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Abstract

Inductive Logic Programming (ILP) is a sub-field of Machine Learning that provides an
excellent framework for Multi-Relational Data Mining applications. ILP has been used in
both industrial and scientific complex and relevant problems. ILP aims at a formal frame-
work as well as practical algorithms for inductive learning of relational descriptions in the
form of logic programs. ILP inherits the sound theoretical basis from Logic Programming
and the experimental approach and operation towards practical algorithms from Machine
Learning. ILP is an exciting field of research, still showing a good margin for progress.

There is a wide range of lines of research to overcome current shortcomings of ex-
isting ILP systems. It is common practise that when researching on a new technique the
researcher has to develop his own system or spend a considerable amount of time studying
the implementation details of an existing system in order to evaluate his new techniques.
Since the initial conceptual proposal of Inductive Logic Programming many ILP systems
have been developed. Around 100 ILP systems have been developed to date. Thus, it is
natural to find the many techniques that have been proposed to improve the efficiency of
ILP systems scattered among many systems.

Having an integrated framework, containing the most interesting techniques of ILP in
a modular architecture should be interesting for the progress on the area, by providing
practitioners and curious users with an easier way to experiment on the area and to test
new techniques in a relatively straightforward way.

The work reported in this document aims to propose a tool to include all major rel-
evant techniques for the development of ILP systems. The tool is based on a modular
architecture of the system and permits the assemblage of new ILP systems by just com-
bining modules. By choosing different sets of modules the user may construct different
types of ILP systems. We have also developed and implemented in the tool a new parallel
algorithm. A prototype of the tool is the material outcome of our work.
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Resumo

A Indução de Programas em Lógica (Inductive Logic Programming - ILP) é uma sub-
área da Aprendizagem Computacional que proporciona uma excelente framework para
aplicações de extracção de conhecimento multi-relacional. ILP tem vindo a ser usado em
problemas complexos e relevantes, tanto na indústria como no meio científico. O ILP
procura fornecer tanto uma framework formal como algoritmos práticas para a apren-
dizagem, através do mecanismo de indução, de descripções relacionais sob a forma de
programas em lógica. ILP herda a base teórica da programação em lógica e a aproxi-
mação experimental da aprendizagem computacional. O ILP é, neste momento, uma área
de investigação com uma enorme margem para progresso.

Existe actualmente uma vasta gama de investigação para colmatar alguns dos prob-
lemas dos sistemas de ILP actuais. É prática comum que, quando se investiga um nova
técnica, o investigador tenha de desenvolver o seu próprio sistema, ou dispender uma
quantidade considerável de tempo estudando os detalhes de implementação de um sistema
existente como forma de avaliar o seu etudo. Desde a primeira proposta conceptual da In-
dução de Programas em Lógica, vários sistemas de ILP foram desenvolvidos. Estima-se
que cerca de 100 devam existir, à data. Assim, é natural encontrar as várias técnicas que
vieram sendo propostas para melhorias da eficiência de sistemas de ILP espalhadas pelos
vários sistemas.

Ter acesso a uma framework integrada, contendo as técnicas mais interessantes de ILP
numa arquitectura modulas deve ser interessante para o progresso na área, fornecendo aos
praticantes ou utilizadores curiosos uma maneira mais fácil de experimentar na área e de
testar novas técnicas de uma forma relativamente rápida.

Este documento procura propor uma ferramenta que inclua todas as principais técnicas
de ILP para o desenvolvimento de sistemas. Começa por introduzir a área da Indução de
Programas em Lógica, seguindo-se a descrição de alguns dos sistemas mais relevantes até
à data. Depois, é dada uma descrição da arquitectura modular do sistema, bem como dos
mecanismos de configuração da ferramenta. Finalmente, algumas conclusões e trabalho
futuro na ferramenta são apresentados.
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Chapter 1

Introduction

ILP is a research area at the intersection of Machine Learning and Logic Programming.
The term was first coined by Stephen Muggleton, in 1991 [Mug91]. ILP aims at a formal
framework and practical algorithms for inductive learning of relational descriptions in
the form of logic programs [LD94]. ILP inherits the sound theoretical basis from Logic
Programming [Bra00] and the experimental approach and orientation towards practical
applications from Machine Learning [Mit97].

ILP systems have been successfully applied to a wide range of domains that include
Molecular Biology [MKS92], Biochemistry [KMLS92] and environmental monitoring
[DDRW95]. Generally, they have been used in classification and regression tasks as well
as clustering and finding Association Rules. The richness of ILP representation language
make these algorithms adequate for (Multi-)Relational Data Mining tasks. Despite their
considerable successes, ILP systems suffer from significant limitations that reduce their
large scale applicability. Most ILP systems execute in main memory, limiting their ability
to process large databases. ILP systems are computationally expensive, eg. evaluating
individual rules may take considerable time, even for small data sets [BGSS99]. Search
procedures used by ILP systems are highly redundant. ILP systems have poor human-
computer interaction. In summary there are a large number of research lines to overcome
current shortcomings of existing systems. It is common practise that when researching
on a new technique the researcher has to develop his own system or spend a consider-
able amount of time studying the implementation details of an existing system in order
to evaluate his new techniques. Since the initial conceptual proposal of Inductive Logic
Programming many ILP systems have been developed. In a presentation at the ILP 2005
conference, Ashwin Srinivasan pointed out that around 100 ILP systems have been de-
veloped to date. Thus, it is natural to find the many techniques that have been proposed
to improve the efficiency of ILP systems scattered among many systems. Understand-
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ing which techniques, or combination of techniques, contribute the most is therefore a
rather difficult task because one usually compares the techniques in different contexts
(eg. different ILP systems or programming languages). Moreover, the effects on per-
formance of combining several techniques or the impact of a new technique when used
in conjunction with existing techniques is often not studied. Apart from efficiency, the
following five areas have been, or are being, studied: Incorporating probabilities. Novel
search methods. Techniques for parallel ILP. Using special-purpose reasoners. Enhancing
human-computer interaction.

1.1 Problem

Once again, the research results are scattered by a large number of ILP systems. It would
be of significant value to have a tool that incorporates many ILP advances within a single
system. This need is well expressed in Srinivasans words at the ILP 2005 invited talk:
.̇. It is my belief - unsurprising, given my own training and inclination - that we need a
well-defined engineering R&D project to implement and apply conceptual advances being
made in these five areas. Consider what this means. It means a band of engineers working
together to design and develop an ILP system that is routinely updated to incorporate
advances made in each of the five areas. As with any well-engineered tool, demonstrations
of robustness and efficiency using standard tests will be necessary. It is also common for
such projects to be driven by a performance wish-list... Ashwin Srinivasan, IBM India
Research Laboratory, India Five Problems in Five Areas for Five Years invited talk at ILP
2005 conference (Bon, Germany)

1.2 Motivation and Objectives

This report thus presents an architecture for a worbench enabling the simple creation of
ILP systems, called BET workbench. This workbench incorporates most of the basic
functionalities required by a wide range of ILP systems and provides a set of libraries of
predicates, ready to use and providing valuable basic functionalities such as numerical li-
braries, basic graphical interfaces and basic primitives for parallel execution. The defined
architecture should be module-based and define different abstraction layers, correspond-
ing to different levels of features for an ILP system. By setting up incompatibilities and
dependencies, it should be possible to easily create ready to use systems.

1.3 Document Structure

This document is organized in 6 different chapters. Chapter 1, the current chapter, de-
scribes the topics presented here and the overall document structure. Chapter 2 introduces
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the field of ILP. This introduction starts by describing some background history and the
reasons for the appearence of this research area. To better understand some of its the-
oretical basis, some terminology is introduced and described. An overview of the most
common techniques on ILP systems is then presented. To end the chapter, some real-
world applications where the results of applying ILP techniques were highly successful
are shown. Chapter 3 serves as a description of some of the most famous currently avail-
able ILP systems. The choice for particularly describing these, and not other systems is
based on the contribution of those systems for the research field, namely by introducing
new techniques able to be incorporated on the development tool which is the subject of
thesis work. Chapter 4 describes the modules contained in the BET workbench, its ar-
chitecture and the way it can be configurated. Chapter 5 introduces some parallelization
techniques and describes an parallel algorithm for MDIE-based systems, implemented as
a module for the BET workbench. Chapter 6 draws some conclusions on the topic and
describes the future work on the workbench.
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Chapter 2

Introduction to ILP

Inductive Logic Programming is a research area at the intersection of Machine Learning
and Logic Programming. It aims to provide both a formal framework and practical al-
gorithms for inductively learning logic programs from examples. This chapter gives an
introduction to ILP on both perspectives. In order to better understand the movitations be-
hind its appearance, a short background on deductive and inductive logic is presented. Af-
ter that, some basic concepts to understand ILP are introduced, followed by a description
of the currently used techniques. Some advanced topics on the area are then introduced.
To better understand the capabilities of this research area, some successful applications of
ILP are described.

2.1 Background

The first formal study of logic appeared in the Prior Analytics [Ari], Aristotle’s work on
deductive reasoning, specifically the syllogism. Despite that, only during the 19th and
20th centuries theoreticians such as Boole and Frege transformed it into a rigorous math-
ematical science. Since then, a school of philosophers have been promoting the view that
logic is the ultimate foundation of all sciences, not only mathematics. These philosophers
are known as logical positivists. This view assumes that the logical language of first order
predicate calculus is able to phrase every mathematical statement, and all the valid scien-
tific reasoning is based on the logical derivation of axioms. Gödel’s demonstration [Gö01]
that a small collection of sound rules of inference was complete for deriving all conse-
quences of formulae in first order predicate calculus served as a powerful argument for
logical positivism. Later, Robinson demonstrated [Rob65] that a single rule of inference,
called resolution, is both sound and complete for proving statements within this calculus.
In order to apply resolution, formulae are normalised to what is known as clausal form.

5
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Robinson’s discovery lead to huge progresses [Kow79] on the application of logic within
computer science, ultimately leading to the development of the logic based programming
language Prolog 1 and automatic deduction systems . Prolog statements are phrased in a
restricted clausal form called Horn clause logic, and computations take the form of logical
proofs based on the application of the rule of resolution. Prolog has naturely developed
into a widely used programming language [Bra00, Ste94] and spawned the rigorous the-
oretical school of Logic Programming [Llo84].

A certain question has cropped up throughout the development of logical deduction:
if all human and computer reasoning proceeds from logical axioms, then where do logical
axioms proceed from? The widely accepted answer to this claims that logical axioms can
be constructed from particular facts using inductive reasoning, therefore leading to gen-
eralised beliefs. The history of inductive reasoning interacts with the development of its
deductive counterpart. In fact, inductive reasoning played a key role in Socrates’ dialectic
discussions in ancient Greece [Pla08]. In these discussions, concepts were developed and
refined using a series of examples and counter-examples drawn from every day life. The
first detailed description of the inductive scientific method was introduced in the Novum
Organum [Bac09], by Francis Bacon. Statistics, a mathematical discipline developed
from methods for predicting the outcome of games of chance, went on to have a central
role in the evaluation of scientific hypothesis. Gödel’s incompleteness theorem [Gö01]
prompted Turing to attempt to show [Tur39] that problems concerning incompleteness of
logical theories could be overcome by the use of an oracle capable of verifying under-
ivable statements. Later work by Turing showed that Gödel’s incompleteness theorem
required that intelligent machines be capable of learning from examples [Tur47]. Various
logical positivists have developed statistical theories for confirming scientific hypothesis
posed in first order logic. Although there were developments on computer-based induc-
tive systems within the framework of full first order logic, namely by Plotkin [Plo71] and
Shapiro [Sha05], most successes within the field of Machine Learning have derived from
systems which construct hypotheses within the limits of propositional logic. The major
successes here have been in the area of inductive construction of expert systems [Mug90].
From a software engineering perspective, some of the inductively constructed expert sys-
tems show sizeable reductions in development and maintenance times, when comparing
to the ones developed in a traditional fashion. Such an observation supports the idea that
inductive inference should play an increasingly important role in future software devel-
opment.

Despite being successful, the described inductive systems show some limitations. The
representation of data is one of the limitations, as propositional level systems cannot be
used in areas requiring essentially relational knowledge representations. Problems also
occur in areas involving arbitrarily complex structural relationships, such as prediction

1Acronym of Programming in Logic
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of protein folding and DNA gene mapping. Inductive algorithms such as ID3 [Qui] use
only a fixed set of attributes attached to each example, showing an inability to make use
of background knowledge. Explanation-based learning [MKKC86] attempted to over-
come this limitation by redefining the learning problem, constraining hypothesis to those
being derivable from background knowledge. However, since background knowledge is
rarely complete in applications, the constraint posed by EBL is now generally believed to
be over-restrictive. Another limitation of the described inductive systems is related to a
strong bias of vocabulary, as the hypotheses are constructed within the limits of a fixed
vocabulary of propositional attributes.

2.2 Basic concepts

This section introduces some concepts necessary for a complete understanding of ILP.
The reader is first presented with the basics of inductive concept learning, followed by
a description of the roles of background knowledge and language bias. The problem of
handling imperfect data is then posed. The concepts introduced here form the theoretical
basis of ILP, thus are needed for a complete understanding of the practical algorithms
presented in the following sections.

2.2.1 Inductive concept learning

The goal of Machine Learning, as part of computer science, is to develop methods, tech-
niques and tools for building intelligent learning machines. The concept of intelligent
learning machines is described as learning programs which are able to change themselves
in order to perform better at a given bask. To perform better means, for example, to per-
form more efficiently or more accurately. Better might also be related to the learner’s
hability to handle a broader class of problems.

Machine Learning paradigms [Car90] include inductive learning, deductive learning,
learning with generic algorithms and connectionist learning (learning with neural net-
works). It is possible to integrate multiple learning paradigms in a single multistrategy
learning system [MT91]. Mitchie’s strong criterion [Mic88] defines learning as the abil-
ity to acquire new knowledge by requiring the result of learning to be understandable by
humans. In this sense, connectionist systems are not considered to be learning systems.

Inductive logic programming is a subfield of inductive learning. It is known that in-
duction means reasoning from specific to general. In the case of inductive learning from
examples, the learner is given some examples from which general rules or a theory un-
derlying the examples are constructed. The problems addressed by this can be formulated
as tasks of learning concepts from examples, referred to as inductive concept learning,
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where classification rules for a specific concept must be induced from instances (and non-
instances) of that concept.

To define the problem of inductive concept learning one first needs to define a concept.
Considering U a universal set of objects (or observations), a concept C can be formalized
as a subset of objects in U : C ⊆ U. Therefore, the task of learning a concept C can be
formally described as the task of learning to recognize objects in C, i.e., to be able to tell
whether x ∈ C for each x ∈ U.

In Machine Learning, a formal language for describing objects and concepts needs to
be selected. Objects are usually described in an object description language. Concepts
can be described in the same language or in a separate concept description language. In
an attribute-value object description language, objects are described by an enumeration
of their features, called attributes, each of them taking a value from a corresponding pre-
defined value set. For instance, if we want to describe playing card games we can use
two attributes: suit and rank. The set of values for the attribute Suit is {hearts, spades,
clubs, diamonds} and the set of values for Rank is {2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, k, a},
where j, q, k, a stand for jack, queen, king and ace, respectively. With the previously
described attributes, an individual card can be described in an attribute-value language by
a conjunctive expression, e.g., [Suit = diamonds]∧ [Rank = 7]. In a different attribute-
value language, the same object can be described by the tuple < diamonds,7 >. In the
first-order language of Horn clauses, used in logic programming, cards are described by
ground facts, e.g., card(diamonds,7). In this case, card is a predicate symbol, and the
values of the two arguments Rank and Suit of the predicate card/2 are the constants dia-
monds and 7.

In an object description language, a pair of cards can be described by comprising
four attributes: the suit and rank of each card. In an attribute-value language, a pair
of two cards < diamonds,7 > and < hearts,7 > can either be described by a 4-tuple
< diamonds,7,hearts,7 > or by a conjunctive expression [Suit1 = diamonds]∧ [Rank1 =

7]∧ [Suit2 = hearts]∧ [Rank2 = 7]. In the language of Horn clauses, two possible descrip-
tions are pair(diamonds,7,hearts,7), and the more expressive pair(card(diamonds,7),card(hearts,7)),
where pair is a predicate symbol and card is a function symbol. Generalizing from the
previous description, one can define the concept pair. Concepts can be described exten-
sionally or intensionally. A concept is described extensionally by listing the descriptions
of all of its instances. Such a representation is usually undesirable, namely because a
concept may contain an infinite number of instances. Consequently, it is preferable to
describe concepts intensionally. Such a description requires the usage of a concept de-
scription language, allowing for more compact and concise concept description, e.g., in
the form of rules. We can, for instance, describe the concept pair by the following rule:
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pair if [Rank1 = 2]∧ [Rank2 = 2]∨
[Rank1 = 3]∧ [Rank2 = 3]∨
...

[Rank1 = a]∧ [Rank2 = a]

Since the attributes Suit1 and Suit2 do not appear in the rule, they can have any value
in the appropriate range. If the concept language supports the use of variables, the pair
concept can be described in a much more compact way:

pair if Rank1 = Rank2

In the language of Horn clauses, the same concept description assumes the following
form:

pair(Suit1,Rank1,Suit2,Rank2)← Rank1 = Rank2

The same description can take a more expressive form, in case the description lan-
guage allows for the use of function symbols:

pair(card(Suit1,Rank1),card(Suit2,Rank2))← Rank1 = Rank2

Having a symbolic description language for both objects and concepts, a procedure is
needed that will establish whether a given object belongs to a given concept. Assuming
an object and concept description language as stated above, one can say that an object
belongs to a concept if the object description satisfies the concept description. Whenever
that happens, the concept description is said to cover the object description. The following
examples assume both an object and concept description based on Horn clauses. Taking
that into account, an object description should, from now on, be called a fact, and the
intensional concept description to be learned should be called an hypothesis. In order to
learn a concept C we need to generalize from a set of examples E. Such a set will contain
facts, labeled ⊕ or 	 in case the object is an instance of the concept C or otherwise,
respectively. The facts from E labeled⊕ form the set of positive examples (E+) and those
labeled 	 form the set of negative examples (E−).

In single concept learning, a concept description is induced from facts labeled ⊕ and
	. ⊕ labeled facts are called examples and 	 labeled facts are called counter-examples
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of a single concept C. In multiple concept learning, labels denote different concept names
representing different classes. In this case, the set of training examples can be divided into
subsets of examples for each individual concept. The problem of single concept learning
can now be formally stated as, given a set E of positive and negative examples of concept
C, find a hypothesis H such that:

• every positive example e ∈ E+ is covered by H,

• no negative example e ∈ E− is covered by H.

