
António Miguel Ribeiro dos Santos Rosado da Cruz

Automatic Generation of User Interfaces from

Rigorous Domain and Use Case Models

Departamento de Engenharia Informática
Faculdade de Engenharia da Universidade do Porto

September 17, 2010

António Miguel Ribeiro dos Santos Rosado da Cruz

Automatic Generation of User Interfaces from

Rigorous Domain and Use Case Models

Dissertation submited for the degree of
Doctor of Philosophy in Informatics Engineering

Dissertation conducted under the scientific supervision of
Prof. Dr. João Carlos Pascoal Faria

Assistant Professor, Department of Informatics Engineering, FEUP

September 2010

Abstract

User interface (UI) development, in the scope of data intensive interactive ap-
plications, is a time consuming but repetitive task. Nevertheless, few research
projects address its automatic generation.

Existing model-driven approaches to the UI automatic generation either de-
mand the full construction of a UI model, which, with data intensive applications,
corresponds to moving the repetitiveness of the UI construction to the modeling
level, or demand a set of complex sub-models polluted with concrete UI informa-
tion. This situation sets aside a more generalized utilization of such approaches.
A few solutions found in the literature try to simplify the demanded sub-models
by generating other sub-models from the previous ones, but they have revealed
to be very inflexible, making it hard to work around less “standard” problems.

Based on the identification and comparison of the state-of-art tools and ap-
proaches to the automatic generation of user interfaces, this Ph.D. research work
addresses the automatic generation of data driven interactive applications, in-
cluding its user interface, following a model-driven paradigm. The proposed
approach starts from platform independent non-UI models of the system under
development, namely its domain model and its use case model, and generates a
UI model, which is used, together with the domain model and use case model, to
generate the completely functional final code, which may be used as a prototype
or as a step for posterior refinements towards the final application.

An iterative development process for data intensive interactive applications,
aligned with the model-driven architecture (MDA), is also addressed, comprising
model validation through a generated prototype at the end of each iteration. The
presented approach shall be viewed in an evolutionary development perspective,
starting with a prototype that enables the validation and execution of executable
system models, in an early phase of the software development process, and being
possible to use it as a base for subsequent developments, by refining the previous
models or complementing them with new sub-models.

OCL and an action semantics language are used to add rigor and semantic
richness to the system model, and allow the generation of features derived, for
instance, from the operations’ body, invariants and preconditions defined in the
model, that contribute to the enhancement of the UI usability and acceptability.

Two case studies are presented to validate the proposed approach.

Résumé

Le développement d’interfaces utilisateur (IU) dans le cadre d’applications inter-
actives intensivement basées sur des données, est une tâche de longue haleine,
mais répétitif. Néanmoins, peu de projets de recherche visent leur génération
automatique.

Les approches existantes pour la génération automatique d’interfaces util-
isateur, ou exigent la construction d’un modèle complet de l’interface utilisa-
teur, qui, dans les applications intensivement basées sur des données, il signi-
fie de déplacer la répétabilité de la construction de l’IU pour le niveau de la
modélisation, ou exigent un ensemble complexe de sous-modèles contaminés par
d’information spécifique de l’IU. Cette situation empêche une plus large utilisa-
tion de ces approches. Certaines solutions existantes dans la littérature, essayent
la simplification des sous-modèles requis par la production d’autres sous-modèles
à partir des précédents, mais ces solutions ont révélé être très rigides, rendant
difficile de travailler autour de problèmes moins “standard”.

Fondée sur l’identification et la comparaison des outils et des approches de
l’état de l’art à la génération automatique des interfaces utilisateur, ce travail
de recherche se concentre sur la génération automatique des applications inter-
actives intensivement basées sur des données, y compris son interface utilisa-
teur, suivant un paradigme dirigé par les modèles. L’approche commence par
la modélisation du système en cours de développement, non de l’interface util-
isateur, indépendamment de la plateforme, à savoir le modèle de domaine et le
modèle de cas d’utilisation, et génère un modèle de l’interface utilisateur, qui est
utilisé avec le modèle de domaine pour générer le code de l’application finale.

Il est également proposé un processus itératif de développement de logi-
ciels, aligné avec le Model Driven Architecture (MDA), y compris la validation
des modèles en utilisant un prototype fonctionnel à la fin de chaque itération.
L’approche présentée doit être contextualisée dans une perspective évolutive du
développement de logiciels, à partir d’un prototype qui permet la validation et
la mise en uvre de modèles exécutables du système, et permettre leur utilisation
comme base pour le développement futur grâce à l’amélioration des les modèles
précédents, ou de compléter avec de nouveaux sous-modèles.

L’approche proposée utilise le langage OCL (Object Constraint Language) et
un langage d’actions pour accrôıtre la rigueur et la richesse sémantique du modèle
du système en cours de développement, permettant la génération de fonctionnalité
provenant des corps des opérations, invariants et pré-conditions définies dans le
modèle, en contribuant à améliorer la convivialité et l’acceptabilité de l’interface
utilisateur.

Sont présentés Deux études de cas qui valident l’approche proposée dans cette
recherche.

Resumo

O desenvolvimento de interfaces com o utilizador (IU), no âmbito de aplicações
interactivas intensivamente baseadas em dados, é uma tarefa repetitiva e grande
consumidora de tempo. No entanto, poucos projectos de investigação têm como
objectivo a sua geração automática.

As abordagens existentes para geração automática de interfaces com o uti-
lizador, ou exigem a construção completa de um modelo da IU, o que, em
aplicações intensivamente baseadas em dados, corresponde a transportar a repet-
itividade da construção da IU para o ńıvel da modelação, ou exigem um con-
junto complexo de sub-modelos polúıdos com informação concreta da IU. Esta
situação coloca de lado uma utilização mais generalizada de tais abordagens.
Algumas soluções, encontradas na literatura, tentam simplificar os sub-modelos
exigidos através da geração de outros sub-modelos a partir dos primeiros, mas
essas soluções revelaram ser pouco flex́ıveis tornando complicado o tratamento
de problemas menos padronizados.

Baseado na identificação e comparação das ferramentas e abordagens do es-
tado da arte, para geração automática de IU, este trabalho de investigação aborda
a geração automática de aplicações interactivas completamente funcionais inten-
samente baseadas em dados, incluindo a sua IU, seguindo uma abordagem guiada
por modelos. A abordagem defendida começa com a construção de modelos do
sistema em desenvolvimento, não da IU, independentes da plataforma, nomeada-
mente modelo de domı́nio e modelo de casos de uso, e gera um modelo da IU, o
qual é usado juntamente com o modelo de domı́nio para gerar o código final da
aplicação.

É também proposto um processo iterativo, de desenvolvimento de software,
alinhado com a arquitectura guiada por modelos (MDA), compreendendo a val-
idação de modelos usando um protótipo funcional, no final de cada iteração.
A abordagem apresentada deve ser contextualizada numa perspectiva de desen-
volvimento de software evolucionária, começando com um protótipo que permite
a validação e execução de modelos executáveis, do sistema, numa fase inicial do
processo de desenvolvimento de software, e tornando posśıvel a sua utilização
como base para futuros desenvolvimentos, através do refinamento dos modelos
anteriores, ou do seu complemento com novos sub-modelos.

É usada a linguagem OCL (Object Constraint Language) e uma linguagem de
acções para adicionar rigor e riqueza semântica ao modelo do sistema em desen-
volvimento, permitindo a geração de algumas funcionalidades derivadas dos cor-
pos das operações, invariantes e pré-condições definidas no modelo, contribuindo
para a melhoria da usabilidade e aceitabilidade da IU.

São apresentados dois casos de estudo que validam a abordagem proposta
neste trabalho de investigação.

Acronyms

AS Action Semantics

CAP Canonical Abstract Prototypes

CIM Computation Independent Model

CLI Command Line Interface

CSS Cascading Style Sheets

CTT ConcurTaskTrees

DM Domain Model

DSL Domain Specific Language

DSM Domain Specific Modeling

GOMS Goals, Operators, Methods and Selection Rules

GUI Graphical User Interface

HCI Human-Computer Interaction

LHS Left-hand side

M2C Model-to-code transformation

M2M Model-to-model transformation

M2T Model-to-text transformation

MB-UIDE Model-based User Interface Development Environment

MDA Model Driven Architecture

MDD Model Driven Development

MDSD Model Driven Software Development

i

MOF Meta Object Facility

OCL Object Constraint Language

OMG Object Management Group

OO Object oriented

PIM Platform Independent Model

PSM Platform Specific Model

QVT Query/View/Transform

RDF Resource Description Framework

RHS Right-hand side

SE Software Engineering

UCM Use Case Model

UI User Interface

UIDL User Interface Description Language

UIM User Interface Model

UML Unified Modeling Language

UP Unified Process

URI Uniform Resource Identifier

WIMP Windows, Icons, Menus and Pointing devices

XML eXtensible Markup Language

XSLT eXtensible Stylesheet Language

XUL XML User Interface Language

ii

Contents

1 Introduction 1

1.1 Context and Motivation . 1

1.1.1 User interface development 1

1.1.2 Modeling and Prototyping 2

1.1.3 Model-driven Development 4

1.2 Limitations of current approaches 4

1.3 Research Questions . 5

1.4 Research Goal . 6

1.5 Research Method and Techniques 7

1.6 Summary of Contributions . 9

1.7 Overview of the dissertation . 11

2 Concepts and Definitions 13

2.1 Processes and Methods . 13

2.2 Software Modeling . 14

2.3 Design by Contract . 15

2.4 Model-driven software development 15

2.4.1 MDD basics . 15

2.4.2 Modeling for MDD . 18

2.4.3 Model-transformation . 20

2.4.4 Advantages of MDD approaches 22

2.5 UML Metamodel . 23

2.5.1 Object Constraint Language and Action Semantics 27

2.6 Package dependency “merge” relation 29

2.7 Task Analysis and Modeling . 30

2.7.1 ConcurTaskTrees . 31

2.8 User Interface Development . 32

2.8.1 Canonical Abstract Prototypes 35

2.8.2 XML-based User Interface Description Languages 37

2.9 Summary . 38

iii

3 State of the Art 41
3.1 Introduction . 41
3.2 Model-based user interface development 42
3.3 User interface automatic generation 48

3.3.1 The XIS approach . 48
3.3.2 The Wisdom approach . 51
3.3.3 Olivanova and the OO-Method 54
3.3.4 Elkoutbi et al. approach - Use cases formalized by collab-

oration diagrams . 57
3.3.5 Mart́ınez et al. approach - Use cases formalized by UI

enriched sequence diagrams 58
3.3.6 Forbrig et al. approach - Pattern-driven model-based UI

generation . 59
3.3.7 The ZOOM project . 61

3.4 Other UI generation approaches 62
3.4.1 The editing model of interaction 62
3.4.2 Using generic functional programming techniques 63
3.4.3 Generating UI from XML Schema instances 64
3.4.4 Adaptive Object Model . 64
3.4.5 Nguyen and Chun’s approach to MDD 65
3.4.6 outSystems agile platform 66

3.5 Analysis and discussion of the surveyed approaches 67
3.5.1 Introduction . 67
3.5.2 Features of the surveyed approaches or of the respective

generated UI . 69
3.5.3 Model architecture of each MDD surveyed approach 73
3.5.4 Fine grained comparison of surveyed MDD approaches . . 75

3.6 Conclusions . 79

4 Proposed Process and Metamodels 83
4.1 Introduction . 83
4.2 Process for model-driven development of interactive form-based

applications . 85
4.3 Model Architecture . 89
4.4 Metamodel for Domain Models 91

4.4.1 Modified UML Elements 92
4.4.2 New Domain Metamodel elements 92
4.4.3 Action-Semantics-based actions language 95
4.4.4 Example . 96

4.5 Metamodel for Use Case Models 98
4.5.1 Modified UML Elements 98
4.5.2 Kinds of Use Cases . 100
4.5.3 Use Case relations . 102

iv

4.5.4 Example . 106

4.6 Metamodel for User Interface Models 108

4.6.1 Main metamodel elements 108

4.6.2 User Interface Model concrete representation 111

4.6.3 Example . 115

4.7 Conclusions . 116

5 Model-Transformation Rules 119

5.1 Introduction . 119

5.2 Domain Model to User Interface Model Transformation Rules . . 122

5.2.1 DM2UIM01: Transform single base entities and primitive
type attributes . 123

5.2.2 DM2UIM02: Transform enumerated type properties 124

5.2.3 DM2UIM03: Transform inherited properties 127

5.2.4 DM2UIM04: Transform derived entities and derived at-
tributes . 127

5.2.5 DM2UIM05: Transform associations, aggregations and com-
positions . 128

5.2.6 DM2UIM06: Handling user defined operations 136

5.2.7 DM2UIM07: Transform the navigation root 138

5.2.8 Handling constraints . 138

5.2.9 Handling Domain Triggers 138

5.3 Domain and Use Case Integrated Models to User Interface Model
Transformation Rules . 139

5.3.1 DM+UCM2UIM01: Transform actors, use case packages
and links to directly accessible (independent) use cases . . 142

5.3.2 DM+UCM2UIM02: Transform directly accessible “List En-
tity” use cases . 143

5.3.3 DM+UCM2UIM03: Transform directly accessible “Create
Entity” use cases . 143

5.3.4 DM+UCM2UIM04: Transform “CRUD Entity” use cases
(Create, Retrieve, Update or Delete), accessible through an
extension . 144

5.3.5 DM+UCM2UIM05: Transform “List Related Entity” use
cases, accessible through an inclusion 147

5.3.6 DM+UCM2UIM06: Transform “CRUD related Entity” use
cases (Create, Retrieve, Update or Delete), accessible through
an extension . 147

5.3.7 DM+UCM2UIM07: Transform “Select (one) Related En-
tity” use cases, accessible through an inclusion 149

5.3.8 DM+UCM2UIM08: Transform “Select and Link (several)
Related Entity” use cases 152

v

5.3.9 DM+UCM2UIM09: Transform User defined operation use
cases . 152

5.3.10 DM+UCM2UIM10: Transform Use Case inheritance and
specialized use cases, rooted in a directly accessible use case 152

5.3.11 DM+UCM2UIM11: Transform enabling, deactivation and
choice relations use cases 155

5.4 Default Use Case Model generation from Domain Model 157

5.4.1 DM2UCM01: Transform root navigation entity and its ag-
gregation relations to other entities 158

5.4.2 DM2UCM02: Transform directly accessible base entities to
CRUD UCs . 158

5.4.3 DM2UCM03: Transform directly accessible derived entities
to CRUD UCs . 158

5.4.4 DM2UCM04: Transform “to-many” relations from depen-
dent instances to CRUD related UCs 159

5.4.5 DM2UCM05: Transform “to-many” relations from inde-
pendent instances to Select Related UCs 161

5.4.6 DM2UCM06: Transform “to-one” relations from depen-
dent or independent instances to Select Related UCs . . . 162

5.4.7 DM2UCM07: Transform user defined operations 163

5.5 Conclusions . 164

6 Implementation and Validation 167

6.1 Introduction . 167

6.2 Proof-of-concept tool implementation 167

6.2.1 Tool architecture . 168

6.2.2 Architecture of the generated prototype 172

6.3 Model-to-code mappings from UIM to XUL 173

6.4 Case study 1 - Library System . 175

6.4.1 Library System Domain Model 175

6.4.2 Generated Prototype after process DM2UIM 177

6.4.3 Library System Use Case Model 185

6.4.4 Generated Prototype after process DM+UCM2UIM 186

6.5 Case study 2 - Conference Review System 187

6.5.1 Conference Review System Domain Model 188

6.5.2 Generated Prototype after process DM2UIM 189

6.5.3 Conference Review System Use Case Model 192

6.5.4 Generated Prototype after process DM+UCM2UIM 193

6.6 Discussion of case study’s results 194

6.7 Assessment of goals satisfaction 197

6.7.1 Is it possible to obtain a UI prototype from a minimal set
of model artifacts, without requiring as input a UI model? 198

vi

6.7.2 Can the generated UI prototype take advantage of ad-
vanced elements in a domain model? 199

6.7.3 Can the generated UI prototype take advantage of more
flexible elements, in a use case model? 200

6.7.4 Can the generated UI be used as a starting point for further
refinements towards the UI of the final application? 200

6.8 Comparison with existing approaches 201
6.9 Conclusions . 204

7 Conclusions 205
7.1 Results and contributions to the state of art 205
7.2 Future work . 207

Bibliography 209

vii

viii

List of Figures

2.1 Unified Process core workflows and their relative weight through
the iterations from requirements capture until testing. 14

2.2 From more abstract to more concrete models. 16
2.3 Model transformation conforms to defined mappings between source

and target metamodels. 16
2.4 Metamodel levels defined for OMG’s MDA. 18
2.5 UML class diagram for a LibrarySystem example. 19
2.6 Comment (informal constraint) in UML. 19
2.7 UML Metamodel top-level elements 23
2.8 UML Metamodel - Classifiers and Relationships 24
2.9 UML Metamodel - Constraints 25
2.10 UML Metamodel - Class model elements 26
2.11 UML Metamodel - Use Case model elements 26
2.12 UML Metamodel - Basic actions 27
2.13 UML Metamodel - Object actions 28
2.14 Package merge between packages P1, P2 and P (taken from [AD06]). 30
2.15 Task hierarchy for making a cup of tea(taken from [DFAB98]). . . 31
2.16 Example of a CTT task model. 32
2.17 The basic symbols and its extensions, for Canonical Abstract Pro-

totypes (adapted from [Con03]). 36
2.18 Example of a CAP for a Message viewer. 36

3.1 Model-driven development of user interfaces 43
3.2 The user interface design in a MB-UIDE (borrowed from [Pin00]) 47
3.3 The user interface implementation in a MB-UIDE 48
3.4 Xis domain model, edited in ProjectIT-Studio, for the LibrarySys-

tem example. 49
3.5 The ProjectIT tool support to MDD (taken from http://isg.inesc-

id.pt/alb/ProjectIT-Studio@79.aspx). 51
3.6 The XIS design approaches to interactive systems generation. . . . 52
3.7 The Wisdom model architecture [Nun01]. 53
3.8 The OO-Method approach (adpated from [PIP+97, PI03]). 54
3.9 Olivanova object model editor (taken from http://www.care-t.com). 55
3.10 Mart́ınez et al. method for UI generation (taken from [MESP02]). 59

ix

3.11 Pattern-driven model-based UI development approach (taken from
[WFDR05, WFR05]). 60

3.12 Examples of ZOOM models textual representation (adapted from
[JSL+05]). 61

3.13 Examples of ZOOM models graphical representation (taken from
[JSL+05]). 62

3.14 Overview of ZOOM. 63
3.15 AOM typical meta-model structure 65
3.16 Example of the Nguyen and Chun’s use case specification language

(taken from [NC06]) . 66
3.17 Screen flow in outSystems’ Service Studio. 67

4.1 General approach to UI generation. 84
4.2 Proposed interactive applications development process. 86
4.3 Detail of development process phase 1, Requirements Modeling

and Validation, as prescribed for fully taking profit of automatic
generation processes. 87

4.4 The way the core workflows take place over the process phases. . . 88
4.5 Excerpt of the conceptual metamodels and their relations. 89
4.6 Metamodel contextualization. 90
4.7 Metamodel for defining Domain Models (structural features). . . . 93
4.8 Metamodel for defining Domain Models (behavioural features). . . 94
4.9 Domain model for a Library Management System (LibrarySystem). 97
4.10 Metamodel for Use Case Models (Use case relations). 99
4.11 Metamodel for Use Case Models (use case associations to DM

classes). 103
4.12 Possible types of relationships among use cases for different domain

model fragments (note: aggregations and compositions impose, on
the UCM, similar constraints as simple associations). 105

4.13 Enable and deactivation relations between two use cases. 106
4.14 Choice relation between two or more use cases. 106
4.15 Use case innerly defined through included use cases associated to

lower-level domain model elements (attributes and operations),
which are related among each other through task-model-like re-
lations. 107

4.16 Partial use case model (UCM) for the Library Management System.107
4.17 Metamodel for User Interface Model. 109
4.18 Metamodel for User Interface Model - InteractionBlock relations

and subtree, at the left, and ActionAIO subtree, at the right. . . . 110
4.19 Canonical abstract notation for interaction spaces and interaction

blocks. 112
4.20 Canonical abstract notation for Menus. 113
4.21 Canonical abstract notation for DataAIOs. 113

x

4.22 Canonical abstract notation for ActionAIOs 114
4.23 Canonical abstract notation for “pre-built” interaction spaces. . . 115
4.24 Canonical abstract notation for “pre-built” interaction spaces. . . 116
4.25 Partial UIM abstract syntax elements for the Library Management

System. 117
4.26 Partial UIM concrete abstract prototypes for the Library Manage-

ment System. 118

5.1 General approach to UI generation. 120
5.2 DM2UIM01: Mapping rule for transforming a single base entity,

assuming CRUD operations, into an UI interaction space with con-
venient simple AIOs. 125

5.3 DM2UIM02: Transforming an enumerated type attribute to UI
model elements. 126

5.4 Partial BookCopy Form generated from the BookCopy interaction
space, showing the elements generated from the relation to the
BookCopyStatus enumerated type. 127

5.5 DM2UIM03: Adding inherited properties to a leaf class’ corre-
sponding view entity, previously generated. 128

5.6 DM2UIM04a: Transforming a view, or derived entity, into UIM
elements. 129

5.7 DM2UIM04b: Transforming derived attributes of base entities. . . 130
5.8 DM2UIM05a: Transforming a to-many dependent relation to UI

model elements. 131
5.9 Example forms generated from the LibrarySystem DM and gener-

ated UIM, illustrating a one-to-many composition association. . . 132
5.10 DM2UIM05b: Transforming a to-many independent relation to UI

model elements. 134
5.11 DM2UIM05c: Transforming a to-one relation to UI model elements.135
5.12 (a) Window Loan that is shown when navigating directly to an

instance of class Loan. (b) Window Loan, which is shown when
navigating from a BookCopy instance to an instance of class Loan. 136

5.13 DM2UIM06: Transforming an user defined operation to UI model
elements. 137

5.14 DM2UIM07: Transforming the navigation root entity and its re-
lations to other entities into UIM elements. 139

5.15 DM+UCM2UIM01: Transforming actors, use case packages, and
directly accessible use cases. 142

5.16 DM+UCM2UIM02: Transforming use cases of type “List Entity”. 144
5.17 DM+UCM2UIM03: Transforming a “Create Entity” use case. . . 145
5.18 DM+UCM2UIM04: Transforming a “CRUD Entity” use case. . . 146
5.19 DM+UCM2UIM05: Transforming UC inclusion that leads to a

“List Related Entity” use case. 148

xi

5.20 DM+UCM2UIM06: Transforming “CRUD Related Entity” use
cases. 149

5.21 Example of “CRUD Related Entity” use case transformation. . . . 150
5.22 DM+UCM2UIM07: Transforming a use case of type “Select Re-

lated Entity”. 151
5.23 DM+UCM2UIM08: Transforming a use case of type “Select and

Link Related Entity”. 153
5.24 DM+UCM2UIM09: Transforming a use case of type “Call User

Defined Operation”. 154
5.25 DM+UCM2UIM10: Transforming use case inheritance. 155
5.26 DM+UCM2UIM11: Transforming use case enabling to UIM. . . . 156
5.27 Partial default use case model generated from the DM in Fig. 4.9. 157
5.28 DM2UCM01: Transforming root navigation entity and its aggre-

gation relations to other entities to UCM elements. 159
5.29 DM2UCM02: Transforming directly accessible base entities to UCM’s

CRUD UCs. 160
5.30 DM2UCM03: Transforming directly accessible derived entities to

UCM’s CRUD UCs. 161
5.31 DM2UCM04: Transforming “to-many” relations from dependent

instances. 162
5.32 DM2UCM05: Transforming “to-many” relations from independent

instances. 163
5.33 DM2UCM06: Transforming “to-one” relations from dependent or

independent instances to Select Related UCs. 164
5.34 DM2UCM07: Transforming user defined operations to UCM. . . . 165

6.1 Proof-of-concept prototyped tool’s components. 169
6.2 Example of an RDF description and the corresponding conceptual

graph displayed with Gruff (http://www.franz.com/agraph/gruff). 173
6.3 Domain model for a Library Management System (LibrarySystem). 175
6.4 CAP and screenshot of executing prototype for Book interaction

space. 177
6.5 CAP and screenshot of executing prototype for BookCopy inter-

action space. 178
6.6 Partial set of screenshots of LibrarySystem executing prototype

obtained after process DM2UIM. 179
6.7 Screenshots of the windows generated from the two derived entities

defined in the Library System domain model. 180
6.8 Screenshots of windows showing messages after validating data

types or invariants. 181
6.9 Partial use case model (UCM) for the Library Management System.186
6.10 Screenshots of the initial window and of each actor’s main window,

showing the generated menus and menu options. 188

xii

6.11 Partial set of screenshots of the LibrarySystem executing prototype
obtained after process DM+UCM2UIM. 189

6.12 Domain model for a Conference Review System (ConferenceRe-
viewSystem). 190

6.13 Screenshots of the initial window and navitations from menu op-
tions “AuthorCollection” (on the left) and “Paper AbstractCollection”
(on the right). 191

6.14 Screenshots of the windows flow when the user selects “Edit Re-
view” in the Paper Abstract window, and then presses “Select Re-
viewer”. 192

6.15 Use case model for the Conference Review System. 193
6.16 Initial window and each actor’s main window and respective menu

options. 195
6.17 Sequences of interaction flows for an author performing use case

“List Submited Papers” (on the left), and for a PC chair perform-
ing use case “List Submited Paper Abstracts” (on-the right). . . . 196

6.18 CAP of interaction spaces derived from use case “Register New
Loan” in figure 4.16. 197

xiii

xiv

List of Tables

3.1 MB-UIDEs submodels (borrowed from [Pin00]) 44
3.2 UIM submodels’ constructs (adapted from [Pin00]) 46
3.3 Features of the surveyed MDD approaches or of the respective

generated UI. 70
3.4 Features of the surveyed non-MDD approaches or of the respective

generated UI. 71
3.5 UI generation approaches model usage 74
3.6 Main domain model elements . 76
3.7 Main model elements of use case / task model 77
3.8 UI generation MDD-approaches fine-grained comparison of the do-

main model elements . 78
3.9 UI generation MDD-approaches fine-grained comparison of the use

case model elements . 79
3.10 Feature comparison between the current approaches. 80

4.1 Domain Metamodel elements’ new invariants. 95
4.2 Proposed action language constructs. 96
4.3 Entities and operations associated (via tagged values) with the use

cases in Fig. 4.16. 108
4.4 UI Metamodel invariants. 112

5.1 DM to UIM/UIP transformation rules. 123
5.2 UCM to UIM transformation rules. 140

6.2 Entities and operations associated (via tagged values) with the use
cases in Fig. 6.9. 187

6.3 Entities and operations associated (via tagged values) with some
of the use cases in Fig. 6.15. 194

6.4 Our approach vs existing UI generation MDD-approaches fine-
grained comparison of the domain model elements. 201

6.5 Our approach vs existing UI generation MDD-approaches fine-
grained comparison of the use case model elements. 202

6.6 Feature comparison between the current approaches and the pro-
posed approach . 203

xv

xvi

Acknowledgments

Having decided to follow a Ph.D. program, after changing my career from the
enterprise to the academic world, I contacted Prof. Dr. João Pascoal Faria, whom
I already knew from joint works in the software industry. He readily agreed to be
my Ph.D. supervisor. Four years have passed, since the inception of this Ph.D.
program, and I would like to greatly thank Prof. Pascoal Faria for his guidance,
enthusiastic discussions, stimulating supervision and firm support.

I also want to thank the members of my reading committee, in alphabetical
order, Prof. Dr. Alberto Silva, from the Technical Higher Institute of the Tech-
nical University of Lisbon (IST), and Prof. Dr. Ana Paiva, from the Faculty of
Engineering of the University of Porto (FEUP).

I would also like to thank Prof. Dr. Rui da Silva Gomes, from the Poly-
technic Institute of Viana do Castelo (IPVC), where I work since 2005, for all
the encouragement in pursuing a Ph.D., and for all the efforts in facilitating the
management of my time between the Ph.D. project and the lectures at the IPVC.

I also want to thank João Saraiva and David Ferreira, PhD students at IST,
and Filipe Correia, Rui Gomes, Hugo Sereno and André Restivo, PhD students
at FEUP, for their help either in facilitating the access to MDD tools they were
working on, or by providing comments about articles I have submitted to confer-
ences.

These acknowledgements wouldn’t be complete without mentioning my fam-
ily. A very special thanks goes to my wife Estrela and to my son André, for
their support, infinite patience, and tolerance, during my countless periods of
“absence”, when I stayed “cloistered” at home working for this dissertation.

A special thanks goes also to my parents, Maria do Carmo and António
Joaquim, for always having invested in their children’s education and for having
taught me that studying and working hard is the most rewarding way of meeting
life’s goals.

Finally, I would also want to remember my grandparents, Vitor, Etelvina,
Joaquim and Esperança, because they are always popping into my mind bringing
me their teachings by making me remember past conversations and life examples.

xvii

xviii

To Estrela and André

To my parents

To the memory of my grand-parents

Chapter 1

Introduction

1.1 Context and Motivation

The development of interactive systems typically involves the separate design and
development of disparate system components by different software developers.
The user interface (UI) is the part of an interactive system through which a user
can access the system functionality. A 1992 survey [MR92] concluded that user
interface (UI) development time was about 50% of the total development time
for a software system’s project. This ratio is probably close to today’s reality as,
since then, there are better integrated software development environments that
enable the visual development of graphical user interfaces (GUI) and, on the other
side, applications’ UI is much more complex since the advent of Web applications.
There are many reasons for this UI weight in the software development process.
UI deals with the user’s intentions and the system’s responsibilities. This is
a very complex task and, for that reason, software engineers develop modeling
or prototyping activities. A prototype facilitates the communication with the
stakeholders, especially with the end users, and allows for the validation of elicited
requirements and of design decisions.

1.1.1 User interface development

Several approaches exist for user interface development. [Mar07] considers the
following types of tools for developing graphical user interfaces:

• Sketching tools - enable the graphical design of user interfaces, by mak-
ing possible to draw the UI, or by recognizing handwritten sketches (e.g.:
SILK [Lan96], DENIM [LNHL02]).

• UI builders - continue to be the most popular and productive UI de-
velopment tools. These enable the graphical construction of UI concrete

1

artifacts, by dragging and dropping UI widgets, and are usually fully inte-
grated with the development environment of the code behind the UI (e.g.:
Microsoft Visual Studio [MSDa], Sun Net Beans [Sun]).

• XML-based UI description languages - enable the description of user
interfaces in a platform independent manner (e.g.: XIML [PE01], XUL [Moz],
XAML [MSDb]), by using a user interface description language (UIDL)
based on XML.

• Model-based UI approaches - enable the development of UIs by con-
structing models composed of different sub-models, each modeling a specific
aspect of the system (e.g.: Mastermind [SSC+96]).

1.1.2 Modeling and Prototyping

Modeling is a well established way people take for dealing with complexity. A
model allows one to focus on important properties of the system being modeled
(e.g., a house, a car, a piece of software) and abstract away from unimportant
issues. Software models may capture relevant parts of the problem and solu-
tion domains and are typically used as a means for reasoning about the system
properties and for communicating with the stakeholders.

Modeling interactive computer systems involves the separate modeling of dif-
ferent system’s concerns. For each of these concerns, a different artifact, or sub-
model, is typically developed. Each sub-model describes a different viewpoint of
the model. All these viewpoints shall be consistent with each other because they
are all views of the same model, and describe the same system. When the models
serve the sole purpose of helping humans to understand the reality (the system
being modeled), some incompleteness or ambiguity may be allowed. But, if the
models are to be processed automatically, by computers, in a model transforma-
tion or a code generation process, then ambiguity or incompleteness cannot be
accepted.

An important concern to be modeled during an interactive system design
is the “core” system’s structure and functionality. That is the system domain
entities and the functionality provided by each entity class for collaborating with
other classes and fulfill system responsibilities.

The user interface is another concern that can be modelled during system
design. UI models address the translation between what the user wants and what
the system does [DFAB98]. UI models are concerned with the UI functionality
or tasks provided to the user, its structure, its presentation to the user, and its
usability.

The user interface tends to be viewed differently, depending on what commu-
nity the UI designer belongs to. UI designers that are more identified with the
Software Engineering (SE) community tend to leverage the system functional-
ity issues, and how it encapsulates system behaviour to provide to the user. UI

2

designers that are more identified with the Human-Computer Interaction (HCI)
community tend to focus on user task analysis and the way the user shall work
on the UI.

According to the HCI perspective, the development of user task analysis for
modeling the user intended tasks on the interactive system is one of the concerns
that shall be modeled. Typically, task analysis and modeling involve the devel-
opment of goal and task hierarchies and the identification of objects and actions
involved in each task [DFAB98]. Besides this task model development, a view of
the UI relevant aspects of the system core structure and functionality may also
be modeled, along with a UI presentation model, in order to complete the whole
interactive system model.

In the SE community, a common software engineering practice is to build
a UML system model, comprising a domain model and a use case model, sup-
plemented by a non-functional user interface prototype, in the early stages of
the software development process [JBR99, Pre05]. The domain model enables a
structural view of the system, and captures the main system’s domain classes,
its attributes, relations and, in some cases, its operations, through UML class
diagrams. The use case model captures the main system functionalities from
the user’s viewpoint through UML use case diagrams and accompanying textual
descriptions.

The non-functional user interface prototype is used to elicit and validate re-
quirements with end users and customers. It may help eliciting ambiguous or
complex requirements - by letting end users explain how they’d see themselves
using the system for fulfilling their goals -, in which case a throw-away prototype
is good enough, or may be used initially for helping validate the system model
with the end users - in order to “synchronize” the end users’ viewpoints of the sys-
tem with the team members’ points of view -, and may then be refined through
a number of stages to the final system, in which an evolutionary prototype is
obviously needed [Som07].

Typically, the user interface prototype is not integrated with the system
model, that is the user interface prototype cannot be used to interact with an
executable model.

The use case and domain models are typically ambiguous and incomplete, and
its consistency cannot be automatically validated, because most of the constraints
are specified in textual natural language. This kind of models is mainly used to
reason about the system being built, and for sharing information between the
project team members and other stakeholders.

If these model views are to be used in an automatic generation process, or
a model transformation process, like predicted by model-driven software devel-
opment approaches, then they shall be consistent, unambiguous (rigorous), and
complete. If a system model is completely and rigorously specified, then it may
be executed, either by simulation, if a proper virtual machine is provided, or
by generating executable code directly from the model, in one or more steps, if

3

proper code generation tools are provided.

1.1.3 Model-driven Development

Model driven development (MDD) approaches, like Domain Specific Modeling
(DSM) [KT08], or the OMG’s Model Driven Architecture (MDA) [WBP+03], are
based on the successive refinement of models and on the automatic generation of
code and other sub-models, thus requiring the unambiguous definition of models.
Model driven development is mainly focused on platform independent modeling
activities rather than programming activities. This allows software engineers to
focus on concepts of the problem domain, and the way they shall be modeled in
order to produce a software solution, rather than being distracted by technical
issues of the solution domain. Within an MDD setting, code can be automatically
generated to a great extension, dramatically reducing the most costly and error-
prone aspects of software development [Fra03].

These concepts will be further discussed in chapter 2.
Today UML-based MDD is typically used to produce only part of the solution,

namely the database creation scripts, and archetypes for the modeled classes,
relations and methods. This is partially because software engineers don’t use the
full power of UML to accomplish a complete and rigorous modeling activity. In
fact, models are often incomplete, because the modeled parts of the system are
only the ones that can be modeled diagrammatically. Another reason is that
UML itself has some difficulties in providing an easy and full integration between
different model views. This adds to the fact that almost none of the industry tools,
that permit the modeling and transformation of models within an MDD setting,
provide full support both for UML and for model transformations. Despite that,
the standard UML includes the definition of a constraint specification language,
namely OCL (Object Constraint Language), and a procedural actions language,
namely Action Semantics, that allow the unambiguous and complete modeling of
a system, but are seldom used by modelers.

Chapter 3 revises the models used in model-based UI development, and sur-
veys the state of the art tools and approaches for model-driven UI code generation.

1.2 Limitations of current approaches

The model-driven development of interactive applications demands the construc-
tion of several model views, as discussed in chapter 2, usually including a User
Interface Model (UIM). Current approaches to the UI automatic code generation
from models, surveyed in chapter 3, have the following limitations:

• In general, current approaches demand too much effort, from the modeler,
in order to build the system models required as input by those approaches.
They don’t allow a gradual approach to system modeling if one wants to

4

generate a (prototype) application to iteratively evaluate and refine the
model. Almost all models expected by one approach must be fully devel-
oped before code generation may be available.

• Most of the approaches demand the manual construction of a UI model
from scratch, in order to be able to produce a concrete user interface for an
interactive application.

• Current approaches don’t allow the generation of an executable prototype
from the available system models, that would permit to interactively val-
idate the model through a UI with the users and other stakeholders, and
refine the model in a sequence of iterative steps. Some approaches allow
the interactive modeling and animation of use case driven UML models,
but they are based on the direct animation of the models in a simulation
environment, not in the animation through a derived UI, so it may not
be used by users or other stakeholders than the modeling team members
themselves.

• Most of the existing approaches don’t allow a complete model specification
that allows thw derivation of validation features, for example by taking
advantage of the specification of class’ state constraints (invariants) or of
operations preconditions to enhance the usability of the generated UI.

• Existing approaches don’t allow a flexible use case specification, for instance
by taking advantage of the use case relations or of constructs typically found
in task models [PMM97, Pat03] (e.g.: sequencing, alternative) for detailing
use cases.

• Existing approaches don’t allow the complete definition of operations at
class level, for example by providing an action language that would enable
the definition of the semantic of operations.

• Existing approaches, even the ones that generate CRUD operations by de-
fault, don’t allow the modification of the standard CRUD behavior, for
example by enabling the definition of triggers. Triggers are operations trig-
gered by the invocation of other operation or by the holding of a given
condition. Triggers activated by an operation’s invocation are a way of
modifying or adding behavior to CRUD or other operations. By using trig-
gers it is possible to easily specify business rules that involve several classes’
operations.

1.3 Research Questions

A set of research questions has been established based on the conclusions from
the state of the art discussion (see section 1.2, further details in chapter 3). The

5

research questions formulated in order to respond to the identified problems of
current approaches, are:

1. Is it possible to obtain a UI prototype from a minimal set of model artifacts
(a rigorous domain model and a rigorous use case model), without requiring
as input a UI model?

2. Can the generated UI prototype take advantage of advanced elements in a
domain model:

• state invariants;

• operations’ pre-/post-conditions;

• operations rigorously and completely defined by the modeler, that is
operations which are completely and formally specified and for which
there is only one interpretation;

• derived attributes;

• derived classes;

• triggers or other means of modifying standard CRUD behavior.

3. Can the generated UI prototype take advantage of more flexible elements,
in a use case model:

• typical use case relations (e.g.: inclusion, extension, inheritance);

• use of constructs typically found in task models for detailing use cases.

4. Can the generated UI be used as a starting point for further refinements
towards the UI of the final application?

The answers to these questions are given in section 6.7.

1.4 Research Goal

The goal of this PhD research work is to improve current approaches to model-
driven automatic UI generation, namely UIM derivation from system non-UI
platform independent models, addressing all issues identified as flaws in the cur-
rent approaches. The derived UI model, together with the precisely constructed
early system model, shall allow the early validation of the system model and
help in requirements elicitation and validation. The UI generated can be subject
to usability and appearance improvements (without loosing the links to the un-
derlying system model), and can also be used as a basis for subsequent system
development.

