
Faculdade de Engenharia da Universidade do Porto

edgeBOX Remote Management

Paulo Sérgio Campos Cavaleiro

Report of Project

Master in Informatics and Computing Engineering

Supervisor: João Manuel Couto das Neves (Prof.)

July 2008

c© Paulo Sérgio Campos Cavaleiro, 2008

edgeBOX Remote Management

Paulo Sérgio Campos Cavaleiro

Report of Project

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: Pedro Alexandre Guimarães Lobo Ferreira do Souto (Prof.)

External Examiner: Artur José Carneiro Pereira (Prof.)

Internal Examiner: João Manuel Couto das Neves (Prof.)

31st July, 2008

Abstract

This document starts to introduce the project, that is integration between OpenNMS
and iTEMS; describes the goals to achieve that integration and the motivation.

It as a study of the different technologies that will be used in the development
of the project and a overview of iTEMS and OpenNMS.

In the project analysis are described the different features that will compose the
project, their domain, architecture and the test cases.

The implementation will highlight the strategy adopted to implement the differ-
ent features, the most relevant parts developed in code and the configuration details
so the solution work properly.

Finally in the conclusion is made an balance of the features developed and are
described some future implementations.

i

ii

Resumo

O presente documento inicia-se com uma introdução do projecto, que é uma inte-
gração entre OpenNMS e iTEMS. Descreve os objectivos para alcançar essa inte-
gração e a motivação para a elaboração deste projecto.

Contém o estudo das diferentes tecnologias que irão ser usadas no desenvolvi-
mento do projecto e uma visão do iTEMS e do OpenNMS.

Na análise do projecto são descritas as várias funcionalidades que irão fazer parte
do projecto, o seu domı́nio, arquitectura e casos de teste.

A implementação irá realçar a estratégia adoptada para implementar as difer-
entes funcionalidades, as partes mais importantes desenvolvidas em código e os de-
talhes de configuração para que a solução funcione correctamente.

Na conclusão é feito um balanço das funcionalidades desenvolvidas e são descritas
algumas das posśıveis implementações futuras.

iii

iv

Contents

1 Introduction 1
1.1 Context . 1
1.2 Project . 2
1.3 Motivation and Objectives . 2
1.4 Project Structure . 2

2 State of the Art 3
2.1 Technologies . 3

2.1.1 SNMP . 3
2.1.2 XML . 3
2.1.3 Java . 4

2.1.3.1 Java Server Pages (JSP) 4
2.1.3.2 Java Servlets . 4

2.1.4 JDOM . 5
2.1.5 Acegi-Security . 5
2.1.6 RRDTool . 5
2.1.7 JRobin . 6
2.1.8 SNMP4j . 6
2.1.9 LOG4j . 7
2.1.10 Jetty . 7
2.1.11 Castor . 7
2.1.12 PostgreSQL . 8
2.1.13 FindBugs . 8

2.2 Platforms overview . 9
2.2.1 iTEMS Overview . 9
2.2.2 OpenNMS Overview . 10

2.3 Summary and Conclusions . 12

3 Project Analysis 13
3.1 Requirements Analysis . 13

3.1.1 Functional requirements . 13
3.1.1.1 Actors . 14
3.1.1.2 iTEMS Package . 14
3.1.1.3 OpenNMS Package 24

3.1.2 Information requirements . 27
3.1.2.1 Class Domain . 27
3.1.2.2 Relational Model . 27

v

CONTENTS

3.1.3 Non-Functional requirements 30
3.2 Architecture Analysis . 30
3.3 Test Cases . 31
3.4 Summary and Conclusions . 41

4 Implementation 43
4.1 Integration Strategy . 43

4.1.1 Phase one . 43
4.1.2 Phase two . 44
4.1.3 Phase three . 45

4.1.3.1 CPE Groups Management 45
4.1.3.2 Profiles Management 47
4.1.3.3 Tasks Management 48
4.1.3.4 Access Management 51

4.2 Generated code . 51
4.3 Configuration . 55

5 Conclusions 61
5.1 Accomplished Objectives . 61
5.2 Future work . 62

References 64

A OpenNMS database 65

B CPE Group XML schema 69

C XML messages 71
C.1 Status retrieve . 71
C.2 Profile operations . 75

vi

List of Figures

2.1 OpenNMS concrete architecture [Shi02] 10

3.1 General use case diagram . 14
3.2 iTEMS Package use case diagram . 15
3.3 Group Management Package use case diagram 15
3.4 Profile Management use case diagram 17
3.5 Task Management use case diagram 18
3.6 Access Management use case diagram 20
3.7 Task Engine use case diagram . 21
3.8 OpenNMS package use case diagram 24
3.9 Domain diagram . 27
3.10 iTEMS part in database . 28
3.11 System Architecture . 31

4.1 Node List rebuild . 44
4.2 New node navigation bar options for edgeBOX 44
4.3 Status retrieving . 46
4.4 CPE Group management in node page 47
4.5 CPE Group management in node list page 47
4.6 State machine for tasks . 48
4.7 Complete task execution . 50

A.1 OpenNMS database - First part . 65
A.2 OpenNMS database - Second part . 66
A.3 OpenNMS database - Third part . 66
A.4 OpenNMS database - Fourth part . 67
A.5 OpenNMS database - Fifth part . 67

vii

LIST OF FIGURES

viii

List of Tables

2.1 General PostgreSQL limits . 9

ix

LIST OF TABLES

x

Abbreviations

API Application Programming Interface
CPE Customer Premises Equipment
CPU Central Processing Unit
DHCP Dynamic Host Configuration Protocol
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
iTEMS Integrated edgeBOX Management System
JAR Java ARchive
JSP JavaServer page
NMS Network Management System
OpenNMS Open Network Management System
SGML Standard Generalized Markup Language
SNMP Simple Network Management Protocol
W3C World Wide Web Consortium
webUI Web User Interface
XML eXtensible Markup Language

xi

ABBREVIATIONS

xii

Chapter 1

Introduction

The present project focus on a well know problem that is network management.

In this particular project it will be made a solution intended to manage a specific

network appliance, edgeBOX. This solution is integration between an open-source

technology, OpenNMS, and a propriety technology, iTEMS. One resolves the prob-

lem of monitoring and the other the problem of configuring, together they make a

full solution for managing edgeBOXs.

So this project will focus on the integration problem between the two of them.

For accomplish this it’s necessary to study the two platforms to capture the needs

and the problems of this integration. First will be study the OpenNMS solution,

because the integration is going to be made having as base the existing project

of OpenNMS. This creates some technologies limitations since OpenNMS is made

in Java and JSP, and been the configuration of the solution made in XML. The

iTEMS solution is going to be studied for the best way of importing the features

and functionalities existent and to be merged with OpenNMS, providing a unique

solution.

1.1 Context

This project is an improvement of another solution existent in Critical Links that

combines OpenNMS and iTEMS separately. In that solution OpenNMS and iTEMS

coexist in the same machine but running in separated systems by using VMWare,

since iTEMS is a Windows based program and OpenNMS was primordially Linux

based. Because of the inconvenient of this solution and the fact that OpenNMS

allows to make adaptive solutions, it was defined that a unique solution of iTEMS

1

Introduction

and OpenNMS would be a better approach, with OpenNMS project been the support

for this.

Critical Links is a company dedicated to the development and maintenance of

edgeBOX.

The edgeBOX is a network device composed of hardware and software which

combines all the required functions needed for the connection of a small or medium

sized organization to the Internet, fully integrated into a single box.

1.2 Project

The project is essentially integration between OpenNMS and iTEMS to create a

complete remote management solution for edgeBOXs.

1.3 Motivation and Objectives

The motivation for this project is to gain more knowledge in remote network manage-

ment in a professional point of view applied to a real network appliance, edgeBOX.

To accomplish this the next objectives will be accomplished:

• Study of OpenNMS platform;

• Study of iTEMS platform;

• Elaboration of integration strategy;

• Creation of integrated solution;

• Test solution.

1.4 Project Structure

Chapter 1 – introduction of the project.

Chapter 2 – study of the state of the art.

Chapter 3 – analysis of the project.

Chapter 4 – description of the implementation.

Chapter 5 – conclusions and future work perspectives.

2

Chapter 2

State of the Art

This chapter contains the study relative to all the technologies that are going to

be used in the project. It evidences the choices made. Because of the nature of

the project, an integration, almost all of the technologies were impose and so this

chapter will focus on show that technologies lacking the comparison between similar

technologies.

2.1 Technologies

2.1.1 SNMP

Simple Network Management Protocol (SNMP) [Wik08] is a protocol developed to

allow to simply manage networks. It main components are agents and network

management systems (NMS), that basically work in a request response way been all

the requests made by the NMS.

The agent collects data and responds to requests from the NMS. These responses

will be essentially retrieving of variables that are defined in management informa-

tion bases (MIB’s), by calls made from the NMS using the GET, GETNEXT and

GETBULK operations, but the agent can send information without being asked

using TRAP or INFORM operations. The NMS can to perform some configurations

changes using the SET operation.

2.1.2 XML

The eXtensive Markup language (XML) [Wor08] is a markup language that can be

used to create your own tags. It was created by the World Wide Web Consortium

(W3C) to overcome the limitations of HTML, the Hypertext Markup Language that

is the basis for all Web pages. Like HTML, XML is based on SGML – Standard

3

State of the Art

Generalized Markup Language. Although SGML has been used in the publishing

industry for decades, its perceived complexity intimidated many people that other-

wise might have used it (SGML also stands for ”Sounds great, maybe later”). XML

was designed with the Web in mind.

With it large use and simplicity it started to be the preferred way of sending

data through the web and other applications.

2.1.3 Java

2.1.3.1 Java Server Pages (JSP)

JavaServer Pages (JSP) [Sun08b] technology enables Web developers and designers

to rapidly develop and easily maintain, information-rich, dynamic Web pages that

leverage existing business systems. As part of the Java technology family, JSP

technology enables rapid development of Web-based applications that are platform

independent. JSP technology separates the user interface from content generation,

enabling designers to change the overall page layout without altering the underlying

dynamic content.

JSP technology uses XML-like tags that encapsulate the logic that generates the

content for the page. The application logic can reside in server-based resources (such

as JavaBeans component architecture) that the page accesses with these tags. Any

and all formatting (HTML or XML) tags are passed directly back to the response

page. By separating the page logic from its design and display and supporting a

reusable component-based design, JSP technology makes it faster and easier than

ever to build Web-based applications.

JavaServer Pages technology is an extension of the Java Servlet technology.

Servlets are platform-independent, server-side modules that fit seamlessly into a

Web server framework and can be used to extend the capabilities of a Web server

with minimal overhead, maintenance, and support. Unlike other scripting languages,

servlets involve no platform-specific consideration or modifications; they are appli-

cation components that are downloaded, on demand, to the part of the system that

needs them. Together, JSP technology and servlets provide an attractive alterna-

tive to other types of dynamic Web scripting/programming by offering: platform

independence; enhanced performance; separation of logic from display; ease of ad-

ministration; extensibility into the enterprise; and, most importantly, ease of use.

2.1.3.2 Java Servlets

Servlets [Sun08a] are the Java platform technology of choice for extending and en-

hancing Web servers. Servlets provide a component-based, platform-independent

method for building Web-based applications, without the performance limitations

4

State of the Art

of CGI programs. And unlike proprietary server extension mechanisms (such as

the Netscape Server API or Apache modules), servlets are server- and platform-

independent. This leaves you free to select a ”best of breed” strategy for your

servers, platforms, and tools.

Servlets have access to the entire family of Java APIs, including the JDBC API

to access enterprise databases. Servlets can also access a library of HTTP-specific

calls and receive all the benefits of the mature Java language, including portability,

performance, reusability, and crash protection.

Today servlets are a popular choice for building interactive Web applications.

Third-party servlet containers are available for Apache Web Server, Microsoft IIS,

and others. Servlet containers are usually a component of Web and application

servers, such as BEA WebLogic Application Server, IBM WebSphere, Sun Java

System Web Server, Sun Java System Application Server, and others.

2.1.4 JDOM

JDOM [JDO08] is an API developed to provide a Java-Based solution for accessing,

manipulating, and outputting XML data from Java code. It provides a robust,

light-weight means of reading and writing XML data without the complex and

memory-consumptive options that current API offerings provide.

2.1.5 Acegi-Security

Acegi Security [Sec08] is a powerful, flexible security solution for enterprise software

(particularly with Spring). It provides comprehensive authentication, authorization,

instance-based access control, channel security and human user detection capabili-

ties.

2.1.6 RRDTool

RRDtool [Oet08] was written by Tobi Oetiker, the author of MRTG. It is, effectively,

the next generation of MRTG, with a complete reimplementation of MRTGs graph-

ing and logging features. MRTG works great for simple network monitoring, but

thats really all it was originally intended to do. These days people are using MRTG

to monitor everything from router bandwidth, to memory and disk statistics.

