
                                          

 

 

 

 

 

 

 

 

 

Cold Spray Deposition of 
Titanium onto 

Aluminium Substrates 
 

Maria Manuel Fernandes Barbosa 

 

Porto, Julho de 2009 

 

 

 

 

 

 

 

 

 

Dissertação submetida à Universidade do Porto para a obtenção do grau de Mestre 

em Engenharia Metalúrgica e de Materiais.   

Tese de Mestrado orientada por: 

Professor Fernando Jorge Monteiro, Faculdade de Engenharia, Universidade do Porto 

Professor Josep Maria Guilemany, Centro de Projecção Térmica, Universidade de Barcelona 



 
  

CANDIDATO Maria Manuel Fernandes Barbosa CÓDIGO: 050508013 

TÍTULO Cold Spray Deposition of Titanium onto Aluminium Substrates 

DATA 23 de Julho de 2009 

LOCAL Faculdade de Engenharia da Universidade do Porto – Sala B033, 16h00 

    

JÚRI Presidente Professor Doutor Luís Filipe Malheiros, DEMM/FEUP 

 Arguente Professor Doutor Rui Silva, DECV/UA 

 Orientador Professor Doutor Josep Maria Guilemany, DCMM/UB 

 Orientador Professor Doutor Fernando Jorge Monteiro, DEMM/FEUP 



 

 
 
 
 
 
 
 

"Posso ter defeitos, viver ansioso e ficar irritado algumas vezes 
mas não esqueço que a minha vida é a maior empresa do mundo. 

E que posso evitar que ela vá à falência. 
Ser feliz é reconhecer que vale a pena viver, apesar de todos os desafios. 

Ser feliz é deixar de ser vítima dos problemas e tornar-se autor da própria história. 
É atravessar desertos fora de si, mas ser capaz de encontrar um oásis no recôndito da alma. 

É agradecer a Deus a cada manhã pelo milagre da vida. 
Ser feliz é não ter medo dos próprios sentimentos. 

É saber falar de si mesmo. É ter coragem para ouvir um "não". 
É ter segurança para receber uma crítica, mesmo que injusta. 

Pedras no caminho? Guardo-as todas, um dia vou construir um castelo... " 

 
Fernando Pessoa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedico esta memória aos meus pais, 
sem os quais nada seria possível! 

 



Agradecimentos 

Nao há trabalhos difíceis quando estamos rodeados de pessoas que amam o que fazem e que nos 

contagiam com o seu espirito. Eu tive a sorte de cruzar o meu caminho com algumas delas! 

Moltes gràcies al Professor Guilemany per donar-me l’oportunitat de treballar en el seu grup, 

confiar sempre en mi i, per la paciència que ha demostrat en tot moment a l’hora de fer de tutor 

(i amic) durant aquests mesos. A Núria Cinca per estar sempre disposada a donar-me el seu 

suport i dedicar-me el seu temps, per compartir els seus coneixements amb mi, ser  la millor 

companya de treball i, sobretot, també una bona amiga. A Sergi Dosta, per haver-me ajudat a 

l’obtenció dels recobriments gràcies a la seva experiència en Projecció Tèrmica i per les llargues 

discussions sobre els paràmetres òptims del procés, però també pel seu bon humor en tot 

moment.  

No vull oblidar-me de la companyia, simpatia i valorable ajuda de la resta de membres del grup, 

començant pel Dr. Joan Ramón Miquel, el Prof. Javier Fernández, la Dra. Irene Garcia Cano i 

seguint pels companys i amics del dia a dia com la Sandra, Jèssica, María, Vero, Judith, Esther i 

Víctor. 

Muito obrigada ao Professor Luís Filipe Malheiros por todo o acompanhamento durante os meus 

4 anos de Engenharia Metalúrgica e por possibilitar este pequeno grande estágio no CPT. Ao 

Professor Fernando Jorge Monteiro por ter tanta pacienciência para mim e por ser um dos 

melhores orientadores, nao só na vida académica mas também quando preciso de um amigo. Ao 

Professor Manuel Vieira e à Professora Filomena Viana, apesar de não tão próximos neste 

último ano, serem quem mais aturou as minhas loucuras e partilhou os meus momentos. E 

claro, a minha vida na FEUP nao seria a mesma sem o Paulinho, a Cátia e o Rúben, meus 

eternos companheiros. 

Também ao Manel, à Lili e ao André, melhores amigos de quem tive tantas saudades em 

Barcelona. E ao Marcus, à Stina, ao Oliver e ao Nathan por preencherem o meu espaço, me 

fizeram sentir em casa e serem os melhores amigos que podia encontrar. 

E por último, mas mais importante, aos meus pais e ao meu irmão, que sempre me ajudaram a 

realizar os meus sonhos e a conquistar os meus medos, e sem os quais nao seria quem sou nem 

chegaria onde estou e aonde ainda sonho chegar! 

Muito Obrigada! 

 



Abstract 

The aluminium alloy 7075-T6 is widely used in aeronautic engineering due to its high 

mechanical resistance to weight ratio. Depending upon the environmental conditions, 

many types of corrosion mechanisms have been found to occur in aircraft structural 

aluminium alloys. A possible solution to improve the alloy’s behaviour is the 

deposition of a pure Titanium coating. At present the deposition of Titanium is 

limited to processes such as Electroplating, Chemical Vapour Deposition and Vacuum 

Plasma Spray. These traditional approaches are generally slow and expensive, while 

the common thermal spray processes have two major limitations which are the 

presence of porosity and oxides in the spray-deposited material. Since Titanium is a 

metal very sensitive to oxidation, it is proposed in the present work to deposit it onto 

Aluminium substrates by a novel thermal spray process known as “Cold Spray”. In this 

work, the influence of the gas pressure and temperature, and the powder feeding 

rate on the cold spray process and in the final coating characteristics was studied, 

and a dense pure titanium coating onto aluminium 7075 substrates, with thickness 

higher than 300µm and no microstructural changes was easily and fast obtained. It 

was possible to conclude that after optimization, the cold spray process when 

compared to the conventional thermal spray techniques, results in coatings with very 

good properties and cost-time effective (higher coating thickness can be achieved in 

less time and with less money investment), making it ideal for industrial applications. 

 



Contents 
 

1. Importance of Aluminium and Alloys ................................................................................... 1 

2. Titanium Coating ..................................................................................................................... 3 

2.1 Titanium’s deposition techniques .................................................................................. 4 

3. Conventional Thermal Spray techniques ............................................................................. 7 

3.1 Advantages ....................................................................................................................... 10 

3.2 Limitations ....................................................................................................................... 11 

4. The Cold Spray Process ......................................................................................................... 12 

4.1 Advantages ....................................................................................................................... 15 

4.2 Limitations ....................................................................................................................... 16 

5. Cold Spray Process Parameters ........................................................................................... 17 

5.1 Particle Velocity .............................................................................................................. 17 

5.2 Powder Morphology ........................................................................................................ 19 

5.3 Powder feeding rate ....................................................................................................... 20 

5.4 Spray Angle ...................................................................................................................... 20 

5.5 Stand-off distance .......................................................................................................... 22 

5.6 Particle, substrate and gas temperature .................................................................... 23 

5.7 Surface Roughness .......................................................................................................... 24 

6. Bonding Mechanisms in Cold Spray ..................................................................................... 25 

6.1 Coating formation in Cold Spray .................................................................................. 27 

7. Cold Spray Applications: State-of-the-Art ......................................................................... 28 

8. Objective and Experimental Planning of the Thesis ....................................................... 29 

9. Results and Discussion .......................................................................................................... 33 

9.1 Powder Characterization ............................................................................................... 33 

9.1.1 Particle size distribution ............................................................................................ 33 

9.1.2 Structural characterization by Scanning Electron Microscope (SEM) ................. 34 

9.1.3 Structural characterization by X-Ray Diffraction .................................................. 35 

9.2 Substrate Characterization ........................................................................................... 36 

9.3 Coatings Characterization ............................................................................................. 37 

9.4 Wipe Tests ........................................................................................................................ 42 





9.5 Further analysis of the selected coating .................................................................... 43 

9.6 Optimization .................................................................................................................... 48 

10. Conclusions ............................................................................................................................. 52 

11. Future Perspectives ............................................................................................................... 53 

Bibliography ......................................................................................................................................... 54 

ANNEX 1 – Aluminium 7075-T6 basic properties ............................................................................ 57 

ANNEX 2 – Commercially pure grade 1 titanium basic properties ............................................. 59 

 

 



 

    

1 Importance of Aluminium and Alloys 

1. Importance of Aluminium and Alloys 

Aluminium, the second most abundant metallic element on earth, became an economic 

competitor in engineering applications as recently as by end of the 19th century. The main 

properties that make aluminium a valuable material are its low density, high strength, 

corrosion resistance, durability, ductility, formability, conductivity and the possibility to 

be 100% recycled. Due to this unique combination of properties, the variety of applications 

of aluminium continues to increase (Figure 1). It is essential in our daily lives. We cannot 

fly, use a high speed train or a high performance car without it. Nor can we get heat and 

light into our homes and offices without it. We depend on it to preserve our food, our 

medicines and to provide electronic components for our computers [1, 2]. 

 

Figure 1 - Different sectors of aluminium applications [1]. 

 

For many years the biggest end-use market for aluminium has been the transport sector. 

The transport industry plays an important role in the European Union economy. It accounts 

for 7% of Gross National Product, 7% of jobs, 40% of investments by member states and 30% 

of energy consumption [1, 2]. Aluminium use allows, through its contribution to vehicle 

lightweighting, substantial energy savings and reduced emission and fuel consumption 

levels in today’s environmentally conscious society (for example the Green Car European 

Project). Its strength and corrosion-resistance guarantee durability, reliability and 

security, coupled with cost-effectiveness. Its formability ensures complete flexibility of 

design and ease of handling. Finally, its total recyclability allows the aluminium industry to 

fulfil its commitment to the principles of sustainable development. Today, aluminium is 
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widely used in cars, trucks, buses, coaches, trains, metros, ships, ferries, aircraft and 

bicycles. 

There are two main classes of aluminium alloys: wrought and cast alloys. The first ones are 

initially casted as ingots or billets and subsequently hot and/or cold worked mechanically 

into the desired shape. The alloys of the second type are directly cast into their final form 

by one of various methods such as sand-casting, die or pressure die casting. These two 

main classes of alloys have different classification systems. It will be shortly explained the 

nomenclature of the wrought aluminium alloys since it is this group that includes the 

material used as substrate in this work. 

The 8 series of wrought alloys are designated by a 4 digit number that may be preceded or 

followed by letters. A prefix is used to designate the standard AA of the Aluminium 

Association or EN AW for the European standard. The first digit indicates the series as 

shown in Figure 2. The second digit indicates alloy modifications of an already existing 

alloy, and the third and fourth may have different meanings depending on the first one. 

For the series 2xxx to 8xxx, the 3rd and 4th digits identify a specific alloy without physical 

significance. 

 

Figure 2 - Wrought aluminium alloy nomenclature system [1]. 

 

The alloy used in this work, 7075-T6, belongs to the 7xxx series. In general they are very 

strong "heat treatable" alloys, since they can be strengthened through heat treatment 



 

    

3 Titanium Coating 

(precipitation hardening) based on the combination of zinc (mostly between 4–6 wt %) and 

magnesium (range 1–3 wt %). Unfortunately these alloys seem prone to stress cracking. As 

with some of the 2xxx series, alloys in the 7xxx series also have additions of magnesium to 

maximise their age-hardening potential where the precipitating phases are typically of the 

type MgZn2. Such alloys give medium strength, but are relatively easily welded. 