Further iterations of modeling and prototype usage (with user feedback) shall
enable the refinement of the system model and its enrichment with more model

6

elements. For enhancing the preciseness of the model, OCL predicates are used to
formalize domain class invariants and domain classes operations’ preconditions.

The UI generation process takes advantage of the OCL invariants and of the
operations’ pre-conditions, defined in the domain model, and of use case model
features, to enhance the usability and behavior of the UI.

User defined operations’ body is fully specified by making use of an actions
language, in order to guarantee the executability of the generated prototype.

The developed approach is focused on business applications and form based
UIs.

We are now in position to state the thesis of this PhD research work.

Thesis:

We claim that it is possible to automatically generate a usable user interface
from early, semantically rich, system models, demanding from the modeler less
effort than the existing approaches. The generated default user interface may be
tunned by a UI designer in two points of the process: - After having generated
an abstract UI model, but before generating a concrete UI; and, after generating
a concrete UI in a XML-based UI description language, that allows for the a
posteriori customization and application of style sheets.

Furthermore, we believe that it is possible to generate different user interfaces,
depending on the degree of refinement of the information that the user includes
in the model. This will enable the generation of simple user interfaces from
simple early structural models, and complex user interfaces from semantically
richer system platform independent models. The early UIs generated from early
models, may serve for eliciting complex requirements or test the constructed
model by executing it through a UI. The UIs generated from semantically richer
models may be used for producing the final application UI.

1.5 Research Method and Techniques

Scientific research involves methods and techniques [Oli09]. Research methods
refer to the manner in which a research project is undertaken, and research tech-
niques have to do with the specific means whereby data is gathered and analysed,
and how inferences are drawn.

Research methods may be classified, according to the motivation for the re-
search, as: - Pure research; and, - Instrumentalist research. The latter may,
in turn, be divided into applied research and problem-oriented research [Oli09,
Kah01].

According to the base research theory, research methods may be classified
as [Oli09, Gre04]: - Descriptive; - Explicative; - Predictive; and, - Prescriptive.

7

And, according to the tradition in a given area of knowledge domain, research
methods may be classified as [Oli09, LM05, LM06]: - Quantitative; - Qualitative;
and, - Engineering-oriented.

The research method used in this research work may be classified as:

1. Classification depending on the motivation:

• Problem-oriented instrumentalist research: The problem is well de-
fined and the research consists in finding techniques to resolve it. It
has also characteristics of an applied research, as the research method
also starts with a technology, namely MDD, and applies it to solve the
defined problem.

2. Classification depending on the basic research theory:

• Prescriptive research: Prescribe and apply activities and standards in
specific circumstances.

3. Classification depending on the tradition in the knowledge area:

• Engineering-oriented research: Solve the stated problem making use
of technology, through models and/or requirements conceptualization,
prototyping, construction, demonstration and, finaly, an assessment
phase.

Research techniques used in this research work include [Oli09, SDJ07]:

1. State-of-art revision and analysis, also known as disciplined literature re-
view or systematic review 1;

2. Engineering-based techniques, namely the technique of construction, in-
cluding the conceptualization, design and prototyping (construction) of an
artifact/system to explicitly solve a problem or test an hypothesis.

For assessing, or validating, the research results a set of case studies have
been used and a feature-based comparison to the state-of-art approaches has
been accomplished. Another privileged means of assessment of the approach was
the submission of papers to international and/or national scientific conferences
on software engineering and on other software development related issues.

1http://www.rogerclarke.com/SOS/DLR.html

8

1.6 Summary of Contributions

In this research work the development of an approach for the model-driven au-
tomatic generation of fully functional (executable) interactive applications, from
early system models, with minimum effort, was pursued. The generated applica-
tion may serve, in a first instance, for model validation and requirements elicita-
tion and validation purposes, and in ulterior iterations, as an approximation to
the final application.

The main contributions of this Ph.D. research work are:

• the definition of a process for the automatic generation of user interfaces
(model and executable prototype) from domain and use case models, which
may be instantiated from any iterative incremental (evolutionary) software
development process, namely agile processes, and promotes a model-driven
software development methodology with minimal model construction.

• the definition of a metamodel for domain and use case models, that extends
the UML metamodel, and better enables taking profit of the model features
when generating the UIM;

• the definition of a UI metamodel that allows the platform independent
modeling of UI structure and of the bindings from UI structure to the
domain model, therefore containing all the information for generating a
fully executable prototype;

• a set of model transformation rules that allow the derivation of a default
UIM from the Domain Model (DM) and the Use Case Model (UCM).

• the development of a proof of concept tool that supports and validates the
conclusions of this research work.

The proposed approach builds on the identified limitations in current ap-
proaches, improving the state-of-art as presented in the following list. For each
one of the identified limitations, this work’s contribution to its mitigation is pre-
sented:

• Current approaches demand too much effort, from the modeler, in order to
build the system models required as input by those approaches.

– Our approach enables a gradual approximation to system modeling,
by being able to derive a default UI and an executable prototype from
the domain model alone or from the domain model and the use case
model. It is also possible to have these initial models in different levels
of abstraction or rigour, and refine them in an evolutive manner.

9

• Most of the approaches demand the manual construction of a UI model
from scratch, in order to be able to produce a concrete user interface for an
interactive application.

– Our approach is able to generate a UI model from the system’s non-UI
sub-models. This helps the modeler in creating a model for the final
application and, thereby, reduces the effort required.

• Current approaches don’t allow the generation of an executable prototype
from the available system models.

– Our approach is able to derive a default UI and an executable pro-
totype from the domain model (DM) alone, and from both the DM
and the use case model, turning possible to interactively evaluate the
system model with the end users, and to iteratively evaluate and re-
fine the model. It also allows to add rigour and model elements to
the system model, generating refined UIs and refined executable pro-
totypes that support an evolutive model-driven development with the
close participation of end users.

• Most of the existing approaches don’t take advantage of the specification
of class’ state constraints (invariants) or of operations pre-conditions to
enhance the usability of the generated UI.

– Our approach takes advantage of class invariants and of operation
pre-conditions to generate validation routines in the executable appli-
cation. This enhances the usability of the generated UI by helping the
user in entering valid data into forms, and by giving feedback identi-
fying invalid data.

• Existing approaches don’t take advantage of the use of constructs typically
found in task models (e.g.: enabling, disabling, choice) for detailing use
cases.

– Our approach looks at use cases as the typical software engineering
concept of system packaged functionality, but makes use of use case
relations and of constructs typically found in task models [PMM97,
Pat03], to detail use cases in a manner closer to the end user’s point
of view. This approximates the use case model to a task model,
which is a well known HCI technique to model user actions on the
system [DFAB98].

• Existing approaches don’t allow the definition of the semantic of operations
at class level.

10

– Our approach makes use of an Actions Language to specify the seman-
tic of operations at class level.

• Existing approaches don’t allow the definition of triggers.

– Our approach enables the definition of triggers activated by the invo-
cation of an operation and activated by the holding of a given state
condition.

The previously stated contributions were described in the following papers
presented in scientific conferences after being approved through a peer reviewing
process:

1. Cruz, A.M.R., Faria, J.P. (2007). Automatic generation of user interfaces
from domain and use case models. In Proceedings of the Sixth International
Conference on the Quality of Information and Communication Technology
(QUATIC 2007), pp 208-212, Lisboa, Portugal, September 2007, IEEE.

2. Cruz, Antonio M. (2007). Deriving Default User Interfaces From Domain
Contracts. In Novas Perspectivas em Sistemas e Tecnologias de Informação,
Proceedings of the 2nd Iberian Conference on Information Systems and
Technologies (CISTI 2007), vol. II, pp 243-253, University of Fernando
Pessoa, Porto, Portugal, June 2007.

3. Cruz, A.M.R., Faria, J.P. (2008). Automatic generation of interactive pro-
totypes for domain model validation. In Proceedings of the 3rd Interna-
tional Conference on Software Engineering and Data Technologies (ICSoft
2008), vol. SE/GSDCA/MUSE, pp 206-213, Porto, Portugal, July 2008,
INSTICC Press.

4. Cruz, A.M.R., Faria, J.P. (2009). Automatic generation of user interface
models and prototypes from domain and use case models. In Proceedings of
the 4th International Conference on Software Engineering and Data Tech-
nologies (ICSoft 2009) , vol. 1, pp 169-176, Sofia, Bulgaria, July 2009,
INSTICC Press.

5. Cruz, A.M.R., Faria, J.P. (2010). A Metamodel-based approach for auto-
matic User Interface generation. In Proceedings of the ACM/IEEE 13th In-
ternational Conference on Model Driven Engineering (Models 2010), Oslo,
Norway, October 2010 (to appear).

1.7 Overview of the dissertation

This dissertation is organized into a total of seven chapters.

11

Chapter 2

This chapter presents some concepts and definitions that are needed throughout
the dissertation. It briefly points out model-driven software development and
user interface development concepts.

Chapter 3

This chapter presents a state of the art survey on UI automatic generation, and
analyses the current approaches through the definition of a comparison frame-
work.

Chapter 4

This chapter presents a model-driven software development process, that may
be instantiated from any iterative incremental process, which is based on the
automatic generation of the final application from platform independent models.
The chapter also presents the UML-aligned metamodels used for developing the
system model, and the MOF-based metamodel for creating UI models.

Chapter 5

This chapter presents the mapping rules between metamodel elements that allow
the model-to-model transformations that enable the generation of a use case
model from a domain model and a user interface model from domain and use
case models. The rules are presented together with a running example.

Chapter 6

This chapter presents the implementation of a proof-of-concept tool and two case
studies, discusses results obtained, and assesses the satisfaction of the proposed
research goals.

Chapter 7

This chapter summarizes the results obtained, presents conclusions and points
out open issues for future research.

12

Chapter 2

Concepts and Definitions

This chapter presents some concepts and definitions that are needed throughout
the dissertation. It briefly points out model-driven software development and user
interface development concepts.

2.1 Processes and Methods

Software development is typically triggered by the need to solve a problem de-
tected at the information system’s level of an organization. This problem may
have several origins, such as satisfying an information requirement, streamline
business tasks, enhance the performance of people and machines, etc.. These
needs are usually compiled in the form of a more or less detailed requirements
list. The use of techniques to elicit and model these requirements is usually
the first stage in a software development process. A software development pro-
cess, or software development life cycle, consists of a sequence of activities and
associated results that produce a software product [Som07]. Each software de-
velopment organization or project defines its own software development process,
i.e. defines the activities for constructing a software product and the way these
are organized [Pre05, Som07, SV05].

Software development processes may be based on, or abstracted by, software
process models, such as the waterfall or evolutionary models [Som07, Pre05].

There are several software development process models, which may be com-
bined or used as starting point for a software process definition [Pre05] (e.g.
Waterfall, Spiral, Unified Process).

Modern software development processes, like the Unified Process [JBR99]
(UP), typically use an iterative and incremental approach for developing software.
This allows the software engineers to cope with the ambiguities of the human
language used for user requirements elicitation, and mitigate risks as at the end
of each iteration the users and other stakeholders are encouraged to give feedback
about the software increment that has been delivered to them. Fig. 2.1 shows
the UP core workflows, depicting their relative weight when iterating through the

13

Figure 2.1: Unified Process core workflows and their relative weight through the
iterations from requirements capture until testing (taken from [JBR99]).

defined phases.
A software engineering method is a structured approach to software devel-

opment that facilitates the production of quality software in a cost-effective
way [Som07]. Examples of software engineering methods are Yourdon/Demarco’s
Structured Analysis [You88, Dem79], the Booch Method [Boo93], Jacobson’s
OOSE [JCJv92], or Rumbaugh’s OMT [RBL+90], amongst many others. These
last three, together with other contributions, have been integrated into a unified
approach called the Unified Modeling Language (UML) [RJB99, SV05].

All methods are based on the development of system models, composed of
several artifacts (sub-models), each one giving a different point of view of the
system model.

2.2 Software Modeling

A software model is an abstraction of a software system that may already exist or
is to be built. A software model is at a higher abstraction level than the software
system itself, and so it is easier for human software designers and/or developers
to reason about the software system by using a software model.

In the requirements engineering phase of a software development process, the
user requirements that are about the system’s functionality are usually modeled
in a form that may be more or less formal and rigorous. Typical types of models
used nowadays are visual models (based on diagrams) [RJB99] and formal models

14

(based on formal methods and notations with a mathematical foundation) [Far07,
FL98, Mey06, SWM06]. Then, traditionally, by manual or computer assisted
model refinements, software engineers produce an analysis model, that maps the
problem domain, and then a design model, that models a software solution for
the previously modeled problem. Based on the design model, developers may
then code and test the designed solution [Pre05].

2.3 Design by Contract

Design by Contract (DbC), aims at developing software that is trustable, in which
people can rely on. In DbC, a contract is a means by which two elements agree in
an explicit roster of clauses for mutual obligation and benefits [SWM06, Mey06,
Art04b, Art04a].

In an object-oriented setting, components and classes act as providers and
clients of services. Through a contract, two components or classes agree in a
protocol for communicating, that is, which methods are exported (publicly visi-
ble) by the intervening classes and what type are its parameters and results. A
contract not only specifies the protocol for instances of classes or components’
communication, the syntax of the communication, but also specifies what con-
ditions have to be met in order for the communication to happen, that is, what
conditions must the caller (client) assure in order to be allowable to call a given
method (preconditions) and what conditions must the callee (provider) guarantee
that hold after the method is returned (post-conditions), i.e. the semantics of
the communication.

A contract may also specify conditions that must always hold, as invariant
conditions that are imposed to the state of a class’ instances. DbC can be viewed
as a means to develop a system’s platform independent model and, as it is ab-
stractly but formally defined, the room for ambiguity is strongly reduced, mean-
ing that it may be machine understandable and that it may be used for model
transformation activities. This way, DbC can be an approach to model driven
development.

The way of specifying contracts in UML based class models is by using OCL
(Object Constraint Language). OCL enables, amongst other things, the specifi-
cation of invariant conditions in the context of a class, and the specification of
preconditions and post-conditions in the context of a class’ operation.

2.4 Model-driven software development

2.4.1 MDD basics

Model-driven software development (MDSD), or just Model-driven development
(MDD), is a paradigm for developing software systems in which models are first

15

class citizens. In fact, model-driven software development is, like its name sug-
gests, driven by the activity of modeling a software system [WBP+03], and so
code is renegaded to a second plan.

Figure 2.2: From more abstract to more concrete models.

Figure 2.3: Model transformation conforms to defined mappings between source
and target metamodels.

MDD approaches software development by constructing models that may be
refined (transformed) through different levels of abstraction, from a platform
independent level, or a computation independent level, to a platform specific
model that is directly mapped to final code (see figure 2.2).

The first models constructed in a MDD process are platform independent
models (PIM), meaning that they model a system in a platform independent way.
A PIM can be defined in a computation independent way, meaning that besides
being platform independent it is also computation independent. A computation
independent model (CIM) does not model how to make, or compute, things, but
only what is expected to be made or computed, whilst a PIM may prescribe how
to make computations provided it is made in a platform independent way. A
CIM is typically only dependent of domain or business concerns. This way, a
CIM is independent of implementation platforms and describes the problem from

16

the point of view of the business or domain environment. It is a model of the
business to where a software system is going to be built [SV08].

A model may be composed of several model artifacts, each one modeling a
different view of the system. Platform independent models may be the only
models made by the modeler’s hand. Indeed, MDD prescribes the definition of
model-to-model (M2M) transformation processes that enable the transformation
of PIMs to other PIMs or to platform specific models (PSMs). When a CIM
exists, a default PIM may also be generated by a M2M process.

A PIM may model a software system by modeling its structural, functional,
behavioral and presentation aspects. It consists of a system specification in a
platform independent way. At any moment, a given aspect or view of the system
may be obtained from the others by a M2M transformation process that imple-
ments a set of mappings that are defined between the respective metamodels (see
figure 2.3). When the PIM is satisfactory, the next step is to transform it into a
platform specific model (PSM), which is a model of the system making use of a
given platform specific issues or features. From a PSM, code may be automati-
cally generated by using a model-to-code (M2C) transformation process, that is
a code generation process.

At any moment, a model may be subject to model-to-text (M2T) genera-
tion for documentation purposes. Acronyms M2C and M2T are typically used
interchangeably, as code can be understood as a special case of text.

MDD enables the collection of the knowledge acquired by a company through
its entire life, and its storage in the form of models. These models may, then,
be adapted and transformed as new business environments are taking place or
technological changes occur [Ins06, PB08].

M2M and M2C processes operate over models, but must be defined as func-
tions from one model type to another model type. A model type is defined
by a metamodel, which is a model that defines a model. A given model must
always conform to a defined metamodel. Figure 2.4 presents the metamodel lev-
els in OMG’s MDA. At the top level (M3), there is the Meta-Object Facility
(MOF), which is a standard language for defining metamodels. Below the meta-
metamodel level, where MOF is defined, other MOF-based metamodels may be
defined. This is the meta-model level (M2), and is where the Unified Modeling
Language (UML), and other metamodel-level languages, are defined. The MOF
conforms to itself, and it is defined according to its own definition. UML is de-
fined through MOF, and it conforms to the MOF. The model level (M1) is where
models are defined by using a metamodel defined in the above level. Each UML
model, made for some specific domain, conforms to UML, and is at metamodel
level M1. A UML model defines a domain specific language (DSL) for modeling
instances of that domain. A specific model instance is at metamodel level M0.

17

Figure 2.4: Metamodel levels defined for OMG’s MDA.

2.4.2 Modeling for MDD

When modeling for MDD, the software modeler must take into account that
models are not only for human reasoning about the system being built, but are
mainly for enabling the automation of some software process steps or activities.
For that purpose, models must be rigorous, complete and unambiguous, and
executable or, at least, translatable to a given target programming language.

Let’s illustrate this issue with an example. Figure 2.5 shows the domain classes
diagram developed for managing books, borrowers and loans in a library. A
registered library user (LibraryUser) is either a librarian or a borrower. A Book
has an ISBN code, a title and an author and there may exist several book copies
(BookCopy) of a given book, in the Library. A BookCopy has an identifying
book copy code and a status, from a BookCopyStatus enumerable. Borrowers
may make Loans of book copies. A given business constraint is that a library
user may not define his/her Password equal to his/her Login. The UML class
diagram, by itself alone, is incomplete in this point, giving room to ambiguity.

The model needs to be enriched with comments and/or constraints. A com-
mon way to do this is to use UML comment symbols with natural language, as in
figure 2.6. But, for being complete and translatable, in order to be automatically

18

Figure 2.5: UML class diagram for a LibrarySystem example.

processed, the system’s domain class model must have the UML class diagram
complemented with formal and unambiguous constraints.

Figure 2.6: Comment (informal constraint) in UML.

For that purpose, it is needed a formal language, such as the object-constraint
language (OCL), to rigorously specify the constraints. The business constraint
in figure 2.6 could, for instance, be specified in OCL like:

context LibraryUser
inv : s e l f . Login < > s e l f . Password

OCL is part of the UML standard, and allows the definition of constraints
over object models, enabling the use of design by contract (see section 2.3) within
a UML setting. Using OCL it is possible to:

19

• Define constraints over the values of the attributes of a given class’ in-
stances. The conjunction of all the constraints of a class is known as that
class’ invariant.

• Define the conditions that have to hold before invoking a class’ operation,
that is the precondition for that operation.

• Define the conditions that must hold after returning from a class’ operation,
that is the post-condition for that operation.

As seen before, a class definition, involving the specification of its attributes
and respective types, its operations and respective signatures, preconditions and
post-conditions, and the class’ invariant, is known as a class contract.

Amongst other things, OCL also makes possible to define derived attributes
and initial attribute values (default values), mutual exclusion conditions and sub-
set relations over associations, and define guard conditions over state transitions,
in state-machine diagrams.

For defining computations and actions within UML models, an action lan-
guage may be used. OMG defines a standard abstract action language for UML
models, called Action Semantics. Actions Semantics is further discussed in sec-
tion 2.5.1.

2.4.3 Model-transformation

The aforementioned model transformation processes, namely model-to-model
(M2M) and model-to-text (M2T), have different purposes [Jéz05]. Model-to-text
transformations aim the generation of code or documentation (e.g.: Java, XML,
HTML), and should be limited to syntactic level transformations (e.g.: from
a PSM to code, or from a PIM to documentation in HTML). Model-to-model
transformations aim the refinement of models, its refactoring, reverse engineer-
ing, application of patterns, generation of new views (PIM-to-PIM), PIM-to-PSM
transformations, or any model engineering activity that can be automated.

M2T techniques can be divided in [Jéz05]:

• Visitor-based approaches: traverse the internal representation of a model
(abstract syntax tree) and write code to a text stream.

• Template-based approaches: are based on the construction of templates,
which consist of the target text containing slices of meta-code to access
information from the source model.

M2M techniques comprise [Jéz05]:

• General purpose programming languages (e.g.: Java, C])

20

• Generic transformation tools (e.g.: XSLT)

• CASE tools scripting languages (e.g.: Rose)

• Dedicated Model transformation tools (e.g.: ATL & MTL (INRIA), QVTE-
clipse)

• Meta-modeling tools (e.g.: MetaCase, Kermeta)

Whatever the M2M technique, it may provide a declarative or an imperative
paradigm and language for specifying model transformations. Declarative lan-
guages describe relationships between variables in terms of functions or inference
rules, which are then inputted to an algorithm with an inference engine to pro-
duce a result. They specify what to do, or what shall be the relations between
source and target models. Imperative languages specify explicit manipulation of
the model instances, stating how to do the transformation, or how to derive a
target model from the source one [Jéz05].

Declarative and imperative paradigms may be combined into an hybrid style,
that uses a declarative precondition, used to identify elements that may trigger
an imperative transformation rule, and finally apply a declarative post-condition
to the model elements generated by the application of the rule [Jéz05].

M2M Execution Strategy

Model-transformation execution strategy is based on the invocation of transfor-
mation rules, which are units responsible for transforming a particular selection
of the source model to target model elements.

Rules may be defined through declarations, which are binary relations, with a
left-hand-side (LHS) and a right-hand-side (RHS), that relate elements in the LHS
with elements in the RHS models. Another way of defining rules is through im-
plementations, which are imperative specifications of how to create target model
elements from source model elements [Jéz05].

When applying the transformation rules, the execution engine, that depends
on the selected model-transformation technique, searches the entire source model
abstract syntax tree (or metamodel instance) looking for a match.

A pattern match occurs when elements from the LHS model are identified as
meeting the constraints (pattern) defined by a transformation rule. When this is
the case, a match triggers the creation or update of model elements in the target
model.

A transformation rule, triggered by a match, may be invoked explicitly or
implicitly. In the first case, the transformation rule is called via the invocation
of operations (Java like). In the latter case, the invocation of the transformation
is done implicitly, based on the context and rule’s signature [Jéz05].

21

The execution strategy of the transformation rules is typically structure-
driven, meaning that the first applicable rules will create the hierarchical struc-
ture of the target model, and only then rules for setting attributes and references
in the target model are applied. Other execution strategies will probably combine
different techniques, and so are called hybrid approaches [Jéz05].

2.4.4 Advantages of MDD approaches

Model-driven development approaches try to solve the following problems [WBP+03,
SV08]:

• The productivity problem – Today’s software projects productive activities
are coding and testing. For that fact, software team members spend little
time modeling or documenting systems. This becomes a problem when
the team is dismantled and other people needs to maintain the software
(e.g. fix bugs, enhance functionality). MDD tries to solve this problem by
transfering the productive activities from coding and testing to modeling,
and basing the software development process in model-to-model and model-
to-text automatic transformations. Models, being at a high abstraction
level, are easier for newcomers to understand, lowering the effort and cost
of software maintenance.

• The portability problem – Every year new technologies become popular
(e.g.: Java, C#, .Net, XML, SOAP, etc.) and, either because they solve
real existing problems, or because tool vendors stop supporting old tech-
nologies, or even just because customers want to, systems often need to
be ported to new technologies. Consequently, previous investments in the
older technologies lose value. MDD, helps maintaining the value of previous
investments by basing the production of code in automatic model-to-code
transformation processes.

• The interoperability problem – In an organization there are, typically, sev-
eral software systems that need to interoperate. MDD leverages the notion
of component from code to models, i.e. models may be component oriented,
and code generated from models must be interoperable. Other software sys-
tems also are generated from their models, so interoperability at model-level
is maintained at code-level.

• The maintenance and documentation problem – Writing documentation has
always been considered by software developers as a waste of time, because
they feel their main task is to produce code. Also, when projects get late,
what is most likely to be cut off from the project’s deliverables is documen-
tation. The lack of documentation, or its low quality, has the consequence
of complicating the software maintenance, making it more costly and taking

22

more time to accomplish. Having documentation and code desynchronized
also promotes the outdating of documentation when maintaining the code.

Solutions to this problem have involved the generation of documentation
from code, but this only solves the problem for low-level documentation.
Higher level documentation and models are rarely updated during main-
tenance. MDD tries to solve this by having code produced automatically
from models. This models can, for instance, be embedded into high-level
documentation in a literate programming fashion [Knu92], like enabled by
VdmTools for VDM specifications [FL98].

2.5 UML Metamodel

To help understand the metamodel presented in this dissertation (in chapter 4),
a brief description of relevant elements of the UML metamodel is made in this
section.

Figure 2.7: UML Metamodel top-level elements

Figures 2.7 through 2.11 show UML metamodel elements from the UML
Infrastructure Library, or Core package [OMG09a] and from the UML super-
structure [OMG09b].

23

The top UML hierarchy is Element. An element may have multiplicity, or-
der or uniqueness characteristics, in which case it is a MultiplicityElement. A
NamedElement is an Element with a name.

A TypedElement is a kind of NamedElement that represents elements with
types. A TypedElement may optionally have no type at all. Type is a Package-
ableElement, which in turn is a named element that can be owned by a package
(not represented in the figure).

A Namespace is a named element that can own other named elements. Each
named element may be owned by at most one namespace. Named elements
can be identified by name in a namespace either by being directly owned by
the namespace or by being introduced into the namespace by other means (e.g.,
importing or inheriting) [OMG09a].

A Classifier is a namespace whose members can include features. And, a
Feature is a redefinable element that declares a behavioral or structural char-
acteristic of instances of classifiers. A RedefinableElement is a named element
that can be redefined in the context of a generalization.

A Class is a classifier whose features are attributes and operations. Attributes
of a class are represented by instances of Property that are owned by the class.
Some of these attributes may represent the ends of associations (see figure 2.10).
Property is a structural feature of a classifier. An Operation is a behavioral
feature of a classifier.

A BehavioredClassifier (from the UMLsuperstructure) may have an inter-
face realization. From this point of view, a Class is a behaviored classifier, and
it is represented as so in the UMLsuperstructure (although not in the UML in-
frastructure).

Actor and UseCase are also behaviored classifiers.

Figure 2.8: UML Metamodel - Classifiers and Relationships

24

Classifiers are types. A DataType is also a classifier (see figure 2.8). A
data type may be a primitive type, which may be an Integer, Boolean, String or
UnlimitedNatural (not represented in figures), or an Enumeration.

A Relationship is an element that relates other elements. In particular, a
DirectedRelationship relates a source and a target Element.

An Association is a relationship and a classifier, which relates typed instances.
It has at least two ends represented by properties, each of which is connected to
the type of the end. More than one end of an association may have the same
type [OMG09a].

Figure 2.9: UML Metamodel - Constraints

A Constraint is a PackageableElement defining a rule that constrains one
or more Elements (see figure 2.9). The rule is specified through a boolean value
specification, by means of an OpaqueExpression or an Expression.

From figure 2.10, a Class is comprised of properties, operations and con-
straints. An operation may also be constrained through its preconditions or
post-conditions. An operation may have parameters and a result type.

In figure 2.11, one can see that a UseCase is defined over a subject, composed
of several UML elements. A use case may have extension points where Extends
from extension use cases can be plugged. An Extend, which is the metaclass of
a use case extension relation, may have a (pre)condition.

Also, a use case model may have include relations (Include instances) that
add use cases to an including use case.

25

Figure 2.10: UML Metamodel - Class model elements

Figure 2.11: UML Metamodel - Use Case model elements

A complete description of the UML metamodel may be found by combin-
ing [OMG09a] and [OMG09b].

26

2.5.1 Object Constraint Language and Action Semantics

Besides the Object Constraint Language [OMG03], referred in sections 2.3 and 2.4.2,
which allows the definition of constraints over UML models, the OMG also de-
fined the abstract syntax for an action language (referred to as Action Semantics
in [OMG09b] chapter 11 and [OMG01]).

Action Semantics (AS) defines an action language for modeling computation
within UML models. In fact, only the abstract syntax of AS is defined by the
OMG, so several different concrete languages (or surface action languages) could
be specified in a manner that all could concretely represent the same AS abstract
syntax tree.

An action is the fundamental unit of behavior specification [OMG09b]. It
takes a set of inputs and converts them into a set of outputs, though both sets
may be empty.

Figure 2.12: UML Metamodel - Basic actions

An action may modify the state of the system in which it executes. The
values that are the inputs to an action may be described by value specifications,
obtained from the output of actions that have one output (see Fig. 2.12). The

27

activity flow model supports providing inputs to actions from the outputs of other
actions.

Actions are contained in behaviors, which provide their context and may
constrain actions to determine when they execute and what inputs they have.

Basic actions include operation calls, signal sends, and direct behavior in-
vocations (CallOperationAction, SendSignalAction and CallBehaviorAction in
Fig. 2.12). An operation may be bound to activities, state machine transitions,
or other behaviors, which specify the way the operation modifies its context state

Figure 2.13: UML Metamodel - Object actions

The intermediate level describes the various primitive actions, which may be
divided into the ones that carry out a computation, and the ones that access
object memory. There is no intermediate level action that does those two things
simultaneously.

Fig. 2.13 shows some of the classes for Actions of the intermediate level that
enable object manipulation (object actions) as, for instance, creating and destroy-
ing objects. Object actions create and destroy objects, while structural feature
actions support the reading and writing of structural features. Objects, struc-
tural features, links, and variables have values that can be read and written by
structural feature actions.

A concrete action language, or a surface action language, as the UML spec-
ification refers to it, could comprise both primitive actions and the constraints
provided by behaviors, and additionally it could map higher-level constructs to
the actions (e.g.: it could define a creation operation with initialization that

28

would map to the primitive create action to create the object, and further ac-
tions to initialize attribute values and create objects for mandatory associations).
This way, modelers can work in terms of higher-level constructs as provided by
their chosen surface language or notation [OMG09b].

Other Actions are defined for accepting events, including operation calls, and
retrieving the property values of an object all at once. The StartClassifierBe-
haviorAction provides a way to indicate when the classifier behavior of a newly
created object should begin to execute.

Action Semantics is platform independent and doesn’t enforce constraints,
initialization or operation propagation, during execution. To test constraints is
controversial, because not all constraints are valid at all times.

As partially seen before, AS is able to access attribute and link values, the
self value, and is able to manipulate collections [OMG09b].

When an action violates aspects of static UML modeling that constrain run-
time behavior, the semantics is left undefined (e.g.: attempting to create an
instance of an abstract class), with the exception of the lower multiplicity bound,
which is ignored in the execution of actions and no error or undefined semantics
is implied. Otherwise, it is impossible to use actions to pass through the inter-
mediate configurations necessary to construct object configurations that satisfy
multiplicity constraints.

The UML specification [OMG09b] treats all actions as executing concurrently
unless explicitly sequenced by a flow of data or control. In addition, each action
is defined so that it is free of any context that describes how it is used, so that
data access and other computations are two separate primitive actions connected
together when required, and each action is unaware of the source or destination
of the data.

2.6 Package dependency “merge” relation

The UML2 specification [OMG09a, OMG09b] introduces a new package relation,
package merge, which enables the separation of concerns into different packages.

A package merge is a directed relationship between two packages indicating
that the contents of the two packages are to be combined [OMG09b] in a way that
the source element conceptually adds the characteristics of the target element to
its own characteristics, resulting in an element that combines the characteristics
of both.

The package merge mechanism is used when elements defined in different
packages have the same name and are intended to represent the same concept. It
enables different definitions of a given concept to be given for different purposes,
starting from a common base definition. A given base concept is extended in
increments, with each increment defined in a separate merged package [OMG09b].
It is possible to obtain a custom definition of a concept for a specific end, by

29

selecting which increments to merge. Package merge is extensively used in the
definition of the UML2 metamodel.

Figure 2.14: Package merge between packages P1, P2 and P (taken from [AD06]).

Fig. 2.14 illustrates the package merge between P1, P2 and P. The package
merge relation can also be viewed as an operation between packages. It takes two
packages as parameters and produces a new package that combines the contents
of the parameter packages involved. There is no difference between the semantics
of a model with explicit package merges, and a model in which all the merges
have been performed [OMG09b].

2.7 Task Analysis and Modeling

Task analysis is a technique used within the HCI community to analyze the way
people act when performing their jobs. Task analysis can be approached by the
following ways [DFAB98]:

Task decomposition Decomposes tasks into subtasks, taking care
with the order these are performed (eg.: HTA - Hierarchical Task
Analysis). See figure 2.15.

Knowledge-based techniques Focus on what the users need to
know about the objects and actions involved in a task, and how

30

Figure 2.15: Task hierarchy for making a cup of tea(taken from [DFAB98]).

that knowledge is organized (eg.: TAKD - Task Analysis for
Knowledge Description).

Entity-relation-based analysis Puts an emphasis on identifying
actors and objects, the relationships between them and the ac-
tions they perform (eg.: ATOM - Analysis for Task Object Mod-
eling Method).

2.7.1 ConcurTaskTrees

ConcurTaskTrees is a graphic notation for specifying task models. It has a hi-
erarchical structure, just like hierarchical task analysis, which enables reusable
task structures to be defined at both a low and a high semantic level. Concur-
TaskTrees enables the use of operators that link subtasks at the same abstraction
level, which describe a temporal relationship between tasks. This sort of aspect
was not usually formally present in task models. By allowing the modeler to use
these operators it is possible to express clearly the logical temporal relationships,
which shall be taken into account in the user interface implementation to allow
the user to perform at any time the tasks that should be active from a semantic
point of view.

The operators used by CTT to describe the temporal relationships are [PMM97,
Pat03]:

• T1 ||| T2, interleaving: the actions of tasks T1 and T2 can be performed
in any order;

31

Figure 2.16: Example of a CTT task model (taken from
http://giove.isti.cnr.it/tools/ctte/).

• T1 |[]| T2, synchronization: tasks T1 and T2 must synchronize on some
actions in order to exchange information;

• T1 >> T2, enabling: when task T1 is terminated, task T2 is activated;

• T1 []>> T2, enabling with information passing: besides activating T2, the
termination of T1 yelds some value to T2;

• T1 [> T2, deactivation: when one action from task T2 occurs, T1 is deac-
tivated;

• T1?, iteration: the task is iterative;

• T1(n), finite iteration: the number of times the task is performed is speci-
fied;

• [T1], optional task: task execution is not mandatory;

• T1 recursion: task T1 may include itself in the task specification.

An example of a task model using the CTT notation is shown in figure 2.16.

2.8 User Interface Development

There are several user interface (UI) development methodologies and tools, like:

• WYSIWYG (What You See Is What You Get) oriented UI builders and
IDEs (e.g. Microsoft Visual Studio, Eclipse, NetBeans, NextStep);

32

• markup languages (e.g. HTML and XML-based UI description languages,
such as UIML, XUL and XAML); or,

• model-based user interface development environments - MB-UIDE - (e.g.
HUMANOID, UIDE, MECANO, Teallach, etc.) [Pin00, Pin02, Pai06].

Interaction between the user and the system takes place on the UI. The in-
terface style affects the nature of this dialogue. Common interface styles in-
clude [DFAB98]:

1. Command line interfaces (CLI) - Provide a way to express direct instruc-
tions to the computer, or an application. CLIs can be very powerful and
flexible for experienced users, but are usually difficult to learn and use by
non-experienced users.

2. Natural language - This kind of UI style can, for now, be used only in re-
stricted domains, and with a restricted number of allowed phrases, because
of the natural ambiguity of natural languages.

3. Menu-driven interfaces - Offer a set of options available to the user, that
are selected using the mouse, or numeric or alphabetic keys. Menus are
hierarchically ordered. This kind of systems can be purely text based or
can be a restricted form of a full WIMP interface style.

4. Question/answer and query dialog - This interface styles offer a simple
mechanism for providing input to a domain specific application. The user
is asked a series of questions, being the dialog driven by the answer to the
previous questions.

5. Form-fills and spreadsheets - Form-filling UI style is primarily used for
data-entry applications. Business applications, typically use this kind of
interface, because it resembles traditional paper forms, and are usually easy
to learn and use. Spreadsheets are a variation of a form filling system, where
a grid of cells is provided for entering values and formulae, and the system
is responsible for maintaining the consistency of the values displayed.

6. Windows, Icons, Menus, and Pointers (WIMP) - This UI style is also simply
known by windowing systems or window-based systems. This is currently
the most common interface style for interactive applications.

7. Point-and-click - This interface style overlaps some of WIMP aspects, but
it is simpler and is not tied to mouse-based interfaces, being extensively
used in touchscreen applications. It is often combined with a menu-driven
interface.

33

8. 3D interfaces - This style spans from simple WIMP applications with 3D
appearance elements to complex 3D workspaces or virtual reality systems.

A given UI can combine one or more of the referred interface styles. What
is commonly called a Graphical User Interface (GUI) is an UI that mixes the
WIMP interface style with any other.

UI is also affected by dialog design and layout. The way information is pre-
sented to the user and the screen layout for entering information have important
effects on system usability.

User Interface Models (UIM) can be used to model a user interface of a given
system. Dix et al. identify the following set of UI model concerns [DFAB98]:

• The definition of allowed system UI states and transitions

• The specification of allowed sequences of user events and system events on
the UI

• The establishment of a link between the events on the UI and the core
system’s functionality

• How is the information (abstractly) presented to the user

• What is the concrete aspect of that presentation

The concerns identified above are addressed by disparate UIM composing
models, or sub-models or model views.

Martikainen [Mar02] defines a user interface model (UIM) as “a declarative
specification of a user interface (UI), including its appearance, the connections
between its elements or how it interacts with the underlying application func-
tionality”. A UI model represents all the relevant aspects of a user interface in
some type of interface modeling language or notation. UI models are generally
task-oriented and use high abstraction levels to achieve device independence and
UI description reuse [PE99, Mar02].

Several approaches for systematizing the gap bridging between user tasks,
or usage scenarios, and the application (business-logic) model are addressed
by [CWNL03, Con95, Con06a, EKK06, KLM03, MAT01].

Just like in any interactive system, in Window-based systems (Web-based
included), one can distinguish three levels of specification detail [DFAB98]:

Lexical level - The allowed “words” (interaction objects) for the
interaction.

Syntactic level - The layout of abstract interaction objects (AIOs)
and the order of events allowed.

Semantic level - The meaning of each event or interface state tran-
sition and how it maps to the core system’s functionality.

34

Ergonomics (or Human-Factors) in HCI are concerned with usability issues
in UI modeling. Usability issues are concentrated on the lexical and partialy the
syntactic level of the UI model. Typically, those issues are addressed by the UI
concrete presentation model and the task model. Those models are components
of the whole UI model. For that reason, models that compose the whole UI model
are sometimes called ‘component models’, submodels or model views.

Dix et al. identifies three principles of usability that may be applied during
the design of a system’s UI [DFAB98]:

Learnability - “the ease with which new users can begin effective
interaction and achieve maximal performance.”

Flexibility - “the multiplicity of ways the user and system exchange
information.”

Robustness - “The level of support provided to the user in deter-
mining successful achievement and assessment of goals.”