There are a number of drawbacks to MRTG however. On the graphing front,

MRTG graphs always use a Y axis starting at 0, if you only want to see the relevant

values in a range, you’re out of luck. You are significantly limited to the number of

different values that can be graphed, if you want to see the network throughput of 10

different servers you’re probably going to be forced to use 10 different graphs. The

list goes on and on. The point is that RRDtool fills in the gaps that MRTG leaves

5

State of the Art

wanting, and provides for open customization that was difficult if not impossible

before.

But, MRTG has one thing that RRDtool doesn’t, simplicity. Many Network

Admins who know more about air purifiers than UNIX systems are using MRTG on

a regular basis, thanks to tools like cfgmaker and indexmaker, coupled with simple

and basically straightforward config syntax. RRDtool isn’t quite so simple though,

at least at first. Almost all functions are provided by a single tool: rrdtool. The

same program is used to create databases, modify, tune and update them, generate

graphs, and even make backup dumps.

2.1.7 JRobin

JRObin [Van08] is an API written by Sasa Markovic and Arne Vandamme to make

a 100% Java tool of the functionalities of RRDtool. It acts exactly as RRDtool

excepts that is written in Java allowing to take full party of Java portability and to

simplify the life of the ones that perfer Java.

2.1.8 SNMP4j

SNMP4J is an object oriented SNMP API for Java Managers and Agents.

SNMP4J is an enterprise class free open source and state-of-the-art SNMP im-

plementation for JavaTM 2SE 1.4 or later. SNMP4J supports command generation

(managers) as well as command responding (agents). Its clean object oriented design

is inspired by SNMP++, which is a well-known SNMPv1/v2c/v3 API for C++.

The SNMP4J Java SNMP API provides the following features:

• SNMPv3 with MD5 and SHA authentication and DES and AES 128, AES 192,

and AES 256 privacy.

• Pluggable Message Processing Models with implementations for MPv1, MPv2c,

and MPv3

• All PDU types.

• Pluggable transport mappings. UDP and TCP are supported out-of-the-box.

• Pluggable timeout model.

• Synchronous and asynchronous requests.

• Command generator as well as command responder support.

• Free open source with the Apache license model

• Java 1.4.1 or later

6

State of the Art

• Logging based on Log4J

• Row-based efficient asynchronous table retrieval with GETBULK.

• Multi-threading support.

2.1.9 LOG4j

Almost every large application includes its own logging or tracing API. In confor-

mance with this rule, the E.U. SEMPER project decided to write its own tracing

API. This was in early 1996. After countless enhancements, several incarnations

and much work that API has evolved to become log4j [Fou08], a popular logging

package for Java.

As know logging can be very complex but is an important aspect of development

and maintenance, with the use of an API as log4j this is made simpler and allows to

have better performance, a problem that comes of inserting code for logging point.

2.1.10 Jetty

Jetty [Jet08] is an open-source, standards-based, full-featured web server imple-

mented entirely in Java. It is released under the Apache 2.0 licence and is therefore

free for commercial use and distribution. First created in 1995, Jetty has benefitted

from input from a vast user community and consistent and focused development by

a stable core of lead developers. There are many more examples of Jetty in action

on the Jetty Powered Page that has selections from among the tens of thousands of

production Jetty instances. However, as Jetty aims to be as unobtrusive as possible,

countless websites and products are based around Jetty, but Jetty is invisible!

Jetty can be used as:

• a stand-alone traditional web server for static and dynamic content

• a dynamic content server behind a dedicated HTTP server such as Apache

using mod proxy

• an embedded component within a Java application

2.1.11 Castor

Castor [Cas08] is an Open Source data binding framework for Java. It’s the shortest

path between Java objects, XML documents and relational tables. Castor provides

Java-to-XML binding, Java-to-SQL persistence, and more.

Castor XML is an XML databinding framework. Unlike the two main XML

APIs, DOM (Document Object Model) and SAX (Simple API for XML) which deal

7

State of the Art

with the structure of an XML document, Castor enables one to deal with the data

defined in an XML document through an object model which represents that data.

Castor XML can marshal almost any ”bean-like” Java Object to and from XML.

In most cases the marshalling framework uses a set of ClassDescriptors and Field-

Descriptors to describe how an Object should be marshalled and unmarshalled from

XML.

For those not familiar with the terms ”marshal” and ”unmarshal”, it’s simply the

act of converting a stream (sequence of bytes) of data to and from an Object. The act

of ”marshalling” consists of converting an Object to a stream, and ”unmarshalling”

from a stream to an Object.

2.1.12 PostgreSQL

PostgreSQL [Pos08] is a powerful, open source relational database system. It has

more than 15 years of active development and a proven architecture that has earned

it a strong reputation for reliability, data integrity, and correctness. It runs on all ma-

jor operating systems, including Linux, UNIX (AIX, BSD, HP-UX, SGI IRIX, Mac

OS X, Solaris, Tru64), and Windows. It is fully ACID compliant, has full support

for foreign keys, joins, views, triggers, and stored procedures (in multiple languages).

It includes most SQL92 and SQL99 data types, including INTEGER, NUMERIC,

BOOLEAN, CHAR, VARCHAR, DATE, INTERVAL, and TIMESTAMP. It also

supports storage of binary large objects, including pictures, sounds, or video. It has

native programming interfaces for C/C++, Java, .Net, Perl, Python, Ruby, Tcl,

ODBC, among others, and exceptional documentation.

An enterprise class database, PostgreSQL boasts sophisticated features such as

Multi-Version Concurrency Control (MVCC), point in time recovery, tablespaces,

asynchronous replication, nested transactions (savepoints), online/hot backups, a so-

phisticated query planner/optimizer, and write ahead logging for fault tolerance. It

supports international character sets, multibyte character encodings, Unicode, and

it is locale-aware for sorting, case-sensitivity, and formatting. It is highly scalable

both in the sheer quantity of data it can manage and in the number of concurrent

users it can accommodate. There are active PostgreSQL systems in production en-

vironments that manage in excess of 4 terabytes of data. Some general PostgreSQL

limits are included in the table 2.1.

2.1.13 FindBugs

FindBugs is a static analysis tool that examines classes or JAR files looking for

potential problems by matching bytecodes against a list of bug patterns. It allows

8

State of the Art

Table 2.1: General PostgreSQL limits
Limit Value

Maximum Database Size 6 Unlimited
Maximum Table Size 32 TB
Maximum Row Size 1.6 TB
Maximum Field Size 1 GB

Maximum Rows per Table Unlimited
Maximum Columns per Table 250 - 1600 depending on column types
Maximum Indexes per Table Unlimited

to clean the code and to provide better quality, but as all static analysis tools it will

have some false positives.

2.2 Platforms overview

2.2.1 iTEMS Overview

iTEMS is a tool created by Critical Software and adapted by Critical Links to provide

configuration utilities for edgeBOXs. More specifically, the general aims of the

solution include the ability to offer a set of utilities, termed the Network Operations

Center, in such a way as to centralize and manage all the services presented by the

edgeBOX network [Sou06].

Briefly, the major functions provided by this system are:

• The centralized and integrated configuration of all the existing edgeBOX units

in a network.

• Pre-provisioning, ability to pre-configure a network of edgeBOX units.

• The centralized gathering of alarms. It is important to have a global vision of

the network condition with an indication of the places where problems might

occur and which require immediate intervention.

• Access control and auditing of executed operations. It is important for oper-

ators to be able, at any moment in time, to decide who has access to which

utility and to identify Who did What and When. Additionally, it is important

to guarantee the confidentiality of the information produced or maintained in

the system – only authorized users should have access to it.

9

State of the Art

2.2.2 OpenNMS Overview

“OpenNMS [Ope08] is the world’s first enterprise grade network monitoring platform

developed under the open source model. It consists of a community supported open-

source project as well as a commercial services, training and support organization.”

Currently OpenNMS focuses on three areas: service polling, data collection, and

event management.

In addition to service polling, OpenNMS can collect SNMP data from network

devices running SNMP agents. It stores the data using RRDTool or JRobin and

can display it as reports in the webUI. There are configurable thresholds (such as

disk space and CPU utilization) to generate events when the thresholds are met.

One important aspect of data collection on the scale of an enterprise is the need

to automate as much as possible. It is very difficult to configure data collection on

20,000 devices manually. OpenNMS has the concept of a ”system,” defined by a

particular System Object ID (systemOID), which matches devices with the data to

collect from them.

The last main functional area is event management and notifications. OpenNMS

generates events corresponding to outage detection and exceeded thresholds, etc..

In addition, it can receive and display external events such as SNMP traps.

Figure 2.1: OpenNMS concrete architecture [Shi02]

As it’s been mentioned OpenNMS has been designed from its inception to be

enterprise-grade and for those purposes the following information it’s stated from

the OpenNMS group:

10

State of the Art

• High performance (vertical scaling): A single instance of OpenNMS supports

monitoring of a large number of nodes (tens of thousands, hundreds of thou-

sands) from a single server.

• Automation: OpenNMS minimizes the amount of manual configuration and

reconfiguration needed by automatically performing tasks on a regular basis,

like discovering new nodes, detecting services on new and existing nodes, and

gathering response time and performance data.

• Rule-based configuration (policy-based): Flexible rules can be used to specify

what services are polled on certain devices, which SNMP data is collected and

how often, and to whom various notifications should be delivered, without

having to explicitly identify and configure each host in the monitoring system.

All of these features made OpenNMS one high-end monitoring solution being easy

to use and configure and with the code made available enabling customizations to

overcome the special needs of determined NMS. OpenNMS is built upon three main

components the webUI in jsp, the engine in Java and the database in postgreSQL.

The webUI is where administrators can make some configurations and where

they can monitor the network; it provides a graphical interface and can construct

graphics based on the data collected.

The engine as various daemons that perform different tasks, the ones identified

in this study and that seamed relevant for our implementation are:

– Eventd – is responsible for handling all the events generated;

Trapd – is responsible for listening SNMP traps on the standard port;

–– Dhcpd – is responsible for listening DHCP requests;

– Capsd - is responsible to collect all the capabilities for a node after been notified

by the discovery, and to load all the data into the database;

– Scriptd – is responsible for executing scripts;

– Rtcd – is responsible to maintain data required so as to calculate availability;

– Pollerd – is responsible for polling on services on a node;

– Discovery – is responsible for discovering nodes on the network;

– Vacuumd – is responsible to run periodic updates against the database for

database maintenance work;

There are other daemons in OpenNMS that where identified but it couldn’t be

made a good description of their main functions.

11

State of the Art

2.3 Summary and Conclusions

The chapter introduced the different technologies that will be present in the project

and the overview of the two solutions for integration.

The technologies used where limited by the use of OpenNMS as the main project.

12

Chapter 3

Project Analysis

Problem description

As the edgeBOX solution evolved the need for its remote management raised. So

its previous solution, iTEMS, that only provided configuration management and

some alarms become obsolete it was need to expand that solution. Initial was

made a study to see which management and monitoring solution existed and which

ones were closer to the features intended, but there was none that covered all that

features. OpenNMS was the one closer to what was wanted and allowed to expand.

Initially the solution adopted combined OpenNMS, for monitoring, and iTEMS,

for configuring. But it was an inefficient solution so it drove to the problem of

integrating the two solutions in one. This new solution will provide monitoring and

configuration capabilities for the edgeBOX.

3.1 Requirements Analysis

This section is dedicated to the requirements analysis. Where will be described the

requirements defined for accomplish the objectives.

3.1.1 Functional requirements

The functional requirements capture the intended behavior of the system. With the

use of use cases this requirements are easier to understand and create a baseline for

development.

The figure 3.1 represents the use cases that will be implemented in the system.

The use cases are divided in two main package:

• iTEMS package

• OpenNMS package

13

Project Analysis

Figure 3.1: General use case diagram

3.1.1.1 Actors

OpenNMS admin: actor from original OpenNMS solution that as full access

to all functionalities. Extends CPE Admin.

CPE Admin: actor responsible for administrating the iTEMS functionali-

ties, this are, managing CPE Groups and managing profiles. Extends CPE

Manager.

CPE Manager: actor responsible for managing tasks. Extends User.

User: actor from original OpenNMS, it can consult the information available.

OpenNMS system: actor that represents calls from the OpenNMS engine

to the task engine.

Cron: actor that represents calls from the cron to the task engine.

Pepserver: actor from edgeBOX that receives the requests to the edgeBOX

and sends responses to that requests.

iTMESTaskManagement: actor that represents the process where the task

engine is execute.

3.1.1.2 iTEMS Package

This package represents the functionalities to import from the previous iTEMS

solution; the figure 3.2 represents the diagram for the package.

14

Project Analysis

Figure 3.2: iTEMS Package use case diagram

Figure 3.3: Group Management Package use case diagram

15

Project Analysis

CPE Group Management Package

This package contains the use cases for CPE Group Management; the figure 3.3

represents the diagram for the package.

