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Abstract

Object tracking in video sequences has found several different applications, such as surveillance,
advanced interface, virtual reality, movement analysis, among others. However, the broadness of
the spectrum of application is not caused by the existence of a general approach for object tracking.
The inexistent generalization requires developers to build algorithms over several premises, in
order to build robust solutions although in specific situations. To emphasize this issue, we present
two approaches to object tracking, stating the premises of each method and the inoperability of
one solution over the other context.

In one hand, the dissertation presents an approach for vibrating line detection and tracking.
Devices like accelerometers or load cells are normally used for measuring of vibrations in cables,
wires or generic line structures. However, the installation of such equipment can be troublesome
or even impossible in some cases, therefore new ways of capturing vibrating characteristics were
developed. Computer vision allows a contactless technique to gather these measurements. How-
ever, the state-of-the-art algorithms either require a user initialization or a reduced description of
the vibration. In this dissertation, a method for automatic line detection is presented, integrating a
stable path approach, followed by an optical flow method for tracking the line‘s displacement.

People tracking algorithms are an important subject within the object tracking field. These
methods can usually be divided in several modules, consisting in initialization, tracking, pose
estimation, among others. The tracking module matches people from one frame to another and
therefore needs to make comparisons between two objects. This process often involves the use of
an appearance model, i.e., a representation of the person, and requires from the developer a trade-
off decision between a reduced processing time and accurate characterization. An alternative
method for people tracking is presented in this dissertation, consisting in the integration of an
alternative appearance model which resorts to a local description using interest points, with the
objective of an improvement in the description of a person.
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Resumo

O seguimento automático em sequências de vídeo tem encontrado variados mundos para apli-
cação, tais como vigilância, interface avançada, realidade virtual, entre outros. Contudo, o largo
espectro de aplicação não é causado pela existência de uma abordagem generalizada para segui-
mento automático de objectos. A inexistência desta generalização exige aos investigadores que
construam algoritmos sobre algumas premissas, para que seja construídas soluções robustas ape-
sar de em situações específicas. Para sublinhar este problema, apresentamos duas abordagens para
seguimento automático de objectos, declarando as premissas de cada método e a inoperabilidade
de uma solução sobre o outro contexto.

Por um lado, a dissertação apresenta uma abordagem para detecção e seguimento automático
de linhas vibratórias. Aparelhos como acelerómetros ou células de carga são normalmente usados
na medição de vibrações em cabos, fios eléctricos ou estruturas genéricas com forma de linha.
Contudo, a instalação de tais equipamentos pode ser problemático ou até mesmo impossível em
alguns casos, portanto novas técnicas para capturar características de vibração foram desenvolvi-
das. Visão por computador proporcionou uma técnica sem recorrer a contacto com a estrutura para
obter estas medidas. Contudo, os métodos existentes ou requerem uma inicialização do utilizador
ou proporcionam uma descrição reduzida da vibração. Nesta dissertação, um método para de-
tecção automática de linhas é apresentada, integrando a abordagem de caminhos estáveis, seguido
de um método de fluxo óptico para seguimento automático de deslocamento de linhas.

O seguimento automático de pessoas é uma parte importante dentro do campo de seguimento
automático de objectos. Estes métodos podem, normalmente, ser divididos em vários módulos,
que consistem em inicialização, seguimento automático, estimação de pose, entre outros. O mó-
dulo de seguimento automático faz a correspondência entre uma frame e a seguinte e, portanto,
necessita de realizar uma comparação entre dois objectos. Este processo muitas vezes envolve o
uso de um modelo de aparência, i.e., a representação da pessoa, e requer do autor uma decisão
de trade-off entre uma redução de tempo de processamento e uma caracterização precisa. Um
método alternativo para seguimento automático de pessoas é apresentado nesta dissertação, que
consiste na integração de um modelo de aparência alternativo que recorre a um descritor local que
usa pontos de interesse, com o objectivo de uma melhoria na descrição de uma pessoa.
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“Vision is the art of seeing the invisible.”
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Chapter 1

Introduction

1.1 Context and Motivation

Computer vision has received great attention over the last two decades. Computers have always

been developed with the objective of performing human tasks. Though in early years, the goal

could only be to try to make them think like humans, the technology has been evolving in so many

ways that it is now enabling the simulation of other human skills. Processors are getting faster and

smaller, digital cameras allow more and more image quality, sensors are becoming more accurate

and so on.

This dissertation focuses on the field of computer vision. Because of this great evolution in

technology and also the need for automating processes, computer vision has contributed with tech-

niques that allow computers to gain visual perception, i.e., they can now be aware of its camera‘s

surroundings and therefore, compute algorithms according to actions visible to the camera. Nev-

ertheless, there still hasn‘t been an optimal solution for some of the problems associated with the

field.

One of the most important areas in computer vision is object tracking. This research field is

important not only for security related software, but also in advanced interface between people

and computers, advanced control methods and many other areas. Therefore, it becomes clear the

wide range of operations in the computer vision field. The broad spectrum of these operations

complicates the development of a unique solution for all issues that can be resolved resorting to

this technology, due to the the complex adaptations that an algorithm would have to perform to be

applied to all of these situations. In other words, artificial intelligence in computers is still not ca-

pable of adapting itself to the problems presented to this field of study. Because of this, developers

started to include restrictions to their approaches, limiting the broadness of applicability, but also

optimizing the performance for that range. If we know that we‘re dealing with only one particu-

lar type of object, then we can optimize the algorithm to handle that kind of object and although

we‘re disregarding different types of objects, the method can succeed when it makes that premise.

Emphasizing this issue, a decision was made to tackle two different subjects in the computer vi-

sion field, in order to demonstrate the differences between approaches and also the inapplicability
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2 Introduction

of one method over the other situation, due to the specificity in each method‘s assumptions. The

work produced had, therefore, two main objectives: vibrating line and people tracking.

1.2 Video object tracking

By definition, video object tracking (VOT) is an application that tracks the displacement of several

particular objects using cameras to capture a scene. The use of a particular view makes implicit

the possibility of partial occlusion of the targeted object. This can be solved by the use of more

cameras in the same scenario, which also widens the physical area of operability. Nevertheless,

this requires the translation of the set to 3D measures and correlation between the cameras‘ po-

sitions. Such requirements can become expensive and computationally heavy for the algorithm‘s

performance. Moreover, the knowledge of the position of the camera and its parameters, or camera

calibration, is vulnerable to physical changes such as weather conditions (if outdoors) and even

people vandalism.

The tracking of an object could be performed by detecting it in each frame, but only if one

object was present in the video sequence, then computing its displacement. However, most of

scenarios contain multiple objects, with the possibility of occlusion among them. To overcome

this fact, other tracking techniques have to be used. Methods like optical flow, Kalman filters,

texture matching and so on, are possible approaches or modules to be implemented in an object

tracking algorithm.

1.3 Context of proposed methods

As said before, we want to emphasize the differences between object tracking algorithms by look-

ing at two possible approaches. In the first method we propose a vibrating line detection and

tracking and in the second we will work with a people tracking method.

1.3.1 Line detection and tracking

Nowadays, the monitoring of big structures like cable-stayed bridges or electricity distribution

systems is vital for the extension of their life-span and for the reduction of system failures and

consequent costs. An essential part for the monitoring of such structures is the vulnerability to

weather variations and to other subjects such as trucks passing on a cable-stayed bridge. A com-

mon approach for the monitoring of such structures is to use sensors like accelerometers in order to

receive information about the displacement taking place in that position. However, the utilization

of such resources adds substantial costs to the structure monitoring when we wish to receive infor-

mation from multiple points, not to mention that we will never get a complete information unless

we install sensors consecutively throughout the line. Moreover, the installation and replacement

of these devices can constitute a serious issue and might even be impossible when we consider

structures such as high voltage power lines. Computer vision is considered a possible solution to
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this problem, because it provides a contactless alternative. This approach also raises some issues

such as the positioning of the camera, which might have to be placed away from the structure,

the required high resolution for precise measurements and also the transmission of the data from

the camera to the monitoring station. Moreover, one has to consider the implications in using

a camera, such as the vulnerability to weather and obviously the illumination conditions during

nighttime. Nonetheless, computer vision provides a valid monitoring technique in some situations

usually with lesser costs associated.

1.3.2 People tracking

People tracking methods are widely associated to computer vision related applications. Surveil-

lance has become a crucial matter of the society and also advanced interface methods using com-

puter vision provided the field with important breakthroughs and techniques. Moreover, the in-

crease in processing capabilities allowed developers to create people tracking algorithms with

real-time interaction abilities. Nevertheless, these advances haven‘t yet allowed researchers to

create a general method which would cover all range of applications and scenarios for people

tracking. Still, authors are bound to establish some premises to increase the success rate in regards

to specific situations. Therefore, most researches still focus in either the resilient, broad range

or real time capabilities of their methods. The most successful state-of-the-art algorithms are the

ones which show great value in more than one of these factors.

Developers of people tracking algorithms usually face some common issues, such as partial

or full occlusion of an object, placement of the camera, weather conditions, sudden illuminance

changes, among others. These problems are usually minimized by a few assumptions and by

the camera‘s placement itself – if the camera is located indoors is not susceptible to weather

conditions and possibly less conditioned by illuminance changes. Nonetheless, the developer has

to work around these issues, trying to minimize them, trying to have an as complete as possible

control over the scenario and the actions taking place.

1.4 Objectives

Methods for line detection and tracking have also been under research in some fields like robotics

and 3D modeling in video sequences. We intend to analyze methods for tracking a line that is

subject to oscillations. In practical situations, we can encounter this phenomenon in high volt-

age power lines, cables in cable-stayed bridges that support the weight of the bridge‘s deck and

other similar structures, where the extraction of these characteristics can be otherwise hard or ex-

pensive. We propose a contactless method that will detect the lines present in each frame of a

video sequence and then track its displacement throughout the sequence, by using the information

provided by the line detection.

The second topic has caused over the time a lot of discussion in the computer vision field.

Although some algorithms have proved to be successful in certain situations, it is settled that there

still isn‘t a method that covers all of the people tracking scenarios. Therefore, there has been a lot
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of studies concerning specific situations and also attempting to achieve some generalization. Fur-

thermore, in recent years methods have become more robust and good results have been surfacing

as we‘ll discuss further in this dissertation. The work in this field will consist in the integration

of a new person appearance model in a state-of-the-art algorithm described in [Zhao and Nevatia,

2004]. This model originally resorts to a weighted average of the person‘s texture information,

which can be scarce in some cases and also can be deformed throughout the object‘s track. The

new model will rather rely on a technique described in [Teixeira and Corte-Real, 2009], which

resorts to quantized local descriptors, or bag-of-visterms, to describe the object.