2.8.1 Canonical Abstract Prototypes

Canonical Abstract Prototypes (CAP) are an approach and notation, proposed
by L. Constantine [CL99, Con03], for capturing the presentation aspects of inter-
active systems. Canonical Abstract Prototypes capture only the abstract presen-
tation aspects of a user interface, by making use of abstract interaction objects
(AIO), which are UI elements that don’t have a unique concrete representation.

CAP are based on 3 extensible generic universal symbols [CN04, Con03]:

1. Material (or generic container): represents information, data or other ob-
jects shown to the user during a task.

2. Tool (or generic action/operation): represents UI objects that can be used
to manipulate, control or transform materials.

3. Hybrid (or active material): represents UI components with characteristics
both from materials and tools like, for instance, editable fields or lists of
selectable items.

35

Figure 2.17: The basic symbols and its extensions, for Canonical Abstract Pro-
totypes (adapted from [Con03]).

Fig. 2.17 shows the main symbols of the canonical abstract notation, that
allow the development of UI abstract presentation models, like the one shown if
Fig. 2.18. The figure shows a prototype of a browsable selectable list of messages
and the output of detailed information about the selected list item. The symbol
>>> represents repetition and, in the example, it means that the aligned elements
in the Inbox selectable collection are repeated in every line.

Figure 2.18: Example of a CAP for a Message viewer (taken from
http://www.mcs.vuw.ac.nz/courses/comp311/2008t2/comp311cap2008.pdf).

36

2.8.2 XML-based User Interface Description Languages

Some XML-based user interface descriptions provide an abstraction level that is
implementation independent, until a concrete presentation is needed. As XML-
based approaches for UI description, one can consider, amongst others [Fer05,
APB+99]:

• XIML (eXtensible Interface Markup Language);

• XUL (XML-based User-interface Language);

• UIML (User Interface Markup Language), and

• XAML (eXtensible Application Markup Language).

XML-based declarative UI description languages also use several components,
each capturing a different view from the UI or the application presentation layer.
Typicall components in XML-based languages are:

Content and Layout - Description of the contents of the user inter-
face, without referencing any concrete presentation object, that
is an abstract presentation model.

Concrete Presentation - Relation from abstract content elements
to concrete presentation objects.

XIML - eXtensible Interface Markup Language

XIML aims at providing “a standard mechanism for applications and tools to
interchange interaction data and to inter-operate with integrated user-interface
engineering processes, from design, to operation, to evaluation...”1. This XML-
based UI language allows for the description of a graphical user interface in several
interface components. There are five basic interface components, three of which
are contextual and abstract [Fer05]:

task - captures a given user task suported by the GUI.

domain - captures the application domain into a hierarchy of data
objects and classes.

user - captures the user profiles into a hierarchy.

The other two are implementation specific [Fer05]:

dialog - defines the allowed interaction actions and the possible nav-
igational flow between those actions.

presentation - defines a set of concrete interaction objects (widgets)
to be related to the abstract domain components.

1XIML Forum: http://www.ximl.org

37

XUL - XML-based User-interface Language

XUL (pronounced zool) has been developed for the Mozilla project2 and is di-
rectly supported by the Firefox browser. A XUL UI description file also allows a
separation between the abstract structure of the interface and its concrete pre-
sentation elements [Fer05].

UIML - User Interface Markup Language

UIML has been proposed by Harmonia3 and is being standardized by OASIS4

(Organization for the Advancement of Structured Information Standards). This
XML-based UI description language follows the principle “one application, mul-
tiple interfaces”, and aims at supporting the development of “device-independent
and user interface metaphor independent” applications.

The UIML description of an interface is completely independent of any specific
platform. UIML is based on XML and is itself a meta-language, since it almost
has no pre-defined tags, and the ones that it has are just for describing the abstract
structure of the interface, but not the concrete interaction objects [Fer05, Ope04,
PE01].

For rendering a UIML GUI description, it is necessary to translate the UIML
“model” to an existing programming language or to a renderable UI description
language (e.g. XUL, XAML).

XAML - eXtensible Application Markup Language

XAML (pronounced zamel) is Microsoft’s new XML-based presentation layer
declarative markup language. It separates “the UI definition from the run-time
logic by using code-behind files, joined to the markup through partial class defi-
nitions” [MSDb].

2.9 Summary

This chapter surveyed a number of concepts and definitions needed throughout
the rest of the document. In particular, the concepts of software process and soft-
ware engineering method have been distinguished. Furthermore, the concepts of
software model and Design by Contract have been addressed, and the purpose
of software modeling in the scope of model-driven development has been clari-
fied. Also the types of models in MDD, and the model transformation processes,
techniques and strategies have been broached.

2http://www.mozilla.org
3http://www.harmonia.com and http://www.uiml.org
4http://www.oasis-open.org/

38

In addition, topics required for the definition of the metamodels presented
in chapter 4 were discussed, namely the relevant parts of the UML metamodel,
including OCL and action semantics, task modeling techniques and a notation for
representing abstract presentation models. Besides that, the package dependency
“merge” relation has been explained.

Finally, a short survey of XML-based UI description languages has been ac-
complished.

39

40

Chapter 3

State of the Art

This chapter presents a state of the art survey on UI automatic generation, and
analyses the current approaches through the definition of a comparison framework.

3.1 Introduction

This chapter briefly surveys the most representative approaches for user interface
generation from system models and compares and analyses them from a model-
driven development perspective, according to a set of described properties. Some
non-model-driven approaches are also surveyed for discussing their simplicity and
ease of use and comparing them to the other approaches.

As we saw earlier, typical methodologies for modeling interactive applications
use disparate views, or sub-models, to capture different aspects of the system
(domain or application model, task model, dialogue model, abstract and concrete
presentation models) [Pin00, Nun01].

Most of the existing approaches to UI generation demand the specification of a
UI model. Typical models for the model-based development of interactive systems
are identified in section 3.2 and were surveyed by Pinheiro da Silva [Pin00].

Some research has been made in order to model interactive systems using UML
diagrams, but it also involves the full specification of the user interface [Pin02].

As mentioned in chapter 1, a typical approach to software engineering us-
ing UML starts by developing a sketch of the core system model by producing
a structural or domain model, which models the system’s domain classes, its
attributes, relations and methods, and a functional or use case model, which
models the user’s intended operations to be accomplished on the system through
its user interface. An important achievement would be to be able to generate a
UI model from the domain and use case models, in such a way that from this set
of models an interactive application prototype could be automatically generated.
This way, the generated application or application prototype would be completely
consistent with the system models and would be specially suited to be used for
validating the system model with the end users, and for further refinements until

41

a final application is obtained.
User interface generation approaches may be categorized as follows:

• Generation of final UI executable code from a model view of the user inter-
face taken from the system model;

• Generation of UI abstract model from the structural or behavioral views
of the system model. To be able to execute these user interfaces, the UI
abstract model must be subject to a model to code transformation, or it
must be interpreted in an appropriate simulation environment.

Other possible categorizations of UI generation approaches, are code genera-
tion vs simulation environment, just UI generation or prototyping vs completely
functional interactive application generation, or model-driven generation process
vs non-model-driven generation process.

We intend as model-driven an approach that comprises the definition of mod-
els, conforming to pre-existing or constructed metamodels, model-to-model and
model-to-code transformation processes. This way, a model-based approach may
or not be model-driven, depending on the existence of those aspects.

The remaining of this chapter is organized as follows:

• In the next section, model-based user interface environments, and the kinds
of models that are typically used in those environments, will be addressed.

• In section 3.3, model-based UI generation approaches are surveyed, dis-
tinguishing the approaches that follow a model-driven paradigm from the
other approaches.

• In section 3.4, other UI generation approaches are addressed.

• Analysis and discussion of the surveyed approaches is taken care of in sec-
tion 3.5, and a list of enhancement opportunities, identified in the surveyed
approaches, is presented.

• Finally, section 3.6 concludes the chapter.

3.2 Model-based user interface development

In this section, the models used for model-based user interface development will
be surveyed. Some of those models may be used in a model-driven user interface
development process, as long as they are complete and rigorous.

Model-based development techniques of user interfaces construct a more or
less declarative User Interface Model (UIM) that is typically composed of various
sub-models, or model views. This UIM captures the relevant aspects of the UI and
will hopefully serve for obtaining an executable or, at least, directly compilable,

42

Figure 3.1: Model-driven development of user interfaces

concrete user interface. Nevertheless, there are few cases of automatic generation
of User Interface implementations from UIMs [Pin00].

UIMs are typically developed using a model-based user interface develop-
ment environment (MB-UIDE). Different MB-UIDEs use different kinds of mod-
els specified with different kinds of modeling languages.

Typically, a model-based UI development process begins with the construc-
tion of a task model and sometimes a dialogue model. Afterwards, an abstract
interaction model (or abstract presentation model) is built and at the end of
the process a concrete interaction model (or concrete presentation model) is con-
structed. All these submodels form the User Interface Model (UIM), that is a view
or submodel of the system model. Figure 3.1 shows this relation between sub-
models. The construction of these sub-models may use a diagrammatic notation,
such as State Transition Networks, Petri Nets or UML, or a textual specification,
such as grammar-based notations or formal methods languages. It can also use a
XML-based UI description language to create declarative descriptions of the UI.

There are several kinds of MB-UIDEs and each may use a different notation
for UI modeling or even different sub-models for specifying the UIM, or for cap-
turing different characteristics of the UI. Pinheiro da Silva [Pin00, Pin02] defines
a framework for describing MB-UIDEs, and uses the framework for analyzing 14
MB-UIDEs. Pinheiro da Silva also addresses the ability of UML for modeling the
UI of interactive systems [PP01].

User Interface Models provide a description of the UI at different levels of
abstraction. Platform dependent user interface models make use of widgets and
functionality that may be specific to one given platform. Platform independent
declarative User Interface Models provide an abstract description of the UI, that
can be reused and can be refined to more concrete (platform dependent) models.
UIMs can, then, be found at different levels of abstraction during the UI design
process. A UIM provides an infrastructure for allowing automated tasks in the

43

UI design and implementation processes.
Looking at these user interface models from a model-driven development per-

spective (fig. 3.1) one can consider application models and task models to be plat-
form independent models (P.I.M.). Dialogue models and abstract presentation
models are system design models in a platform independent manner. Concrete
presentation models are platform specific models that may be subject to direct
code generation.

Application Task-Dialogue Presentation Model
MB-UIDE Model Model Abstract Concrete

ADEPT Problem Domain Task Model Abstract UI
Model

Prototype Inter-
face

AME Application Do-
main

OOD OOA Prototype

FUSE Problem Domain
Model

Task Model Logical UI UI

HUMANOID Application
Semantics Design

Manipulation,
Sequencing,
Action side
effects

Presentation Presentation

ITS Data Pool Control Spec-
ification in
Dialog

Frame Specifica-
tion in Dialog

Style Specifica-
tion

MASTERMIND Application
Model

Task Model (none) Presentation
Model

MECANO Domain Model User Task Model
/ Dialog Model

(none) Presentation
Model

TADEUS Problem Domain
Model

Task Model
/ Navigation
Dialogue

Processing
Dialogue

Processing
Dialogue

TEALLACH Domain Model Task Model Presentation
Model

Presentation
Model

TRIDENT Application
Model

Task Model (not surveyed) Presentation
Model

Table 3.1: MB-UIDEs submodels (borrowed from [Pin00])

As it was previously written, UIMs are declarative models composed of one
or more sub-models, each capturing a relevant part of the system. In his survey,
Pinheiro da Silva shows which sub-models compose a UIM within the studied
MB-UIDEs (see table 3.1).

Typical UIM sub-models, identified by Pinheiro da Silva [Pin00] and Traet-
teberg [Træ02], are:

Abstract Presentation Model - describes the structure of the vi-
sual parts of the user interface, in terms of Abstract Interaction
Objects (AIO).

44

Concrete Presentation Model - describes in detail the visual parts
of the user interface, in terms of Concrete Interaction Objects
(CIO) or widgets.

Task Model - describes the tasks and relations between tasks that
users may perform when interacting with the application.

Dialogue Model - describes the actions or events that the user is
allowed to perform on the UI and the events that the system can
perform at the UI when responding to the user.

Application Model - describes the properties of the application rel-
evant to the UI, typically its static structure and behavior inter-
face.

In his survey, Pinheiro da Silva considers Task and Dialogue models as be-
longing to a same class of models that address task decomposability until a degree
that allows the mapping of user tasks to events on the system.

Some MB-UIDEs, specially those concerning user adaptive UIs, also take ad-
vantage of a User or Usage Model. Others, specially those concerning platform
adaptive UIs or ubiquitous applications, may take advantage of Platform or En-
vironment models [Træ02]:

User Model/Usage Model - describe characteristics, abilities and
preferences of end-users when interacting to the system.

Platform or Environment Models - describe the characteristics
of the device and of the cultural context of the interaction.

Each UIM submodel has its own constructs. Table 3.2 shows the constructs
identified by Pinheiro da Silva for each kind of model view in the MB-UIDEs
surveyed.

Model-based UI development processes are typically iterative and incremental,
consisting of a sequence of UIM refinement steps towards a concrete UI imple-
mentation for some real or virtual platform. This is in line with MDA objectives
of model transformation and traceability from the more abstract (platform inde-
pendent) models to the more concrete (platform specific) models.

MB-UIDEs usually provide a graphical environment that aids in the con-
struction of the UIM. Some MB-UIDEs provide a graphical editor for editting
diagrammatic model views, or submodels. Others provide an editor for textual
UIMs, though.

Pinheiro da Silva [Pin02] divides the UI development process into UI design
process and UI implementation process. Because the design process is typically
incremental, MB-UIDEs usually provide means for refining UIM, thus supporting
models at different levels of abstraction. Some MB-UIDEs also provide a design

45

Submodel Constructor Function

Class An object type defined in terms of attributes, opera-
tions and relationships.

Application
Model

Attribute A property of the thing modelled by the objects of a
class.

Operation A service provided by the objects of a class.

Relationship A “connection” among classes.

Task An activity that changes the state of specific objects,
leading to the achievement of a goal. Tasks can be
defined at different levels of abstraction allowing the
definition of sub-tasks.

Goal A state to be achieved by the execution of a task.
Task-Dialogue

Model
Action A concrete task that can be executed.

Sequencing The temporal order that sub-tasks and actions must
respect for carrying out the related high-level tasks.

Task pre-
condition

Conditions in terms of object states that must be re-
spected before the execution of a task or an action.

Task post-
condition

Conditions in terms of object states that must be re-
spected after the execution of a task or an action.

View A collection of Abstract Interaction Objects (AIOs)
logically grouped to deal with the inputs and outputs
of a task.

Abstract
Presentation Model

AIO A user interface object without any graphical repre-
sentation and independent of any environment.

Window A visible and manipulable representation of a view.
Concrete

Presentation Model
CIO A visible and manipulable user interface object that

can be used to input/output information related to
user’s interactive tasks.

Layout Information for manual placement of CIOs in win-
dows, or an algorithm that provides the automatic
placement of CIOs in windows.

Table 3.2: UIM submodels’ constructs (adapted from [Pin00])

assistant that checks the model according to a set of design guidelines. MB-
UIDEs that support UI implementation, allow for the refinement of the model
until a concrete UI model is obtained. Sometimes, a UI implementation can be
generated. The support for automatic generation of code is, indeed, one of the
main advantages of model driven development.

The use of a User Interface Management System (UIMS) is one of the solu-
tions for running concrete UI models. Another solution is the generation of final
compilable code from the UI model. Betts et al.[BBF+87] presents a summary
of the characteristics that shoud be found in a UIMS system and a contribution
to the development of a taxonomy of a UIMS. These characteristics are, from
the point of view of the developer, the support for consistent user/application
dialogues definition, the imposition of external control on the application provid-

46

ing support for a taillored and extensible presentation of the applications’ output
and the inclusion of an interactive component that supports the interaction be-
tween the application and a range, from novice to experts, of end users. From
the point of view of the end users, the primary goal of a UIMS is to support the
easy and effective use of an application, contributing for a consistent UI across
applications, multiple levels of help and trainning support, ease of extensibility
of the application’s UI and the end user UI tailloring cappability.

It is also addressed in [BBF+87] how a UIMS could support each of the char-
acteristics it should have.

Figure 3.2: The user interface design in a MB-UIDE (borrowed from [Pin00])

In [Pin00] an approach to UI design automation is sketched in two steps
(see figure 3.2). First, an abstract design tool generates an abstract presentation
model from the application model and/or the task-dialogue model. In this process
a design knowledge database may be used to supply information that can control
the options that have to be made. Then, a concrete design tool generates a
concrete presentation model from the abstract one, in which process a design
guideline database may be used.

In what respects to the UI implementation process, Pinheiro da Silva [Pin00]
sketches three approaches to generating and executing a user interface from a
UIM, represented in figure 3.3. In the first approach (figure 3.3a), the MB-
UIDE generates the UI source code that will be used for the UI layer of the
application. In the second approach (figure 3.3b), the MB-UIDE generates a
concrete UI specification that is animated by the UIMS engine. In the third
approach (figure 3.3c), the MB-UIDE embbeds a UIMS, and executes the UI
itself, from the concrete model it already has. In the first and second cases, one
can talk about a UI generator. In the first case is generated a UI targeting a
chosen programming language, while in the second case, a UIMS input concrete
model is generated. In the second and third cases, one can talk about a UI
runtime system.

47

Figure 3.3: The user interface implementation in a MB-UIDE (borrowed
from [Pin00])

3.3 User interface automatic generation

This section presents model-based UI generation approaches, distinguishing the
approaches that follow a model-driven philosophy from the ones that don’t.

3.3.1 The XIS approach

The most recent version of the XIS-UML Profile and approach [dSSSM07] has
been developed within the ProjectIT (PIT) research project [SV08, Sil04], and is
based on a prior version [Sil03] of XIS.

48

Figure 3.4: Xis domain model, edited in ProjectIT-Studio, for the LibrarySystem
example.

ProjectIT is a research project from INESC-ID that aims the development of
software tools for supporting model-driven software development processes. Two
complementary tools have been developed within ProjectIT:

• ProjectIT-Enterprise, which is an integrated environment for CSCW
(computer-supported cooperative work) [SV08].

• ProjectIT-Studio, which is a model-driven integrated development envi-
ronment [SV08, SVS+06, SSFV07] that turns possible to approach a new
software system’s development by specifying user requirements using a re-
quirements specification language (PIT-RSL). Then, using the XIS/UML
profile [Sil03, dSSSM07], a UML model of the system may be constructed.
Finally, using a template specification language (PIT-TSL), a set of scripts
defining model to code (M2C) transformations may be written, in order to
enable code generation from the specified XIS/UML model [SV08].

The research made towards the XIS approach lead to a multi-viewed organi-
zation of the concerns that shall be modeled in a software system. A XIS model
shall have the following complimentary views [dSSSM07]:

• Entities View, which is in turn subdivided into a Domain View and a
Business Entities View. The Domain View models the domain entities

49

by using a UML class model with classes (stereotyped with �XisEntity�),
associations and attributes (stereotyped with �XisEntityAttribute�), and
enumerations (classes stereotyped with �XisEnumeration� that extensively
list a collection of possible values, enumeration attributes, stereotyped with
�XisEnumerationValue�). Figure 3.4 shows an example of a Xis domain
model edited in ProjectIT-Studio.

The Business Entities View is used to group together a set of domain en-
tities (�XisEntity�), in a coarser granularity entity (�XisBusinessEntity�)
that shall be manipulated in the context of a use case. A business entity
may be specified by designating a master entity and a sequence of detail
entities. A business entity may also be specified by defining an aggregation
of other business entities.

• Use-Cases View, subdivided in the Actors View, which defines the hi-
erarchy of actors that can perform operations on the system, and the Use-
Cases View, which relates the actors with the use cases that each actor
can perform. The UseCases View also defines the relationship between each
use case (�XisUseCase�) and the business entities upon which the actors
related to that use case can perform operations (�XisOperatesOnAssocia-
tion�). The �XisOperatesOnAssociation� stereotype has a tagged-value,
operations, that enables the definition of the set of operations that can
be performed in the business entity - subset of the operations listed in the
�XisBusinessMaster� association.

• User-Interfaces View, which defines an user interface abstract presen-
tation model, and is subdivided in the Interaction Spaces View, which
defines the abstract screens that serve as interface between the users and
the system, and the Navigation Space View, which specifies the possible
navigation flows between the defined interaction spaces.

A XIS model may, then, be inputted to a model to code (M2C) generation
process that, in ProjectIT, is made available through templates. Figure 3.5 shows
the architecture of the projectIT approach to MDD, and figure 3.6 shows the
multi-viewed organization of XIS models.

The smart approach illustrated in figure 3.6, in which the UI view will be
automatically obtained from the Entities and the Use-Cases views, is not yet
made available in the ProjectIT/Studio.

ProjectIT/Studio allows the definition of model-to-text (M2T) or M2C scripts
that transform XIS stereotyped models into documents or code files that may be
targeted to any architectural layer of the final application (eg.: Data layer, Busi-
ness Logic Layer, User Interface Layer). The XIS UML profile was thought, in
its first version [Sil03], to support a Model-View-Controller (MVC) architectural
pattern. The most recent version of XIS is somewhat closer to the Boundary-
Entity-Control (BEC) architectural pattern [dSSSM07], where entities are the

50

Figure 3.5: The ProjectIT tool support to MDD (taken from http://isg.inesc-
id.pt/alb/ProjectIT-Studio@79.aspx).

information that is to be persisted in the system (Entity), business entities aggre-
gate entities in directly manipulatable objects, operated by actors in the context
of a use case (Control), and Interaction Spaces, through which the actors interact
with the system within a use case, have the role of a Boundary.

All model views in XIS are platform independent, and M2C scripts operate
on XIS models. XIS and the ProjectIT tools allow the generation of models
from models - that is the case of the User-Interfaces View in the smart approach,
although it isn’t available yet in the ProjectIT-Studio tool. The XIS profile
doesn’t support OCL nor the full specification of operations – it only allows the
declaration of operations’ name, not their signature –, nor semantics (body or
pre-/post-conditions) [dSSdS08].

3.3.2 The Wisdom approach

The Wisdom method [Nun01] is a user-centered object-oriented (UC-OO) method
for the model-based development of interactive applications. In [Nun01] Jardim
Nunes proposes the Wisdom Lightweight software engineering method with three
major components:

• The Wisdom Process - A user-centered evolutionary and rapid prototyping
process model, specifically adapted for small teams of developers.

51

Figure 3.6: The XIS design approaches to interactive systems genera-
tion [dSSSM07].

• The Wisdom model architecture - A set of UML models that support the
different process development phases involved in the Wisdom process.

• The Wisdom notation - A set of modeling notations based on a subset of the
UML and a UML profile that extends UML for better modeling interactive
systems.

The Wisdom method is driven by essential use cases and task flows. Essential
use cases, as proposed by Constantine and Lockwood [CL99, Con06a, Con06b,
CWNL03, Con95], differ from the standard UML use cases [RJB99] in the sense
that the former corresponds to top-level tasks, that is goals or external tasks that
the user wishes to achieve, and the latter corresponds to a pack of functionality
that the system provides to its users [RJB99, Nun01].

In Wisdom, each essential use case is detailed using activity diagrams. To
avoid a scenario explosion in complex use-cases, activity diagrams with control
conditions (e.g.: if) are used to model all scenarios of each essential use case in
only one activity diagram.

Essential use-case diagrams, with each use case detailed by an activity dia-
gram, forms the use case model. The use case model, together with the domain
model and the user role model, shall be developed in the requirements process
phase (see figure 3.7).

52

Figure 3.7: The Wisdom model architecture [Nun01].

In the analysis phase, an analysis model models the internal system archi-
tecture, stating how different analysis classes participate in the realization of
different use cases. Analysis classes may be stereotyped as �Boundary�, �En-
tity� or �Control�. Wisdom’s boundary analysis classes model the interaction of
the system to non-human actors (external systems). An interaction model is also
built in this phase. This model structures the user interface, by identifying the
different elements that compose the dialogue and presentation structure of the
system, and how they relate to the domain specific information in the functional
core [Nun01]. An interaction model models the UI architecture design, by us-
ing variants of the previous analysis stereotypes, namely �Entity�, �Task� and
�InteractionSpace�. Wisdom’s interaction spaces model the interaction of the
system to human actors. The analysis model and the interaction model form the
Wisdom UI architecture model [Nun01].

In the design phase, a design model may refine some issues of the analysis
model, and a dialogue and a presentation models are built. The dialogue model
specifies the dialogue structure of the interactive application and the presentation
model defines the physical realization of the perceivable part of the interactive
system, namely the defined interaction spaces [Nun01].

Although not having an automatic generation tool, yet, Wisdom model devel-
opment may be accomplished using WinSketch1, that is a tool for constructing
and syntactically validate the set of model views that form the interactive appli-
cation model, according to Wisdom.

This approach could be framed into a model-driven software development
process, in which the final system UI would be generated from the models.

1http://apus.uma.pt/ winsketch

53

Figure 3.8: The OO-Method approach (adpated from [PIP+97, PI03]).

3.3.3 Olivanova and the OO-Method

Olivanova2 is a suite of commercial tools for the production of business appli-
cations, based on three research academic and industrial works [PMI04, Mol04,
PIP+97]:

OASIS is a formal textual language to rigorously specify object-oriented systems
in a declarative manner. OASIS specifications are directly executable in
declarative environments similar to Prolog.

OO-Method is an object-oriented method that combines diagrammatic model-
ing techniques (like UML) with the OASIS specifications.

Just-UI is a pattern language extension to the OO-Method that allows the
specification of UI models. Just-UI also defines the mappings from abstract
UI specifications to concrete implementations for different devices.

The OO-Method approach (see figure 3.8) aims at producing a formal spec-
ification of a software system in an executable/formal/object-oriented language
named OASIS. But, in order to avoid the complexity traditionally associated to
the use of formal methods, the OO-Method only asks for the software engineer to
graphically model a system at a conceptual level - the conceptual model-, which
is then translated, through a set of modeling patterns provided by the method,
to an OASIS specification - the execution model.

2http://www.care-t.com

54

The OO-Method starts, then, with the construction of a conceptual model,
which is in turn composed of the following sub-models [PIP+97, PI03]:

Figure 3.9: Olivanova object model editor (taken from http://www.care-t.com).

• Object Model. - Is represented through a UML class diagram, captur-
ing domain classes and classes associated to user roles. Figure 3.9 shows
Olivanova object model editor. For each class, the object model captures
information about its attributes, services (operations triggered by message
events with the same name), derived attributes, constraints and relation-
ships (aggregation and inheritance). Inheritance relations may be perma-
nent or temporary. The former case is the normal semantics of object-
oriented inheritance; in the latter, it corresponds to a role that is tem-
porarily played by one class, and may be activated/de-activated by services
or conditions.

A class service (operation) may be private or shared (public), and creation
and destruction services are marked, in order to infer their behavior.

• Dynamic Model. - Is used to specify valid object lifecycles and inter-
objectual interaction. To specify valid object lifecycles, a state transition
diagram is used per class. Each state transition diagram represents the
valid states and the valid transitions between states of objects of a class.
Transitions may have attached control (guard) or triggering conditions.

Object interactions are represented by a (non-UML) interaction diagram for
the whole system. Two types of interactions are possible: Triggers, which
are services of objects that are automatically activated when a condition

55

is satisfied; and, Global interactions, which are transactions involving ser-
vices of different objects. With global interactions it is possible to declare
interobjectual transactions.

• Functional Model. - The functional model captures the semantics at-
tached to any change of state, as a consequence of a service occurrence. For
that, it is declaratively specified how each service changes the object state
depending on the arguments of the involved service and the current object
state. Nevertheless, for not requiring a formal methods knowledge by the
software engineer, the OO-Method provides a model where the software
engineer only has to categorize every attribute among a predefined set of
three categories and introduce the relevant information depending on the
corresponding selected category.

There are three types of attributes [PIP+97, PI03]:

– Push-pop attributes - Attributes whose value is increased or de-
creased, by a given value, by relevant services. Services that reset
the attribute for a given value may also exist.

– State-independent attributes - Its value depends only on the latest
action that has occurred.

– Discrete-domain valued attributes - Attributes that take their value
from a limited domain. The different values of this domain define the
valid situations that are possible for objects of the class. Through
the activation of a carrier action (that assigns a domain value to the
attribute) the object reaches a specific situation. That situation is
abandoned when another event occurs (a “liberator” event).

• Presentation Model. - The last step is to specify how users will interact
with the system [PI03]. Just-UI adds to the OO-Method a Presentation
Model that intends to capture the characteristics of the User Interface as
they are conceived at conceptual level during the requirements elicitation
phase of a system’s development process [MPM+01, MH03]. The presen-
tation model of the OO-Method comprises an action hierarchy tree, and
a set of interaction units that may have elementary UI patterns. There
are four kinds of interaction units, namely a service interaction unit, an
instance interaction unit, a populating interaction unit and a master/detail
interaction unit. UI patterns allow to limit and constrain the interaction
units. Examples of UI patterns are the pattern of introduction, of defined
selection, or of state recovery, amongst others [Mor03]. The Presentation
model is defined, within the Olivanova modeler tool, by filling forms and
selecting available interaction units and patterns.

The abstract execution model is based on the concept of conceptual modeling
patterns. The OASIS specification model must accurately state the implementa-

56

tion-dependent features associated to the selected object society machine repre-
sentation. The OlivaNova transformation engines provide a well-defined software
representation of the conceptual modeling patterns in the solution space.

3.3.4 Elkoutbi et al. approach - Use cases formalized by
collaboration diagrams

Elkoutbi et al. [EKK06] approach UI generation by identifying usage scenarios.
Their approach starts from a system structural model, including domain classes
and interface classes, with OCL constraints, and a use case model. A use case
is intended as a generic description of an entire transaction, and is formalized
by a set of UML collaboration diagrams, each corresponding to a use case sce-
nario. Each scenario (collaboration diagram) is, then, classified by type (whether
it is normal or exceptional) and by frequency of use (how often it is likely to
occur). Each collaboration diagram message is manually labeled with UI con-
straints (inputData and outputData) that identify the input and output message
parameters for the UI. From UI constraints it will then automatically produce
message constraints with UI widget information.

In the next step, a transformation algorithm is applied to each UI labeled
collaboration diagram, resulting in a statechart diagram for each object in the
collaboration diagram. These state diagrams are called partial specifications, and
will need to be integrated into a single statechart for each class/use-case pair.

Then, the partial specifications must be analysed in order to give common
labels to equivalent states in different partial specifications. State labeling and
statechart integration are done incrementally, until there is a single state diagram
per class/use-case pair.

Also, some state diagrams are integrated across use cases enabling subsequent
design and implementation.

Elkoutbi’s approach is then able to derive UI prototypes for every interface
object defined in the structural model. For each interface object, a standalone
prototype is generated from all of its state diagrams. Each prototype contains a
menu to switch between the different use cases.

Final prototype generation is obtained by generating a graph of transitions
for each interface object in a given use case, in which graph nodes represent
transitions in the state diagram and edges represent precedence of execution
between transitions. Non-interactive transitions are then masked (removed) and
new edges are created to “bridge” the removed transition nodes. Transition nodes
are grouped together according to a set of rules [KEK01] in order to create a new
graph in which the nodes represent user interface blocks (UIB).

UIBs are then combined in order to obtain more complex blocks, according to
a set of defined rules [KEK01], trying to concentrate in the minimum number of
UIBs the scenarios that have the highest frequency. For each final UIB a graphic

57

frame is generated, containing all the widgets of all the transitions belonging to
the concerned UIB.

The dynamic aspect of the UI is controlled by the behavior specification (state
diagram) of the underlying UI object.

Running the generated prototype means symbolic execution of the state dia-
gram, that is equivalent to traversal of the transition graph with only interactive
transitions. The prototype responds to all user interaction events captured in the
graph and ignores all other events.

When running the prototype, every time the execution reaches a node in the
graph from which several paths are possible, the prototype displays a scenario
selection box.

3.3.5 Mart́ınez et al. approach - Use cases formalized by
UI enriched sequence diagrams

In [MESP02], Mart́ınez et al. present a methodology for deriving UIs from early
requirements existing in an organization’s business process model. Their ap-
proach aims at generating a UI that can be validated by organizational users as
early as possible.

The approach has three phases. The first phase starts with the informal
requirements of the organizational environment and consists on the construction
of a business process model (step 1 in figure 3.10). As a result, a strategic
dependency model and a strategic rationale model, which reflect the business
process of the organization, are obtained.

The documentation from the first phase serves as input to the use case gen-
eration phase. This second phase, which also has only one step, follows a set of
heuristics to detect an initial use case model (use cases and actors) as well as
the normal interaction scenarios for each use case (step 2), which are represented
using message sequence charts.

The third phase has five steps. It starts with scenarios completion, by adding
exceptional or alternative scenarios for each use case message sequence chart (step
3). Each message sequence chart is then enriched with UI related information,
in a use case synthesis step (step 4). The enriched message sequence charts are
used in the generation of graphic components of the interface (step 5). In this
step, application forms for the interface objects present in the sequence diagrams
are generated, in a target language. The message sequence charts are also used
to generate state transition diagrams for the interface objects and control objects
present in the sequence diagrams (step 6), forming a navigation model.

Finally (step 7), the generated UI is animated by symbolically interpreting
the generated forms and the transition diagrams.

58

Figure 3.10: Mart́ınez et al. method for UI generation (taken from [MESP02]).

3.3.6 Forbrig et al. approach - Pattern-driven model-
based UI generation

Forbrig et al. [WFDR05, WFR05, RFSS07, JSS+07, FDRS04, RFD04] developed
an approach that interactively generates an abstract UI model, and then a con-
crete UI, by applying UI-patterns to elements of UI sub-models (e.g. task models).
The approach starts by constructing a task model and a business objects model,
complemented with a user model, that capture relevant information from the user
(e.g.: typical tasks, its type, frequency and importance, preferences), and a de-
vice model, that captures relevant information about the device (see figure 3.11).
Then, from the previous models, a set of selectable patterns is identified enabling
its selection by the modeler in order to obtain more concrete models. This is not
an automatic approach, but one that enables a computer assisted development
of interactive applications by selecting different types of patterns at different lev-
els of abstractions. Tools like DiaTask [WFR05] and PIM Tool (“Patterns in
Modeling” tool) [RFSS07] enable this computer assisted approach.

59

Figure 3.11: Pattern-driven model-based UI development approach (taken from
[WFDR05, WFR05]).

60

ZOOM-M example ZOOM-FSM example ZOOM-UIDL example

typedef FriendList = List[Contact];

public struct User {

invariant { userID != null }

public String userID;

public UserType userType;

protected String password;

public boolean loggedIn = false;

public User(String userID)

requires { userID != null }

ensures { this’.userID == userID };

public void login(String maskedPassword)

ensures {

this’.loggedIn ==

(encrpt(this.password) == maskedPassword)

};

}

fsm Main() {

state NotLogin;

state Login { fsm LoginFSM() { ... } };

state Idle { fsm IdleFSM() { ... } };

transition initial to NotLogin;

transition NotLogin to Login : evLogin;

transition NotLogin to finalState: evExit;

transition Login to NotLogin : evLoginFail;

transition Login to Idle : evLoginSuccess;

transition Idle to NotLogin : evLogout;

}

<Window id="String" name="Add Contact"

show="true">

<Panel>

<Label text="UserID"/>

<TextBox name="userID" type="text"

editable="true" columns="2"/>

<Label text="FirstName"/>

<TextBox name="firstName" type="text"

editable="true" columns="2"/>

<Label text="LastName"/>

<TextBox name="lastName" type="text"

editable="true" columns="2"/>

<Label text="EMail"/>

<TextBox name="email" type="text"

editable="true" columns="2"/>

<Button name="addButton" text="Add"/>

<Button name="cancelButton" text="Cancel"/>

</Panel>

</Window>

Figure 3.12: Examples of ZOOM models textual representation (adapted from
[JSL+05]).

3.3.7 The ZOOM project

The ZOOM approach to interactive systems modeling and development [JSL+05]
provides a set of processes, notations, and supporting tools that enable model-
driven development. ZOOM, which stands for Z-based OO modeling notation, is
an object-oriented (OO) extension to the formal specification language Z.

ZOOM separates an application into three parts - structure, behavior, and
user-interface - and provides three separate, but related, notations to describe
each of those parts: ZOOM-M for structural models; ZOOM-FSM for behavioral
models; and, ZOOM-UIDL for UI models. ZOOM provides a Java-like textual
syntax for structural and behavioral models and an XML-based language for the
User-Interface model (see figure 3.12). Furthermore, ZOOM provides a graphical
representation of models consistent with UML diagrams (see figure 3.13) [JSQ+07,
JSL+05]. This enables a graphical formal modeling of a software system.

An event-based framework integrates the different parts of a ZOOM model,
enabling its validation and execution.

Furthermore, ZOOM may be used in a MDD setting by applying model compi-
lation tools. These are tools that enable the generation of a complete application
from a ZOOM model, exposing its functional requirements through an UI gen-
erated from the UI model. This “compilation” process is more complex than
simple language compilation, though. The generated code must, not only meet
all functional requirements, but the generation process must address the choice
of architecture, data structures and algorithms [JSL+05, JSQ+07]. Figure 3.14
shows an overview of the ZOOM approach to MDD.

To support decisions related to the choice of architecture, data structures

61

Figure 3.13: Examples of ZOOM models graphical representation (taken from
[JSL+05]).

and algorithms, the ZOOM approach attempts to capture software architecture
and design knowledge of human experts in a knowled base, which is used by
knowledge-based compilation tools to carry out fully automated model compila-
tion (code generation).

3.4 Other UI generation approaches

Many other approaches to UI generation exist. In this section, five non-model
based approaches are surveyed.

3.4.1 The editing model of interaction

Dewan and Solomon [DS90] present an approach to suport the automatic gener-
ation of User Interfaces based on the editing model of interaction. In this model,
data objects are edited using a generic data objects editor. Objects must have
an interface that allows the use of the editing model of interaction. For instance
they must implement methods for persistence (load and save methods). The
concept of a “presentation” of the object, allows for the separation between the
data in the object and its visual representation. An object may have several
presentations, each one displaying a different view of the object.

So, in the editing model of interaction, a user interacts with an object by
loading its presentations into a generic editor. The generic editor is bounded by

62

Figure 3.14: Overview of ZOOM (taken from
http://se.cs.depaul.edu/ise/zoom/zoom.html).

the object loaded. The user proceeds by executing generic editing commands
from the editor, that the editor passes to the object being edited through the
editing supportive interface that the object must implement, comprising load
and save methods. For less generic operations, the object may provide a set of
methods that the editor allows the user to execute. This generic editor is a kind
of UIMS for the editing model of interaction. The editing system is composed of
a dialogue manager that supports the editing model of interaction by displaying
the different presentations of an object in different subwindows of a window. If no
presentation is defined for an object, the dialogue manager constructs a default
presentation based on the types of the object’s variables, defined in its class.

The editing model of interaction for generic objects may be compared to the
use of syntax directed editors for editing a programming language, or any other
language defined by a concrete grammar, such as synthesizer generator3.

3.4.2 Using generic functional programming techniques

Through a few examples, Draheim et al. [DLW05] present Genoupe, a language
that extends C# with new constructs for parametric polymorphism. Genoupe
is a sort of precompiler language that allows for the definition of generative
components. These generative parametric components are C# program genera-
tors. Draheim et al. present a few examples of using these program generators;
amongst is the possibility of defining a C# Form generator for any class.

[AvEPvW04] uses generic functional programming techniques to create GUIs
in an abstract and compositional way, using type-directed and statically typed
higher-order graphical editor components (GECs).