To test the coverage, a function

covers(H,e) (2.1)

can be introduced, which returns the value true if e is covered by H, and false otherwise.
In Logic Programming, where a hypothesis is a set of program clauses and an example
is a ground fact, a forward chaining procedure [Bry90] or a form of SLD-resolution rule
of inference [Llo84] can be used to check whether e is entailed by H. The function
covers(H,e) can be extended to work for sets of examples in the following way:

covers(H,E) = {e ∈ E|covers(H,e) = true} (2.2)

returning the set of facts from E which are covered by H.
In the problem statement of inductive concept learning it is required that the hypothesis

H covers all the positive examples and none of the negative ones. A hypothesis H is
complete with respect to a set of examples if it covers all the positive ones. A hypothesis
H is consistent with respect to a set of examples if it covers none of the negative examples.
There is an alternative to the completeness and consistency criteria, known as the quality
criterion [Rae92].

One of the major aims of learning is to classify unseen objects with respect to C.
Therefore, the induced hypothesis H can also be viewed as a classifier of new objects.
This poses a new criteria of sucess for the learning systems, as the previous definition of
inductive concept learning required that both C and H agreed on all examples from E.
From this perspective, the accuracy of classifying unseen objects is the main criterion of
sucess in the learning system. The accuracy measures the percentage of objects correctly
classified by the hypothesis. Other important performance criteria of learning include the
extent to which the hypothesis is understood by humans, its statistical significance and
the information content.
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2.2.2 Background knowledge

When building a model, if no prior knowledge about the learning problem is given, it
learns exclusively from examples. However, there is usually a significant number of dif-
ficult problems requiring a substantial body of prior knowledge. This kind of declara-
tive prior knowledge is known as background knowledge. Since concept learning can be
viewed as searching the space of concept descriptions [Mit82], the hypothesis language
L and the background knowledge B determine the search space of possible concept de-
scriptions, also known as the hypothesis space. The inclusion of background knowledge
in the problem statement of inductive concept learning requires that the hypothesis H to
be found be complete and consistent with respect to both the examples E and background
knowledge B.

This formulation requires a revision of the function covers introduced in equations 2.1
and 2.2, in order to take background knowledge B into account:

covers(B,H,e) = covers(B∪H,e) (2.3)

covers(B,H,E) = covers(B∪H,E) (2.4)

The completeness and consistency requirements are also modified, such that covers(B,H,E+)=

E+ (for completeness) and covers(B,H,E−) = /0 (for consistency) are verified.

2.2.3 Language bias

A bias is a mechanism employed by a learning system to constrain the search for hypothe-
sis [UM82]. Bias can either determine how the hypothesis space is searched (search bias)
or determine the hypothesis space itself (language bias).

By selecting a stronger language bias (a less expressive hypothesis language) the
search space becomes smaller and learning more efficient. However, one must take into
account the expressiveness/tractability tradeoff, as this may prevent the system from find-
ing a solution which is not contained in the less expressive language.

Different logical formalisms have been used in inductive learning systems to repre-
sent examples and concept descriptions. Within this scope, one most frequently distin-
guishes between systems which learn attribute descriptions, and systems which learn first-
order relational descriptions. Inductive learning algorithms, such as ID3 [Qui86] and AQ
[Mic83] use an attribute-value language to represent objects and concepts, therefore called
attribute-value learners or propositional learners. The main limitations of propositional
learners are the limited expressiveness of the representational formalism and their limited
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capability of taking into account the available background knowledge. Another class of
learning systems are called relational learners, due to their ability to induce descriptions
of relations (definitions of predicates). Since, in these systems, objects can be described
structurally, i.e., in terms of their components and relations between them, background
knowledge can easily be integrated. In relational learners, the languages used to represent
examples, concepts and background knowledge are typically subsets of first-order logic.
The language of logic programs [Llo84] provides sufficient expressiveness for solving a
significant number of relational learning problems. Learners that induce hypotheses in
the form of logic programs are therefore called inductive logic programming systems.

2.2.4 Imperfect data

The definition of the inductive concept learning task introduced in section 2.2.1 required
that C and H agree on all examples from E. In practice, it may happen that the object
descriptions and their classifications (labels) presented to an inductive learning system
contain various kinds of errors, either random or systematic. A desirable property of
an inductive learning system is then the ability to avoid the effects of imperfect data by
distinguishing between genuine regularities in the examples and regularities due to chance
or error.

The following kinds of data imperfection are usually found when learning relations
from real-world data:

• noise, i.e., random errors in the training examples and background knowledge;

• insufficiently covered example space, i.e., too sparse training examples from which
it is difficult to reliably detect correlations;

• inexactness, i.e., inappropriate or insufficient description language which does not
contain an exact description of the target concept;

• missing values in the training examples.

Learning systems usually have a mechanism for dealing with the first three types of
imperfect data alltogether, often called noise-handling mechanisms. These kind of sys-
tems are typically designed to prevent the induced hypothesis from overfitting the training
set of examples. Overfitting refers to a situation where the concept description H agrees
with C perfectly on the training examples, but poorly on unseen examples. That is, H
captures some regularities that are not genuine. In order to avoid this behaviour, there
is the need to relax the completeness and consistency criteria in the definition of the in-
ductive learning task and replace them by a more general quality criterion allowing the
hypothesis to misclassify some of the training examples.
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2.3 Inductive Logic Programming

A learning system whose hypothesis language (L) is the language of logic programs is
basically synthesizing a logic program. Relational learners who produce this kind of hy-
potheses are known to apply Inductive Logic Programming(ILP) [Mug91, Mug92]. In
ILP systems, the training examples, the background knowledge and the induced hypoth-
esis are all expressed in a logic program form. Some restrictions are imposed on each of
the three languages, in order to reduce the search space. Training examples, for instance,
are typically represented as ground facts of the target predicate.

In order to illustrate the ILP task, it is convenient to introduce some simple problems,
based on family relations.

Example 2.1 (An ILP problem: defining the sibling relationship). The learning task is
to define the target relation sibling(X ,Y ), meaning that person X is a sibling of person
Y, in terms of background knowledge relation parent. For the sake of simplicity, the
parent relation won’t be defined in terms of relations mother and f ather, having no sexual
distinctions of persons. The relations used in the background knowledge are given in
Table 2.1.

In the hypothesis language of Horn clauses it is possible to formulate the definition of
the target relation:

sibling(X ,Y )← parent(X ,Z), parent(Y,Z)

This definition states that a sibling of someone is someone who shares a parent with
him/her. This definition is consistent and complete with respect to the background knowl-
edge and the training examples.

Training examples Background knowledge
sibling(bob,alice). ⊕ parent(bob,george).
sibling(alice,bob). ⊕ parent(alice,george).
sibling(harriet,george). 	 parent(bob,harriet).
sibling(harriet,bob). 	 parent(alice,harriet).
sibling(harriet,alice). 	
sibling(bob,harriet). 	
sibling(bob,george). 	
sibling(george,harriet). 	
sibling(george,bob). 	
sibling(george,alice). 	
sibling(alice,harriet). 	
sibling(alice,george). 	

Table 2.1: A simple ILP problem: learning the sibling relationship
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Example 2.2 (An ILP problem: defining the daughter relationship). The task of this
example, taken from [LD94] is to define the target daughter(X ,Y ), which states that
person X is a daughter of person Y , in terms of background knowledge f emale and parent.
These relations are given in Table 2.2. There are two positive and two negative examples
of target relation.

In the hypothesis of Horn clauses it is possible to formulate the following definition
of the target relation:

daughter(X ,Y )← f emale(X), parent(Y,X)

Training examples Background knowledge
daughter(mary,ann). ⊕ parent(ann,mary). f emale(ann).
daughter(eve, tom). ⊕ parent(ann, tom). f emale(mary).
daughter(tom,ann). 	 parent(tom,eve). f emale(eve).
daughter(tom,eve). 	 parent(tom, ian).

Table 2.2: A simple ILP problem: learning the daughter relationship

This definition is consistent and complete with respect to the background knowledge and
the training examples.

Systems capable of solving the kind of learning tasks as the one described above can
be divided along several dimensions. They can learn either a single predicate or multiple
predicates simultaneously. They may require all the training examples to be given before
the learning process (batch learners) or may accept examples one by one (incremental
learners). During the learning process, the system may rely on an oracle to verify the
validity of generalizations or to classifiy examples generated by the learner. The learner
is called interactive in this case and non-interactive otherwise. A learner may try to learn
a concept from scratch or accept an initial hypothesis which is revised in the learning
process. The latter are called theory revisors.

ILP systems are usually divided into ones which are batch non-interactive systems
that learn a single predicate from scratch (empirical ILP systems) and the ones which are
interactive and incremental theory revisors that learn multiple predicates (interactive ILP
systems) [Rae92].

To make the definition of learning presented in section 2.2.1 operational for ILP, the
notion of coverage must be introduced and used in the definitions of the function covers
in equations 2.3 and 2.4:

covers(B,H,e) = true i f B∪H � e (2.5)
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covers(B,H,E) = {e ∈ E|B∪H � e} (2.6)

The symbol � stands for logical entailment [Llo84], and, in the previous equations,
has the meaning that e is a logical consequence of B∪H. To see if an example is logically
entailed by B∪H, usually the SLD-resolution proof procedure is used [Llo84]. An alter-
native is to use the forward chaining procedure [Bry90]. A more detailed discussion of
the proof procedures in ILP systems is available in the book Interactive Theory Revision:
An Inductive Logic Programmming Approach [Rae92].

2.3.1 Context

The usual context for ILP is as follows. The learning agent is provided with background
knowledge B, positive examples E+ and negative examples E− and constructs an hypoth-
esis H. B, E+, E− and H are all logic programs. The conditions for construction of H
are:

Necessity: B 2 E+

Sufficiency: B∧H � E+

Consistency: B∧H∧E− 2�

2.3.2 Terminology

This section introduces some logic programming terminology used throughout this doc-
ument. More complete definitions can be found in the book Foundations of Logic Pro-
gramming [Llo84].

A first-order alphabet consists of variables, predicate symbols and function symbols.
A variable is represented by an upper case letter followed by a string of lower case letters
and/or digits. A function symbol is a lower case letter followed by a string of lower case
letters and/or digits. A predicate symbol is a lower case letter followed by astring of
lower case letters and/or digits. A variable is a term, and a function symbol immediately
followed by a bracketed n-tuple of terms is a term. f (g(X),h) is a term when f , g and
h are function symbols and X is a variable. A constant is a function symbol of arity 0.
A predicate symbol immediately followed by a bracketed n-tuple of terms is called an
atomic formula. Both an atomic formula and its negation are literals. An atomic formula
not negated is a positive literal and a negated atomic formula is a negative literal. A clause
is a formula of the form:
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∀X1∀X2...∀Xs(L1∨L2∨ ...Lm)

where each Li is a literal and each X j is a variable occuring in L1 ∨ L2 ∨ ...∨ Lm. In a
clause there are no free variables: all variables are universally quantified. Since logical
disjunction is commutative, we may represent a clause as a set of literals. For instance, the
set {L1,L2, ..,¬Li,¬Li+1, ...} stands for the clause (L1 ∨L2 ∨ ..¬Li ∨¬Li+1 ∨ ...), which
has an equivalent representation in L1 ∨L2 ∨ ..∨ ← Li ∧Li+1 ∧ ... 2 or, most commonly,
L1,L2, ..← Li,Li+1, ..., where commas on the left-hand side of← denote disjunctions, and
commas on the right-and side denote conjunctions. A set of clauses is a clausal theory
and represents the conjunction of its clauses. A well-formed formulae (wff ) is a literal,
a clause or a clausal theory. Whenever the set of variables in a wff E is empty, E is
said to be ground. A Horn clause is a clause which contains at most one positive literal,
and a definite program clause is a clause which contains exactly one positive literal. The
positive literal is called the head of the clause and the conjuntion of negative literals is
called the body of the clause. A Horn clause with no positive literals is a definite goal. A
definite program clause with an empty body is a positive unit clause, or a fact, in Prolog
[Bra00].

A definite program is a set of definite program clauses. Prolog allows literals of the
form notL, where L is an atom, and not is interpreted under the negation-as-failure rule
[Cla78]. Taking that into account, a program clause is a clause of the form:

T ← L1, ...,Lm

where T is an atom, and each of Li is of the form L or notL, where L is an atom. A normal
program is, therefore, a set of program clauses. A predicate definition is a set of program
clauses with the same predicate symbol in the head literal. The following two clauses
define the predicate daughter/2:

daughter(X ,Y ) ← f emale(X),mother(Y,X)

daughter(X ,Y ) ← notmale(X), f ather(Y,X)

A constrained clause is a program clause in which all variables in the body also appear
in the head. A non-recursive clause is a program clause in which the predicate symbol in
the head does not appear in any of the literals in the body.

2A∨¬B≡ A← B
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A predicate in a logic program is essentially the same as a relation in a database. The
main difference between program clauses and database relations is in the use of types.
A clause is typed if each variable appearing in the arguments of clause literals is con-
strained to a set of values. This association of predicates with database relations allows a
formal representation of relations in Prolog, both extensional and intensional, as used in
deductive databases [Llo84, Ull88].

2.3.3 Empirical ILP

The task of empirical ILP, which is concerned with learning a single predicate from a
given set of examples, is formulated as follows [LD94]:

Given:

– a set of training examples E, consisting of true E+ and false E− ground facts
of an unknown predicate p,

– a description language L, specifying syntactic restrictions on the definion of
predicate p,

– background knowledge B, defining predicates qi (other than p) which may be
used in the definition of p and which provide additional information about the
arguments of the examples of predicate p.

Find:

– a definition H for p, expressed in L, such that H is complete and consistent
with respect to the examples E and background knowledge B.

p is the definition of the target relation. When learning from noisy examples, the
completeness and consistency criteria need to be relaxed to avoid overfitting [LD92].

2.3.4 Interactive ILP

The problem of interactive ILP, as introduced by De Raedt [Rae92], is typically incre-
mental and can be formalized as follows [LD94]:

Given:

– a set of traning examples E possibly about multiple predicates,

– background knowledge B consisting of predicate definitions assumed to be
correct,

– a current hypothesis H which is possibly incorrect,
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– a description language L, specifying syntactic restrictions on the definitions of
predicates in H,

– an example e labeled ⊕ or 	,

– an oracle willing to answer membership queries (label examples as ⊕ and 	)
and possibly other questions.

Find:

– a new hypothesis H′, obtained by retracting and asserting clauses belonging to
L from H such that H′ is complete and consistent with respect to the examples
E∪{e} and background knowledge B.

It is important to note that interactive ILP deals with the issue of representation change,
i.e., shift of bias. Several interactive ILP systems can change the hypothesis language L

during the learning process.

2.3.5 Structuring the hypothesis space

As previously noted, concept learning can be viewed as a search problem [Mit82]. Each
state in he search space is a concept description and the goal is to find one or more states
satisfying some quality criterion. A learner can be described in terms of the structure of
its search space, its search strategy and search heuristics.

In ILP the search space is the language of logic programs L consisting of program
clauses of the form T ← Q, where T is an atom p(X1, ...,Xn) and Q is a conjunction of
literals L1, ...,Lm. The vocabulary of predicate symbols in the body of clauses is deter-
mined by the predicates from the background knowledge B. Different ILP systems apply
different language bias L as to syntactically restrict the form of clauses which can be
formulated from a given vocabulary of predicates, function symbols and constants of the
language. Such a restriction is relevant to reduce the search space to manageable forms.

A way to search the space of program clauses systematically can be achieved by intro-
ducing a partial ordering into a set of clauses based on the θ -subsumption. Clause c is said
to θ − subsume clause c′ if there exists a substitution θ , such that cθ ⊆ c′ [Plo70]. Two
clauses c and d are θ − subsumption equivalent if c θ − subsumes d and d θ − subsumes
c. A clause is reduced if it is not θ -subsumption equivalent to any proper subset of itself.
A substitution θ = {X1/t1, ...,Xk/tk} is a function from variables to terms. The applica-
tion Wθ of a substitution θ to a wff W is obtained by replacing all occurrences of each
variable X j in W by the same term t j [Llo84].

With the use of θ -subsumption, the syntactic notion of generality is introduced in the
search problem. Clause c is at least as general as clause c′ (c � c′) if c θ − subsumes
c′. Clause c is more general than c′ (c ≺ c′) if c � c′ holds and c′ � c does not. Since c
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is a generalization of c′, c′ is a specialization (refinement) of c. θ -subsumption not only
introduces the notion of generality, it also has two important properties. The first one
is that if c θ -subsumes c′ then c logically entails c′ (c � c′). The second one is that the
relation � (at least as general as) introduces a lattice on the set of reduced clauses. Any
two clauses have a least upper bound (lub) and a greatest lower bound (glb). Both the lub
and glb are unique up to a renaming of variables.

The lattice on the set of reduced classes leads to the definition of least general gener-
alization. The least general generalization (lgg) of two reduced clauses c and c′, denoted
by lgg(c,c′), is the least upper bound (lub) of c and c′ in the θ -subsumption lattice. Since
θ -subsumption and least general generalization do not take into account any background
knowledge, their computation is simple and easy to implement in an ILP system. Se-
mantic generality [Nib88, Bun88] (clause c is at least as general as clause c′ with respect
to background theory B if B∪{c} � c′) is general undecidable and does not introduce
a lattice on a set of clauses. Syntactic generality (using the θ -subsumption operation) is
therefore more frequently used in ILP systems.

θ -subsumption not only provides a structure to hypothesis space, it can also be used
to prune it. When generalizing c to c′ (c′ ≺ c), all the examples covered by c will also
be covered by c′. In case c is inconsistent, all its generalizations will also be inconsis-
tent, thus not requiring any further consideration. When specializing c to c′ (c ≺ c′), an
example not covered by c will not be covered by any of its specializations either. If c
does not cover a positive example none of its specializations will, hence not requiring any
further consideration. θ -subsumption therefore provides the basis for the important ILP
techniques: bottom-up building of least general generalizations, and top-down searching
of refinement graphs.

2.3.6 Generalization techniques

Generalization techniques search the hypothesis space in a bottom-up manner: they start
from the training examples (most specific hypothesis) and search the hypothesis space by
using generalization operators. Generalization techniques are best suited for interactive
and incremental learning from few examples.

