m)t] (3.45)

In these equations, Σi represents the covariance of class i, defined in
Equation 3.45, E[] denotes the expected value, and mi is the mean of class
i.

3.4.2 Nearest Neighbor Classifiers

The nearest neighbor rule is of simple understanding: consider a set of n
labeled prototypes, Dn = {x1 . . .xn}. Given a test point x, it is assigned to
the class to each the prototype x′ nearest to it belongs.

In this technique, the feature space is partitioned into cells, each corre-
sponding to the points closer to a certain prototype sample - this is called
Voronoi tessellation of the space.
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The k-nearest neighbor extension of this rule classifies a point x to the
class most represented among the k nearest samples.

This method, although simple, requires a considerable amount of calcula-
tion, as, for each point, the distance to all the prototypes has to be computed.
To overcome this difficulty, there are three methods that reduce the compu-
tational complexity of this technique. The first is called partial distance.
In this method, the distance is calculated using only a subset of the full d
dimensions, and if this distance is too big, no further calculations are made.

The second method is referred to as prestructuring, and consists in the
creation of a type of search tree in which the prototypes are selectively linked.
For each test point, the distance is calculated to the “root” prototypes, and
then the distance to those prototypes linked to the “root” closest to the test
point.

The third method is editing. This step basically regards the elimination
of the prototypes that are “useless’ in the classification process, i.e, one can
eliminate prototypes that are surrounded with prototypes belonging to the
same class - by doing this, the decision boundaries remain unchanged, and the
number of points to be considered in the calculation of distances is reduced.

3.5 Conclusions

In this chapter, the basic pattern recognition process is presented. This
approach will be followed in the development of the vowel classifier. There-
fore, the techniques regarding the two major steps of the pattern classification
process that were used in the present work are described is this chapter.

Several feature extraction were presented. These different approaches
were tested, and a visual evaluation of the quality of the mapping achieved
was then performed - it was noted that for this data, the performance of
nonlinear techniques is inferior to the performance of linear techniques . This
conclusions will be presented in the subsequent chapters.

Also, two groups of classifiers were presented: the bayesian classifiers, and
the nearest-neighbors. These are different approaches to the classification
problem, and both were tested further in this work.

ANN are very important classifying tools and will also be used in the
subsequent tests.



Chapter 4

State of the Art

4.1 Introduction

Visual Displays have been used to provide feedback regarding speech ar-
ticulation for several decades. The traditional users of such systems are
hearing impaired, that urge for feedback systems alternative to the auditory
system. However, the utility of such systems can be expanded to other ar-
eas, namely to patients with different voice pathologies, or to the language
learning area.

Several approaches to this problem have been proposed. In this chapter,
the main achievements regarding the definition of visual displays for vowel
representation are presented.

4.2 Spectrograms

In [6], spectrographic analysis is presented as “the first attempt to relate
what were already known as articulatory properties to what are now known
as acoustic or spectral properties”. However, although the spectrographic
analysis is extremely useful to phoneticians, it provides a complex display,
that can be only understood after careful study. Therefore, it is not an
obvious choice to replace the auditory feedback - simpler displays are needed.

4.3 Formant Plots

Concerning the isolated vowel recognition problem, the most traditional
visual displays are the formant maps. These displays rely on the estimation
of the first three formants using the short-time Fourier spectrum from the
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speech signal. This technique provides solutions “very reliable and robust
for male speakers, but not for female or child speakers” [14]. Also, the es-
timation of the formant frequencies in real-time is not trivial [15] - when
the fundamental frequency is close or higher than the first formant (child
and women speech) the LP (Linear Prediction) techniques for estimating the
formant frequencies fail, as the magnitude spectrum becomes undersampled,
and important spectral peaks are “missed” [3]. However, even in these cases
the human auditory system is able to correctly identify the uttered vowel.
Therefore, features different from formants should provide a better discrim-
ination ability, and should be used in this identification. Furthermore, this
realization is quite obvious when observing the formant plots: this technique
do not provide solutions that are capable of completely separate the several
vowels [4], as Fig. 4.1 1 clearly shows.

Figure 4.1: Formant Plot for English Vowels

4.4 Alternatives to Formant Plots

Given the obvious fragilities of the use of formants regarding vowel clas-
sification, alternative approaches have been proposed. In [14], a new concept
is presented: Perceptual Spectral Cluster (PSC), an alternative approach to
formants. The main purpose of the introduction of these new features is to
capture perceptual cues in a more effective way than formants. These con-
cept is defined in the same paper: “PSC denotes a spectral region with a
significant local concentration of spectral power, the characteristics of which
determine important perceptual cues used in vowel recognition. A PSC may

1Figure obtained from http://www-ccrma.stanford.edu/˜jmccarty/formant.htm
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be primarily characterized by its center frequency, power, and a measure
of shape such as bandwidth or level differences among close harmonic par-
tials” [3]. In order to characterize the performance of these new features, an
euclidian-based distance measure between vowels was defined: Vowel Separa-
tion Measure (VSM). The tests made with 3 speakers have shown that these
new features yield minimum VSM values higher than when using formants:
1.8 versus 0.6. Further research regarding these new features is presented in
[3]. In this work, the idea of a human auditory system organized in stages,
starting by raw features like intensity, until more elaborated features, like
pitch, timbre and finally the speaker recognition, is pursued. Therefore, the
several stages must be taken in account, even for apparently simple tasks,
namely vowel recognition. Four alternative features sets were used: the first
used PSC-related features, namely the pitch, the center of gravity of PSC1,
the center of gravity of PSC2, the right border of PSC1 and the decibel dif-
ference between the average magnitude of PSC1 and PSC2; the second set
uses a LP technique to obtain the values of the first four formants, to which
the pitch value is added; the third set uses also LP techniques to estimate
formants, however this is a modified algorithm, designed to prevent estima-
tion errors common in the first technique; finally, the fourth technique uses
16 MFCCs. The purposed feature set yields results of about 88.4% of correct
identification. This is not, however, better than the results that the MFCC
set yield (94.0%), but it should be noted that the dimensionality of this set
is significantly higher.

Vowel Articulation Training Aid (VATA), developed by Dr. Stephen A.
Zahorian [5], is a speech therapy tool, that intends to replace insufficient or
missing acoustic feedback by real-time visual feedback. The first implemen-
tations of such tool were hardware-based, using analog filter banks, and the
output was simply a change in the color of a television screen. The goal of his
work is defined has the development of a technique to map vowels to colors,
in a speaker-independent manner. In [7], Zahorian points out the necessity
of finding a visual display that could replace the deficient or lacking auditory
feedback (thus doing the mapping in real-time): the efforts done until that
point had resulted in complex and hard to interpret displays. The proposed
method is to use the output of a 16-channel filter, and mapping it to a 3-
dimensional space in which each coordinate represents the amounts of red,
green and blue. The mapping is achieved by one of two methods: a linear
transformation, whose coefficients are computed so that the mean square er-
ror between the target coordinates and the actual coordinates of each vowel
is minimized; and a nonlinear transform using a 2-layer feedforward percep-
tron neural network, followed by a linear transformation to convert vowels
in colors. The second technique yielded better results in the tests made.



Interactive Game for the Training of Portuguese Vowels 54

In [15], the natural evolution of the previous work is presented: a new
visual display, based on the traditional F1/F2 displays. The features used
to characterize the speech remain the same (the output of a 16-channel filter
bank) - a form of cepstral coefficients. This representation, based in the
overall spectral shape is preferred to the use of formants, as formants are
hard to track in real-time. The 16-dimensional data is mapped to the two-
dimensional display using an ANN.

In [16], the previous work is adapted to run in a personal computer envi-
ronment, thus discarding the need of expensive specialized equipment. How-
ever, the basic steps of the processing remain the same, with the use of an
Artificial Neural Network to achieve the desired mapping.

In [17], although the same basis was still used, some improvements to
the application were introduced. The features used are hence cepstral coeffi-
cients, referred to as Discrete Cosine Transform Coefficients, that are mapped
by means of a neural network. The main improvement was the addition of
a Maximum Likelihood Classifier that is used together with the Neural Net-
work to avoid the occurrence of false corrects. This inclusion was justified
in [17] as follows: “the NN (Neural Network) must choose from among only
the vowel categories for which it was trained; it cannot “choose” another
category. This has the unfortunate consequence of occasionally producing
feedback corresponding to a “correct” pronunciation when in fact no valid
vowel sound is in the audio stream”. Therefore, an MLC was added to the
system, to measure the proximity between the features of the correct sound,
and the features of the “typical” phoneme. If they are not close enough
(with this limit being defined by an empirical procedure) they are discarded.
Another important improvement was the use of a larger amount of data.
As mentioned in the work, “for “good” performance, a neural network clas-
sifier requires a large amount of training data”. Also, other changes were
added to the program: namely, the existence of two displays - the continuous
F1/F2-like display, referred to as ellipse display, that reflects the changes
in articulation in a continuous manner, and a discrete display, referred to
as bargraph, in which the presently identified vowel is highlighted with the
activation of the corresponding bar (the activation of two bars could hap-
pen when incorrect utterances were produced, but when a bar is significantly
higher than the rest, the corresponding vowel has been identified). As for
the expected performance of the system, the authors present the expected
upper limits for the classification rates, obtained using all available data to
train the classifier. The results obtained were 89.99% of recognition rate for
male speakers, 87.33% for female speakers, 83.33% for child speakers and
84.96% when combining all the samples. These tests were made considering
10 English vowels.
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In [5], the same test results and the same methodology is described. The
main difference is the introduction of three game displays, in addition to the
two main displays already described. These game displays are controlled by
the utterance of vowels, and constitute an alternative type of display, spe-
cially suited for children training, as these displays provide higher motivation
to this audience.