3http://www.grammatech.com/products/sg/overview.html

63

3.4.3 Generating UI from XML Schema instances

Lay and Lüttringhaus-Kappel [LLK04] present a method for generating XML
based UI languages based on the transformation of XML Schema instances through
the use of XSLT stylesheets. The paper focuses, in particular, the generation of
XML serialized Java Swing objects. These serialized objects are, then, part of
a GUI application that implements the Model-View-Controller (MVC) architec-
tural pattern, where the serialized UI objects play the role of the View, and the
Model and the Controller are the XML Schema and the control structures, re-
spectively. Depending on the data types defined in the XML Schema, the system
uses specialized input fields when generating the GUI. When in the presence of a
complex type, the system produces consecutive elements, if a sequence of fields is
found, and produces additional GUI elements if alternative or repetitive elements
are found. Lay and Lüttringhaus-Kappel point out the reason that the forms use
a static layout of input elements, unless JavaScript is used, for not producing a
real XML-based GUI language.

3.4.4 Adaptive Object Model

An adaptive object model (AOM) [YJ02] is a system that represents classes, at-
tributes, relationships and behavior as metadata, stored in a database or XML
files. Changes in the metadata (object model) reflect changes in the domain,
and modify the system’s behavior. An AOM architecture, or metamodel (see fig-
ure 3.15), is usually made up of several smaller patterns [YJ02], like for instance:

• TypeObject - allows the dynamic definition of new business entities for
the system. TypeObject is used to separate an Entity from an EntityType.
EntityType will have a set of shared attributes for a group of entities. It
allows to represent a “is a” relation between business entities, i.e., it allows
the specification of direct inheritance.

• Property - represents an entity attribute.

• Entity-Relationship. - Relationships are properties that refer to other
entities, and are usually two-way associations. One of the ways to separate
entity attributes from associations is by making two subclasses of Property:
Attribute and Association.

• Strategies and Rule Objects. - A strategy is an object that represents
an algorithm. The strategy pattern defines a standard interface that can be
implemented by different algorithms. An object behavior may be defined
by one or more strategies. Each application of strategy leads to a different
interface. Strategies are usually used in AOMs for implementing the op-
erations on the methods. When more complex business rules are needed,

64

Figure 3.15: AOM typical meta-model structure

strategies can be combined using the Composite pattern. Rules that rep-
resent predicates are composed of conjunctions and disjunctions, rules that
represent numerical values are composed of addition and subtraction rules,
rules that represent sets are composed of union and intersection rules. These
more complex Strategies are called RuleObjects [YJ02].

Figure 3.15 shows a typical AOM metamodel, where the application of the
above mentioned patterns is illustrated. AOMs are present in this survey because
they allow the execution of a system model. Of course an AOM system needs to
be developed, and a user interface needs to be created. It is possible to extend
EntityTypes to allow for some standard views and ease the process of building
GUIs for AOMs.

3.4.5 Nguyen and Chun’s approach to MDD

Nguyen and Chun’s approach4 to MDD [NC06] is based on the interactive mod-
eling and animation of use case driven UML models.

The process begins by the manual construction of a use case model using the
tool described in [NC06]. The use case model describes the system functions in
terms of user goals, documenting the observable value the system provides to
its users. Then, use cases are further elaborated by iteratively and interactively
specifying use case steps, using a use case declarative specification language (see
fig. 3.16), and then generating and executing sequence diagrams. From the use

4http://pnguyen.tigris.org/

65

Figure 3.16: Example of the Nguyen and Chun’s use case specification language
(taken from [NC06])

case steps, a sequence diagram may be derived, and objects collaborating in each
step (or message) may be identified. From the sequence diagrams, the tool can
also track the relationship between a use case and the domain objects, enabling
the generation of a class diagram from the sequence diagram. It is possible to
use the Groovy scripting language (see http://groovy.codehaus.org/) or Java to
add behavior to classes’ operations. That behavior is visible when executing the
model.

This approach doesn’t generate a UI for executing the software model, but
it is worth mentioning here because it models the use cases by some formalized
means and enables the execution of the UML model with the purpose to validate
it and iteratively refine the model.

3.4.6 outSystems agile platform

OutSystems Service Studio, part of the outSystems agile platform, is a visual
environment that enable developers to rapidly assemble and change web business
applications. Service Studio enables the construction of web applications by
specifying a user interactions flow that describes and keeps end-user navigation
patterns across the application [Out]. Figure 3.17 shows this user interactions
flow that resembles a dialog or a navigation model from MDD approaches. Nodes
in this diagram correspond to concrete screens. Transitions between nodes must
be associated to an event on an action widget (e.g. a button) in the originating
node (web page), and leading, at execution time, to the destination node (web

66

Figure 3.17: Screen flow in outSystems’ Service Studio.

page). In the User Interaction Flow diagrams it is also possible to easily grant
or revoke the access rights of multiple user profiles to each of the pages and
transitions [Out].

Services may also be attached to action widgets. OutSystems provides a set
of EntityActions and integrates a service editor that enables the definition of
services through the use of a visual diagrammatic language.

3.5 Analysis and discussion of the surveyed ap-

proaches

3.5.1 Introduction

For comparing the surveyed approaches, we will consider the following questions:

1. The approach generates a fully functional application/prototype?

2. Only a prototype of the UI is generated, and no core functionality?

3. The generation process is fully or semi-automatic?

4. The generated artifacts are directly executable/compilable, or do they need
a simulation environment?

5. The approach follows a model-driven development paradigm?

67

6. Which models are used by each approach for modeling an interactive ap-
plication?

7. Which models have to be constructed by hand in each approach?

8. Which models are obtained automatically from the others?

9. Which features are present in the generated UI, in the different approaches?

For trying to answer each of these questions, a three-level detailed analysis was
performed. Firstly, the demanded input for each approach is analysed, separating
model-driven approaches from non-model-driven approaches. The intention is to
gauge the effort demanded by each approach for UI generation, and the results
that may be obtained by each approach.

Secondly, making a clear option by the model-driven approaches (remember
the MDD advantages on section 2.4.4), the model architectures of the model-
driven approaches are compared, in order to understand how each approach
models the following aspects of an interactive system:

• system structure - The informational structure of the system. The sys-
tem structure may be approached at two different abstraction levels. At
a more abstract level, the domain model specifies the persistent domain
entities, its attributes, relations (inheritance, aggregations, compositions,
or simple associations), its invariant constraints, and sometimes also its op-
erations, and respective signatures, preconditions, and post-conditions. At
a less abstract level, the application (structural) model identifies not only
domain entities (classes), but also all the analysis classes that are needed
for accomplishing the system modeling (e.g. boundary classes) [Pre05].

• system behavior - How the system behaves, how it responds to stimuli,
and how it enables system objects to live, collaborate with each other, and
die in the scope of their life cycles. For specifying the behavior model,
several kinds of representations may be used. For instance, valid object
lives may be defined using a state-transition diagram (also known as a
statechart or a state-machine diagram); how objects collaborate, may be
specified using a sequence diagram or a collaboration (or communication)
diagram [Pre05, SV05], or an action language that enables the specification
of the behavior of the classes’ operations. Other possible notations are, for
instance, activity diagrams.

• system use cases - What functions does the system provide to its users.
A use case model specifies the operations that are provided to users ac-
cording to its roles in the system. Use-case diagrams, and some sort of
use case detail specification (e.g.: activity diagram, sequence diagram, in-
teraction overview diagram) may be used for modeling use cases and use

68

case scenarios. Sometimes, use cases, seen as goals that the user wants to
accomplish on the system, may be detailed by using a task hierarchy (e.g.:
CTT - ConcurTaskTrees) [Pre05, SV05, DFAB98].

• system user interface - How the system is presented to its users. What
“screens” does the system show when interacting with a user in the context
of a use case, and how the user may navigate through those “screens” [Pre05,
DFAB98].

Finally, in an analysis of a third level of detail, a fine grained comparison is
made between the model-driven approaches.

3.5.2 Features of the surveyed approaches or of the re-
spective generated UI

In this section the features of the surveyed approaches, or the generated UI and
other artifacts of the approaches, are analysed together with the demanded input
of each of the approaches. Tables 3.3 and 3.4 summarize the comparison features
and the demanded input of the generated UI for, respectivelly, the surveyed MDD
approaches and the surveyed non-MDD approaches.

Elkoutbi et al. and Martinez et al. approaches are able to produce a UI from
the structural, use case and UI behavioral models, but demand the attachment of
UI related information (input/output fields and/or widgets) to the use case detail
specification, respectively collaboration diagrams and message sequence charts.
The generated output is only able to simulate the specified use cases through the
generated UI, with no business-level application behavior.

Forbrig et al. approach and Wisdom are not automatic. Forbrig et al. base
their approach on the manual selection of patterns, from a repository, that drives
the model construction and transformation towards a final application. In Wis-
dom, the Winsketch tool helps building and validating Wisdom models, and sup-
ports the tracing of model elements through the different process phases. Despite
this, no code generation is possible.

Only XIS, the OO-Method and the ZOOM approach are able to produce a
fully functional (executable) application, but the demanded input models are
very time consuming and arduous to build.

XIS allows two approaches to interactive systems generation (refer to sec-
tion 3.3.1). In the dummy approach, a domain model, an actors model, a set
of interaction spaces specification and a navigation space model must be fully
specified.

The XIS smart approach tries to simplify the construction of the user inter-
faces view (interaction spaces definition and navigation space model), by demand-
ing the construction of two other models, a business entities model and a use case
model. This approach to the UI model derivation is simpler than the full con-
struction of this, but it comes with the cost of the inflexibility of the generated UI.

69

XIS OO-Method Elkoutbi Martinez Forbrig ZOOM Wisdom

approach et al. et al. et al.

Summary of
demanded in-
put

Dummy
approach:
Domain
model,
actors
model,
interaction
spaces and
navigation
space
Smart
approach:
Domain
model,
actors
model,
business
entities
model, use
case model

Object
model, for-
mal con-
straints,
state-
transition
diagrams,
presenta-
tion model
(optional)

Use case
model,
structural
model, col-
laboration
models

Use case
model,
structural
model,
message
sequence
charts

Business-
object
model,
task
model,
user
model, de-
vice model
- con-
structed
by manual
selection
of patterns

Class
model,
finite state
machine
model, UI
model

User role
model,
use case
model,
domain
model, ar-
chitectural
model,
navigation
map, dia-
log model,
presen-
tation
model

Generates
complete
application/
prototype

√ √
— — —

√
—

Generates
only a UI
prototype

— —
√ √ √

— —

Generates
code for
user defined
operations

—
√

— — —
√

—

Existing
tools support

ProjectIT-
Studio

Olivanova
tool set

proof of
concept
tool

proof of
concept
tool

proof of
concept
tool

ZOOM
tool set

WinSketch
(modeling
for doc-
umenting
tool)

Table 3.3: Features of the surveyed MDD approaches or of the respective gener-
ated UI.

The XIS smart approach demands an actors model, a use case model, a domain
model and a business entities model. The latter serves the purpose of declaring
Lookup and Master/Detail patterns between domain entities [Sil03, dSSSM07].
Indeed, the modeler needs to associate domain entities within business entities in
order to be able to provide a lookup or master/detail pattern to the user interface
needed for the interaction inside the context of a use case. The model to model
transformation depicted in figure 3.6 for the smart approach is not yet available
in the ProjectIT-studio, so all the XIS models must be built by hand.

It is not possible, in XIS, to specify complex behavior - only CRUD (Create,
Retrieve, Update, Delete) operations may be used attaching them to Business
Entities and to the connection between the use cases and business entities. Also,
the need to attach a stereotype to every model element, in XIS, makes the models

70

Editing Generic Generate Nguyen

model of UI UI from AOM and Chun’s outSystems

interaction Programming XML-schemas approach

Summary of de-
manded input

Serializable
objects

Class
definitions
and generic
parametric
functions

XML-
schema
files

Metamodel,
model con-
forming to
the meta-
model, and
applica-
tion/frame-
work for
interpret-
ing the
metamodel
data.

Use case
model, use
case specifi-
cation and
sequence
diagrams

Graphic
construc-
tion of
screen flow
diagram,
Web pages,
entities
and user
actions.

Generates com-
plete application/
prototype

√
— — — —

√

Generates only a
UI prototype

—
√ √

—
√

—

Generates code
for user defined
operations

— — — — — generates
EntityAc-
tions and
allows the
graphical
definition of
user defined
operations
(userAc-
tions)

Existing tools
support

demons-
tration
tool

demons-
tration
tool

demons-
tration
tool

AOM is an
architectu-
ral pattern
and a set of
prescribed
design
patterns

demons-
tration
tool

outSystems
Service
Studio
(commer-
cial tool
available)

Table 3.4: Features of the surveyed non-MDD approaches or of the respective
generated UI.

hard to read and build.

In the OO-Method, also the CRUD operations are pre-defined. Neverthe-
less, the OO-Method allows user defined operations (services and transactions)
by specifying them using OASIS (refer to section 3.3.3). Also, for not demand-
ing the knowledge of OASIS, the OO-Method has a solution that comes with
the price of flexibility: it is possible to specify how each service changes the ob-
ject state depending on the arguments of the involved service and the current
object state, by categorizing each attribute, and introducing additional relevant
information. Possible attribute categories are push-pop, state-independent, and
discrete-domain valued attributes (refer to section 3.3.3).

The OO-Method permits, as well, the specification of allowed states and state

71

transitions within a class. Each state transition may have attached a control
(guard) or triggering condition. It is also possible to define transactions involving
services of different classes.

Another OO-Method’s feature is the allowance of derived attributes, by as-
signing a calculation formula to the attributes.

The ZOOM approach models a system using the ZOOM language, which
is a formal object oriented extension of Z. Additionally, it allows the building
of a graphical model, which is then translated to ZOOM. The models that are
demanded by the approach, in order to automatically generate an executable
application, are: a class model, which models the structure of the system and
contains all the classes of the application; a finite-state machine model that mod-
els the system behavior and is the central communication mechanism to connect
the structural model to the UI model; and, a UI model, which models the UI
screens by using predefined components that are organized according to a user
defined layout.

In what respects to the non-MDD UI generation approaches, six different
approaches have been surveyed (refer to section 3.4).

In the editing model of interaction [DS90], the approach developed an editor
for objects serialized in some notation, which implement an interface for persis-
tence (load and save). It is then a simple object editor.

The generative UI programming approach [DLW05] consists in the defini-
tion of generic UI classes that may be instantiated with any class, generating
UI specific classes for the parameter class. The approach may be used in the
development of real applications, but it is a programming based approach, and
requires the full manual coding of the business logic classes and of the classes for
the mapping layer between the UI and the business logic classes.

The generation of UI forms from XML-schema files [LLK04] is a purely struc-
tural UI generation. It is based on the structure of the XML-schemas and has
no application code to run, it must be coded by hand together with the mapping
code between UI and the business logic classes.

Adaptive Object Model (AOM) [YJ02] is an architectural pattern and, an
application that applies it must be fully developed by some means.

Nguyen and Chun’s approach [NC06] prescribes an interactive modeling me-
thodology, in which use cases are detailed using UML sequence diagrams that
may be executed, in a simulation environment, in order to validate the model
while it is being constructed.

Finally, the outSystems’ agile approach [Out] is the one that gets closer to the
MDD approaches. It allows the development of web applications both for Java
based and for Microsoft.Net based Web servers. It enables the specification of a
screen flow diagram, resembling the interaction navigation model found in some
MDD approaches, which relates concrete web pages. It also enables the definition
of entities that are used to generate database tables and may be used as constructs
in the development approach. When defining entities, the tool automatically

72

generates what it calls entity actions, that are operations that may be used by
the developer and provide the CRUD functionality for the defined entities.

Outsystems enables, then, a higher abstraction level than most commercial
development tools, but is not a model-driven development tool. We could say
that, using the outSystems service studio, we are constructing a platform specific
model, either for Java or dot Net, but always to a relational database environment
and to a web server.

3.5.3 Model architecture of each MDD surveyed approach

The models used by each of the surveyed MDD approaches are summarized in
table 3.5. An Output mark means that the model is generated automatically by
the approach. If a model is marked In/out it means that it may be furnished
as input to the approach, or it may be automatically obtained from some of the
other models. If no mark exists, it means that the model must be constructed
by hand in the respective approach.

From what has been previously stated, one can see that all the MDD ap-
proaches surveyed earlier in this chapter, and referred to in table 3.5, use a class-
based structural representation. The XIS, Wisdom and OO-Method approaches
start with the structural modeling of domain entities. The Wisdom approach
prescribes a manual process and so, an analysis and a design model for structural
system aspects are also foreseen. The other four approaches demand the full
specification of structural elements, not only domain entities, but also UI and
control classes.

In what respects to the behavioral model of the core system, the XIS approach
allows the definition of CRUD behavior over business entities (BEs), manipulat-
able units of structure defined over domain classes. When linking BEs to use
cases, XIS permits the declaration of what operations are allowed over one BE in
the context of a given use case, by declaring in the link a subset of the operations
thought for the BE. This way, XIS permits a very expedite way of defining behav-
ior and attaching it to use cases, but limits the kinds of behavior that a use case
may make use of. It is not possible in XIS to specify the semantics of classes’ oper-
ations. In the OO-Method and the ZOOM approach, the core behavior is defined
using finite state machines (or state transition diagrams). In the OO-Method,
one state transition diagram per class plus one (non-UML) object interaction di-
agram for the system allow the definition of complex behavior, although it might
be needed the knowledge of OASIS language for specifying the semantics associ-
ated to a change of state. The knowledge of OASIS may be worked around by
categorizing each attribute as explained in section 3.3.3. ZOOM has a similar
approach, it allows the definition of behavior using the ZOOM object-oriented
extension to the Z formal language, but the way it has to ease the knowledge
acquisition process of the ZOOM language, by the modeler, is by having shaped
the language in a Java-like style.

73

XIS OO-Method Elkoutbi Martinez Forbrig ZOOM Wisdom

approach et al. et al. et al.

Structural
Model

Domain
model +
Business
Entities
(BE)
Model

Object
Model +
Formal
Con-
straints

Application
Model
with
domain
and UI
classes

Application
Model
with
domain
and UI
classes

Business
objects
Model
with
domain
and UI
classes

Structural
model +
Formal
con-
straints

Domain or
Business
Model +
Design
model

Behavioral
Model

Association
of BE to
use cases,
specifying
allowed
operations

1 STD per
class + 1
Object In-
teraction
Diagram

— — — Finite
state
machines
(state-
transition
diagrams)

Analysis
model +
interaction
model

Use cases /
Task Model

Actors
model +
Use case
model +
Associa-
tion of use
cases to
business
entities

User roles
repre-
sented as
classes in
the object
model.

Use case
model +
Collab-
oration
diagrams

Use case
model +
Message
sequence
charts
(MSC)

Task
model
+ User
model

— User role
model +
Use case
model +
Activity
diagrams
or CTT

User Inter-
face Model

In/Out:
Inter-
action
Spaces
Model +
In/Out:
Navigation
Model +
Output:
concrete
UI

Presentation
Model

UI state-
transition
diagrams
(STDs) +
Output:
concrete
UI for
simulation
env.

UI labelled
MSC +
Output:
STDs +
Output:
concrete
UI for
simulation
env.

Presentation
Model +
Layout
Model +
Dialog
model +
Output:
concrete
UI

Presentation
Model
(MDML)
+ UI
objects
behavioral
model
(state
chart)

Presentation
model
(CAP) +
Dialogue
model
(CTT)

Table 3.5: UI generation approaches model usage

Wisdom uses user-centered design for developing interactive systems. It, then,
focus its analysis on user actions, defining the core behavior of the system by an
interaction model (task tree diagram) that maps to an analysis architectural
model (Wisdom diagram) that categorizes classes as Task, Control or View. In
Wisdom it is not possible to define the behavior of operations or state transitions.

In what concerns to the system use case model, almost all approaches allow
a use case driven methodology, by defining a use case model that may already
enumerate the system actors or these may be defined using a separate actors (or
user roles) model. This is the case of the XIS approach, the Wisdom approach,
and of the approaches from Elkoutbi et al. and Mart́ınez et al. The OO-Method
represents the actors as classes in the structural diagram, not providing a use
case driven approach. Forbrig et al. approach also doesn’t provide a use case
driven methodology, but allows the definition of a user model, which is a kind of
dialogue model, that specifies how a user reacts to stimuli when trying to fulfil

74

goals modeled in the task model. We could see the task model as a kind of
enhanced use case model.

The ZOOM approach has no way of specifying a use cases view.
Finally, concerning user interface, depending on the approach taken with XIS

(dummy or smart approach), it may or not be necessary to develop a UI model
from scratch, as we have seen before, but a UI model is always needed. The OO
Method is able to generate a user interface from the structural model, but if “less
structural” UIs are needed it allows the definition of a presentation model. The
approaches from Elkoutbi et al. and Mart́ınez et al. generate a concrete UI for
simulation purposes, from non-UI models, although they need to be enriched with
UI information. Wisdom, the ZOOM approach and the approach from Forbrig
et al. all need the specification of a UI or presentation model, for being able to
produce a concrete UI.

3.5.4 Fine grained comparison of surveyed MDD approaches

It has been written before (refer to section 1.1) that it is a common software
engineering practice to start modeling a system by building a domain model,
that is a structural model composed only of domain classes, and a functional or
use case model, composed of actors (or user roles) and use cases. The integration
between these two system sub-models is somewhat forgotten in practice, or it is
done by means of natural language text. In more complex projects and more
organized teams, this integration may be accomplished by building, for instance,
a sequence model. We believe that it is possible to accomplish this integration
by enriching these two models using OCL.

In order to see which model elements are used in the main surveyed approaches
to build the domain model and the use case model, a set of model elements and
explored features were compared. Tables 3.6 and 3.7 explain the meaning of
the compared model elements and features, for the domain and use case models.
Table 3.8 summarizes a fine-grained comparison of the domain model elements
used by the surveyed MDD approaches, and table 3.9 shows the summary of a
fine-grained comparison of the use case model elements used by each approach.

From tables 3.8 and 3.9, and from the above discussion, one can identify the
main flaws of each of the surveyed approaches, which are summarized below.

XIS has no way of specifying the signature and the semantics of operations.
The use of OCL could help in enriching the semantics of the domain model. XIS
views definition mechanism (BusinessEntities) is very simple and expedite, but
turns to be inflexible when wanting to include, for instance, calculated fields in
the UI.

XIS smart approach will, when available, make possible to obtain a default
user interface model based on the domain, business entities, actors and use case
models. The default UI will be guided by the use cases. Although very simple,
the XIS way of specifying use case behavior, by attaching a use case to a business

75

Submodel Element or feature Description

Domain Model Classes Concepts or entities of the problem domain. Classes are defined
in terms of attributes, operations and relationships.

Attributes Properties of the concept or entity modeled by a class.

Relationships Associations between classes (e.g.: aggregation, composition,
simple association), or relationships of type “is a” between two
classes, i.e. generalization relationships.

Class invariants Conditions that instances of the corresponding class must obey.

Attributes
default values

Attributes may have defined default-values.

Derived at-
tributes

Attributes may have a value that is calculated dynamically ac-
cording to a given formula.

Mandatory
attributes

Attributes to which a value must be provided, when creating an
object.

Read-only
attributes

Attributes to which a value may only be provided when creating
an object. After creation the value of the attribute may not be
modified.

Operations or
methods

Services provided by the instances of a class. The syntax of an
operation is defined by its name, and the type and order of its
parameters and of the result yielded by the operation.

Operations’ ex-
ecutable seman-
tics

The semantics of an operation may be defined in an implicit
way, by specifying its pre-/post-conditions, or in an explicit way
by specifying its denotational semantics or, less abstractly, its
sequence of actions. Typically, only the latter may directly or
indirectly execute an operation’s semantics.

Enumerations Enumeration classes are enumerated types or static lists of dis-
crete values.

Views Classes whose attributes are taken from other classes (Views).
Views / Derived classes usually model documents of the domain
that mix attributes from more than one entity or domain class.

Triggers A trigger is a behavior that is automatically executed whenever
a given operation is invoked and/or a given condition is true. If
triggered by an operation invocation, a trigger may occur before,
after or instead of the operation that triggers it. If triggered by
the occurrence of a given state condition, the trigger is automat-
ically invoked whenever the condition is true.

Table 3.6: Main domain model elements

entity and identifying allowed operations, limits the kind of allowed operations
to CRUD, even when guiding the UI generation by the use cases. One way
to turn around this limitation could be the exploration of use case relations
(e.g.: inclusion and extension), or the use of constructs typical of task hierarchies
specifications, like sequencing or alternative, to detail use cases and allowable use
case navigation by an actor.

The OO-Method and the ZOOM approach, are richer in what respects to the
domain model, but they have no views specification mechanism. ZOOM always
requests the construction of a UI model, having no way of deriving one from the
other models of the system. When the UI structure is not based on the domain

76

Submodel Element or feature Description

Use case model Actors / Roles Actors / roles for using the system.

Use cases Use cases are intended as system packaged functionality.

Use case rela-
tions

Relations between use cases (e.g.: inclusion, extension, general-
ization).

Mapping use
cases to domain
classes

Each use case must be mapped to domain classes by some means.
The use of UML interaction diagrams is the typical means. Other
ways may involve the detailed specification of use case behavior,
either by specifying pre-/post-conditions in natural language text
or in a formal notation, or by subdividing use cases into sequenc-
ing or alternative atomic actions that are mapped to domain
classes.

Task Model Task The approach allows the definition of tasks, intended as activities
that the user must perform on the system, in order to achieve a
goal, or that the system may perform in response to a stimulus.
Tasks can be defined at different levels of abstraction allowing
the definition of sub-tasks.

Action A concrete (final) task that can be executed. It may be a user
action or a system action.

Sequencing The temporal order that sub-tasks and actions must respect for
carrying out the related high-level tasks.

Other task oper-
ators

Besides sequencing actions, other task operators may be used
in task models (e.g.: alternative tasks, task enabling, task dis-
abling) [Pat03, DFAB98].

Table 3.7: Main model elements of use case / task model

classes structure, the OO-Method also demands the construction of a UI model.
So, there is no way of deriving a default UI model guided by use cases, in the
OO-method.

The approaches from Elkoutbi et al. and Martinez et al. derive a UI model
guided by use cases, from other models. Nevertheless, their approaches are very
laborious, demanding the manual labelling of use case scenario definition models,
respectively collaboration models and message sequence charts, or state transi-
tion models, with UI related information. The resulting UI may only serve to
animate the specified use cases in a simulation environment, with no business
level behavior.

Forbrig et al. approach is manual, although it may be computer assisted,
easing the process of choosing applicable UI patterns. The only step that may
be automatized is the final step of producing a concrete UI from the constructed
pattern-based UI model.

Finally, the Wisdom approach, is a process and a method for developing inter-
active applications. It doesn’t foresee the specification of operations’ semantics.
It is a model-based approach, but the tools available (e.g.: WinSketch) don’t
provide a model-driven environment. The data in tables 3.8 and 3.9, for Wis-
dom, were based in WinSketch. Also in Wisdom, the UI model must be fully

77

XIS OO-Method Elkoutbi Martinez Forbrig ZOOM Wisdom

approach et al. et al. et al.

Base
classes

Classes
√ √ √ √ √ √ √

Attributes
√ √ √ √ √ √ √

Relationships
√ √ √ √ √ √ √

Class
invariants

—
√

— — —
√

—

attributes
default
values

√ √
— — —

√ √

derived at-
tributes

—
√

— — — — —

mandatory
attributes

—
√

— — — — —

user
defined
operations’
syntax

limited
(only
operation
name)

√
— — —

√ √

user
defined
operations’
semantics

—
√

— — —
√

—

Lists of
values

Enumerated
classes

√
— — — —

√ √

Views Views /
derived
classes

√

(business
entities)

— — — — — —

Mapping to
base classes

√
— — — — — —

Triggers or other
forms of modifying
CRUD

— — — — — — —

Operations trig-
gered by state
conditions

—
√

— — —
√

—

Table 3.8: UI generation MDD-approaches fine-grained comparison of the domain
model elements

constructed by hand.

Table 3.10 compares and summarizes features of the surveyed MDD ap-
proaches that are able to automatically generate a UI prototype.

Only XIS, the OO-Method and ZOOM can generate a fully functional interac-
tive prototype. Martinez and Elkoutbi approaches only generate a non-functional,
although navigable, UI prototype.

All the approaches present in table 3.10 require the full specification of a UIM,
although the XIS approach has plans for its future derivation from other provided
models. Then, the XIS approach will also be able to generate a UI prototype

78

XIS OO-Method Elkoutbi Martinez Forbrig ZOOM Wisdom

approach et al. et al. et al.

Actors (user roles)
√

User roles
represented
as classes in
the object
model.

√ √ √
—

√

Use cases
√

—
√ √ √

—
√

Use case extension
√

—
√ √ √

—
√

Use case inclusion
√

—
√ √ √

—
√

Mapping
to base
classes

Target
views /
opera-
tions

√
— — — — —

√

behaviour — — Sequence
diagrams

Collaboration
diagrams

Task model — Activity or
task dia-
grams(CTT)

Table 3.9: UI generation MDD-approaches fine-grained comparison of the use
case model elements

from the domain, use case models and other demanded non-UI models.

Only the OO-Method is able to generate a UIM and a UI prototype from the
domain model alone. And, it is also the only one that allows the definition of
triggers activated by a condition.

XIS and the OO-Method assume the existence of CRUD operations in the
context of domain entities. But, only ZOOM and the OO-Method are capable of
generating code for user defined operations.

Finally, only the ZOOM approach takes advantage of formal constraints to
generate features in the UI.

3.6 Conclusions

This chapter surveyed seven MDD approaches to interactive applications, or user
interface, generation, and six other approaches to the development of user inter-
faces. The advantages of the MDD approaches over the others have been iden-
tified, although some of the other approaches may have, in certain conditions,
more expedite, but less flexible, ways of developing interactive applications.

In the above analysis and discussion of current approaches and tools for model-
driven interactive applications generation, we have shown that only XIS, and in a
sense the OO-Method, are able of deriving a UI model from other system models.
But the generated UI model provides only CRUD operations, and may only be
based in the domain structure or, in the case of XIS, in a defined set of views
(BusinessEntities) established over the domain classes.

79

Elkoutbi
XIS OO- ZOOM et al./ Forbrig
approach Method Martinez et al.

et al.
Is able to generate
a fully functional in-
teractive prototype

√ √ √ — —

Requires/generates
a UIM as a step
for obtaining a
concrete UI

requires/
gener-
ates

requires requires generates
only UI
state
model

requires

Is able to generate
a UIM/UIP from
non-UI system
models

√ (in
smart
ap-
proach)

(only
from
domain
model)

— √ (non
funtional
UIP)

—

Is able to generate a
UIM/UIP from do-
main model alone

— √ — — —

Is able to generate a
UIM/UIP from do-
main model + use
case model

√ (in
smart
ap-
proach)

— — — —

Allows the defini-
tion of triggers

— √ (par-
tial)

— — —

Assumes CRUD op-
erations

√ √ — — —

Generates code for
user defined opera-
tions

— √ √ — —

Takes advantage of
formal constraints
to generate features
in the UI

— √ (par-
tial)

— — —

Table 3.10: Feature comparison between the current approaches.

Only XIS is able to derive a default use case driven UI model, but, as we have
seen, it is based on a semantically poor domain model and is limited to CRUD
operations specified over the business entities.

From this chapter’s state of art survey and discussion, the main flaws of
existing approaches to UI automatic code generation have been identified, and
are summarized bellow:

• In general, current approaches demand too much effort, from the modeler,
in order to build the system models demanded as input by the approaches.
They don’t allow a gradual approach to system modeling if one wants to
generate a (prototype) application to iteratively evaluate and refine the
model. All models expected by one approach must be fully developed before
code generation may be available, except with the OO-Method [PMI04,

80

Mol04, PIP+97], to a certain point, because it may generate a concrete UI
given only a structural model. But the OO-Method does not permit the
specification of a use case driven system model.

• Most of the approaches demand the manual construction of a UI model from
scratch, in order to be able to produce a concrete user interface for an in-
teractive application. The exception is the XIS smart approach [dSSSM07],
that enables the generation of a default user interface from the core system
models, but the generated UI is very limited in what concerns the core
system behavior.

• Current approaches don’t allow the generation of an executable prototype
from the available system models, that would permit to interactively val-
idate the model through a UI with the users and other stakeholders, and
refine the model in a sequence of iterative steps. Nguyen and Chun’s ap-
proach to MDD [NC06] allows the interactive modeling and animation of
use case driven UML models, but it is based on the direct animation of
the models in a simulation environment, not in the animation through a
derived UI, so it may not be used by users or other stakeholders than the
modeling team themselves.

• Most of the existing approaches don’t take advantage of the specification
of class’ state constraints (invariants) or of operations pre-conditions to
enhance the usability of the generated UI. The exception is the ZOOM
approach [JSL+05, JSQ+07], and partially the OO-Method [PMI04, Mol04,
PIP+97].

• Existing approaches don’t take advantage of the use of constructs typically
found in task models (e.g.: sequencing, alternative) for detailing use cases.

• Existing approaches don’t allow the definition of the semantic of opera-
tions at class level. Again, the exception is the ZOOM approach [JSL+05,
JSQ+07], and partially the OO-Method [PMI04, Mol04, PIP+97].

• With the partial exception of the OO-Method [PMI04, Mol04, PIP+97],
existing approaches don’t allow the definition of triggers, that are operations
triggered by the invocation of other operation or by the holding of a given
condition. Triggers activated by an operation’s invocation are a way of
modifying or adding behavior to CRUD or other operations. Using triggers
it is possible to specify business rules that involve several classes’ operations.
The OO-Method only allows the specification of condition activated triggers
but not invocation activated triggers.

The approach to UI model generation defended in this PhD research work
addresses the issues referred to in tables 3.8 and 3.9, as presented in the next
chapters.

81

82

Chapter 4

Proposed Process and
Metamodels

This chapter presents a model-driven software development process, that may be
instantiated from any iterative incremental process, which is based on the automatic
generation of the final application from platform independent models. The chapter
also presents the UML-aligned metamodels used for developing the system model,
and the MOF-based metamodel for creating UI models.

4.1 Introduction

The approach to model-driven UI generation and interactive applications devel-
opment, proposed in this dissertation, enables the automatic generation of user
interface models (UIM) and executable user interface prototypes (UIP), from
early, progressively enriched non-UI system models.

The reason for obtaining an intermediate UI model is for easing the trans-
formation process and increase its productivity, allowing to obtain a platform
independent UI model that enables the use of specialized model to code (M2C)
generators to different architectures or different target platforms. This is com-
pletely aligned with MDD.

In contrast with other approaches (refer to chapter 3), our approach doesn’t
require the modeler to build a UIM (see Fig. 4.1). In fact, a UIM may be
automatically generated from the domain model alone, or from the integrated
domain and use case models, and then be subject to a M2C process in order to
obtain the executable application or prototype final code.

The approach invites the modeler to start by building a domain model (DM),
generate a UIM through process DM2UIM (see Fig. 4.1), and finally generate and
execute the prototype in order to validate both the DM and the UIM. This may
occur during several iterations, during which the DM is refined and enriched, un-
til it is not sufficient. Indeed, the DM will not be sufficient if the modeler needs
to specify different functionality for different actors, or if he needs to specify

83

Figure 4.1: General approach to UI generation.

functionality that cannot be fully derived just from the structural system specifi-
cation, that is what is defined in the DM. When this is the case, the modeler will
need to build a use case model (UCM) integrated with the DM, and for that he
may use model-transformation tool DM2UCM that will generate a default UCM
from which the modeler may start working. This way, the modeler is able to start
building a UCM, not from the scratch, but from the full functionality that may
be derived from the previously built DM. This is, of course, an optional step.

Then, for several iterations, the modeler may refine and enrich both the
DM and the UCM, in a fully integrated manner. In each iteration, the model-
transformation process DM+UCM2UIM is used to generate a UIM, from which
a prototype is automatically generated and may be, then, assessed in order to
validate the system models (DM, UCM and UIM).

Finally, the modeler will need to refine the UIM directly and, after that, only
by modifying the generated code, by hand, will he be able to refine the generated
application, assuming that he has no access to modify the M2C process.

This approach is embodied in a process defined in the next section. Of course,
the defined DM, UCM and UIM metamodels don’t confine the modeler to follow
the described approach, but if he wants to be able to automatically generate both
a UIM and an executable prototype and application, he will need to follow it.

The following sections describe the referred metamodels.

Both the proposed process and the metamodels formalization, presented in
this chapter, have been addressed in [dCF10].

A proof of concept tool has been developed for fully automating the DM2UIM,

84

DM+UCM2UIM and M2C processes (see chapter 6).

4.2 Process for model-driven development of in-

teractive form-based applications

The approach proposed in this dissertation comprises an iterative development
process that enables the automatic generation of UI models and the development
of form-based data intensive applications, from early progressively enriched plat-
form independent models, by following a MDD paradigm. After the modeling
activity and the UIM generation step, in each iteration, the approach permits
the generation of an executable user interface prototype (UIP), which enables
the complete model validation by other stakeholders besides the modeler himself.

The process, illustrated in Fig. 4.2, comprises three phases:

1. Requirements Modeling and Validation;

2. UI Design and Validation;

3. Implementation and Validation.

In the first process iterations, phase 1 activity, that is Requirements Model-
ing and Validation, is concerned with eliciting and gathering requirements and
modeling them in a domain model and a use case model, and validating the
constructed models with the stakeholders, through an automatically generated
application prototype. In the first iteration of this phase, the modeler has two
options:

• Modeling the functional requirements as use cases by developing an abstract
and incomplete use case model. Further iterations will allow building a
domain model and refining the use case model by fully integrating it with
the meantime developed domain model.

• Modeling requirements that are concerned with the information structure,
by developing a first domain model, and generating a default use case model
from the DM. Further iterations will enable the refinement of both the UCM
and the DM.

In subsequent iterations the UCM and the DM are kept tightly related.
From what has been mentioned before, the recommended procedure for phase

1 is to start building a simple domain model, represented by a UML class diagram,
with classes (base domain entities), attributes and relationships. From this DM
a simple UI can be automatically generated (by a model to model transformation
process from DM to UIM, DM2UIM, followed by a model to code transformation

85

Figure 4.2: Proposed interactive applications development process.

process, M2C) - see Figs. 4.1 and 4.3 - supporting only the basic CRUD operations
and navigation along the associations defined.

In subsequent iterations, the DM can be refined and extended with additional
features (to be explained in more detail in section 4.4) that allow the generation
of richer user interfaces: OCL constraints, default values, derived attributes,
derived entities, user-defined operations, and triggers. From this enriched domain
model, it is possible to generate validation routines from OCL class invariants
and operations’ pre-conditions, thus influencing what the user is able to do in
the generated user interface. Derived entities (Views) allow the generation of UI
forms with a more flexible data structure.

Simultaneously, the modeler may develop a use case model (UCM), integrated
with the DM. This UCM will enable the separation of functionality by actor, and
its customization (e.g.: hiding functionality from some actors). Corresponding
UI model and UI prototype are then automatically generated from both the
DM and UCM (DM+UCM2UIM and M2C processes in Fig. 4.1). As will be
explained when presenting the metamodel, there is a full integration between the
UCM and the DM, as use case specifications are established over the structural
domain model. A first UCM may be automatically obtained through DM2UCM
transformation process (see fig. 4.1).

86

Figure 4.3: Detail of development process phase 1, Requirements Modeling and
Validation, as prescribed for fully taking profit of automatic generation processes.

Phase 2 activity, UI Design and Validation, corresponds to the development
of a user interface model and of concrete look & feel elements (e.g. stylesheets).
It starts with the automatic generation of a UI model, wich can be later manually
refined and for which a set of style classes may be defined.

