Aprendizagem a Partir de Multiplas Fontes em

Grupos Heterogéneos de Agentes

Learning From Multiple Sources in

Heterogeneous Groups of Agents

Luis Miguel Martins Nunes
(Mestre/M.Sc.)

Afiliagoes/Afiliations:
FEUP (Doutorando/PhD Student),
LIACC-NIAD&R (Investigador/Researcher),
ISCTE (Assistente/Assistant Teacher)
Contactos/Contacts:
ISCTE, Av. Forcas Armadas, 1649-026 Lisbon, Portugal
Luis.Nunes@iscte.pt
Orientador/Advisor:
Professor Doutor Eugénio da Costa Oliveira (Ph.D.)

Tese apresentada para o cumprimento dos requisitos necessarios a
obtencdo do grau de Doutoramento em Engenharia Informatica pela
Faculdade de Engenharia da Universidade do Porto.

Thesis presented for the fullfilment of the requirements necessary to
complete the degree of Ph.D. in Computer Science at Faculdade de
Engenharia da Universidade do Porto.

28 de Outubro de 2005 / October 28, 2005

Abstract

The field of Multiagent Systems (MAS) is concerned with software solutions com-
posed of several autonomous elements (agents) that interact and communicate. The
scenarios these techniques apply to have special characteristics that bring about new
problems, but also provide new tools to develop adequate solutions. One of the re-
search fields that is evolving in parallel and adapting to this new type of paradigm is
Machine Learning (ML). Research in ML has been increasingly focused on the devel-
opment of solutions that can deal with the problems posed by MAS. The contribution
of ML to this field is of the utmost importance since adaptability and learning are fun-

damental in increasing agents’ autonomy and flexibility.

This work presents a study concerning the relationship between communication
and learning in a certain type of MAS. We focus on problems where we have different
teams of agents, solving similar problems at different locations. Each of these teams
may use different learning algorithms or heuristic solutions. In the past, learning-agents
used solely the environment’s feedback as a source of information for learning. MAS
provide other sources of information that can increase agents’ learning capabilities.
Our goal is to determine how the communication of examples and reward information

can affect the learning process.

The hypotheses posed in this thesis are: That communication can improve agents’
learning performance for several learning algorithms in a specific type of problem; It
is possible to enhance the benefits of communication by: using hybrid algorithms to
integrate information from different sources, using heterogeneous environments and
an adequate selection of information sources. These techniques are tested in three
application domains: a “toy-problem” (predator-prey), a simulation with synthetic data
(load-balancing) and one using real data (traffic-control).

During this study several variables that influence the performance of the exchange
of information during learning where identified, namely: use of batch or specific in-
formation; online or offline integration; number of advisors; use of heuristic advisors;
heterogeneity of the environment; type of algorithm used in the integration of external
information. Although not exhaustive, due to the large number of possible combina-

tions, our research tests the effects of several of these possibilities.

The initial expectations pointed towards the possibility of increasing the speed of
learning and the performance by exchanging information, particularly when using het-
erogeneous environments. It was verified that exchanging information is beneficial, in
terms of speed, performance and reliability. Contrary to our expectations the environ-
ments’ heterogeneity and other tested techniques did not show the desired effects. This

fact is due, mainly, to the near-optimal performance of agents in most environments

where agents are allowed to communicate.

Even though there is still a long path to follow in the quest for adequate solutions,
this work provides, apart from the above mentioned contributions, a review of the main
difficulties found during this research that may be helpful for those that follow this path
in the future.

The ultimate goal of this line of research is to endow agents with the capability of
learning from more sources than just the environments’ feedback in a context where
information is abundant. This new perspective of learning in MAS can lead to the
development of new learning paradigms, specially suited for MAS, and take us one
step further in the construction of autonomous and intelligent agents.

Abstract

A investigacdo em Sistemas Multi-Agente (SMA) tem como objectivo o desen-
volvimento de solugdes computacionais, baseadas em elementos auténomos (agentes)
que interagem e comunicam entre si. Os cendrios a que estas técnicas se aplicam trazem
consigo um novo conjunto de problemas, mas também a possibilidade de desenvolver
novas solucdes. Uma das 4reas de investigacdo que se tem desenvolvido em paralelo é
a Aprendizagem Automadtica (AA). A pesquisa na area da AA foca, cada vez mais, o
desenvolvimento de solu¢des destinadas a lidar com os problemas postos pelos SMA.
A contribuicdo da AA neste campo € da maior importancia dado que a capacidade de
adaptacdo € fundamental para melhorar a autonomia e flexibilidade dos agentes.

Este trabalho estuda a relacao entre a comunicagdo e a aprendizagem em certo tipo
de SMA. Os problemas focados caracterizam-se pela existéncia de diversas equipas
de agentes, cuja tarefa é a resolucdo de problemas semelhantes em locais diferentes.
Cada uma destas equipas poderd utilizar diferentes mecanismos de aprendizagem ou
solugdes heuristicas. No passado, a aprendizagem baseava-se apenas na informacgdo
devolvida pelo ambiente. Com a introducao do conceito de SMA abrem-se novas pos-
sibilidades na utilizacdo de outras fontes de informacgdo. O objectivo deste trabalho é
determinar quais os efeitos que a troca de certo tipo de informagao (exemplos e recom-

pensas) pode ter na aprendizagem.

As hipéteses postas nesta tese sdo: que a comunicagdo pode ser usada para melhorar
o desempenho de vérios tipos de agentes durante a aprendizagem em determinado tipo
de problemas; E possivel realgar os beneficios da comunicacdo através do uso de:
algoritmos hibridos para a integracdo de informacao de diferentes fontes, da utilizagdo
de ambientes heterogéneos e de uma escolha adequada das fontes de informagao. Estas
propostas sdo testadas em trés problemas: o problema do “predador e a presa”, uma
simulacdo de distribui¢do de carga por servidores, e uma simulacdo de controlo de

trafego baseada em dados reais.

Durante o estudo foi identificado um conjunto de varidveis que pode influenciar o
desempenho da troca de informacao durante a aprendizagem, nomeadamente: trans-
missdo em bloco ou caso a caso; integra¢do imediata ou adiada; nimero de consel-
heiros; utilizacdo de conselheiros pré-programados; ambientes homogéneos ou het-
erogéneos; modo de integra¢do da informacdo. Embora nio sendo exaustiva, devido
ao grande nimero de combinagdes possiveis, a nossa pesquisa testa os efeitos de varias
combinagdes de valores para as varidveis acima mencionadas.

As expectativas iniciais apontavam para a possibilidade de aumentar a velocidade
e o desempenho com a troca de informagdo, em particular quando fossem utilizados
ambientes heterogéneos. Verificou-se que a troca de informacao traz beneficios quer

em termos de desempenho quer em termos de fiabilidade. Ao contrario das expectativas
iniciais a heterogeneidade do ambiente, bem como outras técnicas empregadas para
realgar o desempenho da troca de informacdo, ndo surtiram os efeitos esperados. Este
facto deve-se, principalmente, ao desempenho guasi 6ptimo dos agentes em ambientes

com troca de informacao.

Embora haja ainda um longo caminho a percorrer na busca de solugdes adequadas,
este trabalho contém, além das contribui¢des mencionadas, uma enumeragao das difi-
culdades encontradas durante esta investigacao que podera ser ttil para aqueles que se

futuramente dedicarem a este tema.

O objectivo ultimo da linha de investigac¢do prosseguida € a criagao dos mecanismos
necessdrios para a utilizacdo da informacao disponivel em contextos onde esta é abun-
dante. Esta nova vis@o da aprendizagem em SMA poderd levar ao desenvolvimento
de diferentes paradigmas de aprendizagem, adequados as necessidades dos SMA, e ser

um passo mais no sentido de sistemas auténomos e inteligentes.

Abstract

La recherche dans le domaine des Systemes Multi-Agents (SMA) a pour objectif le
développement de solutions informatiques basées sur des éléments autonomes (agents)
qui interagissent et communiquent entre eux. Ces caractéristiques portent un nouvel
ensemble de problemes mais aussi la possibilité de développer des nouvelles solutions.
L’un des domaines de recherche qui s’est développé en parallele est I’ Apprentissage
Automatique (AA). La recherche dans le domaine la AA met en évidence de plus en
plus le développement de solutions destinées a travailler avec les problémes présentés
par les SMA. La contribution de la AA dans cette domaine est de la plus grande impor-
tance vue que la capacité d’adaptation est fondamentale pour améliorer 1’autonomie et

flexibilité des agents.

Ce travaille analyse la relation entre la communication et 1’apprentissage en cer-
tains types de SMA. Les problemes abordés se caractérisent par 1’existence de diverses
équipes d’agents pour les quelles 1’objectif est la résolution de problemes identiques en
locaux différentes. Chaque une des équipes pourra utiliser des différents mécanismes
d’apprentissage ou des solutions heuristiques. Dans le passé, I’apprentissage s’est basé
uniquement sur I’information de retour fournie par I’environnement. Des nouvelles
possibilités dans 1’utilisation d’autres sources d’information s’ouvrent avec 1’ introduc-
tion des SMA. L’ objectif de cette étude est de déterminer les effets de la communication

des exemples et des récompenses sur 1’apprentissage.

L’hypotheses proposées dans cet étude sont: que la communication peut améliorer
la performance des différents types d’agents durant 1’apprentissage, dans certain pro-
blemes; Est possible de rehausser les bénéfices de la communication avec ’'usage: des
algorithmes hybrides pour I’intégration de la information de différents sources, la util-
isation des environnent hétérogenes, et une bonne choix de les sources d’information.
L’hypotheses son testées en utilisant trois problemes: “prédateur et la proie”, une simu-
lation de distribution de charge par des serveurs, et une simulation de controle de trafic

basée sur les données réelles.

Durant cet étude, un ensemble de variables qui peuvent influencer la performance
des échanges d’information pendant I’apprentissage on été identifiées, comme par ex-
emple: transmission en bloque ou cas a cas; intégration immédiate ou stockage pour
intégration en bloque; nombre de conseillers; utilisation de conseillers préprogrammées;
environnements homogenes ou hétérogenes; mode d’intégration de I'information. Bien
quelle ne soit pas exhaustif a cause du tres grand nombre de combinaisons possibles,
notre recherche teste les efforts de plusieurs combinaisons de valeurs pour des variables

ci-dessus présentées.

Les expectatives initiales laissaient entrevoir la possibilité d’augmentation de la
vitesse et de la qualité résultant des échanges d’information particulierement en util-
isations sur d’environnements hétérogenes. On a pu constater que 1’échange d’infor-
mation apporte de bénéfices soit en termes de performance soit en termes de fiabilité.
Contrairement aux expectatifs initiales, I’hétérogénéité de 1’environnement et d’outres
techniques utilisées, n’ont pas produit les effets espérés. Ce fait peut étre due a la
performance quasi-optimale des agents quand ils échangent des informations.

Bien que cette recherche n’est pas finie on a énumérée les principales difficultés et

étudié des différents solutions.

L’objectif final de cette recherche est la création des mécanismes pour la utilisa-
tion de la information obtenue par touts les agents qui approche un probleme. Cette
recherche pourra porter le développement des nouvelles méthodes de apprentissage

plus approprié aux besoins des SMA.

The sooner you make your first 5000 mistakes

the sooner you will be able to correct them

in “The Natural Way to Draw”,
Kimon Nicolaides, 1941

Acknowledgments

To my parents and wife without whom this would not have been possible.

To my advisor for the freedom he allowed me in choosing my path and his good

advice and support at all times.

To all my colleagues and staff at FEUP/NIAD&R, ISCTE/DCTI and also to my
friends, for their help and useful comments, with a special thanks to Rui Lopes, Luis
Botelho, Ricardo Ribeiro, Pedro Figueiredo, Joaquim Esmerado, Nuno David, Luis

Mota, Alexandre Almeida, José Moura and Luis Paulo Reis.

Our thanks, also, to the Traffic Control Department of Camara Municipal de Lisboa
for making the necessary data available for the traffic-control simulation. A special
acknowledgement to the Open Software Foundation and all contributors to the software
used during this work. Our thanks to the anonymous reviewers that made a serious
analysis of our work and whose comments have been very helpful in the progress of
this research. Our thanks to FCT/PRODEP, DCTI and LIACC for the financial support
necessary for the research activities and for granting us the necessary time to develop

them.

