
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Tools to Support Practical Teaching of Software

Engineering

 João Tiago Barbosa Pinto

Dissertation Report
Integrated Master in Informatics and Computing Engineering

Advisor: João Carlos Pascoal de Faria (Aux. Professor)
Advisor: Katalin Balla (Budapesti Műszaki és Gazdaságtudományi Egyetem)

June 2010

i

Abstract

Software applications are becoming more and more important in today's society. That is why
currently in software development; failures are not allowed because each error implies increased
resources and costs. In this context the need for methodologies and practices that serve as a helper
tool for software development arises.

Nowadays the job of a software engineer is to deliver high-quality software products according
to agreed-upon resources and schedule. Since the global market is growing really fast, it is
important to do an effective work.

Through the years only few organizations have met their commitments in relation to cost and
schedule causing in this way serious business problems.

One sentence started to be used:“So what to do??”. One of the answers came from Watts
Humphrey. This software engineer became known as the father of software quality, being one of the
creators of the Capability Maturity Model (CMM), Team Software Process (TSP) and Personal
Software Process (PSP). The answer consisted in the creation of PSP that was designed to help
software engineers do a good work and effective one.

PSP provides detailed estimating and planning methods, showing how engineers should track
their performance against plans and explains how defined processes can guide their work.

This methodology started to be taught in a fifteen lecture course where the students had to
complete ten programming exercises and five analysis exercises. After the solution of each exercise
the instructor should run and verify a series of items from a defined checklist.

Through the years some universities started to apply this methodology in their own courses,
being the teaching customized to their own needs. In this document this subject will be approached.

Since in the Faculty of Engineering of the University of Porto this teaching started in a
customized way, now it is important to show the students all processes of PSP the same way as the
original course.

PSP instructors usually have to spend thirty minutes for each student and programming
exercise, because the checking of the several items takes a long time. A close analysis of these
items shows that most of them can be automatically verified. So this document shows and explains
the creation of a supporting tool called PSPChecker that allows us to save time and increase
accuracy when evaluating the work of PSP students.

Users with PSPChecker can create customized processes or use the ones already defined.
Until this moment there weren’t any available tools that could reproduce the same result.
In conclusion, PSPChecker offers a lot of functionalities like exporting result for several

formats such as Excel and PDF and allows the creation of charts.

ii

iii

Resumo

As aplicações de software são cada vez mais importantes na sociedade e na rotina diária. É por

isso que actualmente em desenvolvimento de software, as falhas não são permitidas porque cada
erro implica o aumento dos recursos e custos. Neste contexto, surge a necessidade de criação de
metodologias e práticas que sirvam como ferramenta auxiliar para o desenvolvimento de software.

Hoje em dia o trabalho de um engenheiro de software é desenvolver e entregar produtos de alta
qualidade tendo em conta os recursos que possui e a sua calendarização. Isto é importante pois
actualmente o mercado global está a crescer de forma rápida, logo é importante fazer um trabalho
eficaz.

 Apenas algumas organizações ao longo dos anos conseguiram cumprir os seus compromissos
em relação ao orçamento e ao cronograma causando desta forma problemas de negócios sérios.
 Uma frase passou a ser utilizada: "Então o que fazer?". Uma das respostas veio de Watts
Humphrey. Este engenheiro de software tornou-se conhecido como o pai da qualidade de software,
sendo um dos criadores do Capability Maturity Model (CMM), Team Software Process (TSP) e
Personal Software Process (PSP). A resposta consistia na criação do PSP que foi projectado para
ajudar engenheiros de software no desenvolvimento de bons projectos e de forma eficaz.
 PSP fornece informações detalhadas sobre a estimativa e métodos de planeamento, mostrando
desta forma como os engenheiros devem acompanhar o seu desempenho face a esses planos e
explica como definir os processos de modo a orientarem os seus trabalhos.

 Esta metodologia começou a ser ensinada num curso de quinze aulas onde os alunos tinham de
completar dez exercícios de programação e cinco exercícios de análise. Após a resolução do
exercício o instrutor deve verificar uma série de itens de uma checklist definida.

Ao longo dos anos, muitas universidades começaram a aplicar esta metodologia nos seus
próprios cursos, sendo o ensino personalizado às suas próprias necessidades. Neste documento, o
assunto será abordado pois é um dos componentes de estudo para o desenvolvimento da ferramenta.

Uma vez que na Faculdade de Engenharia da Universidade do Porto, este ensinamento
começou de forma personalizada mas agora é importante ensinar aos alunos todos os processos do
PSP da mesma forma que o seu ensino no curso original.

Desta forma, cada professor teria que despender trinta minutos para cada aluno, pois a
verificação dos diversos itens é demorada, quando essa verificação pode ser automática para a
maioria dos itens. Portanto, este documento mostra e explica a criação de uma ferramenta de apoio
chamado PSPChecker que permite poupar tempo e aumentar precisão.

Utilizadores com PSPChecker podem criar processos personalizados ou usar os já definidos.
Até ao momento não houve quaisquer ferramentas disponíveis que permitissem reproduzir o

mesmo resultado.
Para conclusão PSPChecker oferece uma série de funcionalidades como exportação para

diversos formatos, como Excel e PDF e permite a criação de gráficos.

iv

Acknowledgements

I would like to thank my supervisor, Professor João Carlos Pascoal de Faria, from Faculty of
Engineering of the University of Porto, for his guidance and support.

A special thank to my co-supervisor Professor Katalin Balla, from Budapest University of
Technology and Economics, for her inputs, enthusiasm and her invaluable perceptiveness in the
discussions we had.