In bottom-up hypothesis generation, a generalization c′ of clause c (c′ ≺ c) can be
obtained by applying a θ -subsumption-based generalization operator. A generalization
operator p maps a clause c to a set of clauses p(c) which are generalizations of c. The
syntactic operations this kind of operators perform on a clause are applying an inverse
substitution to the clause and/or removing a literal from the body of the clause.
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2.3.6.1 Relative least general generalization

The notion of least general generalization [Plo70] forms the basis of cautious generaliza-
tion algorithms which perform bottom-up search of the θ -subsumption lattice. The word
cautious here is based on the assumption that if c1 and c2 are true, then it is very likely
that lgg(c1,c2) will also be true. The lgg of terms, atoms and literals is defined both
in Plotkin’s paper A Note on Inductive Generalization [Plo70] and in the book Inductive
Logic Programming: Techniques and Applications [LD94].

The relative least general generalization (rlgg) of two clauses c1 and c2 is their least
general generalization (lgg(c1,c2)) relative to background knowledge B. For example, if
the background knowledge consists of ground facts, and K denotes the conjunction of all
these facts, the rlgg of two ground atoms A1 and A2 (positive examples), relative to the
given background knowledge K, is defined as:

rlgg(A1,A2) = lgg((A1← K),(A2← K))

To illustrate the use of rlgg, we’ll use the Example 2.2 and GOLEM’s [MF90] con-
straints on introducing new variables into the body of it, as the resulting clause can
be intractably large. The rlgg of the positive examples e1 = daughter(mary,ann) and
e2 = daughter(eve, tom) is computed as follows. The following abbreviations are used:
d−daughter, p− parent, f − f emale,a−ann,e−eve,m−mary, t−tom, i− ian. The con-
junction of facts from the background knowledge is:

K = p(a,m), p(a, t), p(t,e), p(t, i), f (a), f (m), f (e)

rlgg(e1,e2) = lgg((e1← K),(e2← K)) produces the following clause:

d(Vm,e,Va,t)← p(a,m), p(a, t), p(t,e), p(t, i), f (a), f (m), f (e),

p(a,Vm,t), p(Va,t ,Vm,e), p(Va,t ,Vm,i), p(Va,t ,Vt,e),

p(Va,t ,Vt,i), p(t,Ve,i), f (Va,m), f (Va,e), f (Vm,e)

Eliminating the irrelevant literals yields for the clause:

d(Vm,e,Va,t)← p(Va,t ,Vm,e), f (Vm,e)

which stands for
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daughter(X ,Y )← f emale(X), parent(Y,X)

2.3.6.2 Inverse resolution

The idea of inverse resolution [MB88], a generalization technique, is to invert the res-
olution rule of deductive inference [Rob65]. The basic resolution step in propositional
logic derives the resolvent p∨ r given the premises p∨¬q and q∨ r. While resolution in
propositional logic is quite straightforward (see Figure 2.1, the same in first-order logic is
more complicated, involving substitutions.

Figure 2.1: A simple propositional derivation tree

Inverse resolution inverts the resolution process using a generalization operator based
on inverting substitution [Bun88]. Given a wff W , an inverse substitution θ−1 of a substi-
tution θ is a function that maps terms in Wθ to variables, such that Wθθ−1 =W . Figures
2.2 and 2.3 illustrate this principle on the daughter example introduced in 2.2.

Example 2.3 (Inverse substitution). Taking into account the Example introduced in 2.1,
let c= sibling(X ,Y )← parent(X ,Z), parent(Y,Z) and the substitution θ = {X/bob,Y/alice,Z/george}:

c′ = cθ = sibling(bob,alice)← parent(bob,george), parent(alice,george)

By applying the inverse substitution θ−1 = bob/X ,alice/Y,george/Z the original
clause c is obtained:

c = c′θ = sibling(X ,Y )← parent(X ,Z), parent(Y,Z)
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Figure 2.2: A first order linear derivation tree

The general case is, however, substantially more complex, because it involves the
places of terms in order to ensure that the variables in the initial wff W are appropri-
ately restored in Wθθ−1. A simple example to show the need of keeping record of
places is available in wff W = loves(X ,daughter(Y )) applied to the substitution θ =

{X/ann,Y/ann}. The inverse substitution needs to known the original variable places, as
being simply defined as θ−1 = {ann/X ,ann/Y} wouldn’t suffice.

The steps in inverse resolution attempt to find clauses that, together with a clause from
the background knowledge will entail the current positive example and therefore be added
to the current hypothesis H instead of it. Each step has an inverse substitution associated
with it.

The problem with inverse resolution is that it is non-deterministic, because at each in-
verse resolution step, various generalizations of a clause can be performed, depending on
the clause chosen from the background knowledge and the employed inverse substitution.

2.3.7 Specialization techniques

Specialization techniques search the hypothesis space in a top-down manner, from gen-
eral to specific hypothesis, using a θ -subsumption-based specialization operator. Such an
operator is usually called a refinement operator, and maps a clause c to a set of clauses
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Figure 2.3: An inverse linear derivation tree

p(c) which are specializations (refinements) of c. A refinement operator typically com-
putes the set of most general specializations of a clause under θ -subsumption. The two
basic syntactic operations on a clause are applying a substitution on a clause and adding
a literal to the body o the clause.

Top-down learners start from the most general clauses and repeatedly specialize them
until they no longer cover negative examples. During the search, it is ensured that at least
one positive example is covered.

2.3.7.1 Top-down search of refinement graphs

The hypothesis space of a program clauses, restricted by language bias L and with respect
to background knowledge B is a lattice structured by the θ -subsumption generality order-
ing. A refinement graph can be defined in this lattice, therefore enabling the search to
be directed from general to specific hypothesis. A refinement graph is a directed, acyclic
graph, where nodes represent program clauses and arcs corespond to the basic refinement
operators.

The MIS algorithm [Sha05] defines an interactive algorithm for learning hypothesis,
in the language of definite clauses and with respect to background knowledge predicates
B. The training examples are incrementally read. For each example read, a loop that
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checks for the completeness and consistency of the current hypothesis is entered. If the
current hypothesis covers a negative example, then the incorrect clauses are deleted from
H. If, on the other hand, there is a positive example not covered by the current hypothesis,
then the refinement graph is searched to develop a clause which covers it. The previous
two steps are made until H is both complete and consistent.

Example 2.4 (Searching the refinement graph). To illustrate the above process, the exam-
ple introduced in 2.1 shall be used for the building of a refinement graph. For simplicity,
the language L is restricted to non-recursive definite clauses and the refinement operator
only uses a specialization operation: adding a literal to the body of a clause. The top-
level node in the refinement graph is formally the most general clause f alse. However, in
practice, the search starts with the most general definition of the predicate sibling:

c = sibling(X ,Y )←

Here, an empty body is written instead of the body true. The learner is first given the
positive example e1 = sibling(bob,alice). Since c covers e1, the current hypothesis is
initialized to H = {c}. The second example e2 = sibling(alice,bob) is also positive and
covered by H, hence not resulting in a specialization of the hypohsis. The third example
e3 = sibling(harriet,george) is, however, negative. Singe c covers this example, it is
deleted from H and the process of generating a new clause that covers the first positive
examples is initialized. The learner therefore generates the set of refinements (minimal
specializations) of clause c, by applying the refinement operator p. The set of new clauses
take the form:

p(c) = {sibling(X ,Y )← L}

where L is one of the following (note that the language is restricted to definite and non-
recursive clauses):

• literals having as arguments the variables from the head of the clause: X = Y ,
parent(X ,Y ), parent(Y,X), parent(X ,X) and parent(Y,Y ),

• literals that introduce a new variable Z (where Z 6= X and Z 6=Y ) in the clause body:
parent(X ,Z), parent(Z,X), parent(Y,Z), parent(Z,Y ).

The refinements obtained are then considered one by one, being retracted whenever
they don’t cover the positive example e1. The refinements which descriminate between
positive and negative examples are retained in the current hypothesis. Such refinements of
c are sibling(X ,Y )← parent(X ,Z) and sibling(X ,Y )← parent(Y,Z). Since they are not
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Figure 2.4: Part of the refinement graph for the daughter relations problem

consistent with respect to all the negative examples, they are further refined, eventually
leading to clause sibling(X ,Y )← parent(X ,Z), parent(Y,Z) which is both complete and
consistent.

Figure 2.4 shows part of the refinement graph for the daughter problem introduced in
example 2.2.

2.4 Advanced topics on ILP

2.4.1 ILP as search of refinement graphs

As previously stated, the learning task can be seen as a search task in the space of hypoth-
esis [Mit82]. The learning techniques introduced in section 2.3 define a structure on the
search space via the θ -subsumption operator, using either generalization or specialization
operators. The use of refinement operators define a refinement graph. Search can be di-
rected from general to specific (in a top-down manner) or from specific to general (in a
bottom-up manner). This kind of structure enables the use of different search strategies.
While best-first search [Pea84] is usually the desired search strategy, time complexity
(since the search space can grow very fast) usually requires the choice for a simpler strat-
egy, such as beam search [Low76] or hill-climbing [RN02].

There are two types of search heuristics: heuristics which direct the search and heuris-
tics which decide when to stop the search, called stopping criteria. Two types of stopping
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criteria can be distinguished. The first (the necessity stopping criterion) determines when
to stop building a clause. In exact domains, this usually requires consistency with re-
spect to the set of training examples and background knowledge. The second one (the
sufficiency stopping criteria) determines when to stop building new clauses for the target
predicate definition. Usually the search is terminated when all positive examples have
been covered. However, to achieve noise tolerance, avoid overfitting and obtain more
compact concept descriptions, an alternative stopping criteria may be applied, usually of
statistical nature.

Refinement graphs, as a result of the application of refinement operator p, induce a
generality ordering on L. That is, they itroduce the relation ‘is more general’ with respect
to a given refinement operator p, denoted by ≺p. c is more general than c′ (c ≺p c′) if
there exists a directed path from c to c′ in the refinement graph induced by p.

The cost of searching a refinement graph depends on the node evaluation cost (NEC),
which may not be constant, the branching factor (BF(c)) of nodes in the graph and on
the length of the clause generated (LOC). Different search methods may contribute with
more factors, such as the beam width [RN02] when using beam search.

2.4.1.1 Mode-Directed Inverse Entailment

Since its appearance as a research topic, ILP research has spawned various theoretical
topics, namely the problem of inverting resolution [MB88, Wir89, Rou92], inversion of
clausal implication [LM92, IA93, MP94], predicate invention [Mug94], closed world spe-
cialisation [BM91] and U-learnability [MP98]. Stephen Muggleton took that into account
and proposed a generalisation and enhancement of previous approaches in Mode Directed
Inverse Entailment (MDIE) [Mug95]. Muggleton demonstrated that the problem of in-
verse resolution could be made simpler with an approach from the direction of model
theory rather than resolution proof theory.

MDIE builds on the notion of a bottom-clause. To explain what a bottom-clause is, it
is relevant to consider the general problem specification of ILP. That is, given background
knowledge B and examples E find the simples consistent hypothesis H such that:

B∧H � E

In case H and E are single Horn clauses, the previous equation can be rearranged
(through the notion of absortion [MB88]) to give:

B∧¬E � ¬H
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B E K

anim(X)← pet(X). pet(X)←
dog(X).

nice(X)← dog(X). nice(X) ←
dog(X), pet(X),anim(X).

hasbeak(X) ← bird(X).
bird(X)← vulture(X).

hasbeak(tweety) hasbeak(tweety);bird(tweety);
vulture(tweety).

white(swan1). ← black(swan1) ←
black(swan1),white(swan1)

sentence([], []). sentence([a,a,a], []). sentence([a,a,a], []) ←
sentence([], []).

Table 2.3: The most specific clause for various versions of background knowledge and example.

Let ¬K be the (potentially infinite) conjunction of ground literals which are true in all
models of B∧¬E. Since ¬H must be true in every model of B∧¬E it must contain a
subset of ground literals in ¬K. Therefore:

B∧E � ¬K � ¬H

and so, for all H:

H �K

This leads to the observation that a subset of the solutions for H can be found by
considering the clauses which θ -subsume K. The complete set of candidates for H can be
found by considering all clauses which θ -subsume sub-saturants of K, thus significantly
reducing the search space.

Table 2.3, taken from [Mug95], show most specific clauses for different versions of
background knowledge and example.

As K can have infinite cardinality, mode declaration [Mug95] is used to constrain
the search of clauses which θ -subsume K. A mode declaration has either the form
modeh(n,atom) or modeb(n,atom) where n, the recall, is either an integer, n > 1, or
‘*’ and atom is a ground atom. Terms in the atom are either normal or placemarker. A
normal term is either a constant or a function symbol followed by a bracketed tuple of
terms. A placemarker is either +type, −type or #type, where type is a constant. If m
is a mode declaration, then a(m) denotes the atom of m with placemarkers replaced by
distinct variables. The sign of m is positive if m is a modeh and negative if m is a modeb.
The recall is used to bound the number of alternative solutions for instantiating the atom.
The following are mode declarations:
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modeh(1, plus(+int,+int,−int))

modeb(∗,append(−list,+list,+list))

modeb(1,append(+list, [+any],−list))

modeb(4,(+int > #int))

MDIE-based ILP systems usually introduce a bias on the depth of variables in the def-
inite mode language. MDIE has become widely used in ILP systems, being a significant
enhancement to previous top-down learning methods. For that matter, the general induc-
tion procedure is presented. The induce() procedure starts from a set of examples E, a
background knowledge B, and some constraints C, following a greedy cover set approach
to induce a theory H. The saturation step builds the most specific clause, a definite clause
that is used to constrain the search space. The search() procedure works top-down, by
adding literals from the botom-clause to an existing clause. Most of the work is done in
this procedure, which is constrained to a given depth in C in order to ensure its termina-
tion. If no hypothesis is found, then ei is returned. The loop continues by removing the
examples covered by the new rule and searching for a clause that covers the remaining
examples.

Algorithm 1 A general induction procedure based on MDIE
i = 0
Hi = /0
loop

if E+ = /0 then
return Hi

end if
i = i+1
Train = E+∪E−

e+i = select an example from E+

⊥i= saturate(B,C,Hi−1,e+i )
hi = search(B,C,Train,Hi−1,e+i ,⊥i)
Hi = Hi−1∪hi

Ecovered = {e|e ∈ E+∧B∪Hi � e}
E+ = E+ Ecovered

end loop

2.4.2 Handling imperfect data in ILP

Real-world data is almost never perfect. For that matter, it is important to identify diferent
kinds of imperfect data and be able to apply some efficient noise-handling mechanisms.
As previously stated, imperfections in data include noise, too sparse training examples,
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inexacteness of the description language and missing values. Learning systems usually
have a single mechanism for dealing with all but the missing values problem, often called
noise-handling mechanisms. Such mechanisms prevent the induced hypothesis from over-
fitting the data set. Dealing with missing values usually requires a different approach.

2.4.2.1 Handling missing values

The problem of handling missing values from training examples is more relevant in an
attribute-value framework, as in ILP some characteristics can easily be omitted. However,
some ILP systems are based on attribute-value learners, so introducing this problem is
somewhat relevant for the purpose of this document.

Usually, learning systems are not able to handle missing data on their known. The
problem has to be solved by the knowledge engineer before running the learning system.
This happens because there is no silver-bullet in handling missing values [HKP06, WF05].
The most frequent way to solve the problem is by replacing a missing value by the
majority value of the attribute within the class. Alternative ways include considering
the unknown value as a legal value or using a classifier on the rest of the attributes to
determine the most likely value. A more sophisticated approach used in decision-tree
learning systems like ASSISTANT [CKB87] or rule induction learning systems like CN2
[CN89, CB91] is to replace the missing value with several examples, one for each of the
possible attribute values, weighted by the conditional probabilities of them.

The problem of handling missing values in ILP is usually more relevant when there
is a lack of examples. LINUS [DL91, LD94] provides four options of negative example
generation, based on ideas from QuMAS [Moz87]:

• Negative facts can be given explicitly.

• When generating negative facts under the closed-world assumption, all possible
combinations of values of the n arguments of the target predicate are generated.

• Under the partial closed-world assumption, for a given combination of values of
the nInd independent variables, all the combinations of values of the nDep dependent
variables are generated.

• In the near_misses mode, facts are generated by varying only the value of one of the
n variables at a time, where n = nDep +nInd .

2.4.2.2 Handling noise

Most modern attribute-value learning programs contain mechanisms to deal with noisy
data. Those belonging to the Top Down Induction of Decision Trees [Qui86] family
of programs handle noise with a tree pruning mechanism. Induction programs such as
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AQ15 [MMHL86] and CN2 [CN89, CB91] use mechanisms such as rule truncation or
significance tests, respectively.

The mechanisms for dealing with noise in ILP can be based in appropriate search
heuristics and stopping criteria used in hypothesis construction. An alternative approach
is by post-processing the hypothesis found by considering data completely correct.

One possible stopping criteria is based on the encoding length restriction [Qui90],
which restricts the total length of an induced clause to the number of bits needed to ex-
plicitly enumerate the positive examples it covers. The number of bits needed to explicitly
indicate n⊕(c) positive examples covered by clause c out of the ncur examples in the cur-
rent training set is:

ExplicitBits(c,Ecur) = log2(ncur)+ log2(
ncur

n⊕(c)
)

The number of bits needed to encode a clause with m literals in the body is calculated
as:

ClauseBits(c) =
m

∑
i=1

(1+ log2(l)+ log2(Vqi))− log2(m!)

where l is the number of different predicates in the background knowledge and Vqi is the
number of possible choices of variables of the predicate used in literal Li [Qui90].

The construction of a clause is stopped (the necessity stopping criteria is satisfied)
when no negative examples are covered by the clause or when adding any literal with
positive gain would cause ClauseBits(c) to exceed ExplicitBits(c,Ecur).

The construction of a hypothesis is terminated (the sufficiency stopping criteria is
satisfied) when all the positive examples are covered or when all the literals with positive
gain require more than ExplicitBits(c,Ecur) to encode.

The encoding length restriction has some deficiencies, as it may prevent the building
of complete definitions in non-noisy domains and allows very specific clauses covering
a small number of examples. A more sophisticated encoding scheme, which takes into
account the information necessary to encode the background knowledge as well as the
proofs which would generate the training examples covered is introduced in [MSB92].