Id: UC.1

Name: Create CPE Group

Description: The user will be able to create a new CPE Group

Actors: OpenNMS Admin, CPE Admin

Assumptions: –

Priority: High

Id: UC.2

Name: Modify CPE Group

Description: The user will be able to modify a CPE Group

Actors: OpenNMS Admin, CPE Admin

Assumptions: The CPE Group that’s going to be modified exists

Priority: High

Id: UC.3

Name: Delete CPE Group

Description: The user will be able to delete a CPE Group

Actors: OpenNMS Admin, CPE Admin

Assumptions: The CPE Group that’s going to be deleted exists

Priority: High

Id: UC.4

Name: List CPE Group

Description: Will be made available for the user a list of CPE Groups

Actors: OpenNMS Admin, CPE Admin

Assumptions: –

Priority: High

Profile Management Package

This package contains the use cases for Profile Management; the figure 3.4 repre-

sents the diagram for the package.

16

Project Analysis

Figure 3.4: Profile Management use case diagram

Id: UC.5

Name: Create profile

Description: The user will be able to create a new profile by adding

and configuring the operations and by giving a name to

the profile

Actors: OpenNMS Admin, CPE Admin

Assumptions: –

Priority: High

Id: UC.6

Name: Modify profile

Description: The user will be able to modify a profile

Actors: OpenNMS Admin, CPE Admin

Assumptions: The profile that’s going to be modified exists

Priority: High

Id: UC.7

Name: Delete profile

Description: The user will be able to delete a profile

Actors: OpenNMS Admin, CPE Admin

Assumptions: The profile that’s going to be deleted exists

Priority: High

17

Project Analysis

Figure 3.5: Task Management use case diagram

Id: UC.8

Name: List profiles

Description: Will be made for the user a list of profiles

Actors: OpenNMS Admin, CPE Admin

Assumptions: –

Priority: High

Id: UC.9

Name: Filter profiles

Description: It allows to refine the list of profiles

Actors: OpenNMS Admin, CPE Admin

Assumptions: –

Priority: High

Id: UC.10

Name: Sort profiles

Description: For ordering the profiles

Actors: OpenNMS Admin, CPE Admin

Assumptions: –

Priority: High

Task Management Package

This package contains the use cases for Task Management, the figure 3.5 represents

the diagram for the package.

18

Project Analysis

Id: UC.11

Name: Create task

Description: The user will be able to create a new task

Actors: OpenNMS Admin, CPE Admin, CPE Manager

Assumptions: –

Priority: High

Id: UC.12

Name: Modify task

Description: The user will be able to modify a task

Actors: OpenNMS Admin, CPE Admin

Assumptions: The task that’s going to be modified exists

Priority: High

Id: UC.13

Name: Delete profile

Description: The user will be able to delete a task

Actors: OpenNMS Admin, CPE Admin, CPE Manager

Assumptions: The task that’s going to be deleted exists

Priority: High

Id: UC.14

Name: List tasks

Description: Will be made for the user a list of tasks

Actors: OpenNMS Admin, CPE Admin, CPE Manager

Assumptions: –

Priority: High

Id: UC.15

Name: Filter tasks

Description: It allows to refine the list of tasks

Actors: OpenNMS Admin, CPE Admin, CPE Manager

Assumptions: –

Priority: High

Id: UC.16

Name: Sort tasks

Description: For ordering the tasks

Actors: OpenNMS Admin, CPE Admin, CPE Manager

Assumptions: –

Priority: High

19

Project Analysis

Figure 3.6: Access Management use case diagram

Access Management Package

This package contains the use cases for Access Management; the figure 3.6 repre-

sents the diagram for the package.

Id: UC.17

Name: Create user

Description: The administrator will be able to create a new user

Actors: OpenNMS Admin, CPE Admin

Assumptions: –

Priority: High

Id: UC.18

Name: Delete user

Description: The administrator will be able to delete a user

Actors: OpenNMS Admin, CPE Admin

Assumptions: The user to delete exists

Priority: High

Id: UC.19

Name: Define role

Description: Define what kind of role a user will have in the system

Actors: OpenNMS Admin, CPE Admin

Assumptions: –

Priority: High

20

Project Analysis

Figure 3.7: Task Engine use case diagram

Id: UC.20

Name: Create user group

Description: The administrator will be able to create a new user

group

Actors: OpenNMS Admin, CPE Admin

Assumptions: –

Priority: High

Id: UC.21

Name: Delete user group

Description: The administrator will be able to delete a user group

Actors: OpenNMS Admin, CPE Admin

Assumptions: The user to delete exists

Priority: High

Task Engine Package

This package contains the use cases for Task Engine; the figure 3.7 represents the

diagram for the package.

21

Project Analysis

Id: UC.22

Name: Call iTEMSTaskManagemnt

Description: This use case represents a call to the process iTEM-

STaskManagemnt that is responsible for sending, sched-

ule and unschedule tasks.

Actors: OpenNMS system, Cron

Assumptions: The process exists and can be executed

Priority: High

Id: UC.23

Name: Send task

Description: A task is sent to the pepserver to be processed.

Actors: iTEMSTaskManagemnt

Assumptions: There’s a connection to the pepserver

Priority: High

Id: UC.24

Name: Receive response

Description: A task as been processed by the pepserver and the re-

sponse is received by the iTEMSTaskManagemnt.

Actors: iTEMSTaskManagemnt

Assumptions: There’s a connection to the pepserver

Priority: High

Id: UC.25

Name: Receive task status

Description: A task has been executed, all the operations have been

performed, and the iTEMSTaskManagemnt receives a

response of the pepserver if it was successful or failed.

Actors: iTEMSTaskManagemnt

Assumptions: There’s a connection to the pepserver

Priority: High

Id: UC.26

Name: Receive alive

Description: The OpenNMS catches an SNMP trap which repre-

sented an alive and sends it to iTEMSTaskManagemnt.

Actors: iTEMSTaskManagemnt

Assumptions: –

Priority: High

22

Project Analysis

Id: UC.27

Name: Schedule task

Description: The task is schedule in the cron.

Actors: iTEMSTaskManagemnt

Assumptions: –

Priority: High

Id: UC.28

Name: Unschedule task

Description: The task is unschedule in the cron.

Actors: iTEMSTaskManagemnt

Assumptions: –

Priority: High

The next use cases are present only to allow a simple understand of some in-

formation transaction, these use cases aren’t part of the solution to develop they

belong to the use cases of the pepserver solution.

Id: UC.29

Name: Receive task

Description: A task is received by the pepserver to be processed.

Actors: Pepserver

Assumptions: –

Priority: –

Id: UC.30

Name: Send response

Description: A task as been processed by the pepserver and a re-

sponse is sent to iTEMSTaskManagemnt.

Actors: Pepserver

Assumptions: –

Priority: –

Id: UC.31

Name: Send task status

Description: A task has been executed, all the operations have been

performed, and the pepserver sends if it was successful

or failed.

Actors: Pepserver

Assumptions: –

Priority: –

23

Project Analysis

Figure 3.8: OpenNMS package use case diagram

3.1.1.3 OpenNMS Package

The OpenNMS package shows the main use cases for the OpenNMS solution, the

figure 3.8 represents the diagram for the package.

Node Package

Node package represents the use cases that will expand the way nodes are viewed

in OpenNMS with iTEMS.

Id: UC.32

Name: Add node to CPE group

Description: In the node view it will be possible to add that specific

node to a CPE Group

Actors: OpenNMS Admin, CPE Admin

Assumptions: There are CPE groups

Priority: High

Id: UC.33

Name: Remove node from CPE group

Description: In the node view it will be possible to remove that spe-

cific node from a CPE Group

Actors: OpenNMS Admin, CPE Admin

Assumptions: The node belongs to the CPE group

Priority: High

24

Project Analysis

Id: UC.34

Name: Create edgeBOX credentials

Description: Create the credentials for the edgebox by adding the

user and the password for that particular edgeBOX

Actors: OpenNMS Admin, CPE Admin

Assumptions: The node is an edgeBOX

Priority: High

Id: UC.35

Name: Modify edgeBOX credentials

Description: Modify the credentials for the edgebox by modifying the

user and/or the password for that particular edgeBOX

Actors: OpenNMS Admin, CPE Admin

Assumptions: The node is an edgeBOX

Priority: High

Id: UC.36

Name: Access edgeBOX-Management service

Description: Quick link to access the webAdmin for an edgeBOX us-

ing the saved credentials

Actors: OpenNMS Admin, CPE Admin

Assumptions: The node is an edgeBOX

Priority: High

Id: UC.37

Name: View edgeBOX status

Description: A group of status about an edgeBOX will be displayed

Actors: OpenNMS Admin, CPE Admin, CPE Manages, User

Assumptions: The node is an edgeBOX and there are credentials for

that edgeBOX

Priority: High

Node list Package

Node list package is a group of use cases to improve the way nodes are listed in

OpenNMS and to have some iTEMS operations in the same view.

25

Project Analysis

Id: UC.38

Name: View asset information

Description: Show the asset information for the nodes been listed

Actors: OpenNMS Admin, CPE Admin, CPE Manages, User

Assumptions: –

Priority: High

Id: UC.39

Name: Add node to CPE Group

Description: Allows the administrator to add a selected node to a

selected CPE Group

Actors: OpenNMS Admin, CPE Admin, CPE Manages, User

Assumptions: There are CPE Groups

Priority: High

Id: UC.40

Name: Remove node from CPE Group

Description: Allows the administrator to remove a selected node from

a selected CPE Group

Actors: OpenNMS Admin, CPE Admin, CPE Manages, User

Assumptions: The node belongs to the CPE Group

Priority: High

Id: UC.41

Name: Filter nodes

Description: Filters the nodes according to the search parameters

Actors: OpenNMS Admin, CPE Admin, CPE Manages, User

Assumptions: –

Priority: High

Id: UC.42

Name: Sort nodes

Description: For ordering the nodes.

Actors: OpenNMS Admin, CPE Admin, CPE Manages, User

Assumptions: –

Priority: Low

26

Project Analysis

Figure 3.9: Domain diagram

3.1.2 Information requirements

3.1.2.1 Class Domain

The class domain represents the way that information will be processed, and as we

can see in figure 3.9 there are five main classes: Node, Status, CPEGroup, Profile

and Task.

The Node class defines all the information and operations need to process nodes.

The Status class defines all the information and operations need to process status

for edgeBOX nodes.

The Services class is used to process the services existent in edgeBOX, which will

be retrieved for status information.

The CPEGroup class defines all the information and operations need to process

groups.

The Profile class defines all the information and operations need to process pro-

files.

The Task class defines all the information and operations need to process tasks.

The TaskEvent class is responsible for treatment of the log events relative to

tasks.

3.1.2.2 Relational Model

The relational model defines the database schema and how the information is going

to be stored in the database. The figure 3.10 represents part of that schema accord-

ing to the new tables added to the original OpenNMS database schema, in appendix

A it can be consulted all the schema.

27

Project Analysis

Figure 3.10: iTEMS part in database

Table: items profiles

Primary keys: name

Attribute Type

Attributes: name varchar(50)

description varchar(255)

userName varchar(50)

userGroup varchar(50)

createDate timestamp

modifyDate timestamp

profileData text

Foreign keys:

Constrains: unique(name)

28

Project Analysis

Table: items tasks

Primary keys: taskId

Attribute Type

Attributes: taskId integer

name varchar(50)

cpe integer

cpeGroupName varchar(50)

profileName varchar(50)

description varchar(255)

userName varchar(50)

userGroup varchar(50)

startDate varchar(50)

endDate varchar(50)

period varchar(50)

type varchar(1)

state varchar(1)

Foreign keys: cpe,profileName

Constrains:

Table: items tasksEvents

Primary keys: eventId,taskId

Attribute Type

Attributes: eventId integer

taskId integer

status integer

sendDate varchar(50)

endDate varchar(50)

Foreign keys: taskId

Constrains:

Table: items credentials

Primary keys: nodeId

Attribute Type

Attributes: nodeId integer

userName varchar(50)

password varchar(50)

Foreign keys: nodeId

Constrains:

29

Project Analysis

3.1.3 Non-Functional requirements

Non-functional requirements are very important on the creation of software because

they allow to better execute the implementation of the intended product use cases

with better quality and less risks.

Availability – it must be available all the time.

Dependencies – it depends on Linux, ethernet connection and PostgreSQL

database.

Extensibility – it must allow adding new features

Open-Source – the source code is produced under the GNU GPL license.

Performance – it must deliver information in a time considered satisfactory

to the user.

Quality – it must comply with the quality standard used in Critical Links

Scalability – it must be capable of support large number of nodes and oper-

ations over them.

Security – it must be secure in all its layers.

Usability – it must be simple allowing the user to interact with minimum

effort.

3.2 Architecture Analysis

The systems architecture will have as base the OpenNMS architecture been added

a layer for the iTEMS integration. In the figure 3.11 can be seen the different parts

that will compose this architecture.

The webUI – this is where the user will interact with the OpenNMS engine and

iTEMS engine.

The OpenNMS engine – this compiles all the functionalities of gathering data

and monitoring the network.