Aluminium-zinc-magnesium alloys have a greater response to heat treatment than the 

binary aluminium-zinc alloys resulting in higher strengths. The additions of zinc and 

magnesium however decrease the corrosion resistance. Chromium amounts, generally less 

than 0.35 %, are added to increase the electrical resistivity and to control grain structure, 

by preventing re-crystallisation in aluminium-magnesium-silicon and aluminium-zinc alloys 

during hot-working or heat-treatment. The addition of copper to aluminium-zinc-

magnesium alloys, together with small amounts of chromium and manganese, results in the 

highest strength aluminium alloys available. Alloys based on the quaternary Al–Zn–Mg–Cu 

system have the greatest potential of all aluminium alloys for age-hardening, and yield 

strengths approaching 600 MPa can be achieved in some alloys. Zinc and magnesium 

control the ageing process, while the effect of copper is the increase in ageing rate and 

the increase in quench sensitivity. Although copper decreases the general corrosion 

resistance, it improves the resistance to stress cracking [1, 2]. For a more thorough 

analysis of the 7075-T6 properties please check Annex 1 [1].  

T6 is the designation to the solution heat-treated and artificially aged alloys. It represents 

a group of products that are not cold-worked after solution heat-treatment and for which 

mechanical properties or dimensional stability, or both, have been substantially improved 

by precipitation heat-treatment [2]. 

Important critical applications of the 7075-T6 alloy are based on its superior strength, for 

example in aerospace, space exploration, military and nuclear applications. But also 

structural parts in building applications, as well as high strength sports' attributes such as 

ski poles and tennis rackets.  

2. Titanium Coating 

By nature, aluminium is a highly reactive material. Fortunately it rapidly forms a thin and 

dense oxide layer that protects the underlying material, and that if damaged, re-forms 

immediately in most environments. The presence of this oxide layer makes aluminium very 

suitable for many applications. 
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Although the addition of alloying elements may increase significantly the mechanical 

properties in the 7075-T6 alloy, the high corrosion resistance characteristic of most 

aluminium alloys is seriously affected. The decrease in corrosion resistance with increasing 

copper content is not primarily attributable to these solid-solution or second phase 

solution-potential relationships, but to galvanic cells created by formation of minute 

copper particles or films deposited on the alloy surface as a result of corrosion [1].  

Nevertheless, this alloy seeks heavy duty use in the aircraft industry where the 

environment is typically mild and aluminium corrosion isn’t likely to occur. Although, if we 

want to aim higher and be able to use this alloy under more specific conditions, like for 

example in the structure of a satellite, or a rocket, that will have to cross the atmosphere 

barrier, resistance to corrosion will be required.  

A possible approach to increase the corrosion resistance of this alloy is the deposition of a 

pure titanium coated layer. Titanium is now being viewed, accepted and used as a 

material for the prevention of corrosion, the reduction and elimination of major corrosion 

related maintenance issues and for the advantages that it offers in weight savings, 

replacement costs and life cycle cost benefits. And if we oxidize the titanium coating into 

TiO2, with a laser, we will have a coating that will withstand high temperature and wear.  

Titanium is lightweight, has high tensile strength, has the ability to withstand moderately 

high temperatures without creeping, is corrosion resistant and is abundant in nature. 

Titanium and its alloys possess tensile strengths from 210 to 1380 MPa, which are 

equivalent to the strengths found in most of alloy steels. The density of titanium is only 56 

percent that of steel and its corrosion resistance compares well with that of platinum. Due 

to these properties titanium is commonly used in aircraft, pipes for power plants, armour 

plating, naval ships, spacecraft and missiles [2, 3]. For a thorougher analysis of 

commercially pure titanium properties please check Annex 2 [2]. 

2.1 Titanium’s deposition techniques 

At present the cost-efficient deposition of Titanium is limited to processes such as 

Electroplating, Low-Pressure Chemical-Vapour Deposition and Vacuum Plasma Spray 

techniques that manage to limit the contact of Titanium with Oxygen and avoid unwanted 

phases.  
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The electroplating procedure involves electrolysis of potassium titanium fluoride dissolved 

in alkali or alkaline earth halides under an inert atmosphere. Graphite or titanium metal 

anodes are employed. It allows the production of adherent titanium coatings up to 100µm 

thick. Coatings are essentially pure titanium and underneath the coating there is a 

substrate metal-titanium alloy layer producing a firm metal-metal bonding [4]. It is a very 

slow process that requires well adjusted parameters and a special attention to the reaction 

products since it might be not-environmental-friendly. 

Other alternative is chemical vapour deposition (CVD) which involves the formation of a 

thin solid film on a substrate material by a chemical reaction of vapour-phase precursors 

[5]. The chemical reactions of precursor species occur both in the gas phase and on the 

substrate. A more detailed picture of the basic physicochemical steps in an overall CVD 

reaction is illustrated in Figure 3, which indicates several key steps. First the evaporation 

and transport of reagents (i.e. precursors) in the bulk gas flow region into the reactor; 

Second, the gas phase reactions of precursors in the reaction zone to produce reactive 

intermediates and gaseous by-products; Next, mass transport of reactants to the substrate 

surface and adsorption of the reactants on the substrate surface, followed by surface 

diffusion to growth sites, nucleation and surface chemical reactions leading to film 

formation. Finally, there is desorption and mass transport of the remaining fragments of 

the decomposition away from the reaction zone. 

 

Figure 3 – Precursor transport and reaction processes in CVD [7]. 
 

Titanium is deposited by Low-Pressure CVD, which is a CVD processes at sub-atmospheric 

pressures. The reduced pressures tend to reduce unwanted gas-phase reactions and 
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improve film uniformity across the substrate. Equation 1 represents the typical reaction to 

obtain a pure titanium film through this method for semiconductor devices [6]: 

 

    (1) 

 
CVD is most versatile at temperatures over 600°C, so its application is limited to substrates 

that are stable at such temperatures, which isn’t the case of the aluminium alloy 7075-T6 

since its melting temperature its between 477-635°C. A second problem is that some 

chemical precursors are hazardous or extremely toxic, requiring closed system and makes 

it not-environmental-friendly. Finally, the efficiency of the process is sometimes low, 

resulting in high costs. 

 

The other option, Plasma spray (Figure 4) is a widely used electrical thermal spray process. 

The conventional process is commonly referred to as air or atmospheric plasma spray 

(APS). In this process, “plasma” based on a partially ionized conductive gas, is used to melt 

and propel powdered feedstock material onto the substrate. To create the plasma jet, 

inert plasma-forming gas, usually argon or nitrogen with minor additions of helium or 

hydrogen, is injected into the annular space between two cylindrical electrodes, and a 

high and DC current arc is then struck between the electrodes [7]. The arc partially ionizes 

the gas and the collisions between energised ions forms a high-temperature, electrically 

conductive plasma, which expands and escapes through the open end of the anode to form 

a very hot, high-velocity, plasma jet. The exit velocity will depend on the design of the 

anode (nozzle) and the operating conditions, and may be either subsonic or supersonic. 

Powder feedstock is introduced via an inert carrier gas and is accelerated toward the 

workpiece by the plasma jet. The plasma temperatures in the powder heating region range 

from about 6000 to 15000°C, significantly above the melting point of any known material 

[8]. For this reason, this process is one of the most versatile of all thermal spray processes, 

able to deposit an exceptionally wide range of materials including metals, many ceramics, 

glasses, some polymers and unique composite materials. An important variant of plasma 

spraying can be seen in Figure 5 and is known as vacuum plasma spray (VPS) or low-

pressure plasma spray (LPPS). Both refer to plasma spray deposition carried out inside a 

vacuum chamber at relatively low dynamic pressure of inert gas. The low pressure turns 

the plasma “flame” wider and longer, through the use of a convergent/divergent nozzle, 

allows higher speed. The relative absence of oxygen and the ability to operate with higher 

substrate temperatures produce denser, more adherent coatings with much lower oxide 
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contents [8]. But current vacuum plasma techniques have one disadvantage: “Anyone using 

these coatings techniques will be faced to some extent with high investment costs,” says 

Marko Eichler, a researcher at the Fraunhofer Institut for Thin Films and Surface 

Engineering IST in Braunschweig. Expensive vacuum pumps and chambers of considerable 

dimensions are required to generate and maintain the low-pressure environment required 

for plasma treatment of workpieces [9]. 

 

 

Figure 4 - Schematic diagram of the atmospheric plasma 
spray process [10]. 

 

Figure 5 - Schematic of a typical vacuum 
plasma system [10]. 

 

Analyzing the available techniques for titanium deposition and considering our 

titanium/aluminium system, it is necessary to find an alternative that might allow high 

deposition rates and high coating quality at relatively low-cost values. Since cold-spray is a 

100% solid-state process, the deposition “in air” of titanium coatings without significant 

oxidation represents an important technical achievement [11], that can potentially allow 

the deposition of pure titanium onto aluminium substrates at industrial competitive rates 

and prices. 

3. Conventional Thermal Spray techniques 

Before entering the cold spray domain, it is important to have a reasonable knowledge of 

the traditional thermal spray techniques and their advantages and limitations, which will 

allow a better understanding of the many new possibilities arising from the Cold Spray 

process.  

The term “thermal spray” refers to a broad family of spray process technologies, such as 

arc spray, plasma spray, flame spray, and high velocity oxy-fuel (HVOF) [8]. And, according 

to Schoop [13], the group may be large and the specific details different for each 
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technique, but the fundamental principles for all traditional spray processes are essentially 

the same. 

In a generic thermal spray process (Figure 6), electrical or chemical energy is used to 

create small molten or semi-molten droplets (typically 10-100 microns in diameter) from 

powder, wire, or rod feedstock. These droplets are projected onto a workpiece surface by 

a subsonic or supersonic gas stream at velocities that range from a few tens of meters per 

second, up to roughly 1000 m/s [7, 13, 14]. Upon impact, each droplet spreads out and 

quickly solidifies (the cooling time is in the order of nanoseconds), forming the basic 

microstructural unit of spray-deposited material, called a “splat”. Splats randomly stack 

up on each other forming the layered or lamellar microstructure that is characteristic of 

most thermal spray deposited materials [7, 14]. The quality of the “splat boundaries”, 

name given to the interface between the solidified particles, strongly influences the 

physical and mechanical properties of the coating, much like grain boundaries influence 

the properties of bulk materials. 

 

Figure 6 - Generic thermal spray process [13]. 

The commercially important thermal spray processes can be divided into two basic 

categories: the ones that use electric energy and the ones that use chemical energy.  

Electrical processes typically use either an electric arc or electrically driven plasma to 

heat and melt the spray material. In the wire arc process (Figure 7) two consumable wire 

electrodes connected to a high-current direct-current (DC) power source are fed into the 

gun and meet, establishing an arc between them that melts the tips of the wires [7]. A jet 

of compressed air or inert gas is directed across the wire tips, atomizing the molten metal 
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and creating a spray stream of molten droplets. As the tip melt, additional wire is fed into 

the arc, making this a continuous process. An obvious limitation of this process is that it 

can only be used to deposit materials that can be made into conductive metal wires. Yet, 

its simplicity and economy result in a wide range of applications such as spraying zinc- or 

aluminium-based anti corrosion coatings onto bridges, ship decks, large metal tanks, etc 

[7, 8]. Another widely used thermal spray process is the APS, which has already been 

described in the previous section. 