IBM SpeechViewer, Indiana Speech Training Aid (ISTRA), Video Voice
Speech Training System, Speech Training Aid for Hearing Impaired (HARP),
Jogos Fonoarticulatórios [18] are examples of applications that comprise a set
of games, including vowel-controlled games or vowel displays. However, these
applications are now obsolete, and no new releases have been provided.

OLTK is an interactive tool designed to build a 2D visual display of
vowels, and thus allowing the visualization of the distance between the cur-
rent utterance and the intended one. The application developed is based in
the “Speak and Look Cycle”, that is presented as an alternative approach
to the traditional ”Speak-Hear Cycle”. As the preferential feedback source
(the auditory system) is somehow defective, the visual feedback is used as
an alternative - basically, the user produces an utterance, and the resulting
feedback is given in a visual manner, in real-time, in the visual display. In
this approach 9 cepstral coefficients are obtained from the input sounds, and
then mapped to a 2D space by means of an ANN. The advantages of using
a 2D vowel display are presented: the ability of viewing the several speech
events effect and understand what goes wrong is a major quality. Therefore,
the output of this system is a simple 2D display, that includes tools designed
for more technically oriented persons. This is hence a tool that is meant
to be used in speech therapy sessions, and that has proven to contribute to
improve the patient’s motivation.

4.5 Application of Pattern Classification Tech-

niques

In [19] and [20], pattern recognition techniques are applied to speech
recognition problems, namely vowel recognition, but with no real-time ap-
plication concerns. The work hence provides an overview of the behavior of
the several algorithms when applied to speech recognition problems. Five
algorithms are studied: the use of LDA (Linear Discriminant Analysis) and
PCA (Principal Component Analysis) as feature extractors used prior to the
classification step is compared to the use of MCE (Minimum Classification
Error) and GMCE (Generalized Minimum Classification Error) as techniques
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that provide the joint feature extraction and classification tasks. The state-
of-the-art classifiers SVMs (Support Vector Machines) are also used. PCA
and LDA are independent feature extraction techniques that have the great
advantage of being linear techniques, and hence simple to implement. The
MCE and GMCE algorithms provide an integration of the feature extrac-
tion and classification steps. Like the other methods, the MCE technique
extracts features from the parameter vector through a linear transformation
matrix T , but derives discriminating functions dependent of such matrix.
The GMCE method is a generalization of MCE that uses an initialization
procedure to avoid local minima determination when applying the normal
MCE algorithm. The SVM is a nonlinear classification algorithm that uses
a kernel method: first the original parameter values are mapped to a higher
dimensional feature space through nonlinear kernel functions, and then, in
the higher dimensional space, the SVM tries to represent the class by the
samples which are closest to the boundaries. The tests regarding the several
approaches were made using vowels extracted from the TIMIT database,with
parameter vectors composed of 20 MFCCs and 1 energy coefficient. Speaker-
independent tests proved similar performance of both linear techniques (PCA
and LDA), but LDA appers to have more stability. Also, SVM did not per-
form well in speaker-independent tests. The MCE and GMCE algorithms
performed better than the linear algorithms

In [21], pattern recognition techniques are applied to European Por-
tuguese vowels. The results of using these techniques are promising. It is
also shown that the inclusion of pitch as a preliminary feature (which is done
here using a gender classifier based mainly in pitch) has obvious advantages.

4.6 Conclusions

In this chapter, the main achievements regarding the development of vi-
sual displays for representation of vowels are presented.

The traditional approach, that uses formant plots, has many flaws: first, a
complete separation is not achieved; secondly, the techniques for estimation of
formants are not robust. Therefore, alternative approaches where proposed.
Spectral-shape features have proven to perform well to vowel identification.
Also, some indications regarding the use of features corresponding to different
stages of perception are provided.

Some studies regarding the application of pattern recognition techniques
were also made. However, no concern with real-time application of the tech-
niques was taken.

The use of MFCCs to characterize the speech signal appears as the most



Interactive Game for the Training of Portuguese Vowels 57

effective approach. These will be hence the parameters used primarily in the
following experiments.



Chapter 5

Preliminary Experiments with
Vowel Signals

5.1 Introduction

The purpose of this work is the development of an automatic classifier
for 5 of the 8 European Portuguese oral vowels. In this chapter, some of
the preliminary experiments made with these vowel signals are presented.
These experiments regard mostly the spectral behavior of the vowels. As
it was already mentioned, overall spectral shape features have proven good
performance in vowel recognition operations [5]. Hence, a general insight
regarding the relation between the spectral shape and the human ability of
recognizing a vowel is presented in this chapter.

5.2 Spectral Analysis of Vowel Signals

Preliminary observations consisted in the observation of the spectral char-
acteristics of each vowel, for the several genders (adult male, adult female
and child).

The observation of the several spectra clearly shows a similar shape exists
for the several vowels. The overall spectral shape of the 5 vowels is presented
in Fig. 5.1, and examples of spectrograms regarding different utterances of
each vowel are presented in Fig. 5.2.
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Figure 5.1: Overall spectral shape of the 5 vowels [3]
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Figure 5.2: Spectrograms of several utterances (from different speakers) of
each vowel

The main conclusions regarding the several spectra are:

A The spectral envelope maintains high values for a large frequency interval.

E The valley in the spectral envelope is the most prominent characteristic

I This vowel in mainly characterized by the high amplitude values of the
spectrum at low frequencies.

O Very similar to the spectrum of vowel /a/, this is a slightly compressed
version of the former spectrum

U The important information is concentrated at low frequencies

Although the basic shape is essentially the same, which is a good in-
dication regarding the use o spectral-shape features for vowel classification
as defended in [5] , there are obvious differences between the several gen-
ders (which is consistent to the use of different classifiers for each gender as
presented in VATA [5], or with a hierarchic classifier that first comprises a
gender classifier [21]). These differences are obviously related with the differ-
ent pitches, that result in different “compressions” of the partials (see Fig.
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5.3). This is coherent with the conclusions presented in [3] regarding the
feasibility of LP techniques for predicting the formants when high pitched
vowels are considered.

Figure 5.3: Spectral Shape of vowel /a/ for A.Adult Female B.Child C.Adult
Male

Another interesting property is that the essential information regarding
the perception of a certain vowel if contained in a specific frequency interval:
in Fig. 5.3, if one apply a bandpass filter maintaining only the highlighted
frequencies, the vowel “a” is still perceived. Furthermore, if the signal is
bandpassed for other frequencies, different vowels can be synthesized (i.e., if
only the first two or three spectral peaks are maintained, an “u” is easily
produced).
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5.3 Partial Equalization

Further insight regarding the importance of the spectral shape was ob-
tained by performing several experiments regarding partials equalization.
The partial equalization step consist in an identification of the several par-
tials of the acoustic signal, and a subsequent attenuation of its amplitude
value until the amplitude of all is the same. Therefore, the shape of the
spectrum will be degraded at each equalization step. The purpose of such a
proceeding is to understand to each extent one is able to degrade the spectral
shape of a vowel and maintain its intelligibility.

The experiments consisted in the following: a partial tracking algorithm
was used to detect its frequency position. Subsequently, the amplitude corre-
sponding to the partial was scaled using different factors, until the amplitude
of all the partials is equalized. For the several scale factors, the signals were
resynthesized, and listened, in a random order, and the corresponding vowel
was identified. Fig. 5.4 shows the spectra regarding several steps of the
equalization.
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Figure 5.4: Partials Equalization

From the experiments it was noted that, although an obvious gradual
decrease in the vowel intelligibility occurs with the equalization, while the
overall spectral shape is maintained, the vowels are fairly well recognized.
This reinforces the idea of the importance of the spectral shape to the clas-
sification of vowels.

5.4 Conclusions

In this chapter, a preliminary study of the spectral characteristics of each
vowel, and its importance to human comprehension was made. These exper-
iments allowed to draw the following conclusions:
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• The spectral shape is obviously a distinctive feature for vowels. Fur-
thermore, while the basic shape is maintained, humans can still recog-
nize the uttered vowel.