I could not finish these acknowledgements without thanking the persons from whom
I have learned the most valuable lessons throughout these years, both in my profession
as well as in life. Their competence, professionalism and character have been an ex-
ample to me and to all those fortunate enough to have worked with them. To my great
teachers, Professors Eugénio da Costa Oliveira, Luis Borges de Almeida, Fernando
Corte-Real and Manuel Menezes de Sequeira, my gratitude and respect.

Definitions, Abbreviations and
Acronyms

The first item of the description, in parenthesis, is the section where the concept is
defined in the text.

Action (section 2.2) An agent’s decision that has consequences in the environment.

Action-dependent feature (section 6.2) A state feature that has a different value de-
pending on the action being considered. See also Action and State.

Adaptable Parameters (section 2.2) See Hypothesis Parameters.

Agent (section 1.1) An autonomous element of a MAS environment whose decisions
can affect state transitions. In this text all references to agent should be inter-
preted as Learning Agents.

Area (section 2.2) See Location.

Artificial Neural Network (ANN) (section 2.1.1) Evaluation function used mainly
with the Backpropagation algorithm. The name is also used to define a com-
puting paradigm that encompasses several types of functions, inspired by the
research on how human brain-cells work, as well as the learning algorithms that
apply to them.

Backpropagation (section 2.1.1) Supervised Learning Algorithm that adapts the pa-
rameters of an ANN to minimize the difference between the current response to
a given input and the desired response.

Connectionist Q-Learning (section 2.1.3) Adaptation of Q-Learning, used for large
search-spaces, that replaces the Q-table with an ANN.

Epoch (section 2.2) Period of time, consisting on a fixed number of turns. See also
Turn and Trial.

Environment (section 2.2) Virtual or physical space in which the agents are immersed.

See also Location.

Evaluation Function (section 2.2) A function that maps states to actions and contains
adaptable parameters (called Hypothesis). The Evaluation Function can also be
referred to as adaptive function. See also Hypothesis Parameters and Hypothesis.

Evolutionary Algorithms (EA) (section 2.1.4) Stochastic search algorithms, inspired
by Darwin’s theory, that represent each hypothesis as a specimen in competi-
tion with others for survival. Performance is seen as a measure of fitness and
the fittest specimens are allowed to breed, so as to iteratively improve the best
specimen or a whole population. This, broad, definition is subdivided in several
sub-categories such as: Genetic Algorithms, Evolutionary Strategies and Genetic

Programming See also Genetic Programming.

Genetic Programming (GP) (section 2.1.5) A sub-category of Evolutionary Algori-
thms where the base structures can be interpreted as program trees. See also
Strongly Typed Genetic Programming.

Hypothesis (section 2.2) Set of parameters of an Evaluation Function that determines
the mapping of states to actions.

Hypothesis Parameters (section 2.2) Adaptable components of an Evaluation Func-

tion. See also Hypothesis.

Learning Algorithm (section 2.1) Process of change that affects the Hypothesis based
on acquired information and leads to an improvement of a certain measure of
quality with respect to a certain class of tasks.

Learning Parameters (section 2.2) Set of label-value pairs that influence how a cer-
tain Learning Algorithm will change the Hypothesis.

Location (section 2.2) A sub-component of the environment where a team of Agents
acts.See also Area.

Multiagent Systems (MAS) (section 1.1) Aggregation of autonomous computing en-
tities (agents) jointly working in the same environment to reach, both, individual
and collective goals. The name of a research area the focuses on problems where
distributed and autonomous software/hardware is used. See also Agent.

Nash equilibrium (section 3.2.2) Situation that refers to a given set of hypothesis,
where changes in one of the hypotheses alone will cause a decrease in perfor-

mance.

Policy (section 2.2) A policy is the mapping made by an Evaluation Function accord-

ing to a given Hypothesis See also Hypothesis and Evaluation Function.

Q-Learning (QL) (section 2.1.3) Reinforcement Learning algorithm based on the es-
timation of the quality associated with pairs of states and actions.

Reward (section 2.2) Scalar number, in this work always in [0, 1], that measures an
estimated quality of an action/state, or a sequence of actions/states.

Reward-based Learning (section 2.1) Class of learning algorithms in which the feed-
back information comes in the form of a quality evaluation. When given an ex-
ample (usually called state in this case) the agent chooses an action and gets a
reward (which may be delayed in time). The agent’s objective is to maximize
this reward, i.e. learn to choose actions that cause the environment to give high
rewards as feedback. This label is proposed by Panait and Luke (2003).

State (section 2.2) A snapshot of the values of certain characteristics of the environ-
ment.

Strongly Typed Genetic Programming (GP) (section 2.1.5) A class of Genetic Pro-
gramming algorithms where the nodes in the program trees have types. Mutation
and crossover are bound by the use of these types. See also Genetic Program-
ming.

Supervised Learning (section 2.1) Class of learning algorithms in which the feedback
information is in the form of a desired response for each presented example. The
agent’s job is to emulate, generalize (and in some cases, describe the underlying

rules that govern) the behavior represented by the example-response pairs.

Trial (section 2.2) A sequence of events consisting of a given number of epochs See
also Epoch and Turn.

Trust (section 4.2) In this thesis trust is a coefficient that is proportional to the esti-
mated efficiency of the advice given by a certain advisor.

Turn (section 2.2) Period of time between two observations of the environment, in
which the agent may issue one or more actions See also Epoch and Trial.

Unsupervised Learning (section 2.1) Class of learning algorithms where there is no
feedback information, the learning agent’s job is to divide a set of examples into
a certain number of classes according to a given measure (distance between ex-
amples in most cases). The evaluation of the results depends on the application,
although in most cases what is requested is that the learning agent finds a division

that results in a compact and well defined partition of the example space.

Symbols

One of the main concerns related to notation was to maintain the coherence of the
meaning for the symbols used, with the exception of chapters 2 and 3, “Background
Concepts” and “Related Work™, respectively, where notations followed, as much as
possible, the most common norms for each specific subject. In other chapters coher-
ence had to be balanced with other concerns such as: clarity, size of equations and
readability, which forced minor adjustments in different contexts. For these reasons,
the indexes and function parameters are sometimes omitted, whenever they are not rele-
vant for the current explanation. Even though all symbols are defined the first time they
are used in each section, here we list their default meaning through the text. Whenever
a symbol has a different meaning this will be explicitly defined.

Variables are uncapitalized, e.g. (x), vectors are indicated using a bar above the

name, e.g. Z. The first letter of symbols representing sets is capitalized.

The indexes ¢,j and k are mainly used as the identifier of agents in a set. k is mainly
used as the identifier of an agent selected according to a certain criterium. t is always
used to define the time of a certain event or the index of a sequence of values for a

given variable.

The first item of the description, in parenthesis, is the section of the symbol’s first
appearance in the text.

A, + (section 2.2) The set of actions available for agent ¢ at time .

a; (section 2.2) Action take by agent ¢ at time ¢. The action may also be represented
as a vector a; ¢ representing the adequacy or probability of choosing each possi-

ble action.
B (section 2.2) Set of learning parameters that control a certain learning function.

&i+ (section 2.2) Previous experience obtained by agent 7 until a certain time ¢. Each
element of this set contains tuples with, at least, three values, namely: state,
action and reward.

Fi,i (section 2.2) Evaluation Function of type k used by agent <.

H; . (section 2.2) Hypothesis in use by agent ¢ at time ¢.

‘H; (section 2.2) Set of optimal hypothesis parameters for a given agent ¢ considering

the current state and dynamics of the environment.

7:(;‘ (section 2.2) Hypothesis with the best estimated performance found by agent 7 at

time ¢.

L; (section 2.2) Learning function that transforms the hypothesis’ values, based on

previous experience.
;¢ (section 2.2) Snapshot of the policy used by agent 7 at time ¢.
®,; (section 2.2) The set of all agents acting in location /.

Q+(8,a) (section 2.1.3) Estimated quality of taking action a at state 5 at a given time
t.

Q+(5) (section 2.1.3) Estimated quality of taking each of the possible actions at state
5 and time .

R, ,, (section 2.2) Reward achieved by the team controlling location [in epoch n.
75+ (section 2.2) Reward achieved by agent ¢ after issuing an action at time ¢.

T1.n (section 2.2) Reward achieved by a team of agents in location [at epoch 7.

5;¢ (section 2.2) State of the environment from the point-of-view of agent ¢ at time ¢.
Sl,t (section 2.2) State of the environment at location [and time ¢.

T (section 2.1.3) Temperature parameter for Boltzmann selection.

Wy; (section 2.1.1) Weight of an ANN connecting unit ¢ of layer n to unit j of layer
n+ 1

Contents

1 Introduction

1.1 Motivation L e
1.2 ThesisQuestion
1.3 Objectivesand Approach
1.4 Contributions
1.5 Reader’'sGuide

2 Background Concepts

2.1 Overview of Learning Algorithms
2.1.1 Backpropagation
212 ID3 .o
2.1.3 Q-Learning
2.1.4 Evolutionary Algorithms
2.1.5 Strongly Typed Genetic Programming
2.2 Learning in Multiagent Systems
2.3 The Problems of Learningin MAS
2.3.1 Continuous Policy Changes
2.3.2 Policy Coordination
233 Knowledge Transfer

3 Related Work

3.1 Early Related Work (1990-94)
3.2 Recent Contributions
3.2.1 Transfer of Knowledge from Different Problems
3.2.2 Multiagent Reinforcement Learning

CONTENTS

3.2.3 Advice by Humans and Automated Experts
324 Trust
3.2.5 Adaptation of Learning Parameters
3.3 Application-Domains L
33.1 Predator-Prey
332 Traffic-Control
333 Load-Balancing

3.3.4 Summary on related applications

4 Communication During Learning
4.1 Useful Information
4.2 When and Where to Collect Information?

4.3 Integrating Information L.

5 Simulator Architecture and Agent’s Structure
5.1 Environment’s Structure
5.2 Agent’sStructureo
5.2.1 Response to External Events,
5.2.2 Reward Statistics Lo
5.2.3 Learning Algorithms and Evaluation Functions
5.24 Information Storage
5.2.5 Learning Stages.o
52,6 Roles
5.27 Learnabilityand Trust
528 Advice e

6 Experimental Framework
6.1 Predator-Prey
6.2 Load-Balance
6.3 Traffic-Control

54
55
56
56
57
59
63
64

65
65
67
72

75
77
78
80
81
83
93
94
96
97
98

CONTENTS 10

7 Results and Discussion 113
7.1 Predator-Prey Baseline 115
7.2 Experiment Set 1: Heuristic Advisors 118
7.3 Experiment Set 2: Homogeneous and Heterogeneous Advisors 124
7.4 Experiment Set 3: Specific Advice, Roles and Trust 129
7.5 Experiment Set 4: Batch Advice, Roles and Trust 132

7.6 Experiment Set 5: Learning Stages and Adaptation of Learning Param-
CLETS . . v v i i e e 134

7.7 Experiment Set 6: Combining Roles, Trust and Adaptation of Learning

Parameters. 140
7.8 TrafficBaseline 143
7.9 Experiment Set 7: Homogeneous and Heterogeneous Advisors 144

7.10 Experiment Set 8: Learning Stages and Adaptation of Learning Param-

5 145

7.11 Load-Balance Baseline 151
7.12 Experiment Set 9: Learning versus Advice 152
7.13 Comparison with results of other authors 155
7.14 Summary of the discussion 159

8 Conclusions and Future Work 160
8.1 Summary of contributions oL 162

82 FutureWork 163

A Abandoned Tracks and Unsolved Problems 172
A.l Discussion. e 172
A.1.1 Problems with quick transitions 172

A.1.2 Common storage format 173

A.1.3 Generalizationof examples 173

A.1.4 Evaluation of advisor X situation 174

A.1.5 Dynamic role-learning, 175

A. 1.6 Team Supervisors vt 175

A.1.7 Combining advice 175

A.18 Confidence, 176

A.1.9 Influence-Exchange. 177

CONTENTS

B Simulator Design and Parameters

B.1

B.2

B.3

Design
B.1.1 Algorithms, Parameters and Evaluation Functions
B.1.2 Statistics
B.1.3 Environments and Agents
B.1.4 Javalnterface Server
Simulation Parameters 0oL
B.2.1 Directory organization
B.2.2 Simulation Parameters
Response tothe mainevents

C Detailed Results

C.1
C2
C3
C4
C5
C.6
C.7
C.8
C9

Predator Prey Baseline Tests
ExperimentSet 1,
ExperimentSet2
ExperimentSet3
Experiment Set4 Lo oL
ExperimentSetS
ExperimentSet6
Traffic Baseline Tests

Experiment Set7

C.10 Experiment Set8

C.11 Load Balance Baseline Tests

C.12 Experiment Set9

D Job Routing: Analysis of Baseline Tests

D.1
D.2
D3
D4

Introduction
Discussion
Conclusions e

Acknowledgements

11

178
178
179
179
180
180
186
186
188
196

199
200
203
211
216
219
222
226
231
234
239
244
247

List of Figures

2.1

5.1

52
53

54

6.1

6.2
6.3

ANN with three, fully connected, layers. Circles represent nodes that
sum their inputs an perform a non-linear transformation, while squares
represent input and output variables. Rectangles group a set of related
variables or nodes (layer). The lines represent links that carry the result
of the lower nodes’ computation to the upper nodes multiplying it by a
weightfactor. L

Environment’s structure. The Infrastructure (IS) modules may con-
tain Directory Facilitators (DF), as well as other services necessary to
gather and distribute information on a particular environment/location.
Lines represent some of the possible communications between ele-
ments in the environment. L.