Implementation and Validation is the third and final process phase, and cor-
responds to the later iterations of the process. Although code is obtained in all
iterations of all phases, as a running prototype, the Implementation and Val-
idation phase is where the modeler is addressing it as the code for the final
application.

Each time a prototype or application is generated it is validated with the
stakeholders with the purpose of, in phase 1, validating the domain and use case

87

models, in phase 2, validating the UI model and style sheets, and in phase 3,
validating/testing the final application.

On each iteration of phases 2 and 3, the generated UI may be tuned by a
UI designer in two points of the process: after having generated an abstract
UIM, but before generating a concrete UI; and, after generating a concrete UI
in a XML-based UI description language (e.g.: XUL), which allows for the a
posteriori customization and application of style sheets.

The developer may refine the generated code, but the recommended practice
is to refine the DM and UCM models and act in the UI look & feel through
the development of style sheets. When this is not possible, it may also exist a
problem with the model transformation processes or with the code generation
process, used in the described activities.

This software development process must be seen as being framed within a
more broader industrial process that includes, as previous activities, the ones of
defining the transformation rules between the metamodels instances, and of con-
figuring code generation tools with an established architecture or target specific
platforms. In this broader process, the establishment of an architecture and the
selection of the target specific platforms must be addressed, in order to be able
to select from the pre-configured code generation tools that must exist in the
market.

This activity of establishing an architecture, and selecting final specific plat-
forms and the appropriate code generators has only to be finished before the
Implementation and Validation phase, because only there the final code is gen-
erated.

Figure 4.4: The way the core workflows take place over the process phases.

88

The presented development process can be related to the core software devel-
opment workflows, namelly Requirements, Analysis and Design, Implementation
and Test, as illustrated in figure 4.4.

4.3 Model Architecture

Each of the models referred to before (DM, UCM and UIM) is an instance of a
defined metamodel. Fig. 4.5 shortly illustrates the trace relations between the
UI metamodel (UIMM) and the domain model metamodel (DMM) and use case
metamodel (UCMM).

Figure 4.5: Excerpt of the conceptual metamodels and their relations.

When a user interface model is obtained from a DM and a UCM, its elements
are traced back to elements in those two models, e.g.:

• A Menu in the UI traces back to a Use Case (UC) Package in the UCM;

• a Menu Item traces back to a top-level use case in the UCM, i.e. a use case
that directly links to an actor;

• An Interaction Space may be traced back to a use case, which is typically
related to a base or derived domain Entity;

89

• An Action AIO may trace back to a CRUD or user-defined operation that
may be related to a use case.

Automatic model transformations will be addressed in chapter 5.
The proposed model architecture allows a platform independent system mod-

eling according to 3 views:

• a structural view, that is established by developing a domain model (DM);

• a functional view, which can be defined by constructing a use case model
(UCM); and,

• a user interface view, that may be defined through a user interface model
(UIM).

Figure 4.6 contextualizes the metamodel defined for this approach by dividing
it in three packages corresponding to the referred model views and relating them
to the UML and MOF.

Figure 4.6: Metamodel contextualization.

MOF is the meta-metamodel that provides the concepts for defining the UML
metamodel, which is stratified in language units used for defining compliance lev-
els. Compliance level 0 (L0) has a single language unit and is formally described
as the UML Infrastructure. The UML Infrastructure forms the package Core that
is shared between MOF and the UML metamodel. Level 1 (L1) adds language
units for use cases, interactions, structures, activities and actions, and level 2 (L2)
adds language units for state machine modeling and profiles. UML has as well
a level 3 (L3) compliance level that adds language units for information flows,
templates and model packaging [OMG09b].

90

The enriched Domain Model Metamodel (DMM) is partially merged with
UML L2, namely with the packages for structures, state machines and actions
language units, and this way it extends UML by incrementally adding features
to some of the UML L2 metamodel elements, specializing them, or adding new
metamodel elements.

The Use Case Metamodel (UCMM) is also merged with UML, namely with
the packages of the language unit for use cases.

The User Interface Metamodel (UIMM) is defined in conformance to the MOF
meta-metamodel and imports some features from the DMM, which enable model
integration.

The model architecture presented in this dissertation is, thus, aligned with
the UML and the MOF.

4.4 Metamodel for Domain Models

As already mentioned, the metamodel proposed in this dissertation is built upon
the UML metamodel, incrementally adding features to it through the “merge”
package dependency relation (refer to section 2.6). The elements of the UML
metamoldel relevant to the definition of the Domain and Use Case Metamodels
have been presented in section 2.5.

Besides classes (domain entities), attributes and relationships, a domain model
may contain the following elements:

• Class invariants: intra-object (over attributes of a single instance) or inter-
object (over attributes of multiple instances of the same or related classes)
constraints defined in OCL.

• User-defined operations: Operations defined in an Action Semantics-based
action language, supplementing the basic CRUD operations (Create, Re-
trieve, Update and Delete).

• Derived attributes: Attributes whose values are defined by expressions in
OCL, over attributes of self or related instances. A common special case is
a reference to a related attribute, using a sequence of dot separated names.

• Default values: Initial attribute values defined in a subset of OCL.

• Derived entities (views): Classes that extend the domain model with non-
persistent domain entities with a structure closer to the UI needs. Currently,
each derived class must be related to a target base class, and is treated
essentially as a virtual specialization of the base class, possibly restricted
by a membership constraint and extended with derived attributes.

91

• Triggers: Actions to be executed before, after or instead of CRUD opera-
tions, or when a condition holds within the context of an instance of a class.
By defining triggers, the modeller is able to modify the normal behaviour
of CRUD operations, or define generic business rules.

The metamodel package for enriched domain models is depicted in Figures 4.7
and 4.8. The reused UML elements are shaded, and among those, the ones that
have been modified, either by adding or specializing features, have only the name
compartment of the visual element shaded. In what follows, the modifications to
UML elements are explained, followed by the description of the DM metamodel’s
main concepts.

4.4.1 Modified UML Elements

The DM metamodel extends some UML constructs, as can be seen in Fig. 4.7.
The modified UML elements are Class (Entity), Property and Operation.

Class or Entity

It has been restricted to simple inheritance and is set to non-instantiable. Also,
it has been added an attribute, isNavigationRoot, that enables the identification
of an entry point for navigating in the structure. This is useful when generating
a UIM from the DM alone, without the development of a UCM.

Property

A new attribute has been added to Property (isIdent) to be possible to identify
entities’ properties that are used by the business user as an instance identification
or summarization structural feature.

Operation

The merge increment in the Operation class has turned possible to have, besides
operations that are user-defined in an Action Semantics-based action language,
the basic CRUD operations (Create, Retrieve, Update and Delete) that are con-
sidered to exist by default in every BaseEntity. A CRUD operation is a high level
transactional operation, whith the semantics of persisting, retrieving, updating
or deleting a BaseEntity instance from a platform independent instance collection
base (see section 4.4.3).

4.4.2 New Domain Metamodel elements

The DM metamodel introduces new concepts that extend the UML metamodel
and ease the purpose of constructing a complete and rigorous platform indepen-

92

Figure 4.7: Metamodel for defining Domain Models (structural features).

dent model. The new elements are BaseEntity, DerivedEntity, DerivedAttribute,
and DomainTrigger.

BaseEntity

A BaseEntity models a problem space persistable base concept in a platform
independent manner. A BaseEntity specializes the modified UML Class (Entity)
and inherits all its features, semantics and concrete notation.

DerivedEntity (View)

A DerivedEntity models an interesting view in the problem space (e.g. a business
view). A DerivedEntity inherits all the features, semantics and concrete notation
of the modified UML Class (Entity), and specializes it in order for it to be non-
persistible, and that all its properties are derived attributes. DerivedEntities are
non-persistent domain entities with a structure closer to the business domain,
like a business document, and so closer to the UI needs. A DerivedEntity must
target a BaseEntity that acts as the root for referencing derived attributes. It is
treated essentially as a virtual specialization of the target BaseEntity, possibly
restricted by a membership constraint and extended with derived attributes. A
Derived Entity may be distinguished from BaseEntities, in a domain model, by
having its name preceded by a slash in a concrete notation.

93

DerivedAttribute

A DerivedAttribute is an attribute that is calculated or copied from a related
entity. It inherits from the UML Property class and may be used within BaseEn-
tities and DerivedEntities. Its definition demands the specification of an Expres-
sion upon which the attribute’s value is calculated. The Expression may be the
declaration of a role path from the target entity to another related entity’s at-
tribute, or it may be the definition of an expression, in a subset of OCL, that
may perform some calculus or aggregation. A common special case is a reference
to a related attribute, using a sequence of dot separated role names ending with
a property name. The concrete notation of a derived attribute has, as defined by
UML, its name preceded by a slash.

Figure 4.8: Metamodel for defining Domain Models (behavioural features).

DomainTrigger

The DM metamodel includes constructs for defining domain triggers, which are
defined in the context of an Entity (see Fig. 4.8). By defining domain triggers,
the modeler is able to modify the normal behavior of CRUD operations, or define
generic business rules. A DomainTrigger inherits from the UML Trigger, but it
has only two possible kinds of events associated, namely:

• ChangeEvent: It is the UML ChangeEvent class but with the changeEx-
pression association end restricted to Expression type. In standard UML

94

Context
Class

Invariant

Entity Entity −>allInstances() −>forAll(x, y | x 6= y implies(not
x.isNavigationRoot or not y.isNavigationRoot))

DerivedEntity self.derivedAttribute = self.ownedAttribute

Table 4.1: Domain Metamodel elements’ new invariants.

it can be a ValueSpecification, that includes the possibility of defining an
OpaqueExpression, which promotes the definition of platform specific ex-
pressions (e.g. Java expressions) within a PIM, which is considered to be a
bad modeling practice [Fra03]. The ChangeEvent triggers a DomainTrigger
when the condition defined in the changeExpression holds.

• CRUDopCallEvent. It is a specialization of UML’s CallEvent, restricted
to CRUD operations, and with the possibility to intercept the call to an
operation before, after or instead of calling it. It provides a way of modifying
the default behavior of CRUD operations. A CRUDopCallEvent triggers
a DomainTrigger, before, after or instead of an identified CRUD operation
call, within the context of an instance of a class, enabling the reinforcement
of business rules.

By using OCL, Table 4.1 formalizes the invariants for the modified UML
features and for the new DM metamodel features. Only the constraints that
cannot be inferred from the presented diagrams and that are not already specified
in the standard UML are shown.

4.4.3 Action-Semantics-based actions language

As mentioned in section 2.5.1, citing [OMG09b], an actions concrete language
could provide high-level constructs that would combine lower-level actions. This
way, in this dissertation it is considered that the actions language provides con-
structs for:

• Creating and persisting entity instances, and simultaneously accept at-
tribute values that are modified in a transactional way, including association
end property values that link two instances of different or same entities;

• Updating persisted entity instances by accepting attribute/value pairs, also
in a transactional way, including properties linked to association ends;

• Retrieving an entity instances by searching all entity instances and applying
a filtering condition;

95

• Deleting an entity instance;

• Declaring triggers after, before or instead of CRUD operations.

Table 4.2 shows the correspondence between the high-level constructs we are
considering and the constructs provided by UML Action Semantics.

Proposed Action Language UML Action Semantics

Entity.create(att1 = val1, ...) CreateObjectAction + AddStructuralFea-
tureValueAction for each attribute + Cre-
ateLinkAction for each Entity property that is
an association end

Entity.retrieve(condition) Entity.allInstances−>select(condition)

instance.update(att1 = val1, ...) RemoveStructuralFeatureValueAction/
AddStructuralFeatureValueAction for each
attribute being updated

instance.delete() DestroyObjectAction

Table 4.2: Proposed action language constructs.

4.4.4 Example

Fig. 4.9 illustrates an example of a domain model that conforms to the presented
domain metamodel.

Class System is the navigation root (isNavigationRoot = True) for the spec-
ified entities. System aggregates base entities Book, Loan, Librarian and Bor-
rower, and derived entity (business view) ActiveLoan.

Note that some entities have attributes stereotyped with �ident�, which
means that they are used by the business users as a means to distinguish be-
tween entity instances.

Entity Loan has a user defined operation, returnBook, which has one input
parameter, sysDate, and yields no result. The operation body, not shown in the
picture, is specified by using an Action Semantics-like language (see sections 2.5.1
and 4.4.3), as follows:

Context Loan::returnBook(in sysDate: Date)
body: self.update(
effectiveReturnDate = sysDate,
status = LoanStatus.Inactive
)

The proof-of-concept tool, reported in chapter 6, only works with abstract
syntax, so the presented concrete syntax for operations body or domain triggers
is only an example language.

96

Figure 4.9: Domain model for a Library Management System (LibrarySystem).

Entity BookCopy has a derived attribute, title, defined by referencing Book’s
attribute title through the assotiation role bookData, from a bookcopy to its
related book.

Derived entity ActiveLoan targets the base entity Loan, and filters loans se-
lecting only the ones that have status Active. ActiveLoan has several derived
attributes defined by referencing remote attributes reachable through role chains
starting in the target entity, that is Loan. For instance, ActiveLoan’s attribute
title references the book title related to the active loan, through a role chain from
Loan to Book, which refers role bookCopy, that identifies the BookCopy instance
related to a given Loan, and then bookData, which refers to the Book instance
related to a given BookCopy instance.

Although not shown in the figure, invariant constraints and operations pre-
conditions could also be defined by using OCL, as for instance:

Context Book inv : self.title 6= “”

or,

Context BookCopy inv Copycodes are unique:
BookCopy −>forall(x, y | x 6= y implies x.copyCode 6= y.copyCode)

97

Again, as the proof-of-concept tool only works with abstract syntax, OCL is
only one of the concrete languages that could be used, but it seems as the most
appropriate choice, as all the approach builds around UML metamodel.

Also not shown in the example are domain triggers, which could also be
defined by using the operations body Action Semantics-like language (see sec-
tions 2.5.1 and 4.4.3). An example domain trigger, enforcing a business rule
stating that a fine must be created every time a lent book is returned after the
due date, could be defined as:

Context Loan trigger after update:
effect: if (self.effectiveReturnDate < self.dueDate)
Fine.create(
date = self.effectiveReturnDate,
value = 1,
borrower = self.borrower,
loan = self
)

4.5 Metamodel for Use Case Models

The metamodel package for use case models, shown in Figures 4.10 and 4.11,
specializes and extends the UML language unit for use cases [OMG09b]. As
mentioned before, a UCM can be defined in close connection with the DM, to
specify and organize the CRUD, user-defined or navigational operations over Base
or Derived Entities that are available for each actor. The definition of a UCM
also enables the use of several features, such as task-model-like relations, that
permit a fine tuning of the interaction within a use case. The data manipulated
in each use case is typically determined by the domain entity (base or derived)
and/or operation associated with it. Several constraints are posed on the types
of use cases and use case relationships that can be defined. The UCM metamodel
reused UML elements, present in Fig. 4.10 and 4.11, are shaded and, among those,
the ones that have been modified, either by adding or specializing features, have
only the name compartment of the visual element shaded. In what follows, the
modifications to UML elements are explained, followed by the description of the
UCM metamodel’s main concepts.

4.5.1 Modified UML Elements

The UCM metamodel extends some UML constructs, as can be seen in Figs. 4.10
and 4.11. The modified UML elements are UseCase, Extend and Operation.

98

Figure 4.10: Metamodel for Use Case Models (Use case relations).

UseCase

It is the UML UseCase with added attributes that enable a smooth integration
between a UCM and the respective DM. A UseCase may identify an entity class
(BaseEntity or DerivedEntity) from the DM. If a BaseEntity is identified, then
it is yet possible to restrict the admitted CRUD operations (Create, Retrieve,
Update, Delete) available within the use case, by associating only the allowed
CRUD operations to the UseCase. If entityCollection is set to true, the use
case involves listing instances from the associated entity, and in this case, if the
associated entity is a BaseEntity, it is possible to associate the use case to the
Update operation of an associated entity (see section 4.5.2).

If the modeler wants to associate to the use case a user defined operation,
then only one operation can be associated and the operation must be defined
within the context of the associated BaseEntity. See below the possible kinds of
use cases.

99

Extend

It’s a merge increment to the standard UML extend relation between two use
cases, to which one can associate a link name.

Operation

As already described for the DMM in the previous subsection.

4.5.2 Kinds of Use Cases

Although the metamodel doesn’t explicitly differentiate them, one can distinguish
two categories of use cases, which are not subclasses of UseCase in the metamodel,
but rather state patterns that can be identified in use cases:

• Independent use cases: use cases that can be initiated directly, and so can
be linked directly to actors (that initiate them) and appear as application
entry points. An independent use case satisfies:

not Extend.allInstances() −>exists(ext | ext.extension = self) and
not Include.allInstances() −>exists(inc | inc.addition = self) and
Relationship.allInstances() −>exists(rel | rel.relatedElement.include(self) and
rel.relatedElement −>exist(el | el.oclIsKindOf(Actor)))

• Dependent use cases: use cases that can only be initiated from within other
use cases, called source use cases, because they depend on the context set by
the source use cases; the dependent use cases extend or are included by the
source ones, according to their optional or mandatory nature, respectively:

(Extend.allInstances() −>exists(ext | ext.extension = self) or
Include.allInstances() −>exists(inc | inc.addition = self)) and
not Relationship.allInstances() −>exists(rel | rel.relatedElement.include(self) and
rel.relatedElement −>exist(el | el.oclIsKindOf(Actor)))

The types of independent use cases that can be defined in connection with
the DM are:

• List Entity: view the list of instances of an entity (usually only some at-
tributes, marked as identifying attributes, are shown)

(self.entityCollection = true and self.entity −>notEmpty())

• Create Entity: create a new instance of an entity

(self.entityCollection = false and self.entity−>notEmpty() and self.associatedOp−>forall(op
| op.oclIsKindOf(CreateOp)))

• Call StaticOperation: invoke a static user-defined operation defined in some
entity; this includes entering the input parameters and viewing the results,
when they exist.

100

self.entity −>notEmpty() and
self.associatedOp −>size()=1 and
self.associatedOp −>forall(op | op.IsStatic())

The types of dependent use cases that can be defined in connection with the
DM are:

• Retrieve, Update and/or Delete Entity: view (retrieve) or edit (update or
delete) an instance of the entity previously selected (in the source use case)

(self.entityCollection = false and
self.entity −>notEmpty() and
self.associatedOp −>forall(op | self.entity.ownedOperation.includes(op)) and
self.associatedOp−>forall(op | op.oclIsKindOf(RetrieveOp) or op.oclIsKindOf(UpdateOp)
or op.oclIsKindOf(DeleteOp)))

• Call InstanceOperation: invoke a user-defined operation over an instance of
an entity previously selected (in the source use case); this includes entering
the input parameters and viewing the results, when they exist

(self.entityCollection = false and
self.entity −>notEmpty() and
self.associatedOp −>forall(op | self.entity.ownedOperation.includes(op)) and
self.associatedOp −>forall(op | not op.oclIsKindOf(CRUDop)))

• List Related Entity: view the list of (0 or more) instances of the target
entity that are linked to a previously selected source object (in the source
use case); in case of ambiguity, in this and in the next use case types, the
link type (association) must also be specified

(self.entityCollection = true and
(Include.allInstances() −>exists(inc | inc.addition = self and Association.allInstances
−>exists(a | a.memberEnd.includes(self.entity) and a.memberEnd.includes(inc.includingCase.entity)))
or
Extend.allInstances() −>exists(ext | ext.extension = self and Association.allInstances
−>exists(a | a.memberEnd.includes(self.entity) and a.memberEnd.includes(ext.extendedCase.entity)))
))

• Create Related Entity: create a new instance of the target entity type and
link it to a source object previously selected (in the direct or indirect source
use case)

(self.entityCollection = false and
self.entity −>notEmpty() and
self.associatedOp −>forall(op | self.entity.ownedOperation.includes(op)) and
self.associatedOp −>forall(op | op.oclIsKindOf(CreateOp)) and
Extend.allInstances() −>exists(ext | ext.extension = self and Association.allInstances
−>exists(a | a.memberEnd.includes(self.entity) and a.memberEnd.includes(ext.extendedCase.entity)))
)

• Retrieve, Update and/or Delete Related Entity: view (retrieve) or edit
(update or delete and unlink) the instance of the target entity type that
is linked with a source object previously selected (in the direct or indirect
source use case)

101

(self.entityCollection = false and
self.entity −>notEmpty() and
self.associatedOp −>forall(op | self.entity.ownedOperation.includes(op)) and
self.associatedOp−>forall(op | op.oclIsKindOf(RetrieveOp) or op.oclIsKindOf(UpdateOp)
or op.oclIsKindOf(DeleteOp)) and
Extend.allInstances() −>exists(ext | ext.extension = self and Association.allInstances
−>exists(a | a.memberEnd.includes(self.entity) and a.memberEnd.includes(ext.extendedCase.entity)))
)

• Select Related Entity: select (and return to the source use case) an instance
of the target entity that can be linked to a source object previously selected
(in the source use case)

(self.entityCollection = true and
(Include.allInstances() −>exists(inc | inc.addition = self and Association.allInstances
−>exists(a | a.memberEnd.includes(self.entity) and a.memberEnd.includes(inc.includingCase.entity)))
or
Extend.allInstances() −>exists(ext | ext.extension = self and Association.allInstances
−>exists(a | a.memberEnd.includes(self.entity) and a.memberEnd.includes(ext.extendedCase.entity)))
) and
self.associatedOp −>forall(op | self.entity.ownedOperation.includes(op)) and
self.associatedOp −>forall(op | op.oclIsKindOf(LinkOp)))

• Select and Link Related Entity: select an instance of the target entity and
link it to the source object previously selected (in the source use case)

(self.entityCollection = true and
(Include.allInstances() −>exists(inc | inc.addition = self and Association.allInstances
−>exists(a | a.memberEnd.includes(self.entity) and a.memberEnd.includes(inc.includingCase.entity)))
or
Extend.allInstances() −>exists(ext | ext.extension = self and Association.allInstances
−>exists(a | a.memberEnd.includes(self.entity) and a.memberEnd.includes(ext.extendedCase.entity)))
) and
self.associatedOp −>forall(op | self.entity.ownedOperation.includes(op)) and
self.associatedOp −>forall(op | op.oclIsKindOf(LinkOp)))

• Unlink Related Entity: unlink the currently selected instance of the target
entity (in the source use case) from the currently selected source object (in
the source use case)

(self.entityCollection = true and
(Include.allInstances() −>exists(inc | inc.addition = self and Association.allInstances
−>exists(a | a.memberEnd.includes(self.entity) and a.memberEnd.includes(inc.includingCase.entity)))
or
Extend.allInstances() −>exists(ext | ext.extension = self and Association.allInstances
−>exists(a | a.memberEnd.includes(self.entity) and a.memberEnd.includes(ext.extendedCase.entity)))
) and
self.associatedOp −>forall(op | self.entity.ownedOperation.includes(op)) and
self.associatedOp −>forall(op | op.oclIsKindOf(UnlinkOp)))

Operations are user-defined in an Action Semantics-based action language,
and supplement the basic CRUD instante operations (Create, Retrieve, Update
and Delete) that are defined by default in every BaseEntity.

4.5.3 Use Case relations

The defined metamodel for use cases comprises the following use case relations:

102

Figure 4.11: Metamodel for Use Case Models (use case associations to DM
classes).

• Extension: As aforementioned it corresponds to the standard UML use case
extension mechanism with one added meta-attribute.

• Inclusion: It corresponds to the standard UML use case inclusion mech-
anism. The including use case has full access to the included use case
features, in particular the DM features associated to the use case.

• Inheritance: It is the standard UML use case inheritance mechanism. A use
case that inherits from another use case, inherits all its features (included
use cases, associated DM features, etc.).

• Enabling: The proposed UCM metamodel extends the UML with use case
relations that recall HCI’s task models [PMM97]: enable; deactivate; and
choice. The enabling relation may be defined between two use cases in-
cluded within another use case that sets a common context. Only when the
enabling use case is performed, the enabled use case may be performed by
the actor accessing them.

• Deactivation: The deactivation relation may be defined between two use
cases included within another use case that sets a common context. The
execution of the deactivating case disables the deactivated one.

103

• Choice: The choice relation enables the definition of alternative use cases.
By performing one of the choice related use cases, the actor disables all the
others.

Fig. 4.12 shows the types of relationships that can be defined among use cases
constrained by DM’s entities relations.

Task-model-like relations between use cases allow to further increase the ex-
pressive power of the proposed approach, and thus amplify the flexibility of the
automatically generated UIs, giving the modeler more autonomy in relation to
what can be modeled within a use case model. Figure 4.13 shows the syntax for
use case model’s enable and deactivate relations.

Figure 4.14 shows the possible options for choice relations’ syntax.

From the defined metamodel, one can see that a use case may be associated
to a base or derived entity, an entity property, an entity operation or a use
case variable. This allows the modeler to define use cases that are at different
abstraction levels. For example, one can define an enable relation between use
cases associated to an entity and to allowable CRUD operations, but it is also
possible to have an enable relation between use cases associated to entity features
stating, for instance, that some operation can only be performed after seting the
value of a given entity property or use case parameter.

In fact, a use case can be innerly defined by including use cases, whether it
is associated to a domain base or derived Entity or not. The use case that is
defined at the expenses of included cases associated to entity properties or use
case variables is called an aggregator use case. Just like with include and extend
relations, the concrete notation for task model like relations makes use of proper
stereotyping of use case relations with “enable”, “deactivate” or “choice”. At its
lowest abstraction level, this kind of use cases, together with the properly stereo-
typed use case relations, allow the modeler to define which set of attributes must
be set first, and which depend on other attributes, or are deactivated by setting
other attributes. At this modeling level, it is possible to associate an included
use case to a class’ attribute, user-defined operation, or CRUD operation, or it
can be a use case variable, which is a kind of use case that may be associated to
an operation parameter accessible from the aggregator use case. It is allowed to
have an aggregator UC, associated or not to any class, and have several included
UCs associated to different entity classes. The entity, operation(s), and link type
(when needed) associated to each use case are, as explained before, specified by
using tagged-values.

Figure 4.15 shows an example of using task-model-like relations for detail-
ing a use case, by relating included use cases associated to entity attributes or
operations.

104

Figure 4.12: Possible types of relationships among use cases for different domain
model fragments (note: aggregations and compositions impose, on the UCM,
similar constraints as simple associations).

105

Figure 4.13: Enable and deactivation relations between two use cases.

Figure 4.14: Choice relation between two or more use cases.

4.5.4 Example

Fig. 4.16 illustrates an example of a use case model that conforms to the presented
use case metamodel.

The example shows us two actors with different system usage profiles, and so
different available functionality on the system. The Librarian directly accesses
four use cases: “List Books”, “List Loans”, “Add Loan” and “Register New
Loan”. The first two are List Entity use cases and, from each of them, it is
possible to add or edit the selected item through CRUD entity use cases (e.g.:
“Add Loan”, “Edit Book”).

Use cases “Add a new Book” and “Edit Book” include a list of related book-
copy entities (“List BookCopy”), from where it is possible to add and edit book-
copies related to the selected book.

Add and Edit Loan use cases include “Select BookCopy” and “Select Bor-
rower” use cases, which enable the user to select a bookcopy and a borrower
when creating or updating a loan.

Use case “Register New Loan” acts as an entry point for the user to choose
between “Register Loan to existing Borrower” and “Register Loan to new Bor-
rower”. These use cases extend the first one. “Register Loan to existing Bor-

106

Figure 4.15: Use case innerly defined through included use cases associated to
lower-level domain model elements (attributes and operations), which are related
among each other through task-model-like relations.

Figure 4.16: Partial use case model (UCM) for the Library Management System.

rower” includes a use case to select a borrower from a list of existing borrowers,
and use case “Register Loan to new Borrower” includes use case “Create Bor-
rower”. Both use cases (“Select Borrower” and “Create Borrower”) enable use
case “Create Loan”, which is also present by inheritance of included use cases.

In order to keep the integrity between the domain model and the use case
model, a set of tagged values, corresponding to the meta-attributes of UCMM,

107

Use case Entity Associated Oper-
ation(s)

Entity Collec-
tion

List Books Book True
Add a new Book Book Create False
Edit Book Book Update False
List BookCopies BookCopy True
Add BookCopy BookCopy Create False
Edit BookCopy BookCopy Update, Delete False
List Loans Loan True
Add Loan Loan Create False
Edit Loan Loan Update False
Select Borrower Borrower Update True
Select BookCopy BookCopy Update True
View Details Book Retrieve False

Table 4.3: Entities and operations associated (via tagged values) with the use
cases in Fig. 4.16.

shall be defined. Table 4.3 shows the tagged values for the presented LibrarySys-
tem example.

4.6 Metamodel for User Interface Models

The metamodel package for User Interface models (UIMM) is depicted in Fig-
ures 4.17 and 4.18. The UIMM is based on MOF and imports some of the
elements defined in the DMM.

The top level element from which every element in the UIMM inherits from
is AbstractInteractionObject, or AIO. There are two types of AIO: Complex-
AIO and SimpleAIO. The first models elements that contain other elements, and
the latter models elementary objects used within complexAIO elements. In this
section, the main UIMM elements are introduced.

4.6.1 Main metamodel elements

InteractionSpace

An InteractionSpace represents an abstract object that, at PIM level, is a UI
container where interaction occurs. It serves the purpose of interfacing the in-
teraction between the user and the system. An InteractionSpace is composed of
InteractionBlocks and may be directly instantiable or it may be specialized as:

• ActorMainSpace: May be used to model an interaction space with a menu
bar. A menu bar is composed of menus, each of which may comprise several

108

Figure 4.17: Metamodel for User Interface Model.

menu items, from where navigation to other interaction spaces is possible.
It aims to be the entry point in the application, for a given actor.

• InputParametersSpace: It is an interaction space that serves the purpose
of collecting the values of an operation’s parameters, and than trigger the
operation passing the parameters to it.

• OutputResultSpace: It is an interaction space that aims to notify the user
about the success or failure of an operation execution. If notifying the
success of the operation, and if it returns a result, then the result may also
be shown to the user.

• ItemSelectionSpace: Interaction space that may include a ViewList or ViewRe-
latedList block, and is used to return a reference to the item in the selected
line.

• ViewItemDetailsSpace: Interaction space that must include a ViewEntity
block, and forces all its DataAIO elements to be read-only.

109

InteractionBlock

An InteractionBlock is a container of SimpleAIOs. It may be directly instantiable
or it may be specialized as:

• ViewEntity: Block, associated to an entity in the domain model, that may
contain DataAIOs, intended for inputting (navigation through a ToCreate-
Instance navivation ActionAIO), displaying (navigation through a ToView-
Instance navivation ActionAIO, or marked as readOnly) or editting (naviga-
tion through a ToUpdateInstance navigation ActionAIO) attribute values.

• ViewList: Block, associated to an entity in the domain model, that may
contain DataAIOs, intended as columns in an output only list of attribute
values.

• ViewRelatedEntity: This interaction block has a structure similar to a
ViewEntity block, but it must be in an interaction space containing also
a ViewEntity. The ViewEntity must be associated to an entity that has a
to-one relation to the entity associated to the ViewRelatedEntity.

• ViewRelatedList: This interaction block has a structure similar to a ViewList
block, but it must be in an interaction space containing also a ViewEntity.
The ViewEntity must be associated to an entity that has a to-many relation
to the entity associated to the ViewRelatedEntity. If isCollapsable is true,
the ViewRelatedList must have a collapse/expand feature.

Figure 4.18: Metamodel for User Interface Model - InteractionBlock relations and
subtree, at the left, and ActionAIO subtree, at the right.

110

DataAIO

A SimpleAIO may be a DataAIO or an ActionAIO. DataAIOs are typically asso-
ciated to entity attribute properties in the DM, provided they are included within
an interaction block specialization associated to a domain entity. Alternatively, a
DataAIO may be associated to an operation parameter, for inputting a value, or
it may be just associated to a domain model Type. The latter case may be used
when willing to show the result of an operation execution, or when inputting a
value to a variable that may be bound to an operation parameter afterwards. If
associated to a domain attribute, a DataAIO may be intended for input a value,
display a value or edit a value (display and allow modification). When associated
to an attribute, the type must be equal to the type of the attribute. In particu-
lar, when the type is an enumeration, the concrete notation of the UIM will be
different, just as the code that may be generated from it.

ActionAIO

ActionAIOs may be CallDomainOperations, like the call of a CRUD or user
defined operation, Navigation operations, that allow navigation between inter-
action spaces, or UIOperations, that allow action over UI elements (eg.: closing
a window). A CallDomainOperation ActionAIO may be:

• A CallUserDefOp, that is associated to a user defined operation in the
Domain Model;

• A specialization of the abstract meta-class CallCRUDOp:

– CallCreateOp, that must be associated to DMM::CreateOp.

– CallRetrieveOp, that must be associated to DMM::RetrieveOp.

– CallUpdateOp, that must be associated to DMM::UpdateOp.

– CallDeleteOp, that must be associated to DMM::DeleteOp.

– CallLinkOp, that must be associated to DMM::UpdateOp.

– CallUnLinkOp, that must be associated to DMM::UpdateOp.

By using OCL, Table 4.4 shows the invariants defined over the UIMM.

4.6.2 User Interface Model concrete representation

The above described metamodel for defining models of the user interface specifies
the abstract syntax of the UI modeling language. If the UIM were to be generated
only as an intermediate artifact towards the final concrete UI, this would be
enough. But, if one wants the modeler to be able to build from scratch a UIM,

111

Context
Class

Invariant

ViewEntity,
ViewList,
ViewRelat-
edEntity,
ViewRelat-
edList

((not self.sAIO.entAtt −>isEmpty()) implies self.entity
= self.sAIO.entAtt.entity) AND ((not self.sAIO.operation
−>isEmpty()) implies self.entity = self.sAIO.operation.entity)

DataAIO (not self.entAtt −>isEmpty()) implies self.type = self.entAtt.type

Table 4.4: UI Metamodel invariants.

and to modify an automatically generated UIM, it is needed a concrete language
syntax for defining a UIM.

This way, as the UML support for user interfaces is not effective [Nun01,
Pin00], the adopted syntax is Larry Constantine’s Canonical Abstract Prototypes
(CAP). Refer to section 2.8.1 and [Con03].

InteractionSpace and InteractionBlock

Figure 4.19 shows the mapping between InteractionSpace and InteractionBlock
abstract elements and its corresponding concrete canonical notation.

Figure 4.19: Canonical abstract notation for interaction spaces and interaction
blocks.

From the metamodel, one can see that an interaction space is composed of
interaction blocks. All interaction spaces have the same canonical concrete repre-
sentation, while for interaction blocks this is not true. In fact, there are interac-
tion bloks where contained DataAIOs are interpreted as fields, and others where
DataAIOs are interpreted as data columns. For the first ones, ViewEntity and
ViewRelatedEntity, the concrete notation is as for general InteractionBlocks. In
the latter case, ViewList and ViewRelatedList, the concrete notation is as shown
in Fig. 4.19.

An ActorMainSpace is an interaction space that may comprise a MenuBar.
Fig. 4.20 shows the concrete notation for MenuBar, Menu and MenuItem. Other

112

Figure 4.20: Canonical abstract notation for Menus.

interaction spaces, although having the same concrete notation, have strong con-
straints over the elements they may comprise. Besides ActorMainSpace, this is
the case of ItemSelectionSpace, ViewItemDetailsSpace, and InputParametersS-
pace and OutputResultSpace, which are addressed below (see subsection “Other
specializations of InteractionSpace”).

DataAIO

The concrete canonical notation mapped from DataAIOs distinguishes the ones
that are only for data input, from the ones intended for editing and from output-
only data AIOs (see Fig. 4.21).

Figure 4.21: Canonical abstract notation for DataAIOs.

There is also a concrete notation for automatic system notification messages,
that are used by the system for notifying about the success or not of an operation
execution.

ActionAIO

Fig. 4.22 shows the concrete canonical elements for different types of ActionAIOs.

Other specializations of InteractionSpace

Besides the aforementioned interaction spaces, there are also the following ones,
which may be considered as “pre-built” UI model constructs:

113

Figure 4.22: Canonical abstract notation for ActionAIOs

• ItemSelectionSpace: It is a “pre-built” UI model element that returns a
reference to the selected item to the block to which it returns (see Fig. 4.23).

• ViewItemDetailsSpace: It is a “pre-built” UI model element that receives
an instance reference and displays the values of its attributes (see Fig. 4.23).

• InputParametersSpace and OutputResultSpace: Are “pre-built” UI model
elements associated to a domain model operation (see Fig. 4.24). An Input-
ParametersSpace is intended to accept the parameters values for passing to
a DM operation, invoke it and wait for its completion, and then display a
notification of success or failure, about the operation execution, along with
the operation’s result, in case one exists, through an OutputResultSpace.

Further notes about the abstract UIM to CAP mapping

When building a concrete domain model or use case model, the modeler will need
to assign values to the meta-attributes, that is the attributes of the elements in
the metamodel. In the DM and the UCM, this is done through tagged-values.

114

Figure 4.23: Canonical abstract notation for “pre-built” interaction spaces.

Also when building a concrete UIM, the modeler will need to assign values to
the UI meta-attributes. For this to be possible, Canonical Abstract Prototypes’
tools would need to be extended with tagged-values features.

4.6.3 Example

Figures 4.25 and 4.26 illustrate an example of an abstract and concrete user inter-
face model, respectively, conforming to the presented user interface metamodel.

Fig. 4.26 represents part of the UIM elements of fig. 4.25. Indeed, they repre-
sent a possible partial UIM for the LibrarySystem example that has accompanied
us.

Each actor has its own unique main space, that corresponds to the actor’s
entry point when interacting with the application. The Librarian actor main
space, in the figures, is composed of a MenuBar with two Menu elements. Each
menu element has an ordered collection of menu items, from where the actor may
navigate to other interaction spaces.

From the example abstract UIM (Fig. 4.25), one can see that the librarian may
navigate to the “Add Loan” interaction space by following one of two possible
navigation paths:

• Directly from his/her main space, by selecting menu item ”Add Loan” (also
represented in the concrete UIM in fig. 4.26); or,

115

Figure 4.24: Canonical abstract notation for “pre-built” interaction spaces.

• By selecting “List Loans” in the menu, which leads him to a ListLoans
interaction space (represented in the abstract UIM). The ListLoans inter-
action space comprises a ViewList interaction block and two navigation ac-
tion AIOs (AddLoan: ToCreateInstance and EditLoan:ToUpdateInstance).
By selecting the AddLoan actionAIO he will navigate to the “Add Loan”
interaction space.

The “Add Loan” interaction space comprehends three interaction blocks: a
ViewEntity block, that allows the input of Loan’s attributes dueDate and effec-
tiveReturnDate (although this last one should be left unfilled), and two ViewRe-
latedEntity blocks, for displaying the identifying attributes of the related Book-
Copy and Borrower instances, each one comprising a navigation actionAIO for
navigating to ItemSelectionSpace instances that enable creation or modification
of the related instances.

4.7 Conclusions

An interactive system development process has been defined, based on a system
specification according to three points of view: structural view (domain model);
functional view (use case model); and, user interface view (user interface model).
The proposed process generates a UIM from the DM and the UCM.

The metamodels for the DM, UCM and UIM have been formalized, and a
concrete notation for UIMs has been defined.

116

Figure 4.25: Partial UIM abstract syntax elements for the Library Management
System.

In the next chapter, a set of model transformation rules will be defined, en-
abling the UIM generation from the DM alone or from an integrated pair of
models comprising a UCM and a DM.

