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where I am. Thank you Avô, for instilling me eagerness to know more, and for being my

greatest inspiration.

Finally, thank you Joana. You have always been there, and I’m sure you’ll always be.



Abstract

This work has been developed under the Dissertation Project discipline from the 5th year of

the Integrated Master in Industrial Engineering and Management of the Faculty of Engineer-

ing of the University of Porto, in collaboration with the Bristol Institute of Technology from

the University of the West of England. Its objective is to contribute to the development of

production planning methods, focusing the Capacitated Lotsizing and Scheduling Problem

(CLSP), a problem that tries to fulfill market demand while minimizing the total cost of

production plans, heavily dependent on the production lots sequence and size.

Two approaches have been considered: a theoretical approach, to improve existing rep-

resentation models, and a practical approach, to develop efficient solving methods.

In the theoretical field, a novel model for the CLSP was developed, which correctly

handles two situations: on one hand, when setup times and costs do not respect the triangular

inequality, a situation may occur where the optimal solution includes more than one batch

of the same product in a single period - in other words, at least one sub-tour exists in

the production sequence of that period. On the other hand, by allowing setup crossovers,

flexibility is increased and better solutions can be found. In tight capacity conditions, or

whenever setup times are significant, setup crossovers are needed to assure feasibility. This

work has originated an article, submitted to a scientific journal and currently awaiting for

revision.

In the practical field, a hybrid metaheuristic that relies on the improvement of existing

solutions was developed and implemented. By taking information from incumbent solutions

provided by the branch-and-cut algorythm, simplified sub problems that potentially lead

to better solutions are constructed. Preliminary tests suggest that the method quickly

improves the first incumbent candidates found. This is useful not only because good solutions
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are quickly found, but also because upper bounds are quickly set in the branch-and-cut

algorythm, thus pruning branches and decreasing the size of the explored tree. However,

the proposed method fails to increase the overall efficiency of the branch-and-cut algorithm,

raising several hypothesis. Still, important insights on hybrid metaheuristics were gained,

benefiting further research.



Resumo

O presente trabalho foi realizado no âmbito da disciplina de Projecto de Dissertação do 5o

ano do Mestrado Integrado em Engenharia Industrial e Gestão da Faculdade de Engenharia

da Universidade do Porto, em parceria com o Bristol Institute of Technology da University of

the West of England. Tem como objectivo contribuir para o desenvolvimento dos processos de

planeamento de produção, focando o Capacitated Lotsizing and Scheduling Problem (CLSP),

problema que visa satisfazer a procura e optimizar o custo total do plano de produção,

fortemente influenciado pela sequência e dimensão dos lotes de produção.

Foram consideradas duas abordagens essenciais: uma abordagem teórica, com vista a

melhorar os modelos de representação existentes, e uma abordagem prática, com vista a

desenvolver métodos de resolução eficientes.

Do ponto de vista teórico, foi desenvolvido um novo modelo para o CLSP capaz de lidar

simultaneamente com duas situações distintas: Por um lado, quando os custos e tempos de

setup não respeitam a desigualdade triangular, pode aparecer uma situação onde a solução

óptima inclui mais do que um lote de produção de um mesmo produto num único peŕıodo -

por outras palavras, existe pelo menos um sub tour na sequência de produção desse peŕıodo.

Por outro lado, ao permitir setup crossovers, aumenta-se a flexibilidade, permitindo a de-

scoberta de melhores soluções. Em condições de capacidade apertada, ou quando os tempos

de setup são muito significativos, os setup crossovers são necessários para garantir a ex-

istência de uma solução admisśıvel. Deste trabalho resultou um artigo que presentemente se

encontra submetido a uma revista cient́ıfica da especialidade, aguardando revisão.

Do ponto de vista prático, foi desenvolvida e implementada uma metaheuŕıstica h́ıbrida,

assente no melhoramento de soluções existentes. Recorrendo à informação fornecida por

soluções incumbentes provenientes do algoritmo branch-and-cut, são gerados sub proble-
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mas simplificados que potencialmente originam melhores soluções. Resultados preliminares

mostram que este método melhora rapidamente as primeiras soluções incumbentes encon-

tradas. No entanto, não se verifica um aumento geral de eficiência do algoritmo branch-and-

cut, ainda que a nova solução reduza o número de ramos explorados. Mesmo assim, várias ob-

servações pertinentes foram realizadas no âmbito das metaheuristicas h́ıbridas, contribuindo

para futuros trabalhos de pesquisa nesta área.
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Chapter 1

Introduction

1.1 The Dissertation Project at the Faculty of Engi-

neering at the University of Porto

This work has been developed under the Dissertation Project discipline from the 5th year

of the Integrated Master in Industrial Engineering and Management of the Faculty of En-

gineering of the University of Porto, in collaboration with the University of the West of

England.

With the Bologna Process, master degrees in Portugal mandatorily need to integrate a

professional internship, subject to a final report, or a scientific dissertation. While the sci-

entific dissertation has always been a possibility, traditionally, and since its origins, students

from the Integrated Master in Industrial Engineering and Management programme of the

Faculty of Engineering of the University of Porto have always concluded their studies with

an individual, professional internship project in a company, having had the opportunity to

integrate and apply the knowledge, skills and attitudes acquired throughout the programme

to complex engineering problems.

Initial negotiations between Professor Bernardo Almada-Lobo from the Faculty of Engi-

neering of the University of Porto and Professor Alistair Clark from the University of the

West of England, aiming to establish future joint work projects, have created the opportu-

nity for a graduate student to undergo a research project in both institutions, supervised by
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the two researchers. Thus, having successfully applied for the opportunity, the author has

produced the first scientific dissertation project in the aforementioned context.