Agent components.o L e e e e

ANN for Connectionist Q-Learning with separate hidden layers for
each output and a linear output layer. Circles represent ANN nodes,
rectangles enclose associated nodes and lines represent weighted links
betweennodes. o o

An example of a Program Tree. Diamonds represent conditional in-
structions. Rectangles represent functions. Round-edged rectangles

represent leaf-nodes. The result types appear above each node.

An arena of the predator-prey problem with 15X 15 positions, 2 preda-
tors and 1 prey. Predators have a visual-range of 4. The white squares
represent predators; the circle represents the prey; The arrows indicate
the movement of the objects and the grey area defines the visual-field
of the agent in the lower rightcorner.

Load-balance scenario.

Partial view of a traffic-control area with 4 x 4 crossings (16 traffic
controllers). e

12

33

77
80

84

90

LIST OF FIGURES

6.4

7.1

7.2

7.3

7.4

1.5

7.6

1.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

Example of the traffic flow in the 3 side-lanes of Av. Republica (North-
South direction). The vertical axis represents the number of cars that
passed the sensor in each 5 minutes (300s) period. Data collected on
19/07/2001, between Ohand 24h.

Example of three locations in a mixed scenario (S2MHO0), each 15x 15
positions, 2 predators and 1 prey, per location. The squares represent
predators; the circle represents the prey.

Average evolution of the combined reward in the baseline experiment
(IM2HO) for the Predator-Prey problem.

Example of pursuit by two predators in the same direction. Situation
described in section 6.1, par. 7, that was common in baseline experi-
ments. The situation on the left-side depicts the state for a time ¢t = 0,
while the right-side depicts the situation approximately 20 turns later,
after the predator have circled around the arena twice chasing the prey.

Evolution of the average combined-reward for EA-agents in Experi-
mentSet l.

Evolution of the average combined-reward for GP-agents in Experi-
mentSet I.

Evolution of the average combined-reward for QL-agents in Experi-
mentSet I.

Example of pursuit by two predators surrounding the prey. Situation
described in section 6.1, par. 7. The situation on the left-side depicts
the state for a time ¢ = 0, while the right-side depicts the situation 5
turns later. L L

Evolution of the average combined-reward for EA-agents in Experi-
ment Set2. e e

Evolution of the average combined-reward for GP-agents in Experi-
ment Set2. e e

Evolution of the average combined-reward for QL-agents in Experi-
mentSet2.

Evolution of the average combined-reward for EA-agents in Experi-
mentSet3.

Evolution of the average combined-reward for GP-agents in Experi-
mentSet3.

Evolution of the average combined-reward for QL-agents in Experi-

ment Set3. e

Evolution of the average combined-reward for EA-agents in Experi-
mentSetd. ..o

13

109

115

116

LIST OF FIGURES

7.15

7.16

7.17

7.18

7.19

7.20
7.21
7.22
7.23

7.24

7.25
7.26
7.27
7.28

7.29
7.30
7.31
7.32

7.33
7.34
7.35
7.36

7.37
7.38
7.39

Evolution of the average combined-reward for GP-agents in Experi-
mentSetd. ...

Evolution of the average combined-reward for QL-agents in Experi-
mentSetd. ...

Evolution of the average combined-reward for EA-agents in Experi-

ment SetS. e

Evolution of the average combined-reward for GP-agents in Experi-
mentSetS.

Evolution of the average combined-reward for QL-agents in Experi-
ment SetS.

Summary of the final results for EA-agents in Experiment Set 6.
Summary of the final results for GP-agents in Experiment Set 6.
Summary of the final results for QL-agents in Experiment Set 6.

Average evolution of the combined reward in the baseline experiment
(IM4HO) for the Traffic-control problem.

Average evolution of the combined reward in Experiment Set 7 for the
Traffic-control problem.

Summary of the final results for EA-agents in Experiment Set 7.
Summary of the final results for GP-agents in Experiment Set 7.
Summary of the final results for QL-agents in Experiment Set 7.

Average evolution of the combined reward in Experiment Set 8 for the
Traffic-control problem.

Summary of the final results for EA-agents in Experiment Set 8.
Summary of the final results for GP-agents in Experiment Set 8.
Summary of the final results for QL-agents in Experiment Set 8.

Average evolution of the combined reward in the baseline experiment
(IM2HO) for the load-balancing problem.

Summary of the final results for EA-agents in Experiment Set 9.
Summary of the final results for GP-agents in Experiment Set 9.
Summary of the final results for QL-agents in Experiment Set 9.

Score for H-agents (random-routing) in the load-balancing problem
(Experiment Set9).

Score for QL-agents in the load-balancing problem (Experiment Set 9).
Score for EA-agents in the load-balancing problem (Experiment Set 9).

Score for GP-agents in the load-balancing problem (Experiment Set 9).

14

135

136

137

138

139
141
142
142

144

146
146
147
147

149
149
150
150

152
153
154
154

155
156
157
158

LIST OF FIGURES 15

B.1 Summary of the Algorithm hierarchy. 181
B.2 Summary of the Parameters hierarchy. 182
B.3 Summary of the Evaluation Functions hierarchy. 183
B.4 Summary of the Statistics hierarchy. 184

B.5 Summary of the Agent’s hierarchy. The X stands for each of the spe-
cialized agents and environments for each particular problem (Predator-
Prey, Traffic-Control and Load-Balance). 185

C.1 Average evolution of combined reward for the Predator-Prey problem

in the baseline experiments (IM2HO). 200
C.2 Summary of results for EA-agents in the baseline Experiment Set on
the Predator-Prey problem., 201
C.3 Summary of results for GP-agents in baseline Experiment Set on the
Predator-Prey problem. oL 202
C.4 Summary of results for QL-agents in the baseline Experiment Set on
the Predator-Prey problem. 202
C.5 Average evolution of the combined reward in experiment SE2H1-Offline
Batch Standing. 203
C.6 Average evolution of the combined reward in experiment SE2H1-Offline
Specific Standing.o oL 204
C.7 Average evolution of the combined reward in experiment SG2H1-Offline
Batch Standing. 205
C.8 Average evolution of the combined reward in experiment SG2H1-Offline
Specific Standing. 205
C.9 Average evolution of the combined reward in experiment SQ2H1-Offline
Batch Biasing Standing. 206
C.10 Average evolution of the combined reward in experiment SQ2H1-Offline
Batch Virtual-Experience Standing. 207
C.11 Average evolution of the combined reward in experiment SQ2H1-Offline
Specific Biasing Standing. 0oL 208
C.12 Average evolution of the combined reward in experiment SQ2H1-Online
Specific Biasing Standing. oL 208
C.13 Average evolution of the combined reward in experiment SQ2H1-Online
Specific Imitation Standing. 0oL 209
C.14 Summary of results for EA-agents in Experiment Set 1. 209

C.15 Summary of results for GP-agents in Experiment Set 1. 210

LIST OF FIGURES 16

C.16 Summary of results for QL-agents in Experiment Set 1. 210
C.17 Average evolution of the combined reward in experiment SE2ZHO-Offline
Batch Standing. 211
C.18 Average evolution of the combined reward in experiment SG2HO-Offline
Batch Standing. 212
C.19 Average evolution of the combined reward in experiment SM2HO-Multiple
AdVISOTS. . ..o 213
C.20 Average evolution of the combined reward in experiment SM2HO-Standing
AdVIsOr. 213
C.21 Average evolution of the combined reward in experiment SQ2HO-Offline
Batch Virt-Exp- Standing.o Lo 214
C.22 Summary of results for EA-agents in Experiment Set2. 214
C.23 Summary of results for GP-agents in Experiment Set2. 215
C.24 Summary of results for QL-agents in Experiment Set2. 215
C.25 Average evolution of the combined reward in experiment SM2HO-Offline
Specific MultipleRoles., 216
C.26 Average evolution of the combined reward in experiment SM2HO-Offline
Specific Multiple Roles Trust. 217
C.27 Summary of results for EA-agents in Experiment Set3. 217
C.28 Summary of results for GP-agents in Experiment Set 3. 218
C.29 Summary of results for QL-agents in Experiment Set3. 218
C.30 Average evolution of the combined reward in experiment SM2HO-Offline
Batch MultipleRoles. 219
C.31 Average evolution of the combined reward in experiment SM2HO-Offline
Batch Multiple Trust., 220
C.32 Summary of results for EA-agents in Experiment Set4. 220
C.33 Summary of results for GP-agents in Experiment Set4. 221
C.34 Summary of results for QL-agents in Experiment Set4. 221

C.35 Average evolution of the combined reward in experiment SM2HO-Offline
Batch Multiple Changing Advice Modes. 222

C.36 Average evolution of the combined reward in experiment SM2HO-Offline
Batch Multiple Changing Learning Parameters. 223

C.37 Average evolution of the combined reward in experiment SM2HO-Offline
Batch Multiple Changing Advice Modes and Parameters. 224

C.38 Summary of results for EA-agents in Experiment Set5. 224

LIST OF FIGURES 17

C.39 Summary of results for GP-agents in Experiment Set5. 225
C.40 Summary of results for QL-agents in Experiment Set5. 225

C.41 Average evolution of the combined reward in experiment SE2H1-Offline
Batch Multiple Changing Advice Modes and Parameters. 226

C.42 Average evolution of the combined reward in experiment SG2H1-Offline
Batch Multiple Changing Advice Modes and Parameters. 227

C.43 Average evolution of the combined reward in experiment SM2H1-Offline
Batch Multiple Changing Advice Modes and Parameters. 228

C.44 Average evolution of the combined reward in experiment SQ2H1-Offline
Batch Virt-Exp- Multiple Changing Advice Modes and Parameters. . 228

C.45 Summary of results for EA-agents in Experiment Set6. 229
C.46 Summary of results for GP-agents in Experiment Set 6. 229
C.47 Summary of results for QL-agents in Experiment Set6. 230
C.48 Average evolution of the combined reward in the baseline Experiment

Set for the Traffic-Control problem. 231
C.49 Summary of results for EA-agents in the baseline Experiment Set for

the Traffic-Control problem. 232
C.50 Summary of results for GP-agents in the baseline Experiment Set for

the Traffic-Control problem. 232
C.51 Summary of results for QL-agents in the baseline Experiment Set for

the Traffic-Control problem. 233
C.52 Average evolution of the combined reward in experiment SE4HO-Offline

Batch MultipleRoles., 234
C.53 Average evolution of the combined reward in experiment SG4HO-Offline

Batch MultipleRoles. 235
C.54 Average evolution of the combined reward in experiment SM4HO-Offline

Batch MultipleRoles. 236
C.55 Average evolution of the combined reward in experiment SQ4HO-Offline

Batch Virtual-Experience Multiple Roles. 236
C.56 Summary of results for EA-agents in Experiment Set7. 237
C.57 Summary of results for GP-agents in Experiment Set 7. 237
C.58 Summary of results for QL-agents in Experiment Set7. 238