João Tiago Barbosa Pinto

v

Contents

Chapter 1 - Introduction ... 1

1.1 Context and motivation ... 1

1.2 Objectives ... 2

1.3 Methodology and review of the literature .. 3

1.3 Dissertation’s Structure ... 4

Chapter 2 - Understanding PSP ... 5

2.1 Introduction to PSP ... 5

2.2 PSP Strategy and components ... 7

2.2.1 PSP 0 – Baseline Personal Process .. 7

2.2.2 PSP 1- Personal Planning .. 10

2.2.3 PSP 2 – Personal Quality Management .. 10

2.2.4 PSP 3 – Cyclic Personal Process .. 10

2.2.5 PSP Process Flow .. 11

2.2.6 PSP Process Script .. 12

2.3 Teaching of PSP in Universities .. 13

2.3.1 FEUP - Portugal .. 13

2.3.2 UMEA University – Sweden ... 13

2.3.3 UTAH University – USA .. 13

2.3.4 Montana Tech University – USA ... 14

2.3.5 University Of Zagreb – Croatia.. 14

2.4 PSP Support Tools .. 16

2.4.1 PSPStudio ... 16

2.4.2 PSP-EAT .. 17

2.4.3 PSP-DROPS (PSP Data Repository and Presentation System) 17

2.4.4 PSP STUDENT WORKBOOK ... 17

2.4.5 Conclusion .. 17

Chapter 3 - Automatic Verification of Items ... 19

Chapter 4 - PSPChecker Specification ... 31

4.1 PSPChecker Functional Requirements... 31

4.2 Requirements of external interface .. 32

vi

4.2.1 Interface to users ... 32

4.2.2 Hardware requirements ... 32

4.3 Non-Functional Requirements ... 32

4.4 Use Case Model .. 34

4.4.1 Actors ... 34

4.4.2 Use Cases .. 35

4.5 Architecture .. 46

4.5.1 Logical Architecture .. 46

4.5.2 Physical Architecture .. 48

4.5.3 Design Decisions ... 49

4.5.4 Technologies ... 51

4.6 Test Planning .. 53

4.6.1 Test Items (Modules) ... 53

4.6.2 Test Items (Sub-Modules) ... 54

4.6.3 Acceptance Tests ... 57

4.6.4 Criteria Accepted/Denied .. 58

4.6.5 Test Procedures ... 58

Chapter 5 - Experimentation ... 59

Chapter 6 - Conclusions .. 63

References ... 65

Appendix A .. 67

A.1 Personal experience with PSP .. 67

vii

List of Figures

Figure 1 – Information flow .. 2

Figure 2- Improvement process .. 6

Figure 3– Evolution of PSP phases ... 7

Figure 4- PSP Process Flow .. 11

Figure 5 – PSPStudio application screenshots ... 17

Figure 6 – PSP Test Report Example .. 21

Figure 7 – PSP Time Recording Log Example .. 22

Figure 8 – PSP Defect Recording Log .. 23

Figure 9 – Probe Calculations Example .. 24

Figure 10 – PIP Form Example ... 25

Figure 11 - PSP Planning Summary examples .. 26

Figure 12– Percentage of items that can be checked automatically .. 30

Figure 13- General vision of the use cases .. 34

Figure 14- Sequence Diagram for Import Data Remotely .. 35

Figure 15- Sequence Diagram for Import Data Locally ... 36

Figure 16- Activity diagram for import data .. 37

Figure 17- Interface Design (import data) ... 37

Figure 18- Sequence Diagram for Verification of typical PSP process................................... 38

Figure 19- Sequence Diagram for Verification of custom PSP process 39

Figure 20- Activity diagram for verify PSP process .. 40

Figure 21- Interface Design (Verify data PSP typical process) .. 40

Figure 22- Interface Design (Verify data PSP custom process) .. 41

Figure 23- Sequence Diagram for export results.. 41

Figure 24- Activity diagram for export results .. 42

Figure 25- Interface Design (Export Results) .. 43

Figure 26- Sequence Diagram for creating charts .. 43

Figure 27- Activity diagram for creating charts ... 44

Figure 28- Interface Design (Create Charts) .. 45

Figure 29 – Horizontal view of PSPCHecker .. 46

Figure 30 – Vertical view ... 47

Figure 31- Physical Architecture of System .. 48

Figure 32 - Database Model .. 51

viii

Figure 33– Example 1 - working with time Log .. 59

Figure 34- Example 2 - working with time Log (Error Info) .. 60

Figure 35 - Example 3 - working with not available options .. 61

Figure 36 – Example 4 – Use of PSP Level 1 example .. 62

Figure 37 - Example 5 – Menu Options .. 62

Figure 38- PSP Level 0 - Project Summary Example .. 67

Figure 39- PSP Level 0 – Time Log Example ... 68

Figure 40- PSP Level 0 – Defect Log Example ... 68

List of Tables

Table 1 - Defect Type Standard .. 9

Table 2 – PSP Process Script .. 12

Table 3– Results of academic study of PSP ... 15

Table 4 - PSPChecker DataBase components .. 50

ix

Abbreviations

CMM - Capability Maturity Model

CMU – Carnegie Mellon University

IEC - International Electrotechnical Commission

IEEE - Institute of Electrical and Electronics Engineers

ISO - International Organization for Standardization

LOC - Lines Of Code

PDF - Portable Document Format

PIP - Process Improvement Proposal

RUP – Rational Unified Process

SEI – Software Engineering Institute

TSP – Team Software Process

PSP – Personal Software Process

UML - Unified Modeling Language

x

1

Chapter 1 - Introduction

Currently in development of software, failures are not allowed because each error implies
increased resources and costs. In this context there is the need for the creation of methodologies and
practices that serve as a helper tool for software development. In this field, one of the driving forces
for good practices was Watts Humphrey [1] a software engineer that in the 1960s stood at IBM for
having been the first team manager to launch a licensed version of software. This software engineer
became known as the father of software quality, being one of the creators of the CMM [2], Team
Software Process (TSP) [3] and Personal Software Process (PSP) [4] and Carnegie Mellon
University Lecturer in the Department of Computer Science.

This work discusses the last component indicated in the preceding subparagraph (PSP): its
definition and important points to retain, PSP education in an academic level, creating helping tools
to help software engineering education (automating checklists and information) and finally a
possible application of this tool in enterprise-level.

1.1 Context and motivation

The initial study was carried out in the context of the curricular unit “Preparation for
dissertation” at FEUP (Faculty of Engineering of the University of Porto) of the Integrated Master
in Informatics and Computing Engineering. One part of the project continued at FEUP and the
other part in BME (Budapesti Műszaki és Gazdaságtudományi Egyetem) under an Erasmus
Protocol.

PSP is a software development process and is also a method of teaching best practices.
Both of these previous points highlighted the main reason for PSP being added as a curricular

unit of software engineering.
 The design and concept of a tool (PSPChecker) allows teachers to reduce time for evaluation

and feedback. Another important point is the exchange of current PSP files produced locally by the
ones used and available at CMU/SEI in order to improve the skills of several students.

One of the interesting points of PSPChecker is the possibility of obtaining information that
understands the improvement in the development of a project.

As an overcome of each objective, personal capacity related with PSP will improve for a
consistent application of these capacities in several companies.

Thus, one of the objectives of this work is to develop personal skills in the area of software
quality and process improvement.

2

1.2 Objectives

The main objectives of this dissertation work are:
1. To capture and systematize the implicit knowledge that is held by experts when

accessing processes already defined (despite verification checklists, the criteria used to
check each item are not explicit);

2. To facilitate software engineering education using PSP locally;
3. To conceive and develop an automated verification tool of PSP adherence (in its

various variants), based on verification checklists so often used by instructors, that
integrates with existing tools and formats;

4. To demonstrate that the verification of software development processes can be
significantly automated;

5. If appropriate, to propose amendments to the verification checklists that can also
determine process adherence, but are easier to make automatic;

6. The tool should be able to create graphics, export to different formats and be able to
create customized processes.

An intermediate goal, but no less important, is the study of PSP and all practices involved.
Finally the approach on this work should take into account various contexts, so the tool

architecture should be as generic as possible.
To better understand the entire process described above there is a figure that illustrates in

summary what is intended.
Here the users described are teachers and students who access SEI / CMU.

Figure 1 – Information flow

3

1.3 Methodology and review of the literature
The first step done was the analysis of the state of the art including literature review,

methodology and interviews.
To better understand the whole project there should be a focus analysis of the entire search

around the state of the art.
PSPChecker will have an essential advantage to the proper functioning of the PSP practices,

which incorporates a novelty for the remaining existing tools in the market.
The literature review was, without doubt, one of the vital issues of research work as brings to

who is running the research project the necessary knowledge to understand issues that will be
studied. Moreover, it allows the beginning of the draft and will allow a discussion on the topic,
since the bibliographic review is based in the information universe in question.

The second stage of the project consisted in defining the main requirements, architecture and
list of accepting tests. After all these definitions the realization of the tool started regarding all
previous points achieved.

4

1.3 Dissertation’s Structure
The structure used for the dissertation is the following:

Chapter 2 describes the study of the state of the art on this subject. This includes initial study

and understanding of PSP. It is an important chapter because it allows an improved notion of PSP
and how it has been used in an academic level.

Chapter 3 refers mainly the process of automatic verification of items. There will be a

description of the method of verification for each item and finally there will be a presentation of the
statistics related with the final results of verification.

Then in Chapter 4 the tool will be described. All the requirements, architecture as well all the
tests used in the development of PSPChecker will be described.

.Chapter 5 presents the experimentation where PSPChecker working for different scenarios is

showed.

Chapter 6 presents the conclusions and future work.

Appendix A describes the personal experience with the PSP.