While initially aiming to obtain insights into the way different solution approaches must

be combined to develop efficient tools for solving hard MIP problems, with special focus on

the CLSP, the project has soon evolved into a whole different form: a mixed approach to the

CLSP, consisting of a theoretical approach aiming to the development of exact formulations

that correctly address complex real life situations, specifically the existance of non-triangular

setup times and costs and the need for increased flexibility given by setup crossovers, and

a practical approach, similar to the initial objective, aiming to the development of a hybrid

metaheuristic that may help find better solutions based on the information contained on

previously existing ones.

1.2 The Capacitated Lotsizing and Scheduling Prob-

lem

Manufacturing organizations are keen to improve their competitive position in the global

marketplace by increasing operational performance. Production planning is crucial to this

end and represents one of the most challenging tasks managers are facing today. The focus of

the work is the short/medium-term scope, namely two of the most important and challenging

production planning problems: lotsizing and scheduling.

When a machine is set up from a product to another, setup times and costs are incurred.

Since these times and costs are often dependent of the production sequence, production

scheduling has a direct impact in the overall production plan cost and in the production

capacity available for lotsizing. In turn, inventory levels determined by lotsizing decisions

and market demand also have a direct impact in the overall production plan cost. This way,

production scheduling and lotsizing are intricately connected, and integrated approaches are

needed to achieve the most efficient production plan possible.

Most models consider a finite planning horizon divided into discrete time periods. The

single-stage, multi-item, lot-sizing and scheduling problem with capacity constraints is re-

ferred to as the capacitated lotsizing and scheduling problem (CLSP). CLSP is considered
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to be a large-bucket problem, because several products/setups may be produced/performed

per period. On the other hand, in small-bucket problems, at most one setup may be exe-

cuted during a period. In practice, these problems are very complex and difficult to solve

(NP-hard).

Usually, setups follow the so called triangular inequality, i.e., for any three products,

the cost and time required to directly set up the machine from one product to another is

always less than the sum of those required when setting up via an intermediate product.

However, several reasons may lead to the existence of non-triangular setup times or costs.

For example, in some industries (chemical, pharmaceutical, food, dyeing, etc.), unwanted

contamination occurs between certain products. To avoid it, additional cleansing operations

must be performed during machine set ups, often requiring the use of expensive special

products. Alternatively, products that absorb the contaminating substances (or even lower

grade mixed products) can be produced in between, reducing setup times and costs. In

this situation, a minimum lot size is often required for the intermediate product, so as to

eliminate unacceptable contamination.

When the triangular inequality does not hold, it may be efficient to produce more than

one batch of the same product in a given period. Though this concept is quite simple, it

is also quite hard to model when considering sequence dependent setup times and costs,

often leading to incomplete or inaccurate MIP formulations, and subsequent infeasible or

sub optimal solutions. In this paper, a novel formulation that correctly handles this problem

is proposed.

Setup times play a double role in production planning problems, because not only do

they indirectly impact on the optimal solution’s value (by constraining the inventory levels),

but they also interfere with the solution’s feasibility. In tight machine capacity situations,

an effective distribution of setup times is required. Quite often, setup operations can be

interrupted at the end of a period and resumed at the beginning of the next one with no

additional prejudice, either due to the nature of the operations required or to the fact that

there is no physical separation between periods. When this happens, a setup cross over or

a period− overlapping setup is said to exist.

A novel formulation for the CLSP which correctly handles non-triangular setup times
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and costs while enforcing the necessary feature of minimum lot sizes, and allows setup

crossovers between adjacent periods was developed, and the resulting article, Menezes et al.

[2008], was submitted to a scientific journal. To the best of our knowledge, we are the

first to exactly model these features for the well known capacitated lotsizing and scheduling

problem (CLSP), considered to be a big-bucket model as multiple products/setups may be

produced/performed per planning period.

Additionally, due to the complexity of these problems, a hybrid approach combining

heuristic and exact methods was developed and implemented for the original formulation.

While preliminary tests show unsatisfactory results, important insights have been acquired,

clarifying future research directions.

1.3 Literature Review

There is a vast amount of literature on lotsizing and scheduling models with setup times and

costs. However, to the best of our knowledge, none is able to correctly handle both sequence

dependent and non triangular setups for big-bucket models, let alone a combination of this

and period overlapping setups.

Several contributions from the academic community have greatly improved the quality

of CLSP models. Gopalakrishnan et al. [1995] are among the first to address the influence of

significant setup times, proposing a model that handles setup carry overs for identical times

and costs. Later, in Gopalakrishnan [2000], product dependent setup times and costs are

considered. Sox and Gao [1999] propose a new model that only considers product dependent

setup costs, but at the same time greatly reduces the number of binary variables, increasing

the model’s efficiency. Porkka and Kuula [2000] show that proper accounting for setup

carryovers and setup times decrease the number of setups and frees a significant amount of

production capacity. Suerie and Stadtler [2003] suggest a new model, considering both setup

times and costs while keeping the number of binary variables low. Extensive computational

tests prove the model’s superiority with respect to previously existing models.

Haase and Kimms [2000] take a different approach, considering a CLSP model that

handles sequence dependent setup times and costs, but by pre-defining efficient production
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sequences, sub-optimal solutions may be found. The authors also assume no inventory may

exist at the beginning of the period in which a production lot of that same product is to be

produced.

Clark and Clark [2000] model the CLSP with sequence-dependent setup times using a

new mixed-integer programming formulation. They assume that up to a given number of

setups occur in the time period between any two given products, independently of their

demand patterns.

Almada-Lobo et al. [2007] propose two models that correctly handle sequence-dependent

setup times and costs for large-bucket problems, but do not allow setup cross overs, and may

result in sub optimal solutions when non triangular setup times and costs exist.

In Toso and Morabito [2005], periods are divided in subperiods, enabling the original

big-bucket problem to be treated as a small-bucket one, where at most one setup may be

performed per subperiod. This way, sequence dependent setup times (either respecting or

not the triangular inequality) are correctly accounted for. However, the subdivision requires

an a priori definition of the maximum allowed number of setup operations per period, thus

heavily increasing the model size, or even demanding multiple tweaking experiments before

obtaining the optimal solution. While minimum lot sizes are imposed, they only relate to the

first subperiod after the machine has been set up, leading to potential sub-optimal solutions.