C.59 Average evolution of the combined reward in experiment SE4H1-Offline
Batch Multiple Roles Changing Advice Modes and Parameters. 239

C.60 Average evolution of the combined reward in experiment SG4H1-Offline
Batch Multiple Roles Changing Advice Modes and Parameters. 240

LIST OF FIGURES 18

C.61 Average evolution of the combined reward in experiment SM4H1-Offline
Batch Multiple Changing Advice Modes and Parameters. 241

C.62 Average evolution of the combined reward in experiment SQ4H1-Offline
Batch Virt-Exp- Multiple Roles Changing Advice Modes and Parameters.241

C.63 Summary of results for EA-agents in Experiment Set 8. 242
C.64 Summary of results for GP-agents in Experiment Set8. 242
C.65 Summary of results for QL-agents in Experiment Set8. 243
C.66 Average evolution of the combined reward in the baseline experiments

for the load-balance problem. 244
C.67 Summary of results for EA-agents in the baseline Experiment Set for

the load-balance problem. oL 245
C.68 Summary of results for GP-agents in the baseline Experiment Set for

the load-balance problem. Lo 245
C.69 Summary of results for QL-agents in the baseline Experiment Set for

the load-balance problem. 246
C.70 Average evolution of the combined reward in experiment SM2HO-Offline

Batch Multiple Roles Changing Advice Modes and Parameters. 247
C.71 Summary of results for EA-agents in Experiment Set9. 248
C.72 Summary of results for GP-agents in Experiment Set9. 248
C.73 Summary of results for QL-agents in Experiment Set9. 249
D.1 Load-balance scenario (network #3). 251

D.2 Markov chain representation for the state of a given server whose speed
(i.e. work capacity)is 1/k. 253

D.3 Comparison of the probability of having n jobs in queue in the slowest
Mail-server, (that completes only one job every 5 time-steps) obtained
by equation D.3 with k=5 (represented by the squares), with the em-
pirical results averaged over 51 experiments (represented by the cross).
The 95% confidence interval for a t-test, relative to the empirical re-

sults,isalsopresented. L. 254

D.4 Comparison of the probability of having n jobs in queue in the slow-
est Database-server, (that completes only one job every 5 time-steps)
obtained by equation D.3 with k=5 (represented by the squares), with
the empirical results averaged over 51 experiments (represented by the
cross). The 95% confidence interval for a t-test, relative to the empiri-

cal results, is also presented. 255
D.5 Time-to-go for all jobs generated in one experiment (after warmup). . 256

D.6 Average score of both users in each epoch (after warmup). 257

List of Tables

2.1

3.1
3.2

33
34

5.1

52

53

54

Summary of ID3 Algorithm for binary classification, adapted from
(Mitchell, 1997). E stands for a set of examples classified as posi-
tive or negative and A is a set of attributes that compose each example.
Node stands for a positive classification, Node_ for a negative. . . .

Parameters for Tan’s predator-prey experiments.

Average number of steps to individual capture in Tan’s Predator-Prey
Experiments (for 2 predators and 1 prey). In “mutual scouting” mode
the agents have extra information on the prey’s position sent by their
PArtner. e e e e e

Parameters for Haynes’ predator-prey experiments.

Average number of captures in test in 1000 random scenarios x 200

steps in Haynes’ predator-prey experiments, using 4 predators and 1

PIEY. o o e

Main parameters for a QL-Agent. The second column contains the type
of change these parameters undergo during training in standard imple-
mentations. The third column is a summary of the expected effects of
changing each parameter.

Main parameters for an EA-Agent. The second column contains the
type of change these parameters undergo during training in normal cir-
cumstances. The third column is a summary of the expected effects of
changing each parameter.

Description of the main types of Nodes in a Program Tree. The subtree

types are: (b)ooleanand (r)eal.,

Main parameters for a GP-Agent. The second column contains the
type of change these parameters undergo during training in normal cir-
cumstances. The third column is a summary of the expected effects of

changing this parameter. Most parameters were omitted because they

35

58

58
59

59

85

88

91

are similar to those referred in table 5.2 and changes have similar effects. 92

19

LIST OF TABLES

5.5

6.1

6.2
6.3
6.4

7.1

7.2
7.3
7.4
7.5

7.6
7.7
7.8
7.9

7.10
7.11

7.12

7.13

Learning Stages, their characteristics and impact on learning parame-
TOIS. o o o e e e e

Parameters for predator-prey experiments. Comparable to tables 3.1
and3.3.

Summary of the parameters for the Load-Balance experiments.
Summary of the parameters for the traffic environment.

Summary of the parameters for the traffic experiments.

Summary of the final results for the predator-prey problem in the base-
line experiments (without communication).

Summary of the final results for EA-agents in Experiment 1.
Summary of the final results for GP-agents in Experiment 1.
Summary of the final results for QL-agents in Experiment 1.

Average number of bytes exchanged between an advisee of a given type
(lines) and an advisor (columns) in Experiment Set 1. All values in
average number of examples per agent x epoch. Example-size is 232
bytes for Virtual-Experience integration while all others only require
144 bytesperexample.

Summary of the final results for EA-agents in Experiment 2.
Summary of the final results for GP-agents in Experiment 2.
Summary of the final results for QL-agents in Experiment2.

Average number of bytes exchanged between an advisee of a given type
(lines) and an advisor (columns) in Experiment Set 2. All values in
average number of examples per agent x epoch. Example-size is 232
bytes for Virtual-Experience integration while all others only require
l44 bytes perexample.

Summary of the final results for Experiment3.

Average number of bytes exchanged between an advisee of a given
type (lines) and an advisor (columns) in Experiment Set 3. All values
in average number of examples per agent X epoch. Example-size is
144 bytes. o o e e

Summary of the final results for Experiment 4. Results of Baseline
(lines 1 to 3), Experiment Set 2 (lines 4 to 5), and best performances
(lines 7 to 9) introduced for comparison.

Average number of bytes exchanged between an advisee of a given
type (lines) and an advisor (columns) in Experiment Set 4. All values
in average number of examples per agent X epoch. Example-size is
144bytes. . . . o oo e

20

120

126
129

LIST OF TABLES

7.14 Average number of bytes exchanged between an advisee of a given
type (lines) and an advisor (columns) in Experiment Set 5. All values
in average number of examples per agent X epoch. Example-size is
144 bytes. o o e e e e e

7.15 Summary of the final results for Experiment5.

7.16 Average number of bytes exchanged between an advisee of a given
type (lines) and an advisor (columns) in Experiment Set 6. All values
in average number of examples per agent X epoch. Example-size is
144 bytes. o . e e

7.17 Summary of the final results for Experiment6.

7.18 Summary of the final results for the traffic-control problem in baseline
trials.

7.19 Average number of bytes exchanged between an advisee of a given
type (lines) and an advisor (columns) in each epoch in Experiment Set
7. Example-size is 64 bytes.

7.20 Summary of the final results for the traffic-control problem in Experi-

ment Set7. e e

7.21 Summary of the final results for the traffic-control problem in Experi-
mentSet8.

7.22 Average number of bytes exchanged between an advisee of a given
type (lines) and an advisor (columns) in each epoch in Experiment Set
8. Example-sizeis 64 bytes.

7.23 Summary of the final results for the load-balance problems in baseline
trials.

7.24 Summary of the final results for the load-balance problems in Experi-

ment Set9.

B.1 Environment parameters for Predator Prey (file:masl.ptab).
B.2 Environment parameters for Load Balance (file:masl.ptab).
B.3 Environment parameters for Traffic Control (file:masl.ptab).
B.4 Statistics-related parameters (file:stats.ptab)
B.5 Advice related parameters (file:adv.alg.ptab).
B.6 Parameters for EA and GP algorithms (files: ea.al.ptab, gp.alg.ptab). .
B.7 Parameters for QL algorithms (file:rl.alg.ptab)
B.8 Program-Tree parameters (file:gp.pt.iobj)

C.1 Results of the final validation cycle for the baseline Experiment Set on
the Predator-Prey problem.

21

191

201

LIST OF TABLES 22

C.2 Results of the final validation cycle for experiment SE2H1-Offline Batch
Standing. 203

C.3 Results of the final validation cycle for experiment SE2H1-Offline Spe-
cificStanding.o oL 203

C.4 Results of the final validation cycle for experiment SG2H1-Offline
Batch Standing. 204

C.5 Results of the final validation cycle for experiment SG2H1-Offline
Specific Standing. o 204

C.6 Results of the final validation cycle for experiment SQ2H1-Offline
Batch Biasing Standing.o oL 206

C.7 Results of the final validation cycle for experiment SQ2H1-Offline
Batch Virtual-Experience Standing. 206

C.8 Results of the final validation cycle for experiment SQ2H1-Offline
Specific Biasing Standing. oL 207

C.9 Results of the final validation cycle for experiment SQ2H1-Online Spe-
cific Biasing Standing. oL oL 207

C.10 Results of the final validation cycle for experiment SQ2H1-Online Spe-
cific Imitation Standing. oL 207

C.11 Results of the final validation cycle for experiment SE2HO-Offline Batch
Standing. 211

C.12 Results of the final validation cycle for experiment SG2H0-Offline
Batch Standing. 211

C.13 Results of the final validation cycle for experiment SM2HO-Multiple
Advisors. . ..o 212

C.14 Results of the final validation cycle for experiment SM2HO0-Standing
AdVISOr. 212

C.15 Results of the final validation cycle for experiment SQ2HO0-Offline
Batch Virt-Exp- Standing. oL 212

C.16 Results of the final validation cycle for experiment SM2HO0-Offline
Specific Multiple Roles. 216

C.17 Results of the final validation cycle for experiment SM2HO0-Offline
Specific Multiple Roles Trust. 216

C.18 Results of the final validation cycle for experiment SM2HO0-Offline
Batch Multiple Roles. 219

C.19 Results of the final validation cycle for experiment SM2HO0-Offline
Batch Multiple Trust. 219

LIST OF TABLES 23

C.20 Results of the final validation cycle for experiment SM2HO0-Offline
Batch Multiple Changing Advice Modes. 222

C.21 Results of the final validation cycle for experiment SM2HO0-Offline
Batch Multiple Changing Learning Parameters. 222

C.22 Results of the final validation cycle for experiment SM2HO0-Offline
Batch Multiple Changing Advice Modes and Parameters. 223

C.23 Results of the final validation cycle for experiment SE2H1-Offline Batch
Multiple Changing Advice Modes and Parameters. 226

C.24 Results of the final validation cycle for experiment SG2H1-Offline
Batch Multiple Changing Advice Modes and Parameters. 226

C.25 Results of the final validation cycle for experiment SM2H1-Offline
Batch Multiple Changing Advice Modes and Parameters. 227

C.26 Results of the final validation cycle for experiment SQ2H1-Offline
Batch Virt-Exp- Multiple Changing Advice Modes and Parameters. . 227

C.27 Results of the final validation cycle for the baseline Experiment Set for

the Traffic-Control problem., 231
C.28 Results of the final validation cycle for experiment SE4HO-Offline Batch
MultipleRoles. 234
C.29 Results of the final validation cycle for experiment SG4H0-Offline
Batch Multiple Roles. 234
C.30 Results of the final validation cycle for experiment SM4HO0-Offline
Batch Multiple Roles. 235

C.31 Results of the final validation cycle for experiment SQ4HO-Offline
Batch Virtual-Experience Multiple Roles. 235

C.32 Results of the final validation cycle for experiment SE4H1-Offline Batch
Multiple Roles Changing Advice Modes and Parameters. 239

C.33 Results of the final validation cycle for experiment SG4H1-Offline
Batch Multiple Roles Changing Advice Modes and Parameters. . . . 239

C.34 Results of the final validation cycle for experiment SM4H1-Offline
Batch Multiple Changing Advice Modes and Parameters. 240

C.35 Results of the final validation cycle for experiment SQ4H1-Offline
Batch Virt-Exp- Multiple Roles Changing Advice Modes and Parame-
EBIS. . o o e e e e e e e e e e 240

C.36 Results of the final validation cycle for the baseline experiment of the
load-balance problem. oL 244

C.37 Results of the final validation cycle for experiment SM2HO0-Offline
Batch Multiple Roles Changing Advice Modes and Parameters. . . . 247

Chapter 1

Introduction

1.1 Motivation

In the past decades the concepts of decentralization and autonomy concentrated the
attention of researchers in most areas of computational sciences. The facts in favor of
decentralized and autonomous software solutions are well known and have been proved
in practice by its growing use. The main factors that are usually pointed out in favor of

these solutions when compared to centralized ones, are:

Better resistance to failure, e.g. distributed network management;
e More efficient access to decentralized resources, e.g. distributed Databases;
e Decrease in the number of critical bottlenecks/elements, e.g. distributed routing;

A large number of small and cheap computational elements can overpower cen-
tralized processing solutions, e.g. SETI program (SETI, 2005);

The ability to cope with situations where direct human/centralized control is not
possible, e.g. Mars Rover project (MarsRover, 2005);

Although centralized solutions still have — and will certainly keep — their place
in many areas, it is increasingly obvious that there are a number of problems where
decentralized software is a better option. In some cases it is the only option. It is im-
portant to notice that when speaking of these concepts we are, in most cases, referring
to “a certain degree of decentralization/autonomy” and that the efficient balance of this
degree is always a problem-dependent feature.