5

Chapter 2 - Understanding PSP

This chapter describes the study that was made to understand PSP and its components. Some
of the points discussed here will be: introduction to PSP, teaching of PSP in an academic level and
finally some of the tools used to make the processes possible.

2.1 Introduction to PSP

PSP has come up with the need to improve the performance of processes in small
organizations and reduced-size projects, because improving the skills of members of a team allows
better and more efficient projects and teams. [5]

The main strategy in PSP is motivating each engineer to approach effective development. This
adoption is made progressively and calculated. In each step in this progression a new method is
introduced along with adapted exercises.

PSP can be considered as a discipline that provides a structured framework for improving and
developing personal skills. PSP will accelerate the learning of these skills.

One of the main goals of PSP is being an improvement process, which means the way an
engineer has to change in order to improve his work. The next figure shows how to improve the
quality of a work. This figure belongs was defined in “A Discipline for Software Engineering” from
Watts Humphrey.

6

Figure 2- Improvement process

To better understand all the steps to improve the quality of a work, there are some examples
that explain how an engineer should behave to obtain better results and improve skills. [1]

• Define the quality goal – Student becomes a better software engineer completing a
process or product

• Measure Product quality – Instructor and student see what went bad in a product or
process.

• Understand the process – Instructor observed what had been done and suggests what
should change

• Adjust the process – Instructor suggests some changes

• Use the adjusted process

• Measure the results – Student checks if changes improved the work

• Compare results with goal – Student checks if results are consistent with the main
goal

• Recycle and continue improving –It is important for a student since it is a continuous
process improvement.

7

2.2 PSP Strategy and components

The PSP strategy is based on the following assumptions:
• We should define, measure and track a project, to better understand its

performance.
• Using the steps above allows us to choose more easily the best suited methods to

the project.
• Choosing the correct methods increases the performance of teams and projects.

PSP like other incremental methodologies also has a Framework, which is divided in levels,

from a lower maturity level (level 0) to a higher level or optimization (level 3). To better
understand these levels there is a diagram and a consistent description of each of these levels.

The next figure was created by PSP experts to simplify and to show the different levels of
PSP.

Figure 3– Evolution of PSP phases

2.2.1 PSP 0 – Baseline Personal Process

 This initial phase establishes basic measures that must be followed by an engineer as well as a
description of a possible report model. These initial data enable a consistent basis for measuring
progress and improvements. PSP level 0 is basically a description of the essential points in the
drafting of a software project.

 In conclusion, the main objective is the incorporation of habits and team incentive to register
their performance data.

 As the image shows in level 0 there are several points that are important to a better
understanding of the current point of a project.

8

Time Recording

In PSP, recording time is very important because it allows to manage time effectively. In the
beginning of a project it is always necessary to try and make realistic plans, but for this to happen it
is important to track the way time is spent.

It is important to document the initial plans and compare them with the actual ones. All this
information should be classified into major categories, allowing to record in a standard way the time
spent doing each activity.

This information is crucial to improve the quality of projects. But for an accurate time
recording and planning it is important to have some aspects in mind:

• Always use as time measure minutes and not hours, because students rarely work for a
full hour.

• Measure interruption time accurately or else a random number will be added in all
data, making it difficult to plan and manage time. Interruptions may waste time and
break train of thought leading to inefficiency and error.

• For each project it is important to have an independent time recording log.
• Use a standard Time Recording Log which contains some details like: date of an

activity, start and stop time of that activity, interruption time during that activity,
description of the activity and comments.

• Finally one forgets to record time it is important to make an estimative as fast as
possible, being in this way close to the actual time of a project.

Defect Recording

Defects usually cause problems to programs users and can be very expensive to find and fix. A
software defect indicates that something in the product is wrong. Since defects are caused by human
errors it is important that engineers promptly find and repair defects that they inject.

The best way of having a good management of defects is to understand them. For this to
happen it is essential to gather defect data, analyze and determine how to better prevent, find and
repair these defects. The best way of identifying and removing defects is by personal code reviews.

 For a better organization of these data PSP provides a Defect Recording Log that helps
gathering defect data. This log contains several fields that help understand defects like: type of
defect, its description, in which phase of project it was injected and in which phase it was removed
and the time that took to fix the defect. It is important in the fulfilling of this document that the
description is detailed enough to later understand it. In the end of each project it is important to
analyze this data and see in which phases and which kind of defect types are more common.

Finally the use of a log allows the improvement of an engineer’s programming skills, the
reduction of the number of defects in programs, the save of time, the save of costs and finally a
responsible way to do a job.

9

Defect Type Standard

In the book “Introduction to PSP”[1] the author writes that when analyzing defects it is
important to divide them into main categories. This allows the engineer to quickly understand
which categories cause more trouble and focus on their removal and prevention.

 These categories were described with a type number, name and description like as it is

possible to see in the next table.

Defect Types

Type Number Name Description

10 Documentation Comments, messages

20 Syntax Spelling, punctuation, typos, instruction formats

30 Build, Package Change management, library, version control

40 Assignment Declaration, duplicate names, scope and limits. Includes missing

template parameters and erroneous method signatures

50 Interface Procedure calls and references, I/O, user formats + incorrect

error messages (syntax, semantics) + call violates precondition

60 Checking Error messages, inadequate checks + decisions

70 Data Structure, content

80 Function Logic, pointers, loops, recursion, computation, function defects.

Includes missing features in DLD (methods and fields) and using

the wrong function,

90 System Configuration, timing, memory

100 Environment Design, compile, test, or other support system problems

Table 1 - Defect Type Standard

PSP 0.1 adds to PSP0 encoding standards, size measures and process improvement proposals
(PIP). The main objective of this sub level is to provide a better understanding of the principles for
measuring size.

Coding Standard

An accepted set of coding practices should be defined, which can serve as model to a project.
Usually this standard is used as a guide when writing the source code. In PSP, like in other
standards specify the way source code is formatted, what statements go on separate text lines, the
use of code comments and other practices.

10

Size Measurement

PSP uses as size measurement lines of code (LOC) because it is generally applicable to most of
programming languages. Size measurement is important to estimate time. By estimating how many
LOC the program will likely require and calculating the number of minutes per LOC development
in past projects, it is possible to estimate the total development time.

PIP Form

The PIP allows registering problems, experiences and suggestions for process improvement.

2.2.2 PSP 1- Personal Planning

PSP 1 uses the planning steps from level 0. The information here is size, resource estimation
and reporting tests.

Test Report

One of the forms incorporated in PSP is a test report where students can specify the tests that
will be performed to deliver a product correctly functioning. All the time spent in this phase should
be counted and recorded in the Time Recording Log.

2.2.3 PSP 2 – Personal Quality Management

As the name suggests, the main objective of this level is the ability to develop software with
high quality. This is possible, showing how to use the defects that are constantly made to reduce the
number of stages of compilation and tests. Because an error can usually be constant in its
appearance, having a record of these errors will let fix them more quickly.

This previous point is important because it helps reduce defects rates and understand its causes
and consequences.

According to the PSP manual [1] for experienced programmers the number of defects in the
compilation and tests must be in a range between 50 and 150 per thousand lines of code (KLOC).
These values are presented to software that has not been reviewed or inspected.

As the project is directed to students, the emergence of high rates of defects will be frequent.
At this level there is the incorporation of design and code reviews. These code reviews allow to

detect defects as soon as possible, being a most effective resolution.
The design process is inserted at the sub level 2.1 and indicates what a final project must

illustrate, taking into account the requirements, documentation, development and testing.

2.2.4 PSP 3 – Cyclic Personal Process

The great advantage of this level is its use in large projects. This level is for high size projects
that must be subdivided into several "components". I.e. after being developed these components
will be integrated into a large component that is the project. Here the components are integrated
iteratively with testing and compilation. Level 3 is preferred when a project has thousands of lines
of code.