Moreover, setup cross overs are not allowed, having to start and finish in the same period.

Suerie [2006] proposes a model that correctly handles setup cross overs, but only for small-

bucket problems. A set of variables are introduced in relation to the standard model, keeping

track of how much time each setup operation is performed in each period, the cumulative

time a setup operation has been performed in any given period since the last time it started,

and the availability of the machine at the beginning of every period (the machine is available

for production if the entire setup operation has finished). Sung and Maravelias [2008] propose

a similar model for large-bucket problems, with sequence independent setup times and costs.

New extensions driven by the need to model more realistic manufacturing problem set-

tings demand the combination of existing algorithms, tighter models and stronger valid

inequalities based on the polyhedral structure of these problems. This situation is not exclu-

sive to production planning problems. In fact, several models from a wide range of research
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fields have been proven to be too complex to be optimally solved by state of the art op-

timization engines in a feasible amount of time, and have created the need for heuristic

algorithms that, while not solving the problem to optimality, find reasonably good solutions

in a reasonably low amount of time. However, reasonably good is frequently not enough,

and powerful hybrid algorithms are often crucial to deliver superior solutions in reasonable

computational times. Several authors have contributed to the development of such algo-

rithms, either specifically designed to handle production planning problems, or designed to

cope with a broader base of integer programming (IP) or mixed integer programming (MIP)

problems.

Altough hybrid metaheuristics are a recent approach to complex problem solving, several

authors have already contributed to the development of methods that handle general MIP

problems, independently of their context.

Fernandes and Lourenço [2007] presents a simple algorithm for the job-shop scheduling

problem that combines the GRASP local search heuristic with the branch-and-cut exact

algorithm. The proposed method is compared with similar approaches, achieving overall

better results.

In Danna et al. [2005], information contained in the continuous relaxation of a MIP

problem is used to construct promising neighborhood structures that are then then formu-

lated as MIP problems and solved recursively, through a method called Relaxation Induced

Neighborhood Search (RINS). Additionally, a method that guides the MIP tree based on the

similarity between each individual node and the best known feasible solution is proposed.

Fischetti and Lodi [2008] combine previously existing heuristics to find and improve initial

solutions. In their approach, a feasibility pump (FP) technique is employed to discover a

possibly feasible initial solution. This initial solution is later provided as the starting point

to an improvement algorithm, local branching (LB). Since finding an initial feasible solution

is sometimes hard and unecessary, the integration of both methods allows for the use of

an initial unfeasible solution, whose feasibility is later recovered during the improvement

method. Through computational tests, is is shown that such a combination is more efficient

than traditional optimization engines and the use of the local branching technique alone.

Rothberg [2007] proposes a mixed approach, using an evolutionary algorithm for polish-
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ing mixed integer programming solutions. In this approach, MIP solutions are mutated and

combined, and then used within a large neighborhood search framework. These techniques

are then integrated within a MIP branch-and-cut framework, often finding significantly bet-

ter feasible solutions to very difficult MIP problems.

Another proposal for a hybrid-metastrategy for combinatorial optimization problems,

presented in Framinan and Pastor [2008], uses a Bound Driven Search algorithm that per-

forms a local search to explore the most promising nodes, in a systematic ”branch-and-

bound” sense, being able to guarantee the optimal solution to a problem.

1.4 Thesis Synopsis

This work is divided into five chapters. The reminder of the thesis is as follows.

Chapter (2) presents a novel formulation for the capacitated lotsizing and scheduling

problem with non triangular setups. We start by presenting the reader a previously built

model that correctly handles sequence dependent setup times and costs. We then give a de-

tailed technical explanation on the non triangular setup problem, and specify the constraint

replacements and additions required to correctly handle it. Two complementing algorithms

are proposed, so that the model can be dynamically implemented. The necessary feature of

minimum lot sizes is then addressed, with the addition of several new constraints. We prove

that the new model is superior to the previous one, and provide a small numerical example

to compare results.

Chapter (3) presents a model that builds on the previous one to permit period overlapping

setups. All necessary changes to the formulation are specified. A proof that the new model

is even better than the one presented in Chapter (2) is supplied, and the aforementioned

numerical example is again used to compare results.

In Chapter (4), the proposed hybrid metaheuristic is explained. We start by giving an

overview of the hybrid meta-strategy, and proceed to detailing each individual step.

Finally, Chapter (5) summarizes our main findings, and hints future research directions.



Chapter 2

New Model for CLSP with Non

Triangular Setup Costs and Times

2.1 Standard CLSP model with sequence dependent

setup costs and times

Consider the following standard model for the CLSP with sequence-dependent setup costs

and times, suggested by Almada-Lobo et al. [2007]. Here, t denotes time periods ranging

from 1 to T , while i and j index the products, which are labeled from 1 to N . Furthermore,

the set {1, 2, ...,M} is denoted by [M]. A general single-stage model is considered, involving

multiple items to be scheduled on a single machine with the following data:

hi cost of carrying one unit of stock of product i from one period to the next,

pi processing time of one unit of product i,

dit demand for product i at the end of period t,

Ct capacity of the machine in period t (measured in time units),

sij time needed to set up the machine from product i to product j,

cij cost incurred to set up the machine from product i to product j,

Mit upper bound on the production quantity of product i in period t.

Binary variable Tijt indicates whether or not a setup occurs on the machine configuration
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state from product i to j in period t. Continuous variable αit keeps track of the machine

state — if it is set up for product i (value 1) or not (value 0) — at the beginning of period

t. Variable Xit represents the amount of product i to produce in period t, and Iit the stock

of product i at the end of period t. Finally, auxiliary variable Vit ranks production lot of

product i in period t, assuring that the machine is only set up for one product on any given

time.