 

Figure 7 – Schematic diagram of the electric arc 
thermal spray process [10]. 

 

Regarding the chemical energy thermal spray processes, flame spray is an oxy-fuel process 

that is widely used in industry.  It includes low-velocity powder flame, rod flame, and wire 

flame processes and high-velocity processes such as high-velocity oxy-fuel (HVOF) and the 

detonation gun (D-gun) process [8]. Burning oxygen with various fuel gases – such as 

acetylene, propane, or propylene - can produce flame temperatures sufficient to melt 

many metals and polymers as well as some ceramics. Different flame spray devices are 

designed to powder, wire, or ceramic rod feedstock. Figure 8 shows a typical flame spray 

device where a jet of compressed air is used to accelerate the molten droplets toward the 

substrate. The velocity can range from 50 to 300 m/s depending upon the device’s design, 

the material being sprayed, and the operating conditions. Operations in the lower velocity 

range tend to produce coatings that are more porous (less dense) than those produced by 

more energetic spray conditions with higher impact velocities [7]. Due to the reaction with 

oxygen in the flame and in the air atmosphere, it’s frequent that metal deposits have very 

high oxide content. Nevertheless, the properties of flame-sprayed coatings are well suited 

for many applications, which, together with its relatively low process cost, make this a 

favourite process for many commercial purposes. 
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Figure 8 - Schematic diagram of the flame spray 
process [10]. 

 

Figure 9 – Schematic diagram of a high-velocity oxy-
fuel (HVOF) spray gun [10]. 

 

The HVOF process is similar to flame spray in what concerns a fuel gas or liquid fuel that is 

first mixed with oxygen and then burned in the combustion chamber of the torch (Figure 

9). However, in this case, it’s a supersonic jet that exits the nozzle, due to the combustion 

occurring at much higher pressures and to the use of a converging-diverging nozzle. 

Powder particles entrained in this high-velocity gas jet are accelerated up to velocities of 

the order of 450-1000 m/s, once again depending upon the spray device, the spray 

material, and operating conditions [7]. The “peening” effect of these high-velocity 

particles impacting the surface can produce coatings with very little porosity and also 

create a more favourable residual compressive stress state in the deposited material. 

These combinations of properties make HVOF a preferred process for applications such as 

spraying cemented carbide wear-resistant coatings. The Detonation Gun™ is a process 

similar in concept to HVOF, but in the case of the D-Gun™ the process is not a continuous 

combustion. Here, pre-encapsulated “shots” of feedstock powder are fed into a 1m long 

barrel along with oxygen and a fuel gas, typically acetylene. A spark ignites the mixture 

and produces a controlled explosion that propagates down the length of the barrel [7]. 

Among the traditional thermal spray processes, HVOF and the D-Gun™ are the ones that 

most closely resemble cold spraying due to their relatively high particle velocities and 

somewhat more moderate heating of the sprayed particles. 

3.1 Advantages 

A big advantage of thermal spray processes is the ability to deposit an extremely wide 

range of materials. Virtually any material that has a stable molten phase can be deposited, 

and even some materials that do not melt, such as graphite and many carbide or boride 
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ceramics, can often be co-deposited with another sprayable material to create a 

composite coating material [7, 8]. Indeed, the ability to create unique composite materials 

of highly dissimilar raw materials with mixed, layered, or gradational microstructures is 

another important advantage of cold spray. Another one is that the range of suitable 

substrate materials is even greater that the range of sprayable materials. In addition to 

metals, ceramics, glasses, and polymers, thermal spray coatings have been successfully 

applied to many other substrate materials including wood, concrete, and even paper. This 

is possible because the thermal energy of a single droplet of molten material is very 

limited, and if proper thermal management is used during the process, excessive heat of 

the substrate can be avoided [7]. Conventional thermal spray also offers the advantage of 

high deposition rates, which are orders of magnitude higher than those of most alternative 

coating technologies, such as electroplating or vapour deposition, where deposition occurs 

at the atomic or molecular level. When spray coating objects are very large or difficult to 

move, the ability to apply coating is situ is also an advantage. It should also be noticed 

that, compared to coating alternatives like painting and electrodeposition, thermal spray 

is an environmental friendly approach since its effluents are easy to control and to 

dispose. 

3.2 Limitations 

The most important limitations of traditional thermal spray techniques are the presence of 

porosity and oxides in the spray-deposited material, which can significantly degrade the 

mechanical, electrical, and thermal properties of the coating as compared with to same 

material in bulk form.  

Excessive porosity can also be a problem if the coating is intended to protect the 

underlying substrate from species that can cause corrosion or other problems [7]. 

Conversely, high porosity can also be an advantage in some applications like for thermal 

barriers or for biomaterials where there is a need for high osteointegration. In general low-

velocity processes tend to have higher level of porosity in the range of 5-15% volume, and 

higher velocity processes origin coatings with less porosity (3-8% volume), although it is 

quite easy to produce more porosity if desirable.  

When spraying metals, the reaction of the hot molten metal with oxygen in the ambient 

atmosphere results in the formation of metal oxide impurities inside the coating. Excessive 

heating of the spray material can also result in preferential vaporization of more volatile 
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species in a complex metal alloy, causing a shift in the chemical composition of the 

coating material when compared to the feedstock material. Processes that minimize 

heating of the spray material, such as HVOF and D-Gun™, typically result in lower oxide 

concentrations and minimal changes in alloy chemistry. Also, the controlled inert 

atmosphere of VPS creates very little or no oxide during the deposition process, however, 

some changes in alloy chemistry may still occur due to relatively high temperatures in the 

plasma jet. Another limitation is the introduction of residual stresses. As each molten 

droplet solidifies and then cools down to room temperature, it undergoes thermal 

contraction in direct proportion to the temperature change (∆T) and the thermal 

expansion coefficient (α) for that material. Since underlying, already solidified material is 

typically at a lower temperature, the net result is that each successive layer of material is 

left in a residual tensile stress, and the overall tensile residual stress in the coating 

steadily increases as subsequent layers of material are added [7, 8]. Indeed, these are the 

stress that limits the maximum thickness of thermal spray coatings in many instances, 

since when it rises it reaches a point where the coated layer will either crack or separate 

from the substrate. A final noteworthy limitation of virtually all thermal spray processes is 

the simple fact that deposition is limited to surfaces in a direct line-of-sight of the spray 

gun. This limitation can also be turned to an advantage in some applications where simple 

masking techniques, such as rubber or metal masks cut to specific shapes, can be used to 

limit deposition to selected areas of the workpiece surface.  

4. The Cold Spray Process 

Cold spray as a coating technology was initially developed in the mid-1980s, by Anatolii 

Papyrin et al while studying models subjected to a supersonic two-phase flow (gas + solid 

particles) in a wind tunnel [7]. These Russian scientists successfully deposited a wide range 

of pure metals, metallic alloys, polymers and composites onto a variety of substrate 

materials. 

There is a very basic difference between the conventional techniques and the cold spray 

process. While in the first ones the device requires both thermal and kinetic energy for the 

coating formation, in cold spray only kinetic energy is used (Figure 10), although in many 

aspects, a generic cold spray gun (Figure 11) looks very similar to some of the traditional 

thermal spray devices described earlier. 

 



 

    

13 The Cold Spray Process 

 

Figure 10 - Basic comparison between the conventional thermal spray techniques and cold spray. 

 

 

 
Figure 11 - Schematic diagram of a cold spray gun. 

 

Pressurized gas (generally air, nitrogen or helium) is heated, usually with electrical energy, 

to temperatures generally in the range of 300-800°C and then passed to a converging-

diverging nozzle to create a supersonic gas jet. However, unlike conventional thermal 

spray processes, the reason to heat the process gas is not to melt the spray material. The 

gas is heated to increase its velocity to supersonic values, while passing the converging-

diverging nozzle [7, 15-21]. The supersonic velocity is reached due to the change of the 

Mach (M=v/vs, where v is the gas velocity and vs the sound velocity) number along the 

nozzle. At the convergent part of the nozzle M < 1, in the throat M = 1, and in the 

divergent part M > 1. As the gas velocity increases, the gas temperature and pressure 

decrease, since, due to the “conservation of energy” law, the product “Velocity x 

Temperature” must be preserved. The relation between the temperature, pressure and 

velocity, can be observed in Figure 12. 
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Figure 12 - Diagram of a convergent/divergent nozzle, showing approximate flow velocity (v), together 
with the effect on temperature (t) and pressure (p) [22]. 

 

Since the gas expansion is followed by a temperature decrease, which can in some cases 

even be below room temperature, the process got the name of “Cold Spray”. Figure 13 

shows a comparison of approximate process temperature and particle velocity ranges for 

cold spray and conventional thermal spray processes [7]. Analysing the image, it is clear 

that cold spray occupies a unique position, offering exceptional low process temperatures 

combined with high particle velocities. 

 
 

Figure 13 – Comparison of approximate process temperature and particle velocity ranges for several 
common thermal spray processes and cold spray. 

 

The process uses powder feedstock, in the range of 5-50µm in diameter, that is then 

injected in the central axis of the cold spray gun. Since the powder particles are only 
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exposed to the hot process gas for a short period of time, they arrive at the workpiece 

surface in the solid state, usually far below their melting point. The particles are 

accelerated to velocities of the order of 500—1200m/s before they impact the surface. If 

that velocity is sufficient for a given particle/substrate pair, the solid particles plastically 

deform and flow upon impact, creating an hydrodynamic flow instability at the interface 

between the incoming particle and the underlying material, which results in bonding at the 

interface [7, 15-21]. A more detailed discussion of this bonding process will be presented 

later in this text. 

4.1 Advantages 

Eliminating the harmful effects of high temperature on coatings and substrates presents 

significant advantages and new possibilities [7, 18]. As previously discussed, porosity and 

metal oxide impurities are two important limitations of conventional thermal spray 

processes, than can be reduced or even avoided in Cold Spray. The greatly reduced level of 

porosity (<1%) in the cold-sprayed material results from the fact that cold spray is a solid-

state process, so there is no splashing. In addition, the “peening” effect of incoming high-

velocity particles tends to close the small pores and gaps in the underlying material [7]. 

The lower content of oxides is due to the cold spray being carried out at much lower 

temperature and the reaction between the metal and the oxygen in the ambient spray can 

be greatly reduced or eliminated. Since it’s the presence of a high degree of porosity and 

oxides that affects the mechanical, electrical, and thermal properties of the sprayed 

materials, the cold spray process offers again advantages when compared to the 

conventional thermal spray techniques. Although cold-sprayed metals, in the as-sprayed 

condition, tend to have low ductility (like the traditionally sprayed metals) due to the high 

level of plastic deformation inherent to the process and consequent work hardening, since 

they are porosity and oxide free, a simple post-deposition heat treatment can dramatically 

improve the ductility [7, 18]. 