• There are remarkable differences between genders, that are responsible
for a difficult formant estimation in high-pitched vowels.

• Different vowels have distinctive characteristics in different frequency
bands of the spectrum. Furthermore, if the analysis is very limited in
frequency, mistakes arise because it has been observed that different
vowels can be synthesized from a single original vowel, by bandpassing
the signal in different frequency bands.

• The spectra of vowels /a/ and /o/ are very similar.



Chapter 6

Algorithmic Development and
Simulation

6.1 Introduction

In the development of the classifier, the first step consisted in the develop-
ment and simulation of several different approaches to the problem of vowel
recognition. Those preliminary approaches will be presented in this chapter.

The first tests regard the use of MFCCs as a parametrization of the speech
signal, because the previous works analyzed in Chapter 4 show that these
features perform well in vowel classification. The effect of using different
numbers of MFCCs is also addressed.

Several feature extraction techniques are applied to this dataset, and
the resulting 2-dimensional plots are analyzed. From the several techniques
presented in Chapter 3, only 5 are shown here, as the remainder nonlinear
techniques did not perform well. Some of these results are presented in
Appendix B.

Another issue addressed is the effect of increasing the length of the seg-
ments considered.

Features as pitch and LPCs are also used, together with MFCCs, in pro-
posed hierarchical methods, that attempt to achieve better mappings.

Finally, the vowel classifier is developed, and the simulation results re-
garding its performance are shown.

The tests were made in the Matlab®environment, with the aid of the
PRTools package [22] and the Matlab Toolbox for Dimensionality Reduction
[2].
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6.2 Database Characterization

The database used in this work was created by Ańıbal J. S. Ferreira, and
is presented in [3]. It is particulary suited for the present work, as it is mainly
composed by vowels uttered at high pitch, produced by children and women
(the group for which traditional approaches fail): the target group of the
present work. A total of 27 child speakers, 11 adult female speakers, and 6
adult male speakers contributed for this database. Each speaker uttered in
sequence the 5 vowels /a/, /e/, /i/, /o/, /u/, thus, a total of (27+11+6) = 44
files was produced. The duration of each vowel was between 1 and 2 seconds.
The samples were recorded in a quiet environment, using a laptop, an electret
microphone, and a audio editor using a sampling frequency of 32kHz.

Latter, the files were manually processed, and two variants for the database
were created: the first composed by 44×5 = 220 files of 100 ms, correspond-
ing to the most stable region of the spectrogram. An identical approach
allowed the creation of a variant of this database, composed by files with the
duration of 400ms. In both variants, the data was carefully labeled.

6.3 Classification without applying feature ex-

traction techniques

In [3] it is shown that a simple classifier using 16 MFCC has performed
better than those that used LP based features and PSC features (see Chapter
4), for identification of the 5 European Portuguese vowels considered in the
present work. Therefore, the starting point of our research regards the use
of simple classifiers (described in Section3.4) and MFCCs as features.

MFCCs are features that have proven effectiveness in speech recognition
problems. The use of a mel scale, that approximates the human auditory
system response is undoubtedly an advantage to be considered. Further-
more these are indeed the most used state-of-the-art features in the area of
speech recognition. However, it is also true that some important informa-
tion is discarded by these features, namely pitch. As stated in [3], the idea
that our auditory system approaches even simple recognition problems using
information regarding different stages of perception would require the addi-
tional inclusion of raw features. At this point however, our main concern is
to understand to which extent are the MFCCs capable of characterizing the
different vowels.

These first tests had the purpose of giving a general insight regarding
the general behavior of the classifiers when using this data. In fact, the
dimensionality reduction step was skipped in this phase (Fig. 6.1).
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Figure 6.1: The simplified approach (skipping feature extraction step)

In the following subsections, several tests regarding analysis on the per-
formance of these features for vowel classification are presented, specifically
analysis regarding the effect of increasing the number of MFCCs.

6.3.1 Derivation of the dataset

The dataset used in this step of the work was obtained by calculating, for
each file belonging to the 100ms database described in 6.2, the corresponding
MFCCs.

The proceeding concerning the derivation of these coefficients is as fol-
lows: for each file, a frame-by-frame analysis was made. For each frame,
the MFCCs were calculated. Subsequently, for each file, the mean vector of
the MFCCs was calculated (see Fig. 6.2). Therefore, the dataset obtained is
composed by 220 samples, each of each containing as parameters the MFCCs
and the corresponding label (/a/, /e/, /i/, /o/, /u/).

Figure 6.2: The schematic representation of the MFCC computation process

6.3.2 Tests with 16 MFCC

The results presented in this subsection regard the use of 16 MFCCs
to characterize each vowel. The use of 16 coefficients appears as the logic
sequence of the work presented in [3].
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The test procedure was made as follows: the classifiers were trained using
70% of the total number os samples, randomly selected from the dataset, the
remaining samples were used for testing, and the error rates were stored.
The procedure was repeated 100 times, and finally the mean regarding the
error rate associated with each classifier was taken. The results obtained are
presented in Table 6.1.

Table 6.1: Tests using 16 MFCCs as features
Classifier Error Rate

LDC 5.94%
QDC 11.94%

1-NNC 4.36%
4-NNC 4.88%

The first indications, although lacking further validation, gave good in-
dications concerning the pattern recognition approach selected to treat this
problem. However, these are obviously positively biased results: first, seg-
ments of 100ms are being used in this classification, which are undoubtedly
segments longer than the real-time requirement will allow us to use, secondly,
the speaker-independent requirement is not being tested, as at this point the
existence of samples (corresponding to different vowels) regarding the same
speaker in both training and testing sets was allowed. These considerations
are obviously important, and will be discussed in subsequent steps of this
analysis. However, at this point, only a general analysis was intended.

6.3.3 Effect of varying the number of MFCC

The next logical step is to analyze the general effect of varying the number
of MFCCs considered as features. The same approach previously described
was repeated using different datasets which have as features vectors with
different numbers of MFCCs. The error rates obtained are presented in
Table 6.2.

Table 6.2: Effect of varying the number of MFCCs
Classifier 4 MFCCs 8 MFCCs 12 MFCCs 16 MFCC 20 MFCCs 24 MFCCs

LDC 8.39% 9.48% 8.50% 5.94% 3.97% 4.56%
QDC 5.77% 6.36% 8.70% 9.64% 16.97% 31.14%

1-NNC 9.85% 6.67% 6.45% 4.36% 2.36% 3.27%
4-NNC 6.86% 5.77% 5.50% 4.88% 4.41% 4.03%
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Figure 6.3: Effect of varying the number of MFCCs

Regarding the results presented in Table 6.2 and in Fig. 6.3, some con-
siderations can be held. For both the nearest neighbor classifiers and the
linear bayesian classifier, the expected behavior is observed - the error rate
decreases as the number of MFCCs considered is augmented. This decreasing
in the error rate is more expressive until 16 features are considered. Further
increasing in the number of MFCCs corresponds to a smaller impact in the
corresponding decreasing in error rate, that eventually tends to stabilize. As
for the bayesian quadratic classifier, it is observed that the error rate tends to
increase when more than 5 MFCCs are considered. An explanation for this
phenomena may be the overfitting of this classifier to the training samples,
thus providing worse test results.

6.3.4 Spacial distribution of samples using MFCC

The lacking step in the pattern recognition approach is the dimensional-
ity reduction, that often tends to simplify the classifier task, that can hence
produce more favorable results. Although it has already been mentioned
the advantages of using feature extraction techniques opposingly to feature
selection techniques, one must not forget that feature selection techniques
represent a simplification of the computation process. Therefore, an ob-
servation of the spacial distribution of the samples regarding small sets of
MFCCs was made, using scatter plots. The spacial distribution regarding
the use of the first 2 (Fig. 6.4) and 3 (Fig. 6.5) is presented. This visual
representation is also a good complement to the classifier results presented
previously, as it shows the spacial distribution of the considered samples.
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Figure 6.4: Spacial Distribution using 2 MFCC

Figure 6.5: Spacial Distribution using 3 MFCC



Interactive Game for the Training of Portuguese Vowels 71

Both figures show that the use of a small set of MFCCs do not allow
the achievement of a good separation between vowels: therefore, the use of
feature extraction techniques is necessary.

Furthermore, it can be seen that vowels /i/ and /u/ appear to be more
grouped and isolated from the rest. Therefore, the classification task regard-
ing these vowels will be easier. This is not unexpected, as vowels /a/ and
/o/ have very similar spectral shapes.