The field of Multiagent Systems (MAS) is currently the ground for most of the
research involving this type of software. We will not go into the discussion of “what
is an agent?”. This discussion has been a controversial one in the recent past. Now,
that the dust has settled, there are a certain number of characteristics that seem to be
consensual about this type of software, namely: a relative degree of autonomy in the

24

CHAPTER 1. INTRODUCTION 25

decision process, the ability to, pro-actively, interact with the environment and other

agents and the fact that it is immersed in a “society”.

The MAS area merges the research from several other areas, some of which were
unrelated in the past. One of these is Machine Learning (ML) that was also faced with
the problems and advantages put forth by MAS. Some authors argue that true auton-
omy can only be achieved through adaptability and learning. But, complex MAS, add
several challenges to the, already difficult, problem of single-agent automated learning,

namely:

e Partial observability;
e Non-static environments, due to:

— Constant changes in other agents’ policies;
— External/Unpredictable events;
e Integration of, often conflicting, local solutions;
e Large search-spaces (when considering the information collected by all agents);

Of course most of these problems had already been approached, but they were usu-
ally tackled individually. Their appearance as an ensemble creates a new problem, for
which some of the proposed solutions are ineffective. Given the growth in popularity
of MAS the demand for adequate solutions is now higher than ever. The reviews of
Sen (1997), Weiss and Dillenbourg (1999) and Kazakov and Kudenko (2001) corrob-
orate this view, mentioning learning and cooperation between autonomous agents as
important subjects of research that deserve attention and are likely to become the main
features of this new generation of software.

Several approaches have been attempted for these problems, but none which con-
siders the possibility of joining the efforts of teams that use different learning algo-
rithms by exchanging information between them. The strength of diversity has been
proven in nature as in human societies. Communication was once the main break-
through in human evolution (some say, the main difference between humans and other
animals) and is now a key factor in the advance of science. Is learning in MAS an ex-
ception, or can these two concepts (communication and heterogeneity) be used to our
advantage in this problem too? This work will attempt to take us (and the reader) one
step further, however small it may be, towards an answer to this question.

1.2 Thesis Question

As we mentioned in the previous section there are several new problems but also
new advantages to explore in MAS. One of the main advantages is that there is more
information available in MAS than in traditional ML scenarios. Establishing if/how

CHAPTER 1. INTRODUCTION 26

this additional information may be used advantageously to improve an agents’ learning
process is the main concern of this work.

As hinted above the question we strive to answer is: “(How) can heterogeneous
teams of learning agents benefit from exchanging information during the learn-
ing process?” or, rephrasing it as a working hypothesis: Can communication im-
prove agents’ learning performance, for several learning algorithms in a specific type
of problems? Is it possible to enhance the benefits of communication by: using hy-
brid algorithms to integrate information from different sources? using heterogeneous

environments and/or an adequate selection of information sources?

It is important to establish that when we speak of “heterogeneous teams” we mean
that each team may use different learning algorithms. We have not approached the
problems related to heterogeneity of learning algorithms within the group. There are
no restrictions in our proposals that preclude these scenarios, but no effort was done to

investigate or solve the particular problems posed by intra-team heterogeneity.

It is also important to define that our approach is in a middle ground between the
definitions of Concurrent Learning (MAS where each agent learns on its own) and
Team Learning (where teams learn as a whole). These definitions are proposed by
Panait and Luke (2003).

In the course of this research several questions were raised. This report will try to
guide the reader through the problems that emerged and propose a set of solutions that

will be evaluated and discussed. Some of the questions discussed in this work are:

e What information is useful to the learning task, other than the one directly pro-
vided by the environment?

e How can agents select the appropriate information source for a given situation?

e How can different types of information be integrated in an agent’s learning pro-
cess?

e What are the consequences of communication between agents that use different
learning algorithms in similar problems?

Much of the related work, focused on section 3 of this report, only considers parts of
the problem, specific instances of single-agent environments, the use of expert advisors,
or situations where all agents use similar learning algorithms. In this work we have
tried to broaden the spectrum of possible environments and agent types. It is likely
that specific solutions to some of our test-problems may show a better performance
than our approach. Nevertheless, this study is important and, to the best of the author’s
knowledge, original work.

The problems under scrutiny are related to many others and it is important at
this moment to “draw-the-line” on what is the focus of this research. This work is
not concerned with: explicit coordination protocols, ontologies, social behavior dy-
namics (except for learning-related behaviors), concurrence, synchronization, secu-
rity, non-cooperative/malicious agents, or the solution to the problems of any specific

CHAPTER 1. INTRODUCTION 27

application-domain. The experiments were designed with the sole purpose of verifying
the quality of the approach we present in paradigmatic instances of problems in which
several teams of autonomous learning agents may be used to solve similar problems at

different locations.

1.3 Objectives and Approach

Our objective is to improve the efficiency of several teams of learning agents using
communication. We aim at results in which all teams achieve better performances in
scenarios where they are allowed to communicate than in those where this option is not
available.

We study the effects of exchanging of information between agents of different types
during the learning process. In the experiments we made, we use several different
learning algorithms as well as pre-programmed agents with fixed (heuristic) behaviors.
All teams will be attempting to solve similar problems and trying to use communication

with their peers to improve their skills.

In this work we experiment with one well known toy-problem and two simulated
application domains (load-balance and traffic-control), but the model is not restricted
by any particular feature of these application-domains. Other MAS applications can
also use our model, provided that: they learn from environment rewards, and there are
several communicating teams of learning agents, solving similar problems, at different
locations. In our experiments, we have chosen a few learning algorithms to demonstrate
how the concepts could be applied. The choice of these learning algorithms is related
to their adequacy in solving the type of problems we intended to address and with a
concern to cover different types of algorithms, which should lead to a more general set
of solutions. Even though the efficiency of some proposed solutions is algorithm and
problem-dependent, the same concepts can be applied to other problems and learning

algorithms.

Our approach can be used directly in a real environment as much as any learning
solution that depends on learning from errors. We believe, however, that validating this
model requires a cycle that includes simulation, testing and deployment phases. In the
first phase agents would learn in a simulated environment, that follows, as closely as
possible, the dynamics of the real system to which a solution is required. After gen-
erating a set of policies (and possibly using fixed adaptation parameters) the solutions
must be tested in a real environment under strict supervision, either human or auto-
matic or in a more detailed simulation. Finally, if tests prove the efficiency of the new
solutions, these can be deployed on a real situation and the changes in the environ-
ment’s dynamics propagated back to the simulation where a new learning phase would
start. This type of cycle is well known in software engineering but seldom considered
in the automatic employment of adaptable solutions. The evaluation cycle is hinted

CHAPTER 1. INTRODUCTION 28

by our architecture although the impossibility of testing in real systems does not allow
us to complete the cycle and determine the efficiency of this solution when applied to
real-life problems. In the experiments reported here all phases run on simulated envi-
ronments, but a new project ! related to traffic-control, which is currently in its startup
phase, may allow us to go one step further in this ideas.

Another important question related to this approach is its communication cost. We
have not been excessively concerned with this matter, although aware of it. The lim-
its considered for communication were thought of in the perspective of having as few
autonomy restrictions as possible, not in saving bandwidth. It is more important for
us that an agent does not depend on information sent by another to take its decision
than to reduce the total amount of information exchanged. Stone and Veloso (1997) ar-
gue that unrestricted communication between homogeneous agents leads to a scenario
where multiagent learning is similar to centralized learning. We agree with this point
of view, but it is important to make it clear that this is a different situation. The agents
considered in this research are heterogeneous in the sense that an agents’ policy is not
necessarily the best for another agent. A solution where all agents learn the same be-
havior is usually suboptimal and often even a disastrous one. In the situations focused
here each agent must preserve its autonomy and specialize in its own task, even though
there are common points in the agents’ tasks within the team or in different teams. This
is true even if, at first, any agent can fulfill any of the roles, or if the roles are not strictly
defined. In (Stone and Veloso, 1997) only the above-mentioned form of heterogeneity
is considered. In this work we have heterogeneity at different levels: not only are the
agents within a team required to have different policies, but also, each team may use
different learning algorithms. Throughout this text the word “ heterogeneous” will be
used in the broader sense.

1.4 Contributions

The main contributions of this work are: the extension of the results on the effec-
tiveness of communication to different environments, problems and learning algori-
thms; and a set of techniques that are aimed at enhancing the use of multiple sources
of information during learning.

In this work we report our study of the effects of communication between agents
that use different learning algorithms. Nearly all of the previous approaches to this type
of problems considered solely agents that use Q-Learning and/or have expert advisors.
Also, most of the related work focuses single-agent problems, as can be seen in chapter
3. We extend the study to teams that use different learning algorithms, and non-expert

advisors. Another important contribution is the definition of the foundations of an ar-

The GRICES/CAPES Project, approved for funding in 2005

CHAPTER 1. INTRODUCTION 29

chitecture that supports the integration of communication from different sources during
learning.

Along the way several minor contributions were added, namely: the development
of particular types of hybrid algorithms, specially suited for integrating different types
of information; the adaptation of Strongly Typed Genetic Programming/ID3 to real-
valued program trees; the use of other agent’s reward information for the adjustment of
learning parameters; and the exploration of the concept of learning-related trust.

During this study several variables that influence the performance of the exchange
of information during learning were identified and studied, namely: use of batch or
specific information; online or offline integration; number of advisors; use of heuristic
advisors; heterogeneity of the environment; type of algorithm used in the integration

of external information.

The initial expectations pointed towards the possibility of increasing the speed of
learning and the performance by exchanging information, particularly when using het-
erogeneous environments. It was verified that exchanging information is beneficial, in
terms of speed, performance and reliability for several types of learning agents, but,
contrary to our expectations, the environments’ heterogeneity and other tested tech-
niques did not show the desired effects. This fact is due, mostly, to the near-optimal

performance of agents in most environments where agents are allowed to communicate.

1.5 Reader’s Guide

In this thesis we have tried to present the subject in increasingly complex layers.
The reader will see the same subjects at several points of this discussion and their
descriptions will become increasingly more detailed. Even though it may appear repet-
itive, we believe that the top-down approach is easier to follow given the amount of
details present at the last level (which would, eventually, be the code itself).

Following these introductory notes, chapter 2 describes the standard versions of
the learning algorithms used in our approach and reformulates the learning problem to
enhance the special characteristics of learning in the type of MAS we are interested in
studying. The first section of chapter 2 can be skipped by those familiarized with the

algorithms described in it.

Chapter 3 contains a review of related work, both to give the necessary credits to
those “whose shoulders we stand on” and to situate the reader in terms of the research

conducted in the area in the past decade.

Chapter 4 contains an analysis of the problem, a set of proposals to deal with it
along with the arguments that led us to take these options rather than others. In chapter
5 we define the architecture of the MAS and the characteristics of the agents that com-
pose it. While doing this we present a more detailed explanation of the implementation

of the concepts discussed in chapter 4.

CHAPTER 1. INTRODUCTION 30

In chapter 6 we explain what kind of experiments were conducted, their objectives
and detailed descriptions. Chapter 7 presents and discusses the results achieved. Fi-
nally, in chapter 8, we present a summary of the conclusions and directions for future

work.