Another potential advantage that the solid-state deposition offers is that the chemistry, 

phase composition, and crystal (grain) structure of the feedstock powder are preserved in 

the coating. As referred before, one of the limitations of the conventional thermal spray 

techniques is that metal alloys that contain multiple elements may experience some shift 

in their composition due to the preferential volatilization of more volatile elements. And 

also, the melting/solidification process can dramatically alter the crystal structure or the 

phase composition compared to the feedstock material. This doesn’t happen in cold spray, 
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because the particles experience minimal heating, so the initial composition and structure 

are preserved [7]. This represents a great promise, for example, in the field of 

nanocrystalline materials, where the challenge as always been to preserve the 

nanocrystalline size of the crystals after the coating deposition which wasn’t possible due 

to the grain growth resulting from the high process temperatures [23, 24]. 

Also, opposed to the tensile residual stress state present in traditionally thermal sprayed 

coatings, limiting their thickness and sometimes leading to cracking or lost adhesion to the 

substrate, cold sprayed coatings remain under compressive residual stress [7, 8]. As in 

HVOF and D-Gun™, the very-high-velocity particles in cold spray are very effective in 

“peening” the underlying material. In addition, since the cold spray particles are deposited 

at low temperature, there is very little temperature-driven dimensional change. 

Like the conventional techniques, cold spray is also a line-of-sight process, which also can 

be seen as an advantage or disadvantage depending on the application. But in comparative 

terms the spray pattern of a cold spray gun is more highly focused and allows for easier 

spraying at very highly localized areas. 

4.2 Limitations 

Although cold spray can offer significant advantages when compared to the traditional 

thermal spray processes in selected applications, it also has its own inherent limitations. 

The fact that the sprayed particles are not melted limits the range of materials that can 

be cold sprayed and also the range of process-compatible substrates. Unlike traditional 

thermal spray, cold spray is essentially limited to depositing ductile metals – such as 

aluminium, copper, steels, nickel-based alloys, etc. – onto metal, ceramic, or other 

relatively hard substrate materials 7].  This limitation arises from the fact that incoming 

solid particles must plastically deform upon impact in order to create the hydrodynamic 

shear instability that binds the incoming particle to the underlying material. For this to 

occur the spray particle must have enough ductility to allow its plastic deformation and 

flow, and the substrate must be hard enough to cause the incoming particle to plastically 

deform. For this reason, brittle materials are not compatible with the cold spray process 

unless they are co-sprayed with a ductile matrix forming a composite material.  

Also cold spray process uses much larger quantities of process gas than traditional thermal 

spray processes, which can be an issue when a more expensive carrier gas, like helium, is 
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required to achieve the necessary impact velocities and coating quality. Some preliminary 

studies indicate that may be feasible to address this issue by capturing and recycling 

helium. However this greatly increases the cost and complexity of the cold spray system. 

In addition, the extensive plastic deformation inherent in the deposition of cold-sprayed 

metals work hardens the sprayed materials and results in very low ductility of the coating 

in the as-sprayed condition. While this may be an issue for some coatings, for others it is 

not a drawback. In other applications, the slightly harder work-hardened coated material 

may actually be an advantage [7].  

Analysing the advantages/disadvantages of the process and the results reported by many 

authors, it is possible to state that a novel approach to deposit coatings with any given 

thickness, from particles in the solid state, has been developed [7]. Cold sprayed titanium 

coatings have high potential for applications in aerospace, corrosive environments, bio-

compatible implants, and direct fabrication of titanium products (e.g. near net shape 

coatings). 

5. Cold Spray Process Parameters 

As in traditional thermal spray techniques, the film growth rate and final coating 

properties, in the cold spray process, are determined by several parameters like the 

impact particle velocity, the spray angle of the gun, the stand-off distance, the molecular 

weight of the carrier gas, the surface roughness, the powder morphology and distribution, 

the feeding rate, the particle and gas temperatures, etc. The influence of the most 

relevant parameters in the deposition efficiency will be described shortly in this section. 

Coating deposition efficiency is measure as the increase in the coating thickness divided by 

the number of passes of the spraying gun. 

5.1 Particle Velocity 

The most important parameter in cold spray process is the particle velocity prior to impact 

on substrate. For a given material, there exists a critical particle velocity. Only the 

particles reaching a speed over the critical velocity can be deposited to produce a coating. 

To better understand this phenomenon lets analyse Figure 14, which shows a typical curve 

of the induction time as a function of the particle impact velocity. The induction time (or 

incubation time) represents the time between the beginning of surface treatment by the 

flow of particles and the beginning of particle adhesion to the surface [17, 25].  
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Figure 14 – Deposition delay (induction) time versus the average impact velocity of aluminium 
particles on a polished copper surface, dm=30,2µm, φ = 10

-8, (mass flow rate of the powder per 
unit area is 0,06kg/m2s) [25]. 

 

In Figure 14 it is possible to observe three distinct zones of interaction between the 

particle and the substrate, divided by two values of particle velocity vcr1 and vcr2. In the 

region where the velocity is higher than vcr2 (850m/s), represented in green, particles 

adhere to the initial surface without any delay. When the velocity is between vcr1 and vcr2 

(red) particles cannot adhere instantly to the initial surface. The adhesion starts with some 

delay (induction time) that corresponds to the time during which the surface state is 

changed due to its “treatment” by the first impinging particles [25]. The chemical activity 

of the surface is increased as a result of the creation of an elevated concentration of 

dislocations in the surface layer. And when these dislocations reach the surface, the places 

of their exit act as centre of initiation of chemical interaction between the particles and 

the substrate. There is also the possibility that a certain amount of attached particle 

material, left on the surface by the rebound particles, will approach the value of 

activation energy of the substrate with the one of the impinging material. As a result, the 

activation energy of the particle-substrate interaction decreases. The induction time will 

increase when the particle velocity decreases since more intensive activation of the 

surface is required. Also the induction time is inversely proportional to the rate of particle 

flux in the gas flow. For the third region, area in blue, which corresponds to values of 

velocity lower than vcr1 (550m/s), only erosion occurs, since particles do not adhere to the 

surface regardless of the treatment time. This is called critical velocity, value for which 

there is the transition from erosion to coating formation [18, 25]. 
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According to Schmidt et al [26], an approximate value of the critical velocity can be 

calculated as follow: 

   
(2)

 

Where ρ represents the particle density, Tm the melting temperature, TR the reference 

temperature (293K), Ti the impact temperature and σu the yield stress. 

5.2 Powder Morphology 

A finer particle size distribution will make a powder more suitable for Cold Spray. This is 

attributed to the fact that gas/particle momentum transfer or particle acceleration 

imparted by the gas is proportional to 1/d, based on Newton's law and assuming a spherical 

particle, where d is the diameter of the particle to be accelerated [15, 20]. Consequently, 

higher acceleration and, therefore, particle impact velocity are to be expected when using 

a powder with a smaller particle size distribution, as long as the jet Mach number is 

limited to values below or close to 3. Since the drag force acting on a particle (D) is 

proportional to the particle drag coefficient (CD), an increased drag coefficient leads to an 

increased drag force acting on the particle and thus to a higher particle velocity. This is 

expressed in Eq. (3), where ρ is the propellant gas mass density, Vrel is the relative velocity 

between the propellant gas and the particle and AP is the particle projected surface area. 

   (3) 

While the friction drag for spherical and non-spherical particles is likely to be similar, the 

shape form drag of the non-spherical particles will be higher leading to a higher total drag 

coefficient. As a result, a larger drag force will be applied to the non-spherical particles, 

promoting higher particle velocity at the end of the acceleration zone of the nozzle, as 

measured [20, 27]. 

The rationalization that smaller and irregular shape powders are beneficial to cold spray 

was verified using a numerical model developed for the cold spray process and validated 

with laser diagnostic tools [20].  

Another important aspect about the morphology of the powder is that a non-spherical 

particle with rough surfaces and irregular features will have a different contact behaviour 

during impact. Ajdelsztajn et al. [28] have shown that the localized shear deformation at 
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the particle boundaries during impact promotes an intimate contact between particles and 

helps the formation of a particle/particle metallurgical bond. This will be enhanced by a 

larger surface area of the irregular particle morphology (non-spherical), increasing 

particle/particle interaction during the deformation process. Also, the irregular 

morphology will increase the stress concentration during impact due to the fact that the 

load cannot be uniformly distributed as it may be observed in spherical particles [28]. The 

stress concentration at the surface of the particle can facilitate the occurrence of a 

localized shear deformation and also the disruption of the surface oxide layer present in 

metallic powders, leading to an intimate contact between particles. 

5.3 Powder feeding rate 

Varying the mass flow rate at which the powder is fed into the carrier gas stream changes 

the coating thickness as seen in Figure 15. Coating thickness increases linearly with feeding 

rate until a maximum value is reached for which there are too many particles impacting 

the surface of the substrate resulting in excessive residual stresses causing the coating to 

peel [29]. This can be compensated by the increase of the gun’s travel speed. 

 
Figure 15 - Coating thickness as a function of powder mass flow rate [29]. 

 

5.4 Spray Angle 

Figure 16 and  

Figure 17 show the influence of spray angle on the relative deposition efficiency of copper 

and titanium respectively. It is possible to observe that the maximum efficiency was 
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obtained at spray angles ranging from 80 to 90° for copper, and 70 to 90° for titanium 

[30]. In such angle range, the spray angle as practically no influence in the deposition 

efficiency. Although, if we further decrease the spray angle outside this interval, the 

deposition efficiency will also decrease till an angle below which no particle deposition 

occurs (40° for copper and 50° for titanium). 

 
 
Figure 16 – Effect of spray angle on the relative 
deposition efficiency of copper (15-37µm) [30]. 
 

 
 
Figure 17 - Effect of spray angle on the relative 
deposition efficiency of titanium (37-44µm) [30]. 

 

As said before, only particles that have a velocity higher than the critical velocity at 

normal impact are deposited on the substrate. With the decrease in spray angle, the 

normal component of velocity will also decrease, and when its value becomes less than the 

critical velocity the particle will not deposit on the substrate. 

In the impact of a particle at off-normal angle, the particle impact velocity can be 

decomposed in a normal component and a tangential one relative to the substrate as 

shown in the next figure.  

 

Figure 18 - Decomposition of particle impact velocity at spray angle of θ [30]. 

 

The normal (Vn) and tangential (Vt) velocities can be expressed as: 

Vn=Vp sinθ 
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Vt=Vp cosθ 

Where Vp is the particle impact velocity and θ is the spray angle between the nozzle axis 

and substrate surface. Vn decreases with a decrease in θ from 90º to zero. 

Regarding the dependency of the relative deposition efficiency on spray angle, the spray 

angle can be divided in three angles ranges: maximum deposition angle range, transient 

angle range and no deposition angle range (Figure 19).  

 

Figure 19 – General schematic diagram of the dependency of relative deposition efficiency on spray 
angle [30]. 

 

Also, a larger powder particle size distribution leads to a larger velocity distribution which 

will affect the range of the maximum deposition angle and transient angle, which can be 

observed in  

Figure 16 and  

Figure 17. The titanium particles have a larger maximum deposition range and a smaller 

transient range due to their narrower size distribution compared to the copper particles 

[30]. The spray angle also influences the coating microstructure, since the particles 

deformation direction in the coating changes with the spray angle. The particles flow 

direction is approximately perpendicular to the particle approaching direction. 