1.5 Structure of the Document

We‘ll begin by taking a look at some work related to the proposed methods in Chapter 2. We‘ll

begin by presenting some work in line detection in computer vision and then go through some

methods that were built with similar purpose as ours. We‘ll also look at some of the state-of-the-

art algorithms for people tracking, where we‘ll also analyze the methods we worked with.

A brief description of camera calibration can be found in Chapter 3. This module is common

in both developed methods, therefore a separate chapter was reserved for this topic, where we‘ll

also describe some experiments done within this module.

Chapter 4 is reserved for the full description of the line detection and tracking algorithm and

also the presentation of the respective evaluation and results. In Chapter 5, a description the

integration of an experiment with a linear camera model and also the implementation of the new

appearance model are presented. The conclusions extracted from the results gathered from the

work developed can be found in Chapter 6.

Finally, concerning the appendixes, we have an Appendix A where we present samples taken

from the dataset used for the validation of each method and present a complementary description

of the dataset, to the one presented in both Chapters 4 and 5. A second appendix B is composed of

a side experiment in camera calibration in the line detection and tracking context, which was not

implemented in the presented approach.



Chapter 2

Related Work

2.1 Line Detection and Tracking

As mentioned in the introduction, this dissertation proposes a method for capturing the vibration

parameters of line structures such as cables and wires. However, line detection and tracking is also

used in computer vision for different purposes. In [Gambotto, 1989] and [Deriche and Faugeras,

1990], developers wanted to obtain characteristics present in a room, in order to develop an algo-

rithm for a robot‘s path and they did this resorting to the edges on the walls, furniture and other

objects present in the robot‘s visual space, having therefore the need to track the edges of these

objects. They first extracted the lines in each frame, using edge detector algorithms. Afterwards,

they tried to match the lines between frames, being aware of possible omissions in-between frames

and also possible splitting of some lines. In the first method, Gambotto looked into the geometry

of the lines to match them between frames. He stated that the occurrences of one line in consec-

utive frames have rigorous geometric differences between each other and looking at these rules,

we could match such lines. In the latter algorithm, the authors decided instead to apply a Kalman

filter to the lines‘ positions, in order to predict the following position.

Taking solely line detection into consideration, most of the developed algorithms use primarily

edge detectors to detect lines. In [Canny, 1986], an edge detector is presented which detects

the contours present in an image using a gradient filter and two separate thresholds to eliminate

noise caused by the filter. However, this operation still causes false detections, specially in object

detection cases where the background is not controllable. Line detection specifically targeted

for video sequences is presented in [Cai and Tai, 2005]. Authors describe an algorithm for field

line detection in football videos. It eliminates noise where an insufficient number of green pixels

is not present, and clusters white pixels applying then a threshold to eliminate small clusters.

This method relies however in high specificity cases, and doesn‘t show high promises in general

situations. In [Rodrigo et al., 2006], authors look at line detection as an energy based detection

rather than a purely edge detection. It first computes the Hough transform and then computes an

energy based minimization over each obtained contour. This is a robust method for line detection,

however it relies specially in straight line detection and energy values have to be reasonably high,

5
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in order to take a line into consideration. A staff line detector is presented in [Cardoso et al.,

2009a], used to detect lines in handwritten music scores. It treats the binary image as a graph of

black and white nodes, establishing the shortest path between left and right margins of the image

resorting to the paths with less cost, i.e., the paths with less white nodes. Although effective in

such premises, the algorithm is not fitted into other issues, as it requires lines to be straight and

distributed from opposite sides of the image and also to use binary images.

Line detection is an important module in the overall method, but when considering video

sequences with more than one line, one needs to track the lines in consecutive frames. Line

tracking takes some importance also is in 3D modeling. In [Shen et al., 2010], the authors propose

an algorithm for 3D modeling of inextensible deformable surfaces. The method tracks the surface,

modeling it in a triangulated 3D mesh as it is deformed manually. This is accomplished through

tracking of edges of the surface resorting to an iterative L2-norm approximation process.

Using other techniques, there has been some research about vibrating cables, but using tech-

niques other than computer vision. In [Magalhães et al., 2008], a method for vibration measure-

ment of the suspended roof of a football stadium which is connected by cables is proposed. They

use seismographs placed on the roof in order to get readings on the roof‘s vibrating characteristics.

Figure 2.1: Side view of the Braga football stadium (extracted from [Magalhães et al., 2008])

A possible approach for measuring semi-rigid line vibrations is described in [Calçada et al.,

2005]. In this paper, it is described a method for obtaining the vibration parameters of the cables

from a cable-stayed bridge. They use load cells previously installed in the inferior anchorages of

the stay cables, in order to get readings of these vibrations. Load cells are devices which translate

force to an electrical signal. The force the cables were vulnerable to are therefore transmitted along

the structure through wires, until it reaches the monitoring station. Other techniques use devices

such as high-precision GPS antennas, in order to track the structure’s position over time, obtaining

its displacement. In [Çelebi and Sanli, 2002], the author presents a method of tracking the position

of a tall building, in order to gather its vibrating characteristics using GPS antennas, at a sample

rate of 10-20 Hz. Using this technique, the author could acquire the vibrating characteristics of

a tall building, e.g. on a windy day. Using the same premise, the method described in [Roberts

et al., 2003] uses GPS devices to obtain displacement attributes of a bridge. This proves that
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such technique can be applied to different structures. However, its application to structures like

cables and power lines is yet to be proven successful. The antenna‘s size doesn‘t allow an easy

installation and the technique raises similar problems as accelerometers or load cells – they don‘t

allow a complete description of the cable‘s displacement and its installation can, in some cases,

cause high expenses and even in some cases it can be impossible, such as in high-voltage power

lines. It is due to these issues, that a contactless method was thought of and so, the desire to

develop a computer vision approach to this problem became reality.

The state-of-the-art computer vision techniques to obtain the characteristics of a line‘s dis-

placement can be generalized into two different approaches. The first group of methods require

the placement of a marker on the structure and the application will detect the position of the marker

in each frame of the sequence. The second one requires the user to choose one specific point or a

region of interest (ROI), to be tracked over the sequence of frames, establishing matches between

consecutive frames.

The most immediate solution for tracking a structure‘s displacement using computer vision

techniques is to place a marker on the exact point desired to track. Providing a reasonable resolu-

tion for the output of the camera, a basic pattern recognition algorithm will then identify the marker

throughout the frames in the video sequence [Olaszek, 1999]. The knowledge of the marker‘s posi-

tion allows the algorithm to compute its displacement over the sequence of frames. This technique

is also used in different methods. In [Wahbeh et al., 2003], more than one marker were placed

on the structure, in order to calibrate the camera, using the real distances between the markers,

converting it to pixels in the sequence of frames. Although originally these methods track only

bridge decks, one can assume the premises easily apply to different types of structures like cables

in cable-stayed bridges or general lines with vibrating characteristics. In [Lee and Shinozuka,

2006], the author validated a similar approach of placing a marker on a structure using a lab test

consisting in a table shaking with certain vibrating characteristics inserted by the user.

Nonetheless, this technique raises similar problems as the previous discussed approaches –

although it presents a less expensive approach in relation to the use of accelerometers or load cells,

it is not possible to obtain an overall characterization of the line‘s vibration and the placement of

said markers on the structure can prove to be difficult or even impossible. Moreover, additional

modules may be required if more than one similar marker is placed in the structure so the tracking

algorithm can differentiate markers, not to mention that the aesthetics of the structure may be

compromised when patterns are placed all over this structure.

Although the previous technique provided an almost contactless approach, since the only re-

quired contact was to place the marker, the desire of developing a totally contactless method was

still present. With this in mind, other approaches using computer vision techniques were created,

consisting on a user selecting a region of interest, normally a section of a line, that the program

tracks using optical flow methods. In [Morlier, 2010], the user selects an exact point for the al-

gorithm to track. From that information, the algorithm implements the pyramidal implementation

of the Lucas-Kanade tracker [Bouguet, 2000] to track that same point over the subsequent frames.

The method also allows the user to choose multiple points, keeping one track for each point over
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the sequence of frames. Another approach, described in [Silva et al., 2007], uses the information

of a region of interest (ROI), obtaining therefore, a more complete overview of the line‘s dis-

placement. It computes the optical flow method described in [Horn and Schunck, 1981], for each

pixel inside the ROI, which allows a more robust measurement of the vibration. Using the same

premise, the method described in [Ji and Chang, 2008a] chooses arbitrarily the ROI, providing

somewhat hands-free method, but not gathering all the line‘s characteristics. The same authors

present a method in [Ji and Chang, 2008b] that uses stereo vision to build a more robust output of

the vibrating attributes.

The technique of letting the user select a region of interest to track is the one which resembles

our approach. However, it requires either the user to make a choice of the points or ROI to track

or the algorithm chooses a small region arbitrarily, and unless the user chooses very carefully

all the points of the line, the ROI is subject to noise on the background, such as clouds or even

foreign objects passing by, such as birds or airplanes. Moreover, once the track is lost, the user has

to reselect the points, or compare with trustworthy information such as the initial frame, which

decreases the robustness of the method.

2.2 People Tracking

Research in the field of people tracking although being a particular case of object tracking, still

finds lots of applications and in specific conditions, meaning that a general successful method for

people tracking hasn‘t still been accomplished. Therefore, premises were taken, in order to create

successful, although specific methods for people tracking. Techniques in this area involve not only

surveillance applications, but also virtual reality, advanced interface or even motion analysis ap-

plications. Complete surveys about the several applications involving people tracking algorithms

can be found in [Gravilla, 1999], [Moeslund and Granum, 2001] and [Moeslund et al., 2006].

Although usually people tracking is performed resorting to standard cameras, other more so-

phisticated techniques can also be used to track people. One of these solutions is to use an inte-

grated system of laser sensors, as described in [Cui et al., 2006]. Here, the authors present a multi-

ple laser scanner system positioned a little above ground level, where they track multiple people in

crowd situations, tracking in particular each person‘s legs. Using this information, the algorithm

is able to build a track and the respective path taken for each person. Another approach involving

the use of multiple sensors is described in [Ikeda et al., 2006]. It uses a variety of sensors such

as floor, vision and even wearable devices synchronizing the information to obtain a more robust

description of the scene. These techniques require however higher costs and they are unpractical in

most situations, because a general installation isn‘t always possible due to different scenarios and

structures. Most practical approaches use strictly computer vision techniques, because it provides

reasonable costs, due to the existence of methods using computer vision approaches which can be

applied to a wide range of situations.

In the survey [Moeslund and Granum, 2001], a generalization of the people tracking algo-

rithms is made. The author divides a general model for an algorithm of people tracking in four
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phases: initialization, tracking, pose estimation and recognition.

Initialization usually involves separating the background from the foreground. The latter con-

sists of the relevant objects to be treated. Depending on the method, this phase can also involve

other modules like camera calibration.