Lastly, v denotes optimal values of underlying optimization problems. This formulation,

F1, will be used as a starting point for the extensions presented later in this paper:

v (F1) = min
∑

i

∑
j

∑
t

cij · Tijt +
∑

i

∑
t

hi · Iit (2.1)

Iit =Ii(t−1) + Xit − dit i ∈ [N ], t ∈ [T ] (2.2)∑
i

pi ·Xit +
∑

i

∑
j

sij · Tijt ≤Ct t ∈ [T ] (2.3)

Xit ≤Mit ·

(∑
j

Tjit + αit

)
i ∈ [N ], t ∈ [T ] (2.4)

∑
i

αit =1 t ∈ [T ] (2.5)

αit +
∑

j

Tjit =αi(t+1) +
∑

j

Tijt i ∈ [N ], t ∈ [T ] (2.6)

Vit + N · Tijt − (N − 1)−N · αit ≤Vjt

i ∈ [N ], j ∈ [N ] \ {i},

t ∈ [T ]
(2.7)

(Xit, Iit, αit, Vit) ≥ 0, Tijt ∈ {0, 1}. (2.8)

The objective function (2.1) minimizes the sum of sequence-dependent setup costs and

the holding cost. Constraints (2.2) represent the inventory balances and (2.3) ensure that

production and setup operations do not exceed available capacity. Constraints (2.4) guar-

antee that a product is produced only if the machine has been set up for it. Constraints

(2.5)-(2.7) determine the sequence of products on the machine in each period and keep track

of the machine configuration state at the beginning of each period, by recording the product

that a machine is ready to process at the end of the previous one (setup carryover information

is thereby tracked).
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In practice, a situation may occur where more than one lot of the same product is

produced in a single period. In other words, at least one sub tour – a production sequence

that starts and ends in the same setup state – may exist in that period.

Two special sub tour cases are referred to throughout the article: alpha sub tours (sub

tours that start and end in the same setup state as the first setup state of each period’s

production sequence) and disconnected sub tours (sub tours that are not part of the period’s

main sequence). Disconnected sub tours are further classified according to their complexity:

simple disconnected sub tours (sub tours that form a perfect loop) and complex disconnected

sub tours (sub tours that in turn are formed by multiple sub tours).

Consider a digraph G where nodes represent production lots of product i, solid arcs (i, j)

represent setups from product i to product j, and dashed arcs represent the setup states

inherited from or passed to neighboring periods, thus producing a visual representation of the

production sequence of a given period. Figure 2.1 shows some sub tour examples, including

the aforementioned special cases.

(a) Main sequence with regular sub tour (b) Main sequence with alpha sub tour

(c) Main sequence and simple discon-

nected sub tour

(d) Main sequence and complex discon-

nected sub tour

Figure 2.1: Sub tour examples

It is evident that disconnected sub-tours cannot be part of a feasible solution, as it is

impossible to define a finite chronological sequence that represents them correctly. The

following reasoning shows that constraints (2.7) eliminate all but alpha sub tours.
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Let C ⊆ [N ]2 represent a non-empty subset of product pairs (i, j), with cardinality

|C|. If Tijt = 1, ∀(i, j) ∈ C in a given period t, then we say C represents a sub tour

(or a group of sub tours). By summing constraints (2.7) up for all (i, j) ∈ C, we get∑
C Vit + N ·

∑
C Tijt −

∑
C(N − 1) − N ·

∑
C αit ≤

∑
C Vjt. Considering a non-alpha

sub tour, we get
∑

C αit = 0. Evidently,
∑

C Vit =
∑

C Vjt, N ·
∑

C Tijt = N · |C| and∑
C(N − 1) = N · |C| − |C|. Thus, we get N · |C| −N · |C| + |C| − 0 ≤ 0, which is clearly

impossible for |C| > 0. This guarantees no sub tour occurs, with the exception of alpha sub

tours.

2.2 Allowing sub tours in the main sequence

The following changes must be made to F1 to correctly account for non-triangular setup

costs and times:

Firstly, since non-triangular setup costs and times may result in a given setup being

performed more than once, variables Tijt must be allowed to take any non-negative integer

values.

Secondly, constraints (2.7) must be replaced, as they only allow alpha sub tours. Let M

represent a very large number, S ⊆ [N ] be a non-empty, non-unitary subset of the entire

products set, and Yit be a binary variable taking the value of 1 when the machine is is

configuration state for to product i at least once in period t, and 0 otherwise:

Yit =

1 if
∑

j Tjit + αit ≥ 1,

0 otherwise.

The following constraints are valid for any feasible solution (with or without sub tours),

and cut off disconnected sub-tours:

∑
j 6∈S

∑
i∈S

Tjit +
∑
i∈S

αit + M ·
∑
i∈S

(1− Yit) ≥1 t ∈ [T ], S ⊆ [N ], |S| ≥ 2 (2.9)

These constraints are non-active whenever the machine is not configured to produce at

least one product i in S in period t. If this is not the case (Yit = 1 for every i ∈ S), then
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(2.9) reduces to
∑

j 6∈S

∑
i∈S Tjit +

∑
i∈S αit ≥ 1. Clearly, this expression assures that the

number of inward links (setups from another production lot, or the period’s beginning)

to a given set of production lots is always greater than or equal to one, as exemplified in

Figure 2.2). If S represents a productive sub tour, it forces S’s cycle to be connected to the

production sequence of the previous period (through α’s) or to the main sequence of that

period (through T ’s), therefore it cuts disconnected sub tours off. Note that all regular sub

tours (even non-alpha ones, such as S1 on Figure 2.2) are allowed by (2.9).

Figure 2.2: Examples of S: regular sub tour (S1), part of the main sequence (no sub tour

exists, S2), simple disconnected sub tour (S3) and complex disconnected sub tour (S4)

The set (2.9) results in T · 2N constraints, making full implementation impracticable.