The iTEMS engine – this performs specific operations over edgeBOXs.

The PostgreSQL database – this is the database were all data is stored.

Security - all layers must have the most security possible.

30

Project Analysis

Figure 3.11: System Architecture

3.3 Test Cases

Test cases reflect how a use case should be performed and what are the expected

results. Next are listed all the test cases according to its use cases.

Id: T.1 – Create a CPE Group (UC.1)

Description: In this test it will be created a CPE Group in the webUI.

Steps: 1 Go to iTEMS.

2 Select CPE’s Group Management.

3 Select add new CPE Group.

4 Configure the group.

5 Save group.

Expected results: A new group created in the XML file and listed in the

webUI.

Id: T.2 – Modify a CPE Group (UC.2)

Description: In this test it will be modified a CPE Group in the

webUI.

Steps: 1 Go to iTEMS.

2 Select CPE’s Group Management.

3 Select the CPE Group to modify.

4 Modify the configuration.

5 Save group.

Expected results: The group will be updated in the XML file.

31

Project Analysis

Id: T.3 – Delete a CPE Group (UC.3)

Description: In this test it will be deleted a CPE Group in the webUI.

Steps: 1 Go to iTEMS.

2 Select CPE’s Group Management.

3 Select the CPE Group to delete.

4 Confirm.

Expected results: The group removed from the XML and not listed.

Id: T.4 – List CPE’s Groups (UC.4)

Description: In this test it will be list the CPE’s Groups in the webUI.

Steps: 1 Go to iTEMS.

2 Select CPE’s Group Management.

3 A list of CPE’s Groups will be shown.

Expected results: See all the groups that exist in the XML listed in the

webUI.

Id: T.5 – Create a profile (UC.5)

Description: In this test it will be created a profile from the webUI.

Steps: 1 Go to iTEMS.

2 Select Profiles Management.

3 Select add new profile.

4 Insert the name of the profile and comments.

5 Select operation.

5.1 Configure operation.

5.2 Save configuration.

6 Save profile.

Expected results: A new profile created in the database and shown in the

list of profiles in the webUI.

Id: T.6 – Modify a profile (UC.6)

Description: In this test it will be modified a profile from the webUI.

Steps: 1 Go to iTEMS.

2 Select Profiles Management.

3 Select the profile to modify.

4 Select operation.

4.1 Configure operation.

4.2 Save configuration.

5 Save profile.

Expected results: The profile will be updated in the database.

32

Project Analysis

Id: T.7 – Delete a profile (UC.7)

Description: In this test it will deleted a profile from the webUI.

Steps: 1 Go to iTEMS.

2 Select Profiles Management.

3 Select the profile to delete.

4 Confirm deleting.

Expected results: The profile will be deleted from the database as the tasks

associated with it.

Id: T.8 – List profiles (UC.8)

Description: In this test it will be list the profiles in the webUI.

Steps: 1 Go to iTEMS.

2 Select Profiles Management.

3 A list of profiles will be shown.

Expected results: See a list of profiles in the webUI.

Id: T.9 – Filter profiles (UC.9)

Description: In this test it will be filter profiles in the webUI.

Steps: 1 Go to iTEMS.

2 Select Profiles Management.

3 Insert name to filter.

4 Press search.

Expected results: See a list of profiles in the webUI according to the search.

Id: T.10 – Sort profiles (UC.10)

Description: In this test it will be sorted profiles in the webUI.

Steps: 1 Go to iTEMS.

2 Select Profiles Management.

3 Press the column to sort.

Expected results: See the list of profiles in the webUI sorted by the column

selected.

Id: T.11 – Create a task (UC.11)

Description: In this test will it be created a task in the webUI.

Steps: 1 Go to iTEMS.

2 Select Tasks Management.

3 Select add new task.

4 Configure the task.

5 Save task.

Expected results: A new task created in the database and shown in the

list of tasks in the webUI.

33

Project Analysis

Id: T.12 – Modify a task (UC.12)

Description: In this test it will be modified a task in the webUI.

Steps: 1 Go to iTEMS.

2 Select Tasks Management.

3 Select the task to modify.

4 Modify the configuration.

5 Save task.

Expected results: The task will be updated in the database.

Id: T.13 – Delete a task (UC.13)

Description: In this test it will be deleted a task in the webUI.

Steps: 1 Go to iTEMS.

2 Select Tasks Management.

3 Select the task to delete.

4 Confirm.

Expected results: The task will be deleted from the database.

Id: T.14 – List tasks (UC.14)

Description: In this test it will be list the tasks in the webUI.

Steps: 1 Go to iTEMS.

2 Select Tasks Management.

3 A list of tasks will be shown.

Expected results: See a list of tasks in the webUI.

Id: T.15 – Filter tasks (UC.15)

Description: In this test it will be filter tasks in the webUI.

Steps: 1 Go to iTEMS.

2 Select Tasks Management.

3 Insert name to filter.

4 Press search.

Expected results: See a list of tasks in the webUI according to the search.

Id: T.16 – Sort tasks (UC.16)

Description: In this test it will be sorted tasks in the webUI.

Steps: 1 Go to iTEMS.

2 Select Tasks Management.

3 Press the column to sort.

Expected results: See the list of tasks in the webUI sorted by the column

selected.

34

Project Analysis

Id: T.17 – Create a user (UC.17)

Description: In this test it will be created a new user.

Steps: 1 Go to Admin.

2 Select Configure Users, Groups and Roles.

3Select Configure Users.

4 Select add new user.

5 Insert credentials for new user.

6 Configure user.

7 Save user.

Expected results: The user is created in the XML file and listed in the

webUI.

Id: T.18 – Delete a user (UC.18)

Description: In this test it will be deleted a user.

Steps: 1 Go to Admin.

2 Select Configure Users, Groups and Roles.

3 Select Configure Users.

4 Select the user to delete.

5 Confirm.

Expected results: The user is deleted from the XML file.

Id: T.19 – Define the role for a user (Administrator)

(UC.19)

Description: In this test it will be defined the role for a user.

Steps: 1 Add a user.

2 Edit [OPENNMS HOME]/etc/magic-

users.properties.

3 Add the user to role.admin.users.

4 Restart OpenNMS.

Expected results: The user will only have access according to the role.

35

Project Analysis

Id: T.20 – Create a user group (UC.20)

Description: In this test it will be created a user group.

Steps: 1 Go to Admin.

2 Select Configure Users, Groups and Roles.

3 Select Configure Groups.

4 Select Add new group.

5 Insert name and comment.

6 Confirm.

7 Select users.

8 Save.

Expected results: The group will be added to the XML file and listed in

the webUI.

Id: T.21 – Delete a user group (UC.21)

Description: In this test it will be deleted a user group.

Steps: 1 Go to Admin.

2 Select Configure Users, Groups and Roles.

3 Select Configure Groups.

4 Select the group to delete.

5 Confirm.

Expected results: The group will be deleted from the XML file.

Id: T.22 – Call iTEMSTaskManagemnt process (simple)

(UC.22)

Description: In this test the process will be called in the command

line.

Steps: 1 Open shell.

2 Go to OPENNMS HOME\bin.

3 Enter execItemsTaskManagement.sh

[state|taskStatus|alive] [type] [taskId] [source].

4 The process will execute.

Expected results: The process will execute and the opera-

tions performed will be logged in OPEN-

NMS HOME\logs\webapp\iTEMSTaskManagemnt.lo

g

36

Project Analysis

Id: T.23 – Call iTEMSTaskManagemnt process (webUI)

(UC.22)

Description: In this test theprocesss will be called using the webUI.

Steps: 1 Go to iTEMS.

2 Select Task Management.

3 Select Add new task.

4 Configure the task.

5 Save.

6 Theprocesss will be called.

Expected results: Theprocesss will execute and the opera-

tions performed will beloggedd in OPEN-

NMS HOME\logs\webapp\iTEMSTaskManagemnt.lo

g

Id: T.24 – Call iTEMSTaskManagemnt process (cron)

(UC.22)

Description: In this test it will be called thprocessss in the command

line.

Steps: 1 Edit \etc\crontab.

2 Insert a new line with the format: [minute]

[hour] [day] [mount] [dayOfWeek] root OPEN-

NMS HOME\bin\execItemsTaskManagement.sh

[state|taskStatus|alive] [type] [taskId] [source].

3 The processes will be called at the shedulled time in

the crontab.

Expected results: The process will execute and the opera-

tions performed will be logged in OPEN-

NMS HOME\logs\webapp\iTEMSTaskManagemnt.lo

g

Id: T.25 – Send a task (UC.23)

Description: Test if a task is sent to the pepserver.

Steps: 1 Perform test T.23

Expected results: The task will be sent and the re-

sult can be confirmed in OPEN-

NMS HOME\logs\webapp\iTEMSTaskManagemnt.log.

37

Project Analysis

Id: T.26 – Receive response (UC.24)

Description: Test for receiving confirmation response of task pro-

cessed bytheh pepserver.

Steps: 1 Perform test T.23

Expected results: The pepserver will respond and the

result can be confirmed in OPEN-

NMS HOME\logs\webapp\iTEMSTaskManagemnt.lo

g and in the webUI in tasks logs.

Id: T.27 – Receive task status (UC.25)

Description: Test to receive the status of a task.

Steps: 1 Perform test T.23

Expected results: Update of the status in the database and it can be

viewed in task logs in the webUI

Id: T.28 – Receive alive (UC.26)

Description: Test to receive an alive.

Steps: 1

2 Configure a profile for the operation iTEMS alive

3 Perform test T.23 selecting that profile

Expected results: There will be a log of the received alive in OPEN-

NMS HOME\logs\webapp\iTEMSTaskManagemnt.log

Id: T.29 – Schedule task (UC.27)

Description: Test to see if the task is schedule in the cron.

Steps: 1 Perform test T.23 configuring the task to be unique or

periodic.

Expected results: The task will be schedule in the crontab file.

Id: T.30 – Unschedule task (UC.28)

Description: Test to see if the task is unschedule in the cron.

Steps: 1 Perform test T.23 configuring the task to be unique

2 Wait until task executes.

3 Confirm crontab.

Expected results: The task will beunschedulede in the crontab file.

38

Project Analysis

Id: T.31 – Add a node to CPE Group in node page (UC.32)

Description: In this test it will be added a node to a CPE Group in

the node view page.

Steps: 1 Go to the node page.

2 In Group Management select the CPE Group to add

the node to.

3 The node is added automatically.

Expected results: The node will be added to the selected CPE Group.

Id: T.32 – Remove a node from CPE Group in node page

(UC.33)

Description: In this test it will be removed a node from a CPE Group

in the node view page.

Steps: 1 Go to the node page.

2 In Group Management select the CPE Group to re-

move the node from.

3 Confirm.

Expected results: The node will be removed from the selected CPE Group.

Id: T.33 – Create edgeBOX credentials (UC.34)

Description: In this test it will be created the credentials for an edge-

BOX.

Steps: 1 Go to the node page.

2 Select credentials.

3 Insert user name and password.

4 Save.

Expected results: The credentials are inserted in the database.

Id: T.34 – Modify edgeBOX credentials (UC.35)

Description: In this test it will be modified the credentials for an

edgeBOX.

Steps: 1 Go to the node page.

2 Select credentials.

3 Modify user name and/or password.

4 Save.

Expected results: The credentials are updated in the database.

39

Project Analysis

Id: T.35 – Access the edgeBOX-Management service

(UC.36)

Description: In this test it will be accessed the edgeBOX webAdmin.

Steps: 1 Go to the node page.

2 Select edgeBOX-Management.

3 A new window will appear.

Expected results: A new window of webAdmin, authenticated with the

credentials existent in the database for that node.

Id: T.36 – View edgeBOX status (UC.37)

Description: In this test it will be viewed the edgeBOX status.

Steps: 1 Go to the node page.

2.1 The status will be shown in the node page.

2.2 Select status.

Expected results: Information about the status of the edgeBOX.

Id: T.37 – View asset information in node list (UC.38)

Description: In this test it will be viewed the asset information in the

node list page.

Steps: 1 Go to the node list page.

2 The asset information will be shown for each node.

Expected results: See asset information for each node.

Id: T.38 – Add a node to a CPE Group in node list (UC.39)

Description: In this test it will be added a node to a CPE Group in

the node list page.

Steps: 1 Go to the node list page.

2 Select the node.

3 Select the operation to add a node to a CPE Group.

4 Select the CPE Group.

5 The node will be added automatically.

Expected results: The node will be added to the CPE Group in the XML

file and will be shown in the webUI.

40

Project Analysis

Id: T.39 – Remove a node from a CPE Group in node list

(UC.40)

Description: In this test it will be removed a node from a CPE Group

in the node list page.

Steps: 1 Go to the node list page.

2 Select the node.

3 Select the operation to remove a node from a CPE

Group.

4 Select the CPE Group.

5 Confirm.

Expected results: The node will be removed from the CPE Group in the

XML file and will be shown in the webUI.