Finally the main objective of this level is the introduction of scaling principles. That is
ensuring the quality of a successive draft form taking into account their cycles.

11

2.2.5 PSP Process Flow

Processes are typically composed of scripts, templates, standards and forms. On the next figure
we can see the process flow of PSP with all the respective components mentioned before. [6]

Figure 4- PSP Process Flow

12

2.2.6 PSP Process Script

A process script is a set of steps the process users should follow. The phases of the PSP are
described bellow and summarized in the next table (In this case for PSP level 1).

Purpose: To guide you in developing small programs.

Inputs Required - The problem description
- PSP Project Plan Summary form
- A copy of the Code Review Checklist
- Actual size and time data for previous programs
- Time Recording Log
- Defect Recording Log

Planning

- Obtain a description of the program functions.
- Estimate the Max., Min., and total LOC required.
- Determine the Minutes/LOC.
- Calculate the Max., Min., and total development times.
- Enter the plan data in the Project Plan Summary form.
- Record the planning time in the Time Recording Log.

Design

- Design the program.
- Record the design in the specified format.
- Record design time in the Time Recording Log.

Code

- Implement the design.
- Use a standard format for entering the code.
- Record coding time in the Time Recording Log.

Code review

- Completely review the source code.
- Follow the code review script and checklist.
- Fix and record every defect found.
- Record review time in the Time Recording Log.

Compile

- Compile the program.
- Fix and record all defects found.
- Record compiles time in the Time Recording Log.

Test

- Test the program.
- Fix and record all defects found.
- Record testing time in the Time Recording Log.

Postmortem

- Complete the Project Plan Summary form with actual time,
size, and defect data.
- Review the defect data and update the code review checklist.
- Record postmortem time in the Time Recording Log.

Exit Criteria

- A thoroughly tested program
- A properly documented design
- A completed Code Review Checklist
- A complete program listing
- A completed Project Plan Summary
- Completed time and defect logs

Table 2 – PSP Process Script

13

2.3 Teaching of PSP in Universities

After the creation of PSP Watts Humphrey said that the "headline goal was to help a graduated
to become a better software engineer". The great advantage of PSP is the constant improvement of
technical capabilities that enable greater productivity and increase the quality of software.

Humphrey designed the PSP so that it can be taught in a discipline of a half semester being
taught to students that had already graduated. During this discipline each student will improve the
ability to estimate and measure task times in project. Each level attained in PSP students gained
new knowledge, skills and techniques to improve the quality of the software produced. To a greater
understanding of the point at which student was, checklists, scripts and templates have been created,
which help students achieve the final objectives. The great advantage of the above is that material
could be changed by each student case these changes could explain weaknesses and strengths of the
student.

It was previously described in this context that there is a need to investigate the PSP in FEUP
education as well as browse other examples of success in world universities to truly understand
whether there are advantages in teaching this process.

2.3.1 FEUP - Portugal

Regarding PSP education in Software engineering only basic notions are focused. The tool that
students use was developed by local teachers and consists of an Excel file that writes times records
for each phase of the project among other options.

The major objective is the use of FEUP tools provided by SEI/CMU which are better to
understand and more complex. Hence, the creation of support tools can reduce teaching time and
guarantee a better support to the students' work.

2.3.2 UMEA University – Sweden

T his University [7] introduces concepts of PSP in a programming discipline (C++) and in an
optional subject in the software engineering course. In the programming subject a simple version of
PSP was developed, which allowed to plan, monitor and review everything that had been done by a
student. The teaching of PSP process held over 2 lessons of 45 minutes each. After teaching this
process, other students were asked to launch a project where the choice of PSP as a work
methodology was optional. Only 6 students were chosen, from these 6 students none of them had
actually notable improvements in software development. After this experience, teachers decided to
abandon the teaching of this process.

The second case had a different outcome, since during the theoretical lessons concepts of PSP
were presented and in practical lessons there was a development of tools that allowed the analysis
of data and the collection of information to be processed by the PSP process. The final results of
this method enabled students to understand the various problems that PSP can help solve.

2.3.3 UTAH University – USA

P SP in university [7] education stems to several years already. In this University teachers have
to teach a light version of PSP processes to first year students and this education takes place over 2

14

semesters. During the first half basic notions concerning resource estimation and tracking of
projects are taught, while the second half is focused on solution (reduction, prevention and design-
code reviews). Along the lessons teachers provide students with statistics and select exams issues
related to the process studied, as well.

As a result of this methodology of work, students feel that they are better prepared as software
engineers, enabling them to obtain research fellowships more easily.

2.3.4 Montana Tech University – USA

Like the previous University [7], PSP takes place over 2 semesters. Before being taught any
theory, all students have a high level of competence for programming, because they were delivered
some disciplines of data structure and algorithmic before. Something that teachers noticed was that
all pupils started showing some resistance to learning something new, but in the end all these
understood the importance of this process. The tool used here was developed locally and consisted
of docs.

2.3.5 University Of Zagreb – Croatia

 The implementation of PSP methodologies was incorporated, in the software engineering
course of the Department of telecommunications. The aim of embedding these practices was the
need to demonstrate to students that a project can have great chances of success if it follows a
methodology. [8]
 The various students have just some basic knowledge projects, so here was an adaptation of
PSP concepts. These changes have led to remove various points proposed by PSP and restructure
the definition of design and review aspects. Like most of the universities the tool was developed
locally, making use of C++ and Excel.

Results of PSP in 5 universities

Universities
Teaching
environment

PSP
Coverage

Support tool Comments

FEUP - Portugal • 3rd year –
Software
engineerin
g curricular
unit

Simplified
version of
PSP
(individual
and pairs).
Use of 4
projects and
use of
simplified
checklists

Locally
developed

• Great
difficulty to
apply PSP
(time required
of teachers),
leading to a
PSP only
partial.

• Missing space
in curriculum

UMEA
University –
Sweden

• 2nd year –
Programmi
ng
Discipline
C++

Use of
modified
PSP level 1

Locally
developed

• Development
of PSP Tool
advantageous
to obtain
knowledge

15

• Optional
subject of
SE

• Optional use
of PSP
inefficient

UTAH
University –
USA

• 1st year simplified
version of
PSP

Locally
developed

• implementatio
n of PSP
classes
without
problems

• Students who
worked in
pairs had best
results

Montana Tech
University –
USA

• 2nd year simplified
version of
PSP

Locally
developed

• Students
resistance in
the beginning,
but happy
with the final
result

University of
Zagreb - Croatia

• Without
references

simplified
version of
PSP

Locally
developed

• Reduce
defects and
time ratio of
drafting
projects

• Incorporating
concepts
positively

Table 3– Results of academic study of PSP

The results of this conclusion are the following:

• There is a greater implementation of PSP in American universities, unlike the rest
of the world.

• In the beginning there is always a rejection on the part of students, because they
have to change habits in relation to planning and developing software.

• In almost all cases the educational support tool for PSP is developed locally.
• Generally, this process is delivered at the same time in disciplines of programming

or optional subjects.
• The PSP education structure is often changed to simplify some components present

in the process, and thus teaching becomes more accessible.
• A medium-term result that arises from the PSP is positive in education, allowing

students to obtain competences and skills.

16

2.4 PSP Support Tools

When a project is started it is important to identify the various existing applications in terms of

academic and business. Since the beginning of this project it was decided to use the tool developed
by SEI/CMU, due to the possibility of integrating the current tool with the support tool to gain value
in the recognition of projects and thus provide a greater recognition to FEUP.