As such, individual constraints (2.9) will be dynamically added, as opposed to including

them directly in the initial model. This can be done in a number of ways. In this article, we

propose adding such constraints during the branch-and-cut process, whenever a disconnected

sub tour is identified, thus removing it and preventing it thereafter. Two algorithms are used

to achieve this end.

Algorithm 1, FindST , identifies a set of disconnected production lots S (which either

form a disconnected sub tour or a group of disconnected sub tours).

The sub tour identification algorithm is called at every feasible node during the branch-

and-cut process. If any disconnected sub tour is found, a global cut will be added, eliminating
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for t← 1 to T do

for i← 1 to N do

if αit = 1 then
Connectedit ← 1;

Validate(i,t);

break out of i loop;

end

end

for i← 1 to N do

if Connectedit = 0 and Yit = 1 then a non-validated production lot exists
Disconnectedit ← 1;

end

end

end

AddConstraints(Disconnected);

Algorithm 1: The sub tour identification (FindST ) algorithm

and preventing it from happening again. In order to find production lots not linked to

the main sequence, FindST algorithm calls recursive V alidate algorithm several times (see

Algorithm 2)

The recursive product validation algorithm works like this: Given a product i that is

known to be part of the main sequence, setups from i to every other product j are checked.

For each j, if at least one setup occurs from i to j (Tijt ≥ 1), and j is so far not known to be

part of the main sequence, then j is validated as being part of the main sequence, and the

product validation algorithm is called again, with j as argument. The product validation

algorithm is initialized in every period with the first product in sequence as argument (given

by argi(αit = 1))

At the end of the process, production lots that are not validated as being part of the

period’s main sequence, St = {argsi(Disconnectedit = 1)}, are known to be disconnected,

and the corresponding constraint is added.

Note that this approach intends to identify and remove any disconnected sub tour en-
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Input: Connected product i to explore

Input: Period t

for j ← 1 to N do

if Connectedjt =0 then

if Tijt ≥ 1 then
Connectedjt ← 1;

Validate(j,t);

end

end

end

Algorithm 2: The recursive product validation (V alidate) algorithm

countered. However, it is also possible to use additional a priori polynomial sized constraints

that prevent simple disconnected sub tours (thus reducing the number of dynamically added

constraints) as follows:

Let a new binary variable Qijt be 1 if at least one setup operation Tijt is performed, and

0 otherwise:

Qijt =

1 if Tijt ≥ 1,

0 otherwise.

The following modification of constraint (2.7) allows connected sub tours, while removing

simple disconnected ones:

Vit + M · (Qijt − 1) + M ·

(
Qijt − αit −

∑
l

Tlit

)
≤Vjt − 1 i ∈ [N ], j ∈ [N ], t ∈ [T ]

(2.10)

Constraints (2.10) works as follows:

Consider a general cycle C ∈ [N ]2 of size |C|, with Tijt ≥ 1,∀(i, j) ∈ C, which may be

composed of single or multiple sub tours, and let S be the node set of C. Summing all the

constraints (2.10) up for every arc (setup) belonging to cycle C, we obtain the following

requirement:
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|C| ≤M ·
∑

(i,j)∈C

(
αit +

∑
l

Tlit − 1

)
(2.11)

If cycle C corresponds to a simple disconnected sub tour, it is evident that
∑

l Tlit = 1

and αit = 0, ∀i ∈ S, which violates constraints (2.11). In any other case, αit +
∑

l Tlit ≥ 2

for the sub tour joint (the product that starts and ends a regular (product i2 in Figure 2.1a)

or alpha (product i1 in Figure 2.1b) sub tour, or bridges multiple sub tours into a complex

disconnected sub tour (product i3 in Figure 2.1d)), thus fulfilling the imposed requirements.

2.3 Enforcing minimum lot sizes

In cases where non-triangular inequalities exist due to the possibility to produce intermediate

lower-grade or cleansing products, minimum lot sizes must be imposed, so as to guarantee

an effective machine cleansing. Data representing the minimum lot sizes of each product

should be added to the model:

mi minimum size of each production lot of product i.

Additionally, a new binary variable Rt that equals to one if at least one setup is performed

during period t is required:

Rt =

1 if
∑

i

∑
j Tijt ≥ 1,

0 otherwise.

The following constraints are added:
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Xit =X−1
it + X0

it i ∈ [N ], t ∈ [T ] (2.12)

X−1
it ≤M · αit i ∈ [N ], t ∈ [T ] (2.13)

X0
it ≥mi ·

(∑
j

Tjit − αi(t+1)

)
i ∈ [N ], t ∈ [T ] (2.14)

X0
it +

s∑
k=t+1

X−1
ik ≥mi ·

∑
j

Tjit −M ·

(
s−1∑

k=t+1

Rk + 1−Rs

)
i ∈ [N ], t ∈ [T ], s ∈ [T ]\[t]

(2.15)

Expressions (2.12) split production Xit into the amount X0
it of product i produced in

period t after setups are performed in that period, and the amount X−1
it produced at the

beginning of the period, after a setup carry-over. If the setup state of product i is not

carried over into period t (αit = 0), then clearly X−1
it = 0, as imposed by (2.13). Constraints

(2.14) assure production lots that start and end within period t fulfil the minimum lot size

requirement. Constraints (2.15) enforce a minimum production size proportional to the

number of setups to product i in period t, allowing that same production size to be split

into subsequent periods. Note that this will only be enforced if there is at least one setup

occurring in period s (i.e., the cross over production lot ends), and there are no setups

between t + 1 and s− 1 (i.e., a unique cross over production lot is being considered). This

can be simplified if production lots never span for more than one entire period (i.e., s = t+1

instead of s ∈ [T ]\[t]).