The following steps contain many specific modules and strongly characterize the final algo-

rithm. This specificity is strongly influenced by the environment of the scenario and the main

goals of the algorithm. In [Siebel and Maybank, 2002], the method‘s purpose is to track people

inside a metro‘s substation. This means that there will be an undetermined quantity of people in

the image frame – either there is just a few people or a big crowd due to rush hour. In this case,

pose estimation is not so crucial to the algorithm as in other situations such as movement analysis

or virtual reality, because in situations of surveillance the main goal is to be aware of people‘s

positions.

In [Haritaoglu et al., 2000], the authors present a method for people tracking, which shows

good results in exterior environments, where there are many kinds of noise and sudden changes

in luminosity. Furthermore, it is capable of identifying human body parts through the person‘s

silhouette‘s contour, and its respective shape, obtaining pose estimation. The method has also the

skill to recognize certain objects being carried by people and can detect when the object is being

exchanged between people. For that, it is necessary that the object is clearly detected through

the analysis of the person‘s silhouette, because it is through this method that the algorithm looks

for silhouette‘s deformations in the person‘s usual symmetry, therefore identifying deformations

as carried objects. There are, however, some limitations in the global algorithm. When a person

crosses its path horizontally with another person (even with some distance between them), the

program loses track of the person in front, mainly because it requires the camera to be situated at

normal human eyesight level. This is a common issue in people tracking methods – because only a

limited perspective of the scene is available, there‘s the possibility of occlusion and the recovery of

the track after this occlusion isn‘t straight forward. Also, due to the camera‘s placement at ground

level, the field of vision is narrowed comparing to the situation where the camera is positioned in

high grounds.

Figure 2.2: Iterative process of people identification (extracted from [Zhao and Nevatia, 2004])
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In the algorithm developed by Zhao [Zhao and Nevatia, 2004], a three dimensional model of

the scene is built, using camera calibration. This allows the algorithm to have a better knowledge

of the space and also to help in situations of occlusion by restricting one determined place in the

3D space for only one object (two objects cannot occupy the same space in the three dimensional

space). This tool is vital for obtaining the person‘s position in the scene. The process of detection

consists in replacing the detected foreground by a model of a person, an ellipse. Iteratively, the

method eliminates the detected people, allowing partially occluded people to also be detected.

Unlike the previous analyzed method, this one requires that the camera is to be placed on high

grounds, allowing a more peripheral, wider view of the space and reducing, therefore, the chances

of occlusion. These possible occlusions prove to be harmful for the performance of this algorithm.

If an object is occluded for a certain number of frames, the person‘s model is discarded, decreasing

the overall performance of the method. Moreover, the tracking fails in case of sudden changes

of illumination, since it relies in a appearance model based in color values. Furthermore, this

appearance model requires the algorithm to go through every pixel of every considered position,

in order to make a comparison with the weighted average model. This procedure is heavy, when

the processing time is being concerned, since much of the area analyzed might not add more

relevant information than what a few keypoints might.

A method for people detection and identification is presented to us in [Teixeira and Corte-Real,

2009]. Here the authors describe a method that uses a trained dataset of visual model objects.

In other words, the algorithm gathers the object‘s characteristics using a bag-of-visterms – an

histogram of local feature descriptors, learning therefore the so called vocabulary that defines the

object. With this database, the algorithm can identify these people in different video sequences

with high precision, resorting to stereo-view images to get more information from the scenario.

The method also updates the model of every identified object, increasing its resilience. However,

the SIFT transform of every object of every frame also in every view, requires a reasonable amount

of processing time. Moreover, the need for a previously trained dataset makes it unpractical in

many situations where random people are present in the scenario.

The appearance model for a person is an important module of a people tracking algorithm.

This representation is used to match new possible positions for the person, refining its tracking.

Many methods simply use a Kalman filter to predict the person‘s next position, but this prediction

is often not precise in the first frames where the person appears and also if simple changes in

direction and speed in the path of the person are considered.

An intuitive approach for the appearance model is described in [Zhao and Nevatia, 2004] and

resorts to a weighted average of the texture values for the person‘s segment. It gives more weight

to recent frames and also considers the probability that a certain pixel in the model is foreground or

background. In the second part of the article, the authors present an alternative appearance model

consisting in a stick-figure which allows to determine with a certain effectiveness the person‘s

body pose and eliminate a person‘s shadow in outdoor situations, as the shadow does not fit this

model. However, the method requires a great processing effort and high resolution to match body

members to this appearance model. This implies a reasonable investment, which might not be
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viable in many situations.

In [Ramanan et al., 2007], the authors propose an appearance model that consists of detecting

the position of the person‘s body parts, like arms and legs, which allows a better background ex-

traction and a better description of the person. However, the system handle only specific situations,

where all the person‘s limbs are well identified. Therefore the system is expected to be inaccurate

in multiple person and crowd situations.
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Chapter 3

Camera Calibration

3.1 Introduction

As defined in [Tsai, 1987] “camera calibration is the process of acquiring the intrinsic and extrin-

sic characteristics of a camera”. The intrinsic features are the geometric and optical parameters

of the device. The extrinsic characteristics consist of the three-dimensional position of the camera

and its orientation. The knowledge of these features enables us to convert 3D points to 2D and

vice-versa. In Figure 3.1, the translation of these sets of points is represented.

Figure 3.1: Geometrical concept for camera calibration

In [Tsai, 1987], it is presented a robust way for capturing these parameters. The calibration is

achieved through the collection of a series of image frames where a standard pattern (for example,

a checkerboard) is displayed as the one depicted in Figure 3.2. The algorithm detects the position

of the pattern in different frames, obtaining the camera‘s intrinsic and also extrinsic characteristics.

A similar technique is used in [Zhang, 2000] where camera calibration enables the elaboration of

3D models of the objects displayed in the video.

In the research conducted by Lv [Lv et al., 2002], it‘s demonstrated a self-calibration method

which uses the horizon line to achieve calibration. Through these vanishing lines, and some objects

13
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Figure 3.2: Possible pattern used for camera calibration

with known measures (like an electric pole), it‘s possible to gather the camera‘s characteristics,

therefore obtaining camera calibration. A graphical demonstration of camera calibration using

vanishing lines is made in Figure 3.3. Here, the vertical vanishing point of a reference object is

depicted, as well as the computing of the horizon line, through the analysis of the ground plane.

Figure 3.3: Camera calibration using vanishing lines (extracted from [Lv et al., 2002])

In some situations, camera calibration has been used not as a unique module, but as a con-

tributing part for a system. In [Zhao and Nevatia, 2004], the method uses camera calibration to

build a 3D model of the scene, in order to get a better perception of space and of the people in the

scene.

3.2 Camera‘s parameters

In this section, a brief technical description of camera calibration will be presented. A more

detailed discussion of the subject can be found in [Forsyth and Ponce, 2002].

As mentioned before, camera calibration is the process of obtaining both the intrinsic and

extrinsic parameters of a camera installed in a certain position. The intrinsic values consist of the

internal parameters of the camera and they are represented by:
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A =

αx γ u0

0 αy v0

0 0 1

 (3.1)

where αx and αy are the horizontal and vertical pixel size respectively - also known as the focal

length in pixels, (u0, v0) is the principal point or center of the image in pixels and γ is the skew

coefficient - the camera may have a manufacturing error, allowing the angle between the two axes

of the image not to be 90◦ (the camera is skewed). Matrix A is called camera matrix and represents

the overall intrinsic parameters.

The camera‘s position and rotation relatively to the scene or the extrinsic parameters are rep-

resented by a rotation matrix and a translation vector,

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 , t =

t1
t2
t3

 (3.2)

R and t, respectively.

Figure 3.4: Model of 3D to 2D conversion

Considering the three dimensional space where the camera is inserted, we can build a model

of this scene as depicted in Figure 3.4.

This model is called the pinhole camera model and it makes the conversion between 3D points

in the scene and 2D points in the image. This conversion is accomplished using equation 3.3 that

gathers both intrinsic and extrinsic parameters of the camera:

s m‘ = A[R|t]M‘ (3.3)



16 Camera Calibration

where s is a scale factor, m‘ is the point (in pixels) in the image and M‘ is the point in 3D (in

distance scale) in the image. From equation 3.3 we can derive

s

u

v

1

=

αx γ u0

0 αy v0

0 0 1


r11 r12 r13 t1

r21 r22 r23 t2
r31 r32 r33 t3




X

Y

Z

1

 (3.4)

Note that if, for example, we impose Z = 0, i.e. we fix one projection plane eliminating one

variable, then we can eliminate one column from the [R|t] matrix, obtaining

s

u

v

1

=

αx γ u0

0 αy v0

0 0 1


r11 r12 t1

r21 r22 t2
r31 r32 t3


X

Y

1

 (3.5)

The derived matrix is called homography matrix, which can be used to convert points from 2D

to 3D and vice-versa, when considering one constant projection plane,

s m‘ = H.M‘, H =

αx γ u0

0 αy v0

0 0 1


r11 r12 t1

r21 r22 t2
r31 r32 t3

 (3.6)

This equation is used to obtain object characteristics in tracking algorithms, such as line pa-

rameters and scene characteristics in people tracking in our case. Obviously as discussed, this

equation only allows to get information when one variable from the 3D space is constant. There-

fore, in case of the experiment with line detection and tracking, the immediate solution would be

to consider the plane common to all the lines in the sequence, since all lines are in most cases

parallel between themselves. In people tracking situations, this equation might be useful to get a

description of the 3D measures of the floor in the scene, in order to get positions of people in the

various frames.

3.3 Experiments in camera calibration

For a better understanding of the method of camera calibration, some experiments were conducted

using a set of images from the CAVIAR project [CAVIAR, 2004]. The objective here was to

get to know how this information could be used to our advantage, in both algorithms. Moreover,

we wanted to know how precise was the camera calibration, when a few points were inserted to

compute the homorgraphy matrix.
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In order to translate world coordinates, or in 3D, to image coordinates we need to calibrate

the camera, as we‘ve seen before. One of the possibilities is to use the homography matrix which

makes this translation but considering only one plane in the world coordinates. Using the example

of a typical scenario for people tracking, if we consider Figure 3.5, the homography matrix could

provide us a translation from the image coordinates to the 3D coordinates in the ground floor

(Z = 0) and vice-versa. In this Figure we can see a few drawn crosses. The black crosses represent

a set of points provided by [CAVIAR, 2004], that represent the ground truth from which we can

extract the homography matrix. These points are also depicted in Table 3.1.