Although the tool to be used in classes has already been chosen, it is essential to analyze the
various existing applications on the market, because it is possible to identify strengths used by
several applications that may not be used by the chosen tool.

Common sense is that various tools that support teaching of PSP help students improve
capacities and skills but do not manage to solve problems, specifically tools that help spotlighting
"what to do" but not "how to".

Existing tools are currently based in Word, Excel, Access or even simple applications in
various programming languages. These tools are simple and essential to begin PSP projects.

After reading several articles all authors agree that all existing tools only assist in
implementing certain parts of the PSP, not deepening the PSP study.

To create a viable tool to PSP these tools must possess the following functional and non
functional requirements:

• Customization
• Selection of current phase of the project (PSP 0, 1, 2, 2.1)
• Follow-up times and stages
• Support for planning and estimating projects
• Identification of errors
• Privacy data

Another interesting point in the analysis tools is that there are manuals and automated tools in
the calculation of various points of PSP processes. Unfortunately, as Humphrey says in his book it
is impossible to automate completely a PSP tool, because there are certain requirements that
software cannot judge and assess.

After this introduction, a series of applications and their characteristics are presented.

2.4.1 PSPStudio

This tool was designed by the University of Tennessee [9]. It supports all levels of PSP and
contains an associated data base (application to run in parallel). Other interesting features are:

• Software has templates for quality and test plans.
• Simplified usage tool, where usability is a key point.
• Implementation of customizable Design Review Checklist (DRC) and code Review

Checklist (CRC).
• Customization of test documentation
• Manual creation of State diagrams
• Illustration of important points in each PSP level

17

Figure 5 – PSPStudio application screenshots

2.4.2 PSP-EAT

It is the use of restructured Excel for the various levels of PSP. In general all processes taught
to students that involve calculations are performed manually. [10]

2.4.3 PSP-DROPS (PSP Data Repository and Presentation System)

It is an automated online tool developed at Embry-Riddle Aeronautical University. Using
PSP-Drops, students can receive online instructions relating to registration data, which reduces the
workload on the management and analysis. More importantly, the results analyzed can be displayed
graphically.

[11]

2.4.4 PSP STUDENT WORKBOOK

It is the official software for teaching the PSP in SEI/CMU.
This tool is very comprehensive and complex as a student reaches higher maturity levels. It has

an appealing and simple interface where several supporting information exists.
The tool was developed in Access. As mentioned earlier, this tool has been chosen for the

teaching of PSP in the course of Software Engineering.

2.4.5 Conclusion

After analyzing various points already described, the conclusions were clear.

18

After studying the impact of PSP in academic level, it was possible to identify that PSP
teaching is not intrinsic to the teaching of software engineering and most of the available tools are
made in the local environment.

Of several tools none of them supports the automatic verification of checklists, just another
opportunity for this project to be successful, because a generalized PSPChecker version will be able
to be integrated into the existing ones.

Finally, during the analysis of the state of the art a set of points emerged, which were
formulated in order to respond and identify future problems and points to be applied.

• Advantages of using PSP (Organization level)

• Ability to check data quality

19

Chapter 3 - Automatic Verification of Items

This chapter is one of the most important to the success of this project. Since the beginning it
was important to understand which kind of information each item should provide to solve and
create an effective verification tool. For each level of PSP there are different lists of items to check.
These items can range from a simple check to the database to see if is fulfilled or not to a more
complicated one where it is needed to make calculations and compare with time of different tables
in the database.

The initial study of these items consisted in solving little projects with respective times and
data, fulfilling PSP Students Workbook with the corresponding data. After that this data was
exported to access file in format .mdb where all the tables of the database were analyzed.

Some of the items were easy to understand, while for some others it was necessary the
intervention of some experts to better perceive what was asked.

The items of a checklist for each level of PSP are divided for the amount of templates that
should be fulfilled and some points like general information or consistency checks.

As a result of all the study a table was created. This table contains information about the name
of Main items and sub-items as well if is possible to verify automatically and the method to do that.
To conclude, it should be referred that there are 94 items in the junction of all PSP levels.

During the presentation some figures will appear describing the forms used by PSP Students
Workbook.

Assignment Package

Item/Process Automatic

Verification?

Method of verification

PSP0 Project Planning

Summary

Yes Verifies if all manual data is fulfilled.

PSP1 Project Planning

Summary

Yes Verifies if all manual data is fulfilled.

PSP2 Project Planning

Summary

Yes Verifies if all manual data is fulfilled.

PSP2 Design Review Checklist Yes It checks if there is a file in Data folder named

“Code_Review_Checklist.doc” since this
document is usually in Doc Format.

PSP2.1 Design Review

Checklist

Yes It checks if there is a file in Data folder named

“PSP2_1_Design_Review_Checklist.doc”
since this document is usually in Doc Format.

PSP2.1 Project Planning

Summary

Yes Verifies if all manual data is fulfilled.

Operational Scenario

Template

Yes It checks if there is a file in Data folder named

“Operational_Scenario_Template.doc”

20

since this document is usually in Doc Format.

Functional Specification

Template

Yes It checks if there is a file in Data folder named

“Functional_Scenario_Template.doc”
since this document is usually in Doc Format.

State Specification Template Yes It checks if there is a file in Data folder named

“State_Specification_Template.doc”
since this document is usually in Doc Format.

Logic Specification Template Yes It checks if there is a file in Data folder named

“Logic_Specification_Template.doc”
since this document is usually in Doc Format.

Code Review Checklist Yes It checks if there is a file in Data folder named

“Code_Review_Checklist.doc” since this
document is usually in Doc Format.

Task Planning Template Yes Verifies if all manual data is fulfilled.

Schedule Planning Template Yes Verifies if all manual data is fulfilled.

Test Report Yes Verifies if at least one test is reported.

PIP Form Yes Verifies if the most important fields are fulfilled
(Problem Description and Proposal description).

Size Estimating Template Yes Verifies if the most important fields are fulfilled (At
least one Part is added).

PROBE Worksheet Yes Verifies if the most important fields are fulfilled

Time Recording Log Yes Checks if all fields are fulfilled.

Defect Recording Log Yes Verifies if at least one defect is reported.

Source Program Listing No Checks if there are files with denomination related
with programming language.

Test Results No It is not possible to verify in an automatic way.

Program and Test Results

Item/Process Automatic

Verification?

Method of verification

The program appears to be

workable.

No It is not possible to verify in an automatic way.

All required tests have been

run.

No It is not possible to verify in an automatic way.

The actual output is correct

for each test.

No It is not possible to verify in an automatic way.

21

Figure 6 – PSP Test Report Example

Test Report Template

Item/Process Automatic

Verification?

Method of verification

Planned and actual results

are included for all tests.

Yes It check if all data related to planned and actual
results are included in the template

All information to repeat the

tests is provided.

Yes Can only verify if this information is provided

The test report is complete. Yes Can only verify if all information is provided

All other tests are properly

planned and reported.

No It is not possible to verify in an automatic way. For
each test it is necessary to verify if it is valid or not
and can only be done in a manual way.

22

Figure 7 – PSP Time Recording Log Example

Time Log

Item/Process Automatic

Verification?

Method of verification

Time data are entered for all

process steps.

Yes Checks if time data was fulfilled in database

Process steps are sequenced

appropriately.

Yes Checks if all process steps are sequenced, for
example coding should never come before planning.

Time data are entered

against the appropriate

process step.

No Checking is only available manually because this
information should be analyzed in a detailed way.

Interrupt time is tracked

appropriately.

Yes Check if interruption time doesn’t exceed the
correspondent process interval of time

Time data are complete and

reasonable.

Yes Check if distribution of time during process steps is
reasonable or not. In this item all the default values
should be agreed with experts.