5.5 Stand-off distance 

Before explaining the influence of the stand-off distance in the cold spray process it is 

important to define bow shock phenomenon.  It is known that the particle velocity 
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increases outside the nozzle and that the particles may lose velocity during the flight, 

although this velocity can be further reduced due to the shock wave resulting from the 

previous particles impacting the substrate (Bow Shock) [15]. Therefore at small stand-off 

distances, when the strength of the bow shock is high, deposition performance is reduced. 

While at large stand-off distances, when the bow shock has disappeared, deposition can 

continue unhindered. Analysing  

Figure 20, it is possible to observe three distinct stand-off regions: First (1) the small stand-

off region, where the presence of the bow shock adversely affects deposition performance; 

Second (2) the medium stand-off region, where the bow shock has disappeared and, if the 

gas velocity remains above the particle velocity (positive drag force), the deposition 

efficiency continues to increase; and Third (3) the large stand-off region, where the gas 

velocity has fallen below the particle velocity (negative drag force), and the particles 

begin to decelerate. For optimal deposition performance, the stand-off distance should be 

set within Region 2 [15]. 

 

 
 

Figure 20 - Chart showing the effect of stand-off distance on deposition efficiency. Here Fd is the drag force, Mc is the 

centreline mach number, Vg is the gas velocity, Vi is the particle impact velocity and Vp is the in-flight particle velocity 

[15]. 

 

5.6 Particle, substrate and gas temperature 

According to Schmidt et al [31], the coating quality can be further improved by increasing 

the initial temperatures of particle and substrate. That is because higher initial particle 

temperatures result in lower critical velocities since the material is already softer at 

higher temperatures and that less kinetic energy is needed to heat particle surface areas 
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by plastic deformation. Moreover, heat conduction will be less effective due to lower 

temperature gradients, which leave more time for diffusion and bonding. 

Temperature influences the process of cold spray in different manners. Firstly, with 

increasing stagnation temperature the velocity of the process gas is increased, and 

accordingly also is the particles impact velocity. Secondly, it is known that elastic and 

plastic properties of materials depend upon temperature. The materials temperature can 

be changed by using a higher gas temperature or by pre-heating the powder and/or the 

substrate. Increased materials temperature could enhance thermal softening which is 

important for the bonding mechanism and also potentiate chemical reactions that may also 

induce adhesion. 

Also, the use of a gas with a lower molecular weight will have the same effect has 

increasing the gas temperature, since it also increases the particles velocity. The same 

happens when increasing the gas pressure. 

5.7 Surface Roughness 

Richer et al. [32] refer that the surface roughness resulting from different grit types only 

affects the deposition efficiency for the first few layers of particles impinging on the 

substrate. Defining the initial bonding mechanism at the substrate/coating interface thus 

becomes important.  

One of the suggested theories for the bonding mechanism of cold sprayed coatings is 

associated to mechanical interlocking of the impinging powder particles to the substrate 

surface. It is thus reasonable to assume that an increased substrate roughness would 

further enhance bonding as it presents a greater array of nooks and recesses in which Cold 

Spray particles can be lodged. These particles are then subjected to additional compaction 

as successive particles impact on the substrate. This phenomenon is illustrated in Figure 

21. 
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Figure 21 - Schematic representation of large Al-Mg particles impinging a substrate surface with (a) 
low surface roughness and (b) high surface roughness [33]. 

 

For surfaces with low roughness, the first particles to impact would have little surface area 

to which to bind, resulting in weaker bond strengths. These particles thus have a greater 

difficulty adhering to the substrate, resulting in an initial reduction in deposited mass.  

Other authors [34] report that the bond strength is higher for an as-received (Ra≈2,6µm) 

substrate than for a grit-blasted one (Ra≈3.5µm), being 37 and 32 MPa respectively. This 

could be due to the work hardening associated to the grit-blasting treatment of the 

substrate surface, therefore making it more difficult for the sprayed coating to bind to the 

substrate.  

6. Bonding Mechanisms in Cold Spray 

The actual mechanism by which the solid particles deform and bind during cold spray is 

still not well understood. On one hand, Sansoucy et al. [35], Dykhuizen and Smith [36] and 

Morgan et al [31] have proposed a cold spray bonding mechanism based on an effect called 

mechanical anchorage, in which no melting or metallurgical reactions were observed. This 

theory holds at low temperature and pressure (which means low particle velocity). On the 

other hand, Schmidt et al. [31] have proposed another bonding mechanism based on 

adiabatic shear instability, which occurs at sufficiently high particle impact velocity with 

extensive thermal softening of particles. Thus, this theory holds at high temperature and 

pressure. It also explains the transition from erosion to cold spray adhesion, the behaviour 

of powder deposition efficiency and the existence of an incubation time [17]. 

It is well established, however, that the feedpowder particles and the substrate/deposited 

material undergo extensive localized deformation during impact. This causes disruption of 

the thin (oxide) surface films and enables an intimate conformal contact between the 
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particles and the substrate/deposited material. Intimate conformal contact of clean 

surfaces combined with high contact pressures is believed to be a requirement for 

particles/substrate and particles/ deposited material bonding [7, 8, 22, 23, 32 - 39]. With 

the beginning of the impact, a strong pressure field propagates spherically into the particle 

and substrate from the point of first contact, Figure 22(a). The pressure gradient at the 

gap between the colliding interfaces generates a shear load, which accelerates the 

material laterally and thereby causes localized shear straining. When the impact pressure, 

and the respective deformation, are high enough, this shear straining leads to adiabatic 

shear instabilities. This means that thermal softening is locally dominant over strain and 

strain-rate hardening, which leads to a discontinuous jump in strain and temperature and 

an immediate breakdown of stress. The viscous flow in this region generates an out-flowing 

material jet with material temperatures close to the melting temperature, Figure 22(b). 

 

 

Figure 22 – Pressure field during impact (a), jetting (b) [31]. 

 

 

This hypothesis is supported by a number of experimental findings such as:  

(a) a wide range of ductile (metallic and polymeric) materials can be successfully cold-

sprayed while non-ductile materials such as ceramics can be deposited only if they are co-

cold-sprayed with a ductile (matrix) material; 

(b) the mean deposition particle velocity should exceed a minimum (material-dependent) 

critical velocity to achieve deposition which suggests that sufficient kinetic energy must be 

available to plastically deform the solid material and/or disrupt the surface film;  

(c) the particle kinetic energy at impact is typically significantly lower than the energy 

required to melt the particle suggesting that particle/substrate and particle/deposited 

material bonding is primarily, or perhaps entirely, a solid-state process. The lack of 

melting is directly confirmed through micrographic examination of the cold sprayed 

materials.  
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6.1 Coating formation in Cold Spray 

The bonding process for the kinetic spray procedure is a complex particle–particle and 

particle–substrate interaction, as described above. The basic coating formation arises from 

a transformation of the kinetic energy of the particles into mechanical deformation and 

thermal energy, which occurs rapidly, on the order of 10-7 s. 

An understanding of how the coating builds can be obtained by dividing the growth process 

into four basic phenomena (Figure 23). During the initial stage, a thin film of particle 

material (a so called monolayer) is deposited on the substrate. This stage is characterized 

by a direct interaction of particles with the substrate and depends very much on the 

degree of surface preparation and on the properties of the substrate material. The initial 

stage includes the time of surface activation (induction time) during which erosion instead 

of deposition can occur. In the second stage particle deformation and re-alignment occurs. 

A layer of finite thickness is build up. As densification increases, the material at the point 

contacts is displaced, contact area grows in size and material flows into the interparticle 

voids, which is a kind of “peening” effect. The third stage is characterized by the 

formation of a metallurgical bond between particles and void reduction. Stage four 

corresponds to further densification and work hardening (due to the peening effect) of the 

coating [31].  
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Figure 23 - Stages of coating formation in the cold spray process [31]. 

 

7. Cold Spray Applications: State-of-the-Art 

The current state-of-the-art is rapidly changing. To date, most cold spray depositions have 

been made with nitrogen and have focused mainly on aluminium, copper, zinc, and other 

pure materials due to the limitations in the powder material’s ability to plastically deform 

under certain deposition conditions [7]. Ceramics typically do not plastically deform to the 

extent that metallic materials do, making difficult the deposition of 100% ceramic 

materials at low temperature.  

Since the “cold gas” technology is rather recent, no large-scale, commercial applications 

have yet established themselves in the broader thermal-spray marketplace. Although, due 

to such properties as dense, oxide-free coatings, a multitude of new applications now 

present themselves which were not feasible using conventional processes, establishing cold 

spraying as a viable technology. 

The Cold Spray process is potentially applicable to corrosion-resistant coatings (zinc and 

aluminum), dimensional restoration and repair (nickel, stainless steel, titanium, and 

aluminum), wear-resistant coatings (chromium carbide – nickel chromium, tungsten 
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carbide – cobalt, and tungsten copper), electromagnetic interference (EMI) shielding of 

components and structures, and field repair of components and systems [40]. 

At the moment, cold spraying already being applied in different areas, like automotive 

manufacturing in copper metallizations for junction blocks, deposition of NdFeB permanent 

magnetic particles compacted in an iron matrix for electric machines (conductors, soft 

magnetic materials and permanent magnets), deposition of zinc onto steel for selective 

galvanizing at specific locations of a structure and spraying of high-purity iron over 

ceramic moulds for rapid tooling repair [41]. Cold spray is also being used to apply a 

copper thermal management layer on a critical rocket engine component [42]. Cold-

spraying was also used to impart electrical conductivity to polymer surfaces by the 

apparent  “implantation” of graphite particles, and resulting change in surface 

conductivity of thermoplastic polyolefins by as much as six orders of magnitude [43]. Other 

envisioned applications include the development of cold welding and repair processes for 

aluminium body structures and placement of brazing materials [41]. 

Up until recent, hard wear-resistant coatings using cold spray processes have not been 

explored in depth. Although some work has been done with CrC-Ni, CrC-NiCr and WC-Co 

compositions, additional efforts are needed in order to define cold spray process 

composition capabilities and additional opportunities in applying wear- and erosion-

resistant coating materials [7]. 

 

8. Objective and Experimental Planning of the Thesis 

As said before, the main goal of this project is to optimize the cold spray process in order 

to obtain a fully dense titanium coating into a 7075-T6 aluminium alloy. To lead to 

optimization, the first step is to determine which factors and which interactions between 

them are important in affecting the response. For that, different process parameters will 

be varied and then the pair with the highest deposition efficiency will be chosen. Finally, 

analysing the obtained results, we will try to better understand the mechanisms leading to 

the bonding formation between the coating and the substrate.  

It is important to plan the work in order to obtain the requested information with the 

minimum number of experiments. And when the goal is to observe of how K factors 

influence a process and how these factors interact with each other, the optimal 
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experimental strategy is the 2K factor analysis [44]. This design allows exploring a chosen 

area of the experimental domain and finding the promising direction for the optimization.  

Due to its simplicity, a complete matrix 2K of factorial experiments doesn’t require the use 

of specialized software to build it or to analyse its results. In this design, each factor is 

only study at two levels and the experiments include all the combinations of each level of 

a factor with all the levels of the other factors. The matrix will include 2K rows and K 

columns, which correspond to the K factors under study. Each column starts with the sign -

, and the signs – and + will alternate with a frequency of 20 for X1, 2
1 for X2, 2

2 for X3, and 

successively till Xk where the signs will alternate with a frequency of 2
k-1. The sign – 

corresponds to the minimum values and the sign + to the maximum values of the factor. 