Figure 3.5: Image from [CAVIAR, 2004] with crosses from the camera calibration method

Table 3.1: Given Points

2D (u,v) 91,163 241,163 98,266 322,265
3D (x,y,z) 0,975,0 290,975,0 0,-110,0 290,-110,0

As a result of the extraction of the homography matrix, we obtain:

H =

 8.95994 −0.608928 −716.099

−0.197069 −51.6092 12978.4

−0.000202122 0.0225961 1

 (3.7)

We can now test the precision of the gathered result, inputting some 3D coordinates and ob-

serving the result. In Table 3.2, we can see the tested coordinates followed by a mapping for

reference values, i.e., the correct translation composed by two values representing its height (up)

and width (vp) position in the image. These coordinates were collected, based on the patterns

drawn in the floor, which contain a certain specific measure. In the third column, we can see
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the results represented by a pair of values representing its height and width, u and v respectively,

also represented by the white crosses in Figure 3.5, and finally in the last column, the comparison

between the mapping and gathered coordinates, computed with the mean square error.

Table 3.2: Set of computed points for camera calibration test

3D points - input (x,y,z) Mapping (up,vp) Computed points (u,v) Mean Square Error
(0,0,0) 95,251 96,251 0.5

(290,0,0) 305,247 310,250 17.0
(145,-110,0) 208,265 210,265 2.0
(145,975,0) 166,161 166,162 0.5
(145,0,0) 201,250 204,250 4.5
(0,1085,0) 88,152 90,156 10.0

(290,1085,0) 230,151 235,156 25.0
(0,2060,0) 85,111 87,111 2.0

(290,2060,0) 197,111 200,111 4.5

3.4 Conclusion

From the results presented in Table 3.2, we can conclude that the gathered coordinates are well

translated by the homography matrix, as the maximum obtained error was a mean square er-

ror (MSE) of 25, correspondent to a displacement of ≈ 7.1 pixels in that particular case and a

MSE average of approximately 7.3. Therefore, this matrix provides a successful correspondence

between image and world coordinates, when considering points in the ground level. As we‘ve

discussed before, this provides some measuring possibilities in both line and people tracking al-

gorithms. In line detection and tracking, if the lines are parallel between themselves, we can

consider the plane where all lines are inserted. However, as it will be presented further on, most

of experiments were performed with synthetic images, the decision was made not to include this

module, as we couldn‘t compare the results with real measures. As for the people tracking method

presented, a full calibration module was already implemented. However, as we were not provided

with the calibration parameters for all sequences, an alternative camera model was implemented

discussed in Chapter 5. The knowledge presented in this chapter provided crucial information for

the development of this module.



Chapter 4

Line Detection and Tracking

4.1 Introduction

In this chapter, we present a method for measuring line or cable‘s movement characteristics, in

video sequences featuring one or more lines. As mentioned in section 1.3.1, an alternative to the

methods which use accelerometers, load cells – that required installation of devices in or on the

lines was desired, in order to decrease costs or even solve some situations where the installation

of such equipment was impossible. Therefore, computer vision became a possibility for a solution

to this issue, because it provided a contactless approach which reduced costs. Current state-of-

the-art methods were discussed in Chapter 2 and can be generalized into two approaches: (1) the

use of a marker which the algorithm will track and (2) requires the user to select a region to track.

The method proposed here implements an automatic line detector, followed by a line tracking that

outputs the displacement of one or more lines, i.e., the vibration characteristics. In Figure 4.1,

we can see the system diagram that illustrates the general steps the method goes through. Having

captured the images, the first step is to enhance the lines in the frames – a pre-processing module,

in order to apply the line detector method, obtaining the output of binary images of the lines for

each frame. With the information of the location of the lines we can apply a line tracking method

on those points, in order to obtain the displacement of the points and the line from one frame to

another and with this information we can compute the line‘s characteristics.

PPre-Processing Line Detection Line Tracking Vibration 
Characteristics

Captured Image 
Sequence

Figure 4.1: Diagram of the operations that are involved in the line tracking method
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4.2 Approach Description

4.2.1 Stable Path

In order to understand the reasons why the gradient is used, we need to understand the stable path

method and its importance in the system.

First, it is necessary to extract the location of each line in every frame, only then we can think

about a method that extracts its movement‘s characteristics. We considered statistical segmenta-

tion algorithm to separate the foreground (the lines) from the background at one point. However,

the extracted information was seldom either insufficient or provided too much residual information

from older frames, as we see in the examples in figure 4.2.

a)

b) c)

Figure 4.2: Line Segmentation: a) desired result; b) result with insufficient information; c) result
with too much information

We then considered the stable path algorithm, which is a method for connecting two distant

points, taking the route with less cost. The original method, described in [Cardoso et al., 2009a]

and [Cardoso et al., 2008], was developed with the intent of recognizing staff lines in hand-written

music score images. However, we cannot apply this algorithm directly for our purposes. As

the original method relies on a pre-processing module that rather binarizes the music score sheet
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producing the necessary information for that specific application, there’s the need to modify this

module in order to fit our premises‘ needs. Indeed, we could binarize each image, but the com-

mon low contrast between the line and the background doesn‘t allow a direct binarization of the

frames. In order to eliminate this background noise, a simple gradient filter was applied, obtaining

a grayscale image of the edges present in the frame, composed mainly by the lines. The other edges

present in the image can be eliminated by the subsequent modules of the stable path algorithm.

p1,1 p1,2 p1,3 ...

p2,1 p2,2 p2,3 ...

p3,1 p3,2 p3,3 ...

...
...

...
. . .

a) b)

C1

C2

C3

C4

i min
...

C3

c) d)

Figure 4.3: Stable path and its various phases: a), b), c) and d)

The stable path method considers the image as a graph, where pixels are the nodes and a cost

is associated with each path between nodes. In our case, the cost is the value of the gradient and

our line extremities would be the pixels on the left side and the pixels on the right margin, or vice-

versa. Consider an 8x4 pixel frame of a gradient image (grayscale) as illustrated in Figure 4.3,

where each circle represents one pixel and its color represents its respective gradient value. Let

each pixel have the value pi, j, where i is the number of the row, j the column number and the value

is in the interval [0,1], where 0 represents the highest gradient and 1 represents the lowest. The

objective is to construct a steady line between the left side pixels and the right side. We start by

going through every pixel of each column as depicted in 4.3(a) and 4.3(b), and for each pixel we

associate one pixel from the previous column (previous_node) that has a direct contact with the

current pixel, i.e. the pixel on the previous, same or next row and on the previous column. This
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decision is made according to the lowest cost (cmin) associated with the previous pixel‘s gradient

value. Having made this decision, the current pixel will then inherit the previous pixel‘s total cost

and add the cost associated with the new decision (ci, j) and also the information of the starting

point (init_pointi, j) of that route and, obviously, the chosen row of the previous column (a), i.e., a

is either i−1, i or i+1 according to the lowest cost. Figure 4.4 tries to summarize this process.

for each column j:
for each row i:

cmin← min(pi−1, j−1; pi, j−1; pi+1, j−1);
previous_node← cmin = pa, j−1;
ci, j← pa, j−1 + ca, j−1;
init_pointi, j← init_pointa, j−1;

end.
end.

Figure 4.4: Algorithm summarizing the stable path method applied to line detection

At the end of this process, we will have a map of decisions as portrayed in Fig. 4.3(c), where

the last column will have for each pixel an associated total cost, that represents the least cost of

going from that pixel to the other side of the image, here represented by C1, C2, C3 and C4.

Because we also inherited the pixel‘s starting point, we can see that all of these pixels have the

same starting point, which means that the minimum cost between C1, C2, C3 and C4, represents

the path with the minimum path between the two sides. The final step is to do the inverse path, from

the last pixel to the first, bearing in mind the saved decisions throughout the map (Figure 4.3(d)).

Figure 4.5: False positives in the stable path algorithm applied to the method

However, we can have various lines in one frame, and in this case we will only consider the

minimum cost of each set of pixels from the last row with the same starting point.
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A problem caused by this algorithm related to our specific case is depicted in Figure 4.5. In

situations where a large area of the image is without any line, the algorithm detects one where there

shouldn‘t be one. However, the final cost will be very high, due to the low values of gradient in

that area. Therefore, to overcome this problem a threshold is applied to the final costs, eliminating

the false positives.

a) b)

c)

Figure 4.6: Various spaces of colors applied to a synthetic frame, followed by a gradient filter: (a)
grayscale space; (b) luminance channel of the YCbCr space and (c) saturation channel of the HSV
space

In order to apply the stable path, a gradient filter needs therefore to be applied and this comes

associated with some other options: (1) over which space of colors or which channel of a col-

orspace to apply to the gradient filter and (2) which specific filter should be used.

The immediate attempt for the first option issue to use was grayscale. However, the grayscale

space causes some deficiencies in the luminance values, as we can see in Figure 4.6(a). These

deficiencies obviously cause the gradient to break down in those regions. Moreover, it will cause

malfunctions in the stable path method, therefore not detecting correctly every line.
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Because of these problems, it was decided to try other spaces, to improve the performance

of the upcoming modules. The next test was made with the luminance value of the YCbCr color

space. However, this option proved also to be inefficient for our purposes, as we see in Fig-

ure 4.6(b).

Another map of values tested (now with more successful results) was the HSV color space.

In particular, the Saturation channel provided robust information for the stable path, depicted in

Figure 4.6(c). A few line breaks were visible, but sufficiently small for the stable path to recover

them.

4.2.2 Optical Flow

Now that we have the information of all the lines present in each frame of the sequence, we need

to: (1) find the corresponding line in each frame and (2) find the displacement of each line in two

consecutive frames. In order to do this, we resorted to the optical flow method.

Optical flow “is the distribution of apparent velocities of movement of brightness patterns in

an image” [Horn and Schunck, 1981]. The function of the optical flow method is to find matches

between patterns in two frames, more precisely between windows of pixels. The method has some

handicaps, as it doesn‘t handle occlusions, or great deformations in objects. However, one is not

expecting the lines to be occluded and also they are not expected to suffer great deformations. Fur-

thermore, the optical flow doesn‘t handle what one might refer as optical illusions. Considering,

for example, a rotating barber‘s pole in Figure 4.7, the optical flow method will tell you the stripes

in the poll are traveling vertically, but in reality the pole is rotating.

Figure 4.7: Spinning barber‘s pole with rotation movement but vertical optical flow

Other methods could be considered – image block matching is possible, however the texture

of a line is usually uniform, which would complicate this process. Nonetheless, other algorithms

could be considered as some of the future work for this project, as it is discussed further on.

Bearing in mind the discussed definition for optical flow, a single point in the line should give

us the overall behavior of the line. However, optical flow provides yet another problem commonly

referred as ‘aperture problem’. In Figure 4.8, we can see an illustration of the problem. A rectan-

gle with homogeneous color is moving according to two motion components: one strictly vertical,

pointing downwards and another one, tangential to its length, as we see in the first image of the
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illustration. If we are observing the moving rectangle through a small window, as illustrated in

the second image, the observed information would not be complete, as the tangential component

is ‘hidden’. This is what happens when the optical flow uses only the information from the neigh-

borhood of one point adding to the fact that the object is homogeneous. Taking information from

more points doesn‘t, obviously, solve the problem entirely, but could minimize some noise in the

tangential component of the line‘s movement. Some of the results presented, were performed in

order to validate this statement, as it will be presented the comparison between using a single and

several points to measure the displacement of the lines, which will be presented and discussed

further on.