6.4 2-dimensional spacial distribution of sam-

ples applying feature extraction techniques

After the first tests regarding a simplified pattern classification approach,
which gave some insight regarding each of the considered classifiers behavior,
and noting the inefficiency of the feature selection techniques, the introduc-
tion of the feature extraction step was made. The enormous amount of
techniques capable of doing such task (see 3.2) requires a previous study of
the performance of each technique. For that purpose, two steps were taken:
first, a visual observation of the performance of the several techniques, by
mapping a considered dataset to a 2-dimensional space. Then, a subsequent
selection of the techniques worth further analysis was done. For these tech-
niques, the computation of the error rate obtained when using the different
classifiers can be used as a performance indicator.

6.4.1 Dimensionality reduction using 100ms segments

After the first approach regarding classification based on the parameters
obtained from the speech samples, the complete pattern recognition flow, de-
scribed in 3 was resumed. Therefore, the dimensionality reduction techniques
were applied.

The several techniques referred in 3.2 were applied to a dataset consisting
of 12 MFCCs. Only those who yield better results are shown, the remaining
scatters are presented in appendix B.

From the several nonlinear techniques, 3 techniques were selected: the use
of ANN, recurrent in these type of applications, MDS and SPE. Both MDS
and SPE were presented as global nonlinear techniques, that have proved to
perform better with this data. Actually, these are very similar techniques:
the main difference is that SPE is an iterative technique. Both techniques
attempt to preserve global properties of the data. The nonlinear techniques
are suited for highly nonlinear data, that is not the case: hence, one can infer
that the data is organized in a linear manner in the high-dimensional data.
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ANN

The use of an ANN to directly provide a 2D-mapping was achieved by
defining the targets associated to each label as the 2D coordinates of dis-
play. The target coordinates were chosen to resemble the distribution on
the classical vowel plot shown in Fig. 6.6. In this figure, the several vow-
els, represented in its IPA (International Phonetic Alphabet) notation, are
represented, accordingly to the corresponding position of the articulators.
Therefore, a MLP with one hidden layer was used. The input layer has 12
entries, and the output layer provides 2 values, that correspond to the two
coordinates. For the hidden layer, 50 neurons were considered. It must be
noted that the number of neurons in the hidden layer has great influence on
the performance of the ANN. Different numbers of neurons in the hidden
layer have been tested, and it was concluded that the use of 50 neurons is
suited for the current problem.

Figure 6.6: Vowel Plot for Portuguese Vowels

Figure 6.7: Dimensionality Reduction using ANN
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The mapping achieved using this technique is very positive, as the several
classes are fairly separated. It must be noted that the poorest separation
occurs for the vowels /a/ and /o/, which is coherent with the spectral shape
similarities already referred.

PCA

The PCA technique was applied to the dataset, and a mapping to a 2-
dimensional subset was achieved. The scatter plot regarding the resulting
low-dimensional data is shown in Fig. 6.8.

Figure 6.8: Dimensionality Reduction using PCA

Although the separation is inferior to the one obtained using ANNs, it
can be observed the clustering of the samples of the several classes, which is
a good indication.

LDA

As the PCA technique, LDA was applied to obtain a mapping from the
12-dimensional space to a 2-dimensional space. The result is presented in
Fig. 6.9.
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Figure 6.9: Dimensionality Reduction using LDA

The separation obtained is apparently better than the one obtained using
the PCA technique, as the separation between classes is higher.

MDS

In the MDS technique, the minimization of a raw stress function (a mea-
sure of the maintenance of the pairwise distances in both high and low-
dimensional spaces) is pursued. This is a global nonlinear technique, that is
somehow similar to the linear techniques, as it tries to preserve the global
geometry of the data. The mapping is made using nonlinear transformations.

Figure 6.10: Dimensionality Reduction using MDS
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The resulting mapping, shown in Fig. 6.10 is undoubtedly poorer than
the previous mappings.

SPE

SPE is a technique very similar to the previous one, but the problem
of minimization of the raw stress function is addressed with an iterative
approach.

Figure 6.11: Dimensionality Reduction using GlobalSPE

The result obtained is worst than all the previously presented mappings.
Although a obvious clustering of the samples of each class occurs, the overlap
of the several classes is notorious.

Conclusions

The linear techniques together with the ANN have proved to perform
better than the rest of the nonlinear techniques. The latter perform better
with highly nonlinear data, that is obviously not the case.

As for the linear techniques, the performance of the LDA is quite re-
markable, providing a good separation between classes. However, none of
the techniques achieved a good separation between the vowels with similar
spectral shapes, namely /a/ and /o/ (and to a smaller extent, /e/).
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6.4.2 Dimensionality reduction using 400ms segments

The several mapping techniques used in the previous subsections are here
applied to data regarding longer segments. Hence, the alternative database,
with 400ms samples, is used, and a new dataset is constructed, with features
obtained using the same strategy mentioned earlier: for each file, a frame
analysis is performed, and the MFCCs are computed. Later, for each file,
the mean of the parameters obtained for the several frames is computed. The
use of longer segments will allow an improved normalization of the result.

ANN

The main difference regarding the application of the same technique to
the previous dataset is that, when using the results drawn from the longer
segments, the data concerning each class appears to be more concentrated
(the dispersion is lower).

Figure 6.12: Dimensionality Reduction using ANN with 400ms segments

PCA

When using PCA with this new dataset, no relevant differences arise from
the observation of both low-dimensional representations.
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Figure 6.13: Dimensionality Reduction using PCA with 400ms segments

LDA

As for PCA, the LDA technique is not affected by the increase in the
length of the considered segments.

Figure 6.14: Dimensionality Reduction using LDA with 400ms segments

MDS

The MDS technique has the same behavior of the linear techniques: the
increase on the segments length is not reflected in the quality of the mapping.
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Figure 6.15: Dimensionality Reduction using MDS with 400ms segments

SPE

In the SPE technique, like in the ANN, the increase in the segment length
provided a better clustering of the samples of each class.

Figure 6.16: Dimensionality Reduction using GlobalSPE with 400ms seg-
ments

Conclusions

In this section we have tested the effect of using longer segments in the
quality of the mappings. The scatter plots regarding the several techniques
show that only the ANN and SPE techniques (that are iterative techniques)
were positively affected by this measure. The regarding techniques showed
no change in the performance.

6.4.3 Comparison of Results

A numeric comparison of the results can be held by applying simple clas-
sifiers to the several 2-dimensional datasets derived by each of the considered
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techniques.
The results present in Table 6.3 are hence the average classification errors,

obtained for each combination mapping/classifier/duration, after repeating
each test 100 times, with different random separation of test and training
results (this repetition is made to avoid biased results by a suitable distribu-
tion of the data in training and test sets if only one random separation was
done).

Table 6.3: Comparison of the several feature extraction techniques
ANN PCA LDA MDS Global SPE

100ms 400ms 100ms 400ms 100ms 400ms 100ms 400ms 100ms 400ms

LDC 9.83% 9.17% 9.21% 9.91% 10.44% 10.94% 10.68% 12.55% 13.72% 14.14%
QDC 9.47% 9.32% 10.50% 10.74% 10.33% 10.41% 9.45% 10.98% 13.15% 13.85%
1NNC 10.21% 9.82% 11.89% 11.48% 14.45% 12.35% 12.83% 14.43% 18.69% 18.78%
4NNC 9.48% 9.28% 10.74% 10.05% 13.21% 11.73% 12.62% 12.42% 15.23% 15.06%

These results give us insight regarding two aspects:

The effect of using longer segments There are no significant changes in
the behavior of the mapping techniques by increasing the size of the
segments. Although some improvement was seen in the visual evalua-
tion of the performance of the iterative techniques, this improvement
is not significant. This provides indications that the essential informa-
tion regarding vowel classification is achieved in the shortest segments,
and no further information arises from considering longer segments.
Hence, the same information might be found in shorter segments: a
good indication to real-time performance.

The performances of each mapping technique The nonliner techniques
do not bring significant improvements to the quality of the mappings.
In fact, only the ANN technique has performed better than the linear
techniques, Therefore, the increase in complexity the implementation
of nonlinear techniques such as MDS or SPE brings is not compensated
by an improvement in the performance.

6.5 Effect of increasing the number of MFCC

to the performance of linear mapping tech-

niques

Although the effect of increasing the number of MFCCs for classification
purposes was already tested, in this section the mappings achieved by using
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two sets of initial parameters: one with 16 MFCCs and other with 18 MFCCs.
The mapping technique used was LDA.

16 MFCCs

Figure 6.17: Dimensionality Reduction with LDA using 16 MFCCs

18 MFCCs

Figure 6.18: Dimensionality Reduction with LDA using 18 MFCCs
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Figure 6.19: Dimensionality Reduction to 3 dimensions with LDA using 18
MFCCs

Conclusions

The increase of the dimension of the high-dimensional representation ap-
pears to bring no significant changes in the quality of the mapping.