The defined metamodels allow the modeler to use advanced features and to
make use of a combination of elements only restricted by the metamodels con-
straints (including the ones that are inherited from the UML metamodel). Not
all of the possible element patterns will have a defined transformation rule in
the next chapter. This means that not all patterns from the DM and UCM
will generate elements in the UIM, because no transformation rule is defined for
them. Hence, if a modeler wants to take advantage of the M2M transformation
processes he will need to be more restrictive than what the metamodels impose.

117

Figure 4.26: Partial UIM concrete abstract prototypes for the Library Manage-
ment System.

118

Chapter 5

Model-Transformation Rules

This chapter presents the mapping rules between metamodel elements that allow
the model-to-model transformations that enable the generation of a use case model
from a domain model and a user interface model from domain and use case models.
The rules are presented together with a running example.

5.1 Introduction

The metamodels for specifying a data-intensive forms-based software application,
presented in the previous chapter, allow the development of a rigorous interac-
tive system model. In fact, a modeler may use those metamodels to specify
an interactive system even if he isn’t thinking of following the recommended
development process or of using automatic generation processes (refer to sec-
tion 4.2). Nevertheless, if the modeler is thinking of following the recommended
development process, and thus make use of automatic model transformation and
code-generation processes, then he will need to keep the developed models fully
integrated, and will need to be more restrictive in what concerns to some of the
constraints imposed to the domain and use case models.

In this chapter, the transformation rules defined between the metamodels,
that allow a model-to-model automatic transformation between metamodel in-
stances, will be addressed.

As explained in section 4.1, the automatic interactive application generation,
from domain and use case models, is based on a two-step approach. In the first
step, a UI model is generated by applying a set of model transformation rules
to the domain model alone, DM2UIM model-transformation process, or to the
integrated domain and use case models, DM+UCM2UIM model-transformation
process (recall Fig. 4.1).

After the model-transformation process (see DM2UIM or DM+UCM2UIM in
Fig. 5.1), which generates a default UI model for the interactive application being
modeled, a second step is undertook by putting into action a target platform de-
pendent model-to-code (M2C) generation process. To this M2C process the DM

119

Figure 5.1: General approach to UI generation.

and the UIM are inputted, in order to generate the final code for the application
or prototype.

In the scope of this PhD dissertation, a proof-of-concept tool has been devel-
oped (refer to chapter 6), in which the M2C process generates UI descriptions in
XUL [Moz], business logic actions in Javascript, and data persisting structures
in RDF.

The next sections address the transformation rules that configure processes
DM2UIM and DM+UCM2UIM. It is to notice that the defined automatic trans-
formation rules are more restrictive than what is possible to model by using the
presented metamodels.

This chapter presents the transformation rules defined between:

• The Domain Metamodel and the UI Metamodel (DM2UIM), that enable a
model-to-model transformation between a domain model and a user inter-
face model;

• The Domain Metamodel plus the Use Case Metamodel and the UI Meta-
model (DM+UCM2UIM), that allow a model-to-model transformation be-
tween a core system model, comprising a DM and a UCM, to a user interface
model;

• The Domain Metamodel and the Use Case Metamodel (DM2UCM), that

120

allow a model-to-model transformation between a domain model and a use
case model, in one of the early iterations of the process.

The model transformation strategy (refer to section 2.4.3) is based on the
incremental application of transformation rules that generate or modify elements
in the target model (the UIM). Each rule is defined with a left-hand-side (LHS),
that defines a pattern in the source model and within the previously generated
target model elements, and a right-hand-side (RHS) that specifies the elements of
the target model that shall be generated or modified, together with their relation
to elements in the source model. In the next subsections, the elements of the LHS
are shaded, and the ones of the RHS are not. Moreover, at least one element of
the LHS has a bold border, meaning that it is the pattern root, that is where the
pattern matching engine will start its search, before trying to match the rest of
the LHS elements.

The transformation rule execution mechanism searches the source model, and
the already generated target model elements, for the LHS pattern. When a
pattern matching occurs, the elements of the RHS are generated or modified
according to the specified relationships to elements in the source model.

Together with a more formal presentation, a running example will be used to
help unveiling the mapping rules defined. The transformation rules’ presentation
structure is as follows:

• Pattern and mappings: A pattern (LHS) of the source metamodel ele-
ments and of the previously generated target model elements, is presented,
through a UML-like graphical notation and OCL constraints, together with
mappings to the target metamodel elements being created or modified
(RHS). The notation enables the specification the same classe playing dif-
ferent roles in the defined rule.

• Abstract syntax: It will be shown an object model illustrating the meta-
models’ instances for a part of the running example. Instances of DMM,
UCMM or UIMM will be shown when relevant, illustrating the transforma-
tion relation being presented.

• Concrete syntax: The concrete syntax of the example will be shown for the
DM, UCM and UIM (using CAP as presented in sections 2.8.1 and 4.6.2).

• Textual explanation: A textual explanation of each rule will be made, sup-
ported by the aforementioned running example.

Before closing the chapter, some conclusions are drawn from the results ob-
tained.

121

5.2 Domain Model to User Interface Model Trans-

formation Rules

This section presents the rules defined to transform different elements of the do-
main model into appropriate user interface elements and their underlying func-
tionality.

Table 5.1 summarizes the main transformation rules for generating a UIM/UIP
from a domain model. These were partially previously addressed in [dCF08], and
shortly describe what one would like to have generated in a UI.

As the defended approach comprises the generation of an intermediate PIM
level user interface model, the next sections address the transformation rules be-
tween the domain metamodel (DMM) and the UI metamodel (UIMM) following
the presentation structure introduced before.

When the UIM is generated solely from the domain model, a special class with
metamodel attribute “isNavigationRoot” set to true has to be created and linked
to the domain classes that should correspond to the application entry points. A
more flexible approach, starting from DM and UCM is explained in section 5.3.

As in the previous chapter, the LibrarySystem example will help better il-
lustrate the transformation rules from a domain model (DM) to a user interface
model (UIM). Recall Fig. 4.9, which depicts our Library System domain model.

In order to be able to identify the application user interface entry point,
the DM is rooted in a class with the isNavigationRoot meta-attribute set to
True (System in our example). This is a special class, with no attributes, that
aggregates the base or derived entities that shall be directly accessed by the user.
Each aggregation from System to a base entity class produces a window with a
list of instances of the appropriate class, and each aggregation from System to
a derived entity class produces a window with a list of instances of the derived
class’ target entity.

The rules for the M2M process DM2UIM, which transforms elements in the
DM into elements in the UIM, are the following, and its application follows the
presented order:

1. DM2UIM01: Transform single base entities and primitive type attributes

2. DM2UIM02: Transform enumerated type properties

3. DM2UIM03: Transform inherited properties

4. DM2UIM04: Transform derived entities and derived attributes

5. DM2UIM05: Transform associations, aggregations and compositions

6. DM2UIM06: Transform user defined operations

7. DM2UIM07: Transform the navigation root

122

DM feature Generated UI feature (UIM/UIP)
Base domain
entity

Form with an input/output field for each attribute, and buttons and
associated logic for the CRUD operations.

Inheritance A field for each inherited attribute in the form generated for the
specialized class.

Derived at-
tribute

Calculated output-only field.

Default value Initial field value.
Derived entity
(view)

Form with an input/output field for each attribute of the target class,
an output-only field for each derived attribute, and buttons for the
CRUD logic (over the target class).

To-many asso-
ciation, aggre-
gation or com-
position

UI component in the source class form, with a list of the identifying
attributes (explained in section 4.2) of the related instances of the
target class, and buttons for adding new instances and for editing or
removing the currently selected instance.

To-one associ-
ation, aggrega-
tion or compo-
sition

Group box in the source class form, with a field for each identifying
attribute of the related instance. If the related instance is not fixed by
the navigation path followed so forth, then a button is also generated
for selecting the related instance.

Enumerated
type

Group of radio buttons for selecting one option.

User-defined
operation

Button and associated logic, within the form corresponding to the
class where the operation is defined. Forms are also generated for
entering the input parameters and displaying the result, in case they
exist. The operation pre-condition determines when the button is
enabled.

Class invariant Validation rule that is called when creating or updating instances of
the class.

Event-Action
Trigger

Logic that is executed before, after or instead of the CRUD operation
that it refers to.

Condition-
Action Trigger

Logic that is executed every time the condition holds, after creating
or updating an instance of the class where the trigger is defined.

Table 5.1: DM to UIM/UIP transformation rules.

Note that elements of the target model, generated in previously applied rules,
may be part of the LHS in ulterior rules applications.

5.2.1 DM2UIM01: Transform single base entities and prim-
itive type attributes

For each non-abstract base entity class with no subclasses, it is created an Inter-
actionSpace with a ViewEntity block having DataAIOs, each one corresponding

123

to an entity property with a primitive type, and ActionAIOs for the CRUD op-
erations on the entity. This rule is defined in figure 5.2.

For instance, for the class Book (see Figs. 4.9 and 5.2), it is created an interac-
tion space with a ViewEntity, having a DataAIO for each entity attribute. This
corresponds, in the UI prototype, to a form with a label and an input field for
each entity attribute (attribute access modes are not being taken into account).

A base entity is assumed to have CRUD operations, as mentioned before (see
chapter 4). This way, although the modeler doesn’t specify the CRUD operations
for a given base entity, they are assumed in the abstract syntax, and so are
transformed as illustrated in Fig. 5.2.

The association from BaseEntity to CreateOp, RetrieveOp, UpdateOp and
DeleteOp is made through the composite relation from Entity to Operation
(recall the DMM in Figs. 4.7 and 4.8), meaning that the four CRUDop sub-
classes, represented in the figure, belong to the same collection property (role),
namely ownedOperation. The same is true for the composite association between
V iewEntity and the collection of DataAIOs, and CreateOp, UpdateOp and
DeleteOp, in the RHS of the rule. They are all members of the InteractionBlock’s
collection property in the composition from InteractionBlock to SimpleAIO (re-
call the UIMM in Figs. 4.17 and 4.18).

The multiplicities in the rules definition are the multiplicities of the pattern
and of the generated elements, and so may be more restrictive than the ones
defined for the metamodel.

The represented attributes, in each class, include the relevant inherited at-
tributes. For instance, DataAIO has attributes isCalculated and isReadOnly,
and inherits name and label. It also inherits isDisabled, which is not represented
in the figure because in DM2UIM model transformation process all generated
SimpleAIOs are enabled (isDisabled = False).

5.2.2 DM2UIM02: Transform enumerated type proper-
ties

Enumerated types are defined in the model as classes with an “enumeration”
stereotype, and attributes of an enumerated type are class properties that are the
association end of an association to an “enumeration” class. Fig. 5.3 illustrates
the transformation rule for enumerated type entity attributes: a DataAIO is
added to the view entity corresponding to the base domain entity in the LHS,
and links to the domain property that generates it. To try to keep the figure
simple, some attributes are not represented, but they have the same treatment
as the preceding rule.

In Fig. 5.4, the concrete UI elements generated by the M2C process, and that
have origin in a class relation to an “enumeration” class, can be seen in the Book-
Copy’s form window. After the M2M transformation from the relation between

124

Figure 5.2: DM2UIM01: Mapping rule for transforming a single base entity,
assuming CRUD operations, into an UI interaction space with convenient simple
AIOs.

125

Figure 5.3: DM2UIM02: Transforming an enumerated type attribute to UI model
elements.

class BookCopy and the enumerated type BookCopyStatus, explained above, the
M2C process generates a list of radio buttons with the enumeration fields, in the
BookCopy form, from the DataAIO that links to the domain enumerated type.
The role name is used as an attribute, and one of the enumerated fields may be
selected by the user through a radio button.

126

Figure 5.4: Partial BookCopy Form generated from the BookCopy interaction
space, showing the elements generated from the relation to the BookCopyStatus
enumerated type.

5.2.3 DM2UIM03: Transform inherited properties

In the proposed approach, only single inheritance is currently supported for au-
tomatic generation, and a transformation rule is defined only for the leaf classes
of the inheritance hierarchy. Each leaf class inherits all the attributes and con-
straints from its ancestor classes, and so the DataAIOs corresponding to the
inherited attributes are added to the previously generated InteractionSpace and
ViewEntity block. Fig. 5.5 illustrates this transformation rule.

For searching for the LHS elements, first all base classes with no subclasses are
searched. Then, for each one of those base classes, all the respective superclasses
are collected, and all their properties are mapped to DataAIOs in the ViewEntity
of the initial class.

The rule, represented in Fig. 5.5, depicts two BaseEntity class roles. One
that is played by classes with no subclasses (on the right), and the other that is
played by the first classes’ superclasses at any level (on the left).

In our example, Librarian inherits all attributes defined in LibraryUser, and so
these are transformed to new DataAIOs placed inside the Librarian view entity,
in the Librarian interaction space (see example section at the bottom of fig. 5.5).

5.2.4 DM2UIM04: Transform derived entities and de-
rived attributes

Derived entities, or views, are transformed in a way similar to base entities.
A derived entity also generates an interaction space with a view entity block.
The difference is on the fact that derived entities only have derived attributes.
Only DataAIOs generated from attributes referencing attributes of the target
base entity are editable. All other attributes’ DataAIOs are read-only. Fig. 5.6
illustrates this transformation rule.

Derived attributes existing in base entities are transformed similarly to at-

127

Figure 5.5: DM2UIM03: Adding inherited properties to a leaf class’ correspond-
ing view entity, previously generated.

tributes of derived entities. Fig. 5.7 illustrates the transformation rule for derived
attributes in base entities. Derived attributes in base entities allways generate
read-only DataAIOs.

5.2.5 DM2UIM05: Transform associations, aggregations
and compositions

For each relationship between two classes, information about related objects
and/or links to related objects are generated in each of the corresponding in-
teraction spaces. The elements generated depend on the kind of relationship
(composition, aggregation and simple association have slightly different treat-
ment), its multiplicity (to-one and to-many are treated differently), mandatory

128

Figure 5.6: DM2UIM04a: Transforming a view, or derived entity, into UIM
elements.

129

Figure 5.7: DM2UIM04b: Transforming derived attributes of base entities.

ends, and the navigation path followed.

DM2UIM05a: “To-many” dependent relations

Figure 5.8 illustrates the transformation rule for generating UIM elements for
a “to-many” dependent relation. The dependence arises from the fact that an
entity instance on the other side of the relation is mandatory, meaning that one
and only one instance, on the “one” side, may collaborate in this relation (one-
to-many relation). The “to-many” side of the one-to-many relation generates a
ViewRelatedList block, which is added to the interaction space generated from the
entity on the “one” side (the one that is mandatory), and shows the identifying
attributes of the related instances of the class in the “many” side (the instances
that belong to the collection property at the end of the relationship). From that
ViewRelatedList, appropriate ActionAIOs turn possible to create new related
instances, edit an existing instance (update or delete) or simply view all attributes

130

of a related instance.

Figure 5.8: DM2UIM05a: Transforming a to-many dependent relation to UI
model elements.

131

The information that is shown about related objects is the value of the identi-
fying attributes (marked with the “ident” stereotype that correspond to the ones
having a value of True in the isIdent meta-attribute). If no attribute is marked
with the “ident” stereotype, then all the attributes are considered identifying
attributes. Role names are used to name the interaction block that groups the
identifying attributes. If a role name is not provided, it is used the class name,
instead.

The ToCreateInstance and ToUpdateInstance action AIOs that belong to
the V iewRelatedList being generated must lead to an interaction space with
a V iewEntity related to the same BaseEntity to which V iewRelatedList is
related. This is assured by the following constraint, which is not in the figure
due to the lack of space:

Context ViewRelatedList inv: self.baseEntity = self.toCreateInstance.interactionSpace.baseEntity
and
self.baseEntity = self.toUpdateInstance.interactionSpace.baseEntity

In Fig. 5.9 the UI concrete elements generated from the DM classes Book
and BookCopy, and from the composition relationship between them, can be
seen. The Book window presents a list of related BookCopy instances, and a set
of buttons for editing (viewing or updating) or removing a previously selected
instance, or adding a new instance. The BookCopy is accessed from the Book
window (to edit or create a BookCopy instance), and presents the related book
data identified by title and author, which are identifying attributes (“ident”) in
class Book.

Figure 5.9: Example forms generated from the LibrarySystem DM and generated
UIM, illustrating a one-to-many composition association.

In this and the next rules, for keeping the figure simple, some attributes that
were already represented in previous figures, are omitted, as they have the same
treatment as in the preceding rules.

132

The “to-one” side of the relation is addressed in subsection “DM2UIM05c:
To-one relations”.

DM2UIM05b: “To-many” independent relations

In the case of an independent “to-many” relationship, where there isn’t a one and
only restriction on either of its ends, as is the case of the one-to-many association
between Shelf and Book, in our example, the UI elements generated are somewhat
different. Figure. 5.10 illustrates the transformation rule for generating UIM
elements for a “to-many” independent relation. In this case, elements in the
“many” side of the relation don’t have to be associated to an element in the “one”
side of the relation, and so the elements to be linked may already exist without
being in this relation. As can be seen in fig. 5.10, a ViewRelatedList block is
added to the interaction space corresponding to the entity in side “one”, showing
the identifying attributes of the related instances of the class in the “to-many”
side. That list shows the currently related instances, and allows the navigation
to an items selection space for modifying the selection of related instances.

The difference between compositions and aggregations or simple associations
is only visible in the value of the isCollapsable meta-attribute in the generated
ViewRelatedList block. In the final UI, this means that listing blocks gener-
ated for compositions are allways expanded (isCollapsable = False), and listing
blocks generated for aggregations and associations are, by default, collapsed, but
may be expanded by the user (isCollapsable = True).

DM2UIM05c: “To-one” relations

In the “to-one” direction of a “one-to-many” relation (Fig. 5.11), a ViewRelate-
dEntity block is added showing the identifying attributes of the related instance
of the class in the “to-one” side. It is also provided a Navigation ActionAIO that
leads to an ItemSelectionSpace that enables the selection or the modification of
the existing selection of a related instance. This is done no matter if the “one”
side is mandatory or not.

In the UI final code, generated by M2C from the UIM and the DM, when one
is editing an object that has a related “to-one” object that is not in the navigation
path followed so forth, the user can change the related instance through a Select
button. This button gives access to a pop-up window with a list of instances
(identified by their “ident” attributes), from which one can be selected. For
example, the class Loan is the “many” side of two one-to-many relations. One
can navigate to Loan from BookCopy or Borrower or one can navigate directly to
Loan from the System root class (recall Fig. 4.9). Fig. 5.12 (a) shows the window
that appears to the user when navigating to Loan directly from the System class.
In this case, both the borrower that makes the loan and the lent book copy are not
previously defined when the user arrives to the Loan form, and both are selectable

133

Figure 5.10: DM2UIM05b: Transforming a to-many independent relation to UI
model elements.

134

Figure 5.11: DM2UIM05c: Transforming a to-one relation to UI model elements.

135

from the Loan window. Fig. 5.12 (b) shows the window that appears when
navigating from BookCopy to Loan. In this case, a given BookCopy instance
has been previously selected, and thus the “Select BookCopy” button doesn’t
appear in the Loan window, and the field that identifies a book copy shows the
referenced book copy. Similarly, when navigating from a borrower instance, the
“Select Borrower” button wouldn’t appear and the fields that identify a borrower
would display the associated borrower.

Figure 5.12: (a) Window Loan that is shown when navigating directly to an
instance of class Loan. (b) Window Loan, which is shown when navigating from
a BookCopy instance to an instance of class Loan.

Many-to-many associations or aggregations

Many-to-many associations or aggregations are treated as two “to-many” inde-
pendent relations, and so the rule in Fig. 5.10 is applied twice, one in each
direction.

5.2.6 DM2UIM06: Handling user defined operations

User defined operations (see rule in Fig. 5.13) generate a Navigation action AIO,
which leads to an input parameters space, for accepting the operation’s param-
eters, which in turn, when submitted, calls the domain entity operation, waits
for its completion, and then navigates to an operation’s output result space that
shows the operation’s result, if any, and a notification message informing about
the success or not of the operation execution.

As before, some attributes are omitted for simplifying the figure.

136

Figure 5.13: DM2UIM06: Transforming an user defined operation to UI model
elements.

In the LibrarySystem example, a user defined operation appears in entity
Loan, and in fig. 5.13 one can see that two interaction spaces are generated (an
InputParametersSpace and an OutputResultSpace) and an ActionAIO is added

137

to the ViewEntity in the interaction space corresponding to the base entity that
has the user defined operation.

5.2.7 DM2UIM07: Transform the navigation root

When the UIM is generated solely from the domain model, which is the case in
the model-to-model process DM2UIM, it is needed that one, and only one, class
is identified as navigation root. The rule, illustrated in Fig. 5.14, shows what is
generated from the navigation root, namely an ActorMainSpace is generated as
an entry point in the system’s user interface, and each aggregation relation from
the root navigation class to other entities gives origin to menu items within a
unique menu in the generated ActorMainSpace.

In the LibrarySystem example, this transformation rule generates menu items
for BookCollection, BorrowerCollection, LoanCollection, among others.

5.2.8 Handling constraints

We can identify two kinds of business or domain constraints that may be specified
in the domain model: structural constraints, and non-structural constraints. An
example of the former is the multiplicity of the attributes, and of the latter, are
OCL constraints. Each kind of constraints may be further sub-divided into intra-
object constraints, applied to attributes within the same object, and inter-object
constraints, which may apply to attributes of different objects and/or classes.

In the defended approach, constraints are not handled by the UIM gener-
ator, but only by the final code generator, when generating the UI prototype
from the DM and the UIM. The code generator handles intra- and inter-object
constraints by generating data entry validation functions, which are called every
time a “Create/Update” button is pressed in the appropriate form. Constraints
may be specified, in the domain model, by using an OCL-like abstract language.
Constraint expressions may have relational and logical operators, attribute ref-
erences, constants, etc. Recall subsection 4.4.4 for examples of invariant and
precondition OCL constraints.

5.2.9 Handling Domain Triggers

Just like with constraints, and with the algorithmic part of user defined opera-
tions, domain triggers are also not handled by the UIM generator, but only by
the final code generator. The code generator will inject the trigger actions inside
the functions generated for the CRUD operations. The code is injected before,
after or instead of the code of the CRUD operation depending on the type of trig-
ger. See subsection 4.4.4 for the example of a trigger using the proposed actions
language.

138

Figure 5.14: DM2UIM07: Transforming the navigation root entity and its rela-
tions to other entities into UIM elements.

5.3 Domain and Use Case Integrated Models to

User Interface Model Transformation Rules

To better allow the configuration of system functionality and enable its differen-
tiation by actor, the approach presented in this dissertation allows the definition

139

of a use case model (UCM) in close connection with the domain model. This al-
lows the modeler to define and organize the CRUD, user-defined or navigational
operations over base or derived domain entities that are available for each actor
(user role). The data manipulated in each use case is determined by the domain
entity and/or operation associated with it. Several constraints are posed on the
types of use cases and use case relationships that can be handled automatically,
as addressed in chapter 4.

The meta-attributes, as entity, operation(s), and link type (when needed)
associated to each use case, are specified by using tagged-values.

Table 5.2 summarizes the rules for generating UI elements from the UCM and
the DM. These were partially previously addressed in [dCF09].

UCM feature Generated UI feature (UIM/UIP)
Actor Button in the application start window, linking to the

actor’s main window.
Use Case Package Menu in the actor’s main window, with a menu item

for each use case that belongs to the package and is
directly linked to the actor.

Use Case of type List
Entity or List Related
Entity

Form that displays the full list of instances or the list
of related instances of the target entity, with buttons
for the allowed operations (according to the depen-
dent use cases). Only the identifying attributes are
shown.

Use Case of type Select
Related Entity or Se-
lect and Link Related
Entity

Form that displays the list of candidate instances and
allows selecting one instance. Only the identifying
attributes are shown.

Use Case of type
CRUD Entity or
CRUD Related Entity

Form that displays the object attribute values,
with buttons and functionality corresponding to the
CRUD operations allowed. In the case of a related in-
stance, the identifying attributes of the source object
are shown but cannot be edited.

Use Case of type
Call User-Defined
Operation

Forms for entering and submitting input parameters
and presenting output parameters, when they exist.

Extend relationship Button in the form corresponding to the base use case
that gives access to the extension.

Include relationship If the included use case is of type ”List...”, it is gen-
erated a sub-window. Otherwise, it is generated a
button in the source use case.

Table 5.2: UCM to UIM transformation rules.

A refinement of the Library System example will now be used to illustrate the

140

transformation rules from a domain model (DM) and a use case model (UCM) to
a user interface model/prototype (UIM/UIP). The constructed DM is the same as
in the previous section (refer to Fig. 4.9). Such model could have been developed
in several iterations; an executable prototype would have been automatically
generated and tested at the end of each iteration.

After having a partial or complete DM, the modeler might also develop a
UCM. Fig. 4.16 illustrates an extract of a UCM that could have been developed
for this system. Table 4.3 shows the entity types and operations associated (via
tagged values) with some of the use cases.

The rules for the model-to-model process of DM+UCM2UIM, which is driven
by use cases and transforms elements in both the UCM and DM into elements of
the UIM, are the following, and its application is made in the presented order:

1. DM+UCM2UIM01: Transform actors, use case packages and links to di-
rectly accessible (independent) use cases

2. DM+UCM2UIM02: Transform directly accessible “List Entity” use cases

3. DM+UCM2UIM03: Transform directly accessible “CRUD Entity” (Create)
use cases

4. DM+UCM2UIM04: Transform “CRUD Entity use cases” (Create, Re-
trieve, Update or Delete), accessible through an extension

5. DM+UCM2UIM05: Transform “List Related Entity” use cases, accessible
through an inclusion

6. DM+UCM2UIM06: Transform “CRUD related Entity use cases” (Create,
Retrieve, Update or Delete), accessible through an extension

7. DM+UCM2UIM07: Transform “Select (one) Related Entity” use cases,
accessible through an inclusion

8. DM+UCM2UIM08: Transform Select and Link (several) Related Entity
use cases

9. DM+UCM2UIM09: Transform User defined operation use cases

10. DM+UCM2UIM10: Transform Use Case inheritance and specialized use
cases, rooted in a directly accessible use case

11. DM+UCM2UIM11: Transform enabling, deactivation and choice relations
use cases

For a description of the aforementioned kinds of use cases, refer to sec-
tion 4.5.2.

141

5.3.1 DM+UCM2UIM01: Transform actors, use case pack-
ages and links to directly accessible (independent)
use cases

Figure 5.15: DM+UCM2UIM01: Transforming actors, use case packages, and
directly accessible use cases.

Each actor originates an ActionAIO element in the application initial Inter-
actionSpace, and an actor’s main space, which is accessed through the actor’s
selection navigation AIO in the initial space (see Fig. 5.15). In our example,
after the M2M and M2C processes, the application start window is generated
with two buttons for actor selection, “Librarian” and “Borrower”. For each use
case package where an actor has directly accessible use cases, a menu is gener-

142

ated in that actor’s main window, having a menu item available for each directly
accessible use case. For example, the menu generated from the package “Manage
Books” (see Fig. 5.15), has menu item “List Books” generated from the directly
accessible use case with the same name.

The rule in Fig. 5.15 doesn’t generate an interaction space for the directly
accessible use cases, as it stops in the menu items that will serve as access points
to the interaction spaces that are generated by the application of the following
rules.

5.3.2 DM+UCM2UIM02: Transform directly accessible
“List Entity” use cases

To be subject to automatic M2M transformation, “List Entity” use cases must
be directly accessible from actors. Every use case of type “List Entity” is re-
lated to a base or derived entity in the domain model, and for each of these use
cases the model transformer generates an interaction space with a ViewList block
displaying a full list of existing instances (see Fig. 5.16).

In our example, “List Books” is a List Entity use case from which the “List
Books” interaction space has been generated.

The rule in Fig. 5.16 also generates a link from the previously generated menu
items to the interaction space, provided that both trace back to the same directly
accessible use case.

5.3.3 DM+UCM2UIM03: Transform directly accessible
“Create Entity” use cases

Each use case of type “Create entity”, which is a use case that targets an en-
tity and a Create operation on that entity, must be directly accessible from an
actor and generates an interaction space with a ViewEntity block displaying
the attributes’ values, with actionAIOs for the CRUD operations allowed (see
Fig. 5.17).

As an independent use case, that is a use case for which a context has not
been previously set, “CRUD entity” use cases are only able of creating entity
instances.

In our example, a “Create entity” use case is, for instance, use case “Add a new
Book”, which has associated tagged values Entity = “Book” and associatedOp
= “Create” (see Table 4.3).

143

Figure 5.16: DM+UCM2UIM02: Transforming use cases of type “List Entity”.

5.3.4 DM+UCM2UIM04: Transform “CRUD Entity” use
cases (Create, Retrieve, Update or Delete), accessi-
ble through an extension

Each use case of type “List entity” may be extended with a “CRUD Entity”
use case, of which a “Create Entity” use case is a special case. “CRUD Entity”
use cases target the same entity as the extended “List Entity”, and a CRUD
operation on that entity. If the operation is other than a Create operation, then
the use case is dependent from the context set by the “List entity” use case.

A use case of type “CRUD entity”, targeting the same entity as the “List
entity” use case it extends, generates an interaction space with a ViewEntity

144

Figure 5.17: DM+UCM2UIM03: Transforming a “Create Entity” use case.

145

Figure 5.18: DM+UCM2UIM04: Transforming a “CRUD Entity” use case.

146

block displaying the attributes’ values, with actionAIOs for the CRUD operations
allowed (see Fig. 5.18).

As a dependent use case, an “Update” or “Delete entity” use case operates
on the instance selected in the “List Entity” use case.

In our example, a “CRUD entity” use case is, for instance, use case “Edit
Book”, which has associated tagged values Entity = “Book” and associatedOp
= “Update”, “Delete” (recall Table 4.3). “Edit Book” extends use case “List
Books”.

5.3.5 DM+UCM2UIM05: Transform “List Related En-
tity” use cases, accessible through an inclusion

Use cases of type “List Related Entity” are a kind of dependent use cases, and
thus need that an entity instance is previously set, from which related instances
may be listed. For that reason, a relation must exist between the entities of the
two use cases related by an inclusion.

Just like with “List Entity” use cases, a “List Related Entity” use case is re-
lated to a base or derived entity in the domain model, and the model transformer
generates a list displaying the related instances of the target domain model’s
entity.

Fig. 5.19 shows the rule for transforming a “List Related Entity” use case.
In the interaction space of the including use case, the model transformer adds
a ViewRelatedList block that lists the instances of the entity associated to the
included use case that are related to the instance selected in the including use
case.

Use case “List BookCopies”, in the LibrarySystem example, included in use
case “Edit Book”, is, then, an example of a “List Related Entity” use case. In
this example, a Book is previously chosen or is created, setting the context for
the next list related use case, that is use case “List BookCopies”, which, in turn,
is responsible for listing the book copies that are related to the book instance
that is set in the context, that is the one that is being edited.

5.3.6 DM+UCM2UIM06: Transform “CRUD related En-
tity” use cases (Create, Retrieve, Update or Delete),
accessible through an extension

Fig. 5.20 shows the transformation rule for use cases of type “CRUD related
entity”. This is another type of dependent use cases, which must have another
use case that sets an instance context. This way, a “CRUD related entity” use
case must extend a “List Related Entity” use case, and generates an interaction
space displaying the attributes values, with ActionAIOs for the CRUD operations
allowed. In our example, a CRUD related entity use case is, for instance, use

147

Figure 5.19: DM+UCM2UIM05: Transforming UC inclusion that leads to a “List
Related Entity” use case.

148

Figure 5.20: DM+UCM2UIM06: Transforming “CRUD Related Entity” use
cases.

case “Edit BookCopy”, which targets entity “BookCopy” and has associatedOp
= “Create”, “Update”, “Delete” (see Fig. 5.21).

5.3.7 DM+UCM2UIM07: Transform “Select (one) Re-
lated Entity” use cases, accessible through an inclu-
sion

Use cases of type “Select Related Entity” are another kind of dependent use
cases. “Select Related Entity” use cases also need that an entity instance is

149

Figure 5.21: Example of “CRUD Related Entity” use case transformation
(DM+UCM2UIM06).

previously set, from which a related instance may be accessed. For that reason,
in the domain model, a “to-one” relation must exist between the entities of the
two use cases related by an inclusion.

Fig. 5.22 shows the rule for transforming a “Select Related Entity” use case.
In the interaction space of the including use case, the model transformer adds
a ViewRelatedEntity block that shows the identifying attributes of the instance
related to the one in the including use case.

From the ViewRelatedEntity, a navigation action AIO leads to an ItemSelec-
tionSpace where a list of all instances of the related entity are shown, and from
where one instance can be selected to be linked to the context instance set in the
including use case.

In the LibrarySystem example “Select BookCopy” and “Select Borrower” are
use cases of type “Select Related Entity”, where an independent instance of
BookCopy or Borrower, respectively, must be associated to an instance of Loan.

150

Figure 5.22: DM+UCM2UIM07: Transforming a use case of type “Select Related
Entity”.

151

5.3.8 DM+UCM2UIM08: Transform “Select and Link
(several) Related Entity” use cases

“Select and Link Related Entity” use cases are also dependent use cases, and so
need that an entity instance is previously set, from which related instances may be
accessed. For that reason, an independent “to-many” relation must exist between
the entities of the two use cases related by an inclusion (recall Fig. 4.12 for the
possible types of use cases for different domain model entities relationships).

Fig. 5.23 shows the rule for transforming a “Select and Link Related Entity”
use case. In the interaction space of the including use case, the model trans-
former adds a ViewRelatedList block that shows the identifying attributes of the
instances related to the one that set the context in the including use case.

From the ViewRelatedList, a navigation action AIO leads to an ItemSelec-
tionSpace where a list of all instances of the related entity are shown, and from
where several can be selected to be linked to the context instance set in the
including use case.

Another action AIO, in the included ViewRelatedList, allows for the unlinking
of selected related instances.

5.3.9 DM+UCM2UIM09: Transform User defined oper-
ation use cases

A “Call User Defined Operation” use case generates a CallUserDefOp action AIO,
in the previously generated Interaction space corresponding to the entity where
the operation is defined, and an InputParametersSpace, for entering parameters,
and an OutputResultSpace, for showing the operation’s result, if one exists (see
Fig. 5.24).

In our example, this situation appears in Loan. Class Loan defines operation
returnBook, with an input parameter, that is ultimately transformed to a button
in the Loan form window, and a form for entering the operation’s parameters.
Since this operation, defined using an Action Semantics-like abstract language,
returns no result, an output form is generated with no results, only to inform
that the operation is complete. When the operation returns, the entity form is
refreshed to be able to show data modified by the operation in the instance’s
state.

5.3.10 DM+UCM2UIM10: Transform Use Case inheri-
tance and specialized use cases, rooted in a directly
accessible use case

Use case inheritance is subject to automatic M2M transformation in the scope of
the DM+UCM2UIM process, only if it appears in directly accessible use cases.

152

Figure 5.23: DM+UCM2UIM08: Transforming a use case of type “Select and
Link Related Entity”.

153

Figure 5.24: DM+UCM2UIM09: Transforming a use case of type “Call User
Defined Operation”.

154

Figure 5.25: DM+UCM2UIM10: Transforming use case inheritance.

In this case, navigation AIOs are generated for accessing the interaction spaces
of the inheriting use cases, or sub-use-cases. In this sense, sub-use-cases are
treated as if they were extensions of the super-use-case. But, there is indeed
a different treatement, as sub-use-cases inherit all inclusions and extensions of
the super-use-case, and also all meta-attributes, namelly the ones that provide
an integration with the DM. This way, each sub-use-case originates a different
interaction space, which is then treated as any other use case. This implies that
for each sub-use-case, the previously addressed transformation rules are applied,
and if a pattern matching occurs the corresponding transformation takes place.

5.3.11 DM+UCM2UIM11: Transform enabling, deacti-
vation and choice relations use cases

Figure 5.26 shows the transformation rule for an enable relation. This rule applies
to enable relations between use cases that are included in one, and the same, use
case. In this context, when the enabling use case ends, the second one must be
enabled. This is information usefull for the M2C process, when it is generating
final code. In the UIM, the relevant information is registered by relating the

155

Figure 5.26: DM+UCM2UIM11: Transforming use case enabling to UIM.

SimpleAIO elements involved, through relation “enables”.

Similarly, a deactivation relation in the UCM originates a “disables” relation
between simpleAIOs in the UIM.

With regard to choice relations, if they involve only two use cases, each one is
related to the other through a “disables” relation. If the choice is between several
use cases (see Fig. 4.14), they are treated similarly, two at a time.

156

5.4 Default Use Case Model generation from

Domain Model

As stated before, and according to the proposed approach (refer to chapter 4) a
default UCM may be derived from the DM facilitating the initial construction of
the UCM. The default use case model has only one actor that has access to all
the system functionality, and may serve as the basis for producing the intended
use case model by creating new actors and eliminating or redistributing functions
among actors.

Figure 5.27: Partial default use case model generated from the DM in Fig. 4.9.

The transformation rule execution mechanism works the same way as for
DM2UIM and DM+UCM2UIM model-transformation processes. When a pattern
matching occurs, on the LHS, the elements of the RHS are generated or modified
according to the specified relationships to elements in the source model. The LHS
is the source model, which, in this case, is formed by a domain model instance

157

and, eventualy, by previously generated use case model elements.
This way, the rules for the M2M process DM2UCM, which transforms ele-

ments in the DM into elements in the UCM, are the following, and its application
follows the presented order:

1. DM2UCM01: Transform root navigation entity and its aggregation rela-
tions to other entities

2. DM2UCM02: Transform directly accessible base entities to CRUD UCs

3. DM2UCM03: Transform directly accessible derived entities to CRUD UCs

4. DM2UCM04: Transform ”to-many” relations from dependent instances to
CRUD related UCs

5. DM2UCM05: Transform ”to-many” relations from independent instances
to Select Related UCs

6. DM2UCM06: Transform ”to-one” relations from dependent or independent
instances to Select Related UCs

7. DM2UCM07: Transform user defined operations

5.4.1 DM2UCM01: Transform root navigation entity and
its aggregation relations to other entities

Starting from the navigation root entity (class with the isNavigationRoot meta-
attribute set to True) an actor is created, linking to List Entity use cases, one
for each base or derived entity with an aggregation from the navigation root.
Fig. 5.27 partially shows the use case model that is generated by the DM2UCM
model-to-model transformation process, from the domain model shown in fig-
ure 4.9. Figure 5.28 illustrates this transformation rule.

5.4.2 DM2UCM02: Transform directly accessible base en-
tities to CRUD UCs

Each List Base Entity use case, already generated, shall have extensions for
CRUD Entity use cases (Add and Edit). In Fig. 5.27, see, for example, use
case “List Books” that links to the only actor and is extended by “Add Book”
and “Edit Book”. Figure 5.29 shows this transformation rule.

5.4.3 DM2UCM03: Transform directly accessible derived
entities to CRUD UCs

Also, each List Derived Entity use case, already generated, shall have extensions
for CRUD (Edit) Entity use cases (see rule in Fig. 5.30).

158

Figure 5.28: DM2UCM01: Transforming root navigation entity and its aggrega-
tion relations to other entities to UCM elements.

5.4.4 DM2UCM04: Transform “to-many” relations from
dependent instances to CRUD related UCs

A CRUD Entity use case shall include use cases that list related entity instances.
Fig. 5.31 shows the rule for generating CRUD related use cases from “to-many”
relations having a dependent instance, that is “one-to-many” relations where the
entity at the one side is one and only one.

159

Figure 5.29: DM2UCM02: Transforming directly accessible base entities to
UCM’s CRUD UCs.