There have been attempts to introduce pruning in ILP, splitting the training set into a
set for learning and a set for pruning. Operators that delete the last literal and drop a clause
are independently applied to each clause of the induced hypothesis, being retained the
modification that yields the greatest accuracy. The procedure is repeated until a decrease
in accuracy is observed.
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Some heuristics have been proposed to guide the search of literals [LCD92a, LCD92b].
This same heuristics can be used as stopping criteria, deciding whether to stop adding lit-
erals to the clause and whether to stop adding clauses to hypothesis. In addition to the
entropy/information-based search heuristics used in the construction of decision trees, a
variety of other heuristics have ben proposed by other authors [BFSO84, Min89]. Heuris-
tics use different probability estimates. It was shown that the method of estimating proba-
bilities used in the heuristics has a greater impact on the accuray of the induced hypothesis
than the actual form of the heuristics [Ces91].

The following measures assume that n is the number of examples in the initial training
set, n⊕ of which are positive and n	 negative. ncur denotes the number of examples in the
current training set Ecur, and n(c) the number of examples in the local training set Ec (that
is, the set of examples from the current training set Ecur which are covered by clause c).
The quality of clause c is computed by estimating the goodness of split, i.e., how good is
the distribution n⊕(c)−n	(c) of positive and negative examples covered by the clause.

The expected classification accuracy is defined as the probability that an example
covered by clause c is positive:

A(c) = p(⊕|c)

The informativity is the amount of information necessary t specify that an example
covered by the clause is positive:

I(c) =−log2 p(⊕|c)

Given a new clause c′, the accuracy gain AG and information gain IG are defined as
follows:

AG(c′,c) = A(c′)−A(c) = p(⊕|c′)− p(⊕|c)

IG(c′,c) = I(c)− I(c′) = log2 p(⊕|c′)− log2 p(⊕|c)

Accuracy gain and information gain can be weighted by the reltive frequency of pos-
itive examples covered at an individual specialization step, leading to the measures of
weighted accuracy gain WAG and weighted information gain WIG:
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WAG(c′,c) =
n⊕(c′)
n⊕(c)

× (p(⊕|c′)− p(⊕|c))

WIG(c′,c) =
n⊕(c′)
n⊕(c)

× (log2 p(⊕|c′)− log2 p(⊕|c))

The previous heuristics for evaluating the quality of a clause use probabilites that need
to be estimated from the current training set Ecur. Relative frequency is often used as an
estimation:

p(⊕|c) = n⊕(c)
n(c)

The laplace estimate is more reliable than relative frequency when dealing with a
small number of examples, but relies on the assumption of a uniform prior probability
distribution of the classes [NB86]. The laplace estimate is defined as follows:

p(⊕|c) = n⊕(c)+1
n(c)+2

The m-estimate [Ces90] avoids the problems of relative frequency an the Laplace es-
timate, by taking into account the prior probabilities of the classes. The prior probability
pa(⊕) can be estimated by the relative frequency. The parameter m reflects the confidence
in the experimental evidence, hence can be set subjectively. The m-estimate is defined as
follows:

p(⊕|c) = n⊕(c)+m× pa(⊕)
n(c)+m

2.4.3 Efficiency in ILP systems

ILP systems often require long running times and large amounts of memory to produce
valuable models. Improving efficiency of ILP systems has thus been recognized as one
of the main issues to be addressed by the ILP community [PSCF03, FCR+09]. ILP algo-
rithms are sufficiently complex to offer a large scope for research on improvements. Initial
research on improving the efficiency of ILP systems focused on reducing the search space
[Cam02, NRB+96] and efficiently testing candidate hypothesis [BDD+02, CSC+02].

32



Introduction to ILP

Some notions of declarative bias for reducing the search space have already been pre-
viously introduced, so the focus of this section is on methods to efficiently test candidate
hypothesis (namely on the coverage mechanism), some specialized storage mechanisms
and possible improvements on the inference engine. The choice for this particular meth-
ods is related to their orthogonality, since they can easily be integrated in an existing ILP
system.

2.4.3.1 Evaluation of hypothesis coverage

In ILP systems, hypothesis are generated usually be extending a previous clause, and
then evaluated by computing how many examples they cover. Generating a new clause is
often straightforward. The evaluation of individual hypothesis is the hard part [BGSS00],
specially if the number of examples is large. Research on improving the evaluation of
hypothesis has been related to query transformations [CSC00, CSC+02], query-packs
[BDD+02] and lazy evaluation of examples [Cam03, FCR+09].

Query transformations apply some systematic techniques to, while retaining the set
of examples derived from the hypothesis, reduce the number of computations necessary
to determine coverage of examples. This kind of transformations can take into account
redundancy in predicates on the body of the hypothesis, apply intelligent cuts (!) to goals
whose solutions for previous predicates in the body of the clause do not alter their com-
putation, and use previous exploration of “parent” clauses (those that originate the current
clause, by specification), simplifying derivability tests.

Query-packs group similar queries in an unique set, in a tree-like structure. However,
query-packs, to be efficiently executed, require changes at the level of the Prolog engine
itself, introducing appropriate primitives for a more efficient procedural semantics of the
or operator.

Lazy evaluation of examples is a technique that tries to avoid unneessary use of ex-
amples in the coverage computations. Lazy evaluation does not affect the completeness
of the hypothesis search. Lazy evaluation of hypothesis is usually distinguished between
lazy evaluation of negative examples, lazy evaluation of positive examples and total lazi-
ness. Lazy evaluation of negative examples builds on the observation that we are only
interested in knowing if the hypothesis covers more than the llowed number of negative
examples or not. One is not really interested to know how much more negative examples
a hypothesis covers than allowed. When using lazy evaluation of positives, we start by
determining if an hypothesis covers more positives than the current best consistent hy-
pothesis. If it does, the positive examples are evaluated just until the best cover so far
is exceeded. If the best cover is exceeed, the hypothesis is retained, otherwise it can be
discarded. Total laziness goes a bit further and simply does not evaluate the positive cover
at all for partial clauses (clauses that are inconsistent with the negative examples).
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2.4.3.2 Storage mechanisms

ILP systems search large spaces of hypothesis. In larger applications this space can
quickly grow to thousands and even millions of different clauses. It is observable that
the ILP search space is highly redundant [NdW97], as the same clause can be proposed
over and over again and quite often the clauses are very similar, or share a common pre-
fix. Tries were originially invented by Fredkin [Fre60] to index dictionaries and have
since been generalized to index recursive data structures such as terms. Tries have been
extensively used in automated theorem proving, term rewriting and tabled logic programs
[BCR93, Gra96, McC92, Ohl90, RRS+99]. The basic idea behind the trie data structure
is to partition a set of terms based upon their structure so that looking up and inserting
can be performed in a single pass through a term.

ILP systems often keep an open list of clauses that deserve to be refined, or further
explored. For each such clause it is quite convenient to keep a list of examples covered,
the coverage list. This helps when computing coverage for the new clauses. Coverage
lists represent sets of examples. However, they do not have the nice incremental property
of clauses. The ability to represent sparse spaces addressed by the generic data structures
called quadtrees [Sam84] can be extended to the coverage lists. Quadtrees are hierarchical
data structures based on recursive decomposition of space. The RL-tree (RangeList-Tree)
[FCR+09] data structure is a quadtree based data structure suitable for a single dimension
space. It allows the storage of lists of intervals representing integer number. For example,
the list [1,2,5,6,7,8,9,10] is represented as the list of intervals [1− 2,5− 10]. Since
the efficiency of basic operations on interval lists is linear on the number of nodes, RL-
trees try to achieve efficient storage and manipulation of a coverage list by a recursive
decomposition of intervals.

2.4.3.3 Performance of the inference engine

Ideally, ILP systems should spend most of their running time performing inference. Most
often, they use the inference mechanism of a Prolog engine to do theorem proving. As
a result, it becomes easier to implement the whole ILP system in Prolog. However, as
ILP systems address larger applications, they challenge the traditional Prolog engines.
Therefore, indexing becomes critical for good ILP performance [CSL07]. Indexing can
be implemented both for static data structures, representing the databases, and dynamic
data structures representing the search space. The following indexing strategies follow
the ones implemented in the Yap Prolog system [CDRA, CSL07].

Many modern Prolog systems follow D. Warren’s work on the Warren Abstract Ma-
chine (WAM) [War83] and implement a simple form of static indexing which relies on
the main functor of the first argument to select a subset of all clauses, which are then
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tried one by one. This traditional WAM indexing shows several limitations for ILP sys-
tems. First, ILP systems do not always have the first argument bound. On the other
hand, generating indexing code for every argument would be extremely space-extensive
[PN91, CDWY96]. Just-in-time indexing applies the Just-In-Time compilation strategy
[Ayc03] so that all the required indices are generated, and only the ones required. Indexes
are generated based on the instantiation of the current goal and expanded to give different
instantiations for the same goal [FCR+09].

Dynamic indexing comes to consideration when dealing with update operations such
as assert or retract. One alternative would be to destroy he indexing tree every time the
database is changed. This, however, may lead to a generation of the entire tree in every
query. A less expensive solution is to manipulate the indexing tree in a way that it is
always consistent with the database. This approach walks the indexing tree trying to find
the minimal set of expansions to a tree, inserting clauses in unbound chains in case of
asserts and reverting insert operations in case of retracts.

2.4.4 Parallel and distributed ILP

Parallel implementations of ILP systems aim to obtain an algorithm with a speedup pro-
portional to the number of processors over the best available serial algorithm. The central
issue in designing a system to support parallellism is how to break up a given task into
subtasks, each of which will be executing in parallel with the other [Hwa89, Sil09]. The
problem posed is then to partition the ILP task into subtasks. The following definitions
can be derived from the ILP problem general specification [DR95]:

Definition 1. A partition {T1, ...,Tn} of an ILP-task T = (B,E,L) is a set of ILP-tasks
Ti = (B,Ei,Li) such that Ei ⊂ E, and Li ⊂L for all i, and that ∪n

i=1Ei = E and ∪n
i=1Li =

L.

Definition 2. A partition {T1, ...,Tn} of an ILP-task T is valid if and only if the union
∪n

i=1Hi of partial hypothesis Hi obtained by applying a common sequential ILP algorithm
A to task Ti is equivalent to the solution hypothesis H obtained by applying algorithm A
to task T .

Definition 2 can be applied to two different notions of explanation and semantics cur-
rently distinguished in ILP: the normal ILP setting and the nonmonotonic ILP setting
[RL93, MdR94]. This difference has lead to some constraints on parallel ILP [DR95],
namely that the partitioning is only permitted, in a normal setting, if one is learning a
single predicate without recursion. For the nonmonotonic setting, valid partitions of the
ILP task can be produced by splitting the language bias L. Experiments on the knowledge
discovery system Claudien [RB93, DR95] showed that linear speedup is possible, at least
for low degrees of concurrency, in a nonmonotonic setting.
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2.5 Applications of ILP

ILP systems have been successfully used in both industrially and scientifically relevant
problems. An important application of ILP is knowledge acquisition in second generation
expert systems, which use a first-order represenation a deep model of the domain. ILP
is also one of the foundations of relational data mining [DL01], being actively used in
knowledge discovery in databases. Finally, ILP can be used as a tool in various steps of
sicentific discovery.

Some of the most relevant applications of ILP in real-world data include learning
qualitative models from sample behaviors [BMV91, DB92], inducing temporal rules for
satellite fault diagnosis [Fen91], predicting secondary structure of proteins [MKS92] and
finite element mesh design [DM92b, Dol91, DD91].
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Chapter 3

ILP Systems

This chapter introduces some of the most relevant ILP systems up to date. Some of the
descriptions here were are taken from [LWZ+96, Dze].

3.1 An overview of FOIL

FOIL is a system for learning intensional concept definitions from relational tuples. It
is one of the best-known and successful empirical ILP systems and has inspired a lot of
further research. The following description was taken from [LWZ+96].

FOIL [Qui90, QC93] induces concept definitions represented as function-free Horn
clauses, optionally containing negated body literals. The background knowledge predi-
cates are represented extensionally as sets of ground tuples. FOIL employs a heuristic
search strategy which prunes vast parts of the hypothesis space. As its general search
strategy, FOIL adopts a covering approach. Induction of a single clause starts with a
clause with an empty body which is specialised by repeatedly adding a body literal to
the clause built so far. As candidate body literals, FOIL considers the literals which are
constructed by variabilising the predicates (including the target predicate), that is, by dis-
tributing variables to their argument places. Additionally, FOIL takes into account literals
stating (in)equality of variables in the head or body literals. Furthermore, literals may
contain constants which the user has declared as theory (i.e. relevant) constants. All lit-
erals have to conform to the type restrictions of the predicates. For further control of the
language bias, FOIL provides parameters limiting the total number and maximum depth
of variables in a single clause. In addition, FOIL incorporates mechanisms for excluding
literals which might lead to endless loops in recursive hypothesis clauses. FOIL offers
limited number handling capabilities by generating literals which compare numeric vari-
ables to each other or to thresholds. Among the candidate literals, FOIL selects one literal
to be added to the body of the hypothesis clause according the information gain heuris-
tic, an information-based measure estimating the utility of a literal in dividing positive
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from negative examples. FOIL stops adding literals to the hypothesis clause if the clause
reaches a predefined minimum accuracy or if the encoding length of the clause exceeds
the number of bits needed for explicitly encoding the positive examples it covers. This
second stopping criterion prevents the induction of overly long and specific clauses in
noisy domains. Induction of further hypothesis clauses stops if all positive examples are
covered or if the set of induced hypothesis clauses violates the encoding length restric-
tion. In a postprocessing stage, FOIL removes unneccessary literals from induced clauses
as well as redundant clauses from the concept definition. FOIL’s greedy search strategy
makes it very efficient, but also prone to exclude the intended concept definitions from the
search space. Some refinements of the hill-climbing search alleviate its short-sightedness,
such as including a certain class of literals with zero information gain into the hypothesis
clause and a simple backtracking mechanism.

FOIL is a batch learning system which reads in all learning input from a single input
file. Positive as well as negative examples are required for learning. A user may provide
negative examples explicitly or, alternatively, instruct FOIL to generate negative examples
automatically according to the Closed World Assumption (CWA). In the latter case, the set
of positive examples must be complete up to a certain example complexity. For predicates
with high arity, the CWA may generate a huge number of negative examples. FOIL offers
a command line option allowing the user to specify the percentage of randomly-selected
negative examples to be used for induction.

Examples and background knowledge for FOIL have to be formatted as tuples, that is,
each ground instance of a predicate is represented as a sequence of argument values. For
each predicate, the user provides a header defining its name and argument types. Option-
ally, the user may indicate the input/output mode of the predicates, thus further limiting
the number of candidate body literals. For convenient testing of the induced hypothesis,
the user may provide test cases (i.e. classified examples) for the target predicates together
with the learning input. FOIL then checks the hypothesis on these cases and reports the
results.

3.2 An overview of GOLEM

The following description was taken from [LWZ+96].
As FOIL, GOLEM [MF90] is a “classic” among empirical ILP systems. It has been

applied successfully on real-world problems such as drug design [KMLS92], protein
structure prediction [MKS92] and finite element mesh design [DM92a]. GOLEM copes
efficiently with large datasets. It achieves this efficiency because it avoids searching a
large hypothesis space for consistent hypotheses as, for instance, FOIL, but rather con-
structs a unique clause covering a set of positive examples relative to the available back-
ground knowledge. The principle is based on the relative least general generalisations
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(rlggs) introduced by Plotkin [Plo71, PMM71]. GOLEM embeds the construction of
rlggs in a covering approach. For the induction of a single clause, it randomly selects
several pairs of positive examples and computes their rlggs. Among these rlggs, GOLEM
chooses the one which covers the largest number of positive examples and is consistent
with the negative examples. This clause is then further generalised. GOLEM randomly
selects a set of positive examples and constructs the rlggs of each of these examples and
the clause obtained in the first construction step. Again, the rlgg with the greatest coverage
is selected and generalised by the same process. The generalisation process is repeated
until the coverage of the best clause stops increasing. GOLEM conducts a postprocessing
step, which reduces induced clauses by removing irrelevant literals.

In the general case, the rlgg may contain infinitely many literals. Therefore, GOLEM
imposes some restrictions on the background knowledge and hypothesis language which
ensure that the length of rlggs grows at worst polynomially with the number of positive
examples. The background knowledge of GOLEM is required to consist of ground facts.
For the hypothesis language, the determinacy restriction applies, that is, for given values
of the head variables of a clause, the values of the arguments of the body literals are deter-
mined uniquely. The complexity of GOLEM’s hypothesis language is further controlled
by two parameters, i and j , which limit the number and depth of body variables in a
hypothesis clause.

GOLEM learns Horn clauses with functors. It may be run as a batch learner or in
interactive mode where the induction can be controlled manually. GOLEM is able to
learn from positive examples only. Negative examples are used for clause reduction in the
postprocessing step, as well as input/output mode declarations for the predicates the user
may optionally supply. For dealing with noisy data, GOLEM provides a system parameter
enabling the user to define a maximum number of negative examples a hypothesis clause
is allowed to cover.

3.3 An overview of MOBAL

MOBAL [MWKE93] is a system for developing operational models of application do-
mains in a first order logic representation. The following description was taken from
[Dze].

MOBAL integrates a manual knowledge acquisition and inspection environment, an
inference engine, machine learning methods for automated knowledge acquisition, and a
knowledge revision tool. By using MOBAL’s knowledge acquisition environment, you
can incrementally develop a model of your domain in terms of logical facts and rules.
You can inspect the knowledge you have entered in text or graphics windows, augment
the knowledge, or change it at any time. The built-in inference engine can immediately
execute the rules you have entered to show you the consequences of your inputs, or answer
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queries about the current knowledge. MOBAL also builds a dynamic sort taxonomy from
your inputs. If you wish, you can use several machine learning methods to automatically
discover additional rules based on the facts that you have entered, or to form new concepts.
If there are contradictions in the knowledge base due to incorrect rules or facts, there is a
knowledge revision tool to help you locate the problem and fix it.

3.4 An overview of Progol

The following description was taken from [Dze].
PROGOL [Mug95] employs a covering approach like, e.g., FOIL. That is, it selects

an example to be generalised and finds a consistent clause covering the example. All
clauses made redundant by the found clause including all examples covered by the clause
are removed from the theory. The example selection and generalisation cycle is repeated
until all examples are covered. When constructing hypothesis clauses consistent with the
examples, PROGOL conducts a general-to-specific search in the theta-subsumption lattice
of a single clause hypothesis. In contrast to other general-to-specific searching systems,
PROGOL computes the most specific clause covering the seed example and belonging to
the hypothesis language. This most specific clause bounds the theta-subsumption lattice
from below. On top, the lattice is bounded by the empty clause. The search strategy is an
A∗-like algorithm guided by an approximate compression measure. Each invocation of the
search returns a clause which is guaranteed to maximally compress the data, however, the
set of all found hypotheses is not necessarily the most compressive set of clauses for the
given example set. PROGOL can learn ranges and functions with numeric data (integer
and floating point) by making use of the built-in predicates “is”, <, =<, etc.