Id: T.40 – Filter nodes (UC.41)

Description: In this test it will be filter the nodes in the node list

page.

Steps: 1 Go to the node list page.

2 Insert the filter criterions.

3 Press search.

Expected results: See a list of nodes in the webUI according to the search.

Id: T.41 – Sort nodes (UC.42)

Description: In this test it will be sorted the nodes in the node list

page.

Steps: 1 Go to the node list page.

2 Select the column.

Expected results: See a list of nodes in the webUI sorted by the column

selected.

3.4 Summary and Conclusions

The functional requirements are a simplified set of use cases for the functionalities

to export from the original iTEMS solution to the integrated one. It is composed of

some use cases for the rebuild of the node list and others for the new information

to be added to the nodes that are edgeBOXs.

From these requirements where created the necessary information requirements

to retrieve and store data.

The test cases represent the necessary tests to be performed so the solution is

considered viable to be used.

41

Project Analysis

42

Chapter 4

Implementation

This chapter describes the different steps performed to achieve the integrated solu-

tion between OpenNMS and iTEMS. It starts to show an integration strategy that

was adopted during the implementation. Next is shown the relevant generated code.

Finally configuration details are exposed to show how this allow to take full party

of the solution developed.

4.1 Integration Strategy

The integration strategy is divided in three phases.

Phase one is to rebuild the node list page so its better for network management.

Phase two is to add some new option to the node page for better monitor

edgeBOXs.

Phase three is to create a package for iTEMS in OpenNMS.

4.1.1 Phase one

The principal aspects of the rebuild of the node page are the filter options added to

the page, the management options and the table view for the nodes (figure 4.1).

The filter options are composed of the paremeters shown on the table; these

parameters came from different sources, which make an ”AND” between all of them.

The different sources for the parameters came of the use of the OpenNMS code for

retrieving that information and because of that it were made two methods that

made the merge of the searches, the mergeNodes and the mergeNodeswithAssets.

The mergeNodes is a method that receives two searches containing lists of nodes

and returns one list of nodes with the nodes that appeared in the two searches.

43

Implementation

Figure 4.1: Node List rebuild

The mergeNodeswithAssets receives a list of assets and a list of nodes returning

a list of nodes that are the nodes that were in the list of assets.

The management options allow performs some operations over the nodes. When

one of these operations is applied the correspondent servlet is called. This performs

the necessary steps in Java to perform the operation using the input provided by

the HTTP post. In this implementation there are two operations Add to group and

Remove from group.

The table view is the result of the merges of the filter options with visual reference

to the overall in the last 24 hours.

4.1.2 Phase two

The phase two add to the node view some new options and more information re-

garding edgeBOXs, this options are edgeBOX-Management, Status and credentials.

The edgeBOX-Management is made available by detecting which nodes have the

edgeBOX-Management service running.This service is collected by OpenNMS, by

making a scan to that service in port 8011 that is the port were the service runs.

Them the service is available by an hiper-link to it, if there are credentials available

it will automatically login, if not it will be asked to insert them.

Figure 4.2: New node navigation bar options for edgeBOX

44

Implementation

The status will be made available in the same manner as edgeBOX-Management.

To retrieve the status is necessary to send a set of messages. These messages are

formated in XML and send over HTTPS. First it’s needed to establish the secure

connection for each request to retrieve the status. To do this it’s used the credentials

that exist for that edgeBOX to create a cookie that will be used in all the requests.

There are four different types of requests that have particular XML messages. The

figure 4.3 represents a flow diagram to get the status information.

The localeInformation method retrieves information regarding the serial number,

hardware description, number of users allowed, version, revision and build.

The networkInformation method retrieves information regarding two XML mes-

sages, one to retrieve status and timestamp of the WAN and the other to retrieve

ethernet configuration parameters for the WAN.

The systemInformation method retrieves information about the CPU usage, sys-

tem memory usage, storage usage and the uptime.

The firewallInformation method retrieves information for the services, autho-

rization, firewall and Nat. For each service it retrieves the information about which

services are open and in which interface (WAN - External, LAN - Internal, DMZ -

Enterprise).

In the appendix C can be consulted the XML messages exchanged to retrieve

the status of an edgeBOX.

To be possible to fetch the status information it’s necessary to configure the cre-

dentials for the edgeBOX. These initially don’t exist been inserted in the database,

in future alterations it will be updated.

4.1.3 Phase three

4.1.3.1 CPE Groups Management

There were two possible implementations to the CPE Group Management, one was

to use a XML based approach, used in OpenNMS to store users and users groups,

and the other to create in the database the table correspondent. For the implemen-

tation it was used the first, in order to use some of the OpenNMS concepts and to see

if it would be efficient. In this approach first it must be created a XML schema for

the CPE group, this schema will be used by Castor to generate the classes for ma-

nipulating the XML file for the CPE groups. For better manipulation of the objects

retrieved it were created two classes, CPEGroupManager and CPEGroupFactory.

When adding a new group it will be called a servlet (AddNewCPEGroupServlet)

that sees if the group that is been added exists or not. If it exists it will be sent

a request to insert a different name, if it not exists it will be created an object

that will be stored in the session so it can be used when adding CPE’s and it

45

Implementation

Figure 4.3: Status retrieving

46

Implementation

Figure 4.4: CPE Group management in node page

will redirect to the modify CPE group page. When finishing modifying a servlet

(UpdateCPEGroupServlet) will be called to add the selected CPE’s to the group

that was saved in the session, then another servlet (SaveCPEGroupServlet) is called

to save the group to the XML file.

The operation to modify a CPE Group is similar to add a CPE Group. The

difference is in the first part. When modifying a servlet (ModifyCPEGroupServlet)

is called to retrieve the selected CPE group and saves it to the session so it can be

modified and them the same steps as in adding a group are performed.

The CPE groups can be modified in more two places, in the node page (figure

4.4) and in the node list (figure 4.5).

In the node page the servlet called (AddCPEToGroupServlet) adds the node to

the selected group by fetching the selected group from the XML file and creating an

object of that CPE group, them adds the node to the object and finally the object

is saved to the XML file.

In the node list page the servlet (AddAllCPEToGroupServlet) called can perform

two operations according to the input received. One is to add the selected nodes to

the selected CPE group and the other is to add all the nodes in the search to the

selected CPE group.

The remove operations perform the same things as in the add operations, but

instead of adding, it removes nodes from the CPE Group.

4.1.3.2 Profiles Management

The creation of new profiles is made in a similar way as in the creation of CPE

Groups. When adding the profile there is a servlet (AddNewProfileServlet) that sees

if the profile exists or not. If it exists it will be sent a request to insert a different

name, if it not exists it will be created an object that will be stored in the session

Figure 4.5: CPE Group management in node list page

47

Implementation

Figure 4.6: State machine for tasks

so it can be used when adding operations and it will redirect to the modify profile

page.

In the modify profile page for each operation there are a corresponding form and

servlet that updates the profile object, that as been saved in the session, with the

configured parameters for the operation.

When finishing configuring the profile a servlet (SaveProfileServlet) will be called

to save the profile to the database, converting the profile into a XML message

composed of the configured operations. An example of this message can be consulted

in appendix C.

4.1.3.3 Tasks Management

In tasks management the creation and modification of a task is made in the same

form, been a flag that identifies if the task is new or to modify.

When the task is new the servlet (SaveTaskServlet) called will insert the task

in the database and the new task id will be returned to be used when calling the

process iTEMSTaskManagement.

When modifying a task the information about the task is fetched from the

database and the form is fill. After modifying and when saving the servlet (Save-

TaskServlet) will update the database and call the process iTEMSTaskManagement.

48

Implementation

The task engine (iTEMSTaskManagement) is a process that executes different

actions according to the arguments that it receives.

One of those arguments is the type of task and depending on that type there will

be performed different actions.

If the type is immediate the method execImediateTask is called and it will get the

data for that task from the database. With that data it sees if it’s only a CPE or a

CPE Group, if it’s a CPE Group will perform a cycle. For each CPE it will call the

method sendTask that will retrieve the host address by using the node id and the

service id for edgeBOX-Management. With that address and with the credentials for

that host it will make a connection to retrieve a cookie that will be used for sending

the XML message of the profile associated with the task. Before sending the XML

message it inserts in the database a new taskEvent and add the returned event id

to the XML message, this id identifies the message in future communications.

If the type is unique and the source is the webUI it will be made a schedule in

the cron so the task will be performed in the schedule time. For this is created a

line that will be added to the crontab file with the format:

St r ing cronLine = minute+” ”+hour+” ”+” ”+day+” ”+month+” ∗ root

”+System . getProperty (OPENNMS HOME PROPERTY)+”/bin /execItemsTaskManagement . sh

”+s t a t e+” ”+type+” ”+taskId+” cron \n”

If the type is unique and the source is the cron it means that task is to be

executed and the method execImediateTask is called and when it finishes the task

is unscheduled of the cron.

As in for the type unique the type periodic executes in the same manner, except

when the source is the cron and the method execImediateTask finishes executing it

will call the method newScheduleTask that unschedules the task executed and sees

if there are a new task to schedule according to the period and the finished date

defined, if it has a new task to schedule it returns the new date and a new schedule

is made in the cron.

Another action of the task engine is to receive the status of the tasks sent and

update their status in the database. This is made by calling iTEMSTaskManage-

ment with the argument taskStatus that will call the method taskStatus that is

responsible of interpret the string that comes with the status and update it in the

database according to the message id that comes in the same string. The call of

iTEMSTaskManagement is made by OpenNMS trough the actiond daemon that’s

responsible of executing external commands in OpenNMS and is called by eventd

which is the daemon that receives the event created by the trap sent with the task

status.

49

Implementation

Figure 4.7: Complete task execution

50

Implementation

4.1.3.4 Access Management

The access management implemented is only the use of the existing solution of Open-

NMS access management. This means that the access management is made by using

Acegi-security. This control is made by adding to the file applicationContext-acegi-

security.xml the files or directory and respective role. The roles are defined in the

class Authentication. Then using request.isUserInRole(Authentication.ADMIN ROLE)

it will return a boolean about the active user role, if it is associated with the role it

will return true, else it returns false.

4.2 Generated code

Here it is described some important aspects of code that was generated.

The mergeNodes method was created because of the way OpenNMS retrieves nodes

from searches. In OpenNMS was already implemented methods that retrieved nodes

according to some criterion, but this methods acted alone and what was wanted was

to make an ”AND” of all criterion, thus the creation of this method. The method

compares the nodes in one list with the nodes in the other list; all that are common

to both lists are added to a new one that is returned.

public Node [] mergeNodes (Node [] n1 , Node [] n2) {
i f (n1 == null)

return n2 ;

i f (n2 == null)

return n1 ;

L i s t<Node> nodesL i s t = new LinkedList<Node>() ;

int i = 0 ;

while (n1 . l ength > i) {
for (int j = 0 ; j < n2 . l ength ; j++) {

i f (n1 [i] . getNodeId () == n2 [j] . getNodeId ()) {
nodesL i s t . add (n1 [i]) ;

}
}
i++;

}
i f (nodesL i s t . s i z e () > 0)

return nodesL i s t . toArray (new Node [nodesL i s t . s i z e ()]) ;

else

return null ;

}

51

Implementation

To the servlets to work is necessary to make them available to the JSP server, this

is made in the web.xml file by adding an element servlet that as a name and the

class that the name will associate with. Next is added the element servlet-mapping

that allows calling the class in HTML code as a url.

< !−− s e r v l e t f o r i n s e r t i n g c r e d e n t i a l−−>

<s e r v l e t>

<s e r v l e t−name> i n s e r t S t a t u sC r ed en t i a l s</ s e r v l e t−name>

<s e r v l e t−c l a s s>

org . opennms . web . i tems . s t a tu s . I n s e r t S t a t u sC r ed en t i a l s S e r v l e t

</ s e r v l e t−c l a s s>

</ s e r v l e t>

. . .

<s e r v l e t−mapping>

<s e r v l e t−name> i n s e r t S t a t u sC r ed en t i a l s</ s e r v l e t−name>

<ur l−pattern>/iTEMS/ i n s e r t S t a t u sC r ed en t i a l s</ ur l−pattern>

</ s e r v l e t−mapping>

. . .

document . c r e d e n t i a l s . a c t i on=”iTEMS/ i n s e r t S t a t u sC r ed en t i a l s ” ;

. . .

Some times it’s necessary to pass a JSP variable to a Java variable. To do this it

is first necessary to set a new JSP EL variable that will have the value of the JSP

variable that we want to pass to Java variable, next is used the jsp:useBean element

that locates or instantiates a Bean with a specific id and type, in this case it will

locate the JSP EL and instantiate it so it can be used as a Java variable.

<td width=”15%” va l i gn=”top” a l i g n=” cente r ”>

<c : s e t var=” task ” value=”${ taskEvent . task Id }”/>

<j sp :useBean id=” task ” type=” java . lang . In t eg e r ” />

<a h r e f=”iTEMS/ tasksv iew / ta skDe ta i l . j s p ? taskId=<%=task %>”>

<%=TaskFactory . getTask (task) . getName () %>

</ td>

The method convertStringToDoc is used to convert the XML message in string to a

Document object so it can be manipulated using JDOM API.