Finally, variable domains must be specified:

(Xit, X
0
it, X

−1
it , Iit, αit, Vit) ≥ 0, Tijt ∈ N0, (Yit, Rt) ∈ {0, 1} (2.16)

The new formulation, F2, consists of objective function (2.1) subject to constraints (2.2)-

(2.6), (2.9) and (2.12)-(2.16). We prove in the following lemma that F1 is a special case of

F2, and, as such, the optimal solution of F2 is at least as good as F1’s:

Lemma 1. v(F1) ≥ v(F2)
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Proof. F2 can be seen as a generalization of F1, since the latter can be derived from the

former by adding additional constraints. If minimum lot sizes are not enforced, by setting

mi = 0, ∀i ∈ [N ], then constraints (2.12)-(2.15) become redundant and can be dropped. In

addition, let the set

∑
(i,j)∈C

αit ≥
|C| · (1−N)

N
+
∑

(i,j)∈C

Tijt (2.17)

be added to F2, obtained by all the constraints (2.7) listed for every arc (i, j) of a

general cycle C. As
∑

(i,j)∈C Tijt ≥ |C|, |C|
N

> 0 and αit can only take on integer values,

then (2.17) reduces to
∑

(i,j)∈C αit ≥ 1. If S contains the node set of cycle C, then (2.9) is

equivalent to
∑

i∈S αit ≥ 1−
∑

j 6∈S

∑
i∈S Tjit. Clearly, (2.17) makes this constraint redundant

as
∑

i∈S αit = 1 if
∑

(i,j)∈C αit ≥ 1. In the presence of sub tours, (2.17) dominates (2.9),

making the feasible solutions of F2 with (2.17) coincident with those of F1. Therefore, the

set of feasible solutions of F1 is a subset of the set of feasible solutions of F2. Consequently,

for the same data set, v(F1) ≥ v(F2), completing the proof.

The following example demonstrates the previous statement by showing the optimal

solutions of the same instance to F1 and F2

Example 1. A production plan of five different products, i = {1, 2, 3, 4, 5}, over the next

three periods must be devised. A certain component of product 5 contaminates product

1, and an expensive disinfectant product is required to clean the machine, thus increasing

c51. Product 3 has a component that absorbs the contaminating component from product 5,

hence the triangular inequality will not hold for the setup costs of sequence 5−3−1. Table 2.1

shows the relevant data for this problem. Additionally, consider cij = 10sij, ∀(i, j)\(5, 1),

c51 = 250, and Ct = 100, ∀t.

Tables 2.2 and 2.3 show the most relevant non-zero solution values given by F1 and F2,

respectively. Those same solutions are graphically represented by figures 2.3 and 2.4. Here,

white blocks represent production that is to be consumed in that period, light grey blocks

represent production that is to be stocked, middle grey represents idle time and dark grey

represents setups.
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Table 2.1: Data for the five product, three period problem

dit sij

t = 1 t = 2 t = 3 j = 1 j = 2 j = 3 j = 4 j = 5 hi

i = 1 90 0 110 - 20 100 100 100 10

i = 2 0 10 0 100 - 5 100 100 10

i = 3 0 10 0 10 100 - 10 100 10

i = 4 0 10 0 100 100 100 - 10 10

i = 5 0 10 0 10 100 5 100 - 10

Table 2.2: F1’s optimal solution

t = 1 t = 2 t = 3

α11 = 1 α12 = 1 α13 = 1

X11 = 95 X12 = 5, T122 = 1 X13 = 100

X22 = 10, T232 = 1

X32 = 10, T342 = 1

X42 = 10, T452 = 1

X52 = 10, T512 = 1

I11 = 5 I12 = 10

Figure 2.3: Graphical representation of F1’s optimal solution

Note that in F1’s optimal solution, 5 units of product 1 must be added to stock in periods
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1 and 2 to fulfill demand in period 3, with a holding cost of 150 monetary units. Setup costs

account for 700 monetary units, resulting in an objective function value of 850 monetary

units.

Table 2.3: F2’s optimal solution

t = 1 t = 2 t = 3

α11 = 1 α12 = 1 α13 = 1

X11 = 100 T122 = 1 X13 = 100

X22 = 10, T232 = 1

X32 = 10, T342 = 1, T312 = 1

X42 = 10, T452 = 1

X52 = 10, T532 = 1

I11 = 10 I12 = 10

Figure 2.4: Graphical representation of F2’s optimal solution

In F2’s optimal solution, an extra setup exists. However, due to the non triangular

inequality of sequence 5 − 3 − 1, total setup costs are reduced by 100 monetary units, to

a total cost of 600. The increase in setup times force production of product 1 in period 2

to be anticipated to period 1, increasing holding costs by 50 monetary units, to a total of

200. This results in an objective function value of 800 monetary units, which is 50 less than

F1’s. Note that our solution does not include the size of each individual production lot,

but instead the total amount of each product to be produced in each period. The example

depicted in Figure 2.4 represents one of the many possible ways to split X32 = 10 units of
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product 3 between the two corresponding production lots in period 2. These variations have

no impact in the objective function value.



Chapter 3

New Model for CLSP with

Sequence-dependent and Period

Overlapping Setup Costs and Times

Both F1 and F2 only take into account solutions that entail setups performed entirely within

a time period. We now consider lotsizing and scheduling problems where setups are allowed

to overlap period’s boundaries. Such feature is of upmost importance to tackle tight capacity

scenarios.

Our model uses two new types of variables (one of them binary) in addition to the

variables from model F2. Continuous variables St contain the amount of time still needed to

finish the last setup operation at the end of period t (cross over time). Binary variables Bijt

indicate whether or not the cross over setup from period t to period t + 1 is from product i

to j.

Due to setup cross overs, setup times St that are delayed to the following periods (as

well as setup times St−1 that are inherited from previous ones) must be taken into account.