Appendix A.l contains a review of the abandoned tracks and unsolved problems
related to this work. Appendix B contains details on the simulators’ design and con-
struction. In Appendix C we present the full set of results and parameters used in the
experiments. Finally, Appendix D contains a critical review of (Whiteson and Stone,

2004) exposing a flaw that originated a correction in the above-mentioned paper.

In this chapter we introduced the area of research, the type of problems we are
concerned with and provided the first hints concerning the type of solutions we propose.
We have clearly stated the question we address and summarized the main contributions
of this work. The following chapter is dedicated to an overview of some background
concepts related to Machine Learning and Multiagent Systems.

Chapter 2

Background Concepts

In this chapter we will take a closer look at the type of learning problems we will be
addressing and at some of the tools inherited from Machine Learning (ML) to deal with
these problems. In the first section we will present an overview of standard versions
of the learning algorithms that will be part of the integrated learning process described
in chapter 4. The following section analyses in detail the type of problems we are

attempting to deal with.

2.1 Opverview of Learning Algorithms

The most common subdivision of learning algorithms is done according to the type
of feedback they need. When adopting this division we have three main categories:
Unsupervised, Supervised and Reward-based (a.k.a. Reinforcement). A similar divi-
sion can be done in the type of learning problems (although some problems can be
posed in different ways, falling in different categories). These categories are used here
to describe different types of learning algorithms. We use Reward-based to describe
algorithms that can learn from a qualitative feedback, and Reinforcement Learning to
mention a specific family of these algorithms, inspired by dynamic programming (Sut-
ton and Barto, 1987).

Unsupervised Learning: no feedback information, the learning agent’s job is to
divide a set of examples into a certain number of classes according to a given
measure (distance between examples in most cases). The evaluation of the results
depends on the application, although in most cases what is requested is that the
learning agent finds a division that results in a compact and well defined partition
of the example-space.

Supervised Learning: the feedback information is in the form of a desired re-
sponse for each presented example. The agent’s job is to emulate, generalize

31

CHAPTER 2. BACKGROUND CONCEPTS 32

(and in some cases, describe the underlying rules that govern) the behavior rep-
resented by the example-response pairs.

Reward-based Learning: the feedback information comes in the form of a qual-
ity evaluation. When given an example (usually called state in this case) the
agent chooses an action and gets a reward (which may be delayed in time). The
agent’s objective is to maximize this reward, i.e. learn to choose actions that
cause the environment to give high rewards as feedback.

In the the next few chapters we will mention several types of well known learn-
ing algorithms, from two of the types discussed above: Supervised and Reward-based
Learning. We will describe (briefly) the standard versions of these learning algorithms,
so that later on, in chapter 4 we can focus on the changes that were made to integrate
these learning algorithms in our agent’s architecture. Readers that are familiarized with
these algorithms can skip this section.

2.1.1 Backpropagation

Backpropagation (BP) (Rumelhart et al., 1986) is, perhaps, the most well known
Supervised Learning algorithm. The concept is that for a given function (equation 2.2),
which contains a set of real-valued parameters (usually called weights) it is possible
to reduce the mean squared difference between the actual output, F'(Z), for a given
example 7, and a certain desired value, d, by changing the parameters. The function,
F(Z), must be differentiable in relation to each of these parameters. This is done as
shown in equation 2.1, using, in this case, the squared difference as error function.

Awj = —a—, 2.1

In equation 2.1 « represents the learning-rate parameter and dx/dy is the partial
derivative of x in relation to y. Awyj is the amount added to parameter w; to bring
F(z) closer to d. The learning-rate, a, is either fixed from the beginning the training

or reduced during training to ensure convergence.

Since, for most functions, it is not efficient to compute these derivatives, BP is
commonly associated with a type of functions for which this computation is efficient.
These functions were called Artificial Neural Networks (ANN), a name that is often
confused with the BP algorithm itself and its variants. ANN are (usually) organized
in layers of computational units that perform a non-linear function of the sum of the

activations of all incoming connections. Given an input the ANN calculates the

CHAPTER 2. BACKGROUND CONCEPTS 33

m Output vector
]
x’x’, Output Layer
XWX

Connection, w . .
n, i, j

I/—Iidden unit

Cﬁ(& ébé} Hidden Layer
\ Connection, w

\'4 A\

N
o 0. o0 |InputLayer

7

n, i, j

roo
Input unit

Figure 2.1: ANN with three, fully connected, layers. Circles represent nodes that sum
their inputs an perform a non-linear transformation, while squares represent input and
output variables. Rectangles group a set of related variables or nodes (layer). The lines
represent links that carry the result of the lower nodes’ computation to the upper nodes
multiplying it by a weight factor.

output F(Z) in the following way:

Mo
yig = fOwiiy-w) 2.2)
=0
M,
Yn,j = f(z Wn,ij * yn—l,i)a 1<n < N
=0
Fi(z) = yng,

where n is the layer number, ¢ and j are the indexes defining a connection between
two nodes in consecutive layers and f(x) is a sigmoid function, of which the most
commonly used examples are: tanh(z) and 1/(1 + e~*). M, is the number of nodes
in layer n and NV is the number of layers of the ANN. The number of nodes in the first
layer (M) is considered to be the dimension of the input vector . For each node in
all but the first layer there is also a parameter called bias, which is often represented as
parameter O of that layer (w,, ¢;) and it is assumed to be associated to a permanently
activated node, i.e. y,—1,0 = 1,Vn € {1,2,..., N}).

Usually, the adaptation shown in equation 2.1 is not done for each example pre-
sented but accumulated for a set of examples before each change in the parameters.
This is usually referred to as “batch” or “offline” learning, by opposition to “online”
learning where each example-response pair triggers a change in the hypothesis param-
eters.

CHAPTER 2. BACKGROUND CONCEPTS 34

Although it was a breakthrough at the time of its creation, the standard implemen-
tation of BP was still a relatively slow procedure, because it required many examples
to be repeatedly presented in order to achieve a reasonable approximation of the de-
sired function. One of the (many) processes found to reduce the training time was
labeled Adaptable Learning Rates (ALR) (Silva and Almeida, 1990). This method
proposes an adaptation, not only of the weights, but also of the learning-rates «; that
are, in this case, different for each of the hypothesis’ parameters. In summary, this
technique proposes that the learning rate is increased when two consecutive adapta-
tions of a parameter point in the same direction (i.e. the sign of Aw; is the same) and
decreased otherwise. This technique also proposes backtracking and a drastic cut in the
learning-rates when the total error of the network increases during an epoch to avoid
overshooting a local minimum.

We will not go into further detail on BP or ANN here, since this is consolidated
work, but the interested reader is advised to lookup (Haykin, 1999) for an extensive

discussion of all subjects related to this type of learning algorithms.

2.1.2 ID3

The ID3 algorithm (Quinlan, 1986) was created having in mind the supervised
classification of examples composed of discrete-valued attributes. The extension to
continuous attributes was later proposed by Fayyad (1991). The information required
to execute this algorithm is a set of examples, each classified in one of N classes. We
will focus this explanation, for simplicity, in the example of just one class and consider
as positive examples those that belong to the class and the remaining as negative. Table
2.1 summarizes the main steps of ID3.

The main problem is to find the attribute that best classifies the set of examples
E. Each member of E is composed of a vector of values, one for every corresponding
attribute in a. This is equivalent to finding which partition of F into subsets has the
highest information gain. The information gain of partitioning F using attribute a is
defined by:

Evi
Gain(E,a) = Entropy(E) — Z #—Entropy(Em-), (2.3)
Yovi #E
where #FE is the number of elements in F, F,,; is the set of examples in which a

evaluates to v;, and the Entropy function is defined as:
Entropy(E) =) | —pc logy(pe), (2.4)
Ve
where c stands for each possible classification of an example from E and p. is the

proportion of elements in E that belong to class c.

Entropy can be seen as a measure of the amount of information contained in a
set. Consider a binary classification and a set in which we know the proportion of

CHAPTER 2. BACKGROUND CONCEPTS 35

Table 2.1: Summary of ID3 Algorithm for binary classification, adapted from
(Mitchell, 1997). E stands for a set of examples classified as positive or negative
and A is a set of attributes that compose each example. Node; stands for a positive
classification, Node _ for a negative.
ID3(E, A)
Create new node: Root;
IF all e € E positive, THEN return Root = Node ;
IF all e € E negative, THEN return Root = Node _;
IF A = () return Root = Node;gpe;,

where label is the most common value (4 or —) for the examples in F;

LET a = Element of A that best classifies the examples in E (see equation 2.3);
Set decision attribute for the current node to a;
For each possible value (v;) of a:

Create new branch of Root, corresponding to the test a = v;;

Select F;, the subset of E for which a = v;;

IF E,; = @ THEN branch,,; = Node;gpei,

(most common classification for the examples in E);

ELSE branch,; = ID3(E,;, A — a);

Return Root

elements of each class it contains. If the set has elements of only one class (minimum
entropy) guessing the correct classification of a random element of the set is trivial.
But, if the elements of the set are evenly distributed through both classes (maximum
entropy), classifying a random element without analyzing it further is a random guess,
with equal chances of succeeding or failing. The objective of ID3 is to reduce the
problem to subsets with the least possible degree of entropy at each stage. The gain
is a measure of the reduction of entropy that can be achieved by partitioning the set
according to a certain attribute. Thus, the attribute a that is best suited to partition a
certain set E is the one with highest gain.

If we want to consider continuous attributes we will need to change the test a = v;
into a function f(a,v;) that returns a boolean value, e.g. f(a,v;) = (a > v; — K) A
(a < v; + K) with K > 0. The only restriction is that in all decisions there can be
only one i such that f(a,v;) = true.

2.1.3 Q-Learning

Q-Learning (QL) (Watkins, 1989) is the most commonly used learning algorithm
in the class of Reinforcement Learning which is a subclass of what we have labeled
Reward-Based learning. Its most simple form (one-level Q-Learning), is based on a

table that stores the estimated quality, Q(5, a), of performing action a at state s, for

CHAPTER 2. BACKGROUND CONCEPTS 36

every possible state-action pair. When a reward r; is received, at time ¢, the value of
Q+(3, a) is updated as follows:

Qi+1(51,a) = (1 — a)Q¢(5¢,a) + ary + BQmax(5141))s (2.5)

where 31 is the state of the environment after performing action a at state 5, a €]0, 1]
is the learning rate and 5 € [0, 1] a discount factor applied to the estimated quality of
the next state, that is given by:

Qmam(§t+1) - maaX(Q(gt-‘rla a))7 (26)

for all possible actions @ when the system is in state 5;1. The learning rate « is usually
decayed during training. When prompted to choose an action for a given state the Q-
Learning algorithm will fetch the values of Q;(3, a) for all available actions a. There
are several strategies to chose an action given a set of Q-values. The main dilemma is
the exploration/exploitation tradeoff. One of the most used techniques to regulate this
compromise is Boltzmann selection. In this case an action a is selected with probability

p(a|s) that is given by a Boltzmann distribution,
Q¢ (5,a)

e~ T
Se

Q¢ (5,4)
T
€A,

p(als) = (2.7)

where T is a temperature parameter, decayed during training, and A is the set of all
actions available from state 5. This allows an emphasis on exploratory behavior when

T is high that gradually shifts to exploitation as 7" decreases.

It is often the case that the number of state-action pairs is too big to represent all
possible combinations explicitly. One of the most popular solutions to this problem is
Connectionist Q-Learning (ConnQL) (Lin, 1992). In this approach the table that stores
Q(5,a) is replaced by an approximation function that is trained to map state-action
pairs to its estimated quality. Usually an ANN encodes this mapping using standard
online Backpropagation (section 2.1.1) as an auxiliary learning algorithm. In this case
the update in equation 2.5 is replaced by the presentation of an example-response pair
to the ANN in which the input is the concatenation of the state and action vectors and

the desired output is set to:

dy =1+ BQmaz (5t41) (2.8)

2.1.4 Evolutionary Algorithms

Evolutionary Algorithms (EA) (Holland, 1975; Koza, 1992) are a well known set
of learning techniques inspired by the processes that rule the evolution of species in
nature. The hypothesis’ parameters are interpreted as a specimen (or a phenotype from
which a specimen can be generated), and its performance in a given problem as its

CHAPTER 2. BACKGROUND CONCEPTS 37

fitness. After the evaluation of all the specimens, the ones with best fitness are selected
for breeding. The selected specimens are then mutated and crossed-over to generate a
new population. There are countless variations on the structure of the specimens the
crossover and mutation procedures. The type of EA chosen for our experiments was
inspired by the one used in (Glickman and Sycara, 1999). According to the definitions
in (Kantrowitz, 1997) this approach can fall in two different sub-categories, labelled
Evolutionary Programming and Evolutionary Strategies. Even though Glickman and
Sycara (1999) refer to this technique as a Genetic Algorithm (GA), the use of this term
to define the technique is debatable according to (Kantrowitz, 1997). We have adopted

the broadest category, Evolutionary Algorithms, to avoid possible misinterpretations.