The variables that affect the cold spray process were previously described in chapter 4, 

and from these we will determine K factors.  

The available cold spray apparatus is a KINETIC®4000 (Cold Gas Technology, Ampfing, 

Germany), it has a maximum operating pressure of 40bar, temperature of 850°C and it is 

limited to the use of nitrogen as the carrier gas, so the characteristics of the process gas 

can be eliminated as a variable. In addition, KINETIKS® 4000 is equipped with a pre-

chamber of 120 mm in length connected to the gun nozzle where powders are heated up 

by the hot gas for a longer time.  

Also, from the literature cited before [30], it can be seen that if we maintain the spraying 

gun at 90° the deposition efficiency will be maximum, so this variable can also be 

eliminated. We have then the gas temperature, the gas pressure, the powder feeding rate, 

the stand-off distance and the surface roughness as possible factors. This would mean 

25=32 experiments.  

As said before, most of authors believe that the surface roughness affects the adhesion of 

the first layers of the coating [32] and consequently the bond strength [33]. To make it 

simpler this parameter will be eliminated as a factor and, after the optimum conditions 

are chosen, adhesion tests will be carried for different substrates preparations. We have 

now 24=16 experiments. 

In order to reduce this number of experiments to 8 a previous test to determine the 

optimum stand-off distance was preformed. The values chosen were 20mm, 40mm and 

60mm and the results are shown in Figure 24Figure 25 and Figure 26. Comparing the images 
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we can discard the distance of 60mm since there is a gap between the coating and the 

substrate, which means that there is almost no bonding between them. Regarding the 

other two, we can see that for the distance of 20mm the coating is more irregular and 

easily pealed during the cut operation, making the distance of 40mm the optimal spraying 

distance for the cold spray deposition of titanium with KINETICS® 4000. 

 

Figure 24 – SEM micrograph of titanium deposited into 

aluminium 7075-T6 at the standoff distance of 20mm. 

 

Figure 25 - SEM micrograph of titanium deposited into 

aluminium 7075-T6 at the standoff distance of 40mm. 

 

 

Figure 26 – SEM micrograph of the titanium deposited onto aluminium 7075-T6 at the stand-off distance of 60mm. 

 

We have then three variables: gas temperature, gas pressure and feeding rate of the 

powder. These factors are shown in Table 1 together with the experimental domain. 

Alternating the levels of the factors we reach the experimental matrix that it is 

represented in Table 2. Figure 27 represents the combined experimental domain for the 

three factors where the set of parameters evaluated in this project are marked in red. 
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Table 1 - Factors and experimental domain. 

Factors - + 

X1 - Temperature 600-700°C 700-800°C 

X2 - Pressure 30-35bar 35-40bar 

X3 - Feeding Rate 2-4rpm 4-6rpm 

 

 

Table 2 - Matrix of experiments. 

 
X1 X2 X3 Result 

1 - - - Y1 

2 + - - Y2 

3 - + - Y3 

4 + + - Y4 

5 - - + Y5 

6 + - + Y6 

7 - + + Y7 

8 + + + Y8 

 

 

The results from the eight experiments can be combined in order to determine: the 

influence of the three principal effects, of three effects of interaction of two factors and 

of the effect of the interaction of the three factors in the final result. The order in which 

each element is either added or subtracted is given by the matrix of interactions 

represented in Table 3. This matrix will allow to determine which parameter influences 

more the final result. 

Table 3 – Matrix of interactions. 

 T P Rpm T x P T x Rpm P x Rpm T x P x Rpm 

1 - - - + + + - 

2 + - - - - + + 

3 - + - - + - + 

4 + + - + - - - 

5 - - + + - - + 

6 + - + - + - - 

7 - + + - - + - 

8 + + + + + + + 
 

 

Figure 27 - Cube that represents the experimental 

domain. At the vertices, in red, are represented the 

chosen experiments. 
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Decided the temperature, pressure and feeding rate intervals, and fixing the gun passages 

at 2 in order to allow surface activation, the other process parameters were set at: 

Table 4 - Fixed process parameters. 

Accelerating and Carrier Gas Nitrogen 

Pre-heating Temperature 400°C 

Standoff Distance 40mm 

Gun speed 500mm/s 

Angle of Deposition 90° 

  

9.  Results and Discussion 

9.1 Powder Characterization 

The powder used for the deposition of the titanium coating was a microcrystalline 

Commercial Purity titanium Grade 1 powder from Mechanomade® obtained by ball milling. 

It was previously known that the powder had good fluidity and it was further characterized 

according to its particle size distribution and morphology. 

9.1.1 Particle size distribution 

The study of the particle size distribution was made through a Laser Diffraction Particle 

Size Analyser Beckman Coulter LS 13320. Analysing Figure 28 it is possible to observe that 

the differential volume has a Gaussian distribution. The statistic of the particle size 

distribution can be found in Table 5, where it can be seen that 80% of the particles are 

between 40.34 and 94.01 µm with a mean size of 58.37 ± 1.42 µm. 
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Figure 28 - Particle size distribution of the titanium powder. The differential volume is expressed in bars and the 

accumulated volume in a continuous line. 

 

Table 5 - Statistics of the particle size distribution of the titanium powder. 

Parameters Result 

Mean particle size 58.37 µm 

Diameter correspondent to 10% accumulated volume 40.34 µm 

Diameter correspondent to 50% accumulated volume 60.53 µm 

Diameter correspondent to 90% accumulated volume 84.01 µm 

 

This powder presents a size bigger than the ideal size (5-45µm) but it is still inside the 

range to be deposited through cold spray. Also, due to its wide size distribution (22-90µm), 

the particles may present a high difference in their impact velocity, since fine and coarse 

particles, by having different weights, will impact on the substrate at different velocities 

because they can’t reach the same kinetic energy. This can be a problem regarding 

reproducibility once the results may be different depending on which powder fraction will 

impact the substrate at that point. 

9.1.2 Structural characterization by Scanning Electron Microscope (SEM) 

The analysis of the powder’s morphology via SEM allows to observe that the particles size 

distribution coincides with the results obtained via laser diffraction (Figure 29). It can be 

seen that the powder particles are very angular and have a very irregular form, which is 

consistent with the powder’s fabrication method and an advantage for the cold spray 

process since the irregular particles reach higher velocities [20, 27].   
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Figure 29 – A) SEM microphotograph of the free surface of the Titanium Mechanomade® powder. B) Close-up of the 

underlined area. 

 

9.1.3 Structural characterization by X-Ray Diffraction 

The X-ray analysis of the powder is shown in Figure 30. The diffraction peeks correspond to 

the ones characteristics of pure titanium (the peek lines are represented in red in Figure 

30) what confirms that this powder is indeed pure titanium. The peeks are well defined 

and very narrow with indicates that the powder is highly crystalline.  

 
Figure 30 – X-ray spectrum of the titanium powder (black) combined with the line peeks for pure titanium (red).  
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9.2 Substrate Characterization 

The material used as substrate was, as said before, the 7075-T6 aluminium alloy. The 

powder deposition was conducted in samples with 50x20x5mm. 

In Figure 31 is represented this material microstructure, revealed after etched with 

Keller’s reagent for 20 seconds. It is possible to distinguish between recrystallized grains 

(clear) and uncrystallized grain fragments that appear dark as a result of precipitation at 

boundaries of MgZn2 [45]. 

 

 

Figure 31 – Optical micrograph of aluminium 7075-T6, material used as substrate. 

 

A more detailed characterization was conducted with the Transmission Electron 

Microscope. The resulting images are shown in Figure 32. In this figure, A represents a 

Selected Area Electron Diffraction (SAED) analysis of the area shown in B.  The spots 

pattern indicates that the analysed area is a single crystal, which means that the 

micrograph corresponds to a region inside an aluminium grain. Also, the bright ring in the 

centre of A indicates the presence of precipitates, in this case MgZn2, that correspond to 

the dark dots present all over the micrograph B. 
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Figure 32 – A) Selected area electron diffraction (SAED) pattern and B) TEM micrograph of the aluminium substrate. 

 

For a confirmation of the alloy’s mechanical properties two tests were conducted: tensile 

test and Vickers micro-hardness. The values obtained were in agreement with those 

predicted in the material data sheet (Annex 1).  

9.3 Coatings Characterization 

The coatings obtained with the different combinations of deposition parameters presented 

before with numbers 1 to 8, are shown in Figure 33 with the respective numeration. The 

coatings were characterized according to their thickness (Figure 34), porosity ( 

Figure 35) and hardness (Figure 36). 

Observing Figure 33 it is possible to distinguish two different zones. In the top region from 

the surface to the boundary, there are a lot of large pores. On the other hand, in the inner 

region from the boundary to the substrate the coating has a dense microstructure. It is also 

possible to observe that the size of the pores decreases with the increase of the depth 

from the surface towards the boundary. This happens due to the “peening” or tamping 

effect previously explained. 

A B 
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Figure 33 - SEM micrographs of the titanium coatings obtained with the parameters set from 1 to 8 respectively. 
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Figure 34 - Graphic that illustrates the coating thickness obtained for each set of parameters. 

 

 

 
 

Figure 35  - Graphic that illustrates the coating porosity obtained for each set of parameters. 

 

 

 
Figure 36 - Graphic that illustrates the coating hardness obtained for each set of parameters. 
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From the analysis of Figure 33 andFigure 34, it can be observed that the coating thickness 

increases with the rising of the powder feeding rate. This was expected since almost the 

double amount of powder is used in the process. It also increases with the gas temperature 

for a feeding rate of 2-4rpm because a higher number of particles can reach the critical 

velocity and consequently bond to the substrate increasing the coating thickness. The 

same happens when pressure rises. On the other hand, for a feeding rate of 4-6rpm this is 

not verified maybe due to the accentuated rebound effect cause by the higher amount of 

particles (nearly the double) impacting the surface, which may interfere with the 

trajectory of incoming particles preventing them from impacting the substrate, or loose 

velocity, and consequently not bond, reducing the final coating thickness. The same is 

verified for a higher pressure. 

 

The porosity level (Figure 35) was measured through the Max Inspector Programme. It is 

important to notice that not all the voids present in Figure 33, 1 to 8, are pores. Due to 

the high particle size distribution, in the same coating are present particles with a size of 

20µm and particles with size of 100µm, which have a different behaviour during the flight 

and impact the substrate at different velocities. This results that some particles, which 

didn’t have enough energy to bond to their neighbours and should only cause erosion, get 

trapped by the arriving particles and incorporate the coating. And when preparing the 

sample for microstructural analysis, during the polishing operation, these particles get 

detached leaving a void. This problem may origin results different from the real ones. 

According to the images, the porosity decreases with the rise of temperature, as expected, 

since the particles plasticity increases resulting in a denser coating. However, the pressure 

influences negatively the porosity level since it increases it. The porosity at 30-35bar 

varies from 2 to 4%, while at 35-40bar it varies from 2 to 7%. It can then be considered that 

in the highest interval, the particle velocity is so high that the rebound effect increases 

the porosity (either due to the incoming particle not bonding or due to detaching a poorly 

attached particle) and so the erosion domain is reached. It is though important to refer 

that this porosity is all concentrated in the top region of the coating, and if this region was 

later mechanically removed, the coating would be virtually 100% dense1. In the case of 

different feeding rates the obtained results are not comparable since, at higher feeding 

rate, the coating thickness is much higher decreasing the ratio (porosity area)/(coating 

area) which is how the programme calculates the porosity. 