Thus, capacity constraints (2.3) must be extended in the following way:∑
i

pi ·Xit +
∑

i

∑
j

sij · Tijt − St + St−1 ≤Ct t ∈ [T ] (3.1)

To ensure setup cross overs St only occur if a given setup Tijt is performed and that they do
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not exceed the corresponding setup time sij we add:

St ≤
∑

i

∑
j

sij ·Bijt t ∈ [T ] (3.2)

Bijt ≤Qijt i ∈ [N ], j ∈ [N ], t ∈ [T ] (3.3)

To ensure only the last setup performed may cross over, we add:∑
j

Bjit ≤αi(t+1) i ∈ [N ], t ∈ [T ] (3.4)

Note that since
∑

i αit = 1, we have
∑

i

∑
j Bijt ≤ 1, which prevents multiple setups from

crossing over.

Constraints (2.4) must be extended so that production of product i in period t may only

occur if at least one full setup operation for that product ends in that period.

Xit ≤Mit ·

(∑
j

(Tjit −Bjit) + αit

)
i ∈ [N ], t ∈ [T ] (3.5)

Note that this constraint may become very loose, but capacity constraints and inventory

costs will always prevent Xit from getting too big.

Minimum lot sizes must be enforced when a setup crosses over:

s∑
k=t+1

X−1
ik ≥mi ·

∑
j

Bjit −M ·

(
s−1∑

k=t+1

Rk + 1−Rs

)
i ∈ [N ], t ∈ [T ], s ∈ [T ], s > t (3.6)

Finally, we assure St is non-negative, and Qijt and Bijt are binary:

St ≥ 0, (Qijt, Bijt) ∈ {0, 1}. (3.7)

The new formulation, F3, consists of objective function (2.1) subject to constraints (2.2),

(2.5), (2.6), (2.9), and (2.12)–(3.7).

Let S2 and S3 be the sets of feasible solutions to F2 and F3, respectively. We prove in

the following lemma that F2 is a special case of F3.

Lemma 2. S2 ⊆ S3.
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Proof. Let us assume another model and its feasible solution set, F3∗ and S3∗, respectively,

similar to F3 with the following additional requirement:∑
i

∑
j

∑
t

Bijt = 0 (3.8)

This constraint ensures no setup cross over occurs. Constraints (3.2) make variables St all

equal to 0. It becomes obvious that F3∗ is equivalent to F2, and therefore S2 = S3∗. Since

F3∗ is a restricted version of F3, we can conclude that F3 admits all of F3∗’s feasible solutions,

i.e., S3∗ ⊆ S3, which is equivalent to S2 ⊆ S3.

The following example demonstrates that F3 can achieve a better optimal solution than

F2:

Example 2. Consider the same data set of Example 1. Figure 3.1 shows the optimal

solutions to F3.

Table 3.1: F3’s optimal solution

t = 1 t = 2 t = 3

α11 = 1 α22 = 1 α13 = 1

X11 = 90, T121 = 1 X12 = 10 X13 = 100

B121 = 1, S1 = 10 X22 = 10, T232 = 1

X32 = 10, T342 = 1, T312 = 1

X42 = 10, T452 = 1

X52 = 10, T532 = 1

I12 = 10

Figure 3.1: Graphical representation of F3’s optimal solution
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By allowing the first setup to cross over, it is possible that the extra 10 (inventory) units

of product 1 that are being produced in period 1 in F2’s optimal solution are pushed into

period 2, reducing holding costs by 100 monetary units, while keeping the same setup costs.

This results in an objective function value of 700 monetary units, which is 100 less than F2’s.
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Hybrid Metaheuristic for the CLSP

The hybrid metaheuristic developed throughout this project relies on two assumptions.

Firstly, we assume that sub-optimal feasible solutions can be improved by optimally

solving small portions of it. In other words, it is sometimes possible to obtain better solutions

by fixing part of the decision variables and optimally solving the remaining problem. This

reduced sub-MIP, although in many cases not able to provide the optimal solution to the

whole problem, can be solved considerably faster, quickly improving or accepting the best

solution found so far in a reduced neighborhood.

Secondly, we assume that as solutions get better (i.e., their objective function value

becomes closer to the optimum), they are likely to get similar to the optimal solution.

This is especially accurate when better solutions are found by adding restrictions to the

solutions space, as happens throughout the branch-and-cut algorithm: restrictions decrease

the solution space, hence reducing diversity. As an example, we can argue that, in the

context of the CLSP, the most expensive and time consuming setup operations will most

likely not be part of the optimum solution, and, as better options are readily available, they

will quickly be discarded from the search tree. It is therefore plausible to say that once a

certain parcel of the incumbent solution matches the same parcel of the optimal solution,

new incumbents will keep that same match. Hence, one can argue that when a pattern is

found in successive solutions (i.e., the solution value of a certain decision variable is the

same), that pattern is likely to be part of the optimal solution.

Combining both assumptions, we argue that when a pattern is found over successive
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incumbent solutions, focus should be put on the remaining segments of the solution. Ex-

ploiting this combined assumption, our method identifies pattern information from previous

incumbent solutions, and uses it to construct simplified sub problems that potentially lead

to better solutions.

We begin by taking running the branch-and-cut algorithm. Whenever an incumbent so-

lution is found, a pattern identification method is applied – quite simply, a variable array

containing the exponential smoothing of the binary variables that are part of previous solu-

tions, smooth, is updated. This way, each element of the smooth array will indicate wether

or not the associated variable has a tendency to a certain value (0 or 1). In this step, the use

of exponential smoothing is preferred to the average, so as to give more relevance to recent

(better) results, while at the same time reacting more quickly to pattern changes.

After updating the entire array, a constructive mask for the sub-MIP is defined. For every

binary variable, it is randomly decided whether or not fixing bounds are set. The decision

is based on a probability factor, f . If a random number between 0 and 1 is smaller than f ,

the variable is fixed, otherwise it becomes a decision variable for the sub-MIP. Allowing any

variable to be unbounded in the sub-MIP, even if a strong pattern is detected, originates a

certain degree of diversity in new solutions. While relatively small, this diversity may some

times lead to the discovery of ”hidden” solutions, that do not respect our second assumption.