An EA keeps a set of specimens (called population). In each step of its life cycle,
it evaluates all specimens. At the end of each cycle a given number of specimens is
selected for breeding. Glickman and Sycara (1999) use tournament selection. Tour-
nament selection consists in testing a small subset of the population in parallel and
selecting the one with highest fitness (highest accumulated reward) to pass to the next
generation. Tournaments are repeated until the required number of selected specimens
is achieved.

Breeding consists in applying mutation and/or crossover operators to one, or a pair
of, selected specimen(s) to generate a specimen for a new population. The specimens

in this case contain the weights of an ANN with fixed dimensions.

Mutation is done by adding a certain amount to the value of a parameter with a cer-
tain probability (mutation probability). The amount to be added is randomly generated
with normal distribution and zero average. The variance of the distribution will depend
on a learning parameter labelled mutation rate, that is, usually, decayed during training

to ensure convergence.

Crossover was not used by Glickman and Sycara (1999), but there are many strate-
gies to select the partitioning of the parameters in subsets for ANN. For a review on this
please refer to (Salustowicz, 1995; Yao, 1999). The description of our own approach
to crossover as well as other changes made to this approach will be detailed in section
5.2.3.

2.1.5 Strongly Typed Genetic Programming

Strongly Typed Genetic Programming (STGP) (Haynes et al., 1995a) relies on a
process that is very similar to the above description for EA. All steps down to the
mutation and crossover details are the same, but the underlying evaluation function is
different: a program tree. A program tree consists of a number of nodes, which contain
instructions (inner nodes) or class labels (leafs). When evaluated, the control flow
will follow an evaluation path consisting of selection instructions, gated by boolean
instructions leading to a leaf. The label of this leaf will determine to which class the
state belongs to.

CHAPTER 2. BACKGROUND CONCEPTS 38

What is particular to STGP, when compared to other Genetic Programming (GP)
approaches, is the fact that it takes into account the input and output types of each
node of the program tree when mutation and crossover are applied. By enforcing these
restrictions it will always generate trees that can be evaluated for all possible input pat-
terns and reduce the search-space eliminating programs that may result either in invalid
or useless evaluations. Another interesting characteristic is that problem-specific func-
tions can be inserted into the instruction nodes. For example, if the designer thinks that
a certain combination of values of the state can be useful, he can code it and make it
available to the STGP algorithm. The algorithm will use it as it sees fit in the generation
of new programs. It is far easier to program, for example, the norm of a state vector,
than to expect a search mechanism to “discover” it on its own by random combination
of sums and multiplications.

The initial trees are randomly generated, respecting the restrictions posed by the
types and with a given (pre-set) probability of generation for each node type. The
root-node is always a selection instruction to avoid trivial trees (e.g. with a leaf as
a root node). The maximum depth can also be pre-set to restrict the complexity of
the generated trees. When maximum depth is reached the generation of a leaf node is
forced.

Trees are mutated by applying a mutation operator to each node. If a given random
number (uniform in [0,1]) is smaller than the current mutation probability the node will
suffer a mutation. The type of mutation will depend on the node it is applied to. Nodes
with subtrees can delete and regenerate them (using the same procedure as in random
initialization); Nodes containing data can change it, e.g. by disturbing a constant value
with a certain amount of noise; A node can also change the type of function it performs,
as long as the input and output types are maintained.

Crossover is usually done by selecting subtrees from different parents and pasting
them into a new tree, always respecting the nodes’ input and output types.

We have reviewed in this section some specific instances of algorithms used in the
past to deal with learning problems in different ways. Now we will focus our attention
in the type of problems we will study.

2.2 Learning in Multiagent Systems

The most concise, and broadly accepted, definition of learning in ML is:

“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E.”

in Machine Learning, by Tom M. Mitchell (1997)

CHAPTER 2. BACKGROUND CONCEPTS 39

This definition, due to its generality, does not describe well enough the characteristics
of the learning problems we will be dealing with. We will now detail this definition
to highlight these characteristics and achieve a better understanding of the problem we
are facing.

The learning problem faced by an agent ¢ is to maximize the average rewards
achieved in given time periods, by learning to map each observed state, 5;, to an
action, a; . Time is measured in discrete units, which we will call furns. An epoch
contains a fixed number of turns. This can be generalizable to other types of learning
if we think of the state as an example, the action as a desired response and the reward
as a quantity that is inversely proportional to the error.

The mapping of states to actions is done according to a policy (m;). The snapshot

of a policy at a given time ¢, is a function:
ai = mi1(3i1), (2.9)

where a; ; is an element of A; ;, the set of available actions at time ¢ that may depend
on the current state.

But the function 7; ; hides a few details. Each agent i, at a given time ¢ contains
a set of adaptable parameters, H,; ;, called hypothesis and an evaluation function F;()
that performs the mapping of states and hypotheses to actions:

it (Sit) = Fis(Hi, Sit)- (2.10)

Fi+ itself contains a set of parameters that are usually fixed throughout the learning
process, such as the size and structure of an ANN, or the step used to discretize the
state-space when building a Q-table. Some of these parameters may be interpreted as
a part of the hypothesis if the learning algorithm is allowed to alter its value. F;;
can also be a composition of several functions and it is not necessarily deterministic.
Many evaluation-functions return a vector (a@; ;) that characterizes the adequacy of each
possible action as a response to state, 5; ;. In general, an action is more adequate
than another if it can generate higher rewards or contribute to its generation in the
future. The choice of a particular action, a; ¢, based on the information contained in
@i+ can range from simply selecting the action with maximum adequacy, making it a
deterministic choice, to considering the choice of all actions with a probability that is
proportional to their adequacy, as exemplified for Q-Learning in section 2.1.3.

The state, 5, 4, is a subset of the global state, S; ;, on a certain location, . An envi-
ronment contains several locations. The subset of S; ; that is taken into consideration
when calculating the observable state for agent ¢ may be related to its role in the team,
its current geographical position, etc. Each location contains a team of agents, each
with its own view of the problem. We will refer to the agents in the same location as

partners and the agents in different locations as peers.

Siir1 =T (S14, A, Upr). (2.11)

CHAPTER 2. BACKGROUND CONCEPTS 40

The global state’s transition to S; ;41 depends on: the previous state, S; ;; the actions
of all agents, A;; = Ua;;,Vj € ®;, where ®; is the set of all agents acting in location
l; a set of external events, U, ;. The external events are, for example the number of data
packets generated by the users of a system in a given time interval or the number of
cars entering a certain location in a given period of time.

The only restriction we pose to the structure of the state is that its features have
the same meaning for all agents, for example: the first feature represents the distance
to the closest partner in the upper-left quadrant of the agents’ sensing field. This is
essential to allow communication of state vectors between agents. This restriction can
be relaxed when using the concept of roles, defined in section 5.2.6. In this case, only
agents with the same role are required to have the same state-structure. The agent itself
can pre-process the state to adapt the data to its own learning algorithm, although when

communicating with others it must always respect the environment’s format.

Based on an evaluation of a subset of state S; ;41 (mainly, but not only, in the subset

5; 1+1) the environment will calculate the agents’ reward for each action.

The environment can also evaluate a team’s policy calculating the team reward
achieved by the team controlling location {. This is calculated based on a subset of S; ;.
The subset of features used to calculate the team’s reward can differ from the union
of the subsets used to calculate the agents’ rewards, although they should be as highly
correlated as possible.

It is fundamental that the environment supports these two types of rewards so that
different types of learning algorithms can be used. While some algorithms use rewards
that are associated with a certain state (or state-action pair) and rely on their internal
structure to measure the long term effects of their actions, others measure only the
performance of full policies. The relative effectiveness of both techniques depends on
the problem, but since one of our main goals is to assert the possible benefits of different
approaches it is imperative that both types of rewards coexist. Panait and Luke (2003)
provide an interesting discussion of the consequences of using each of these types of

rewards.

The combined reward, at the end of epoch n, can be seen as a combination of
several components:

ty ty
Rip=o Z rie/(ty —to) + o2 Z rie/(ty —to) + asrin + Quripn, (2.12)

t=to t=to
where % is the start-time of epoch n and ¢ ; its ending, and the reward components are:
the immediate-individual reward, 7; ;; the immediate-team reward, 7; ;; the long-term
individual reward, r; ; the long-term team reward, r; ,. The o; parameters are the
weights of each component. But it is not always possible, or useful, to define all the
components of the reward. These components should be highly correlated and in most
cases this may allow a simplification of equation 2.12 loosing as little information as

possible.

CHAPTER 2. BACKGROUND CONCEPTS 41

The easiest component to determine is, usually, r; ,, because the designer knows
what is the long-term objective of the team, but this information alone often poses
difficulties to learning, specially for algorithms such as QL. It is important to have
some immediate information. If this information was also team-related we would have
a system in which agents were strictly bound to maximizing the teams’ reward, i.e.
with no possibility of acting in their own best interest even if that did not hurt the
team’s performance. We have adopted a balanced simplification of equation 2.12:

ts

Rim=aY ris/(ty —to) + Brim, (2.13)

t=to
where the weights « and 3, whose sum is 1.0 if the magnitude of the components is
equal, control the relative importance of teamwork and long-term evaluation versus
immediate and individualistic behavior.

It may be important for the agent to know the value of each component of the
reward. When both terms of equation 2.13 increase consistently due to a change in
policy, the agent is definitely going in the right direction. Conversely if both terms
decrease the new policy is clearly worse. When the first term increases while the second
decreases, the agent is being greedy, either in terms of seeking immediate payoff or
by exploring its partners behavior. It is increasing its own immediate reward at the
expense of long-term rewards or its teams’ performance. In the opposite situation (first
term decreases and second term increases) the agent is sacrificing its individual reward
for the common good and/or to obtain better long-term performance. By ignoring
or changing the weights of the several reward components the systems’ designer can

decide what type of behaviors are more adequate.

In real systems it is common that a long-term evaluation of a team’s performance
is easier (and more precise) than the evaluation of each agent’s individual response to
every state. This is specially true when actions may have long term consequences. It
is, for example, difficult to evaluate the impact of switching a traffic light to green for
a 20s period. It is easier to evaluate the performance of a control policy in a bounded
area over a fixed period of time, knowing that, during that period, the system was under
a certain load. In this problem there is a balance to be attained. Even though the global
reward is a more exact (less noisy) evaluation, the local reward is easier to learn from,
because it is more closely related to the state observed by the agent and its last action(s).

Considering unobserved elements of the global state in the computation of the re-
ward and state transition causes a problem known as partial observability, which is a

common feature of most real MAS. The main causes for this are:

e The need to keep some information private;
e The impossibility of dealing with all the variables that are relevant for state tran-

sition;

CHAPTER 2. BACKGROUND CONCEPTS 42

e The impossibility to measure some variables directly, or even to know which of
them are relevant;

One of the main differences between this formulation and most others is that the
reward is calculated externally and not by a critic module inside the agent. This was
a natural consequence of calculating the rewards based on more than just the infor-
mation explicitly available to any given agent. The presence of an external evaluator
and team rewards may be considered a partial centralization but there may be good
reasons to keep the critic outside the agent’s scope, such as: ensuring the privacy of
some information used to calculate the reward or limiting the access to certain sensors.
In situations where no environment infrastructures are present, the individual reward
evaluation would necessarily be done by the agent itself and the team reward could be
estimated by communication with immediate neighbors. In this case, the need to syn-
chronize the gathering of rewards could cause the same autonomy problems that are

often criticized in semi-centralized solutions.