In Figs. 5.31 and 5.27, see, for example, use case “Edit Book”, which includes
use case “List Related bookCopies”, which, in turn, is extended by use cases for
adding and editing a BookCopy instance.

160

Figure 5.30: DM2UCM03: Transforming directly accessible derived entities to
UCM’s CRUD UCs.

5.4.5 DM2UCM05: Transform “to-many” relations from
independent instances to Select Related UCs

Fig. 5.32 shows the rule for generating CRUD related use cases from “to-many”
relations having an independent instance, that is “one-to-many” relations where
the entity at the one side is optional, or “many-to-many” relations.

161

Figure 5.31: DM2UCM04: Transforming “to-many” relations from dependent
instances.

5.4.6 DM2UCM06: Transform “to-one” relations from
dependent or independent instances to Select Re-
lated UCs

A CRUD Entity use case shall include use cases that allow the selection of one
related entity, when the UC’s entity is “to-one” related to the same or another
entity (see rule in Fig. 5.33).

162

Figure 5.32: DM2UCM05: Transforming “to-many” relations from independent
instances.

In our example, Fig. 5.27, this is the case of use cases “Select Borrower” and
“Select BookCopy”, which extend use cases “Edit Loan” and “Add Loan”.

5.4.7 DM2UCM07: Transform user defined operations

Fig. 5.34 depicts the rule for generating a use case associated to a user defined
operation. This kind of use case is included in CRUD use cases, or CRUD related

163

Figure 5.33: DM2UCM06: Transforming “to-one” relations from dependent or
independent instances to Select Related UCs.

use cases, associated to the entity containing the operation definition.

5.5 Conclusions

This chapter addressed the model-to-model transformation rules for deriving a
default UIM from the DM alone, DM2UIM transformation process (section 5.2),

164

Figure 5.34: DM2UCM07: Transforming user defined operations to UCM.

and from the integrated UCM and DM, DM+UCM2UIM transformation process
(section 5.3). Seven declarative transformation rules have been defined for the
DM2UIM process, and eleven declarative transformation rules have been defined
for the DM+UCM2UIM transformation process.

Also the model-to-model transformation rules for deriving an initial UCM
from a DM, DM2UCM transformation process, have been addressed (section 5.4).
Seven declarative transformation rules were defined for process DM2UCM.

The UIM derivation transformation rules are implemented imperatively in a
proof-of-concept tool developed in C#, and presented in chapter 6.

165

166

Chapter 6

Implementation and Validation

This chapter presents the implementation of a proof-of-concept tool, two case stud-
ies, and discusses results obtained. Before ending, the chapter assesses the satisfac-
tion of the proposed research goals.

6.1 Introduction

In order to be able to validate the approach, proposed in chapters 4 and 5, to the
model-driven development of data-intensive interactive applications, the following
sections address the implementation of a proof-of-concept tool and present the
results of two case studies.

6.2 Proof-of-concept tool implementation

The proof-of-concept tool has been developed in C], and works with abstract
model representations. It takes a domain model (DM) and optionally a use
case model (UCM), asks the user for the model-to-model transformation pro-
cess that shall be applied, DM2UIM or DM+UCM2UIM, applies the appropriate
transformation rules, thus obtaining a UIM, and then applies a model-to-code
transformation process that takes the DM and the UIM and generates XUL UI
descriptions, Javascript for verifying constraints and executing operations and
triggers, and RDF for persisting instances. The generated interactive application
prototype runs with xulrunner 1 or Firefox 2.

The tool works with the metamodels abstract syntax, not having to transform
the DM and UCM concrete syntax, that can be mostly obtained through any ordi-
nary UML modeling tool, to the respective abstract notation. This way, we don’t
deviate from the focus of this dissertation, and the conformance of the models to
the metamodels is guaranteed, as it is needed to explicitly create instances of the

1https://developer.mozilla.org/en/XULRunner
2https://developer.mozilla.org/en/XUL

167

metamodel’s classes in order to produce a model abstract representation. All the
metamodel concepts and concept relationships are present in the implemented
tool.

6.2.1 Tool architecture

The prototyped tool is structured in the following components, which are also
illustrated in Fig. 6.1:

• DM Metamodel

• UCM Metamodel

• UIM Metamodel

• DataComponent

• M2Mtransformations

• codeGen (M2C)

• MainApp

The first three components have the definition of the metamodels for the DM,
the UCM and the UIM, respectively.

The DataComponent library has the definition of a metamodel for data re-
sources, which enables the ulterior code generation for data persistence with RDF
(Resource Description Framework).

The M2Mtransformations component is responsible for the model-to-model
transformations that lead to the automatic generation of a UIM. It has two main
methods that provide DM2UIM and DM+UCM2UIM transformation processes
(see Fig. 6.1).

The codeGen component is in charge of the model-to-code transformations
from the available models to the final code (see below “Architecture of the gen-
erated prototype”).

Finally, the MainApp is simply a console application for orchestrating the
process flow.

Domain model specification

The specification of the domain model to feed the prototyped tool is made by
directly constructing the objects structure, as can be seen in the excerpts from
the LibrarySystem case study (refer to section 6.4), that are presented below,
together with the domain model for the enhanced LibrarySystem that is presented
in Fig. 6.3.

168

Figure 6.1: Proof-of-concept prototyped tool’s components.

The way to create a new domain model is to directly instantiate a umlDomainModel
class:

DomainModel umlDomainModel = new DomainModel();

And then add all desired entities, as shown below for base entities Book and
BookCopy:

umlDomainModel.UMLDomainClasses.Add(new BaseEntity("Book",

new Property(Enum_AttributeStereotype.Ident,

Enum_AccessModifier.public_access,

Enum_UMLType.String, "isbn"),

new Property(Enum_AttributeStereotype.Ident,

Enum_AccessModifier.public_access,

Enum_UMLType.String, "title"),

new Property(Enum_AttributeStereotype.Ident,

Enum_AccessModifier.public_access,

Enum_UMLType.String, "author"),

new Property(Enum_AccessModifier.public_access,

Enum_UMLType.Integer, "edition"),

new Property(Enum_AccessModifier.public_access,

Enum_UMLType.Integer, "year")));

Note that BookCopy has a derived attribute that references the corresponding

169

book title.

List<string> pathToTitle = new List<string>();

pathToTitle.Add("bookData");

pathToTitle.Add("title");

//

umlDomainModel.UMLDomainClasses.Add(new BaseEntity("BookCopy",

new Property(Enum_AttributeStereotype.Ident,

Enum_AccessModifier.public_access,

Enum_UMLType.String, "copyCode"),

new DerivedAttribute(Enum_AttributeStereotype.Ident,

Enum_AccessModifier.public_access,

Enum_UMLType.String, "bookTitle", pathToTitle)));

Associations between base entities are accomplished as shown below for the
composition association between classes Book and BookCopy:

umlDomainModel.UMLClassRelationships.Add(

new UMLRelationship(umlDomainModel.Find("Book"),

umlDomainModel.Find("BookCopy"),

"bookData",

"bookCopies",

Enum_Multiplicity.one_to_many,

Enum_TypeOfRelation.composition));

Base entity Loan:

umlDomainModel.UMLDomainClasses.Add(new BaseEntity("Loan",

new Property(Enum_AccessModifier.public_access,

Enum_UMLType.String, "dueDate"),

new Property(Enum_AccessModifier.public_access,

Enum_UMLType.String, "effectiveReturnDate")));

Has a user defined operation returnBook(. . .), that has one parameter, sysDate:

List<Parameter> parametros = new List<Parameter>();

parametros.Add(new Parameter("sysDate", Enum_UMLType.String));

//

SequenceOfActions bodyActions = new SequenceOfActions();

bodyActions.actionsBlock.Add(new Assign(new StateExp("effectiveReturnDate"),

new ParameterExp("sysDate", typeof(Int32))));

bodyActions.actionsBlock.Add(new Assign(

new AssociationEndCallExp("Loan", "status"),

new AttributeCallExp(umlDomainModel.Find("LoanStatus"), "Inactive")));

ApplyFunctionAction invoKeLoaNxPersist = new ApplyFunctionAction("xpersist();");

invoKeLoaNxPersist.context = umlDomainModel.Find("Loan");

bodyActions.actionsBlock.Add(invoKeLoaNxPersist);

//

Operation methReturnBook = new Operation(Enum_AccessModifier.public_access,

Enum_UMLType.Integer,

"returnBook",

parametros,

bodyActions);

//

umlDomainModel.Find("Loan").addMethod(methReturnBook);

This corresponds to the following concrete syntax:

170

Context Loan::returnBook(in sysDate: Date)
body: self.update(
effectiveReturnDate = sysDate,
status = LoanStatus.Inactive
)

Operation returnBook has a precondition:

methReturnBook.pre_condition =

new LogicOpExp(

new RelationalOpExp(

new AssociationEndCallExp("Loan", "Borrower"),

RelationalOp.NEQ,

new Value(Enum_UMLType.String, "")),

LogicOp.AND,

new RelationalOpExp(

new AssociationEndCallExp("Loan", "BookCopy"),

RelationalOp.NEQ,

new Value(Enum_UMLType.String, "")));

Entity BookCopy has an invariant constraint stating that all bookcopy codes
are unique:

umlDomainModel.Find("BookCopy").addConstraint(

new UMLClassConstraint(

"Copycodes are unique!",

umlDomainModel.Find("BookCopy"),

OCLQuantifiedExpression.forAll("x", "y",

new AllInstancesCallExp("BookCopy"),

new LogicOpExp(

new RelationalOpExp(

new VariableExp("x",umlDomainModel.Find("BookCopy")),

RelationalOp.NEQ,

new VariableExp("y", umlDomainModel.Find("BookCopy"))),

LogicOp.IMPLIES,

new RelationalOpExp(

new VarAttributeCallExp("x", "BookCopy", "copyCode"),

RelationalOp.NEQ,

new VarAttributeCallExp("y", "BookCopy", "copyCode"))))));

And the corresponding concrete syntax:

Context BookCopy inv Copycodes are unique:
BookCopy −>forall(x, y | x 6= y implies x.CopyCode 6= y.CopyCode)

Use case model specification

Similarly, the specification of the use case model is also achieved by directly
constructing the objects structure, as can be seen in the following excerpt from
the LibrarySystem example.

Creating a new use case model:

UseCaseModel useCaseModel = new UseCaseModel();

171

Creating the actors:

Actor actor1 = new Actor("Librarian");

Actor actor2 = new Actor("Borrower");

useCaseModel.actors.Add(actor1);

useCaseModel.actors.Add(actor2);

Creating the packages that will contain use cases:

UseCasePackage ucp1 = new UseCasePackage("Manage Books");

UseCasePackage ucp2 = new UseCasePackage("Manage Loans");

Creating use case Add Loan associated to the base entity Loan:

UseCase ucAddLoan = new UseCase("Add Loan");

ucAddLoan.associatedClass = umlDomainModel.Find("Loan");

ucAddLoan.associatedCRUDOpers.Add(Enum_CRUD.Create);

ucp2.addUseCase(ucAddLoan);

Linking an actor to a use case:

useCaseModel.linksActorUseCase.Add(new LinkActorUseCase(actor1, ucAddLoan));

Creating use case Edit Book associated to the base entity Book:

UseCase ucEditBook = new UseCase("Edit Book");

ucEditBook.associatedClass = umlDomainModel.Find("Book");

ucEditBook.associatedCRUDOpers.Add(Enum_CRUD.Update);

ucp1.addUseCase(ucEditBook);

And finally, creating use case List BookCopies, and including it in use case
Edit Book:

UseCase ucListBookCopies = new UseCase("List BookCopies");

ucListBookCopies.associatedClass = umlDomainModel.Find("BookCopy");

ucp1.addUseCase(ucListBookCopies);

//

UseCaseInclude uci2 = new UseCaseInclude(ucEditBook, ucListBookCopies);

6.2.2 Architecture of the generated prototype

The output of the sequentially applied M2M and M2C processes, in the proto-
typed tool, comprises:

• XUL files, which contain the description of the UI elements without any
look & feel detail;

• Javascript files that contain the CRUD operations, user defined operations,
and validation routines for invariant and precondition constraints and for

172

validating that characters inputted in a field match the type of the DataAIO
that originated it;

• A RDF file, that contains information about entity instances and its rela-
tionships to other instances.

<RDF:Description

RDF:about="http://www.class_Book.com/

Book_1229284976700"

Book:ISBN="18752-726"

Book:Title="Equador"

Book:Author="Miguel S. Tavares"

Book:Edition="9"

Book:Year="2004" />

Figure 6.2: Example of an RDF description and the corresponding conceptual
graph displayed with Gruff (http://www.franz.com/agraph/gruff).

Fig. 6.2 shows an example of an RDF description of an object and the corre-
sponding graph notation that it conceptually represents. For easing the manipu-
lation of RDF datasources and resources, we resorted to a library, rdfds.js3, that
provides javascript objects. Namely, it contains four objects, RDFDataSource,
RDFNode, RDFLiteral, and RDFEnumerator. An RDF DataSource is a graph
of nodes and literals. The constructor for RDFDataSource takes one argument,
a URI of an RDF file to use. If the URI exists, the contents of the RDF file are
loaded. If it does not exist, resources can be added to it and then written using
a save method. If the URL argument is null, a blank datasource is created.

6.3 Model-to-code mappings from UIM to XUL

As aforementioned, the prototyped tool sequentially applies a M2M transforma-
tion process (DM2UIM or DM+UCM2UIM) and then a M2C transformation
that, finally, yields an interactive executable prototype comprising a set of XUL
and Javascript files and an RDF file. This way, regarding the user interface, a set
of model-to-code transformation rules are needed for generating XUL from the
available models. Table 6.1 illustrates the mappings between UIM elements and
XUL code excerpts.

The generated XUL descriptions, and Javascript files, are interpreted by xul-
runner in order to render the UI and execute the prototype.

3http://cvs.zope.org/Packages/Moztop/moztop/content/Inspector/Attic/rdfds.js

173

UIM concrete
patterns

XUL UI description

InteractionSpace <?xml version="1.0"?>

<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>

<window

id="..."

title="..."

width="400" height="500"

onload="init();"

orient="horizontal,sizeToContents"

scroll="true"

xmlns="http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul">

...

</window>

InteractionBlock <groupbox>

<caption label="..."/>

...

</groupbox>

ViewList ViewRe-
latedList

<groupbox id="..." collapsed="true">

<caption label="..." />

<listbox id="list..." rows="10" seltype="single"

onselect="selectItem...(selectedIndex);" >

...

</listbox>

MenuBar, Menu
and MenuItems

<menubar id="main-menubar" flex="1">

<toolbarseparator />

<menu label="..." accesskey="..." >

<menupopup>

<menuitem name="..." label="..."

oncommand="opcao_...();" />

<menuitem name="..." label="..."

oncommand="opcao_...();" />

<menuitem name="..." label="..."

oncommand="opcao_...();" />

</menupopup>

</menu>

</menubar>

DataAIO <row>

<label control="..." value="..." />

<textbox id="..." value=""/>

</row>

DataAIO when
inside ViewList or
ViewRelatedList

<listitem>

<listcell label="..."/>

<listcell label="..."/>

<listcell label="..."/>

</listitem>

ActionAIO <button id="..." label="..." oncommand="call_...();" />

Table 6.1: Illustration of M2C transformations between the UIM and XUL.

174

6.4 Case study 1 - Library System

This section analyzes the results of the LibrarySystem case study obtained by
the aforementioned prototyped tool for the steps it is able to automate.

6.4.1 Library System Domain Model

Figure 6.3 shows a LibrarySystem domain model a little different from the one
showed in previous chapters’ examples.

Figure 6.3: Domain model for a Library Management System (LibrarySystem).

The illustrated domain model shows us a Library System comprising books
(Book), each collecting information (isbn, title, author, edition and year) of a set
of book copies (BookCopy). A book copy may be stored in a shelf (Shelf), which,
in turn, may have several book copies. A book copy has a status of enumerable
type BookCopyStatus. A book copy may be involved in loans (Loan).

175

Librarians (Librarian) and borrowers (Borrower) are library users (LibraryUser).
Borrowers may borrow books (Loan). A loan involves one borrower and one book
copy, and may be in an active or inactive status (LoanStatus).

When a lent book copy is delivered after the due date, a EUR 1 fine (Fine)
must be automatically created, and this is specified through the following trigger:

Context Loan trigger after update:
effect: if (self.effectiveReturnDate < self.dueDate)
Fine.create(
date = self.effectiveReturnDate,
value = 1,
borrower = self.borrower,
loan = self
)

Operation returnBook in class Loan is defined as:

Context Loan::returnBook(in sysDate: Date)
body: self.update(
effectiveReturnDate = sysDate,
status = LoanStatus.Inactive
)

The following invariants are also defined:

Context Book inv : self.title 6= “”

Context Book inv : self.author 6= “”

Context BookCopy inv Copycodes are unique:
BookCopy.allInstances() −>forall(x, y | x 6= y implies x.CopyCode 6=
y.CopyCode)

Context LibraryUser inv : self.login 6= self.name and self.login 6=
self.password

Derived entities, or business views, LoansPerBook and ActiveLoan, are also
defined in the domain model. ActiveLoan is a derived entity that targets base
entity Loan (refer to section 4.4.2), and has an invariant that filters Loan’s in-
stances. Basically, an active loan is a loan with status = LoanStatus.Active. All
its attributes are derived and refer to Loan or Loan related entities’ attributes.

LoansPerBook is a derived entity targeting base entity Book, with no filtering
invariant. Its attributes either reference attributes of Book (title and author) or
calculate a value by making use of an OCL expression. The latter is the case
of attribute total copies, that counts the number of BookCopy instances related
to a Book, and totalLoans, which calculates the total loans related to the book
copies of a given book.

176

6.4.2 Generated Prototype after process DM2UIM

The prototyped generator tool sequentially applies DM2UIM process and the
model to code generation process for XUL, Javascript and RDF, to the Li-
brarySystem domain model.

The DM2UIM process derives a UIM based only in the domain model depicted
in figure 6.3 and in the rules defined in section 5.2.

The applied code generation process generates files with UI XUL descriptions,
Javascript code-behinds and RDF.

To analyze the result of applying the DM2UIM process on the LibrarySys-
tem domain model, we will focus on a subset of its classes. By applying rule
DM2UIM01 (refer to section 5.2) to class Book, an interaction space showing the
books own attributes is created. Through rule DM2UIM05, Book’s relation to
class BookCopy becomes apparent, by generating a list of related book copies,
from where the user is able to create new or edit existing related bookcopies.
Figure 6.4 shows the canonical abstract prototype, which represents the UIM
element, and the rendering of the XUL description file generated from the Book
interaction space, which was, in turn, generated from the class Book and its
relations.

Figure 6.4: CAP and screenshot of executing prototype for Book interaction
space.

Figure 6.5 shows the same results obtained from class BookCopy and its
relations to other classes. Notice that class BookCopy has relations to Shelf and
Loan, and that it has attribute status of enumerated type BookCopyStatus.

Figure 6.6 shows part of the screenshots attained from the execution of the
generated prototype, which was obtained after applying DM2UIM and M2C pro-

177

Figure 6.5: CAP and screenshot of executing prototype for BookCopy interaction
space.

cesses, having been produced a set of XUL and Javascript files, and an RDF file
for persisting the base entities’ instances.

Note the difference between the UI elements generated from composition rela-
tions and from simple associations. An example of the former is the one-to-many
relation between Book and BookCopy (see fig. 6.4), and of the latter is the one-
to-many relation between Shelf and BookCopy (see fig. 6.6).

Notice also, in fig. 6.6, the screenshots for Loan, where it is possible to select
a BookCopy and a Borrower instances. As mentioned in a previous chapter,
this is due to the fact that the screenshots have been obtained when the user had
navigated directly from the list of all loans (LoanCollection) to the edition of a
given loan. If, for instance, the user had navigated to a loan from a related book
copy instance, it would not be possible to select a different book copy. The same
is true, if the user had navigated to the edition of a loan from a related instance
of Borrower.

The windows generated from ActiveLoan and LoansPerBook derived entities
can be seen in figure 6.7. As expressed before (see section 5.2.4), only the fields
corresponding to attributes from the target base entity are updatable. All other

178

Figure 6.6: Partial set of screenshots of LibrarySystem executing prototype ob-
tained after process DM2UIM.

179

Figure 6.7: Screenshots of the windows generated from the two derived entities
defined in the Library System domain model.

fields are read-only.

The prototyped code generation process generates Javascript code for verify-
ing if data entered in fields are of the type defined for the corresponding attribute
in the domain model. Figure 6.8 shows some of the windows that may appear to
the user when datatype or invariants validation fails.

Below is an example of the Javascript code generated for validating data
according to invariants defined over class Book:

function checkConstraint_1(msg)

{

var ret = 1;

var chxtitle = document.getElementById("title").value;

if (!(chxtitle != "")) {

if (msg!=0)

alert("Constraint violated: CONSTRAINT 1.");

ret = 0;

}

return ret;

}

180

Figure 6.8: Screenshots of windows showing messages after validating data types
or invariants.

function checkConstraint_2(msg)

{

var ret = 1;

var chxauthor = document.getElementById("author").value;

if (!(chxauthor != "")) {

if (msg!=0)

alert("Constraint violated: CONSTRAINT 2.");

ret = 0;

}

return ret;

}

function checkConstraints(x)

{

//ret=1 --> OK; ret=0 --> KO;

var ret = 1;

if (checkConstraint_1(x)==0) ret = 0;

if (checkConstraint_2(x)==0) ret = 0;

return ret;

}

181

function verifyConstraints()

{

var createupdatebt = document.getElementById("createupdatebt");

var deletebt = document.getElementById("deletebt");

if (checkConstraints(0)==0) {

createupdatebt.disabled = true;

deletebt.disabled = true;

}

else{

createupdatebt.disabled = false;

deletebt.disabled = false;

}

}

The invariants and fields’ datatypes are only verified when the user executes
modification operations, such as object creation of update, or the invocation of
a user defined operation. If the constraints aren’t verified then the buttons for
initiating those operations are disabled.

Below is the code generated for invoking the operation returnBook, defined
if class Loan, including the verification of the operation’s pre-condition (it lacks
the final invocation of the Fine’s creation operation, due to incompleteness of the
code generation prototype):

function handleClick_returnBook()

{

First, the operation’s precondition is verified:

if (checkPrecondition_returnBook(1) != 1) {

alert("ALERT: Method’s Precondition doesn’t hold!!!");

exit;

}

Then, the provision of the input parameters is addressed, through an input
parameters window:

var inpdlgpar = { var_sysDate: null , ok: null };

var inpdlg = window.openDialog(

"chrome://sysapp/content/InputParametersSpace-returnBook.xul",

"InputParametersSpace-returnBook",

"chrome,modal,resizable,centerscreen", inpdlgpar);

Then, if the input parameters are valid, the operation is performed, and
an output parameters window is opened, otherwise a cancellation message is
provided to the user:

182

var outdlgpar = { result: null, statusMessage: null };

if (inpdlgpar.ok)

{

document.getElementById("effectiveReturnDate").value =

inpdlgpar.var_sysDate;

document.getElementById("status").selectedIndex = parseInt(1);

xpersist();

outdlgpar.statusMessage = "Operation sucessfully executed !";

window.openDialog(

"chrome://sysapp/content/OutputResultSpace-returnBook.xul",

"OutputResultSpace-returnBook",

"chrome,modal,resizable,centerscreen", outdlgpar);

}

else{

outdlgpar.statusMessage = "Operation cancelled !";

outdlgpar.result = null;

window.openDialog(

"chrome://sysapp/content/OutputResultSpace-returnBook.xul",

"OutputResultSpace-returnBook", "chrome,modal,resizable,centerscreen",

outdlgpar);

}

}

The function that verifies the operation’s precondition:

function checkPrecondition_returnBook(msg)

{

var ret = 1;

var chxname = document.getElementById("name").value;

var chxlogin = document.getElementById("login").value;

if (!((chxname != "") && (chxlogin != "")))

{

if (msg!=0)

alert("pre-condition failed - 1");

ret = 0;

}

var chxcopyCode = document.getElementById("copyCode").value;

var chxbookTitle = document.getElementById("bookTitle").value;

if (!((chxcopyCode != "") && (chxbookTitle != "")))

{

if (msg!=0)

alert("pre-condition failed - 2");

ret = 0;

}

return ret;

}

And finally, the code generated for persisting (create or update) a loan, in-
cluding the code from the update trigger, also defined in class Loan:

function xpersist()

{

First, the invariants are checked:

183

if (checkConstraints(1)!=1) {

alert("There are constraints verified to be false!!!");

exit;

}

Then, it is verified if it is happening a creation or an update, and the respective
operation is performed (note that a “before” trigger is not defined):

var criarLoan = 1;

var node0 = ds.getNode("http://www.class_Loan.com/all-Loans");

var newNode0 = null;

if (vloan_RDF_ID != null)

{

criarLoan = 0;

newNode0 = ds.getNode(vloan_RDF_ID);

}

else

{

criarLoan = 1;

var vSeqelemDifDt = new Date();

var elemDif = vSeqelemDifDt.getTime();

vloan_RDF_ID = "http://www.class_Loan.com/Loan_" + elemDif;

newNode0 = ds.getNode(vloan_RDF_ID);

node0.addChild(newNode0);

newNode0.addTargetOnce("http://www.class_Loan.com/rdf#RDF_ID",

"http://www.class_Loan.com/Loan_" + elemDif);

}

newNode0.addTargetOnce("http://www.class_Loan.com/rdf#dueDate",

document.getElementById("dueDate").value);

newNode0.addTargetOnce("http://www.class_Loan.com/rdf#effectiveReturnDate",

document.getElementById("effectiveReturnDate").value);

var selIndCreate = document.getElementById("status").selectedIndex;

newNode0.addTargetOnce("http://www.class_Loan.com/rdf#status",

selIndCreate.toString());

newNode0.addTargetOnce("http://www.class_Loan.com/rdf#Borrower",

vborrower_RDF_ID);

newNode0.addTargetOnce("http://www.class_Loan.com/rdf#BookCopy",

vbookcopy_RDF_ID);

Then, the code for “after” triggers is injected. In this case, it is defined an
“after update” trigger :

184

if (criarLoan == 1)

{

}

else

{

var xfine = null;

var xnode0 = ds.getNode("http://www.class_Fine.com/all-Fines");

var xSeqelDfDt = new Date();

var xelDft = xSeqelDfDt.getTime();

var vFine_RDF_ID = "http://www.class_Fine.com/Fine_" + xelDft;

var xfine = ds.getNode(vFine_RDF_ID);

xnode0.addChild(xfine);

xfine.addTargetOnce("http://www.class_Fine.com/rdf#RDF_ID", vFine_RDF_ID);

var xLhsdateFine = document.getElementById("effectiveReturnDate").value;

xfine.addTargetOnce("http://www.class_Fine.com/rdf#dateFine", xLhsdateFine);

var xLhsvalueFine = "1";

xfine.addTargetOnce("http://www.class_Fine.com/rdf#valueFine",

xLhsvalueFine);

xSelf_Loan = ds.getNode(vLoan_RDF_ID);

var xLhsborrower = (xSelf_Loan.getTarget(

"http://www.class_Loan.com/rdf#Borrower")).getValue();

xfine.addTargetOnce("http://www.class_Fine.com/rdf#Borrower", xLhsborrower);

var xLhsloan = vLoan_RDF_ID;

xfine.addTargetOnce("http://www.class_Fine.com/rdf#Loan", xLhsloan);

//xCallOperationAction

}

Finally, the entire data structure is saved in the RDF file:

ds.save();

}

6.4.3 Library System Use Case Model

Figure 6.9 and Table 6.2 respectively depict the use case model for the Library
System, and the values of the meta-attributes that provide the integration be-
tween the DM and the UCM.

The use case model and the respective meta-attributes values, which may be
defined through tagged-values, show that the modeled library system has two
actors (Librarian and Borrower). Use cases are packaged into four packages,
three containing use cases accessible only to actor Librarian and one has use
cases for Borrower.

Librarian directly accesses use cases “List Books”, “List Loans”, “Add Loan”
and “List Borrowers”, from where he can add or edit new or existing appropriate
instances.

185

Figure 6.9: Partial use case model (UCM) for the Library Management System.

Borrower is only able to directly access “List Books” from where he can only
view the details of the selected book.

6.4.4 Generated Prototype after process DM+UCM2UIM

When applying process DM+UCM2UIM, followed by the code generation pro-
cess, to the previously presented Library system domain and use case models, the
result is a prototype that maps the functionality defined in the use case model.
As before, the interaction spaces’ structure is mapped from the domain model.

This is apparent in Figures 6.10 and 6.11, which show a part of the screenshots
attained from the execution of the generated prototype, obtained after applying
DM+UCM2UIM and M2C processes.

Figure 6.10 shows the screenshots of the initial window and of each actor’s
main window, showing the generated menus and menu options. These are ob-

186

Use case Entity Associated Oper-
ation(s)

Entity Collec-
tion

List Books Book True
Add a new Book Book Create False
Edit Book Book Update False
List BookCopies BookCopy True
Add BookCopy BookCopy Create False
Edit BookCopy BookCopy Update, Delete False
List Loans Loan True
Add Loan Loan Create False
Edit Loan Loan Update False
Select Borrower Borrower Update True
Select BookCopy BookCopy Update True
List Borrowers Borrower True
Add Borrower Borrower Create False
Edit Borrower Borrower Update False
View Book Details Book Retrieve False

Table 6.2: Entities and operations associated (via tagged values) with the use
cases in Fig. 6.9.

tained after application of rule DM+UCM2UIM01. Note that, contrary to what
we saw in section 6.4.2, where all the functionality of the system was available to
the user, by using a UCM and process DM+UCM2UIM, the UI only makes avail-
able to the user the operations that were specified for the corresponding actor,
in the use case model.

Figure 6.11 shows a partial result of applying the DM+UCM2UIM process on
the LibrarySystem domain and use case models. The figure puts side by side the
screens corresponding to a “Librarian” use cases “List Books” and “Edit Book”
(on the left) and a “Borrower” use cases “List Books” and “View Book Details”
(on the right).

6.5 Case study 2 - Conference Review System

This section shows the results of the Conference Review System case study. As
before, we will first analyze the results of applying process DM2UIM and after
that the ones of applying DM+UCM2UIM. This case study was obtained by
partially reverse engineering the MyReview conference management system 4.

This case study allows us to see how many-to-many relationships effect on the
generated UI.

4http://myreview.sourceforge.net/

187

Figure 6.10: Screenshots of the initial window and of each actor’s main window,
showing the generated menus and menu options.

6.5.1 Conference Review System Domain Model

Figure 6.12 shows a simplified Conference Review System domain model.
The simplified conference review system, modeled in figure 6.12, allows for

the submission of paper abstracts (Paper Abstract), the establishment of re-
viewing assignments (Assignment), and the definition of reviews (Review), rat-
ings (Rating) and review marks (Review Mark) according to defined criteria
(Criterium).

A paper abstract may have several authors (Author) and, in turn, each author
may be related to several papers. A paper abstract may be classified in several
topics (Topic), and each topic may be used by several papers.

A reviewing assignment is related to only one reviewer (Reviewer), but each
reviewer may have several assignments.

Each paper abstract is related to several reviews, ratings and review marks.

188

Figure 6.11: Partial set of screenshots of the LibrarySystem executing prototype
obtained after process DM+UCM2UIM.

6.5.2 Generated Prototype after process DM2UIM

This subsection shows the results of the application of DM2UIM and code gen-
eration processes to the previously presented Conference Review System domain
model.

Based only in the domain model depicted in figure 6.12, and in the rules de-
fined in section 5.2, the prototyped generator outputs a set of XUL and javascript
files, and an RDF file. As before, screenshots of the XUL windows rendered by
xulrunner, during the prototype execution, are partially shown in figures 6.13
and 6.14.

Figure 6.13 shows the initial window of the generated prototype, and a se-
quence of windows that appear when the user chooses menu option “Author

189

Figure 6.12: Domain model for a Conference Review System (ConferenceRe-
viewSystem).

Collection” and then “Edit Author” (on the left), and when the user chooses
menu option “Paper Abstract Collection” and then “Edit Paper Abstract” (on
the right). Note the expanded list of authors in the Paper Abstract window, with
options “Select Author” and “Unlink Author”.

This case study exhibits many-to-many relationships in its domain model. In
the generated prototype this is apparent, for instance, in the Paper Abstract’s
and in the Author’s windows (see fig. 6.13).

Figure 6.14 shows the Paper Abstract window having the list of related Re-
views expanded, with options “Edit Review”, “Add Review” and “Remove Re-

190

Figure 6.13: Screenshots of the initial window and navitations from menu options
“AuthorCollection” (on the left) and “Paper AbstractCollection” (on the right).

view”, followed by the windows for editing a Review and selecting a Reviewer.
This is because the relation between Paper Abstract and Review is an aggrega-
tion relation (refer to the transformation rule in section 5.2.5).

191

Figure 6.14: Screenshots of the windows flow when the user selects “Edit Review”
in the Paper Abstract window, and then presses “Select Reviewer”.

6.5.3 Conference Review System Use Case Model

Figure 6.15 and Table 6.3, respectively show the use case model for the Conference
Review System, and the values of the meta-attributes that provide the integration
between the DM and the UCM.

There are three actors, or user profiles, in the modeled system, namely Author,
Reviewer and PCchair.

The use case model distributes different system functionality by the disparate
actors. To keep the case study simple, each actor has only one or two directly
related use cases, and some functionality derivable from the DM is not modeled

192

Figure 6.15: Use case model for the Conference Review System.

in the UCM.

6.5.4 Generated Prototype after process DM+UCM2UIM

This subsection shows the results of the application of DM+UCM2UIM and code
generation processes to the previously presented Conference Review System do-
main and use case models.

As shown before, the use of a UCM enables the distribution of the available

193

Use case Entity Associated Opera-
tion(s)

Entity Collec-
tion

Submit Paper Abstract Paper Abstract Create False
List submitted Papers Paper Abstract True
Edit Selected Paper Details Paper Abstract Update False
List Reviews Review True
Read Review Review Retrieve False
List Review Assignments Assignment True
View Assignment Assignment Retrieve False
View Assignment Paper Paper Abstract Retrieve False
List Paper Reviews Review True
List Review Marks Review Mark True
List Paper Ratings Rating True
Create Review Review Create False
Review Mark Review Mark Create False
Select Criterium Criterium Update True
Rate Paper Rating Create False
List submitted Paper Abstracts Paper Abstract True
View Paper Details Paper Abstract Retrieve False
List Paper Assignments Assignment True
Create Assignment Assignment Create False
Select Reviewer Reviewer Update True
List Paper Topics Topic True
List Assignments Assignment True
Edit selected Assignment Assignment Update False
View Paper Paper Abstract Retrieve False

Table 6.3: Entities and operations associated (via tagged values) with some of
the use cases in Fig. 6.15.

system functionality by actor. Figure 6.16 shows the initial generated application
window, and each different actor’s main window and respective menu options.

Figure 6.17 shows two sequences of windows flows, namely one for an author
performing use case “List Submited Papers” (on the left), and the other for a
PC chair performing use case “List Submited Paper Abstracts” (on-the right).
As the constructed prototype does not currently support many-to-many relations
when use case driven transformation is being used (process DM+UCM2UIM), the
Paper Abstract windows have been substituted by the respective CAP models.
In the figure, it is apparent the difference between the elements generated in the
Paper Abstract interaction spaces when involved in the referred use cases.

For instance, only the Author is able to update the paper abstract, and to
list and read the paper’s reviews. On the other hand, only the PC chair is able
to list and create reviewing assignments to a paper abstract. This conforms to
what is modeled in the use case model.

6.6 Discussion of case study’s results

The prototyped tool for automating the model to model transformation pro-
cesses, DM2UIM and DM+UCM2UIM, and the model to code process does not

194

Figure 6.16: Initial window and each actor’s main window and respective menu
options.

completely support all the defined transformation rules, as seen in the previous
subsection. Nevertheless, all the DM2UIM transformation rules and most of the
DM+UCM2UIM transformation rules have been implemented. Only the many-
to-many relations’ transformation rules are not implemented, and this is true
only to DM+UCM2UIM process, that is only for use case driven transformation
respecting rule DM+UCM2UIM5, when applied to many-to-many associations.

The results of the two presented case studies illustrate the automatic deriva-
tion of a UIM from a DM or a DM and a UCM, and the posterior code generation
process.

Features generated from base and derived entities have been highlighted, just
as features generated from composition and aggregation relations and from simple

195

Figure 6.17: Sequences of interaction flows for an author performing use case
“List Submited Papers” (on the left), and for a PC chair performing use case
“List Submited Paper Abstracts” (on-the right).

associations, including, in the second case study, many-to-many associations.

Features generated from the attributes’ data types, triggers, invariants and
methods’ preconditions have also been verified in the first case study.

The prototyped tool is also able to partially address a “fine grained” use case
definition like the one depicted in figure 4.15 (recall section 4.5.3), provided that
the including use case and the included ones, that are related through enabling,
deactivation or choice relations, all give origin to a unique interaction space. It
does not currently support use cases having enabling or deactivating relations
involving several interaction spaces, though. This would be the case of use case

196

Figure 6.18: CAP of interaction spaces derived from use case “Register New
Loan” in figure 4.16.

“Register New Loan” in figure 4.16. Figure 6.18 shows the CAP of interaction
spaces derived from use case “Register New Loan” in figure 4.16. The interaction
space on the left enables the selection of an existing borrower, by opening an
interaction space for selecting one of all available borrowers on the system. The
interaction space on the right enables the creation of a new borrower, by opening
the borrower creation interaction space.

Note that the CAP is according to the modeled use case, but that it would
not be able to create a new loan in the system, because it doesn’t allow to select
a BookCopy instance, as demanded by the domain model. The inclusion of a use
case for selecting a BookCopy instance is lacking in the UCM.

6.7 Assessment of goals satisfaction

In the first chapter of this dissertation, the following research questions have been
formulated, based on the conclusions from the state of the art discussion (refer
to chapter 3):

1. Is it possible to obtain a UI prototype from a minimal set of model artifacts
(a rigorous domain model and a rigorous use case model), without requiring
as input a UI model?

197

2. Can the generated UI prototype take advantage of advanced elements in a
domain model:

• state invariants;

• operations’ pre-/post-conditions;

• operations rigorously and completely defined by the modeler, that is
operations which are completely and formally specified and for which
there is only one interpretation;

• derived attributes;

• derived classes;

• triggers or other means of modifying standard CRUD behavior.

3. Can the generated UI prototype take advantage of more flexible elements,
in a use case model:

• typical use case relations (e.g.: inclusion, extension, inheritance);

• use of constructs typically found in task models for detailing use cases.

4. Can the generated UI be used as a starting point for further refinements
towards the UI of the final application?

Besides posing this questions, chapter 1 also declared as research goal the
improvement of current approaches to model-driven automatic UI generation, fo-
cusing business data-intensive applications with form-based UIs, and we claimed
that it would be possible to automatically generate a usable user interface from
early, semantically rich, system models, demanding from the modeler less effort
than the existing approaches. Furthermore, we believed that it would be possible
to generate different user interfaces, depending on the degree of refinement of the
information that the user includes in the model, enabling the generation of simple
user interfaces from simple early structural models, and complex user interfaces
from semantically richer system platform independent models.

This section answers to the previously posed research questions and argues to-
wards the satisfaction of the research goal and the demonstration of the defended
thesis.

6.7.1 Is it possible to obtain a UI prototype from a min-
imal set of model artifacts, without requiring as in-
put a UI model?

It is clear from chapters 4 to 6, that the presented approach allows the generation
of a UI prototype based on the rigorous definition of a domain model alone. In-
deed, a domain model is the only mandatory model for the UIM and UI prototype
automatic generation.