Figure 4.8: Illustration of the aperture problem

There are a few approaches for the optical flow method, that have reasonable differences and

some of them will be discussed and considered. Three different methods of optical flow were

tested using the information from the line detector: the Lucas-Kanade tracker, the Horn-Schunck

method and the pyramidal implementation of the Lucas-Kanade tracker.

The Horn-Schunck optical flow method presented in [Horn and Schunck, 1981] presents a

more global description of optical flow as the gathering of the displacement of brightness patterns.

The Lucas-Kanade tracker, described in [Lucas and Kanade, 1981], presents a faster technique

than previous methods, using a faster algorithm for comparing pixel windows in different frames,

which consists of a minimization of the L2 norm measure of error. Strongly based on the previous

method, the pyramidal implementation of the Lucas-Kanade tracker portrayed in [Bouguet, 2000],

uses a pyramid of different levels of coarseness and uses each level of the pyramid in different

stages of iteration, providing more accurate results. These three approaches were tested in our

method, and results from these experiments are presented further on.

4.3 Experiments with line detection and tracking

For experimenting with line detection and tracking, due to the current lack of a set of images

with appropriate characteristics, a set of synthetic images consisting of six lines, each of them
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vibrating at a certain frequency and with a certain peak was created. We can see one frame from

this developed sequence in Figure 4.9.

Figure 4.9: Frame from the sequence of synthetic images developed for line tracking experiments

A background was added so it could resemble a real situation, where the background is not

uniform and will have to be taken in account. Moreover, each line vibrates with different peaks

and maximum amplitudes and each synthesized sequence has 500 frames. In our experiments and

tests, six specific sequences were used. A sample for each sequence can be seen in appendix A,

in figure A.1 and also, the inserted values for each sequence are presented in table A.1. We

wanted to test line detection where the lines were subject to curvature, as in the example of high-

voltage power lines, where the lines are hanging between two electricity pylons, therefore present

some curvature. With that objective, sequences 1 and 2 feature curved lines vibrating at different

frequencies. As mentioned before, the synthetic sequences feature six different vibrating lines,

and for sequences 1 and 2 the inserted values for the lines are depicted in sequence a) of Table 4.1

(in this Table, three different sets of values are described and each of the six tested sequences

is described by one of this category). Moreover, the lines in the two sequences have different

thicknesses, as in sequence 1 lines have the thickness of 1 pixel and in sequence 2 they have the

thickness of 2 pixels.

Although sequences 1 and 2 provide a good test for line detection, the validation of the track-

ing method is rather problematic, as the lines are curved therefore the position of each point of the

line in each line is hard to compute, so we need a set of frames that allows to compare displace-

ments using all points of the lines. Therefore, sequences 3 and 4 were synthesized and feature

six vibrating straight lines. The use of straight lines allow the knowledge of the position of each

point and the displacement of all points will be similar throughout the line. In sequence 3, the

lines vibrate according to sequence a) in Table 4.1, as the lines in sequence 4 vibrate according to

sequence b). This allows the measure of a larger number of frequencies and amplitudes. Also, the

direction of the displacement has just one direction, allowing an easier measurement and result
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Table 4.1: Sets a), b) and c) of frequencies inputted in the synthetic sequences (unit of results are
pixels)

Sequence a) Sequence b) Sequence c)
Amplitude Frequency Amplitude Frequency Amplitude Frequency

Line (pixels) (rad/s) (pixels) (rad/s) (pixels) (rad/s)
1 5 0.8 5 0.8 5 0.8
2 4.7 0.85 2 0.85 2 0.3
3 4.3 0.9 4.3 0.9 4.3 0.9
4 4 0.95 1.2 0.95 1.2 0.95
5 3.7 1.0 1.5 0.05 1.5 0.1
6 3.3 1.05 3.3 1.5 3.3 1.5

analysis. As in sequences 1 and 2, these sequences possess lines with different thicknesses, where

the lines in sequences 3 have the thickness of 1 pixel and in sequence 4 have 2 pixels of thickness.

Sequences 1–4 have the same background as in Figure 4.9.

Sequence 5 has a background different from the previous ones. It features heavy clouds, which

causes noise in the gradient image. Moreover, the lines‘ color is more similar to the background,

causing low perception of the lines. This is intended to test the line detection and tracking robust-

ness. The lines in this sequence are also straight, which allow the testing in line tracking and also

possess only one direction in its displacement. The values inputted in this sequence correspond

to sequence c) in Table 4.1. The last sequence (6) consists of a set of frames extracted from real

live footage of a cable-stayed bridge and is intended to test line detection in real situations. In Fig-

ure 4.10, it is depicted samples from sequences 5 (4.10(a)) and 6 (4.10(b)). It becomes, therefore

clear the differences between both sequences – sequence 5 is intended for testing robustness as the

lines are not so perceptible and sequence 6 although composed of a few number of frames, can be

used for line detection testing.

(a) (b)

Figure 4.10: Sequences 5 and 6
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4.4 Evaluation Methodology

4.4.1 Line Detection

In order to validate the approach, we need a methodology to evaluate the performance of line

detection. How do we measure the successfulness of the algorithm? For this, we have two sets of

images for each sequence, one being the reference for the evaluation, i.e., the masks of the lines

synthesized together with the original synthetic image. The second is simply the set of images

that feature the lines extracted using the stable path algorithm. Using this pair of sequences an

evaluation can be performed, which will be now described.

Because we‘re working with a multiple line detector, first it‘s necessary to establish matches

between the obtained and reference lines, so we can know which line in the reference corresponds

to which one in the stable path output. Let‘s consider the reference image R, and the output from

the stable path image I. Let R have m lines and image I, n lines, and D f a m×n matrix of distances

between lines in frame f . For each point in each line a of image R,

da,b,i = min(pb, j) (4.1)

where da,b,i is the minimum distance from point i in line a and all the points ( j) in line b. Let

then,

da,b =
1

∑i pa,i
∑

i
da,b,i (4.2)

where da,b is the average distance between a and b, ∑i pa,i the number of points in line a. With

the average distances we can build matrix D f :

D f =


d1,1 . . . d1,n

...
. . .

...

dm,1 . . . dm,n

 . (4.3)

In D f , we can see all the average distances between every reference and detected line in frame

f . Resorting to these average distances, we can now match the lines in images R and I. This is

accomplished using the Hungarian algorithm, which finds the matches between lines in matrix

D f , using the minimum possible cost for the available distances. If m 6= n, or in other words if the

number of lines in the reference image is different than the number of lines in image I, a penalty

(pen) is given to the evaluation and multiplied according to the difference between m and n. Let

then H f be a m× n binary matrix, which contains the output of the Hungarian algorithm and,

therefore only has one not-null element per row and column. Let E f also be a m×n matrix of the

result of the evaluation with its coefficients given by equation 4.4.
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E f (x,y) = D f (x,y) ·H f (x,y) (4.4)

The not-null elements of matrix E f will represent the distances between matched lines in

images R and I. From matrix E f , we can take two measures: (1) the average distance between

matched lines and (2) the maximum possible distance considering the average distances between

points of the reference and obtained lines, i.e., the Hausdorff distance.

d̄ =
1
N ∑

f

sum(E f )+ |m−n| · pen
min(m,n)

(4.5)

where d̄ is the total average distance, N is the total number of frames in the sequence, sum(E f )

is the sum of the elements the matrix E f and pen is the penalty given for each line not found or

extra line found in the frame. If this happens, then m 6= n and the minimum of the two elements

will be the divisor of the fraction, increasing the error. As for the Hausdorff distance, it is simply

given by

dH = max(max(E1),max(E2), . . . ,max(EN)) (4.6)

where each max(Ex) is the maximum element in each Ex matrix.

4.4.2 Line Tracking

For the validation of the line tracking, we can only resort to sequences 3, 4 and 5 of the dataset, as

mentioned in section 4.3. Using these sequences, every point in each line has the same movement

characteristics, i.e., the same characteristics as the inputted values. We want, therefore, to com-

pare the inserted values to the ones gathered by the tracking procedure. The number of points to

consider could be chosen by the user, as the line in the sequence could not have the same behavior

throughout its length. As mentioned in section 4.2.2, the effects caused by the aperture problem in

optical flow is greater when less points are considered. Also, because the line has a uniform tex-

ture, the obtained displacement for a single point is often pointing to a distant point in the second

line, as there is no perceptible difference between the two points for the optical flow method. For

this reason, we computed the displacement for each point in a line (v(i)):

v(i) =

 1
Wn

∑
i+(Wn−1)/2
j=i−(Wn−1)/2 op( j) if i− Wn−1

2 > 0 and i+ Wn−1
2 < S

op(i) otherwise
(4.7)

where Wn is a small window of neighbor points (with an odd number of elements) intended

to smooth the value of the optical flow for each point (op( j)). Then, we take the median (ṽ) of
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the vector v – ordering from lowest to highest value into vector v‘, as the displacement of the

considered segment S of the line, i.e.:

ṽ =

v‘(S/2), if S is even

(v‘(S−1
2 )+ v‘(S+1

2 ))/2 if S is odd
, v‘→ v sorted from lowest to highest value. (4.8)

Having this value ṽ for each line and each pair of frames (displacement from one frame to the

other), we can now compare it with the inserted values. Using the Root Mean Square Error, we

can compare both reference r f and obtained ṽ f vectors considering the line‘s displacement from

frame f −1 to frame f , i.e.,

RMSE =

√
∑

N−1
f=1 (ṽ f − r f )2

N−1
(4.9)

4.5 Results

Having performed the evaluation described in the previous section, we will now present the re-

sults extracted from this process. As with the experiments, the results are two-fold, i.e., for line

detection and line tracking.

4.5.1 Line Detection

In Table 4.2, we can see the results computed from the line detection experiments. The results are

presented in percentages, where the reference distance, i.e., the image‘s diagonal corresponds to

100%. There, we can see a very small variance for a non-null value, i.e., most of the maximum

distances are close to the average distance. This is due to a residual error that is expected. With

appropriate post-processing, it is expected that this error factor can be reduced or even eliminated.

Sustaining this affirmation is the value for variance obtained – ≈0.00%.

Table 4.2: Results for line detection

Average Distance Hausdorff Distance
Seq. 1 0.13% 0.13%
Seq. 2 0.13% 0.15%
Seq. 3 0.13% 0.15%
Seq. 4 0.14% 0.15%
Seq. 5 0.20% 1.21%
Seq. 6 0.037% 0.067%

Sequences 2 and 4 have a slight increase, due to the fact that we are considering reference

lines with a larger thickness. Sequence 5 has a higher value for both average and Hausdorff
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distance, however, it should be taken into consideration the high noise in the background and the

low contrast present in the frames, which complicates the line detection. A direct conclusion is

however harder to take from sequence 6 (the sequence containing real images), due to the manual

drawing of the reference masks. Nonetheless, the success of line detection in real footage becomes

clear. All obtained values are below the average results obtained for the synthetic sequences, as

the maximum distance was 0.067%.