6.6 Effect of using different parameters

The previous results show a fairly good separation of classes when using
MFCCs as initial parameters. However, some confusion between vowels /a/,
/o/ and /e/ remains. This occurs because the MFCCs are not able to pro-
vide the desired distinctive classification of the vowels: the human auditory
system must rely on different or additional features to perform its notable
classification. Hence, in this section, results regarding the use of different
sets of parameters, mapped using LDA, are shown.
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6.6.1 16MFCC+5LPC

Figure 6.20: Dimensionality Reduction with LDA using 16 MFCCs and 5
LPCs

The use of LP features in addition to the MFCCs, namely 5 LPCs does
not provide a increase in the performance of the mapping technique.

6.6.2 16MFCC+14LPC

Figure 6.21: Dimensionality Reduction with LDA using 16 MFCCs and 14
LPCs

Increasing the number of LPCs considered does not seem to provide a
better discrimination between classes.
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6.6.3 16MFCC+10DCTC

Figure 6.22: Dimensionality Reduction with LDA using 16 MFCCs and 10
DCTCs

The use of 10 Discrete Cosine Transform Coefficients, in addition to the
16 MFCCs does not bring improvements to the mapping technique.

6.6.4 Summary of Results

In this section, the results of using a mapping technique after adding dif-
ferent features to the initial set of parameters were shown. This approach
did not show improvements when compared to the previous results (using
simply the 16 MFCCs). Reasons for this behavior may rely in the fact
that the additional parameters might not bring additional information to
the MFCCs, concerning vowel separation. Alternatively, the additional in-
formation brought is somehow overlapped by the information contained in
the MFCCs.

6.7 Hierarchical approaches based on vowel

similarity

The use of hierarchical approaches arise naturally from the conclusions
held in the previous chapter: the similarity observed between spectral shapes
of some vowels suggests the use of these techniques.

It has been seen that vowels /a/ and /o/ have very similar spectral shapes.
Additionally, vowel /e/ also resembles these spectra. Therefore, the approach
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described in Fig. 6.23 was followed. The main idea is to train linear map-
pings and bayesian classifiers for a three different stages of classification: the
first regards separation between vowels /i/, /u/, and the remaining vowels.
The second stage is applied to the vowels classified as belonging to the last
group, and is trained to separate vowel /e/ from the remaining. The objects
classified as belonging to this latter group are hence fed to a new classifier,
that makes the final separation. As the figure shows, the separation obtained
is fairly good, although a big dispersion between the samples of each class
exists.

Figure 6.23: Hierarchical Approach 1
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Figure 6.24: Hierarchical Approach 2

Fig. 6.24 shows a simplified approximation of the previous hierarchic
approach, using only two stages. The dispersion of samples of each class is
apparently smaller.

Although these techniques seem very logical approaches, and the simu-
lation results yield good indications, a major problem concerning the appli-
cation of such techniques arise: the propagation of errors, that can bring a
very negative impact to the performance of such a classifier.

6.8 Hierarchical approaches based on linear

/ nonlinear mappings combination

The idea presented on the previous section, of using hierarchical ap-
proaches, has a number of possible variants that are worth exploring. In
this section, these approaches are used by combining linear and nonlinear
mapping techniques.
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Figure 6.25: Hierarchical Approach 3 Scheme

Figure 6.26: Hierarchical Approach 3

In Fig. 6.25 and 6.26 the idea of using LDA to achieve an initial mapping,
of 4 dimensions, followed by the use of an ANN to achieve the final 2D
mapping is presented. It can be seen that the dispersion between samples
belonging to the same class is diminished, when comparing to the use of ANN
by itself.
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Figure 6.27: Hierarchical Approach 4 Scheme

Figure 6.28: Hierarchical Approach 4

In Fig. 6.27 and 6.28 a similar technique is used, but now the linear
mapping technique used is PCA. The result is slightly worst.

The results show a clear improvement when comparing to the use of an
ANN with no previous mapping. The improvement of the clustering between
samples of each class appears as a result of a simplification of the ANN
task. In fact, by applying a linear technique preceding the ANN operation,
the features fed to it are already the most discriminating ones. Hence, the
remarkable ANN classification capabilities are merely concerned with finding
a nonlinear mapping regarding this intermediate representation and a 2D
final mapping, obtaining better results.



Interactive Game for the Training of Portuguese Vowels 88

6.9 Hierarchical Approaches based on com-

bination of different features

The previously referred results are very promising. However, we are con-
sidering a small set of samples. Although no more files are available, one
can consider that, in the 400ms database, each frame has unique properties,
that are being filtered as the average is computed - we are indeed making
a pre-filtering step. Furthermore, in the real-time operation, the mapping
will be done regarding frame. Therefore, at this point a new dataset was
considered, by assuming that each frame is a new sample.

This new dataset was primarily used with the first technique presented in
the previous section, so that the effect of using the frame dataset is analyzed.

Figure 6.29: Hierarchical Approach 5 Scheme

Figure 6.30: Hierarchical Approach 5
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As expected, a much bigger dispersion is observed when considering a
frame basis, as a pre-filtering step is lacking. However, this behavior resem-
bles more the real-time expected behavior.

Subsequently, this new dataset was used to test new hierarchical ap-
proaches, that use linear techniques to obtain the more significant features
derived by different sets of parameters. Subsequently, a mapping using lin-
ear/ANN, exploited in the previous section, is used to achieve the final map-
ping.

Figure 6.31: Hierarchical Approach 6 Scheme
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Figure 6.32: Hierarchical Approach 6

Fig. 6.31 and 6.32 regard the use of LPC features in addition to the
MFCCs. Each of the two types of features are first mapped to a 4-dimensional
space. Then, the 8 features are presented to a linear/nonlinear mapping tech-
nique. the resulting mapping shows, in general, an improved concentration
of each class features. However, for vowel /u/ the dispersion has increased.

Figure 6.33: Hierarchical Approach 7 Scheme



Interactive Game for the Training of Portuguese Vowels 91

Figure 6.34: Hierarchical Approach 7

Fig. 6.33 and 6.34 regard the jointly map of LPCs and MFCCs. The
dispersion is diminuished.

Figure 6.35: Hierarchical Approach 8 Scheme
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Figure 6.36: Hierarchical Approach 8

Fig. 6.35 and 6.36 regard the inclusion of pitch as a feature. As referred
previously, the use of raw features may approximate these classifiers to the
human auditory system behavior, considering the theory that his behavior is
characterized by an analysis regarding different stages of perception. How-
ever, no major improvements were observed.

Figure 6.37: Hierarchical Approach 9 Scheme
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Figure 6.38: Hierarchical Approach 9

Fig. 6.37 and 6.38 regard the inclusion of pitch in a higher stage of the
mapping. With this the inclusion of pitch as a discriminative feature is being
forced. The performance has improved, as the dispersion within classes has
diminished.

Figure 6.39: Hierarchical Approach 10 Scheme
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Figure 6.40: Hierarchical Approach 10

Fig. 6.39 and 6.40 regard an approach were pitch was introduced in a even
more advanced stage of the mapping process: before the MLP operation. It
is visible that the results are awful: the inclusion of this feature in such an
advanced stage “confuses” the operation of the ANN.

6.10 Derivation of the final classifier scheme

6.10.1 Summary of the several tests

From the presented results, a set of conclusions important to the defini-
tion of the final classifier scheme have to be considered, together with the
requirements of this specific work, namely the real-time operation mode. The
main conclusions drawn are presented:

• Among the several vowels, it was proved that vowels /u/ and /i/ are
more clearly separated from the rest, and hence allow a simpler classifi-
cation task. Opposingly, vowels /a/ and /o/ have very similar spectral
shape, and hence are very difficult to separate.

• It was shown that using more than 16 MFCCs does not provide a im-
provement on the performance of the classifier (in terms of the diminu-
tion of the error rate) comparable with the improvement of the com-
putational complexity associated with the use of more features.

• It has been seen that, as expected, feature selection techniques do not
yield good results, as one cannot consider a small group of signal-related
features that completely capture the essential distinctive features of the
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several vowels. Therefore, there are clear advantages in using feature
extraction techniques, as these techniques provide combinations of all
the initial parameters to achieve the best distinctive features.

• Among the several nonlinear mapping techniques tested, ANN was the
one that yield better results. The remaining nonlinear mapping tech-
niques do not significantly improve the performance of the linear map-
ping techniques. Also, the local nonlinear techniques perform worse.
This is an indication that the data is not arranged in a nonlinear way
in the high-dimensional space.

• As for the hierarchical approaches, they have given good indications.
Those based on vowel similarity seem logical approaches, however the
occurrence of propagation errors has invalidated the pursue of such
techniques. From the other hierarchical techniques analyzed, the use
of ANN has proven its advantages, as did the inclusion of pitch as a
feature in intermediate steps of mapping.