                                                           
1
 Figure 48 shows a CPT coating (Coating 12) after removal of the external porosity layer.  
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The coating hardness (Figure 36) is sensibly the same for all the coatings except for 

number 3 where it is quite low probably because of the high amount of voids that allow 

particle displacement during measure. The average value of 210HV is much higher than the 

Vickers value for bulk titanium (≈122HV). This can be explained by the deformation-

hardening effect caused by the particles that impact over the already bonded particles 

introducing beneficial compressive stresses in the coating. 

 

The influence of the parameters on the coating properties can be confirmed by the 

factorial analysis represented in Table 6.  

 

Regarding the coating thickness, the parameter with highest effect is the feeding rate 

since increasing it from 2-4 to 4-6rpm increases it in average 241µm, followed by the 

temperature which increases it 27µm and finally the pressure, which its increase decreases 

it 74µm. This values are in accordance in the results expected at the beginning of this 

experiment, since a pressure increase should result in a denser coating and consequently in 

a smaller thickness. 

The rise of temperature increases the coating thickness for a feeding rate of 2-4rpm, while 

it decreases it for a feeding rate of 4-6rpm. The interaction of the temperature and the 

feeding rate is then of big importance. When both the temperature and feeding rate are 

increased, at a fixed pressure, the coating thickness decreases 108µm. This supports the 

statement that at high feeding rate and high temperature, the rebound effect overcomes 

the increase of plasticity and, instead of contributing to the growing of the coating, it 

causes erosion. The same reasoning can be made for the interaction of the other 

parameters. 

For the porosity, according to the obtained images and, consequently, the factorial 

analysis, it is once again shown that it increases with the pressure for the previous 

explained reason. And, as expected, it decreases with the temperature. For the feeding 

rate the result may be deceiving as said before. The decrease in the porosity by the 

interaction of the temperature and pressure is due to increase of the particle plasticity 

overcoming the velocity increase. 

Finally, the hardness was virtually the same for all the coatings (high error range) so its 

results should not be considered. 

 

 

 



 

 

42 Cold Spray Deposition of Titanium onto Aluminium Substrates 

 
Table 6 – Calculation of the parameters effect on the coating thickness, porosity and hardness. Factorial analysis. 

Effect Thickness Porosity Hardness 

T ( - y1 + y2 - y3 + y4 - y5 + y6 - y7 + y8 ) / 4 27.1 -1.3% 14.2 

P ( - y1 - y2 + y3 + y4 - y5 - y6 + y7 + y8 ) / 4 -74.6  0.8% -11.1 

Rpm ( - y1 - y2 - y3 - y4 + y5 + y6 + y7 + y8 ) / 4 241.3 -1.5% 12.3 

T x P ( + y1 - y2 - y3 + y4 + y5 - y6 - y7 + y8 ) / 4 -12.8 -0.9% 24.0 

T x Rpm ( + y1 - y2 + y3 - y4 - y5 + y6 - y7 + y8 ) / 4 -108.6 1.9% -27.9 

P x Rpm ( + y1 + y2 - y3 - y4 - y5 - y6 + y7 + y8 ) / 4 -52.7 -1.2% 2.7 

T x P x Rpm ( - y1 + y2 + y3 - y4 + y5 - y6 - y7 + y8 ) / 4 -32.8 0.2% -20.2 
 

 

 

Analysing the coatings structure and their properties it is possible to exclude the coatings 

number 1, 3, 4, 5, 7 and 8 due to the high amount of pores and to the very irregular 

surface.  It is then possible to state that the best combinations of parameters are number 

2 and 6 and their main difference is in the coating thickness. Coating number 2 presents a 

thickness in the order of 400µm and coating number 6 in the order of 600µm. Comparing 

these values to the ones obtained by conventional thermal spray techniques, which are in 

the order of 200µm for higher number of gun passages, it is possible to say that the 

optimum condition is number 2, since its thickness is more than sufficient to form a 

protective coating for the required application, and the 600µm of coating 6 become too 

high making it less economically viable. However, the high thickness that cold spray easily 

achieves suggests this process as a potential alternative to laser cladding with the 

advantage of avoiding the heat affected area.  

9.4 Wipe Tests 

In order to better understand the particle bonding process and the concept of critical 

velocity and incubation time, the so called “wipe tests” were conducted for two extreme 

conditions with the same feeding rate: number 1 for the slower particle velocity, and 

number 4 for the highest particle velocity. This test consists in moving rapidly a substrate 

through the spray jet. The results are shown in Figure 37 - SEM micrograph of the Wipe Tests 

realized for the two opposite velocity conditions with the same powder feeding rate. A and B 

correspond to parameter set number 1 and C and D to set number 4.  
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Figure 37 - SEM micrograph of the Wipe Tests realized for the two opposite velocity conditions with the same powder 

feeding rate. A and B correspond to parameter set number 1 and C and D to set number 4. 

 

It can be seen that for the lowest velocity the gun first passage results mainly in erosion 

that leads to surface activation, and very few particles bond to the surface (Figure 37 A 

and B). When the velocity is increased to the value of condition number 4 (Figure 37 C and 

D), erosion is also present but the number of particles bonded to the substrate is much 

higher, suggesting that the surface activation occurs faster. From this images it is also 

possible to observe that there is only particle deformation (no melting) supporting the 

argument that this process occurs in the solid-state. 

9.5 Further analysis of the selected coating 

In order to verify the aluminium/titanium bonding strength and the hardness profile of the 

area surrounding the interface a nanoidentation test was preformed in a Nano Indenter® 

XP system (Systems Corporation). The 75 nanoidentations (matrix of 5x15) were conducted 

at constant load of 15mN and the results can be seen in Figure 38. The zero value 

represents the interface zone, and the negative distance corresponds to the substrate 

while the positive corresponds to the titanium coating. 
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The hardness of the aluminium is in agreement with the value of the material data sheet 

(Annex 1). Although it can be seen a slight increase with the approximation to the 

interface due to the hardening effect introduced by the constant bombing of particles. In 

the area right next to the interface this value drops due to a small thermal softening of the 

aluminium, which has low melting temperature, resulting from the high release of energy 

during the shock of the first particles. The hardness value at the interface is not high 

enough to allow saying that the bonding is very strong, but it is also not to low since it is in 

the same order as the aluminium, revealing that the bonding will be good. The hardness 

for the titanium coating is, as seen before, much higher than the bulk value due to the 

tamping effect. The hardness decreases with the distance to the interface since the 

amount of particles impacting on the already bonded ones also decreases, weakening the 

peening effect. 

 

 
Figure 38 - Nanoidentation profile obtained for the sample number 2. 

 

 

Besides the logical explanation for the titanium’s coating hardening resulting from the 

successive impact of particles, another possibility needed to be explored: the reaction of 

nitrogen with titanium. Above 600°C titanium reacts with nitrogen and forms titanium 

nitride (TiN), which hardness is around 2500HV, value that is not desirable [42]. In order 

to confirm if the titanium was still pure, an XRD test was preformed. 

Analysing the resulting spectrum (Figure 39) it is possible to observe that the purity of 

the powder maintains and that there are no N2 present, confirming that the time that 

the powder stays over 600°C is so short that doesn’t allow the reaction to occur. 
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Figure 39 - X-ray spectrum of the coating number 2 (black) combined with the line peeks for pure titanium (red). 

  

Figure 40 represents the coating microstructure after etching. It is possible to observe 

once again the powder’s wide size distribution: particles of 15µm mixed with particles of 

70µm. Also the pore size, in the order of 20/30µm, could easily be a void left by a smaller 

particle that was trapped by the bigger particles, since this represents a zone close to the 

interface and there should be no pores present. This also may justify the wide hardness 

distribution, once when the indentation is preformed in the centre of a smaller particle 

the value is higher than in the centre of a bigger particle. Also the particle displacement 

due to it being merely trapped represents an obstacle to a good analysis.  
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Figure 40 - Optical micrograph of the coating number 2 microstructure after etched with Keller's reagent. 

 

Through the SAED pattern shown in Figure 41 A, it can be seen that the titanium coating is 

polycrystalline, with crystallite size around a few micrometers. Micrograph B illustrates 

that some grains have a columnar shape, while others have a more equiaxial morphology. 

This is surprising because this columnar structure is characteristic from the conventional 

thermal spray techniques, due to the preferential growth in the direction of the 

temperature gradient. But since it was observed in the wipe-tests that there was not 

fusion, at least at a micro scale, it is most likely that these columnar grains correspond to 

the formation of dislocations cells as reported by Kim et al [47]. The presence of a high 

amount of dislocations in B may support this hypothesis and confirm that the titanium 

particles were subjected to high deformation resulting in their hardening, as it was 

suspected by the hardness values. Such amount of dislocations agrees with the occurrence 

of the so called adiabatic shear instabilities supported by many authors. 

Direction of deposition 
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Figure 41 - A) SAED pattern and B) TEM micrograph of the titanium coating. 

 

In order to better understand the bonding process, the TEM analysis of the interface area 

was also conducted. In Figure 42 A shows the SAED pattern corresponding to interface area 

represented in B, where one can see the titanium zones, filled by dislocations, mixed with 

the aluminium areas with their characteristic precipitates. The elemental analysis of 

different regions indicated a composition gradient of the two elements which indicates 

that solid-state diffusion as indeed occurred. The presence of an amorphous zone that 

could indicate a localized fusion, as reported by Xiong et al [38], was not found, which 

doesn’t mean that is not present since it is in the order of a few nanometres. Further 

investigation should be conducted.  

B A 
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Figure 42 – A) SAED pattern and B) TEM micrograph of the interface aluminium/titanium coating 

 

9.6 Optimization 

This wide size distribution that results in particles badly bonded between them, and 

sometimes merely trapped, is the main reason to the high number of voids and the non-

uniformity (both hardness and morphology) of the coating. In order to further optimize the 

process, a powder with a narrower size distribution should be used. So, to analyse the 

importance of the particle size in this process, the previous powder was sieved to two 

groups: one containing the particles between 40-60µm and the other the ones between 22-

40µm. Then the feeding rate was maintained at 2-4rpm, the temperature at 750°C and two 

different pressures were used 35-40bar and 30-35bar. 

The resulting microstructures are shown in Figure 45 for 40-60µm and figures 44 and Figure 

46 for 22-40µm. The coatings properties are represented in  

 

Table 7. 

It can be seen that, thanks to the sieved powder, all the coatings present a more uniform 

structure with less voids and porosity. When comparing the results for both powder groups, 

the coatings with higher particle size are rougher and a bit thicker, but again the hardness 

is less uniform. The denser structure resulting from the smaller particle size, together with 

Al + Ti 

Ti + Al 
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its uniformity, makes the size distribution between 22-40µm the best, of the ones tested, 

for cold spray.  

 

Figure 43 - SEM micrograph of the titanium coating after the powder was sieved and using the fraction 40-60µm. Number 

9 corresponds to a pressure of [35,40]bar and 10 to [30,35]bar. 

 

Figure 44 - SEM micrograph of the titanium coating after the powder was sieved and using the fraction 22-40µm. Number 

11 corresponds to a pressure of [35,40]bar and 12 to [30,35]bar. 
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Figure 45 - Optical micrograph of the coating number 10 

microstructure after etched with Keller's reagent. 