4.5.2 Line Tracking

First of all, we present the results used to make the decision between the three considered optical

flow methods. In Table 4.3, we can see a clear reduction of the root mean square error when

using the pyramidal implementation of the Lucas-Kanade Tracker. These results are an average

of results taken from sequences 3 and 4 and obtained when all the points in a line are considered.

The presented values are composed by the average root mean square error (RMSE) for each line

and, in the last column, the average of all lines.

Table 4.3: Comparison between different optical flow methods

RMSE Averages
(pixels) Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Total Average

Lucas-Kanade 2,698 1,885 2,737 1,602 1,389 2,862 2,196
Horn-Schunck 2,671 1,847 2,709 1,573 1,334 2,838 2,162

Pyr. Lucas-Kanade 0,374 0,382 0,425 0,422 0,271 0,466 0,390

When taking this table in consideration, the immediate decision was to use the pyramidal

implementation of the Lucas-Kanade tracker, because of its clear improvement to the line tracking,

when compared with the other approaches.

As mentioned before, the experiments in line tracking involved testing different number of

points involved in the process. In Table 4.4, we have the results gathered from the tests. Here,

we can see the results using different windows of points over the line, which increase from the

left to right and also the results for the different components of the displacement (vertical and

horizontal). The horizontal values should be considered noise, as the direction of displacement of

the lines in these sequences were established as vertical. A great part of the improvement visible

in the line tracking is due to a better approximation of the horizontal component of the signal.

This is a consequence of the problem we‘ve discussed in section 4.2.2 – the aperture problem and

the homogeneity of the lines. With a greater number of points taken into consideration, a decrease

in the RMSE is visible. Nevertheless, a general improvement of the vertical component of the

displacement is also present.

In Figure 4.11, we can see a clear decrease of the total root mean square error when we consider

more points in the line.

Although having a good approximation to the line‘s displacement is already a good validation

of the method, the computation of the frequency of vibration is often taken as the main output to
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Table 4.4: Results for line tracking

Window Size
1 points 3 points 11 points 101 points 301 points all line

Direction RMSE Error gain relatively to the 1 point approach (%)

Seq. 3
horizontal 1,2162 -2,45% -13,72% -54,52% -87,16% -90,72%

vertical 0,7935 0,03% 4,32% -7,10% -39,01% -60,26%
total 1,7332 -1,39% -7,46% -35,74% -68,98% -80,48%

Seq. 4
horizontal 1,8527 -6,34% 1,05% -44,75% -69,94% -91,23%

vertical 0,4632 -2,65% -12,98% -28,38% -42,18% -29,43%
total 1,9421 -5,97% -0,42% -42,59% -66,79% -80,22%

Seq. 5
horizontal 0,8947 -0,60% -4,45% -39,32% -61,24% -81,86%

vertical 1,1645 -0,13% 0,93% -15,76% -10,78% -7,43%
total 1,8051 0,22% -0,79% -25,97% -31,18% -38,90%

take from this type of methods. In Table 4.5, we can see the calculated frequencies, based on the

displacement values presented before. These values were calculated using the average of frames

between each positive peak of optical flow for each line. Although the results presented are only

gathered from single frequency vibrations in synthetic sequences, the small RMSE presented in

the previous results leaves reasonable assumptions that multi-frequency vibrations would also lead

to successful results in frequency retrieval.

Table 4.5: Frequency outputs (in rad/s) from sequences 3, 4 and 5

Seq. 3 Seq. 4 Seq. 5
Reference Obtained Reference Obtained Reference Obtained

0,8 0,800 0,8 0,801 0,8 0,800
0,85 0,848 0,85 0,848 0,3 0,300
0,9 0,901 0,9 0,902 0,2 0,200

0,95 0,951 0,95 0,950 0,95 0,950
1 1,00 0,05 0,0502 0,1 0,100

1,05 1,051 1,5 1,502 1,5 1,501
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Figure 4.11: Total error using different window sizes
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Chapter 5

People Tracking

5.1 Introduction

As mentioned in section 1.4, the research in people tracking conducted in this dissertation focused

on an algorithm previously developed by Tao Zhao described in [Zhao and Nevatia, 2004]. More

specifically, the work consisted of experimentations with different appearance models. In the

original method, this model was based on a weighted average of the object‘s texture, together

with a foreground probability. This requires the algorithm to go through every point of both this

model and every point of every possible position, therefore causing a possible inefficiency and

respective a increase of the processing time. Furthermore, as the texture values for the object can

be very similar (e.g., the person has clothes with the same color), this high processing might not

be advantageous as an appearance model.

To keep track of an object, an algorithm has to learn some of its characteristics and have

enough tools to be able to successfully identify this person throughout the video sequence, while

dealing with possible full or partial occlusions. Although the original algorithm by Zhao handles

object identification through position prediction, texture templates and foreground probability, we

believe this appearance model could be substituted so that the success rate is increased and there

would be a decrease in processing time. We therefore propose to adapt the method described

in [Teixeira and Corte-Real, 2009], where it is proposed an algorithm for object matching in video

sequences using multiple views, to work in this single camera algorithm.

The method presented in [Teixeira and Corte-Real, 2009] focuses on object matching across

multiple cameras and constructs a model for a person based on a local descriptor and a bag-of-

visterms (BoV) representation, building a vocabulary for each person and subsequently, a visual

object model. This vocabulary is built resorting to an interest point extractor and SIFT descriptor,

being the latter presented in [Lowe, 2004]. This allows the algorithm to use a lower number

of points, but better defining the object rather than requiring to compute every point. However,

this proposed method does not perform tracking, as it only identifies every person in every frame

resorting to a database of previously trained objects. In Figure 5.1, we can see an example of the

visual object model updating and matching functions of the method described in [Teixeira and

35
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Corte-Real, 2009]. Note how an object can be partially occluded and then merged with a complete

model, updating the information.

Figure 5.1: Matching and updating of the visual object model (extracted from [Teixeira and Corte-
Real, 2009])

We propose an integration of the appearance model presented by Teixeira in Zhao‘s method,

in order to experiment with the approach‘s resilience and performance. Instead of computing the

appearance matching using every point of the object, the proposed integration would extract a

signature from both previous position and possible next position, comparing values and making a

decision upon them.

First, we‘ll describe the dataset used for the experiments and validation of the methods, then

we‘ll take a look at some experiments made involving Zhao‘s original method and finally we‘ll go

through the steps taken to implement Teixeira‘s appearance model into Zhao‘s algorithm.

5.2 Dataset

For the validation of the proposed method, some sequences extracted from [CAVIAR, 2004] (the

CAVIAR project) and the PETS 2006 workshop [PETS, 2006] were used. These sequences are

often used by the computer vision community for method validation, therefore providing a wider

comparison to other developed approaches.

The first set is comprised of two sequences from the CAVIAR project. One sample extracted

from one of these sequences is depicted in 5.6(a). Both sequences present the same scenario, with

different actions taking place. They are labelled as Caviar1 and Caviar2 in the results section.
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The second set is composed of two sequences used in [PETS, 2006], which consist of the same

scene recorded in different angles. These sequences have a higher resolution, therefore requiring

a higher processing effort. The labels for this set are PetsCam3 and PetsCam4.

In appendix A, a description of the available information is presented in table A.2 and a sample

for each sequence used in Figure A.2.

5.3 Alternative model to camera calibration using a linear camera
model

Part of the dataset available didn‘t provide camera calibration parameters required by the original

algorithm, but only a few 2D points together with the corresponding 3D points for the ground

plane. Therefore, as the points provided only enough points to compute the calibration for the

ground plane, an alternative model should be implemented. Moreover, a new camera model could

provide a better processing time, as a lot of computation is involved in the initialization of the

original model, and also for some of the procedures taken throughout the sequence. For all these

reasons, the first part of work with the people tracking method was devoted to some experiments

that were performed in order to compare the camera calibration approach to a simpler linear cam-

era model.

In the original method, camera calibration was essentially used to compute the height of a

person in pixels, based on the person‘s position in the image and the height of the foreground

object, gathered from the segmentation and head detection modules of the algorithm. Therefore,

we argued that a method that could also do this, resorting to other means, could also be a valid

technique for the module. Our approach is based on a linear description of the scenario where the

people are inserted.

In Figure 5.2, we can see a representation of this camera model. In image a), we take the

position of the woman in the right upper corner, as well as in image b) for the same woman,

now in the lower center position. With this information we can compute a linear transformation

represented in image c). In this image, we can see the same woman in the two positions and it

becomes clear the change in the person‘s height that depends of the position in the image. Indeed,

for this method to be functional, the camera should be at a certain height, so the position of the

person in the vertical axis is in direct proportion with the person‘s height.

So, if we have the person‘s feet positioned at the height f 1 and its head at the height h1 in the

first frame, and then in the second frame with its feet at f 2 and head at h2, we can compute the

height in pixels at any point y using the following linear equation:

height =


| f 2−h2|−| f 1−h1|

f 2− f 1 (y− f 1)+ | f 1−h1| if y is at the feet of the person
| f 2−h2|−| f 1−h1|

h2−h1 (y−h1)+ | f 1−h1| if y is at the head of the person
(5.1)
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a) b)

c)

Figure 5.2: Representation of the approximation taken in the new camera model approach: a)
frame 105, b) frame 371 and c) overlap of frames 105 and 371, extracted from [PETS, 2006]

where we‘re basically finding the slope of the red lines of Figure 5.2c), and applying it to the

position y, whether it is represents the feet of the person or its head.

In Table 5.1, we can see the differences in processing times when using each of the discussed

methods. Although we‘re dealing with a linear model, the computational time required proved to

be 60% to 160% higher. Nonetheless, because we don‘t have camera calibration information for

all sequences, we need to prove that this model is feasible, in order to use it to the remaining sets

of frames.

Table 5.1: Processing times using Camera Calibration vs. Linear Camera Model

Camera Calibration Linear Camera Model
Sequence (sec/ f rame) (sec/ f rame)

PETS Cam3 0.460 0.718
PETS Cam4 0.373 0.972

In Figure 5.3, we can see the error produced in a few number of frames, using the sequences
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extracted from [PETS, 2006]. This error is computed using the metrics described in [Cardoso

et al., 2009b].

Although there are significant differences in some frames, overall the two models have an

approximate behavior. Therefore, although there‘s an increase in the processing time, this method

can be used in sequences where we are not provided with camera calibration information.

a) b)

Figure 5.3: Error comparison between linear camera model and camera calibration for sequences:
a) PETS Cam3 and b) PETS Cam4

Therefore, for the results, the original baseline to which the gathered results will be compared

is comprised of the information obtained when using the method described in [Zhao and Nevatia,

2004] for the sequences extracted from [PETS, 2006]. As for the sequence from [CAVIAR, 2004],

it‘ll be used Zhao‘s algorithm but now using the new linear camera model.