Times were recorded as the

work was done.

Yes Check if times weren´t copied between steps.

23

Figure 8 – PSP Defect Recording Log

Defect Log

Item/Process Automatic

Verification?

Method of verification

Every defect has all required

data.

Yes Check if all mandatory fields are fulfilled.

Defects were injected before

removed.

Yes Check if defects injected are removed in the same
process step or in the next ones.

Every defect has a fix time. Yes Check if value fix time is fulfilled

Defects injected in compile

and test have fix numbers.

Yes Check if value fix time is fulfilled for defects
injected in compile and test.

Defects are adequately

described.

No It is not possible to verify in an automatic way.

Defect types are consistent

with description.

No It is not possible to verify in an automatic way.

Defect types are consistent

with phase injected.

No It is not possible to verify in an automatic way.

Defect types are assigned

consistently.

No It is not possible to verify in an automatic way.

24

Figure 9 – Probe Calculations Example

SET& PROBE Worksheet

Item/Process Automatic

Verification?

Method of verification

Plan and actual size data are

complete and reasonable.

Yes Check if information is fulfilled and check if
difference between planned and actual is unusual.

The reuse and base measures

are used correctly.

No It is not possible to verify in an automatic way.

A suitable number of new

parts are identified.

No It is not possible verify in an automatic way, can be
diferent for each program.

The item sizes are balanced

around medium.

Yes Check information and compare with default values
obtained from experts.

The relative size data values

are correct and based on

historical data

N/A The Student Workbook tool already calculates the
values.

The appropriate PROBE

method has been selected.

N/A The Student Workbook tool already checks if the
method is an appropriate one.

The item sizes are balanced

around average.

Yes Check information and compare with default values
obtained from experts.

Appropriate historical data

were used for the estimate.

N/A The Student Workbook tool already calculates the
values.

The parts additions

calculations are correct.

N/A The Student Workbook tool already calculates the
values.

The PROBE worksheet

calculations are correct.

N/A The Student Workbook tool already calculates the
values.

25

Figure 10 – PIP Form Example

PIP Form

Item/Process Automatic

Verification?

Method of verification

The PIP form is completed. Yes Check if all important fields are fulfilled (Problem
Description and Proposal Description)

The entries show insight and

thought.

No It is not possible to verify in an automatic way.

If yield was low,

improvement actions are

listed.

No It is not possible verify in an automatic way.

26

Figure 11 - PSP Planning Summary examples

Planning Summary

Item/Process Automatic

Verification?

Method of verification

Planned total time has been

entered correctly.

Yes Usually this value is automatic with the exception of
the PSP level 0 where there is a need to check if
value is reasonable.

Planned and actual size data

are entered correctly.

Yes The Student Workbook tool already checks this
point.

Planned and actual size/hour

data are reasonable.

Yes Using an interval of time to check if these values are
reasonable or not.

All manual calculations are

correct.

N/A The Student Workbook tool already calculates the
values.

Planned times are distributed

much like the To Date %.

N/A The Student Workbook tool already calculates the
values.

The planned and actual size

values are reasonable.

Yes Using an interval of time to check if these values are
reasonable or not.

The CPI calculations are

correct and reasonable.

N/A The Student Workbook tool already calculates the
correct values, but it is interesting to check if values
are reasonable (use of intervals of data).

27

The % Reused and % New

Reusable values are proper.

N/A The Student Workbook tool already calculates the
values.

The defect estimates are

based on historical data.

N/A The Student Workbook tool already calculates the
values.

The planned review times

and rates are reasonable.

Yes Using an interval of time to check these values are
reasonable or not.

The actual review times are

reasonable.

Yes Using an interval of time to check if these values are
reasonable or not.

The To Date calculations are

restarted with PSP2.

N/A The Student Workbook tool already calculates the
values.

The COQ values are correct

and reasonable.

Yes Using an interval of time to check if these values are
reasonable or not.

The size and time prediction

intervals are reasonable.

Yes Using an interval of time to check if these values are
reasonable or not.

Consistency Checks

Item/Process Automatic

Verification?

Method of verification

Defects removed are

consistent with compile and

test phase time and program

size.

Yes Compare number of defects removed in compile and
test phases. Check for example if in compile phase
the time is long without any defects, so something
wrong is occurring. Here some previous configured
interval of values is used.

Total compile defect fix times

are less than compile time.

Yes Use of calculations to check if this item is well done.
Use of time data.

Total test defect fix times are

less than test time.

Yes Use of calculations to check if this item is well done.
Use of time data.

Defect dates & phases are

consistent with the time log.

Yes Use of calculations to check if this item is well done.
Use of time data.

Planning summary is

consistent with the time log.

Yes Use of calculations to check if this item is well done.
Use of time data.

Planning summary is

consistent with the defect log.

Yes Use of calculations to check if this item is well done.
Use of time data.

Planning Summary values

are consistent with the size

estimating template values.

Yes The Student Workbook tool already checks this
point.

Actual Added on planning

summary close to and no less

than actual BA+PA on size

estimating template.

Yes Use of calculations to check if this item is well done.
Use of time data.

All manual data entries are

consistent among all forms.

Yes The Student Workbook tool already calculates the
values. This point is used for PSP level 2.

Compile times are consistent

with the defects found.

Yes Use of calculations to check if this item is well done.
Use of time data. This point is used for PSP level 2.

Test times are consistent with Yes Check if information is the same when comparing

28

the defects found. planning summary and size estimating template. This
point is used for PSP level 2.

The actual size, time, and

defect data are reasonable.

No It is not possible to verify in an automatic way. This
point is used for PSP level 2 and for planning
summary form.

The PROBE data are

correctly entered in the plan

form.

N/A The Student Workbook tool already calculates the
values. This point is used for PSP level 2.

Between 2 and 3 defects

found per hour of design

review.

Yes It counts the number of defects per hour. This point
is used for PSP level 2 and defect recording log form.

Between 5 and 10 defects

found per hour of code

review.

Yes It counts the number of defects per hour. This point
is used for PSP level 2 and defect recording log form.

Most design defects were

injected in the design phase.

Yes It counts the number of defects and compare with the
ones injected in the design phase. This point is used
for PSP level 2 and defect recording log form.

Verification methods were

used in the design review.

No It is not possible to verify in an automatic way. This
point is used for PSP level 2.

29

Design Review Checklist

Item/Process Automatic

Verification?

Method of verification

The checklist entries are

based on historical data.

N/A Not possible to verify in an automatic way.

The checklist was used

correctly.

N/A Not possible to verify in an automatic way.

The checklist is completely

checked off.

N/A Not possible to verify in an automatic way.

Code Review Checklist

Item/Process Automatic

Verification?

Method of verification

The checklist entries are

based on historical data.

N/A Not possible to verify in an automatic way.

The checklist was used

correctly.

N/A Not possible to verify in an automatic way.

The checklist is completely

checked off.

N/A Not possible to verify in an automatic way.

The PSP DS Templates

Item/Process Automatic

Verification?

Method of verification

General

Item/Process Automatic

Verification?

Method of verification

Followed the defined process. Yes Check for each level of PSP all phases are described
and used.

Complete, consistent and

accurate process data

collected.

Yes If all information is correct along the forms this item
is checked.

The student did his or her

own work.

N/A Use of software to check if information is equal or
not. If equal means that data was copied from other
work.

Historical data are used in

planning the work.

No It is not possible to verify in an automatic way.

The process data are

complete.

Yes Check if information is correctly fulfilled.

The data are self-consistent. No It is not possible to verify in an automatic way.

The exercise report is in the

proper order and format.

No Not possible to verify in an automatic way.

A checked-off code-review

checklist is included.