 

Figure 46 . Optical micrograph of the coating number 12 

microstructure after etched with Keller's reagent. 

 

 

Table 7 - Coating properties for the optimized conditions. 

 

Parameters Coating Thickness (µm) Hardness (HV) Porosity (%) 

9 254±50 254±35 1.1±0.1 

10 317±35 246±29 0.9±0.1 

11 204±32 232±26 1.6±0.1 

12 311±25 240±20 0.7±0.1 
 

 

And once again, comparing the two used pressures, the highest pressure results in a lower 

coating thickness and in higher porosity, proving that the 30-35bar is the ideal value for 

the deposition of titanium onto aluminium substrates. Having this in mind, slightly 

modified adhesion tests, but following the ASTM C-633 standard [48], were conducted in 

order to determine the bonding strength. The test consists of gluing a cylindrical coated 

specimen with a resin to an uncoated sand-blasted specimen, as it can be seen in Figure 

47. The obtained results are shown in Table 8. 

 

Figure 47 – Set-up for the adherence test. 

Table 8 – Adhesion test results for the conditions 10 and 12. 

 

Set 
Tensile strength 

(MPa) Average σS (MPa) 

10 

32.94 
34.3 34.62 

35.27 

12 

39.21 
33.4 31.50 

30.17 
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The optimum bond strength for a coating is given whenever the failure occurs between the 

glued surfaces (coated and non-coated surfaces). The used glue resists approximately 

70MPa and none of the titanium coatings was able to endure such value. All the coatings 

exhibited adhesive failure since their rupture was by the substrate/coating interface. The 

tensile strength average value is very close for both the subjected coatings and it is over 

the 30MPa, normal value for the plasma-sprayed titanium coatings. However, the values 

vary between 30MPa and 39MPa, and this last value is a very good result. So, further 

optimization should be conducted in order to dislocate the average tensile strength value 

closer to 40MPa. 

Once the main goal is to reach a fully dense coating, further optimization was conducted 

by removing all the porous area. Figure 48 shows coating number 12 after the removal of 

the external porous layer. The resulting thickness was 240 ± 2µm and the porosity was 

reduced to 0.05%. The coating presented a superficial hardness of 281 ± 40 HV. This value 

is higher than the previous result for coating 12 since there is more resistance to 

deformation because the coating is more compact. 

 

Figure 48 - Coating 12 after removing of the porous zone. 
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10. Conclusions 

Since cold spray is a very recent technique, every new work in the subject allows the 

gathering of new and important information. This work is not an exception since it is the 

first written work about the deposition of pure titanium onto aluminium substrates.  

Concerning the main objectives proposed at the beginning and in agreement with the 

experimental results following the factorial analysis, it can be concluded as following: 

• Principally and most importantly, it was easily and fast obtained a dense pure 

titanium coating onto aluminium 7075, with thickness higher than 300µm and no 

microstructural changes, and also to better understand the bonding mechanisms.  

• The effects of gas temperature, gas pressure, and powder feeding rate on cold 

sprayed pure titanium coatings onto aluminium substrates were investigated. All 

resulting coatings were characterized in terms of their microstructures, coating 

thickness and porosity and, micro-hardness. The best set of parameters was chosen 

and the corresponding coating was deeper characterized regarding its hardness 

profile, phase composition and particle distribution.  

• The parameter that influences more the coating thickness, rising it, is the feeding 

rate. For the same feeding rate, the coating thickness increases with the 

temperature and decreases with the pressure. Coatings over 300µm thickness were 

easily achieved through cold spray. 

• For titanium deposition, higher temperature results in a denser coating while high 

pressure increases the porosity due to an erosion effect provoked by the too high 

particle velocities. 

• Mainly, temperature and pressure affect the plasticity of the particles: the higher 

the temperature is for the same pressure value, the more plastic will be the 

material and there will be less rebounding; on the other hand, for a same 

temperature, a higher pressure can be favourable for a better disposal of the 

particle to adhere to the substrate or a former bonded particle but, above a 

specific value, it can cause a ballistic effect leading to erosion, which in our case 

succeeded at 35-40bar. 

• The particle size distribution is of greater importance in the cold spray process. A 

high size distribution leads to non-uniform coatings regarding thickness, porosity 

and hardness, and makes the process non-reliable since particles can either reach 

or not the critical velocity, and depending on the main fraction of the powder that 

composes the coating, the properties will vary a lot. When the distribution is 
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narrower, the process becomes reproducible, and the coating properties become 

more homogeneous. 

• A powder with higher particle size, but narrow distribution, results in a thicker 

coating when compared with a powder of smaller particle size. However, the 

coating’s properties are less uniform. 

• Regarding the bond formation in cold spray, were found results that support either 

the occurrence of a solid-state diffusion with adiabatic shear instabilities. The 

bonding strength of the deposited coatings was around 34MPa with high potential to 

increase to 40MPa. 

• After optimization, the cold spray process when compared to the conventional 

thermal spray techniques, results in coatings with very good properties and cost-

time effective (higher coating thickness can be achieved in less time and with less 

money investment), making it ideal for industrial applications.  

• When the external porous layer is mechanically removed, a fully dense coating is 

obtained. 

 

11. Future Perspectives 

Further mechanical and tribological tests are required in order to better characterize the 

titanium coating and its interaction with the substrate, mainly to which point it can 

protect it from corrosion. For this to be possible, it is proposed that the small porous zone 

of the coating is removed, giving origin to a completely uniform and virtually 100% dense 

coating, that should allow the application of the Al 7075 alloy in more aggressive 

environments. Also, more clarification is required about the bonding process, in particular 

the influence of the substrate preparation. 

Regarding the future applications of the titanium coating onto aluminium substrates, a 

very important advantage would be the possible substitution of certain parts (those that 

the mechanical solicitation would allow for) of the airplanes that are made of expensive 

titanium alloys (Ti6Al4V for example), and other products of the transport industry like 

ships or green cars. This last approach would significantly decrease the cost and the fuel 

consumption, since it would replace an alloy of approximately 4.43 g/cm3 that costs 24000 

US$/ton [49] for one of 2.81 g/cm3 that costs 1290 US$/ton [50].  
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ANNEX 1 – Aluminium 7075-T6 basic properties 
 

Physical Properties Values Comments 

Density 2.81 g/cm3 AA; Typical 

      
Mechanical Properties   Comments 

Hardness, Brinell 150 AA; Typical; 500 g load; 10 mm ball 
Hardness, Knoop 191 Converted from Brinell Hardness Value 
Hardness, Rockwell A 53.5 Converted from Brinell Hardness Value 
Hardness, Rockwell B 87 Converted from Brinell Hardness Value 
Hardness, Vickers 175 Converted from Brinell Hardness Value 
Ultimate Tensile 
Strength 

572 MPa AA; Typical 

Tensile Yield Strength 503 MPa AA; Typical 
Elongation at Break 11.0 % AA; Typical; 1/16 in. (1.6 mm) Thickness 

  11.0 % AA; Typical; 1/2 in. (12.7 mm) Diameter 
Modulus of Elasticity 71.7 GPa AA; Typical; Average of tension and compression. 

Compression modulus is about 2% greater than tensile 
modulus. 

Poissons Ratio 0.330   
Fatigue Strength 159 MPa completely reversed stress; RR Moore 

machine/specimen @# of Cycles 5.00e+8  

Fracture Toughness 20.0 MPa-m½ K(IC) in S-L Direction 

  25.0 MPa-m½ K(IC) in T-L Direction 

  29.0 MPa-m½ K(IC) in L-T Direction 
Machinability 70% 0-100 Scale of Aluminum Alloys 
Shear Modulus 26.9 GPa   
Shear Strength 331 MPa AA; Typical 

      
Electrical Properties   Comments 

Electrical Resistivity 0.00000515 ohm-cm AA; Typical at 68Â°F 

      
Thermal Properties   Comments 

CTE, linear 23.6 µm/m-°C 

AA; Typical; average over range @Temperature 20.0 - 100 
Â°C 

  
25.2 µm/m-°C 

average @Temperature 20.0 - 300 
Â°C 

Specific Heat Capacity 0.960 J/g-°C    
Thermal Conductivity 130 W/m-K AA; Typical at 77Â°F 

Melting Point 477 - 635.0 Â°C AA; Typical range based on typical composition for 
wrought products 1/4 inch thickness or greater. 

Homogenization may raise eutectic melting temperature 
20-40Â°F but usually does not eliminate eutectic melting. 
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Solidus 477 °C AA; Typical 
Liquidus 635.0 °C AA; Typical 

      
Processing Properties   Comments 

Annealing Temperature 413 °C   
Solution Temperature 466 - 482 °C   
Aging Temperature 121 °C   

      
Composition   Comments 

Aluminum, Al 87.1 - 91.4 % As remainder 
Chromium, Cr 0.18 - 0.280 %   
Copper, Cu 1.20 - 2.0 %   
Iron, Fe <= 0.50 %   
Magnesium, Mg 2.10 - 2.90 %   
Manganese, Mn <= 0.30 %   
Other, each <= 0.050 %   
Other, total <= 0.15 %   
Silicon, Si <= 0.40 %   
Titanium, Ti <= 0.20 %   
Zinc, Zn 5.10 - 6.10 %   
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ANNEX 2 – Commercially pure grade 1 titanium basic properties 
 

Physical Properties Values Comments 

Density 4.51 g/cm3   

  
Mechanical Properties   Comments 

Hardness, Brinell 120 annealed 

Hardness, Knoop 132 Estimated from Brinell. 

Hardness, Rockwell B 70 annealed 

Hardness, Vickers 122 Estimated from Brinell. 

Tensile Strength, Ultimate 240 MPa   

Tensile Strength, Yield 170 - 310 MPa   

Elongation at Break 24.0 %   

Reduction of Area 35.0 %   

Modulus of Elasticity 105 GPa In Tension 

Compressive Modulus 110 GPa   

Poissons Ratio 0.370   

Charpy Impact 310 J V-notch 

Shear Modulus 45.0 GPa   

  
Electrical Properties   Comments 

Electrical Resistivity 0.0000450 ohm-cm   

  
Thermal Properties   Comments 

Heat of Fusion 325 J/g High Purity Ti. 

CTE, linear 8.60 µm/m-°C   

@Temperature 0.000 - 100 
Â°C 

  
9.20 µm/m-°C average 

@Temperature 0.000 - 315 
Â°C 

CTE, linear, Transverse to Flow 9.70 µm/m-°C perpendicular to the c-axis 

@Temperature 0.000 - 540 
Â°C 

Specific Heat Capacity 0.520 J/g-°C  Heat Capacity at 540ºC is 0.67 J/g-
ºC 

Thermal Conductivity 16.0 W/m-K annealed 

Melting Point <= 1670 °C  Liquidus 

Liquidus 1670 °C   

Beta Transus 888 °C   

  
Optical Properties   Comments 

Emissivity (0-1) 0.300 High purity Ti at 710°C 
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Reflection Coefficient, Visible (0-1) 0.560 High purity Ti; visible light. 

  
Composition   Comments 

Carbon, C <= 0.10 %   

H <= 0.015 %   

Iron, Fe <= 0.20 %   

Nitrogen, N <= 0.030 %   

Oxygen, O <= 0.18 %   

Titanium, Ti 99.5 %   

 