5.4 Implementation of local descriptors as an appearance model

The main assignment for the work involving the people tracking algorithm was to implement an

alternative appearance model as an attempt to improve the person‘s description and processing

time. This appearance model would be inspired in the one described in [Teixeira and Corte-Real,

2009]. The differences between the premises of the methods and the problems associated with the

implementation of this new method are discussed in section 5.1.

First, we should identify where the modification is going to be performed. The tracking mod-

ule of the original method consists of a Kalman filter to predict the next position basing itself on

previous ones. The module then searches for an optimal match in a neighborhood of the estimated

position. The best match is found comparing each possibility with a template that represents the

texture model of the person, based on previous positions and a foreground probability based on the

segmentation values also of the previous positions. Instead, the implemented module takes every

possible position around the position predicted by the Kalman filter and instead of comparing it

to a template, it would compare its signature with the signature of the previous frame. This sig-

nature is a description of the person‘s image, which consists on a bag-of-visterms, or a histogram
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Figure 5.4: Implementation of the new signature extractor module

of quantized local descriptors. Basically, a BoV is a vocabulary based on SIFT descriptors [Lowe,

2004]. In our case, there‘s no previously trained object dataset, as opposite of what happens in

the case presented in [Teixeira and Corte-Real, 2009], the objects to be tracked are not previously

trained, therefore a generic vocabulary is required.

In Figure 5.4, we can see a diagram explaining this procedure. The comparison between the

two signatures, which are represented by histograms, is made using a χ2 metric [Erdem et al.,

2004], where the histogram of the previous position Hprev and the tested histogram Ht are com-

pared using the following expression:

χ
2(Hprev,Ht) =

∑
B
j=1

[r1 Ht( j)−r2 Hprev( j)]2

Ht( j)+Hprev( j)

NHt +NHprev

(5.2)

where

NHt = ∑
B
j=1 Ht( j), NHprev = ∑

B
j=1 Hprev( j), r1 =

√
NHprev

NHt
and r2 =

1
r1

and where Ht and Hprev have B elements.

Now that we have the methods to compare signatures and respective histograms, we need to

decide which part of the ellipsoid we should input to the method. The signature extractor uses a

rectangle window as the input. It was decided to use the middle part of the person, as the upper

and lower part often contains a reasonable amount of background information because the legs

and head don‘t occupy totally the ellipsoid. Therefore, the essential information relative to one

person is in the middle part of the ellipsoid, as the upper and lower part won‘t give us resilient
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information, as they have lower probability of being foreground, therefore providing less vital

information.

As a result, we experimented with different sizes of windows, similar to what is described in

Figure 5.5. In this figure, we can see the ellipsoid, and the region extracted from it. Part of the

outside of the ellipsoid is also inserted to the signature extractor, which can behave as noise. For

this reason, we experimented the algorithm with different sizes for this window, where this size

would be related to the ellipsoid height, which is represented by the dashed line in the figure.

Figure 5.5: Extracted part of ellipsoid for signature extraction

Another inserted value to the signature extractor module is the number of interest points to be

used by the same module. This value is initialized as a percentage of the points (P) in the rectangle,

as the ellipsoid‘s height varies with its position in the image. The objective here is to get to know

how many points are necessary to get a reasonable description of the person. Obviously, a trade-

off has to be made between the processing time needed and the performance obtained when a

certain number of points is used. A small number of points might decrease the time needed for

processing but it also can prejudice the algorithm‘s performance. Moreover, in order to provide

a valid description of the object, the signature extractor requires a minimum of points (ptmin) to

be analyzed. Therefore, a threshold was set in order to comply with this premise, depicted in

equation 5.3.

P = max(P, ptmin) (5.3)

5.5 Evaluation methodology

For the evaluation of the modifications tested, the results were compared to reference information,

also known as ground-truth. Specifically, two types of ground-truth were considered: coarse posi-

tion and dimensions of the objects in the form of bounding boxes; exact information of the objects

silhouette, also known as reference segmentations. The reference information or tracking results

represented in the form of bounding boxes is conveyed using the CVML [List and Fisher, 2004]

information, which is a language that translates the position of each person as its bounding box
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(a) (b) (c)

Figure 5.6: Information of the position of each person: a) original frame, b) position information
and c) intersection of both

for every frame. For the CAVIAR and PETS sequences considered, a subset of frames with ref-

erence segmentations exists. However, only the CAVIAR sequences possess the CVML reference

information. Hence, two evaluation methodologies were considered to take advantage of the most

information available. For the sequences, and for the existing reference segmentations, the metrics

described in [Cardoso et al., 2009b] were computed. Moreover, for the CAVIAR sequences, the

CVML information was used to compute the metrics described in [Black et al., 2003]. A review

of tracking metrics is presented in [Carvalho et al., 2010].

5.6 Results

In this section, the results that were gathered from the experiments described in the previous

sections are presented. We‘ll mainly take a look at the results from the integration of the new

appearance model and how they change when imposing different window sizes and number of

interest points for the region of interest of the person. These values are in percentage, translated

into the portion of the ellipsoid considered in the case of the window size, and the fraction of

points considered inside that window in the case of the number of points. These results will be

compared with the ones observed for the baseline, i.e., the original method.

Table 5.2: Processing times results and respective gain relative to the original processing time
(0.46 sec/frame)

PetsCam3
Window size (%) 25 50 75
No. of points (%) 1 5 10 1 5 10 1 5 10
Processing Time

44.4 46.3 54.4 50.7 95.0 107.3 54.5 125.5 254.8
(sec/frame)
Gain 96.5 100.7 118.2 110.2 206.5 233.3 118.4 272.8 553.8

In Table 5.2, the processing times are presented in seconds per frame. In Table 5.1, the average

processing time for a frame was already presented for the original algorithm – 0.460 s/frame.

Observing these values, we can conclude that the fastest algorithm is still more than 96 times
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slower than the processing time obtained for the original algorithm and far from considered to be

functioning in real-time. This, obviously represents a serious factor in considering the validation

of the algorithm, as people tracking methods should present a close to real-time performance. A

closer look into the distribution of processing time over the modules, led to the conclusion that the

signature extractor module in consuming approximately 91.1% of the processing time per track

and frame, therefore leading to the conclusion that the code implemented from [Teixeira and Corte-

Real, 2009] and not optimized, is the module consuming the most processing time. Nonetheless,

comparing the obtained processing times, the decisive factor seems to be the number of points, as

we see a higher increase when changing that parameter, comparing to the window size.

Table 5.3: Error obtained in relation to the baseline

Window size (%) 25 50 75
No. of points (%) 1 5 10 1 5 10 1 5 10
PetsCam3 (%) 22.24 23.64 9.15 8.67 7.62 5.17 7.89 9.03 10.12
Caviar2 (%) 10.96 10.96 7.84 6.49 5.39 4.77 5.64 - -

Nevertheless, not only the processing time is essential, as optimizations can be conducted,

but also the results concerning the performance of the algorithm should be considered. These are

presented in Table 5.3 for sequences PetsCam3 and Caviar2. The values displayed are relative to

the results gathered from the original method using the evaluation method described in [Cardoso

et al., 2009b]. So, for instance, concerning the PetsCam3 sequence, for a window size of 50% and

using 1% of the number of points, the error obtained is 8.67% higher than the original result. It‘s

visible a slight decrease in the error for both sequences, as the window size increases, which is

caused by the use of more information.

Figure 5.7: Error variation when using different number of points (PetsCam3)

In Figure 5.7, the output provided by the evaluating method are presented, concerning the

results when using a window size of 25% in the sequence labelled PetsCam3. It becomes clear
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that the results are quite similar, although a slight decrease is also visible. A similar error function

is also depicted in Figure 5.8. In this Figure, the various results for the number of points at 1% are

presented, for the same sequence.

Figure 5.8: Error variation when using different window sizes (PetsCam3)

Analyzing the processing times together with the error function obtained, both number of

points and window sizes are important for the good performance of the algorithm although a good

performance is translated into a increase in processing time. However, the decisive factor seems

to be the number of points used for the object description, since the window size increase does not

correspond to a direct decrease in the method‘s error.

Table 5.4: Results from CVML information for the Caviar1 sequence

Window Number Detection Tracker False False
Size of Points Rate Detection Rate Accuracy Negative Rate Alarm Rate

Original algorithm 69.4% 0.792 2.61 30.6% 10.1%
25% 1% 62.1% 0.758 2.74 37.9% 24.7%
25% 5% 61.9% 0.754 2.73 38.1% 23.9%
25% 10% 67.7% 0.834 3.02 32.3% 16.3%
50% 1% 76.2% 0.909 3.29 23.8% 5.4%
50% 5% 77.4% 0.886 3.21 22.6% 3.1%
50% 10% 76.9% 0.923 3.34 23.1% 4.5%
75% 1% 70.5% 0.836 3.03 29.5% 13.4%
75% 5% 78.6% 0.854 3.09 27.8% 9.5%

In Tables 5.4 and 5.5, the results using the evaluation method described in [Black et al., 2003]

are presented for sequences Caviar1 and Caviar2 respectively. A clear improvement is visible for

both sequences, as the number of points and window size are higher. For the first sequence, the

best results are for a window size of 50%, where an accuracy of 3.34 is obtained when using 10%

of the number of points, showing an improvement of 28.0% relative to the baseline and a detection
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Table 5.5: Results from CVML information for the Caviar2 sequence

Window Number Detection Tracker False False
Size of Points Rate Detection Rate Accuracy Negative Rate Alarm Rate

Original algorithm 78.4% 0.988 5.11 21.6% 24.7%
25% 1% 54.1% 0.693 3.49 45.8% 49.1%
25% 5% 54.1% 0.693 3.49 45.8% 49.1%
25% 10% 58.8% 0.755 3.80 41.2% 44.3%
50% 1% 71.4% 0.972 4.12 28.1% 27.3%
50% 5% 75.3% 0.990 4.98 24.7% 25.3%
50% 10% 75.3% 0.998 5.02 24.7% 25.6%
75% 1% 78.8% 1.057 5.32 21.2% 21.8%

rate of 77.4% is obtained when using 5% of the number of points, resulting in an increase of 8.0%

when comparing to the original approach. This validates the experiments with a reduced window

size, since the results improve when using only a window size of 50% of the height of the ellipsoid.

Nonetheless, the overall results for the new technique improve relatively to the baseline approach.

The exceptions are the results gathered for a window size of 25%, which show very similar values

to the baseline. The results for the second sequence also present an improvement as the parameters

are increased. In this case, the best results are even when a window size of 75% is used, proving

that the parameters can be optimal depending on the sequence they‘re applied to. However, in

this case most results don‘t show an improvement to the original approach, although for the best

parameters, tracker detection rate is increased 7% and accuracy improved 4%.