• Although the use of ANN yield good results, generalization issues [17]
require the use of large training sets, which is not the case. In ad-
dition, these techniques are more complex to use in real-time opera-
tions. Therefore, for the final classifier specifications, this technique
was dropped, and the dimensionality reduction techniques used are the
linear ones: LDA and PCA. However, the results previously provided
can be seen as indication regarding the advantages of using such tech-
niques, if an appropriated training set is available.

• Regarding the features used, the behavior of MFCCs has proven to
be good. No significant advantages were observed when LP features
were added, although several techniques regarding the combination of
the two groups of features were tested. Hence, the decision was to
maintain 16 MFCCs. However, the results of hierarchical approaches
using pitch in intermediate steps of the mappings, together with the
knowledge that the separation in genders (that are usually classified
according to its pitches) yields usually better results [5], the pitch was
chosen as a feature. Also, it has been defended that the use of raw
features together with more elaborated ones resembles the human au-
ditory system behavior. Also, it is known that different vowels have
different intrinsic pitches [9].

• Regarding the classifier, both bayesian and nearest neighbor classifiers
were tested. Although the behavior of the nearest neighbor classifiers
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was acceptable, it is an algorithm that is highly dependent on the train-
ing data - in this case however, the training set is small. In addition,
it has been seen that the use of these classifiers can bring difficulties to
the real-time operation, as the computational complexity of such tech-
niques tends to be big. Therefore the bayesian classifiers will be used.
As for the initial problems regarding the quadratic classifier, it has been
proved that the use of dimensionality reduction techniques prevents the
occurrence of overfitting, so the use of QDC, together with LDC, will
be pursued.

With these conclusions in mind, the final classifier will follow the basic
pattern recognition flow, with the use of linear feature extraction techniques
and bayesian classifiers. 4 scenarios were defined:

Scenario 1 From the 16 MFCC coefficients existing in the parameter vector,
we used LDA to achieve a mapping to a 4-dimensional subspace. To
these 4 features we added the pitch. These 5 features were used by the
bayesian classifiers to identify the current vowel.

Scenario 2 From the 16 MFCC coefficients existing in the parameter vector,
we used LDA to achieve a mapping to a 4-dimensional subspace. These
4 features were used by the bayesian classifiers to identify the current
vowel.

Scenario 3 From the 16 MFCC coefficients existing in the parameter vector,
we used PCA to achieve a mapping to a 4-dimensional subspace. To
these 4 features we added the pitch. These 5 features were used by the
bayesian classifiers to identify the current vowel.

Scenario 4 From the 16 MFCC coefficients existing in the parameter vector,
we used PCA to achieve a mapping to a 4-dimensional subspace. These
4 features were used by the bayesian classifiers to identify the current
vowel.

6.10.2 Number of mapped dimensions

The scenarios previously described regard the use of 4-mapped features
to feed the classifiers. The choice was not random: for LDA, this is in fact
the maximum number of dimensions allowed (corresponding to c−1, where c
is the number of classes - 5). Experiments regarding further reducing of the
number of dimensions tend to yield worse results. For the PCA technique,
experiments using different numbers of mapping dimensions have shown that
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there are no effective benefits in keeping more than 4 dimensions (see Fig.
6.41). In fact, although keeping more than 4 dimensions might result in a
slightly smaller error rate, the corresponding increase in complexity of the
problem is not justifiable.

Figure 6.41: Effect of changing number of mapped dimensions

6.10.3 Simulation of the final classifier

The four approaches described previously were primarily evaluated using
Matlab. In this environment, we created the parameter vectors correspond-
ing to the several samples (a total of 5060 samples). These samples were
separated in training and testing sets, by keeping 70% of the samples in the
training set, and the remaining samples in the test set. The separation was
made randomly, but careful to avoid that samples belonging to the same
speaker appeared in both training and testing sets was taken. Also, the sep-
aration was made by using 70%-30% of each gender’s samples in each of the
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sets. The final sets had 3645 samples for training, and 1495 for test. Next,
both the mappings and the classifiers were trained and tested. This process
was repeated 50 times. Table 6.4 presents the recognition rates obtained for
the several approaches (corresponding to the average value of the 50 trials),
for the linear and quadratic classifiers, respectively. It is visible the advantage
of including pitch as a feature in the dataset, particularly for the quadratic
classifier: the scenarios using this feature in addition to the MFCC-derived
features yield better results. Also, and as expected, the results obtained with
the quadratic classifier were superior, as this allows the definition of more
complex discriminating functions.

Table 6.4: Comparison of recognition rates obtained

Method Scenario 1 Scenario 2 Scenario 3 Scenario 4

LDC 94.59% 93.40% 92.92% 92.11%

QDC 96.01% 93.75% 95.97% 95.67%

The results are apparently very good, and are higher to those obtained
with other applications, namely VATA. However, one must not forget that
only 5 vowels are being used here, instead of the 10 regarding the results
presented in [5].

6.11 Conclusions

In this chapter, the several experiments regarding the final definition of
a classifier scheme are presented.

The final classifier follows the basic pattern classification scheme, and
uses linear feature extraction methods. Although several nonlinear methods
were tested, these did not outperform the linear ones, and were excluded.
The only nonlinear technique that provided good results was the ANN. Fur-
thermore, the use of such a technique in the proposed hierarchical schemes
provides good indications regarding classification. However, the use of ANN
was eventually excluded, as the number of training samples is not big enough
to allow good generalization capabilities to this technique. Hence, linear tech-
niques (PCA and LDA) are used.

Regarding the classifiers, the use of bayesian classifiers was pursued, as
these are more suited to convert to real-time operation.

Four different variations of the final classifier were tested. The results of
the simulation, show that the use of LDA is more advantageous than the use
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of PCA, which is somehow expected, because LDA is a supervised technique,
and hence uses information regarding the labeling of the training set. Fur-
thermore, the addition of pitch has also proven enhance the classification:
the idea of using raw features in addition to higher-stage features as MFCCs
seems to provide good results.



Chapter 7

Interactive Application
Developed

7.1 Introduction

The advantages associated with the use of visual displays have been
widely referred in the present report. The use of simple 2D vowel displays
is an important aid to speech therapy sessions, improving the motivation of
child patients. The use of interactive games provides extra motivation for
children, by making the necessary training a pleasure instead of an obligation.
Furthermore, interactive computer games are tools that allow the continua-
tion of the training at home, after the speech therapy sessions. Therefore,
in this work, a simple interactive game was developed, using OpenGL: a car
race game.

In this chapter, the implementation of the classifier (derived in the previ-
ous chapter) in C++ will be addressed, together with some implementation
details regarding the development of the final application. Also, the results
of a preliminary experiment, regarding the efficiency of the classifier, using
only one speaker, are presented.

7.2 Adaptation of the Classifier to Real-Time

Performance

The first step in developing the interactive application is the adaptation
of the classifier defined in the previous chapter to real-time operation. In
this section, this adaptation process is briefly described.
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Figure 7.1: Diagram of the developed classifier

In Fig. 7.1, a diagram of the final classifier structure is presented. Hence,
there are three major steps in such approach: parameter extraction, feature
extraction, and classification.

The parameter extraction comprises the computation of both the MFCCs
and the pitch from the input speech signal. Therefore, the first step is the
development of an input interface, capable of capturing the speech signal
obtained from the computer’s audio input, and present it to the parameter
extraction block as a vector of time samples. This interface was created
using the RTAudio1 API, that provides a set of classes capable simplifying
the process of dealing with the computer’s audio hardware to obtain realtime
audio input. Using this set of functions, one can easily obtain in a buffer the
several samples corresponding to the sound captured by the computer’s audio
input.

Finetuning the RTaudio functions to capture each of the input audio
frames involves also the definition of a silence threshold, to avoid that the
classifier attempts to classify noise. The next step comprises the parameter
extraction. MFCCs are computed accordingly with the definition previously
presented, using the outputs of a bank of mel-frequency spaced filters. As for
the pitch, its computation is made using a cepstral peak analysis technique.

The following step comprises the dimensionality reduction. This step was
highly simplified by the use of linear techniques. Therefore, for both LDA
and PCA techniques, mean vectors Xmean regarding the MFCCs values of
the training data and Linear Transformation matrices T can be computed in
the training step, accordingly to the previously described techniques. Thus,
at this phase, to obtain a low-dimensional representation Y from the high-
dimensional representation X, one has to simply compute the mapping, that
is basically a simple matrix multiplication operation: Y = (X −Xmean)×T .

Once the dimensionality reduction step is completed, one has to classify
the resulting data. Once again, in the training step the necessary data for
obtaining the discriminant functions is calculated. Therefore, in real-time
operation, one has simply to calculate the values of the 5 discriminant func-

1http://www.music.mcgill.ca/˜gary/rtaudio/
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tions, and assign the input data to the class which discriminant function
yield the bigger result.