No Not possible to verify in an automatic way.

A checked-off design-review

checklist is included.

No Not possible to verify in an automatic way.

30

The PSP design templates

were used.

N/A Not possible to verify in an automatic way.

The templates properly

document the design.

N/A Not possible to verify in an automatic way.

The templates were used in

design verification.

N/A Not possible to verify in an automatic way.

Figure 12– Percentage of items that can be checked automatically

To conclude this chapter, it is important to refer that the values obtained in the previous chart
can change, because with a few changes on the PSP Student Workbook forms more points can be
automatic or PSPChecker can simply create rules that guarantee that some points are being
achieved.

60

14

20

Percentage of automatic items

YES

NO

N/A

31

Chapter 4 - PSPChecker Specification

In this chapter all the requirements found for PSPChecker will be described, as well
architecture and tests associated. This is the first chapter where all the functionalities will be
described.

4.1 PSPChecker Functional Requirements

T he main objective with PSPChecker is to help teachers to be able to make decisions faster,
help the students achieve better results and have a better knowledge about PSP.

After a market study of all the existing tools and some discussion with specialists, it was
fundamental to create a tool with some of the next functionalities because it provides new points
that have never been approached in PSP.

As main functionalities we have:
• Automatic verification of checklists – Main functionality of PSPChecker because it

is the main reason of this project, since the main issue is to verify checklists regarding
the data available in the Access files. Each checklist item has a different verification
method, so it is necessary to search and get knowledge from the specialists in PSP
(teachers and PSP Book).
In this automatic verification, if an item in the checklist is completely satisfied, the
line in green is shown; otherwise the red line is shown. If it is a special case (not all
item can be verified automatically) a message will appear in the screen saying that
item should be analyzed in a manual way.

• Custom processes – PSP was described since the beginning as a tailor-made process,
because it can be used only by using some components that fulfill the needs of a
certain course. For example, in PSP level 1 it could only be need to use the criteria for
size estimating. So in this way when the tool is initialized the user can choose to use
certain items from a specific level of the PSP process. In this way PSPChecker can be
adapted with the method of teaching.

• Import data remotely – Since the beginning as a possible way of integration with
SEI/CMU this functionality was a necessary requirement because all the information
is uploaded to a main server in an official way where after that the teacher can
download all the files available from a student. So in this way it is fundamental to
have an option where the teacher can simply download all the information directly
without the need of using a web browser for that purpose. Web services are a simple
and secure way to do this operation.

• Illustrative charts – In all types of teaching it is important to know if a method is
well applied and the best way of seeing that is from the final results. These final
results can be transformed afterwards in charts to check percentages of correct points
and understand which points can be improved. PSPChecker charts will help teachers

32

and students understand which are the weak and the strong points common in a group
of students.

• Automation of support messages (use of knowledge acquired by specialists) –

This functionality is an add-on to automatic verification because every time an item is
checked possible messages related to that item can appear on the screen. This message
can be just a simple comment saying that the item was correctly done to a more
complex message where the user receives a suggestion of what is wrong or what can
be improved. All this information once again is obtained from the experience of
specialists and from available literature.

• Import/Export information –Import option is planned to receive information in
Access format (database format). Exported information will be exported with the
result of available checklists (evaluation paper) in formats such as PDF.

• Modularity and scalability – As the extra PSPChecker should be modular and

scalable, that external team of software development can be able to introduce new
features without much effort.

4.2 Requirements of external interface

4.2.1 Interface to users

PSPChecker was planned only to be available to teachers as a support for evaluation and
feedback. But depending on the type of teaching this tool can be also provided to students to
improve their work. PSPChecker is user friendly.

Users will have access to PSPChecker simply by clicking on the icon related to the application.
The interface of the tool was created regarding several issues related to users.

Thus, PSPChecker should provide a simple and intuitive interface that allows users to use it
after a short period of learning (2 hours maximum).

Initially PSPChecker works as a desktop application, but in an advanced state one can create
the same version as a web page with the same functionalities.

4.2.2 Hardware requirements

Requirement for hardware is a functional computer with a functional operating system. To
access data remotely it is necessary an internet connection.

4.3 Non-Functional Requirements

Non-functional requirements are used to specify criteria that judge the several operations of a
system. Usually non-functional requirements are related with the quality of a product.

For this project ISO/IEC 9126 [12] was used to check quality of the product .This standard
contains a set of characteristics that should be analyzed in the current project.

33

For this project the achieved characteristics were:

• Usability - Ability of the product to be understood, easy learning and attractive to the
user. PSPChecker can be considered that since its interface is easy to understand even
for a simple user. All usability sub-characteristics were applied to the project like
attractiveness, operability and intelligibility.

• Maintenance and Expandability – This was given special attention in relation to
good design practices. Easy modification of features and components that constitute
the tool as well as introducing new features. This attribute has a particular relevance to
the stakeholders, which may at a later stage modify the tool according to their needs.

• Performance – It is fundamental that the tool works in all situations since it only
depends on the existence of a computer. To improve the performance of the tool some
shortcuts will probably be added to help the user achieve the goals quickly.

34

4.4 Use Case Model
The description of the PSPChecker should behave when a request from user is made.
The use of use case diagram allows a definition of the objectives of the targeted customer.

Those are used to capture the behavior of the PSPChecker. All the diagrams were elaborated in
Enterprise Architect.

Figure 13- General vision of the use cases

4.4.1 Actors

• USER – At this point there is one kind of actor that is called USER that contains
teachers (instructors and coach) who can access and control all operations.
In an advanced state the student will also be able to use PSPChecker but with some
restrictions:

o Retrieve information from web services; since this option is only available in
case the user has permission to retrieve the information. This permission will
be tested by using a log-in system.

o Support option to complete evaluation and feedback to students after
automatic verification.

o Aggregation of all students’ data.

35

4.4.2 Use Cases

For a better understanding of all functionalities available in PSPChecker it was necessary to
have an initial plan of how data should be accessed. Therefore, the several use cases and sequence
diagrams are presented and described in a high-level.

• Import Data remotely

Figure 14- Sequence Diagram for Import Data Remotely

UC_A01 – Import Data Remotely

This operation allows to retrieve information after the correct fulfillment of a

login box.

The information is retrieved using web services.

After the information is retrieved, a table Result is created in the selected

Database.

Priority: High

Effort: Normal

Risk: Normal

36

• Import Data Locally

Figure 15- Sequence Diagram for Import Data Locally

UC_A02 – Import Data Locally

This operation allows to retrieve information after choosing the location of a local

Database file. Files should be in .mdb format.

After the information is retrieved, a table Result is created in the selected

Database.

Priority: High

Effort: Normal

Risk: Normal

37

Figure 16- Activity diagram for import data

Figure 17- Interface Design (import data)

38

• Automatic Verification of a Typical Process

Figure 18- Sequence Diagram for the Verification of a typical PSP process

UC_A03– Automatic Verification of a Typical Process

Operation can only happen after choosing the location of the Database.

So if that requirement is done, the user can choose one of the level of PSP(0, 1 or

2) already defined with specific check items and check if its own project is going

in the right direction or not.

All the PSP levels are already defined since the initialization of PSPChecker. As a

final result all the data is retrieved from the table created in Database with the

name Result.

Priority: Very High

Effort: Very High

Risk: Very High

39

Automatic Verification of a Custom Process

Figure 19- Sequence Diagram for the Verification of a custom PSP process

UC_A04– Automatic Verification of a custom Process

Operation can only happen after choosing the location of the Database.

So if that requirement is done, the user can choose several items from different

levels of PSP (0, 1, 2) and check if its own project is going in the right direction or

not.