The problems caused by partial observability are similar to the consequences of
external events. These factors, from the agent’s point-of-view, cause the reward and
state transitions to be stochastic, turning their environment into a non-static world. In
other words, there is no guaranty that choosing a certain action in the presence of a
certain state will lead to the same reward as it did in a previous case. The agent can
only learn the reward distribution achievable for a certain observed state and not the
exact reward that it will achieve.

In non-static environments, agents, when starting from a certain state 5; ;,, will
have a certain probability p of getting each possible reward, by applying a given policy
7, so the best policy 7} is the one that maximizes an estimated reward]A%m in the

future:
Ri (S0, mi) = Z(Rznk - P(Rin k5340, 7)) (2.14)
k
mi = argmax(D (AnRin(5i00,71))) (2.15)
‘ n>n0

where k takes a different value for all possible rewards and)\, is the discount applied
to future rewards.

When the action choice is deterministic 7 is a mapping of states to actions. In cases
where stochastic action selection is required 7 is a mapping of states to probability
distributions over possible actions.

The direct determination of p() (from equation 2.14), considering all these vari-
able conditions and the number of possibilities, is unthinkable, except for very simple
problems. It becomes specially difficult when Rm is not discrete, which turns the
sum in equation 2.14 into an integral. Most learning algorithms abstract away many
of these components and concentrate on finding the direct mapping of state-action (or
state-policy) pairs to rewards.

CHAPTER 2. BACKGROUND CONCEPTS 43

The learning algorithm changes the parameters (H; ;) (Eq. 2.16), to find the set of
parameters () which lead to a behavior that collects the highest possible reward.

Hisyr = Li(Bi, Hie, Eit)- (2.16)

We will refer to the current best estimate of H; as 7:[;*. The learning function (£;)
changes the hypothesis, based on the current value of H; ¢, a set of learning parame-
ters (B;), such as learning-rates, and on previous experience (&; ;). Each element of
&+ includes the state, action and reward experienced at a given time in the past, i.e.
eir = {8i4,ai,rie). An experience tuple can be extended with further information,
such as: its source (because it could have been generated by a different agent than the
one that is using it), the epoch reward achieved when this action was used, the state
after a the action was completed, etc. We will go deeper into the possibilities of ex-
tending this information in chapter 4. The function £; needs not to be unique for each
agent, to be exact it should be represented as L ;, where K represents the learning
algorithm used. Different learning functions can be used to change the same hypothe-
sis parameters, depending, for example, on the source or type of information they are
using. The interaction between different learning functions over the same hypothesis
requires some care, but there are many reports of successful integration of learning

functions in the literature, some of which are mentioned in chapter 3.

In order for cooperation to be possible it is important that all teams of agents are
facing similar problems. In this case we assume that the state-space, the possible ac-
tions and the reward functions are the same in all locations. What differs from one
location to the other are: initial conditions, state transitions and external events. These
variations, along with different partner behaviors, are the causes for the different dy-
namics of each location.

Notice that we have not made any assumptions regarding the convergence of agent’s
objectives. All we assume is that all agents that can be contacted are willing to share
their knowledge. In adversarial environments it would be likely that agents in the same
location would withhold information. This is only a problem if there are no other teams
in other locations, a scenario that contradicts our initial assumptions. In our environ-
ments there is a mix of cooperation and competition. The tasks require that all agents
work together and cooperate, but there is also a certain measure of competition for lim-
ited resources. An agent must make the best of the available resources to maximize its
performance, without causing its exhaustion, which usually leads to high penalties in

the team rewards.

We have not considered the possibility of malicious intents of some agents, al-
though the use of trust (see chapter 4 for details) can overcome this problem.

The elements of the language, used in agent’s communication, may be a simple
set of keywords that refer to the type of information that follows, for example, the

meanings of: Individual Average Reward and Team Reward must be understood by

CHAPTER 2. BACKGROUND CONCEPTS 44

all agents in order to question the environment or other peers about r; , and r; ;. The
matters related to the types of data to be exchanged will be discussed in chapter 4. We
will not, however, define an ontology or specific protocol since the requirements in
these aspects are very simple and most existing communication protocols meet these

requirements.

In this section we described the type of learning problems we are interested in, their
main difficulties and the assumptions we make regarding environments and agents. We
will proceed by analyzing in more detail the main difficulties this problem presents.

2.3 The Problems of Learning in MAS

It is apparent from the description in section 2.2 that learning in these environ-
ments presents several problems. From the agents’ point-of-view the environment is
non-static. This is caused by: partial observability; changes in partners’ policies; ex-
ternal events. These factors were examined in the previous section. In addition, there
are difficulties in policy coordination and transferring knowledge between different

learning algorithms. In this section we will discuss these problems in more detail.

2.3.1 Continuous Policy Changes

Learning requires continuous change in search of better policies. When this is done
by all agents in a team, simultaneously, it is defined as co-learning (Panait and Luke,
2003). In MAS this causes the environment’s dynamics to change from each agent’s
point-of-view. If we assume that observability is limited and agents are autonomous, it
is not possible for an agent to be aware of the state of its partners or of the changes in
their policies. For this to be true, the information necessary to make a decision would
be far too large and all agents would be trying to solve the whole problem, instead of

solving only their part.

The main consequence for learning is that the optimal policy is a moving target.
This can be dealt with in two ways, either restricting the possibility of changing the
policy in some agents, during certain times, to make the system more stable, or de-
signing systems that can quickly react to environment changes. Both solutions have
disadvantages, the first will limit the agent’s learning capabilities, its autonomy, and
will require a certain degree of synchronization, the second generates a very difficult
tradeoff. An agent should be stable enough to avoid changing its policy due to ab-
normal sequences of events that have a low probability of happening again, but still
react promptly to lasting changes in the environment or new opportunities to increase
the reward. It is, however, difficult to differentiate, in the short-term, situations where
agents will have to deal with new environment’s dynamics and those that are temporary
effects. The reaction time must be carefully chosen.

CHAPTER 2. BACKGROUND CONCEPTS 45

2.3.2 Policy Coordination

Policy coordination is highly related to the problem we examined in the last section
and also to the type of MAS we are dealing with. MAS learning is often divided into
competitive and cooperative. If agents’ have conflicting interests and can only increase
performance by the loss of performance of others (as in zero-sum games) the task is
competitive. When the increase in one agent’s performance will lead to an increase in
the team’s performance the task is cooperative. However, in most situations (the ones
we consider here) there is a mix of interests. Without coordination the performance of
all agents will drop considerably but, to a certain extent, agents need to maximize their

use of the resources.

Tragedy Of the Commons

Let us see how this works in a practical situation. Consider an instance of a load-
balancing problem where we have two servers and two load-balancers. One of the
servers is relatively faster than the other but not fast enough to serve all requests made
by the two load-balancers. If both clients use the best server they will have lower per-
formance than if one was using the slower server. It is obvious that one of the agents
must sacrifice its performance or that both will need to balance the number of requests
they make to the faster server to reach a good performance. The key factor, in global
terms, is to use the full capacity of the faster server, but if the systems’ designer also
aims at fairness, this capacity must be used by both agents (either equally or propor-
tionally to their respective loads). This problem is known as the “Tragedy of the Com-
mons” (TOC) (Wiering et al., 1999). The TOC occurs when all agents are competing
for a limited resource and the optimal level of usage of this resource is lower than the
sum of their work. An individual policy that chooses to use only the best resource is
only good as long as the number of agents using the same policy is below the resource’s
capacity. If all agents choose the same “good” policy, they may overuse the resource
and be penalized. Still, self-interested agents should strive to acquire as much of the
resource as possible.

We may consider the problem of policy coordination similar to learning in a very
large state-space, if we see the team as a whole, but with an added difficulty: different
parts of the system may be pushing in different directions to optimize the individual

component of their rewards.

The solutions to this problem are mostly related to reward design. It is important in
these situations either, to share a global reward, or that the reward has global compo-
nent, but it is difficult to learn from this type of rewards because of its low correlation
with each individuals’ states and actions. So a balance must be struck between the
learnability of local rewards and the ease of coordination that can be achieved with
global rewards.

CHAPTER 2. BACKGROUND CONCEPTS 46

As we can see from the TOC example, it may be important that agents in a team
have different policies, i.e. fill different roles in the team. The use of roles is another
tool to deal with the problems of policy coordination.

2.3.3 Knowledge Transfer

The problem of transferring knowledge from one agent to the other, regardless
of the learning algorithm used, has several difficulties. On the basis of these is the
different representation used for knowledge. Different types of representations (and
evaluation functions) have different capabilities and each type of learning algorithm is

more adapted to deal with certain types of data or rewards.

Evaluation Function Bias

In some situations, it may be nearly impossible to transfer knowledge from one
agent to the other. For a trivial, but elucidating, example consider the case of the
XOR problem. A table-based Q-Learning algorithm will easily learn to map pairs of
binary digits to the result of a XOR operation between them. An ANN may, depending
on its inner structure, not be able to represent this knowledge at all. This is a very
simple example that would easily be overcome by restructuring the ANN, but we have
found more complicated versions of this type of behavior. Some policies learned by
QL-agents, where neighboring states often require different actions, are very difficult
to model by knowledge structures that assume a certain degree of smoothness in the
mapping they are required to do. Conversely, in problems where there are vast regions
of the state-space where the best action is the same, ANN-based algorithms quickly
find good solutions, due to their generalization capabilities, while Q-Learning must
explore each and every possible state-action pair before a good mapping is learned.
This is both a problem and an opportunity.

Even though most learning algorithms use functions that are, in some way or an-
other, universal approximators (i.e. can approximate any function with an unlimited
degree of precision), this guaranty usually comes with a set of restrictions, such as
an unknown number of parameters, or the foreseen smoothness of the target function.
The more a function is biased to solve a particular type of problem, the less it will
be adaptable enough to approximate different target functions. Given a limited (finite)
number of parameters there are always limits to the representational capabilities of any
evaluation function. Again, having more information can be used to counter this effect.
If an agent has enough information and autonomy to change its learning parameters, it
can reduce some of these problems, for example, by changing the structure of its ANN
during training, or by replaying information from other sources to increase the number
of visited states (in the case of QL). Ultimately, an agent could even decide what learn-
ing algorithm it must use to deal with each problem based on information from other
sources, although we do not explore this path.

CHAPTER 2. BACKGROUND CONCEPTS 47

On the one hand we see that some agents could, in some cases, help others in their
exploration by transferring their generalizations but, on the other hand, we may find
situations where knowledge is not transferable at all.

Common Format

Storing knowledge in a common format, readable by all, is an interesting research
subject, but it is doubtful that a format exists that is easy to produce and integrate by
all learning algorithms. Even if it did exist its generation would introduce another bias
in the hypothesis. Nevertheless, if the agents have the appropriate structure, they can
send the best hypothesis’ parameters along with the information necessary to build an
evaluation function similar to that of the advisor. Then, they can use this “copy” of
the advisor’s function to generate the advice information and integrate it in their own
knowledge structure. This would significantly reduce communication and eliminate the
need for synchronization. Ultimately, an agent could switch between different evalua-
tion functions using the one best suited for each state, in a similar way to the approach
defined in (Powers and Shoham, 2005), and with similar disadvantages (see section
3.2.2 for details).

Specialization

Another problem in transferring knowledge is that the specialization acquired for
a certain location may not be adequate for another, i.e. the same policy can have dif-
ferent consequences when used at different locations. The selection of the source of
information is the key to overcome this problem. Another technique to minimize this
problem is to synchronize information requests between members of the same team.
This will limit the problems of learning a policy that does not match the other agents’
in this area, but it may also limit the emergence of new global solutions that combine
useful aspects of different advised policies.

As we can see there are many difficulties. Some are well known from previous work
in single-agent problems, others appear only when agents must work in a team, or when
they are endowed with the ability to communicate, others yet are a consequence of the
complexity of the environment they are facing. For every expansion of the complexity
of a learning system, new difficulties appear, but also more tools are available to deal
with these difficulties. Our purpose is to study how the use of some of these tools can
improve the ability of agents to cope with the new problems. This will be the subject
of chapter 4. But before that, in the next chapter, we will see how other authors dealt

with some of these problems.

Chapter 3

Related Work

In this chapter we summarize the research that focuses on learning using both, re-
ward and other sources of information. We also browse through some of the most inter-
esting concepts related to hybrid