46 People Tracking



Chapter 6

Conclusions

The overall purpose of this thesis was to demonstrate the specificity of each video object tracking

algorithm and the difficulties it poses to the application of a generic tracking method. As said

before, one needs to look at the objectives and needed outputs to construct a computer vision algo-

rithm and build a object tracking method. Contributions were provided in two different contexts:

vibrating line detection and tracking and an appearance model for single camera people tracking.

In this chapter, we‘ll take a look at the objectives proposed in the beginning of the work and

the respective conclusions that we can take from the results.

6.1 Object Tracking

As mentioned in Chapter 1, a unique approach for computer vision hasn‘t still been achieved,

therefore developers make assumptions and define restrictions, in order to build a robust solution

although in specific terms. In order to stress this issue, we presented two separate methods for

object tracking in video sequences. The line detection module presented is obviously very specific

to line detection, as it searches for stable paths of minimum energy between two margins of an

image and, therefore cannot be applied to people detection. The same goes for the tracking module

– the optical flow applied in line tracking requires a low or inexistent deformation of the object and

the absence of occlusion, and ergo applying it to people tracking could be unsuccessful as a person

can deform severely from one frame to the next, specially if rotating. Hence, the application of line

detection, as a first step to tracking, or of tracking method to track multiple people in a scene would

fail. On the other hand, an appearance model is also not viable for a line detection and tracking

approach. Usually a line presents itself having a uniform and homogeneous texture, and therefore

to analyze its appearance would not be enough to track several lines over a video sequence.

6.2 Line Detection and Tracking

Concerning the proposed method in Chapter 4, we presented a new method for line detection

in color images and their tracking as they vibrate throughout the sequence. The approach was
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strongly based in a previous method used in another field, which provided successful results for

the distance between the original and the detected line, in the range of 0.125% to 0.20% of the

image‘s diagonal. For the image size considered, these values are between 1 and 1.5 pixels,

which allow to say that lines were successfully detected. Furthermore, even for a sequence with a

difficult background, the maximum distance found was 1.21%, which makes clear the robustness

of the algorithm. We also proved that using information from the line detection and considering

a larger number points in a line we could get a better approximation of the line‘s displacement

(less 40%-80% of the approach using solely the information from 1 point). This decrease in the

error, specially in the tangential component, represents a minimization in the aperture problem

mentioned in the description of the optical flow, visible if we would just consider one point on the

line.

As a result of the development and respective results provided by this method, an article en-

titled ‘A Stable Path Approach for Vibrating Line Detection and Tracking’ was submitted to the

Electronics Letters journal and is currently under revision.

6.2.1 Future Work

Some of the future work for this subject has been presented throughout chapter 4, such as tests

using lines provided with multi-frequency vibration characteristics and also using real footage.

The latter is the most crucial for a more robust validation of the line tracking system. The com-

parison between the data gathered and information provided by other devices like accelerometers,

or other techniques discussed in the state-of-the-art (chapter 2) would help to get an even better

understanding of the system‘s performance.

The possibility of pre-processing done to the sequence is also something to take under consid-

eration. The premises of the line detection algorithm state that the lines should be distributed from

one margin of the image to the other, and in some situations, this could reduce the method‘s ability

to operate. Therefore, an option of letting the user indicate where the lines begin and end, could

improve the previously mentioned problems, or applying some rotation to the sequence, in order

to distribute the lines according to our restrictions. Also some post-processing could be applied to

the detected lines, to eliminate the effects of using the gradient filter – the line is detected slightly

separately from the actual line, as the gradient marks the edge of the line.

As mentioned in section 3.4, a module for camera calibration could also be added to the

method, to provide translation between world and image coordinates. This module would be

essential to get information such as vibration amplitude of the lines.

Concerning the implemented stable path method, some experiments could be performed in

order to find the critical point where the lines become too imperceptible for the algorithm to

recover them.
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6.3 People Tracking

The objectives described in Chapter 1, were to experiment with a new appearance model as an

alternative to the original one. However, the integrated module led to an increase of the processing

time of approximately 96 times, considering the result which uses the less processing time. This is

obviously considered a serious issue in the algorithm as people tracking algorithms should perform

close to real-time in order to be considered in practical situations. Furthermore, the gathered re-

sults from the first evaluation method used did not imply an increase of the performance, since the

values extracted from the approach described in [Cardoso et al., 2009b] presented an error between

4.8% and 23.6% above the error obtained for the original method. Nonetheless, it became clear

the increase of the performance as the number of points analyzed are increased, although the pro-

cessing time also increases. Concerning the results extracted from the second evaluation method,

described in [Black et al., 2003], two sequences, both extracted from [CAVIAR, 2004] were tested

and evaluated, considering various pairs of parameters. With this evaluation method, we obtain

overall better results when comparing with the baseline, with the exception of the parameters with

a small window size and therefore also considering a small number of points. However, as it was

observed in the first method, results can be improved using a 50% window size instead of 75%.

Moreover, when considering the processing times when using a 75% window, this fact benefits

the approach. Looking at the values for the sequence labelled Caviar1, the accuracy improves

from 5.0% to 28.0% of the original value, which proves the overall better performance. As for se-

quence Caviar2, the use of a 25% window size produced worse results, making the detection rate

decrease 24.3%. However, using a larger window size and consequently a larger number of points,

the results improved, and for a window size of 75%, using 1% of the number of points, accuracy

increased 4% and the detection rate improved 7%. This is a proof for the better performance of the

integrated method over the CAVIAR sequences, rather than the PETS sequences. The sequences

extracted from PETS have a better resolution, providing a better texture description of a person

and a more controlled people flow, where there are practically no occlusions. This is a possible

reason for the worse performance when comparing to the CAVIAR sequences, where we have a

low resolution, less controlled scenario, where the appearance of a person proves to be worse,

when using texture information.

6.3.1 Future Work

Some modules of the implementation are targeted for improvements, specially as a result of the

high processing times obtained from the experiments. The immediate proposed work is to perform

code optimization to reduce considerably this parameter. As the algorithm has a reasonable size,

the processing time could be reduced drastically. Another way of reducing processing would be

to consider less values in the signature vector. Although obtaining a less accurate description, this

could mean a great decrease in processing and should be taken into consideration. If a reduction

of the processing time is possible, then the increase of the number of points could be viable, since

this could translate in an increase of the performance, as seen in the results where more points
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were considered. Tests using much more variations in the parameters are therefore advised, as it

might be viable to consider, for instance, 20% of the number of points.

An interest point detector could be an interesting module to integrate in the method, as some-

times it provides a better description of the person, and could translate in better results. An al-

ternative local descriptor could also be used (such as the SURF descriptor) instead of the SIFT

transform, which could allow a more effective signature extraction and therefore a better perfor-

mance of the overall method. An average of the signature could also be produced over the frames

instead of comparing the current signature with the previous one. This could allow a more robust

characterization, increasing the precision of comparison.



Appendix A

Datasets

This is an appendix to Chapter 4 – line detection and tracking and Chapter 5 – people tracking.

Some of this content is also described in those chapters.

Table A.1 shows a description of the data inputted to the sequences featuring vibrating lines.

Figure A.1 depicts samples from the six different sequences used for the validation of the line

detection and tracking method described in Chapter 4. The description of this dataset can be

found in section 4.3 of the same chapter.

As for the people dataset, Table A.2 shows the available information for each sequence. The

CVML information is an XML-based markup language described in [List and Fisher, 2004], which

tells us the position of the bounding box of a person in each frame. In Figure A.2, we can see a

sample of some sequences used for validation and experiments of the method. A further descrip-

tion can be found in section 5.2.
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Table A.1: Description of content for each synthetic sequence of vibrating lines

Frequency Amplitude Grayscale
Sequences Line (rad/s) (pixels) Thickness value

1

1 0.8 5

1 45

2 0.85 4.7
3 0.9 4.3
4 0.95 4
5 1.0 3.7
6 1.05 3.3

2

1 0.8 5

2 205

2 0.85 4.7
3 0.9 4.3
4 0.95 4
5 1.0 3.7
6 1.05 3.3

3

1 0.8 5

1 40

2 0.85 4.7
3 0.9 4.3
4 0.95 4
5 1.0 3.7
6 1.05 3.3

4

1 0.8 5

2 75

2 0.85 2
3 0.9 4.3
4 0.95 1.2
5 0.05 1.5
6 1.5 3.3

5

1 0.8 5

1 155

2 0.3 2
3 0.2 4.3
4 0.95 1.2
5 0.1 1.5
6 1.5 3.3

Table A.2: Properties of each sequence used in the dataset for the people tracking method

Sequence Label CVML info Segmentation info Camera calibration
Caviar1 x x
Caviar2 x x
PetsCam3 x x
PetsCam4 x x
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Seq. 1 Seq. 2

Seq. 3 Seq. 4

Seq. 5 Seq. 6

Figure A.1: Samples from the dataset for line detection and tracking validation
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Caviar1 Caviar2

PetsCam3 PetsCam4

Figure A.2: Samples from part of the dataset for people tracking validation, presented with its
respective label



Appendix B

Experiments in Line Detection and
Tracking with Camera Calibration

In order to conduct some experiments with camera calibration using the line detection and tracking

dataset we need to assume that all lines are parallel and inserted on the same projection plane.

Doing so allows us to use the homography matrix, discussed in chapter 3.2.

For this initial experiment, we set some coordinates for the ends of three of the lines, depicted

in Table B.1.

Table B.1: Set points for the line tracking image sequence

2D points (pixels) 3D points
(1,328) (0,0,0)
(1,287) (0,40,0)
(1,247) (0,80,0)

(639,272) (622,0,0)
(639,231) (622,40,0)
(639,192) (622,80,0)

With this set of points, we can calculate our homography matrix, which results in:

H =

 0.964 0.000780 −1.19

−0.870 −0.988 324.1

−1.89e−5 2.51e−6 1

 (B.1)

We assumed the first, third and fifth line from the bottom up were 40cm from each other and

having a length of 622cm. We now want to follow the fifth line, iterating the 3D-2D conversion to

the points (20i, 80, 0) where i=1, 2, 3,. . . until we reach the end of the line.

In Figure B.1, the black crosses represent the assumed points and the white ones represent the

computed ones. As we can see, the crosses follow the trail of the line from the beginning until

the end, apart from a small deviation, result of a little bend on the line. It is this deviation that
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Figure B.1: Camera calibration test for line tracking

we want to calculate further in our experiments, as well as how often it occurs. In Figure B.2,

the results gathered from this experiment are presented, as the error obtained when comparing the

points tested to the respective reference values. From these results, the average Root Mean Square

Error is 2.57, which allows to conclude that the camera calibration was successful and could be

implemented in such situation.

Figure B.2: Gathered RMSE results of the 30 analyzed points
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