Having both the mask and the smooth array, the sub-MIP is build – each bounded vari-

able is assigned the value of 1 if a number between 0 and 1 is smaller than the corresponding

value in smooth, and 0 otherwise. During the variable fixing stage, additional measures

may be taken so that the sub-MIP remains feasible. Specifically for the CLSP problem, it

is prevented that more than one setup is performed to/from any given product. Figure 4.1

illustrates the combination of the exponential smoothing with the constructive mask to build

a sub-MIP.
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Figure 4.1: Pattern information tracked by an exponential smoothing variable combines with

a filter mask to create a sub-MIP

The sub MIP is then solved. While the sub MIP is greatly simpler than the original

MIP, it may still require an enormous amount of time to solve to optimality. Therefore, a

stopping criterion must be set. During our preliminary tests, the number of nodes explored

in the sub-MIP tree was limited according to the sub-MIP size.

Depending on the obtained results, the f factor is dynamically changed, so as to balance

speed in finding new incumbents (smaller, more constrained sub-MIPs) and the feasibility of

the generated models (bigger, less constrained sub-MIPs). If the sub-MIP returns a feasible

integer solution that is better than the previous incumbent candidate, we increase f and

inject the solution into the original branch-and-cut tree. Otherwise, we decrease f and

resume the original branch-and-cut algorithm until a new incumbent candidate is found.

Either way, the pattern recognition method is applied to the new incumbent, and the entire

cycle is repeated until the branch-and-cut tree assures the optimal solution was found, ending

the method. Figure 4.2 represents the overall cyclic structure of the hybrid metaheuristic
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proposed.

Figure 4.2: Hybrid Metaheuristic Diagram

Preliminary tests suggest that the method quickly improves the first incumbent candi-

dates provided by CPLEX during its branch-and-cut method. This is useful not only because

good solutions are quickly found, but also because upper bounds are quickly set, thus prun-

ing branches and decreasing the size of the explored tree. It is also suggested that solutions

found by the method are rarely found by CPLEX without spending a great amount of time

exploring the branch tree, which may be due to ”hidden” local optima that are not evident

to the optimization engine when analyzing the original MIP, but in turn are quickly explored

(and therefore found) in the sub-MIP. However, the method rapidly dries out, and later at-

tempts hardly produce better results. Overall, preliminary tests were not satisfactory when

matched against a standard branch-and-cut approach, raising several hypothesis.

The first hypothesis is that the parameters used were not optimal. Specifically, the

smoothing factor and the sub-MIP tree node limit have a great impact on the overall per-

formance of our method. During our preliminary tests, no combination was found that

consistently produced satisfactory results. However, the hypothesis of finding a good com-

bination is not discarded, and can be further explored.

A second hypothesis is that the probability for a certain variable to get fixed or not in

the sub-MIP problem should depend on whether or not a strong pattern was identified for it.

This approach would represent a closer take on the second assumption, meaning that when

a pattern is found, the chances of the corresponding variable getting fixed in the sub-MIP

should be improved.

A third hypothesis is that the method should use a better starting value. Using a con-
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structive heuristics to provide a starting point would impose an upper limit to the branch-

and-cut tree, thus reducing its size, while at the same time providing a good initial feed

to the hybrid metaheuristic, putting focus on polishing it rather than using it for pattern

recognition, which would represent a closer take on the first assumption.

While results turned out to be unsatisfactory, this project has provided the authors with

useful insights and techniques that may be useful for future research. Much progress was

made in understanding the mechanisms of interaction between heuristic and exact methods,

specifically on linking programming tools developed in C++ to a commercial optimization

engine, ILOG CPLEX, opening ways for the development, implementation and testing of

new hybrid methods.

As a key learning, we believe that the balance between exact and heuristic methods must

be well thought. It assumes a vital role in the performance of hybrid methods, specially

those that rely on successive iterations between the two components. Ideally, this balance

should be dynamically adjusted, allowing the hybrid method to adapt and react to different

stages of the solution process.
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Conclusion

In this work, we have presented a novel formulation for CLSP which correctly handles non-

triangular setup costs and times while enforcing the necessary feature of minimum lot size,

and allows setup cross overs between adjacent periods. This extensions open ways for so-

lutions not being considered so far, which may lead to improvements in overall production

planning efficiency, and reduce the total cost of production plans.

Additionally, we have developed a method for dynamically identifying and removing dis-

connected sub tours. Such a method is required for large problems, since the direct imple-

mentation of our model would require the use of an exponential number of constraints. The

simplicity of this method makes it easy to implement in most programming languages usually

combined with optimization engines. The algorithms were implemented in ILOG/CPLEX

through C++, and are available on request. Nevertheless, an important future research

question is to find a polynomial sized set of constraints that cut disconnected sub tours off,

while enabling all types of connected cycles.

Extension to this model considering multiple machines, shortages, backlogging costs and

maximum lot sizes are straightforward, making it a good starting point for models reflecting

a wide range of real life situations.

The two proposed modelling extensions for the capacitated lotsizing and scheduling prob-

lem have originated an article, submitted to a scientific journal and currently awaiting for

revision.

We have also explored a hybrid metaheuristic that attempts to improve the quality of
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solutions provided by the branch-and-cut algorithm by detecting good solution patterns

and, based on those, applying a large neighborhood search framework. Preliminary results

are unsatisfactory, as the branch-and-cut algorithm consistently beats the proposed hybrid

metaheuristic. However, valuable insights have been extracted from this experience, and

ways of achieving efficient hybrid interaction between a programming language (C++) and

a commercial optimization engine (ILOG CPLEX) were explored, providing useful infor-

mation for future research projects, whose focus certainly lies on developing robust hybrid

metaheuristic approaches to the CLSP.
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