52

Implementation

private stat ic Document convertStringToDoc (St r ing xmlDoc)

{
// b u i l d e r

SAXBuilder bu i l d e r = null ;

// xml document

Document doc = null ;

try {

bu i l d e r = new SAXBuilder (fa l se) ;

doc = bu i l d e r . bu i ld (new Str ingReader (xmlDoc)) ;

} catch (IOException i o e) {
doc = null ;

} catch (Exception e) {
doc = null ;

}

return doc ;

}

For every XML message it exists a method to create an object that represents the

message, this method constructs the object according to the elements and attributes

of the message. Next is the example of the construction of the message for the iTEMS

contact operation.

public Element buildiTEMSContactConfigurationXML ()

{
Element message = new Element (”Message”) ;

message . s e tAt t r i bu t e (” s e r v i c e ” , ” items ”) ;

// c r ea t e s command element

Element command = new Element (”Command”) ;

command . s e tAt t r i bu t e (”name” , ” s e t ”) ;

command . s e tAt t r i bu t e (” r e s u l t ” , ””) ;

message . addContent (command) ;

// c r ea t e s c on f i g u r a t i on element and ch i l d r en

Element c on f i g = new Element (” Conf igurat ion ”) ;

Element s e r v e r sE l = new Element (” Se rve r s ”) ;

Element s e rv e rE l = new Element (” Server ”) ;

s e rv e rE l . addContent (iTEMSContactConfigurationHostnameOrIp) ;

s e r v e r sE l . addContent (s e rv e rE l) ;

Element a l i v eE l = new Element (”KeepAlive”) ;

a l i v eE l . addContent (In t eg e r . t oS t r i ng (iTEMSContactConfigurationKeepAlive)) ;

c on f i g . addContent (s e r v e r sE l) ;

c on f i g . addContent (a l i v eE l) ;

53

Implementation

message . addContent (c on f i g) ;

return message ;

}

And for every XML message it too exists a method to read the content of the

message. In the next example is shown the reading of the iTEMS contact operation

message.

public void readiTEMSContactConfigurationXML (Element message)

{
iTEMSContactConfiguration = true ;

Element c on f i g = message . getChi ld (” Conf igurat ion ”) ;

Element s e r v e r sE l = con f i g . getChi ld (” Se rve r s ”) ;

Element s e rv e rE l = s e r v e r sE l . getChi ld (” Server ”) ;

iTEMSContactConfigurationHostnameOrIp = se rv e rE l . getText () ;

Element a l i v eE l = con f i g . getChi ld (”KeepAlive”) ;

iTEMSContactConfigurationKeepAlive = In t eg e r . pa r s e In t (a l i v eE l . getText ()) ;

}

In order to retrieve some information its needed to retrieve a cookie for future con-

nections. This is made by calling the method getCookieOnLogin. First it is created

the string for connection using the protocol HTTPS them if the authentication is

successful (response code 200) a cookie is sent and saved in a variable for use in

future connection.

public St r ing getCookieOnLogin (S t r ing webServer , S t r ing user ,

S t r ing password) {
St r ing c = ”” ;

try {

St r ing data = URLEncoder . encode (” j username ” , ”UTF−8”) + ”=”

+ URLEncoder . encode (user , ”UTF−8”) ;

data += ”&” + URLEncoder . encode (” j password ” , ”UTF−8”) + ”=”

+ URLEncoder . encode (password , ”UTF−8”) ;

data += ”&” + URLEncoder . encode (” l o g i n ” , ”UTF−8”) + ”=”

+ URLEncoder . encode (”Login” , ”UTF−8”) ;

URL ur l = new URL(webServer) ;

HttpsURLConnection conn = getSecureConnect ion (u r l) ;

conn . setDoOutput (true) ;

conn . setConnectTimeout (8 0 0) ;

OutputStreamWriter wr = new OutputStreamWriter (conn

. getOutputStream ()) ;

54

Implementation

wr . wr i t e (data) ;

wr . f l u s h () ;

i f (conn . getResponseCode ()==200)

c = conn . getHeaderF ie lds () . get (”Set−Cookie ”) . get (0) ;

else

c=”” ;

wr . c l o s e () ;

} catch (IOException e) {
c = ”” ;

l og . e r r o r (e) ;

} catch (Exception e) {
c = ”” ;

l og . e r r o r (e) ;

}

return c ;

}

The logging is all made using the log4j API, but to use it with OpenNMS some

configurations in the code are needed. First is created a constant containing the

category that is defined in the configuration file. Next is added a Category object.

Them when the object that we want to log is created a prefix is defined and is

obtained the object where it will be made the logging.

/∗∗
∗ The l o g 4 j ca t egory used to l o g messages .

∗/
private stat ic f ina l St r ing LOG4J CATEGORY = ”OpenNMS. iTEMS” ;

Category log ;

. . .

ThreadCategory . s e tP r e f i x (LOG4J CATEGORY) ;

l og = ThreadCategory . g e t In s tance (this . g e tC la s s ()) ;

. . .

. . .

l og . i n f o (”Gett ing s t a tu s ! ”) ;

. . .

4.3 Configuration

In order to all that was implemented work correctly the next configuration files had

to be altered:

55

Implementation

• capsd-configuration.xml;

• poller-configuration.xml;

• snmp-config.xml;

• eventconf.xml;

• categories.xml;

• log4j.properties.

They were altered in the project so when the solution is build it is ready to use,

without the need of changing the files.

The capsd-configuration.xml is the file where are configured the services to be discov-

ered for monitoring by capsd. In this file it was added the edgeBOX-Management

service so OpenNMS could discover it.

This is added as a protocol because OpenNMS tests the existence of a particular

network service through the use of ”protocols”.

<protoco l−p lug in p ro to co l=”edgeBOX−Management”

c l a s s−name=”org . opennms . netmgt . capsd . p lug in s . HttpsPlugin ”

scan=”on”

user−de f ined=” f a l s e ”>

<property key=”port ” value=”8011” />

<property key=” timeout ” value=”5000” />

<property key=” r e t r y ” value=”1” />

</ protoco l−p lug in>

The protocol-plugin tag as the next attributes:

– protocol: This is the name of the protocol.

class-name: This defines the protocol class that will be used to test for the

service.

–– scan: Capsd scans can be turned ”on” or ”off” per protocol with this attribute.

– user-defined: The Web UI allows for the dynamic creation of new services.

This attribute tracks whether or not the service was added by the user.

It is composed of properties that for edgeBOX-Management are:

• port: the port where the service is to be discovered and monitored (8011).

56

Implementation

• timeout: the time in milliseconds to wait for a response (1).

• retry: the number of attempts made to detect the service(5000).

The poller-configuration.xml is the file where it’s configured the packages of services

to be monitored. The edgeBOX-Management service was added to be monitored

and show on the webUI.

<s e r v i c e name=”edgeBOX−Management”

i n t e r v a l=”300000”

user−de f ined=” f a l s e ”

s t a tu s=”on”>

<parameter key=” r e t r y ” value=”1” />

<parameter key=” timeout ” value=”5000” />

<parameter key=”port ” value=”8011” />

<parameter key=” u r l ” va lue=”/” />

</ s e r v i c e>

The snmp-config.xml is the file where is configured the different SNMP versions

for SNMP data collection. To be able to receive the traps send by edgeBOX is

necessary to configure the SNMPv3, since these traps come in SNMPv3. This is

made by adding a tag definition where the next attributes are configured:

• security-name: the username configured;

• auth-passphrase: the authentication passphrase;

• auth-protocol: the authentication protocol (MD5—SHA);

• privacy-passphrase: the privacy passphrase;

• privacy-protocol: the privacy protocol (AES—DES);

<d e f i n i t i o n version=”v3”

s e cu r i t y−name=” items ”

auth−passphrase=”∗∗∗∗∗∗∗”

auth−pro to co l=”MD5”

privacy−passphrase=”∗∗∗∗∗∗∗”

privacy−pro to co l=”DES”>

< s p e c i f i c xmlns=””>192 . 168 . 127 . 172</ s p e c i f i c>

</ d e f i n i t i o n>

57

Implementation

The eventconf.xml is the file where events handled by eventd daemon are configured.

Because events are the main way of monitoring a network this file was growing

astronomically and the OpenNMS team changed so it could be possible to add

events trough external files. This is made with the tag event-file.

<event− f i l e>events /edgebox . xml</event− f i l e>

The edgebox.xml is the file where edgeBOX events are configured. The two more

importants to this implementation are the alive trap event and the Task executed

event. These events are configured using the following tags:

• event: the base element, all events start with it.

• mask: element specific for SNMP traps. These elements consists of maskele-

ment tags, and the event will only match if all the defined tags are met.

• varbind: is used to filter by the content of the SNMP trap.

• uei: an identifier for the event.

• event-label: the label of the event.

• descr: description of the event.

• logmsg: is a summary of the event. The attribute dest can have different

values:

– logndisplay: log the event in the database and display it in the webUI.

– logonly: log the event only in the database.

– suppress: don’t log it in the database and don’t display it.

– donotpersist: don’t log it in the database, but send it to other daemons

that are listening

– discardtraps: this is only valid to traps coming via trapd, making trapd

to discard the trap without creating the event.

• severity: represents the grade of importance of the event.

• autoaction: used to call external processes.

The next event is configured to match the SNMP traps containing ”alive:” in the

first variable of the trap.

58

Implementation

<event>

<mask>

<maskelement>

<mename>g ene r i c</mename>

<mevalue>3</mevalue>

</maskelement>

<varbind>

<vbnumber>1</vbnumber>

<vbvalue>a l i v e :%</vbvalue>

</ varbind>

</mask>

<ue i>c r i t i c a l −l i n k s /edgebox/ items /edgebox/ a l i v e</ ue i>

<event−l a b e l>edgeBOX Al ive Trap</event−l a b e l>

<desc r>

%parm [a l l]%

</ desc r>

<logmsg dest=” l ognd i sp l ay ”>a l i v e trap</ logmsg>

<s e v e r i t y>Normal</ s e v e r i t y>

<autoact ion>

[OPENNMSHOME]/ bin /execItemsTaskManagement . sh a l i v e %parm [a l l]%

</ autoact ion>

</ event>

The next event is configured to match the SNMP traps containing ”executer:”

or ”profile:” in the first variable of the trap.

<event>

<mask>

<maskelement>

<mename>g ene r i c</mename>

<mevalue>3</mevalue>

</maskelement>

<varbind>

<vbnumber>1</vbnumber>

<vbvalue>e x e cu t e r :%</vbvalue>

<vbvalue>p r o f i l e :%</vbvalue>

</ varbind>

</mask>

<ue i>c r i t i c a l −l i n k s /edgebox/ items /edgebox</ ue i>

<event−l a b e l>edgeBOX task</event−l a b e l>

<desc r>

%parm [a l l]%

</ desc r>

<logmsg dest=” l ognd i sp l ay ”>Task executed</ logmsg>

<s e v e r i t y>Normal</ s e v e r i t y>

<autoact ion>

[OPENNMSHOME]/ bin /execItemsTaskManagement . sh taskStatus %parm [a l l]%

</ autoact ion>

</ event>

59

Implementation

The categories.xml is the file that allows to configure categories of devices according

to the rule defined.

<category>

< l a b e l>< ! [CDATA[edgeBOX]]></ l a b e l>

<comment>This category i n c l ud e s a l l managed i n t e r f a c e s which are

running an edgeBOX .

</comment>

<normal>99 .99</normal>

<warning>97</warning>

<s e r v i c e>edgeBOX−Management</ s e r v i c e>

<r u l e>< ! [CDATA[isedgeBOX−Management]]></ ru l e>

</ category>

The log4j.properties is the file where configurations for logging, which will be used

by the log4j API, are made.

iTEMS

l o g 4 j . category .OpenNMS. iTEMS=DEBUG, ITEMS

l o g 4 j . a d d i t i v i t y .OpenNMS. iTEMS=f a l s e

l o g 4 j . appender . ITEMS=org . apache . l o g 4 j . Rol l ingFi leAppender

l o g 4 j . appender . ITEMS. MaxFileSize=100MB

l o g 4 j . appender . ITEMS. MaxBackupIndex=4

l o g 4 j . appender . ITEMS. F i l e=@ in s t a l l . webapplogs . dir@/ items . l og

l o g 4 j . appender . ITEMS. layout=org . apache . l o g 4 j . PatternLayout

l o g 4 j . appender . ITEMS. layout . Convers ionPattern=%d %−5p [%t] %c {1} : %m%n

60

Chapter 5

Conclusions

This last chapter reflets the results along all the project exposing the accomplished

objectives and future work.

5.1 Accomplished Objectives

Since the project is integration between two solutions the first objective was to

identify a way to do this. This was accomplished by first studying the OpenNMS

solution. With this study it was possible to define the points of integrations in

OpenNMS and what type of technologies it was using.