198

Moreover, it is possible to start by building a DM, generate an executable
prototype, use it to validate the model, and then iterate by refining that model
or adding an integrated UCM to it.

The automatically generated prototype is obtained through a two step ap-
proach in which a UIM is obtained in the first step. This UIM may be modified
by the modeler, before generating the final prototype code. The prototype is
fully functional (refer to chapter 6), meaning that not only the UI is prototyped
but that the system functionality is generated and may be accessed through the
generated UI prototype. This allows for the utilization of the prototype regarding
the validation of both the UI and the system requirements and modeled structure
and functionality. The generated evolutionary prototype, together with the rigor-
ously constructed domain and use case models, and the derived UI model, allows
the early validation of the system models and helps in requirements elicitation
and validation.

The early UIs generated from early models, may serve for eliciting complex
requirements or test the constructed model by executing it through a UI. The
UIs generated from semantically richer models may be used for producing the
final application UI.

The UI generated can be subject to usability and appearance improvements
(without loosing the links to the underlying system model), and can also be used
as a basis for subsequent system development.

Further iterations of modeling and prototype usage (with user feedback) shall
enable the refinement of the system model and its enrichment with more model
elements.

6.7.2 Can the generated UI prototype take advantage of
advanced elements in a domain model?

Chapter 5 presented the transformation rules defined for deriving a UIM from the
DM alone or from both the DM and the UCM. From the defined rules, one can
see that the UIM elements are derived from several features in the DM and UCM,
including derived attributes and derived classes (views), among other features.

For enhancing the preciseness of the model, OCL predicates are used to for-
malize domain class invariants and domain classes operations’ preconditions.

The UI generation process takes advantage of the OCL invariants and of the
operations’ preconditions, defined in the domain model, and of use case model
features, to enhance the usability and behavior of the UI.

User defined operations’ body is fully specified by making use of an actions
language, in order to guarantee the executability of the generated prototype.

Invariant and precondition constraints are ignored in the model-to-model pro-
cess, because they are not present in the UIM, but are taken into account when
generating code from the models. Post-condition constraints are not used, and

199

they aren’t needed because operations are rigorously and completely defined by
the modeler through an actions language.

Another advanced feature in the domain model are triggers, which allow the
modification of standard CRUD behavior, and may be provided by the mod-
eler through the referred Action-semantics-based actions language (recall sec-
tion 4.4.3).

6.7.3 Can the generated UI prototype take advantage of
more flexible elements, in a use case model?

Chapter 5 also addresses the transformation rules for deriving a UIM from the
UCM (integrated with a DM). From the defined rules, one can see that the UIM
elements are derived from several features in the UCM, including use case rela-
tions, such as inclusion, extension and use case inheritance, and task-model-based
relations that provide a way of enabling or deactivating use cases by executing
another use case, and of choosing between several use cases for extending another
use case.

6.7.4 Can the generated UI be used as a starting point
for further refinements towards the UI of the final
application?

As defined in the development process proposed in chapter 4, the generated de-
fault user interface may be tunned by the modeler, or a UI designer, in two points
of the process: - After having generated an abstract UI model, but before gen-
erating a concrete UI; and, after generating a concrete UI in a XML-based UI
description language, such as XUL, that allows for the a posteriori customization
and application of style sheets.

Also, after having automatically generated the final code, it is possible for
a programmer to modify the generated code, and for a UI designer to add or
modify the UI skin or style sheets.

This way, it is possible to use the generated UI as a starting point for further
refinements towards the final application. This is of great advantage, particularly
when one wants to generate UIs for several platforms with little effort. Indeed,
although the prototyped proof-of-concept tool generates XUL, Javascript and
RDF, a model-to-code transformation tool could be used in the second step of
the presented approach (recall Fig. 5.1) to generate code to other target platforms
as, for instance, XAML, C# and SQL for Oracle database.

200

6.8 Comparison with existing approaches

Tables 6.4 to 6.6 add the proposed approach to the MDD approaches surveyed
in chapter 3 and compared in section 3.5.4.

XIS OO- Elkoutbi Martinez Forbrig ZOOM Our

approach Method et al. et al. et al. approach

Base
classes

Classes
√ √ √ √ √ √ √

Attributes
√ √ √ √ √ √ √

Relationships
√ √ √ √ √ √ √

Class
invariants

—
√

— — —
√ √

attributes
default
values

√ √
— — —

√ √

derived at-
tributes

—
√

— — — —
√

mandatory
attributes

—
√

— — — —

√

(through
state
invariants)

user
defined
operations’
syntax

limited
(only
operation
name)

√
— — —

√ √

user
defined
operations’
semantics

—
√

— — —
√ √

Lists of
values

Enumerated
classes

√
— — — —

√ √

Views Views /
derived
classes

√

(business
entities)

— — — — —
√

Mapping to
base classes

√
— — — — —

√

Triggers or other
forms of modifying
CRUD

— — — — — —
√

Operations trig-
gered by state
conditions

—
√

— — —
√ √

Table 6.4: Our approach vs existing UI generation MDD-approaches fine-grained
comparison of the domain model elements.

As can be seen in Fig. 6.4, the approach proposed in this dissertation takes
advantage of all the DM elements referred to in the figure.

Fig. 6.5, also shows that the approach proposed in this dissertation takes
advantage of all the UCM elements referred to in the figure.

201

XIS OO-Method Elkoutbi Martinez Forbrig ZOOM Our

approach et al. et al. et al. approach

Actors (user roles)
√

User roles
represented
as classes in
the object
model.

√ √ √
—

√

Use cases
√

—
√ √ √

—
√

Use case extension
√

—
√ √ √

—
√

Use case inclusion
√

—
√ √ √

—
√

Mapping
to base
classes

Target
views /
opera-
tions

√
— — — — —

√

behaviour — — Sequence
diagrams

Collaboration
diagrams

Task model — Included
low-level
use cases
and Task-
model-like
relations

Table 6.5: Our approach vs existing UI generation MDD-approaches fine-grained
comparison of the use case model elements.

Table 6.6 shows a feature comparison between the proposed approach and the
ones surveyed in chapter 3.

As mentioned in chapter 3, XIS business entities are similar to our derived
entities. Like in the XIS smart approach, the modeller must attach to each use
case an Entity (base or derived) from the DM. The difference is that, in our
approach, relations between entities are inferred from the DM, thus not being
needed a separate business entities model to provide higher level entities to the
UCM. The relation’s selection provided by the XIS business entities model can
be done, within our approach, in the UCM by modelling use cases for navigating
only through the admitted relations.

Unlike XIS, our approach doesn’t demand the stereotyping of every model
element, as the full model package is submitted to the transformation process.

Similarly to XIS and the OO-Method, in our approach CRUD operations are
predefined.

In our approach user defined operations may be specified using an UML Action
Semantics-based language.

Just like our approach, the OO-Method allows the definition of derived at-
tributes, by assigning a calculation formula to the attributes.

Our approach, thus, puts together the advantages of the surveyed approaches
and adds a few features of its own, namely:

• It makes possible to generate an application prototype from an evolving,

202

Elkoutbi
XIS OO- ZOOM et al./ Forbrig Our
approach Method Martinez et al. approach

et al.
Is able to generate
a fully functional in-
teractive prototype

√ √ √ — — √

Requires/generates
a UIM as a step
for obtaining a
concrete UI

requires/
gener-
ates

requires requires generates
only UI
state
model

requires generates/
allows
configu-
ration

Is able to generate
a UIM/UIP from
non-UI system
models

√ (in
smart
ap-
proach)

(only
from
domain
model)

— √ (non
funtional
UIP)

— √

Is able to generate a
UIM/UIP from do-
main model alone

— √ — — — √

Is able to generate a
UIM/UIP from do-
main model + use
case model

√ (in
smart
ap-
proach)

— — — — √

Allows the defini-
tion of triggers

— √ (par-
tial)

— — — √

Assumes CRUD op-
erations

√ √ — — — √

Generates code for
user defined opera-
tions

— √ √ — — √

Takes advantage of
formal constraints
to generate features
in the UI

— √ (par-
tial)

— — — √

Table 6.6: Feature comparison between the current approaches and the proposed
approach

possibly incomplete regarding user requirements, but rigorous and inte-
grated, domain model and optionally a use case model;

• It generates a concrete UI, following a model-driven paradigm, but does not
demand the modeler’s construction of a UIM. Instead, it derives a default
UIM from the domain and use case models, and allows the modeler to
optionally modify the generated UIM, before automatically generating the
final code;

• It makes use of derived attributes and derived entities (views), in the DM,
to better specify “boundary” entities;

203

• It takes advantage of class invariants and operation pre-conditions to gener-
ate validation routines in the generated application, enabling the enhance-
ment of the usability of the generated UI by helping the user in entering
valid data into forms, and by giving feedback identifying invalid data, or by
disabling an operation’s start button while its pre-condition doesn’t hold;

• It makes use of an action language to specify the semantic of operations
at class level, and enable the definition of triggers activated either by the
invocation of a CRUD operation or by the holding of a given state condition;

• It allows the usage of a use case model to specify several actors, or user
profiles, enabling the hiding of possible functionality from some of the users;

• It derives a default use case model from a domain model, easing the process
of developing a use case model integrated with the system domain model.

6.9 Conclusions

This chapter presented the proof-of-concept tool that has been developed for
validating the proposed approach for data-intensive forms-based interactive ap-
plications development.

Through two case studies the feasibility of the approach has been demon-
strated. Also, it is possible to generate a UIM and interactive running prototype
by developing only a DM, which is a low-effort approach to executable evolu-
tionary prototyping that enables the use of the prototype by users and other
stakeholders. When going deep into modeling, the modeler will have, of course,
much more effort, depending on what he/she wants to put in the model.

It has also been confirmed, in this chapter, the fulfillment of the proposed
research goals.

204

Chapter 7

Conclusions

This chapter summarizes the results obtained, presents conclusions and points out
open issues for future research.

7.1 Results and contributions to the state of art

This Ph.D. dissertation discussed the development of an approach for the model-
driven automatic generation of fully functional (executable) interactive applica-
tions, from early system models, with minimum effort. Its feasibility has been
validated through two case studies, and the research results have been published
in four conference papers and one doctoral symposium. The research contri-
butions to the state-of-art, including published results, have been addressed in
section 1.6.

We have focused our research on the model-to-model transformation from
DM to UIM and from DM+UCM to UIM. Indeed, when regarding the state-of-
art approaches, this is where our contribution can be more relevant. In fact, we
believe that approaches such as the XIS approach or the Wisdom approach could
benefit from this research’s results, hence providing a default UIM to the modeler
that he/she could then refine and modify according to the system requirements.

In section 6.7, the research questions have been assessed, and all had a con-
firmatory answer. The comparison to the state-of-art approaches, has been ac-
complished in section 6.8.

In what respects the effort needed to automatically generate a usable user in-
terface from early, semantically rich, system models, we can divide the conclusion
into three points (refer to sections 3.5, 6.7 and 6.8):

• When the goal is to obtain a simple executable prototype, which maps the
data structures and provides CRUD operations on those structures: The
proposed approach indeed demands less effort from the modeler to build
the necessary models. In fact, a domain classes model suffices to get a fully
executable prototype, which may be precious in attaining users feedback.

205

• When the goal is to obtain a more refined prototype, which may imply the
definition of views, invariant constraints, operations’ preconditions and re-
spective body specification, and triggers: The proposed approach demands
from the modeler the knowledge of OCL and an action semantics language.
Provided that knowledge, the approach demands at most the same effort
as the OO-Method, as a domain model plus specifications is what is needed
to get a fully executable prototype.

• When the goal is to obtain an even more refined prototype, that must be
able to separate functionality by actor, or even provide some functionality
that cannot by fully derived from the domain model: The effort demanded
by the proposed approach can only be comparable to the effort demanded by
the XIS approach, as the other ones either don’t support a use case driven
approach, or demand the full construction of a UIM. And, it demands less
effort than the XIS smart approach, because for specifying the same things
as the XIS Entities View, it only needs a domain model, while XIS needs
a Domain View plus a BusinessEntities View, and for specifying the same
things as the XIS Use-Cases View, it only needs a use case model, while XIS
needs a UseCases View plus an Actors View. Further, the XIS approach
demands the stereotyping of every model element.

Having said that, it lacks to say that the proposed approach DM and UCM
enable a richer model than the one provided by the XIS approach, as the
DM allows the definition of constraints, user defined operations and triggers,
and the UCM allows the usage of use case relations, either UML-based of
task-model-inspired.

To obtain an intermediate model, before its transformation into code, like the
two step approach prescribed (see section 4.2), is a typical model-driven solution.
The prototyped tool has the M2M and M2C transformation rules hard-coded
in C# classes. A more flexible solution would be to use an MDA tool, like
AtlanMod 1, for the M2M transformation process, and templates, like in the XIS
approach, for the M2C transformation process. This was not the focus of this
research, though.

We believe that when MDD is in a more mature state, model transforma-
tions will be handled by available tools, similar to today’s compilers. By that
time, the modelers will only have to handle with models construction, trending
to specialize themselves in some domain areas, and searching for M2M and M2C
transformation tools in the market. This way, the construction of such transfor-
mation tools is left to specialized companies, and system modeling will be within
reach of business domain experts.

1http://www.emn.fr/z-info/atlanmod/index.php/Main Page

206

7.2 Future work

Concerning the problem of automatically generating a UIM and a fully executable
interactive prototype, the approach presented in this dissertation is an answer
that demands little effort from the modeler, at least in the first iterations, towards
constructing an interactive system model. Some open research related problems
remain, though. The most relevant ones are described below:

• Our proposal allows for the modeler to modify the generated UIM and even
the generated final code, which being an iterative process, brings some in-
herent problems, such as how to handle a new UIM generation when the
modeler modifies the previously generated UIM, or how to handle final code
generation when the previously generated code has been modified. A sepa-
ration mechanism that can discern the generated parts of UIM or code from
the parts that are manually added or modified by the user, would contribute
to this problem’s mitigation. These are issues of difficult solution, and were
not addressed in this research.

• Related to the previous point, are aspects of integration of the generated
prototype with previously existing code or complete applications. The al-
lowance of non-human actors in our UCM, and the possibility to define the
integration interface are also open issues for future research.

• For a more broader experimentation, within an industrial context, a better
tool support is needed. The import from UML or XMI, produced by UML
diagraming tools, and the development of code-generators for other target
platforms, ideally based on existing technologies and standards, are possible
evolutions for practical tools implementation.

• The presented declarative transformation rules have been implemented im-
peratively in a proof-of-concept tool. Future work could build a transfor-
mation engine that can interpret the declarative rules, hence promoting
the separation between the transformation engine and the transformation
rules, which would enable the rules customization. This evolution would
need the identification of a rules definition metamodel that would allow the
definition of the proposed rules and also of new rules. Ideally, this could be
based on existing technology and standards, such as QVT.

• One distinctive aspect of our approach is that it takes advantage of declara-
tive constraints (state invariants and operations’ preconditions) to validate
data entered into forms. An interesting research direction would be to try
to take advantage of those declarative constraints to suggest values to the
user, or to limit the values that the user can select to a given form field.

207

• The approach presented focused forms-based data-intensive business ap-
plications. Even in the context of business applications, some non-forms
based user interfaces could be advantageous. For instance tree or graph
manipulation interfaces, when working with some data structures, or even
multimedia interfaces, such as voice interfaces, or virtual reality interfaces.
The model features from which these could be automatically generated is
a research topic. Another research issue has to do with UI designer know-
how, and how, or to what point, can it be embedded into an UI automatic
generation approach.

208

Bibliography

[AD06] Samir Ammour and Philippe Desfray. A concern-based technique
for architecture modelling using the uml package merge. Electr.
Notes Theor. Comput. Sci., 163(1):7–18, 2006.

[APB+99] Marc Abrams, Constantinos Phanouriou, Alan L. Batongba-
cal, Stephen M. Williams, and Jonathan E. Shuster. UIML:
An appliance-independent XML user interface language.
http://www8.org/w8-papers/5b-hypertext-media/uiml/uiml.html,
1999. [Visited in 2007-01-10].

[Art04a] Artima. Contract-driven Development - A conversation
with Bertrand Meyer, Part III - by Bill Venners, 2004.
www.artima.com/intv/contestP.html.

[Art04b] Artima. Design by Contract - A conversation with
Bertrand Meyer, Part II - by Bill Venners, December 2004.
www.artima.com/intv/contractsP.html.

[AvEPvW04] P. Achten, M. van Eekelen, R. Plasmeijer, and A. van Weelden.
Automatic generation of editors for higher-order data structures.
Programming Languages and Systems. Second Asian Symposium,
APLAS 2004. Proceedings (Lecture Notes in Computer Science
Vol.3302), pages 262 – 79, 2004.

[BBF+87] Bill Betts, David Burlingame, Gerhard Fischer, Jim Foley, Mark
Green, David Kasik, Stephen T Kerr, Dan Olsen, and James
Thomas. Goals and objectives for user interface software. SIG-
GRAPH Comput. Graph., 21(2):73–78, 1987.

[Boo93] Grady Booch. Object-Oriented Analysis and Design with Applica-
tions. Addison-Wesley Professional, 2nd edition edition, 1993.

[CL99] Larry Constantine and Lucy Lockwood. Software for Use: A Prac-
tical Guide to the Models and Methods of Usage-Centered Design.
Addison-Wesley Professional, 1999.

209

[CN04] Pedro F. Campos and Nuno Jardim Nunes. A uml-based tool for
designing user interfaces. In UML Satellite Activities, pages 273–
276, 2004.

[Con95] Larry Constantine. What do users want ? Engineer-
ing usability into software. Reprinted and revised (June
2000) from Windows Tech Journal, Dec. 1995. Available in
http://www.foruse.com/articles/whatusers.pdf, 1995.

[Con03] Larry L. Constantine. Canonical abstract prototypes for abstract
visual and interaction design. In J. Falcão e Cunha J.A. Jorge,
N. Jardim Nunes, editor, Proceedings of the DSV-IS 2003, LNCS
2844, number 2844 in LNCS, pages 1 – 15. Springer-Verlag Berlin
Heidelberg, 2003.

[Con06a] Larry Constantine. Activity modeling: Toward a pragmatic inte-
gration of activity theory with usage-centered design. Thecnical
Paper. Revision 2.0, 2006.

[Con06b] Larry Constantine. The Persona Lifecycle, chapter Users, Roles,
and Personas, page chapter 8. Morgan-Kaufmann, 2006.

[CWNL03] Larry Constantine, Helmut Windl, James Noble, and Lucy Lock-
wood. From abstraction to realization: Canonical abstract proto-
types for user interface design. Revised Working Paper. Available
in http://www.foruse.com/articles/canonical.pdf, July 2003.

[dCF08] António Miguel Rosado da Cruz and João Pascoal Faria. Auto-
matic generation of interactive prototypes for domain model val-
idation. In José Cordeiro, Boris Shishkov, Alpesh Ranchordas,
and Markus Helfert, editors, Proceedings of the International Con-
ference on Software Engineering and Data Technologies (ICSoft
2008), volume SE/GSDCA/MUSE, pages 206–213. INSTICC - In-
stitute for Systems and Technologies of Information, Control and
Communication, INSTICC Press, July 2008.

[dCF09] António Miguel Rosado da Cruz and João Pascoal Faria. Auto-
matic generation of user interface models and prototypes from do-
main and use case models. In Boris Shishkov, José Cordeiro, and
Alpesh Ranchordas, editors, Proceedings of the International Con-
ference on Software Engineering and Data Technologies (ICSoft
2008), volume 1, pages 169–176. INSTICC - Institute for Systems
and Technologies of Information, Control and Communication, IN-
STICC Press, July 2009.

210

[dCF10] António Miguel Rosado da Cruz and João Pascoal Faria. A
metamodel-based approach for automatic user interface genera-
tion. In Proceedings of the ACM/IEEE 13th International Confer-
ence on Model Driven Engineering (Models 2010), Oslo, Norway,
October 2010 (to appear), 2010.

[Dem79] Tom Demarco. Structured Analysis and System Specification. Pren-
tice Hall, 1979.

[DFAB98] Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale.
Human-Computer Interaction. Prentice Hall, 2nd edition edition,
1998.

[DLW05] Dirk Draheim, Christof Lutteroth, and Gerald Weber. Genera-
tive programming for C#. ACM SIGPLAN Notices, 40(8):29–33,
August 2005.

[DS90] Prasun Dewan and Marvin Solomon. An approach to support au-
tomatic generation of user interfaces. ACM Transactions on Pro-
gramming languages and Systems, 12(4):566–609, October 1990.

[dSSdS08] João de Sousa Saraiva and Alberto Rodrigues da Silva. The
ProjectIT-Studio UMLModeler: A tool for the design and transfor-
mation of UML models. In Proceedings 3a Conferencia Ibérica de
Sistemas y Tecnoloǵıas de la Información (CISTI 2008), Campus
de Ourense, Ourense, Spain, 2008. Universidad de Vigo.

[dSSSM07] Alberto Rodrigues da Silva, João Saraiva, Rui Silva, and Carlos
Martins. XIS - UML profile for extreme modeling interactive sys-
tems. In 4th International Workshop on Model-based Methodolo-
gies for Pervasive and Embedded Software (MOMPES 2007). IEEE
Computer Society, March 2007.

[EKK06] M. Elkoutbi, I. Khriss, and R.K. Keller. Automated prototyping
of user interfaces based on UML scenarios. Journal of Automated
Software Engineering, 13(1):5–40, January 2006.

[Far07] João Pascoal Faria. Model driven development (MDD) using for-
mal methods and UML. Presentation at Seminário de Sistemas de
Informação, Escola Superior de Tecnologia e Gestão - IPVC, Viana
do Castelo, March 2007. (in Portuguese).

[FDRS04] Peter Forbrig, Anke Dittmar, Daniel Reichart, and Daniel Sinnig.
From models to interactive systems tool support and XIML. In
Hallvard Trætteberg, Pedro J. Molina, and Nuno Jardim Nunes,

211

editors, Proceedings of the First International Workshop on Mak-
ing model-based user interface design practical: usable and open
methods and tools (MBUI 2004), volume 103 of CEUR Workshop
Proceedings, Funchal, Madeira, Portugal, January 2004. Available
at http://ceur-ws.org.

[Fer05] Luis G. M. Ferreira. Formalizing markup languages for user in-
terface. Master’s thesis, Escola de Engenharia, Universidade do
Minho, Braga, 2005.

[FL98] John Fitzgerald and Peter Larsen. Modelling Systems. Practical
Tools and Techniques in Software Development. Cambridge Uni-
versity Press, 1998.

[Fra03] David S. Frankel. Model Driven Architecture - Applying MDA to
Enterprise Computing. Wiley Publishing, Inc., Indianapolis, Indi-
ana, 2003.

[Gre04] Shirley Gregor. The struggle towards an understanding of theory
in information systems. Information systems foundations: Con-
structing and Criticising Workshop, July 2004. Available online at
http://epress.anu.edu.au/info systems/mobile devices/ch01.html.
The Australian National University.

[Ins06] European Software Institute. A presentation of MDD basics:
Model-driven development (MDD) tutorial for managers. Model-
Ware - ReMOSitory, available at http://www.modelware-ist.org/,
September 2006. European Software Institute, Corporación Tec-
nológica Tecnalia.

[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software
development Process. Addison-Wesley, 1999.

[JCJv92] Ivar Jacobson, Magnus Christerson, Patrick Jonsson, and Gunnar
Övergaard. Object-Oriented Software Engineering - A Use Case
Driven Approach. ACM Press / Addison-Wesley, 1992.

[JSL+05] Xiaoping Jia, Adam Steele, Hongming Liu, Lizhang Qin, and Chris
Jones. Using ZOOM approach to support MDD. In Proceedings
of the 2005 International Conference on Software Engineering Re-
search and Practice (SERP’05), Las Vegas, Nevada, USA, June
27-30 2005.

[JSQ+07] Xiaoping Jia, Adam Steele, Lizhang Qin, Hongming Liu, and Chris
Jones. Executable visual software modeling–the ZOOM approach.
Software Quality Control, 15(1):27–51, 2007.

212

[JSS+07] Homa Javahery, Daniel Sinnig, Ahmed Seffah, Peter Forbrig, and
T. Radhakrishnan. Task Models and Diagrams for Users Interface
Design, chapter Pattern-Based UI Design: Adding Rigor with User
and Context Variables, pages 97–108. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2007.

[Jéz05] Jean-Marc Jézéquel. Model transfor-
mation techniques, 2005. (available in
http://modelware.inria.fr/static pages/slides/ModelTransfo.pdf).

[Kah01] James P. Kahan. Basic vs. applied research: The wrong di-
chotomy? RAND Europe, Oslo, Norway, October 2001.

[KEK01] Ismäıl Khriss, Mohammed Elkoutbi, and Rudolf K. Keller. Auto-
matic synthesis of behavioral object specifications from scenarios.
J. Integr. Des. Process Sci., 5(3):53–77, 2001.

[KLM03] E. Kantorowitz, A. Lyakas, and A. Myasqobsky. A use case-
oriented user interface framework. Proceedings IEEE International
Conference on Software - Science, Technology and Engineering
(SwSTE’03), pages 93 – 100, 2003.

[Knu92] E. Donald Knuth. Literate Programming. University of Chicago
Press, Chicago, 1992.

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain Specific Modeling:
Enabling Full Code Generation. Wiley-IEEE Computer Society
Press, 2008.

[Lan96] James A. Landay. SILK: sketching interfaces like krazy. In CHI ’96:
Conference companion on Human factors in computing systems,
pages 398–399, New York, NY, USA, 1996. ACM.

[LLK04] Patrick Lay and Stefan Lüttringhaus-Kappel. Transforming XML
schemas into Java Swing GUIs. In Peter Dadam and Manfred
Reichert, editors, GI Jahrestagung (1), INFORMATIK 2004 - In-
formatik verbindet, Band 1, Beiträge der 34. Jahrestagung der
Gesellschaft für Informatik e.V. (GI), 20. September - 24. Septem-
ber 2004 in Ulm, volume P-50 of LNI, pages 271–276. GI, 2004.

[LM05] Maŕıa Lázaro and Esperanza Marcos. Research in software engi-
neering: Paradigms and methods. In Jaelson Castro and Ernest
Teniente, editors, CAiSE Workshops (2), pages 517–522. FEUP
Edições, Porto, 2005.

213

[LM06] Maŕıa Lázaro and Esperanza Marcos. An approach to the integra-
tion of qualitative and quantitative research methods in software
engineering research. In Esperanza Marcos, Mark Lycett, César J.
Acuña, and Juan M. Vara, editors, PhiSE, volume 240 of CEUR
Workshop Proceedings. CEUR-WS.org, 2006.

[LNHL02] James Lin, Mark W. Newman, Jason I. Hong, and James A. Lan-
day. Denim: An informal sketch-based tool for early stage web
design. In Proceedings of AAAI 2002 Spring Symposium (Sketch
Understanding Workshop), Stanford, CA, 2002.

[Mar02] Antti Martikainen. An XML-based framework for developing us-
able and reusable user interfaces for multi-channel applications.
Pro gradu thesis, report, Department of Computer Science, Uni-
versity of Helsinki, May 2002.

[Mar07] Carlos Alberto Rodrigues Martins. Modelação de interfaces
gráficas no ambito do ProjectIT. Master’s thesis, University of
Madeira, Funchal, Portugal, 2007. MSc thesis in portuguese.

[MAT01] A. Mahfoudhi, M. Abed, and D. Tabary. From the formal spec-
ifications of users tasks to the automatic generation of the HCI
specifications. People and Computers XV - Interaction without
Frontiers. Joint Proceedings of HCI 2001 and IHM 2001, pages
331 – 47, 2001.

[MESP02] A. Martinez, H. Estrada, J. Sánchez, and O. Pastor. From early
requirements to user interface prototyping: A methodological ap-
proach. In Proceedings of the 17th IEEE International Conference
on Automated Software Engineering (ASE 2002), pages 257–260,
2002.

[Mey06] Bertrand Meyer. Dependable Systems: Software, Computing, Net-
works, volume 4028 of Lecture Notes in Computer Science, chapter
Dependable Software, pages 1–33. Springer Berlin / Heidelberg,
2006.

[MH03] Pedro J. Molina and Javier Hernández. Just-UI: Using patterns as
concepts for IU specification and code generation. In Perspectives
on HCI Patterns: Concepts and Tools (CHI’2003 Workshop), 2003.

[Mol04] Pedro J. Molina. User interface generation with olivanova model
execution system. In IUI ’04: Proceedings of the 9th international
conference on Intelligent user interfaces, pages 358–359, New York,
NY, USA, 2004. ACM.

214

[Mor03] Pedro Juan Molina Moreno. Especificación de interfaz de usuário:
De los requisitos a la generación automática. PhD thesis, Univer-
sidad Politécnica de Valencia, Marzo 2003. (In spanish).

[Moz] Mozilla. XML user interface language (XUL) project.
http://www.mozilla.org/projects/xul/. [Visited in 2008-09-19].

[MPM+01] P.J. Molina, O. Pastor, S. Marti, J.J. Fons, and E. Insfram. Spec-
ifying conceptual interface patterns in an object-oriented method
with automatic code generation. Proceedings Second International
Workshop on User Interfaces in Data Intensive Systems. UIDIS
2001, pages 72 – 9, 2001.

[MR92] Brad A. Myers and Mary Beth Rosson. Survey on user interface
programming. In CHI ’92: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 195–202, New York,
NY, USA, 1992. ACM Press.

[MSDa] MSDN. Visual studio developer center.
http://msdn.microsoft.com/en-us/vstudio. [Visited in 2008-
09-19].

[MSDb] MSDN. XAML overview. http://msdn2.microsoft.com/en-
us/library/ms752059.aspx. [visited in 2007-01-11].

[NC06] Paul Nguyen and Robert Chun. Model driven development with
interactive use cases and UML models. In Software Engineering
Research & Practice Conference (SERP 2006), Las Vegas, Nevada,
June 26-29 2006.

[Nun01] Nuno Jardim Nunes. Object Modeling for User-Centered Devel-
opment and User Interface Design: The Wisdom Approach. PhD
thesis, University of Madeira, July 2001.

[Oli09] Eugénio Oliveira. Mic - metodologias de investigação cient́ıfica
(apresentação de apoio à disciplina de mic). Available in
http://paginas.fe.up.pt/ eol/PRODEI/mic0910 files/Teorias.pdf
(in portuguese), October 2009.

[OMG01] OMG. Omg unified modeling language specification (action se-
mantics), December 2001. Action Semantics Draft Adopted Spec-
ification. Base Document: UML 1.4.

[OMG03] OMG. Uml 2.0 ocl specification, October 2003.

[OMG09a] OMG. Unified Modeling Language (OMG UML), Infrastructure,
February 2009.

215

[OMG09b] OMG. Unified Modeling Language (OMG UML), Superstructure,
February 2009.

[Ope04] OASIS Open. User Interface Markup Lan-
guage (UIML) Specification. http://www.oasis-
open.org/committees/documents.php?wg abbrev=uiml., 2004.
editors: Marc Abrams and James Helms.

[Out] OutSystems. Outsystems agile platform - technical overview. Pub-
lished in http://www.outsystems.com. [Visited in 2008-09-20].

[Pai06] Ana Cristina Paiva. Automated Specification-Based Testing of
Graphical User Interfaces. PhD thesis, Faculty of Engineering,
University of Porto, 2006.

[Pat03] F. Paternò. The handbook of Task Analysis for Human-Computer
Interaction, chapter ConcurTaskTrees: An engineered notation for
task models, pages 483–503. D. Diaper and N. Stanton, 2003.

[PB08] Ilia Petrov and Alejandro Buchmann. Architecture of omg mof-
based repository systems. In Proceedings of iiWAS2008, 2008.

[PE99] Angel Puerta and Jacob Eisenstein. Towards a general computa-
tional framework for model-based interface development systems.
In IUI ’99: Proceedings of the 4th international conference on In-
telligent user interfaces, pages 171–178, New York, NY, USA, 1999.
ACM Press.

[PE01] Angel Puerta and Jacob Eisenstein. XIML: A universal language
for user interfaces. Technical report, RedWhale Software, 2001.

[PI03] Oscar Pastor and Emilio Insfrán. OO-Method, the methodolog-
ical support for Oliva Nova model execution system. Techni-
cal report, Care Technologies, 2003. White paper. Available at
http://www.care-t.com.

[Pin00] Paulo Pinheiro da Silva. User interface declarative models and
development environments: A survey. In Interactive Systems - De-
sign, Specification, and Verification: 7th International Workshop,
DSV-IS 2000, Limerick, Ireland, June 2000. Revised Papers, vol-
ume 1946 of Lecture Notes in Computer Science, pages 207–226,
Limerick, Ireland, 2000. Springer Berlin / Heidelberg.

[Pin02] Paulo Pinheiro da Silva. Object Modelling of Interactive Systems:
The UMLi Approach. PhD thesis, Faculty of Science and Engi-
neering, University of Manchester, 2002.

216

[PIP+97] Oscar Pastor, Emilio Insfrán, Vicente Pelechano, José Romero, and
José Merseguer. OO-METHOD: An OO software production en-
vironment combining conventional and formal methods. In CAiSE
’97: Proceedings of the 9th International Conference on Advanced
Information Systems Engineering, pages 145–158, London, UK,
1997. Springer-Verlag.

[PMI04] Oscar Pastor, Juan Carlos Molina, and Emilio Iborra. Auto-
mated production of fully functional applications with olivanova
model execution. ERCIM News No. 57, April 2004. Available at
http://www.ercim.org/publication/Ercim News/enw57/pastor.html.

[PMM97] Fabio Paternò, Cristiano Mancini, and Silvia Meniconi. Concur-
tasktrees: A diagrammatic notation for specifying task models. In
INTERACT ’97: Proceedings of the IFIP TC13 Interantional Con-
ference on Human-Computer Interaction, pages 362–369, London,
UK, UK, 1997. Chapman & Hall, Ltd.

[PP01] Paulo Pinheiro da Silva and Norman W. Paton. User Inter-
face Modelling with UML. In H. Jaakkola, H. Kangassalo, and
E. Kawaguchi, editors, Information Modelling and Knowledge
Bases XII, pages 203–217, Amsterdam, The Netherlands, 2001.
IOS Press. 10th European-Japanese Conference on Information
Modelling and Knowledge Representation, May 2000, Saariselkä,
Finland).

[Pre05] Roger Pressman. Software Engineering: A Practitioner’s Ap-
proach. McGraw Hill, 6th edition edition, 2005.

[RBL+90] James R. Rumbaugh, Michael R. Blaha, William Lorensen, Freder-
ick Eddy, and William Premerlani. Object-Oriented Modeling and
Design. Prentice-Hall, 1st edition edition, 1990.

[RFD04] Daniel Reichart, Peter Forbrig, and Anke Dittmar. Task models
as basis for requirements engineering and software execution. In
TAMODIA, pages 51–58, 2004.

[RFSS07] Frank Radeke, Peter Forbrig, Ahmed Seffah, and Daniel Sinnig.
PIM Tool: Support for pattern-driven and model-based UI devel-
opment. In Task Models and Diagrams for Users Interface Design
(TAMODIA 2006), volume 4385/2007 of Lecture Notes in Com-
puter Science, pages 82–96. Springer Berlin / Heidelberg, 2007.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling
Language reference manual. Addison-Wesley, 1999.

217

[SDJ07] Dag I. K. Sjoberg, Tore Dyba, and Magne Jorgensen. The future of
empirical methods in software engineering research. In FOSE ’07:
2007 Future of Software Engineering, pages 358–378, Washington,
DC, USA, 2007. IEEE Computer Society.

[Sil03] Alberto Silva. The XIS approach and principles. In IEEE Com-
puter Society, editor, Proceedings of the 29th EUROMICRO Con-
ference ”New Waves in System Architecture” (EUROMICRO ’03),
2003.

[Sil04] Alberto Silva. O programa de investigação ”ProjectIT”. Techni-
cal report, v1.0, INESC-ID, October 2004. In portuguese. Avail-
able in http://isg.inesc-id.pt/alb/uploads/1/193/pit-white-paper-
v1.0.pdf.

[Som07] Ian Sommerville. Software Engineering. Addison-Wesley, 8th edi-
tion, 2007.

[SSC+96] Pedro A. Szekely, Piyawadee Noi Sukaviriya, Pablo Castells,
Jeyakumar Muthukumarasamy, and Ewald Salcher. Declarative
interface models for user interface construction tools: the master-
mind approach. In Proceedings of the IFIP TC2/WG2.7 Work-
ing Conference on Engineering for Human-Computer Interaction,
pages 120–150, London, UK, UK, 1996. Chapman & Hall, Ltd.

[SSFV07] Alberto Silva, João Saraiva, David Ferreira, and Carlos Videira.
Integration of RE and MDE paradigms: the ProjectIT approach
and tools. IET Software, 1(6):294–314, 2007.

[Sun] Sun. Netbeans IDE - features.
http://www.netbeans.org/features/. [Visited in 2008-09-19].

[SV05] Alberto Silva and Carlos Videira. UML, Metodologias e Ferramen-
tas CASE, volume volume 1. Centro Atlântico, Lda., 2nd edition,
2005. (In portuguese).

[SV08] Alberto Silva and Carlos Videira. UML, Metodologias e Ferramen-
tas CASE, volume volume 2. Centro Atlântico, Lda., 2nd edition,
2008. (In portuguese).

[SVS+06] Alberto Silva, Carlos Videira, João Saraiva, David Ferreira, and
Rui Silva. The ProjectIT-Studio, an integrated environment for the
development of information systems. Second International Confer-
ence on Innovative Views of .Net Technologies - IVNET, 2006.

218

[SWM06] Bernd Schoeller, Tobias Widmer, and Bertrand Meyer. Making
specifications complete through models. In Ralf Reussner, Ju-
dith Stafford, and Clemens Szyperski, editors, Architecting Sys-
tems with Trustworthy Components, volume 3938 of Lecture Notes
in Computer Science, pages 48–70. Springer Berlin / Heidelberg,
2006.

[Træ02] Hallvard Trætteberg. Model-based User Interface Design. PhD
thesis, Information Systems Group, Department of Computer and
Information Sciences, Faculty of Information Technology, Mathe-
matics and Electrical Engineering. Norwegian University of Science
and Technology, May 2002.

[WBP+03] Jos Warmer, Wim Bast, Diane Pinkley, Mario Herrera, and Anneke
Kleppe. MDA Explained - The Model Driven Architecture: Practice
and Promise. Addison-Wesley Professional, 2003.

[WFDR05] Andreas Wolff, Peter Forbrig, Anke Dittmar, and Daniel Reichart.
Linking GUI elements to tasks: supporting an evolutionary design
process. In TAMODIA ’05: Proceedings of the 4th international
workshop on Task models and diagrams, pages 27–34, New York,
NY, USA, 2005. ACM.

[WFR05] Andreas Wolff, Peter Forbrig, and Daniel Reichart. Tool support
for model-based generation of advanced user-interfaces. In Andreas
Pleuss, Jan Van den Bergh, Heinrich Hussmann, and Stefan Sauer,
editors, Proceedings of the MoDELS’05 Workshop on Model Driven
Development of Advanced User Interfaces, Montego Bay, Jamaica,
October 2005.

[YJ02] Joseph W. Yoder and Ralph E. Johnson. The adaptive object-
model architectural style. In WICSA 3: Proceedings of the IFIP
17th World Computer Congress - TC2 Stream / 3rd IEEE/IFIP
Conference on Software Architecture, pages 3–27, Deventer, The
Netherlands, The Netherlands, 2002. Kluwer, B.V.

[You88] Edward Yourdon. Modern Structured Analysis. Prentice Hall, 1988.

219

220