The hypothesis language of PROGOL is restricted by the means of mode declarations
provided by the user. The mode declarations specify the atoms to be used as head literals
or body literals in hypothesis clauses. For each atom, the mode declaration indicates the
argument types, and whether an argument is to be instantiated with an input variable, an
output variable, or a constant. Furthermore, the mode declaration bounds the number of
alternative solutions for instantiating the atom. The types are defined in the background
knowledge by unary predicates, or by Prolog built-in functions.

Arbitrary Prolog programs are allowed as background knowledge. Besides the back-
ground theory provided by the user, standard primitive predicates are built into PROGOL
and are available as background knowledge. Positive examples are represented as ar-
bitrary definite clauses. Negative examples and integrity constraints are represented as
headless Horn clauses. Using negation by failure (CWA), PROGOL is able to learn arbi-
trary integrity constraints.

PROGOL provides a range of parameters for controlling the generalisation process.
These parameters specify the maximum cardinality of hypothesis clauses, a depth bound
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for the theorem prover, the maximum layers of new variables, and an upper bound on the
nodes to be explored when searching for a consistent clause. PROGOL allows to relax
consistency by setting an upper bound on the number of negatives that can be covered by
an acceptable clause.

3.5 An overview of LINUS

LINUS [LD94, LDG91] is an ILP learner which incorporates existing attribute-value
learning systems. The following description was taken from [LWZ+96].

The idea is to transform a restricted class of ILP problems into propositional form and
solve the transformed learning problem with an attribute-value learning algorithm. The
propositional learning result is then re-transformed into the first-order language. On the
one hand, this approach enhances the propositional learners with the use of background
knowledge and the more expressive hypothesis language. On the other hand, it enables
the application of successful propositional learners in a first-order framework. As various
propositional learners can be integrated and accessed via LINUS, LINUS also qualifies
as an ILP toolkit offering several learning algorithms with their specific strengths. The
present distribution of LINUS provides interfaces to the attribute-value learners ASSIS-
TANT, NEWGEM, and CN2. Other propositional learners may be added. LINUS can
be run in two modes. Running in CLASS mode, it corresponds to an enhanced attribute-
value learner. In RELATION mode, LINUS behaves as an ILP system.

The basic principle of the transformation from first-order into propositional form is
that all body literals which may possibly appear in a hypothesis clause (in the first-order
formalism) are determined, thereby taking into account variable types. Each of these body
literals corresponds to a boolean attribute in the propositional formalism. For each given
example, its argument values are substituted for the variables of the body literal. Since all
variables in the body literals are required to occur also as head variables in a hypothesis
clause, the substitution yields a ground fact. If it is a true fact, the corresponding propo-
sitional attribute value of the example is true, and false otherwise. The learning results
generated by the propositional learning algorithms are retransformed in the obvious way.
The induced hypotheses are compressed in a postprocessing step.

In order to enable the transformation into propositional logic and vice versa, some
restrictions on the hypothesis language and background knowledge are necessary. As
in most systems, training examples are ground facts. These may contain structured, but
nonrecursive terms. Negative examples can be stated explicitly or generated by LINUS
according to the CWA. LINUS offers several options for controlling the generation of
negative examples.

The hypothesis language of LINUS is restricted to constrained deductive hierarchical
database clauses, that is, to typed program clauses with nonrecursive predicate definitions
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and nonrecursive types where the body variables are a subset of the head variables. Be-
sides utility functions and predicates, hypothesis clauses consist of literals unifying two
variables (X = Y) and of literals assigning a constant to a variable (X = a). Certain types
of literals may appear in negated form in the body of a hypothesis clause.

Background knowledge has the form of deductive database clauses, that is, possibly
recursive program clauses with typed variables. The variable type definitions which are
required to be nonrecursive have to be provided by the user. The background knowledge
consists of two types of predicate definitions, namely utility functions and utility pred-
icates. Utility functions are predicates which compute a unique output value for given
input values. The user has to declare their input/output mode. When occuring in an in-
duced clause, the output arguments are bound to constants. Utility predicates are boolean
functions with input arguments only. For a given input, these predicates compute true or
false.

3.6 An overview of Aleph

Aleph [Sri] stands for A Learning Engine for Proposing Hypothesis. The following de-
scription was taken from [Sri].

Aleph is intended to be a prototype for exploring ideas. Earlier incarnations (under the
name P-Progol) originated in 1993 as part of a fun project undertaken by Ashwin Srini-
vasan and Rui Camacho at Oxford University. The main purpose was to understand ideas
of inverse entailment [Mug95]. Since then, the implementation has evolved to emulate
some of the functionality of several other ILP systems. Some of these of relevance to
Aleph are: CProgol, FOIL, FORS, Indlog, MIDOS, SRT, Tilde, and WARMR.

During routine use, Aleph follows a very simple procedure that can be described in 4
steps:

1. Select example. Select an example to be generalised. If none exist, stop, otherwise
proceed to the next step.

2. Build most-specific-clause. Construct the most specific clause that entails the ex-
ample selected, and is within language restrictions provided. This is usually a defi-
nite clause with many literals, and is called the “bottom clause”. This step is some-
times called the “saturation” step.

3. Search. Find a clause more general than the bottom clause. This is done by search-
ing for some subset of the literals in the bottom clause that has the “best” score.
Two points should be noted. First, confining the search to subsets of the bottom
clause does not produce all the clauses more general than it, but is good enough for
this thumbnail sketch. Second, the exact nature of the score of a clause is not really
important here. This step is sometimes called the “reduction” step.
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4. Remove redundant. The clause with the best score is added to the current theory,
and all examples made redundant are removed. This step is sometimes called the
“cover removal” step. Note here that the best clause may make clauses other than
the examples redundant. Again, this is ignored here. Return to Step 1.

A more advanced use of Aleph allows alteration to each of these steps. At the core of
Aleph is the “reduction” step, presented above as a simple “subset-selection” algorithm.
In fact, within Aleph, this is implemented by a (restricted) branch-and-bound algorithm
which allows an intelligent enumeration of acceptable clauses under a range of different
conditions.

3.7 An overview of IndLog

IndLog [Cam00, Cam04] is a general purpose Prolog-based Inductive Logic Program-
ming (ILP) system. The following description was taken from [Cam04].

IndLog is theoretically based on the Mode Directed Inverse Entailment and has several
distinguishing features that makes it adequate for a wide range of applications. To search
efficiently through large hypothesis spaces, IndLog uses original features like lazy evalua-
tion of examples and Language Level Search. IndLog is applicable in numerical domains
using the lazy evaluation of literals technique and Model Validation and Model Selection
statistical-based techniques. IndLog has a MPI/LAM interface that enables its use in par-
allel or distributed environments, essential for Multi-relational Data Mining applications.
Parallelism may be used in three flavours: splitting of the data among the computation
nodes; parallelising the search through the hypothesis space and; using the different com-
putation nodes to do theory-level search. IndLog has been applied successfully to major
ILP literature datasets from the Life Sciences, Engineering, Reverse Engineering, Eco-
nomics, Time-Series modelling to name a few. IndLog was developed with a modular
architecture in mind, being easily configured and enhanced by the introduction of new
modules.

3.8 An overview of CLAUDIEN

The interactive system CLAUDIEN [RB93, RD96] performs the task of clausal discov-
ery, that is, it searches a given database for hidden regularities. Both the database and the
regularities are represented as first-order clausal theories. CLAUDIEN belongs to non-
monotonic setting of ILP. CLAUDIEN regards the discovered regularities as an aim of
themselves. As CLAUDIEN provides a powerful mechanism for specifying the type of
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regularities to be detected, CLAUDIEN can be applied for detecting various kinds of reg-
ularities in databases, such as integrity constraints in databases, functional dependencies
and determinations, or properties of sequences.

The basic principle of CLAUDIEN’s discovery algorithm is to subsequently generate
the clauses contained in the hypothesis language and check them against the database.
The clauses which are found to represent an actual regularity of the data are added to
the hypothesis. The algorithm searches the hypothesis space from general to specific,
thereby exploiting the subsumption relations among of clauses for pruning the search
space. While running, CLAUDIEN successively enlarges the set of discovered regulari-
ties. The longer the algorithm runs, the more regularities may be found. As the search
outputs a valid hypothesis whenever it is interrupted, CLAUDIEN can be regarded as an
anytime algorithm.

CLAUDIEN’s background theory and examples (termed ’observations’) are repre-
sented as conjunctions of first order Horn clauses. The hypothesis may consist of arbitrary
clauses. CLAUDIEN incorporates a mechanism for the syntactical declaration of the hy-
pothesis language called DLab. This mechanism allows the user to specify general clause
templates for hypothesis clauses. Each template defines a set of clauses. DLab derives
refinement operators from the clause templates which map the expansion of the template
into clause sets on sequences of specialisation operations under theta-subsumptions. This
enables pruning of the search.

CLAUDIEN provides a range of control parameters. Some of these allow further
control of the hypothesis language. Another group concerns semantical aspects of the
hypothesis as, e.g., the minimum accuracy and coverage of the discovered clauses. Addi-
tionally, the user can choose among four search strategies. Optionally, the system can be
requested to produce non-redundant hypothesis, that is, hypothesis not containing clauses
which are logically entailed by the background knowledge or other discovered regulari-
ties. Furthermore, CLAUDIEN provides mechanisms for the convenient management of
different configurations of discovery experiments.

3.9 An overview of TILDE

In the attribute-value learning domain, two major paradigms exist. There are decision
tree learners, which follow a divide-and-conquer approach; and rule induction systems,
typically following a covering approach. Because of these different search strategies, a
rule set derived from a decision tree will usually look different from a rule set found
directly by means of a typical rule induction system.

In the ILP domain, up till now most systems have used the covering approach, al-
though some authors (e.g., Bostrom 1995) have already pointed out that the divide-and-
conquer strategy can have advantages in some cases.
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Recently, an algorithm has been developed at the K.U.Leuven that learns a predicate
logic theory by means of so-called logical decision trees. Logical decision trees are a
first-order logic upgrade of the classical decision trees used by propositional learners.
In the same manner as propositional rules can be derived from decision trees (each rule
corresponds to a path from the root to some leaf; the tests in the nodes on that path are
conditions of the rule), clauses can be derived from logical decision trees (each test on
the path from root to leaf now being a literal or conjunction of literals that is part of the
clause). The resulting trees can directly be used for classification of unseen examples, but
they can also easily be transformed into a logic or Prolog program.

The ILP setting used by this algorithm, is the “learning from interpretations” setting
(De Raedt and Dzeroski 1994), as also used by the CLAUDIEN (De Raedt and Dehaspe
1996) and ICL (De Raedt and Van Laer 1995) systems.

The TILDE [BR98] system is a prototype implementation of this algorithm. It incor-
porates many features of Quinlan’s C4.5, which is a state-of-the-art decision tree learner
for attribute-value problems. Next to these, a number of techniques are used that are spe-
cific to ILP: a language bias can be specified (types and modes of predicates), a form of
lookahead is incorporated, and dynamic generation of literals (DGL) is possible. The lat-
ter, based on Claudien’s call handling, is a technique that allows, among other things, to
fill in constants in a literal. For learning in numerical domains, a discretization procedure
is available that can be used by the DGL procedure to find interesting constants.

This implementation, not surprisingly, performs as well as C4.5 on propositional prob-
lems (except for lower speed), but experiments on typical ILP data sets also show promis-
ing results with respect to predictive accuracy, efficiency and theory complexity.

3.10 An overview of MIS

The Model Inference System, by Ehud Y. Shapiro [Sha91, Sha05] is an instance of the
class of incremental generalise/specialise algorithms. Shapiro formalises the Model In-
ference Problem as follows [Sha91]: Suppose we are given a first order language L
and two subsets of it: an obervational language Lo and a hypothesis language Lh with
� ∈ Lo ⊂ Lh ⊂ L. In addition, assume that we are given an oracle for some unknown
model M of L. The Model Inference Problem is to find a finite Lo-complete axiomatiza-
tion of M. Unpacking this definition, we have the following:

• MIS takes as input a sequence of observations, where every statement α in Lo (even-
tually) appears and is flagged as either true or false. Such pairs are called facts.

• It is assumed that there is an oracle that can determine the truth of any ground
statement in L relative to the model M. This kind of learning is termed supervised
as it relies on the existence of an entity capable of answering questions about the
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domain. The oracle can be formalised as a set facts < α,Boolean >, each of which
reflect the truth or falsity of α in the target model M.

• The output of this algorithm is a conjecture, which is a set of Horn clauses that entail
all the positive observations, and none of the negatives, that have been presented to
it so far.

MIS itself consists of two parts: roughly, a systematic way of finding bugs in programs
and a search for fixes for these bugs. Both of these exploit the clean semantics of the pure
Horn Clause core of Prolog, and hence run into difficulties with the non-logical parts of
the language. MIS was the first system to introduce the notion of refinement operators.
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Chapter 4

The BET system

This chapter introduces the BET system, from the modules it provides to the way they are
handled and how the system is configured.

4.1 Requirements

The BET system aims to provide a flexible interface to develop new ILP systems and to
test new emerging techniques in a quick and straightforward way. The main requirements
such a system should consider are:

• Provide a basic set of modules to assemble an ILP system.

• Provide ways of adding new modules to the system.

• Provide ways of structuring the modules in a layered architecture.

• Provide well-documented APIs for developers to have quick access to the available
predicates.

• Manage dependencies between modules.

• Manage incompatibilities between modules.

• Provide a configuration format to specify a module.

• Provide a configuration format to specify a system from a subset of the available
modules.

4.2 Modular architecture

The BET system is based on a modular architecture which enables different levels of ab-
straction for the modules provided to synthesise a system. Five levels of abstraction were

47



The BET system

defined: META level, ILP system’s level, ILP intermediate level, ILP basics level and
C/Java programming level. A picture of the BET architecture is presented in Figure 4.1.

Figure 4.1: Level-based architecture of the Bet system.

The lowest layer (C/Java programming level) provides a set of modules that interface
useful libraries or implement in C or Java useful basic functionalities. Currently, we
are using the Yap Prolog engine. Theorem proving modules implement depth and time-
bound theorem prover and probabilistic theorem prover. For probabilistic ILP, CLPBN is
available. The available interface with the R-library provides a large number of numerical
methods. Parallelism and distributed computing may use the available interface with the
LAM/MPI library. Graphical interfaces use either GTK interface or the Java interface.
General purpose data structures include tries, RL-trees, bit-vectors and (ordered) lists.
Storage facilities include access data in XML interface for RDBMs (MySQL, ODBC).
Prolog built-ins for ILP include tabling support and query packs support.

The “ILP basics level” layer include sets of modules encoding the most basic func-
tionalities of ILP systems. These functionalities include: hypothesis generation (lgg,
refinement operators, V and W operators, tools for the random search of hypotheses),
management (clause and theory data structures, manipulation sets of clauses, manipula-
tion sets of theories) and evaluation (clause and theory evaluation, clause evaluation on a
regression setting, lazy evaluation, stochastic matching, coverage caching, query packs,
tabling, parallel coverage tests, intensional and extensional coverage, evaluation metrics)
procedures; primitives for parallel execution; management of examples, etc. The basic
graphical set of modules enable the visualisation of the search space, the literal depen-
dency graph (when the bottom clause is generated), debugging and profiling. The basic
I/O modules include reading from file, reading from DB, post-processing of background
knowledge data. Most of the modules in this layer are wrappers and interfaces from the
lowest layer code (in C or Java) and ILP intermediate level layer modules.
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The ILP intermediate level layer provides functionalities such as search algorithms
(systematic search, stochastic search, beam search, incremental searches), graphical user
interfaces, the construction of the bottom clause for MDIE-based algorithms and also a
set of parallel search algorithms. These modules build on top of modules of the ILP basics
level layer.

The ILP system’s level layer has a set of modules that, together with modules of
lower layers, implement existing state-of-the-art systems or ready to use new systems.
For a first version of the BET workbench, we have distinguished between Mode Directed
Inverse Entailment (MDIE), declarative ILP systems and FOIL-like systems.

The upper layer (Meta level) provides a set of modules that may facilitate and improve
the usage of basic ILP systems. They enable the automatic tuning of parameters of basic
ILP systems in the set of modules called “Wrapper for parameter tuning”. This facility
avoids the user to know details of workings of ILP systems. The set of modules “Theory-
level search” provides search strategies to look for the “best” theory produced with the
available data. The “Ensembles” set of modules enables the combination of different
basic ILP systems. The “Model evaluation procedures” provides procedures such as cross
validation, train/test that are useful for the evaluation of the induced theories. Finally
the “Feature selection” set of modules provides procedures that select the best subset of
background predicates.

4.2.1 C/Java programming level

The C/Java programming level provides a set of basic modules needed for the imple-
mentation of an ILP system. This modules can be provided as interfaces for C or Java
code, or in Prolog itself. A huge amount of predicates provided here are needed for the
implementation of modules of higher levels.

4.2.1.1 Theorem proving

The theorem proving modules are based on mechanisms provided by the Prolog [Bra00]
engine itself. The proving of a theorem, based on Horn clauses, can be done by direct
application of the SLD resolution [Kow79], which is the basic inference rule used in logic
programming, and the one applied in the Yap prolog engine [CDRA]. It is, however,
possible for an ILP system to induce an infinite theory, in which there is no end to the
recursion. It is therefore important to provide a bound on the proving mechanism, which
can be established both by depth and by time constraints.

The Yap Prolog engine already provides predicates for calling a given goal with a
given depth of calls. This is easily done in prolog, following its recursive nature, as each
call can be accounted for and the status of the stack can be verified at each instance. For
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time-bound calls, the alarm features Yap provides are used, and an exception is thrown
whenever the time has surpassed the given value.

4.2.1.2 Probabilistic ILP

Probabilistic inductive logic programming [RK04, RK03], sometimes also called statis-
tical relational learning, addresses one of the central questions of artificial intelligence:
the integration of probabilistic reasoning with first order logic representations and ma-
chine learning. A rich variety of different formalisms and learning techniques have been
developed.