A final post-processing step was added, in order to avoid that sounds cap-
tured that did not correspond to any of the considered vowels were classified.
This post-processing step basically regards verification if the biggest value
obtained by the discriminant functions is higher then a defined threshold.

7.3 Game Development

The final purpose of the work was the development of an interactive game
controlled by vowels. The game selected was a car race game. The selection
of such a game was made concerning both the simplicity of use (every child
easily realizes the purpose and how to play the game), and the capability of
integrating the 5 vowels as commands.

Hence, the game has, in this initial phase, a single circuit, as well as a
single car (latter, more cars and circuits should be added to improve the
ability of motivating in a prolonged way the child). Also, the surrounding
environment developed is quite simple: although some elements for enrich-
ment of the surrounding environment may be added, excessive ornaments
may contribute to diminish the child concentration.

The basic framework of the OpenGL application is straightforward and
will not be described. Suffice to say that this basic framework comprises
functions responsible for generating the window, closing the window, resizing
the window, etc. This framework was was developed in a previous work
(regarding the real-time identification of pitch as the controller of a simple
game).

The race track is defined by a vector with a set of coordinates corre-
sponding to the limitations of the curve sectors of a track. Therefore, it is
supposed that the track is constituted by an alternated sequence of straight
segments and curves. The construction of the straight parts of the circuit
is simple: one must design a set of polygons from the initial to the final
coordinates. The design of the curve parts is not as straightforward. For this
purpose, Bézier curves (a kind of parametric curves, recurrent in graphical
computation) were used. These curves use some control points to define the
several intermediate points of the curve. Cubic Bézier curves were used, as
the definition of the 4 control points from the coordinates is very simple: the
projection of the previous and following coordinates suffices (see Fig. 7.2).
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Figure 7.2: Cubic Bézier Curve

Each of the intermediate point is defined Equation 7.1.

B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3, t ∈ [0, 1] (7.1)

At this point, one of the barriers of the circuit was defined for the entire
circuit. For completing the track, a vector perpendicular to each point was
calculated, using the properties of the scalar product, and the fact that the
norm of the width of the track is constant. This vector is added to each
point, to obtain the corresponding opposite side of the track.

As for the player, a 3DS (3D Studio Max) model was used. The use of such
a model is related to the fact that this object requires the use of complex
geometry to achieve a satisfactory appearance. Additional algorithms for
collision detection were included to prevent the car from passing through the
circuit boundaries.

The surrounding environment was created using a set of textures, in the
form of a skybox.

As for visualization purposes, the camera was set slightly behind the
player, to allow a “1st person shooter” type of visualization.

7.4 Characterization of the Game

In Figure 7.3, a screenshot of the developed application is shown.
The purpose of the game is to complete the circuit in the shortest amount

of time.
The continuous utterance of each of the 5 vowels match to one of controls:

Vowel /a/ allows a progressive increase of the car speed until a maximum
speed is achieved.
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Figure 7.3: Screenshot of the developed Application

Vowel /u/ allows driving the car in reverse gear, decreasing speed until the
minimum value allowed is reached.

Vowel /i/ allows slowing down the car till full stop.

Vowels /o/ allows changing the direction of the car movement by turning
left, without changing the speed

Vowel /e/ allows changing the direction of the car movement by turning
right, without changing the speed

To help the user understand the basic mechanics of the control of the
car, three auxiliary elements were added to the visual display: a graphical
representation of each command (showing the effect of each utterance, as
well as the currently identified vowel) - Fig. 7.4, a small representation of
the entire circuit where the current position of the car is emphasized - Fig.
7.5, and also a representation of the current car speed - Fig. 7.6.
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Figure 7.4: Representation of the Command auxiliary element

Figure 7.5: Representation of the Circuit auxiliary element

Figure 7.6: Representation of the Velocity auxiliary element

The game is intuitive, although in the first plays some confusion regarding
the commands may exist. However, the corresponding auxiliary element is
always represented to overcome this difficulty.

7.5 Real-Time Performance

The test results have shown that, after a few trials by a user, the game is
easily controlled using only vowels, although some problems were identified
in distinguish vowels /a/ and /o/. This problem is not unexpected, as these
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two vowels have very similar spectral envelopes. Also, some tests were made
with speakers from different genres, and some fragilities were reveled when
male speakers used the program. However, that is mainly due to the lack of
sufficient representatives of this genre in the training set: as the purpose of
this game is to serve children, we used mainly child speakers in the training
database, as supported in [3].

For observing the real-time behavior of the developed classifier, series of
6 tests for each approach (from the 4 approaches mentioned in the previous
chapter) were held, with one female speaker. In each test, the 5 vowels were
uttered in sequence. The results were saved in a .txt file, and latter the
middle samples (corresponding to a sustained vowel utterance) were selected
to calculate the statistics. The recognition rates obtained are presented in
Table 7.1. Nearly 3000 samples were obtained from each test: a total of 12000
samples were considered for calculating the statistics for the LDC classifier,
and 11890 for the QDC classifier.

7.5.1 Comparison with Simulation Results

In Table 7.1, the results obtained in the several tests in real-time and the
simulation results referred in the previous chapter are presented.

Table 7.1: Comparison of recognition rates obtained

Method Scenario 1 Scenario 2 Scenario 3 Scenario 4

LDC Real-Time 93.93 % 96.43 % 89.37 % 92.30 %

LDC Simulation 94.59 % 93.40 % 92.92 % 92.11 %

QDC Real-Time 91.33 % 97.08 % 92.87 % 91.04 %

QDC Simulation 96.01 % 93.75 % 95.97 % 95.67 %

The results show that, contrarily to the simulation results, the behavior
when using pitch as a feature is worse. Scenario 2 (using 16 MFCCs and
LDA mapping) is the approach showing better results in real-time. Possible
reasons for this fact may be the limitations in the real-time algorithm for
detecting pitch.

Although an obvious degradation between the real-time results and the
simulation results, the recognition rates are very promising. This is in fact a
fairly good indication concerning the reliability of the linear mapping meth-
ods. However, it should be noted that these results were obtained only for
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one speaker, and thus they are merely indications of the performance of our
classifier.

7.6 Conclusions

In this chapter, details regarding the implementation of the classifier in
C++, together with the development of the final application, are presented.

A simple and attractive application, suited for children training, was de-
veloped, as intended. The application is fully controlled by the utterance of
vowels.

Although only one speaker has been used for real-time testing, the results
provide good indications regarding the performance of the final classifier, as
they are not significantly different from the simulation results.



Chapter 8

Conclusion and Further Work

8.1 Conclusions

In this report, an approach to developing a real-time vowel classifier,
suited for classifying 5 European Portuguese vowels is presented.

Initially, a spectral analysis of the 5 considered vowels was performed.
The importance of the spectral shape in the definition of each vowel, together
with the observation of the difficulties associated with identification of high-
pitched vowels was observed. Also, it was noted that vowels /a/ and /o/
have spectral shapes very similar, what can compromise the classification of
these two vowels (what was in fact verified in further tests).

Traditional techniques based on formant detection have proven to fail
when the vowels are uttered at high pitch [3]. This is usually the case when
children or women are the speakers. Therefore, a more robust method is
needed. Spectral-shape features have been used with some success, for En-
glish Vowels, in applications like VATA[17] or OLTK[6]. In this work, the
parametrization of vowels, using MFCCs was tested, and has proven to suit
relatively well the vowel classification purpose.

Several approaches regarding pattern recognition techniques were tested,
and the advantage of using feature extraction techniques for dimensionality
reduction (opposing to feature selection techniques) was shown. Also, several
linear and nonlinear feature extraction techniques were applied, and it was
observed that only the ANN approach yields results that are comparable
to the ones obtained by the linear techniques. Thus, the high-dimensional
distribution of the data must be linear, and the use of complicated nonlinear
techniques is discarded.

ANN have proven their classification capabilities by allowing the achieve-
ment of very interesting mappings. Furthermore, the use of hierarchical



Interactive Game for the Training of Portuguese Vowels 109

approaches combining the use of ANNs and linear techniques shown good
indications. However, as the number of training samples is not big enough to
allow the use of an ANN with good generalization capabilities, this approach
was dropped.

As for the linear techniques, LDA has proven its advantage relatively
to the PCA technique for this data. That is not unexpected, as the LDA
technique is a supervised technique, hence regards the training sample labels
when constructing the mapping.

A classifier suited for real-time operation was hence derived. The simu-
lation tests using the selected technique showed promising results.

The real-time implementation of this technique was done, and the classi-
fier outputs were used as commands for a simple car race game. The use of
interactive games is a precious aid to speech therapy and language learning
areas. The developed game provides a simple display that gives an insight
on the technique.

The test results regarding the real-time operation of the classifier were
computed for only a single female speaker (within the target group) and have
shown good indications. However, further testings should be done to achieve
a more reliable estimation of the performance of the classifier. Also, it has
been noted that the classifier works better with female speakers than with
male speakers. That is not strange, as the classifier was trained using mostly
female and child speakers. Hence, the dependency of vowel classifiers on
the gender of the speaker still relies. The use of a wider training set would
certainly provide a more robust classifier.