With that study performed it was identified what features of iTEMS would be

integrated with OpenNMS and what strategy would be adopted.

Then after the definition of the integration strategy, the integration was accom-

plished by phases.

The first phase created a better page to list the nodes with some information

about them and a better search engine.

The second phase added particular information about the edgeBOXs to the

OpenNMS project.

And the third phase introduced configuration of the edgeBOXs with the defini-

tion of profiles and tasks, been the task engine the most important to perform the

bridge to apply the tasks to the edgeBOXs.

In conclusion it was accomplished the integration of the features of iTEMS with

the OpenNMS so it could be made a unique solution to manage and configure

edgeBOXs and the improvements to OpenNMS interface.

All the tests that where defined where performed and their expected results

where achieved.

61

Conclusions

5.2 Future work

There are some improvements to be made.

One improvement is to implement the capacity of receiving pending tasks and act

according to what was defined. The pending tasks are intended to be used when an

edgeBOX isn’t yet present in the network and when it is a particular configuration

that is configured will be applied to it when it sends an alive. For this to work will

be necessary to create a specific form to add pending tasks that will have the serial

number of the edgeBOX and the credentials to be able to perform the configurations.

Other improvements are to add a better and easy to configure access manage-

ment, so it isn’t necessary to restart OpenNMS every time the role of a user is

changed.

62

References

[Cas08] Castor. The castor project, 2008. Available in http://www.castor.org/,
last consulted in 17 june 2008.

[Fou08] Apache Software Foundation. Log4j, 2008. Available in http://logging.

apache.org/log4j/1.2/index.html, last consulted in 17 june 2008.

[JDO08] JDOM. Jdom, 2008. Available in http://www.jdom.org/, last consulted
in 17 june 2008.

[Jet08] Jetty. Jetty, 2008. Available in http://www.mortbay.org, last consulted
in 17 june 2008.

[Oet08] Tobi Oetiker. Rrdtool, 2008. Available in http://oss.oetiker.ch/

rrdtool/, last consulted in 17 june 2008.

[Ope08] OpenNMS. Opennms, 2008. Available in http://www.opennms.org, last
consulted in 17 june 2008.

[Pos08] PostgreSQL. Postgresql, 2008. Available in http://www.postgresql.

org/, last consulted in 17 june 2008.

[Sec08] Acegi Security. Acegi security, 2008. Available in http://www.

acegisecurity.org/, last consulted in 17 june 2008.

[Shi02] Basem Shihada. Conceptual & concrete architectures of open network man-
agement system. Technical report, University of Waterloo, April 2002.

[Sou06] Fernando Marques & Helder Sousa. items edge - quick guide. Dezembro
2006.

[Sun08a] Sun. Java servlet technology overview, 2008. Available in http://java.

sun.com/products/servlet/overview.html, last consulted in 18 june
2008.

[Sun08b] Sun. Javaserver pages overview, 2008. Available in http://java.sun.

com/products/jsp/overview.html, last consulted in 18 june 2008.

[Van08] Sasa Markovic & Arne Vandamme. Jrobin, 2008. Available in http://

www.jrobin.org/index.php/Main Page, last consulted in 17 june 2008.

[Wik08] Wikipedia. Simple network management protocol, 2008. Available in http:

//en.wikipedia.org/wiki/Simple Network Management Protocol, last
consulted in 17 june 2008.

63

http://www.castor.org/
http://logging.apache.org/log4j/1.2/index.html
http://logging.apache.org/log4j/1.2/index.html
http://www.jdom.org/
http://www.mortbay.org
http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/
http://www.opennms.org
http://www.postgresql.org/
http://www.postgresql.org/
http://www.acegisecurity.org/
http://www.acegisecurity.org/
http://java.sun.com/products/servlet/overview.html
http://java.sun.com/products/servlet/overview.html
http://java.sun.com/products/jsp/overview.html
http://java.sun.com/products/jsp/overview.html
http://www.jrobin.org/index.php/Main_Page
http://www.jrobin.org/index.php/Main_Page
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

REFERENCES

[Wor08] W3C World Wide Web Consortium. Extensible markup language, 2008.
Available in http://www.w3.org/XML/, last consulted in 17 june 2008.

64

http://www.w3.org/XML/

Appendix A

OpenNMS database

This appendix contains the different parts that compose the OpenNMS database.

Figure A.1: OpenNMS database - First part

65

OpenNMS database

Figure A.2: OpenNMS database - Second part

Figure A.3: OpenNMS database - Third part

66

OpenNMS database

Figure A.4: OpenNMS database - Fourth part

Figure A.5: OpenNMS database - Fifth part

67

OpenNMS database

68

Appendix B

CPE Group XML schema

This is the schema created to be used by Castor to generate classes for manipulating
the XML file for CPE Groups.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<schema targetNamespace=” ht tp : //xmlns . opennms . org /xsd/ cpegroups ”

xmlns=” ht tp : //www.w3 . org /2001/XMLSchema”
xmlns : x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xmlns:typ=” ht tp : //xmlns . opennms . org /xsd/ types ”
xmlns : th i s 2=” ht tp : //xmlns . opennms . org /xsd/ c a t e g o r i e s ”
xmln s : th i s=” ht tp : //xmlns . opennms . org /xsd/ cpegroups ”
xmlns:ns2=” ht tp : //www.w3 . org /1999/ xhtml”
xmlns:ns=” ht tp : //www.w3 . org /2001/XMLSchema”
xmlns :hfp=” ht tp : //www.w3 . org /2001/XMLSchema−hasFacetAndProperty”>

<annotat ion>
<documentation>

XML Schema f o r the cpegroups . xml c on f i g u r a t i on f i l e .
</documentation>

</ annotat ion>

<import namespace=” ht tp : //xmlns . opennms . org /xsd/ types ”
schemaLocation=” types . xsd”/>

<element name=” cpegroup in fo ”>
<annotat ion>

<documentation>
Top−l e v e l element f o r the cpegroups . xml c on f i gu r a t i on f i l e .

</documentation>
</ annotat ion>

<complexType>
<sequence>

<element maxOccurs=”1”
minOccurs=”1”
r e f=” typ :header ”/>

<element
maxOccurs=”1”
minOccurs=”0”
r e f=” th i s : c p e g r oup s ”/>

</ sequence>
</complexType>

</ element>

<element name=” cpegroups ”>
<complexType>

69

CPE Group XML schema

<sequence>
<element maxOccurs=”unbounded”

minOccurs=”0”
r e f=” th i s : cp eg roup ”/>

</ sequence>
</complexType>

</ element>

<element name=”cpegroup”>
<complexType>

<sequence>
<element maxOccurs=”1”

minOccurs=”1”
name=”name”
type=” s t r i n g ”/>

<element maxOccurs=”1”
minOccurs=”0”
name=”comments”
type=” s t r i n g ”/>

<element maxOccurs=”unbounded”
minOccurs=”0”
name=”cpe”
type=” s t r i n g ”/>

</ sequence>
</complexType>

</ element>
</schema>

70

Appendix C

XML messages

C.1 Status retrieve

Next are the messages exchanged with the pepserver to retrieve the status of an
edgeBOX.

∗∗∗∗∗∗∗∗ REQUEST >>>>>>>>> PEP ’ sy s t em : :web l o ca l e ’ ∗∗∗∗∗∗∗∗
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<Message s e r v i c e=”Locale ”>

<Command name=” get ” r e s u l t=”” />
<Conf igurat ion>

<L i c en s e In f o />
<Vers ion />

</ Conf igurat ion>
</Message>
∗∗∗∗∗∗∗∗∗ END REQUEST ∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗ PEP ’ sy s t em : :web l o ca l e ’ >>>>>>>>> RESPONSE ∗∗∗∗∗∗∗∗
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<Message s e r v i c e=”Locale ”>

<Command name=” get ” r e s u l t=” suc c e s s ”/>
<Conf igurat ion>

<L i c en s e In f o>
<CustomerName>deve l ope r s t e s t i n g image f o r 4 . 6</CustomerName>
<LicenseID>∗∗∗∗∗∗∗∗∗∗∗∗∗∗</LicenseID>
<Subsc r ip t i on />
<HardwareDescr ipt ion>VMWARE 1 s t image</HardwareDescr ipt ion>

</ L i c en s e In f o>
<Vers ion name=”edg eOS ve r s i on 4 .6 ”

r e v i s i o n=”20071120”
bu i ld=”4.6−3 −4.6+s000001−16”/>

</ Conf igurat ion>
</Message>
∗∗∗∗∗∗∗∗∗∗∗∗ END RESPONSE ∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗ REQUEST >>>>>>>>> PEP ’ s t a t e : : s y s b u s d ’ ∗∗∗∗∗∗∗∗
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<Message s e r v i c e=” sysbusd ”>

<Command name=” get ” r e s u l t=”” />
<Conf igurat ion>

<Se rv i c e name=”wan” />
</ Conf igurat ion>

</Message>
∗∗∗∗∗∗∗∗∗ END REQUEST ∗∗∗∗∗∗∗∗∗∗∗∗

71

XML messages

∗∗∗∗∗∗∗∗ PEP ’ s t a t e : : s y s b u s d ’ >>>>>>>>> RESPONSE ∗∗∗∗∗∗∗∗
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<Message s e r v i c e=” sysbusd ”>

<Command name=” get ” r e s u l t=” suc c e s s ”/>
<Conf igurat ion>

<Se rv i c e name=”wan” re l oad=” true ”>
<Message> [Mon 02 Jun 2008 20 : 2 3 : 4 4 WEST] DHCP up</Message>

</ Se rv i c e>
</ Conf igurat ion>

</Message>
∗∗∗∗∗∗∗∗∗∗∗∗ END RESPONSE ∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗ REQUEST >>>>>>>>> PEP ’ network: :pppoe ’ ∗∗∗∗∗∗∗∗
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<Message s e r v i c e=” ex t e rna l l an ”>

<Command name=” get ” r e s u l t=””>
<Status />

</Command>
<Conf igurat ion>

<Type />
<IP />
<Netmask />
<Gateway />
<PrimaryDNS />
<SecondaryDNS />
<PPPoE>

<Username />
<Password />
<Authent icat ion />
<KeepAlive />
<IP f i x ed=”” />
<DNS s p e c i f i e d=””>

<Primary />
<Secondary />

</DNS>
<VPI />
<VCI />
<Encapsulat ion />
<Modem />

</PPPoE>
</ Conf igurat ion>

</Message>
∗∗∗∗∗∗∗∗∗ END REQUEST ∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗ PEP ’ network: :pppoe ’ >>>>>>>>> RESPONSE ∗∗∗∗∗∗∗∗
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<Message s e r v i c e=” ex t e rna l l an ”>

<Command name=” get ” r e s u l t=” suc c e s s ”>
<Status>Up</ Status>

</Command>
<Conf igurat ion>

<Type>dhcp</Type>
<IP>192 . 168 . 127 . 100</IP>
<Netmask>255 . 255 . 254 . 0</Netmask>
<Gateway>192 . 168 . 127 . 254</Gateway>
<PrimaryDNS>192 . 168 . 127 . 254</PrimaryDNS>
<SecondaryDNS></SecondaryDNS>
<PPPoE>

<Username>user@no−i s p . com</Username>

72

XML messages

<Password></Password>
<Authent icat ion>Chap and Pap</ Authent i cat ion>
<KeepAlive>no</KeepAlive>
<IP f i x ed=”no”/>
<DNS s p e c i f i e d=”no”>

<Primary></Primary>
<Secondary></Secondary>

</DNS>
<VPI>0</VPI>
<VCI>35</VCI>
<Encapsulat ion>LLC</Encapsulat ion>
<Modem>none</Modem>

</PPPoE>
</ Conf igurat ion>

</Message>
∗∗∗∗∗∗∗∗∗∗∗∗ END RESPONSE ∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗ REQUEST >>>>>>>>> PEP ’ system::system management ’ ∗∗∗∗∗∗∗∗
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<Message s e r v i c e=”snmpmanagement”>

<Command name=” get ” r e s u l t=”” />
<Conf igurat ion>

<CPUIdle />
<Memory>

<TotalMemory />
<FreeMemory />

</Memory>
<Disk>

<TotalDisk />
<FreeDisk />

</Disk>
<SystemUptime />

</ Conf igurat ion>
</Message>
∗∗∗∗∗∗∗∗∗ END REQUEST ∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗ PEP ’ system::system management ’ >>>>>>>>> RESPONSE ∗∗∗∗∗∗∗∗
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<Message s e r v i c e=”snmpmanagement”>