On the probabilistic ILP setting, the logic programming representations suffers two
essential changes:

1. clauses are annotated with probability values

2. the covers relation becomes a probabilistic one

Therefore, a probabilistic covers relation takes as arguments an example e, a hypoth-
esis H and possibly the background knowledge theory B. It then returns a probability
value between 0 and 1. So, covers(e,H ∪B) = P(e|H,B), the likelihood of example e.
The task of probabilistic ILP then becomes finding the hypothesis H∗ that maximises the
likelihood of the data P(E|H∗,B), where E denotes the set of examples.

To support probabilistic ILP, the BET system provides access to the CLP(BN) [CC03]
module from the Yap prolog engine. This module uses a Bayesian network to represent
the joint probability distribution over terms constructed from the Skolem functors in a
logic program, with an extension based on constraint logic programming (CLP). This
extension enables prolog clauses to have attached probability distributions. In order to
use CLP(BN) within an ILP environment, predicates for clause simplification, until no
cycles remain, are provided.

4.2.1.3 Numerical methods for ILP

Prolog is known for its limitations when it comes to numerical methods. Since an ILP
problem can involve some statistical or numerical calculus, an interface with the R-project
[rpr] has been developed. Such an interface enables the calling of methods from the R
shared library directly from Prolog predicates. The system is flexible enough for each
method in R to be called from a Prolog string, with a list of arguments. Some binary
operations, which have a different calling mechanism within R are specified as such in
Prolog facts, to enable the correct differentiation when addressing the goal.
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4.2.1.4 Parallel and distributed ILP

LAM/MPI [BDV94, SL03] is one of the predecessors of the Open MPI project. Open
MPI represents a community-driven, next generation implementation of a Message Pass-
ing Interface (MPI) fundamentally designed upon a component architecture to make an
extremely powerful platform for high-performance computing.

LAM (Local Area Multicomputer) is an MPI programming environment and devel-
opment system for heterogeneous computers on a network. With LAM/MPI, a dedicated
computer cluster or an existing network computing infrastructure can act as a single par-
allel computing resource. LAM/MPI is considered to be “cluster friendly”, in that it offers
daemon-based process startup/control as well as fast client-to-client message passing pro-
tocols. LAM/MPI can use TCP/IP, shared memory, Myrinet (GM), or Infiniband (mVAPI)
for message passing.

LAM features a full implementation of MPI-1 and much of MPI-2. Compliant applica-
tions are source code portable between LAM/MPI and any other implementation of MPI.
In addition to providing a high-quality implementation of the MPI standard, LAM/MPI
offers extensive monitoring capabilities to support debugging. Monitoring happens on
two levels. First, LAM/MPI has the hooks to allow a snapshot of process and message
status to be taken at any time during an application run. This snapshot includes all aspects
of synchronisation plus data type maps/signatures, communicator group membership, and
message contents (see the XMPI application on the main LAM web site). On the second
level, the MPI library is instrumented to produce a cumulative record of communication,
which can be visualised either at runtime or post-mortem.

The BET system provides an interface to the LAM/MPI library directly through a
module in the Yap Prolog engine.

4.2.1.5 Search support

The search support modules provide support for the search algorithms described in section
4.2.3.2. To enable a generalisation of the search methods, a generic branch-and-bound
[LD10] procedure is provided, which allows different implementations of search proce-
dures. Therefore, each node on the search graph (which corresponds to a clause) has a
dual search key (primary and secondary). The keys are both the length (i.e. the number
of literals) of the clause and the value of the clause given by the evaluation function. The
branching is done by applying a refinement operator to the clause represented by the node.
The algorithm for such a generic branch-and-bound approach can be seen in algorithm 2.
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Algorithm 2 An example of a generic branch and bound procedure for learning rules

k = Number of rules to return
E = Set of examples
Good = /0
S = START_RULE
while stop criteria not satisfied do

Pick = pickRule(S)
S = S {Pick}
if not prune(Pick) then

NewRules = genNewRules(Pick)
NewRules = {r ∈ NewRules|not prune(r)}
evalOnExamples(E,NewRules)
Good = Good∪{r ∈ NewRules|good_rule(r)}
S = S∪ (NewRules Good)

end if
end while
return bestO f (k,Good)

4.2.1.6 Graphical interfaces

ILP is usually hard to be used by people without knowledge in the area. The BET system,
by providing a simple workbench for the creation of ILP systems, aims to reduce the
overhead necessary for some people to know some ILP basics. By providing graphical
interfaces for the introduction of examples, background knowledge, tweaking the system
and running the induction procedure, users may abstract themselves from the underlying
prolog engine, and use ILP in a more familiar way. The BET system aims to provide
graphical interfaces in both GTK and Java Swing.

4.2.1.7 Data structures

There are a lot of interesting data structures for the ILP problem which are provided in
the BET system. The BET system aims to provide access to Tries, RL-trees, BIT vectors
and (ordered) lists.

Tries were originally invented by Fredkin [Fre60] to index dictionaries and have since
been generalised to index recursive data structures such as terms.

The basic idea behind the trie data structure is to partition a set T of terms based upon
their structure so that looking up and inserting these terms will be efficiently done. The
trie data structure provides complete discrimination for terms and permits look up and
possibly insertion to be performed in a single pass through a term [FCR+09].

An essential property of the trie structure is that common prefixes are represented only
once. The efficiency and memory consumption of a particular trie data structure largely
depends on the percentage of terms in T that have common prefixes. For ILP systems,
this is an interesting property that we can take advantage of because the hypothesis space
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is structured as a lattice and hypotheses close to one another in the lattice have a largely
common structure. More specifically, hypotheses in the search space have common pre-
fixes (literals), and some related information is also similar (e.g. the list of variables in
an hypothesis is similar to other lists of variables of nearby hypotheses). This clearly
matches the common prefix property of tries.

At the entry point of a trie we have the root node. Internal nodes represent symbols
in terms and leaf nodes specify the end of terms. Each root-to-leaf path represents a term
described by the symbols labelling the nodes traversed. Two terms with common prefixes
will branch off from each other at the first distinguishing symbol. Inserting a new term
requires traversing the trie starting at the root node. Each child node specifies the next
symbol to be inspected in the input term. A transition is taken if the symbol in the input
term at a given position matches a symbol on a child node. Otherwise, a new child node
representing the current symbol is added and an outgoing transition from the current node
is made to point to the new child node. On reaching the last symbol in the input term,
we reach a leaf node in the trie. Variables in terms are represented as a distinct constant.
A representation of the internal of terms in tries can be seen in Figure 4.2. The trie data
structure is implemented in C as a shared library, and provided as a Yap module.

Figure 4.2: Terms represented in tries

The RL-tree (RangeList-Tree) [FRCS03] data structure is based on a generic data
structure called quadtree [Sam84] that has been largely used in application areas such as
Image Processing, Computer Graphics, or Geographic Information Systems. Quadtree is
a term used to represent a class of hierarchical data structures whose common property
is that they are based on the principle of recursive decomposition of space. Quadtrees
based data structures are differentiated by the type of data that they represent, the prin-
ciple guiding the decomposition process, and the number of times the space is decom-
posed. The RL-tree data structure is designed to store lists of intervals representing integer
numbers. For example, the list [1,2,5,6,7,8,9,10] is represented as the list of intervals
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[1−2,5−10].
To reduce the time spent on computing clauses coverage some ILP systems maintain

lists of examples covered (coverage lists) for each hypothesis that is generated during
execution. The data structure used to maintain coverage lists is usually a Prolog lists of
integers. Two lists are kept for each clause: the list of positive examples covered (num-
bered from 1 to |E+|) and the list of negative examples covered (numbered from 1 to
|E−|). Each example is represented by a number in the list. The above mentioned sys-
tems reduce the size of the coverage lists by transforming a list of numbers into a list of
intervals. Using a list of intervals to represent coverage lists is an improvement over lists
of numbers but it still presents some problems. First, the efficiency of performing basic
operations on the interval list is linear on the number of intervals. Second, the representa-
tion of lists in Prolog is not very efficient regarding memory usage. The RL-trees aim to
tackle these problems, achieving efficient storage and manipulation of coverage lists.

In the design and implementation of RL-trees, the following assumptions must be
taken into account: intervals are disjoint; updates consist of adding or removing numbers;
and, the domain (an integer interval) is known at creation time.

RL-trees have two distinct types of nodes: list nodes (represent a fixed interval of
size LI) and range nodes (represent an interval that is subdivided into sub-intervals). The
number of sub-intervals in each range node is B (an implementation parameter).

In the vein of quadtrees, each “cell” (square) in a node is painted black if the example
is covered (list nodes) or the interval is completely covered (range nodes). It is painted
gray if the interval is partially covered (range nodes) and is white if the example is not
covered (list nodes) or the interval is not covered at all (range nodes), as can be seen in
Figure 4.3.

Figure 4.3: Representation of interval [1−32,53−54,56−58,60−65] in a RL-tree(65)

Again, as in quadtrees, the underlying idea of RL-trees is to represent a disjoint set
of intervals in a domain by recursively partitioning the domain interval into equal sub-
intervals. The number of partitions performed depend on B, the size of the domain, and
the size of list node interval LI. Since we are using RL-trees to represent coverage lists,
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the domain is [1,NE] (denoted as RL-tree(NE)) where NE is the number of positive or
negative examples. The RL-tree data structure is implemented in C as a shared library,
and provided as a Yap module.

A BIT vector is an array data structure that compactly stores individual bits (boolean
values). It implements a simple set data structure, storing a subset of 1,2, ...,n which
makes it effective at exploiting bit-level parallelism in hardware to perform operations
quickly. A typical bit array stores kw bits, where w is the number of bits in the unit of
storage, such as a byte or word, and k is some nonnegative integer. If w does not divide
the number of bits to be stored, some space is wasted due to internal fragmentation. BIT
vectors are widely used in decision rules representation, namely in discrete environments,
as each value can be stored in a fixed number of bits.

For the ILP problem, BIT vectors can be used for the representation of coverage lists,
specially when the number of examples is small, or even for the representation of clauses.
The latter can be used, for instance, in MDIE-based systems, where clauses are built from
literals from the bottom clause. A clause can then be encoded as a BIT vector where each
bit represents the presence, or absence, of a literal.

Prolog [Bra00] has built-in support for lists, and they play an important role in the im-
plementation of ILP systems. Of particular usefulness is the ability to maintain an ordered
list. This is enabled by providing predicates for sorting lists and insert an element into a
sorted list. Other useful predicates, such as list concatenation or deletion of elements are
also provided.

4.2.1.8 Storage

Most ILP systems read both the background knowledge and examples as prolog programs.
Although they need to be in this form for the induction procedure, one can easily specify
them in a different format, namely in XML or in a database. The BET system thus pro-
vides interfaces for data access in XML and from RDBMs, performing a transformation
of the data to prolog programs.

4.2.1.9 Prolog built-ins for ILP

Some Prolog built-ins can be of particular interest to increase the efficiency of ILP sys-
tems. Among these built-ins, the BET system provides access both to tabling and query
pack support, through the Yap Prolog engine.

Tabling [War95] consists of storing intermediate solutions to a query so that they can
be reused during the query execution process. It can be shown that tabling-based compu-
tational rules can have better termination properties than SLD-based models, and termi-
nation can be guaranteed for all programs with the bounded term-size property.
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Tabling is about storing and reusing intermediate answers for goals. Whenever a
tabled subgoal S is called for the first time, an entry for S is allocated in the table space.
This entry will collect all the answers generated for S. Repeated calls to variants of S
are resolved by consuming the answers already stored in the table. Meanwhile, as new
answers are generated for S, they are inserted into the table and returned to all variant
subgoals. Within this model, the nodes in the search space are classified as either gener-
ator nodes, corresponding to first calls to tabled subgoals, consumer nodes, that consume
answers from the table space, and interior nodes, that are evaluated by standard SLD-
resolution.

Space for a subgoal can be reclaimed when the subgoal has been completely evaluated.
A subgoal is said to be completely evaluated when all its possible resolutions have been
performed, that is, when no more answers can be generated and the variant subgoals have
consumed all the available answers. Note that a number of subgoals may be mutually
dependent, forming a strongly connected component (or SCC), and therefore can only
be completed together. The completion operation is thus performed by the leader of the
SCC, that is, by the oldest subgoal in the SCC, when all possible resolutions have been
made for all subgoals in the SCC. Hence, in order to efficiently evaluate programs one
needs an efficient and dynamic detection scheme to determine when all the subgoals in a
SCC have been completely evaluated.

Tabling is supported in the BET system via the YapTab [RSFC00] module. The
YapTab design is WAM based [War83], as is the SLG-WAM [SW]. It implements two
tabling scheduling strategies, batched and local. As in the original SLG-WAM [SW], it
introduces a new data area, the table space; a new set of registers, the freeze registers;
an extension of the standard trail, the forward trail; and the four main tabling operations:
tabled subgoal call, new answer, answer resolution and completion.

Query packs [BDD+02, BDR+00] are a technique that enable a more efficient eval-
uation of a group of queries. This technique tries to group queries with similar prefixes,
which can be evaluated only once, through the use of cut and once predicates as a pruning
procedure. The combination of the advantage of the disjunctive query with the advantage
of the individual query with pruning results in the notion of the query pack. A query pack
can be represented as a tree. This representation enables a better notion of the pruning
procedure. When a branch has succeeded, it is effectively pruned away from the pack dur-
ing the evaluation of the query pack. This pruning is recursive, i.e., when all branches in a
subtree of the query pack have succeeded, the whole subtree must be pruned. Evaluation
of the query pack then terminates when all subtrees have been pruned or all the remaining
queries fail for the example. The use of query packs may enable a more efficient use of
background knowledge, in order to improve the efficiency of clause evaluation.
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4.2.2 ILP basics level

The ILP basics level layer provides a sets of modules which comprise the most basic
functionalities of ILP systems, including hypothesis generation, management, manipula-
tion and evaluation, primitives for parallel execution, management of examples, graphical
utilities and basic input-output modules. Most of the modules in this layer are wrappers
and interfaces from the lowest layer code and intermediate level modules.

4.2.2.1 Hypothesis management

The modules for hypothesis management allow an efficient way both to store and to han-
dle the generation of new hypothesis. Best hypothesis are asserted in the prolog database,
along with a label defining their positive cover, negative cover, length and gain. Clauses
can be added to the current theory. The current theory is also asserted in the database,
consisting of indexed hypothesis.

The BET system also provides a module for clause manipulation. There are predicates
for flattening variables in clauses, extract a given term by index, removal of symmetric
literals (for a bottom clause), removal of mode repeats, removal of repeated literals be-
cause of commutativity or useless literals (ones that do not contribute to establish variable
chains to output variables in the head of a clause).

4.2.2.2 Examples management

The BET system provides two alternatives for example management, one that uses assert
predicates, and one that uses recorda predicates. The main difference lies on the fact
that recorda uses Yap internal database (i.d.b. for short), which is faster, needs less
space and provides a better insulation of program and data.

4.2.2.3 Basic I/O

In terms of reading examples, the BET system provides ways of obtaining them both from
a prolog or XML file or from a database, based on the interfaces described in section
4.2.1.8. When reading from a database, the BET system automatically declares pred-
icates with the name of the table in singular form and each field as an argument (i.e.
if the table is named daughters and has, in a row, values ann and tom, a predicate
daughter(ann, tom) is declared).

4.2.2.4 Language bias

Since the ILP problem is potentially infinite, reducing the search space is often necessary.
One way of doing that is by introducing bias [Mit80], namely on the language level. The
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BET system provides modules to add support for determination [Dav87], mode and type
declarations [Mug95].

Determination declarations specify, for each target predicate symbol, which other
predicate symbols from B can appear in its definition. They take the form of:

determination(TargetName/Arity1, BackgroundName/Arity2).

The first argument is the name and arity of the target predicate (i.e., the predicate that
appears in the head of hypothesised clauses). The second argument is the name and arity
of a predicate that can appear in the body of such clauses.

Mode declarations specify the mode of call for predicates that can appear in the hy-
potheses generated by the system. These declarations specify the arguments’ types and
if they are intended to be an input or an output argument. There may be more than one
mode declaration for each predicate symbol except for the head of the target predicate.
Mode declarations take the form modeh(1, PredicateMode) for the target predicate,
and modeb(RecallNumber, PredicateMode) for the the background knowledge.
The number of possible outputs, for each combination of input arguments, is limited by
the RecallNumber. RecallNumber can either be a number specifying the number of
successful calls to the predicate, or * meaning that all answers are to be used. It is usually
simpler to specify RecallNumber as * with the side effect that the system may become
slower.

PredicateMode specifies the arguments mode of a predicate. It has the form:

predicatename(ModeType, ModeType...).

Each ModeType is either simple or structured. A simple ModeType is one of the
form:

• +T specifying that when a literal with predicate symbol predicatename appears
in a hypothesised clause, the corresponding argument should be an “input” variable
of type T.

• -T specifying that the argument is an “output” variable of type T.

• #T specifying that it should be a constant of type T.

4.2.2.5 Hypothesis evaluation

The hypothesis evaluation module offers options to evaluate hypothesis on different set-
tings, using mainly 4 values of a hypothesis: its positive cover (P), its negative cover (N),
its length (L) and its gain (G), based on the evaluation function currently being used.

The BET system currently has the following different evaluation functions:
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Compression This approach takes into account both the coverage and the size of the
current clause:

Val = P−N−L+1 (4.1)

Coverage This approach takes into account the difference between the number of positive
and negative examples covered:

Val = P−N (4.2)

Laplace Estimate The Laplace estimate is a probability estimation that says that, in the
absence of any evidence (i.e. unknown positive cover), the value should be 0.5.
Otherwise, its value should be:

Val =
P+1

P+N +2
(4.3)

Weighted Relative Accuracy Clause utility is calculated using the weighted relative ac-
curacy function [PFZ99], which states that:

WRAcc(H← B) = p(B)(p(H|B)− p(H)) (4.4)

= p(H ∩B)− p(B)p(H) (4.5)

Therefore, introducing variable P1 as the coverage of B, the value can be calculated
as:

Val =
P

P+N
− P1

P+N
× P+N

P+N
(4.6)

Entropy Clause utility is calculated using the entropy formula:

Val =−
( P

P+N × log( P
P+N )+(1− P

P+N )× log(1− P
P+N ))

log(2)
(4.7)

Gini Index Clause utility is calculated based on the Gini index:

Val = 2× P
P+N

× (1− P
P+N

) (4.8)

Accuracy The accuracy measure gives a relative value to the clause coverage:

Val =
P

P+N
(4.9)
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Pseudo-Bayes Clause utility is the pseudo-Bayes conditional probability of a clause [Cus93].