Although the final result is fairly good, a final remark has to be done
regarding the developed classifier. The technique used provides indications of
its suitability for such problem, but the initial parameters used for classifying
the signal are not capable of completely characterize the distinctive features
between vowels. Therefore, the use of more significant features for these
purpose would yield better results. However, such features have not yet been
found.

8.2 Further Work

The essential goals of the present work have been met. However, regarding
the initial considerations made about the requirements of visual displays, it
is noted that important benefits can arise by adding some improvements.
Following, some suggestions regarding this enhancement are presented.

• The developed classifier should be tested with more speakers.
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• The use of a database comprising a increased amount of speakers can
significantly enhance the results, and can further allow the use of ANN,
or one of the proposed hierarchical approaches in real time operation.

• The improvement of the game scenario, by adding more elements to
it and the improvement of the challenge of the game, by adding other
cars to the car race, and increasing the number of tracks can improve
the motivation associated with the gameplay.

• The use of different parametrizations of the input speech signals can
provide better results. Although MFCCs have proved to perform well,
more investigation regarding the identification of the features used by
the human auditory system must be done. This identification would
allow a major improvement in speech recognition tasks.
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Appendix A

Linear Predictive Coding

A.1 Derivation of LPC Analysis Equation: The

Least Mean Square Approach

The derivation of the LPC analysis equation can be made using different
approaches. The most common one is the Least Mean Square approach.
There are other formulations, such as the Maximum Likelihood method. In
the present work, only the first approach will be presented, as “this approach
leads to a set of linear equations that can be efficiently solved to obtain the
predictor parameters” [10].

It was already mentioned that the purpose of LPC analysis is the deter-
mination of the parameters aj. In the following text, the estimates of this
parameters will be represented by αj. Therefore, the estimation of the cur-
rent sample is given by Equation A.1. The residual or error can be easily
calculated as the difference between A.1 and 2.8, as shown in Equation A.2.

s(n) =
p∑

j=1

αjs(n− j) (A.1)

e(n) = s(n)− s(n) = s(n)−
p∑

j=1

αjs(n− j) (A.2)

The Least Mean Square approaches states that the best estimates αj

are obtained when minimizing the mean squared error, E, represented in
Equation A.3;

E = E{e2(n)} = E{[s(n)−
p∑

j=1

αjs(n− j)]2} (A.3)
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To solve Equation A.3, one must set the partial derivatives of E with
respect to αj, j = 1, . . . , p to zero (Equation A.4). This result shows that
e(n) is orthogonal to s(n− i) for i = 1, . . . , p.

∂E

∂αi

= 0 =⇒ E{[s(n)−
p∑

j=1

αjs(n− j)]s(n− i)}, i = 1, . . . , p (A.4)

Defining φn(i, j) = Es(n− i)s(n− j), Equation A.4 can be rearranged
(Equation A.5). The derivation of this equation in made with the assumption
of stationarity of the signal, which, in a speech signal, can be assumed to be
true for short segments. In consequence, the expectations (E{}) can be
replaced by finite summations (Equation A.6).

p∑
j=1

αjφn(i, j) = φn(i, 0), i = 1, . . . , p (A.5)

φn(i, j) = Es(n− i)s(n− j) =
∑
m

sn(m−i)sn(m−j), i = 1, . . . , p, j = 1, . . . , p

(A.6)

A.2 Solutions for the LPC analysis problem

After formulating the LPC problem, it is important to clarify the methods
used to solve the problem, i.e., how does one gets the desired estimations
αj? There are several approaches to this problem. In [10], seven essentially
equivalent formulations are referred:

1. Autocorrelation Method

2. Covariance Method

3. Lattice Method

4. Inverse Filter Formulation

5. Spectral Estimation Formulation

6. Maximum Likelihood Formulation

7. Inner Product Formulation

The first two approaches will be briefly described in the following subsec-
tions.
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Autocorrelation Method

In this method, sn(m) is assumed to be zero outside the interval consid-
ered, 0 ≤ m ≤ N − 1. Therefore, for m < 0 and m > N − 1 + p, as the
sample values are assumed to be zero (what is, in fact, not true), and thus
there is no prediction error for this areas. However, in the region from m = 0
to m = p − 1 the prediction is made using samples that were assumed to
be zero (although they in fact aren’t zero). This generates potentially large
prediction errors in the beginning of each frame. The end of each frame is
another place where potentially large prediction errors can occur, as from
m = N − 1 to m = N − 1 + p we are forcing the prediction of zero-valued
samples. These effects are more prominent in voiced speech samples, when
the beginning of the pitch period is coincident with the beginning or end of
the frame. The use of a window that decreases the signal near the end-points
of the frame can minimize these errors.

As the prediction error is being forced to zero outside the interval 0 ≤
m ≤ N − 1 + p, the calculation of the mean-squared error can be reduced
to this interval, as stated in A.7. We can also rearrange equation A.6 to
equation A.8.

En =
N−1+p∑

m=0

e2n(m) (A.7)

φn(i, j) =
N−1+p∑

m=0

sn(m− i)sn(m− j), i = 1, . . . , p, j = 1, . . . , p (A.8)

That can be rewritten as Equation A.14, as sn(m) is zero outside 0 ≤
m ≤ N − 1.

φn(i, j) =
N−1−(i−j)∑

m=0

sn(m)sn(m+ i− j), i = 1, . . . , p, j = 1, . . . , p (A.9)

This expression is simply the short-time autocorrelation function (Equa-
tion A.10).

φn(i, j) = Rn(|i− j|), i = 1, . . . , p, j = 1, . . . , p (A.10)

Equation A.5 can thus be rewritten as Equation A.11, or, in the matrix
form in A.12.

p∑
j=1

αjRn(|i− j|) = Rn(i), 1 ≤ i ≤ p (A.11)
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X =


Rn(0) Rn(1) . . . Rn(p− 1)

Rn(1)
...

. . . Rn(p− 2)
...

...
. . . . . .

Rn(p− 1)
...

. . . Rn(0)

×

α1

α2
...
αp

 =


Rn(1)
Rn(2)

...
Rn(p)

 (A.12)

Although this equation can be solved by simply inverting the matrix, this
approach usually leads to propagation of errors in computer operations. On
the other hand, the matrix can be easily identified as a Toeplitz Matrix(a
symmetrical matrix in which all elements along a given diagonal are equal),
hence, recursive methods, such as the Durbin Algorithm, can be used to
compute the estimates.

Covariance Method

The Covariance Method is an alternative approach, that is based in the
assumption that the interval over which the mean squared error is calculated
is fixed: 0 ≤ m ≤ N − 1, therefore, there is no need for defining windows -
the speech signal can be used directly (Equation A.13).

En =
N−1∑
m=0

e2n(m) (A.13)

Hence, we can define φn(i, j) as follows.

φn(i, j) =
N−1∑
m=0

sn(m− i)sn(m− j), i = 1, . . . , p, j = 1, . . . , p (A.14)

Redefining the limits of the summation, yields the following equation.

φn(i, j) =
N−1−i∑
m=−i

sn(m)sn(m+ i− j), i = 1, . . . , p, j = 1, . . . , p (A.15)

That is slightly different form the equation derived in the Autocorrelation
Method, in the limits of the summation. The matrix model of LPC analysis
equations derived by this method is presented in Equation A.16

X =


φn(1, 1) φn(1) . . . φn(1, p)

φn(2, 1)
...

. . . φn(2, p)
...

...
. . . . . .

φn(p, 1)
...

. . . φn(p, p)

×

α1

α2
...
αp

 =


φn(1, 0)
φn(2, 0)

...
φn(p, 0)

 (A.16)
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This matrix is not a Toeplitz matrix, thus matrix inversion solutions have
to be used, i.e. Cholesky Decomposition.



Appendix B

Dimensionality reduction
techniques

The several nonlinear feature extraction techniques were tested, and a
visual evaluation of their performance was made. It was concluded that the
nonlinear techniques do not perform well in mapping the vowel data, specially
the local nonlinear techniques. In this appendix, some of the additional
scatterplots obtained are presented.

B.1 Global Nonlinear Techniques

Figure B.1: Isomap
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Figure B.2: Fast MVU

Figure B.3: Kernel PCA using gaussian Kernel functions
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Figure B.4: SNE with small sigma

B.2 Local nonlinear Techniques

Figure B.5: LLE
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Figure B.6: Laplacian Eigenmaps

B.3 Extensions and variants of local nonlin-

ear techniques

Figure B.7: CCA
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Figure B.8: MVU

Figure B.9: LLTSA
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B.4 Global Alignment of Linear Models

Figure B.10: LLC
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