<Command name=” get ” r e s u l t=” suc c e s s ”/>
<Conf igurat ion>

<CPUIdle>83</CPUIdle>
<Memory>

<TotalMemory>383072</TotalMemory>
<FreeMemory>5904</FreeMemory>

</Memory>
<Disk>

<TotalDisk>4427436</TotalDisk>
<FreeDisk>3789816</FreeDisk>

</Disk>
<Disk>

<TotalDisk>3945160</TotalDisk>
<FreeDisk>3673436</FreeDisk>

</Disk>
<SystemUptime> 0d 0h 46m</SystemUptime>

</ Conf igurat ion>
</Message>
∗∗∗∗∗∗∗∗∗∗∗∗ END RESPONSE ∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗ REQUEST >>>>>>>>> PEP ’ s e c u r i t y : : f i r e w a l l ’ ∗∗∗∗∗∗∗∗

73

XML messages

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<Message s e r v i c e=” f i r e w a l l ”>

<Command name=” get ” r e s u l t=”” />
<Conf igurat ion>

<Author i zat ion />
<Fi r ewa l l />
<Se r v i c e s name=”” ex t e rna l=”” i n t e r n a l=”” en t e r p r i s e=”” />
<BlackLi s t />

</ Conf igurat ion>
</Message>
∗∗∗∗∗∗∗∗∗ END REQUEST ∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗ PEP ’ s e c u r i t y : : f i r e w a l l ’ >>>>>>>>> RESPONSE ∗∗∗∗∗∗∗∗
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<Message s e r v i c e=” f i r e w a l l ”>

<Command name=” get ” r e s u l t=” suc c e s s ”/>
<Conf igurat ion>

<Author i zat ion>on</ Author i zat ion>
<Fi r ewa l l>on</ F i r ewa l l>
<Se r v i c e s name=”” ex t e rna l=”” i n t e r n a l=”” en t e r p r i s e=””>

<Entry
e n t e r p r i s e=”yes ” name=” f l a s h op e r a t o r ” ex t e rna l=”yes ” i n t e r n a l=”yes ”

/>
<Entry

e n t e r p r i s e=”yes ” name=”dns” ex t e rna l=”yes ” i n t e r n a l=”yes ”
/>
<Entry

e n t e r p r i s e=”yes ” name=”smtp” ex t e rna l=”yes ” i n t e r n a l=”yes ”
/>
<Entry

e n t e r p r i s e=”yes ” name=” ssh ” ex t e rna l=”yes ” i n t e r n a l=”yes ”
/>
<Entry

e n t e r p r i s e=”yes ” name=”imap” ex t e rna l=”yes ” i n t e r n a l=”yes ”
/>
<Entry

e n t e r p r i s e=”yes ” n ame=”webadmin” ex t e rna l=”yes ” i n t e r n a l=”yes ”
/>
<Entry

e n t e r p r i s e=”yes ” name=” f tp ” ex t e rna l=”yes ” i n t e r n a l=”yes ”
/>
<Entry

e n t e r p r i s e=”yes ” name=”http ” ex t e rna l=”yes ” i n t e r n a l=”yes ”
/>
<Entry

e n t e r p r i s e=”yes ” name=”pop3” ex t e rna l=”yes ” i n t e r n a l=” yes ”
/>
<Entry

e n t e r p r i s e=”yes ” name=” nag ios ” ex t e rna l=”yes ” i n t e r n a l=”yes ”
/>
<Entry

e n t e r p r i s e=”yes ” name=” c t i ” ex t e rna l=”yes ” i n t e r n a l=”yes ”
/>
<Entry

e n t e r p r i s e=” yes ” name=”monit” ex t e rna l=”yes ” i n t e r n a l=”yes ”
/>
<Entry

e n t e r p r i s e=”yes ” name=” rad iu s ” ex t e rna l=”no” i n t e r n a l=”yes ”
/>
<Entry

74

XML messages

e n t e r p r i s e=”yes ” name=” ldap” externa l=”no” i n t e r n a l=”yes ”
/>
<Entry

e n t e r p r i s e=”yes ” name=”munin” ex t e rna l=”no” in t e rn a l=”yes ”
/>
<Entry

e n t e r p r i s e=”yes ” name=”voip ” ex t e rna l=”yes ” i n t e r n a l=”yes ”
/>
<Entry

e n t e r p r i s e=”yes ” name=”snmp” ex t e rna l=”yes ” i n t e r n a l=”yes ”
/>
<Entry

e n t e r p r i s e=”yes ” name=”samba” ex t e rna l=”yes ” i n t e r n a l=”yes ”
/>
<Entry

e n t e r p r i s e=”yes ” name=” items ” ex t e rna l=”yes ” i n t e r n a l=”yes ”
/>

</ S e r v i c e s>
<BlackLi s t />

</ Conf igurat ion>
</Message>
∗∗∗∗∗∗∗∗∗∗∗∗ END RESPONSE ∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗ REQUEST >>>>>>>>> PEP ’ s e c u r i t y : : n a t ’ ∗∗∗∗∗∗∗∗
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<Message s e r v i c e=”nat”>

<Command name=” get ” r e s u l t=””>
<Status />

</Command>
<Conf igurat ion>

<NAT s t a t e=””>
<Entry ip=”” netmask=”” i n t e r f a c e=”” />

</NAT>
<Forwarding>

<Entry e i n t e r f a c e=”” eport=”” i i p=”” i p o r t=””/>
</Forwarding>

</ Conf igurat ion>
</Message>
∗∗∗∗∗∗∗∗∗ END REQUEST ∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗ PEP ’ s e c u r i t y : : n a t ’ >>>>>>>>> RESPONSE ∗∗∗∗∗∗∗∗
<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<Message s e r v i c e=”nat”>

<Command name=” get ” r e s u l t=” suc c e s s ”>
<Status />

</Command>
<Conf igurat ion>

<NAT s t a t e=” o f f ”/>
<Forwarding/>

</ Conf igurat ion>
</Message>
∗∗∗∗∗∗∗∗∗∗∗∗ END RESPONSE ∗∗∗∗∗∗∗∗∗∗∗∗∗

C.2 Profile operations

Complete XML message stored in the table items profiles with all the operations
configured, each Message tag in the Configuration tag represents one operation and

75

XML messages

it configuration.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<Message s e r v i c e=” items ”>

<Command name=” s e t ” r e s u l t=”” />
<Conf igurat ion>

<Message s e r v i c e=”Executer ”>
<Command name=” s e t ” r e s u l t=”” />
<Conf igurat ion>

<F i l e>
<User>1</User>
<Pass>1</Pass>
<Server>192 . 1 6 8 . 1 . 1</ Server>
<Path>we</Path>

</ F i l e>
</ Conf igurat ion>

</Message>
<Message s e r v i c e=” items ”>

<Command name=” s e t ” r e s u l t=”” />
<Conf igurat ion>

<Serve r s>
<Server>192 . 168 . 127 . 37</ Server>

</ Serve r s>
<KeepAlive>5</KeepAlive>

</ Conf igurat ion>
</Message>
<Message s e r v i c e=”voip ”>

<Command name=” act i va t e−g729” r e s u l t=”” />
<Conf igurat ion />

</Message>
<Message s e r v i c e=”SystemUpdate”>

<Command name=” s e t c o n f i g ” r e s u l t=”” />
<Conf igurat ion>

<Status></ Status>
<UpdateMode i n t e r v a l=”6” s ta r thour=”0 : 0 ” n o t i f i c a t i o n=”none”>

manual
</UpdateMode>
<Packages></Packages>
<Log></Log>

</ Conf igurat ion>
</Message>
<Message s e r v i c e=”SystemUpdate”>

<Command name=”upgrade” r e s u l t=”” />
<Conf igurat ion>

<Status></ Status>
<Packages></Packages>

</ Conf igurat ion>
</Message>
<Message s e r v i c e=”backup”>

<Command name=” schedu le ” r e s u l t=”” />
<Conf igurat ion>

<Active>yes</Active>
<Hour>0</Hour>
<Minute>0</Minute>
<Locat ion> f t p : // username:password@adress /path</Locat ion>
<Type>standard</Type>

</ Conf igurat ion>
</Message>
<Message s e r v i c e=”backup”>

<Command name=”backup” r e s u l t=”” />

76

XML messages

<Conf igurat ion>
<Locat ion> f t p : // username:password@adress /path</Locat ion>
<Type>standard</Type>
<BackupNow>yes</BackupNow>

</ Conf igurat ion>
</Message>
<Message s e r v i c e=”backup”>

<Command name=” removeschedule ” r e s u l t=”” />
<Conf igurat ion>

<Active>no</Active>
</ Conf igurat ion>

</Message>
<Message s e r v i c e=”SystemConfig ”>

<Command name=” s e t ” r e s u l t=”” />
<Conf igurat ion>

<Disc la imer>Disc la imer text</ Di sc la imer>
<LandingText>Landing Text</LandingText>
<Logo>

<User>username</User>
<Pass>password</Pass>
<Server>adre s s</ Server>
<Path>path</Path>

</Logo>
</ Conf igurat ion>

</Message>
<Message s e r v i c e=”MailScanner ”>

<Command name=”download− i n s t a l l ” r e s u l t=”” />
<Conf igurat ion>

<Engine>sophos</Engine>
<User>username</User>
<Pass>password</Pass>
<Server>adre s s</ Server>
<Path>path</Path>

</ Conf igurat ion>
</Message>
<Message s e r v i c e=”MailScanner ”>

<Command name=”remove” r e s u l t=”” />
<Conf igurat ion>

<Engine>sophos</Engine>
</ Conf igurat ion>

</Message>
<Message s e r v i c e=”MailScanner ”>

<Command name=”only−update−i d e ” r e s u l t=”” />
<Conf igurat ion>

<Engine>sophos</Engine>
</ Conf igurat ion>

</Message>
<Message s e r v i c e=” f i r e w a l l ”>

<Command name=” s e t ” r e s u l t=”” />
<Conf igurat ion>

<Author i zat ion>o f f</ Author i zat ion>
<Fi r ewa l l>o f f</ F i r ewa l l>
<WanICMPEcho>d i s ab l e</WanICMPEcho>
<Se r v i c e s>

<Entry e n t e r p r i s e=”no” name=”webadmin” ex t e rna l=”no” />
<Entry name=”dns” ex t e rna l=”no” />
<Entry name=” f l a s h op e r a t o r ” ex t e rna l=”no” />
<Entry name=”smtp” ex t e rna l=”no” />
<Entry name=” ssh ” ex t e rna l=”no” />
<Entry name=”imap” ex t e rna l=”no” />

77

XML messages

<Entry name=” f tp ” ex t e rna l=”no” />
<Entry name=”http ” ex t e rna l=”no” />
<Entry name=”pop3” ex t e rna l=”no” />
<Entry name=” nag ios ” ex t e rna l=”no” />
<Entry name=” c t i ” ex t e rna l=”no” />
<Entry name=”monit” ex t e rna l=”no” />
<Entry name=” rad iu s ” ex t e rna l=”no” />
<Entry name=” ldap” ex t e rna l=”no” />
<Entry name=”munin” ex t e rna l=”no” />
<Entry name=”voip ” ex t e rna l=”no” />
<Entry name=”snmp” ex t e rna l=”no” />
<Entry name=”samba” ex t e rna l=”no” />
<Entry name=” items ” ex t e rna l=”no” />

</ S e r v i c e s>
<BlackLi s t></ BlackL i s t>

</ Conf igurat ion>
</Message>
<Message s e r v i c e=” web f i l t e r i n g ”>

<Command name=”download− i n s t a l l ” r e s u l t=””>
<Status></ Status>

</Command>
<Conf igurat ion>

<B l a c k l i s t enabled=”yes ”>
<User>username</User>
<Pass>password</Pass>
<Server>f t paddr e s s</ Server>
<Path>path</Path>
<Entry enabled=”yes ”>b l a c k l i s t</Entry>

</ B l a c k l i s t>
</ Conf igurat ion>

</Message>
<Message s e r v i c e=”date ”>

<Command name=” s e t ” r e s u l t=”” />
<Conf igurat ion>

<Day>1</Day>
<Month>1</Month>
<Year>1</Year>
<Hour>1</Hour>
<Minute>1</Minute>
<Second>1</Second>
<TimeZone>Europe/Lisbon</TimeZone>
<TimeZones></TimeZones>
<Dayl ight>No</Dayl ight>
<NTP ac t i v e=”Yes”></NTP>

</ Conf igurat ion>
</Message>
<Message s e r v i c e=” ex t e rna l l an ”>

<Command name=” s e t ” r e s u l t=”” />
<Conf igurat ion>

<Type>DHCP</Type>
<IP></IP>
<Netmask></Netmask>
<Gateway></Gateway>
<PrimaryDNS></PrimaryDNS>
<SecondaryDNS></SecondaryDNS>
<PPPoE>

<Username></Username>
<Password></Password>
<Authent icat ion>PAP or CHAP</ Authent i cat ion>
<KeepAlive>no</KeepAlive>

78

XML messages

<IP f i x ed=”yes ” />
<DNS s p e c i f i e d=”yes ”>

<Primary></Primary>
<Secondary></Secondary>

</DNS>
<VPI></VPI>
<VCI></VCI>
<Encapsulat ion>
</Encapsulat ion>

</PPPoE>
</ Conf igurat ion>

</Message>
</ Conf igurat ion>

</Message>

79