Positive-only Bayes Estimate Clause utility is calculated using the Bayesian score [Mug97]
(being R the number of randomly-generated samples):

Val = log(P)+ log(R+2)− L+1
P

(4.10)

Auto M Estimate Clause utility is the m estimate with the value of m automatically set
to be the maximum likelihood estimate of the best value of m.

M Estimate Clause utility is its m estimate [DB92]. The value of m is user defined.

On a regression setting, the clause evaluation is automatically set to the standard de-
viation of values predicted.

Lazy evaluation of examples [Cam03, FCR+09] is a technique that consists in avoid-
ing or postponing the evaluation of each clause against all examples. The BET system
contains three variants of lazy evaluation: lazy evaluation of positive examples, lazy eval-
uation of negative examples and total laziness.

A hypothesis is allowed to cover a small number of negative examples (the noise level)
or none. If a clause covers more than the allowed number of negative examples it must be
specialised. Lazy evaluation of negatives can be used when we are interested in knowing
if a hypothesis covers more than the allowed number of negative examples or not. Testing
stops as soon as the number of negative examples covered exceeds the allowed noise
level or when there are no more negative examples to be tested. Therefore, the number of
negative examples effectively tested may be very small, since the noise level is quite often
very close to zero. If the evaluation function used does not use the negative counting then
this produces exactly the same results (clauses and accuracy) as the non-lazy approach
but with a reduction on the number of negative examples tested.

One may also allow the positive cover to be evaluated lazily (lazy evaluation of pos-
itives). A clause is either specialised (if it covers more positives than the best consistent
clause found so far) or justifiably pruned away otherwise. When using lazy evaluation of
positives it is only relevant to determine if a hypothesis covers more positives or not than
the current best consistent hypothesis. We might then just evaluate the positive examples
until we exceed the best cover so far. If the best cover is exceeded we retain the hypoth-
esis (either accept it as final if it is consistent or refine it otherwise) or we may justifiably
discard it. We need to evaluate its exact positive cover only when accepting a consistent
hypothesis. In the event of this latter case we don’t need to restart the positive coverage
computation from scratch, we may simply continue the test in the point where we left it
before.

Lazy evaluation can be taken to the extreme and simply do not evaluate the positive
cover (total laziness ). The evaluation of a hypothesis is divided in two steps. In the first
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step, we perform a lazy evaluation of negatives examples. If the clause is inconsistent then
we are done, no extra evaluation effort is required and the clause is retained for speciali-
sation. On the other hand, if we find a consistent clause then an exact positive coverage
is carried out. The advantage of the total laziness is that for each clause we only test it
on the negatives until it covers at least the noise level. One should note that in systems
that constraint the number of hypotheses generated, it is necessary to relax the nodes limit
constraint (i.e., increase the upper bound limit on the number of generated hypotheses).
Although we may generate more hypotheses, we may still gain by the increase in speed of
their evaluation process since the computational cost of generating hypotheses is usually
much inferior than the cost of evaluating them.

Stochastic matching [SR97] allows a reduction on the number of matches between ex-
amples and candidate hypothesis. Instead of exhaustively exploring the set of matchings
between any example and any short candidate hypothesis, one stochastically explores the
set of matchings between any example and any candidate hypothesis. The user sets the
number of matching samples to consider and thereby controls the cost of induction and
classification.

A method to speedup hypothesis evaluation is the storage of results in order to later
reduce the number of examples matched against an hypothesis. This can be done in
top-down ILP systems by keeping the set of examples (usually termed coverage lists)
explained by a hypothesis so that the refinements are only matched against the set of
examples that succeeded (matched) the parent hypothesis. A hypothesis cs is generated by
applying a refinement operator to another hypothesis cg. Let cover(cg) = {e∈ E|B∧cg |=
e}, where cg is a clause, B is the background knowledge, and E is the set of positive (E+)
and negative examples (E−). Since cg is more general than cs then cover(cs)⊆ cover(cg).
Taking this into account, when testing the coverage of cs it is only necessary to consider
examples of cover(cg), thus reducing the coverage computation time. Cussens extended
this scheme by proposing a kind of coverage caching. The coverage lists are permanently
stored and reused whenever necessary, hence avoiding the need to recompute the coverage
of equivalent clauses. Coverage lists reduce the effort in coverage computation at the
cost of significantly increasing memory consumption. Therefore, efficient data structures
should be used to represent coverage lists to minimise memory consumption.

The transformation of hypothesis is also useful for query optimisations [CSC+02].
Methods such as the theta-transformation, the cut-transformation, the once-transformation
or the smartcall-transformation are useful to reduce the theorem-proving effort of the pro-
duced ILP systems.

Tabling is a logic programming technique that performs a kind of dynamic and trans-
parent lazy extensionalization of predicates. It consists in storing intermediate answers
for sub-goals so that they can be reused when a repeated call appears thus avoiding re-
dundant re-computation. The results of exploiting tabling in the ILP context showed that
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it can reduce the execution time at the cost of using large amounts of memory (a problem
that needs to be solved to further explore tabling in ILP).

4.2.2.6 Hypothesis generation

Hypothesis generation is an important aspect in every ILP system. The BET system thus
provides different ways for the generation of hypothesis that can be used when building a
system.

For least-general generalisation based systems, the BET system provides a predicate
which takes two clauses and computes their lgg. The least general generalisation operator
is defined as follows:

lgg of terms lgg(t1, t2)

1. lgg(t, t) = t

2. lgg( f (s1, ...,sn), f (t1, ..., tn)) = f (lgg(s1, t1), ..., lgg(sn, tn))

3. lgg( f (s1, ...,sm),g(t1, ..., tn)) =V , where f 6= g, and V is a variable which rep-
resents lgg( f (s1, ...,sm),g(t1, ..., tn))

4. lgg(s, t) =V , where s 6= t and at least one of s and t is a variable; in this case,
V is a variable which represents lgg(s, t)

lgg of atoms lgg(A1,A2)

1. lgg(p(s1, ...,sn), p(t1, ..., tn)) = p(lgg(s1, t1), ..., lgg(sn, tn)), if atoms have the
same predicate symbol p

2. lgg(p(s1, ...,sm),q(t1, ..., tn)) is undefined if p 6= q

lgg of literals lgg(L1,L2)

1. if L1 and L2 are atoms, then lgg(L1,L2) is computed as defined above

2. if both L1 and L2 are negative literals, L1 = A1 and L2 = A2, then lgg(L1,L2) =

lgg(A1,A2) = lgg(A1,A2)

3. if L1 is a positive and L2 is a negative literal, or vice versa, lgg(L1,L2) is
undefined

lgg of clauses lgg(c1,c2)

1. Let c1 = {L1, ...,Ln} and c2 = {K1, ...,Km}. Then lgg(c1,c2)= {Li j = lgg(Li,K j)|Li ∈
c1,K j ∈ c2 and lgg(Li,K j) is defined}

For top-down systems, refinement operators, namely based on MDIE [Mug95], which
take literals from the bottom clause according to the model and type language, are sup-
ported.
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V and W operators are also to be supported, implementing the following rules of
inverse resolution:

Absorption

q← A p← A,B
q← A p← q,B

(4.11)

Identification

p← A,B p← A,q
q← B p← A,q

(4.12)

Intra-Construction

p← A,B p← A,C
q← B p← A,q q←C

(4.13)

Inter-Construction

p← A,B q← A,C
p← r,B r← A q← r,C

(4.14)

Finally, the BET system provides predicates to randomly generate hypothesis and keep
a track of generated hypothesis to avoid repetition.

4.2.2.7 Basic graphic functionalities

The ILP problem is usually computationally expansible and dependent on how both the
background knowledge and the examples are defined. Most of the systems currently
available are coded in Prolog, which makes it somehow difficult to inspect both the search
space or the literal dependency in the produced clauses. Having access to this information
could enable the practitioner to have a better control on how he is defining the problem and
most likely optimise its definition to enable a faster and better production of hypothesis.

4.2.2.8 Parallelism and distributed computation basics

In terms of parallelism, the BET system provides some generic predicates to handle dis-
tributed computing. These predicates are based on the LAM/MPI interface Yap provides
and allow a better management of workers for a given task. Using these predicates, one
can know the workers which are busy and the ones which are available, enabling the
support for data parallel algorithms.
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4.2.3 ILP intermediate level

The ILP intermediate level layer provides intermediate functionalities needed by every
ILP system and build on top of modules of the ILP basics level layer.

4.2.3.1 Bottom clause

The generation of the bottom clause is an important step on MDIE-based system. The
BET system includes a saturation module, which provides predicates for the creation of
the bottom-clause. The saturation predicate follows the algorithm 3.

4.2.3.2 Search algorithms

As with many machine learning problems, the ILP problem is approximated to a search
problem on the graph of possible clauses. In this case, different approaches can be taken
when travelling the graph.

Breadth first search is an uninformed search method that aims to expand and examine
all nodes of a graph or combination of sequences by systematically searching through
every solution. In other words, it exhaustively searches the entire graph or sequence
without considering the goal until it finds it. It does not use a heuristic algorithm. In the
BET system, a breadth first search considers and expands clauses based on their size (i.e.
number of literals).

Depth first search is an uninformed search that progresses by expanding the first child
node of the search tree that appears and thus going deeper and deeper until a goal node is
found, or until it hits a node that has no children. Then the search backtracks, returning
to the most recent node it hasn’t finished exploring. In the BET system, the open list of
nodes is transformed into a stack, being the top node always expanded and the result of
the expansion also added to the top of the stack. Iterative depth-first search is a general
strategy often use in combination with depth-first search, that finds the best depth limit.
It does this by increasing the depth limit until a solution is found. The main drawback of
ids is the waste of computations.

Best first search is an informed search which explores a graph by expanding the most
promising node each time. The selection of the most promising node in the BET system
is based on the evaluation function used, which then becomes the primary key in the dual
key system described in section .

Local search [RN02] is a meta-heuristic for solving computationally hard optimisation
problems. Local search can be used on problems that can be formulated as finding a
solution maximising a criterion among a number of candidate solutions. Local search
algorithms move from solution to solution in the space of candidate solutions (the search
space) until a solution deemed optimal is found or a time bound is elapsed. Local search
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Algorithm 3 The saturation procedure for MDIE-based systems

k = 0
hash : Terms→ N
ē = ā∧b1∧ ..∧bn

−i = 〈〉
InTerms = /0
m = modeh in M such that a(m)� a with substitution θh
if m =� then

return �
end if
ah = a(m)
for all v/t in θh do

if v corresponds to a #type in m then
replace v in ah by t

else
replace v in ah by vk where k = hash(t)
if v corresponds to +type then

InTerms = InTerms∪{v}
end if

end if
end for
−i =−i∪{ah}
loop

if k = i then
return −i

end if
k = k+1
for all modeb m in M do

V = variableso f + typeina(m)
T (m) = set of n-tuples of terms such that each Ti corresponds to the set of all terms of the
type associated with vi in m
for all 〈t1, .., tn〉 in Tm do

ab = a(m)
θ = {v1/t1, ..,vn/tn}

end for
if goal abθ succeeds with the set of answer substitutions Θb then

for all θb in Θb do
for all v/t in θb do

if v corresponds to a #type in m then
replace v in ab by t

else
replace v in ab by vk where k = hash(t)
if v corresponds to −type then
−i =−i∪{āb}

end if
end if

end for
end for

end if
end for
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is possible whenever there is a definition of neighbourhood relation on the search space.
For the ILP problem, the lattice structure defines such a neighbourhood relation and thus
enables the application of local search on this problem.

Stochastic clause selection [Sri99] restricts the search space by sacrificing optimality.
It consists of randomly selecting a fixed-size sample of clauses from the search space with
high probability of containing a good clause. This scheme has shown to perform well in
the Aleph system even when compared to complex search methods. The quality of the
solutions were comparable to the ones found by other search methods, but the time taken
to find them was considerable lower.

Algorithm 4 High level description of the Stochastic Clause Selection algorithm
nr = maximum number of rules to return
E = set of examples
C = constraints
k
α = probability of a rule to be on the top 100 x k percentile
|L̂| = estimate of the number of elements in L
n = ln(1−α)

ln(1−k)

N = {r1, ...,rn} be n numbers randomly selected without replacement from 1 to |L̂|
Clauses = {c1, ...,cn} where each ci ∈ Clauses is obtained by mapping the number ri into a
clause in L
evalOnExamples(E,Clauses)
return bestO f (nr,Clauses)

The Randomised Rapid Restarts (RRR) [ZSP02] search algorithm performs an ex-
haustive search up to a certain point and then, if a solution is not found, restarts at a
different part of the search space. With this approach the search algorithm may avoid
being trapped in a very costly path and exploits the high chance of obtaining a better path.
The application of the RRR in two applications yielded a drastic reduction of the search
times with the cost of just a small loss in predictive accuracy.

4.2.3.3 Graphical interface

The graphical interface modules on ILP’s intermediate level interact with interfaces pro-
vided by the lower levels in order to provide a better experience on the usage of an ILP
system, namely for a non-practitioner of the area.

4.2.3.4 Parallel/distributed algorithms

The BET system provides parallelisation techniques in order to improve performance on
the areas of parallel search and parallel matching. All algorithms follow a master-workers
approach, in which there is a processor which controls the operations (the master) and a
pool of workers able to do some task.
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Algorithm 5 High level description of the Randomised Rapid Restarts algorithm
E = set of examples
C = constraints
maxtries = upper bound on the number of rapid searches performed
maxtime = upper bound on the time that a rapid search may take
tries = 1
while tries≤ maxtries do

select a random clause c0 from L
searchtime = 0
while searchtime < maxtime and an acceptable clause c is not found do

perform exhaustive radial search starting at c0
end while
if c was found then

return {c}
end if
tries = tries+1

end while
return /0

The search for a hypothesis involves traversing a search space in some way (e.g., top-
down, bottom-up, bidirectional). The strategy of exploring the search space in parallel
involves some division of the search space among the processors. Then each processor
explores, in parallel, its part of the search space to find a suitable hypothesis. The degree
of parallelism and granularity of this strategy depends on the approach adopted to divide
the search space.

The Parallel Stochastic Clause Selection (PSCS) [Fon06] algorithm is a parallelised
version of Srinivasan’s Stochastic Clause Selection [Sri99]. The idea of the algorithm is
to randomly select a fixed-size sample of clauses from the search space. The sample will
contain a clause in the top k percentile with some probability (both defined by the user).
The best clause from the sample is selected. In the beginning of the execution the master
replicates the data among all workers. The master randomly draws a set of clauses from
the search space and then distributes the clauses evenly among the workers. Each worker
evaluates the subset of clauses received on the local data and, after evaluating all clauses,
sends the best one to the master. The master then receives the best clauses found by each
worker. The best rule received is then returned as the result of the learning procedure.

The parallel coverage test strategy consists in performing the coverage test in parallel,
i.e., for each example e ∈ E the coverage test (B∧H ∧ c ` e) is performed in parallel.
The degree of parallelism depends on the number of examples evaluated in parallel by
each processor. The granularity is relatively low but can be enlarged either by increasing
the number of examples in each processor or/and by evaluating several rules in parallel
instead of a single one.
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The parallel coverage tests algorithm (PCT) [Fon06] exploits parallelism by dispatch-
ing clauses to workers for evaluation on the local subset of examples. The master’s algo-
rithm is similar to the covering algorithm of generic ILP systems with three main changes:
first, the examples are divided evenly among the processors in the beginning of the ex-
ecution and are then loaded by each worker; secondly, the evaluation of a rule is split
among all the workers containing examples; thirdly, the removal of examples covered is
performed in parallel on all workers.

4.2.4 ILP system’s level

The ILP system’s level layer has a set of modules that, together with modules of lower
layers, implement existing state-of-the-art systems or ready to use new systems. Modules
on this level generally provide the main induction predicate.

4.2.4.1 MDIE-based systems

Mode-Directed Inverse Entailment has become one of the most important mechanisms in
ILP since its inception by Stephen Muggleton. The BET system provides ways of devel-
oping MDIE-based systems by providing 2 distinct modules necessary for their creation.

After saturation, the reduction procedure tries to select the clause with maximal com-
pression built from literals from the bottom clause. The bottom clause thus establishes a
lower bound on the search lattice. In order to avoid redundancy and to keep the clauses
constructed inside the lattice (i.e. � � H � −i) a refinement operator is defined, which
selects literals from the bottom clause which can be added to the current clause. This
choosing, to avoid redundancy, can be done in different ways, depending on how the
bottom clause is stored. If, for each literal of the bottom clause, a list of siblings (i.e.
dependant literals) is stored, then a literal who is dependant of one already present in the
clause can be chosen. In case no list of siblings is stored, then, by keeping an order of the
literals of the bottom clause, a literal who appears next on the bottom clause and which
respects the mode declarations can be chosen to be added to the current clause.

Having a refinement operator defined, the reduction procedure then proceeds by search-
ing trough the lattice of clauses. This search is dependant on the search method that is
defined, as described in section 4.2.3.2. This search is guided by clause evaluation proce-
dures, as described in section 4.2.2.5.

Defining the saturation and reduction procedures for MDIE-based systems, the induc-
tion procedure then follows by selecting an example not yet covered, use it as a seed for
the generation of a bottom-clause, apply a reduction method for the generation of clauses,
select the best generated clause and add it to a pool of clauses, which will later define our
induced theory.
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4.2.4.2 Descriptive-like systems

Descriptive-like systems aim to discover regularities, uncovering patterns aimed at solv-
ing knowledge discovery in databases (KDD) tasks. Instead of relying on hypothesis
generation, this kind of systems have a more exploratory data analysis approach.

The induction procedure of descriptive-like systems therefore aim at finding an hy-
pothesis that is optimal with respect to some quality criterion, as can be the predictive
accuracy, therefore softening the coverage criteria most systems rely upon. Descriptive
ILP then induces a set of (general) clauses.

The BET system thus provides induction mechanisms for learning first-order decision
trees, association rules and performing first-order clustering, all tasks suitable for the non-
monotonic setting of ILP, as implemented in descriptive ILP systems.

4.2.4.3 FOIL-like systems

Foil like systems provide a top-down approach to induction, starting from a clause with
an empty body, which is specialised by repeatedly adding a body literal to the clause built
so far. Candidate body literals are predicates which are variabilised (including the target
predicate). In order to keep a chain between literals, the induction procedure takes into
account (in)equality of variables in the head or body of literals. Literals may contain
constants, which are declared by the user as theory constants. Predicates define type
restrictions the literals should conform to.

For the pruning of search space, these kind of systems provide parameters for limit-
ing the total number and maximum depth of variables in a single clause, mechanisms for
excluding literals which might lead to endless loops in recursive hypothesis clauses. The
choice of the literal to be added to a clause takes into account the information gain heuris-
tic, an information-based measure estimating the utility of a literal in dividing positive
from negative examples.

In a post-processing phase, unnecessary literals and redundant clauses are removed
from the theory built.

4.2.5 Meta level

The meta level provides a set of modules that may facilitate and improve the usage of
basic ILP systems, although not necessary for their complete usage.

4.2.5.1 Feature selection

A common method for reducing the size of the hypothesis space in propositional learning
is by means of using (relevant) feature subset selection (FSS) [JKP94]. It consists in
finding a “good” set of features (attributes) under some objective function (e.g., predictive
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accuracy). The problem of feature selection can be seen as a search problem [Lan94],
where each state in the search space specifies a subset of possible features. Each subset
of features needs to be evaluated, independently of the search strategy used to traverse
the space of feature sets. There are several approaches to solve the problem of feature
selection, being the filter method and the wrapper method two of the most well known
[JKP94]. Filter methods select relevant attributes before starting the induction process.
The wrapper method generate a set of candidate features and run the induction algorithm
on the training data (using only the candidate features) to evaluate the accuracy of the
resulting model. Obviously, the wrapper approach is computational expensive since it
invokes the learning algorithm multiple times. Techniques that rely on some kind of
feature selection are partially correct, although the final models may be better than the
ones found without feature selection [ABM04].

4.2.5.2 Wrapper for parameter tuning

The wrapper for parameter tuning isolates parameters specific to each module in a single
format. This allows users to know which parameters are available for each module and
enables the possibility to change them in a controlled environment.

4.2.5.3 Model evaluation procedures

The model evaluation procedures module provides utilities for the evaluation of produced
theories. Among this utilities, there are options for the separation of examples in test and
training sets and performing cross-validation.

4.2.5.4 Theory-level search

An adequate explanation for a set of examples typically requires several clauses. Most
ILP systems attempt to construct such explanations one clause at a time. The procedure
is usually an iterative greedy set-covering algorithm that finds the best single clause (one
that explains or “covers” most unexplained examples) on each iteration. While this has
been shown to work satisfactorily for most problems, it is nevertheless interesting to con-
sider implementations that attempt to search directly at the "theory-level". In other words,
elements of the search space are sets of clauses, each of which can be considered a hy-
pothesis for all the examples. A randomised search method is available for theory-level
search, which basically starts from a clause set S and moves to subsequent sets of clauses.
These sets can be a result of adding a clause, deleting a clause, adding a literal or deleting
a literal.
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4.2.5.5 Ensembles

In statistics and machine learning, ensemble methods use multiple models to obtain bet-
ter predictive performance than could be obtained from any of the constituent models
[HKP06]. For ILP systems, having an ensemble involves having different techniques pro-
ducing hypothesis, which are then combined for a single theory. Two ensemble techniques
are available: bagging and boosting.

Bootstrap aggregating, often abbreviated as bagging, involves having each model in
the ensemble vote with equal weight. In order to promote model variance, bagging trains
each model in the ensemble using a randomly-drawn subset of the training set.

Boosting involves incrementally building an ensemble by training each new model
instance to emphasise the training instances that previous models mis-classified. In some
cases, boosting has been shown to yield better accuracy than bagging, but it also tends to
be more likely to over-fit the training data.

4.3 System description

The BET system is divided in two different applications: a graphical user interface to
select a set of modules for producing a system configuration file, and a compiler to gather
the selected modules and produce a system. Figure 4.4 describes how the modules are
organised, in terms of classes.

Figure 4.4: Class model of the BET system set of modules

The BET system is therefore organised in 5 different entities:
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• Level: a level provides a layered group of abstraction for module groups. A module
in a given level is typically dependent on modules of the same or lower levels.

• Module Group: a module group provides a grouping for a set of modules which
are related in the set of functionalities they provide.

• Module: a module is the basic entity for the BET system, providing the described
functionalities in a set of predicates. A module can have one or more options. A
module can have dependent and incompatible modules.

• Option: an option is basically an alternative for a module implementation. A mod-
ule option should provide all predicates the module describes. An ILP system can
only have a single module option for a module at a time.

• Predicate: A predicate describes how a simple functionality is called within prolog.
It has a name and an arity.

In order to provide a flexible way of both describing and adding new modules to the
system, an XML-based description was considered. There are 3 different types of XML
files: one to describe the system levels, one to describe module groups and one to describe
modules.

The BET system accepts a single XML file for the level description, which should be
name levels.xml and placed under the conf directory. A diagram representing the
schema for such an XML file can be seen in Figure 4.5. The config attribute of the
modulegroup element should have the path to the XML defining the module group.

Figure 4.5: Diagram of the XSD schema for the level-defining XML

The module group XML file follows a structure as described in Figure 4.6. The
config attribute of the module element should have the path to the XML defining the
module.

The module XML file follows a structure as described in Figure 4.7. The src at-
tribute in the option element should have the path to the prolog file implementing the
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Figure 4.6: Diagram of the XSD schema for the modulegroup-defining XML

module option. The name attribute in incompatibility or dependency elements
should include a module name. Since module names are unique, this attribute is enough
to univocally identify a module.

Following this approach, whenever an user wants to add a module for the platform,
he only needs to define the XML-file for the module description and link it from within
the module group files. It is also possible to add new module groups or levels by simple
modification of the configuration files. Dependencies and incompatibilities allow the BET
system to warn the user whenever the selected system won’t build. This initial warning
allows better awareness of the user building the system of eventual problems with the final
code. If the module has configuration options, these should be included in the module
Wrapper for Parameter Tuning. Whenever an assert/retract is needed, it should
use the bet_assert and bet_retract predicates on the General module.

The GUI interface, loaded with the module configuration as described above can be
seen in Figure 4.8.

Besides the graphical user interface, the BET workbench also provides a compiler
program. The compiler is executed from the command-line, accepting as parameters a
XML file with the system configuration and a destination folder. The compiler warns
and halts whenever a dependency or incompatibility isn’t respected. In case the system is
properly built, a copy of it is created in the destination folder. The system can be run in
Yap by consulting the main.pl file.
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Figure 4.7: Diagram of the XSD schema for the module-defining XML

Figure 4.8: The BET workbench graphical user interface for the selection of modules
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Chapter 5

Parallelizing search in MDIE-based
systems

This chapter introduces a novel technique to explore parallelism in the search space of
MDIE-based system. This technique is implemented as a new module for the BET sys-
tem, providing a way to evaluate the construction and integration of new modules in the
framework.

5.1 Reduction step in MDIE-based systems

The reduction step in MDIE-based systems is responsible for the generation and eval-
uation of potentially good clauses, built from literals from the bottom clause. Progol
[Mug95] introduced a refinement operator that is designed both to avoid redundancy and
to maintain the relationship �� H �⊥ for each clause H. This build on the notion that,
since H �⊥, then there is a literal l′ in ⊥ such that lθ = l′. Therefore, there is a uniquely
defined subset ⊥ (H) consisting of all l′ in ⊥ for which there exists l in H and lθ = l′.
Considering a clause as a subset S′ of the set S of literals in the bottom clause, a non-
deterministic approach to choosing S′ from S involves maintaining an index k. Hence, for
each value of k between 1 and n, the cardinality of S, we decide whether to include the kth
element of S in S′. The set of all series of n choices corresponds to the set of all subsets of
S. Then, for each subset of S there is exactly one series of n choices. To avoid redundancy
and maintain the θ -subsumption of ⊥, both k and θ are kept.

Taking into account mode definitions M, background knowledge B, natural numbers h
and i, bottom clause ⊥ and n as the cardinality of ⊥, let k be a natural number, 1≤ k≤ n.
Let C be a clause in Li(M) and θ be a substitution such that Cθ ⊆⊥. Below a literal l
corresponding to a mode ml in M is denoted simply as p(v1, ...,vm) despite the sign of
ml and function symbols in a(ml). A variable is splittable if it corresponds to a +type or
−type in a modeh of if it corresponds to a−type in a modeb. Considering ρ as refinement

75



Parallelizing search in MDIE-based systems

operators which maps tuples consisting of a clause, a substitution and a natural number
to a set of subsequent clauses, one can say that 〈C′,θ ′,k′〉 is in ρ(〈C,θ ,k〉) if and only if
either

1. C′ =C∪ l, k′ = k, 〈l,θ ′〉 is in δ (θ ,k) and C′ ∈ Li(M) or

2. C′ =C, k′ = k+1, θ ′ = θ and k < n.

〈p(v1, ...,vm),θ
′〉 is in δ (θ ,k) if and only if θ ′ is initialised to θ , lk = p(u1, ...,um) is

the kth literal of ⊥ and for each j, 1≤ j ≤ m,

1. if u j is splittable then v j/u j ∈ θ ′ else v j/u j ∈ θ or

2. if u j is splittable then v j is a new variable not in dom(θ) and θ ′ = θ ∪{v j/u j}.

The variables in ⊥ form a set of equivalences classes over the variables in any clause
C which θ -subsumes ⊥. The equivalence class of u in θ can be written as the set of all
variables in C such that v/u is in θ : [v]u. The second choice in the definition of δ adds a
new variable to an equivalence class [v j]u j . This is refered as splitting the variable u j. A
variable is not splittable if it corresponds to +type in a modeb, since the resulting clause
would violate the mode declaration language.

5.2 Parallelizing options in MDIE-based systems

There are some known options for parallelizing ILP systems, which can be divided in
4 different areas: parallel exploration of independent hypothesis, parallel exploration of
the search space, data parallelism and parallel coverage tests [Fon06]. We’re particularly
interested in parallel exploration of the search space.

Parallel exploration of the search space implies some division of the search space
among the available processors. The degree of parallelism and granularity of the adopted
strategy depend on the approach used to divide the search space.

Claudien [RB93, RD96] was one of the first systems supporting parallelization. Its
strategy focused on each processor keeping a pool of clauses to specialize, and shar-
ing part of them to idle processors (processors with an empty pool). In the end, the set
of clauses found (one set in each processor) are combined and returned as the solution.
Claudien, though, follows a non-monotonic setting of ILP. The parallel system, evaulated
on a shared-memory computer with two datasets, exhibited a linear speedup up to 16
processors.

Matsui et al. [MISI98] evaluated an algorithm based on, what they called, parallel
exploration of the search space. The approach consisted in evaluating, in parallel, the
refinements of a clause, correspoding to a strategy based on parallel coverage tests. The
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results showed very low speedups, according to the authors due to the size of the divided
tasks not being the same, hence reducing the efficiency.

Ohwada et. al [ONM00] implemented an algorithm that explores the search space in
parallel. The job allocation was dynamic and implemented using contract-net [Smi88]
communication. The system showed an almost linear speedup on a ten-processor parallel
machine.

Wielemaker [Wie03] implemented a parallel version of the Aleph system for shared
memory macines, exploiting parallelism by executing concurrently several randomized
local searches [ZSP02]. The system was configured to perform 16 random restarts and
made 10 moves per restart, on each processor. Despite low speedups, when compared
to other shared memory implementations, the approach could accomplish better results if
the granularity of the tasks is enlarged by increasing the number of moves or the number
of restarts done by each thread, for example.

Fonseca [Fon06] also proposed some algorithms that exploit parallel exploration of the
search space, namely Parallel Stochastic Clause Selection (described in section 4.2.3.4)
and Parallel Randomized Random Restarts. Parallel Randomized Rapid Restarts is a par-
allel version of the Randomized Rapid Restarts algorithm. The PRRR’s master algorithm
is similar to a sequential covering algorithm, but the master replicates the data to all work-
ers in the beginning of the execution and the removal of examples covered is performed
in parallel on all workers. The master always checks for idle workers or blocks until a
worker becomes available. Then a random clause is selected from the search space and a
message is sent to the worker to start a radial search using the selected clause as a starting
point. The result of the search is sent to the master. The master checks if a rule has been
received from one of the workers. If found, the loop is interrupted. Then, the master col-
lects all rules found in the other searches that were launched in parallel and the best rule
found is selected and returned as the output of the search. PSCS achieves low speedups,
since it has a huge communication overhead (a set of clauses is sent to the workers for
evaluation) and the time spent in evaluating clauses is low as compared to the time spent
randomly generating them. The PRRR shows good speedups with some datasets but has
no significant speedups with others.

5.3 Parallelizing search in the reduction step of MDIE-based systems

The proposed algorithm has a master-workers architecture, in order to benefit from the
modules the BET system provides to handle such an architecture. The main idea is to
benefit from the structure of dependencies of the bottom clause to efficiently divide the
search space among the available workers.

The master process is responsible for the saturation procedure and keeping an ordered
queue of clauses to be expanded/evaluated. This queue is similar to the openlist of the
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search mechanisms described in the generic branch and bound approach the BET system
provides. By having a similarity to the openlist in search procedures, the master can
implement different ways of choosing the clause to expand, let it be depth, breadth or
best first search. After saturation, the master then adds the empty clause to the openlist.
The workers should all have access to the complete example database and background
knowledge.

While it is possible to expand clauses and the master has a non-empty queue, the mas-
ter sends the top x clauses in the queue to the first x available workers. It is important
that the clauses include information of the last literal of the bottom clause used, in order
to prevent the production of repeated clauses. When a worker receives a clause, it pro-
ceeds as a regular reduction method in MDIE-based systems, expanding it and evaluating
against the example database. Each worker has a parameter, m, defining the number of ex-
pansions to conduct. Once the number of expansions exceeds that level, the worker sends
all resulting expansions to the master and frees itself from work, becoming available for
further expansions.

The master is always ready to receive expansions from workers, and adding them to
the current queue, possibly using a different strategy as the workers. This enables each
worker to have a different search strategy and different ways of traversing the search
space. The only drawback of such approach is that randomized algorithms are not sup-
ported, as repeated clauses may be generated.

A simplified scheme of the messages exchanged by the proposed algorithm can be
seen in 5.1.

5.4 Integrating the module in the workbench

For the purpose of this thesis, we’ll describe the ways of integrating the described module
on the BET workbench. First of all, there are two alternatives for integrating the piece
of code in the framework. Since we define a new reduction procedure, we can either
provide this as an option for the reduction module of MDIE-based systems, or as a novel
module, defined in a different predicate. We’ll be choosing the latter option, as the module
defines the new par_reduce/0 predicate. The first step is defining the XML file for the
module, which we’ll call parallel_reduction.xml and store in the conf directory
of the BET workbench. The XML looks as follows:

<module name="Parallel Reduction">

<description>

This module provides a parallel reduction method, based on

a split of the search space among the processors.

</description>

<predicates>

78



Parallelizing search in MDIE-based systems

Algorithm 6 A high-level description of the proposed algorithm for parallel exploration of the
search space

E = Set of examples
B = Background knowledge
M = Mode declarations
broadcast(E, B, M)
for all einE do
⊥= saturate(e,B,M)
broadcast(⊥)
loop

worker = get_next_available_worker()
R = get_best_rule(RulesBag)
send(worker,R)
Results = collect_data(worker)
if Results = {R} then

break
end if
RulesBag = RulesBag∪Results

end loop
Rules = get_best_rules(RulesBag)
add_rules_to_theory(Rules)

end for
return theory

<predicate name="par_reduce" arity="0" />

</predicates>

<options>

<option name="Parallel Reduction"

src="ilp_system_level/mdie/parallel_reduction.pl" />

</options>

<dependencies>

<dependency name="Saturation" />

<dependency name="General" />

<dependency name="Generic utilities for distributed computing" />

<dependency name="Scheduler/work pool functionalities" />

<dependency name="Support for data parallel algorithms" />

</dependencies>

</module>

The code for modules should be placed under the modules directory. For the sake of or-

ganization, the code is also separated for folders corresponding to the levels and module groups

defined. In order to link the module in the workbench, we also need to modify the XML corre-

sponding to the module group for MDIE-based systm, to make the system aware of the presence

of the module, and the corresponding XML configuration file:

<modulegroup name="MDIE-based Systems">
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<description>

Mode-Directed Inverse Entailment Systems

</description>

<module name="Reduction" config="reduction.xml" />

<module name="Induction" config="induction.xml" />

<module name="Parallel Reduction" config="parallel_reduction.xml" />

</modulegroup>

The module is then available for usage and compiling in new ILP systems.
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Figure 5.1: Simplified scheme of the messages exchanged by the parallel algorithm
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

ILP has been a research area in very active development. By providing both a formal framework

and practical algorithms for inductive learning of relational descriptions, it has achieved a great in-

terest for Multi-Relational Data Mining. Its successful applications in both industrial and scientific

domains support the notion that ILP is a field with high potential.

One of the main difficulties on the usage and development of ILP systems rely on the need of

having some strong theoretical basics on the subject or spend some time understanding a system

that implements a given technique. With this work, we aim to provide a way of abstracting the

user of the details regarding some techniques.

In this dissertation we studied many different ILP techniques and the ways they relate them-

selves and developed the BET workbench, a tool capable of quickly synthesizing ILP systems.

This tool was created with flexibility in mind, in order to provide easy ways for new modules to

be added and for systems to be considered. By relying on XML-configuration files, one can easily

modify the tool for his own set of modules.

The advances on the BET workbench should allow a better dissemination of ILP as a research

area. By providing a structured collection of interesting modules, we aim to provide both practi-

tioners and curious users with a tool where they can experiment with ILP in a straightforward way.

The easier integration of new modules within the workbench should allow new techniques to be

tested in a relatively objective way, preventing researchers from worrying with recurrent features

every ILP system should consider.

6.2 Future Work

Further work on the BET workbench is still required. Some of the modules described are not

yet implemented, or are highly coupled with other modules in the tool. Some predicates are still

a bit redundant, as are declared inside different modules, and a clear separation of those would
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be highly benefitial for the workbench. The tool should also enable the automatic detection of in-

compatibilities and dependencies from simple code inspection and provide an assisted interface for

adding new modules or module options, automatically checking for the presence of the necessary

predicates.

The work on the proposed parallelization algorithm is also not yet finished, lacking some

tuning on the communication side and real experimental results.
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[RL93] L. De Raedt and N. Lavrač. The Many Faces of Inductive Logic Programming. In
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