All the PSP levels are already defined since the initialization of PSPChecker. As a

final result all the data is retrieved from the table created in the Database with

the name Result.

Priority: Very High

Effort: Very High

Risk: Very High

40

Figure 20- Activity diagram to verify the PSP process

Figure 21- Interface Design (Verify PSP data)

41

 Figure 22- Interface Design (Verify PSP data - custom process)

• Export Results

Figure 23- Sequence Diagram for export results

42

UC_A05– Export results

After obtaining the results of the verification, it export that information in

different formats such as PDF or Excel.

Priority: Normal

Effort: Normal

Risk: Low

Figure 24- Activity diagram for export results

43

Figure 25- Interface Design (Export Results)

• Create charts

Figure 26- Sequence Diagram to create charts

44

UC_A06– Create Charts

It is ability after obtaining the results of the verification. It creates different

kinds of charts with info related with the percentage of correct points or other

info. This information is related to a programmer but can be improved applying

to a project.

Priority: Normal

Effort: Normal

Risk: Low

Figure 27- Activity diagram to create charts

45

Figure 28- Interface Design (Create Charts)

46

4.5 Architecture

The software architecture contains a set of significant decisions concerning the organization of
a software system. This point of the report presents the architecture (logical and physical) of
PSPChecker.

 It also illustrates the organization of the system and the set of decisions that have relevance to
its structure.

The structure of the architectural description will be the following:
• Representation of the logical and physical architecture.

• Design decisions and technology choices.

4.5.1 Logical Architecture

Logical architecture of a system is the set of decomposed logic modules and relationships
between them that satisfy all system requirements. This architecture is specified in UML diagrams
using software packages.

The presentation of logical architecture includes a horizontal and vertical decomposition of the
same. The decomposition describes horizontal layers, such as the user interface or database. The
vertical decomposition hierarchy defines the subsystems that constitute PSPChecker; each
subsystem corresponds to a set of features.

• Horizontal View

Figure 29 – Horizontal view of PSPCHecker

47

• Vertical view

Figure 30 – Vertical view

User Interface

This layer is the only one visible to the final user. It is through the user interface that the user
will interact with the tool, accessing all features offered by this. This layer will communicate with
the lower, Business Logic, using all methods.

Business Logic

Being a middle layer, the Business Logic Layer communicates with two layers: the User
Interface Layer and the Data Access. These communications are designed to provide features that
are based on business rules set out in Requirements Specification. This module receives requests
from the layer of user interface and processes according to certain rules of business already
established, and then sends requests to the Data Access layer.

Data Access

This layer is also an intermediate layer and stays between the layers of Business Logic and
Data. It is a layer that allows the communication between the objects and the database.

Data

It is the layer where all crucial information to the system is communicated with the layer of
Data Access. It consists of the database that stores the tables in the relational model and its data.

48

Security

In every layer there is a need to ensure the security of the system.
Thus, this layer serves to ensure that the various users of the system only access to features that

are reserved and have permission to perform a specific action. An example of this is that the
retrieval of data from the remote server is only available after the fulfillment of a valid login.

4.5.2 Physical Architecture

The next figure demonstrates the physical architecture of the system and components that
assemble its architecture.

Figure 31- Physical Architecture of the System

The essential components of architecture are:

o User Computer – Machine where the user can access to PSPChecker. If a user
wants to retrieve information from the remote server, he should have an internet
connection.

o Remote Server – Use of web services to communicate with SEI/CMU system and
retrieve all information associated to an account of a teacher. Each teacher can
access to all information of a student.

o Database – Database that contains all information to verify if a process is being
followed. After selecting the database, a table Result will be created, which will
save all the information related to the checklist verification (each item result will be
saved here). The database is in Access format.

o PSPChecker – Main system where a user can select several options related to PSP
process checking. This system was elaborated in C# and runs on the user computer.

49

4.5.3 Design Decisions

Database

In this project the Database used was not created, because PSPChecker will get the Data
already fulfilled. This happens because when the main tool, the PSP Students Workbook, is
complete the export of that information is done on an access format file.

When the PSPChecker selects the database, it will create a new table called Result, if this table
doesn’t exist. But if it exists it will clean all data of the table.

To better understand which information is dealt by the PSPChecker, all the tables used by
PSPChecker to verify the PSP processes will be described in a very summary way.

Table Name Description

DefectType Description of major categories to classify a defect. E.g. “Data”,
“interface”,…

LOCTypeStandard Nomenclature of different expressions used in collecting data. E.g.
Base (B) or Reuse (R).

LOGDDetail All information related to defects. E.g. which phase has injected and
removed a defect, description and date.

LOGTDetail Time Log where all information about life cycle of a project, like
phase (planning,…), start and stop time and comments is provided.

Parts Data here present consists on parts added or reuses to a project that
allow know with a bigger accuracy estimating size.

PartyType Standard Standard information related to the previous point.
PhaseData Data automatic created for each phase of a project. Most of

information here presented is in minutes and is related to time phases,
Plan defects injected in phase, Actual defects removed in phase
summarized from defect log entries.

Phases Phases of a project. Here contains a short description of possible
phases of a project in PSP. E.g. Planning, Coding, Detailed Design,..

PIP Description of possible improvement to the project or process written
by the student.

Processes List of levels of PSP processes.
ProcessPhase Relation table between Process and Phase.
ProcessesTypes List of levels of PSP processes.
ProgramSize One of the main tables of the database, here most of information is

automatic and allows instructors to understand the state of the project,
since the information here is the same as the project planning
summary.

Projects List of projects of one student and contains information related to the
start and the end of a project and if it was achieved or not.

PSPAsgData Assignment of projects to a student and information’s like number of
lines of code, and info about actual and planned time for each phase.

50

SetADD Info about parts added to a project.
SetBase Info about parts used as a base in a project.
SetReuse Info about parts reused from other projects in the actual one.
SizeMeasure Selection of method to measure size, usually is LOC (lines of code).
Tasks Table that contains a list of tasks that should be accomplished.
TaskSchedule Planning of tasks during one period of time
TestReports List of all tests done to guarantee the well functioning of a project.

Here description, condition and expected results should be present.
UserProfiles Information related to a student. Thus, information is more technical

than in the Users one. Here experience years and other aspects are
presented.

Users Personal information about a user or student.
Result Table created for this project. This table is fulfilled with the result of

the automatic verification of process. This table contains 3 columns:
Done, Name and Comments. All these columns are strings. Every time
the PSPChecker is initialized this table is created or cleans it.

Table 4 - PSPChecker DataBase components

51

Figure 32 - Database Model

4.5.4 Technologies

The choice of a technology influences the quality and the development time of a software
project. This selection process is essentially carried out based on personal knowledge and time of
learning.

So after analyzing these points, it was decided to use the following technologies:
o C# (CSharp)
o WebServices
o Microsoft Access Database
o OleDB
o DataGridViewExtension

To better understand these choices, each of these options will be describednext .

1. C# - Is a multi-paradigm language that contemplates functional programming,
imperative and object-oriented. Was created and developed by Microsoft as part of this
initiative. NET.
As main advantages of this language we have: extensive documentation and examples,
easy use, simple, modern, general-purpose and reduced learning curve.

52

2. WebServices - Typically application programming interfaces (API) or web APIs that
are accessed via Hypertext Transfer Protocol and executed on a remote system hosting
the requested services [13].

3. Microsoft Access Database - Pseudo-relational database management system from

Microsoft that combines the relational Microsoft Jet Database Engine with a graphical
user interface and software-development tools. Microsoft Access is used to create
simple database solutions. Access tables support a variety of standard field types,
indices, and referential integrity. Access also includes a query interface, forms to
display and enter data, and reports for printing. Users can create tables, queries, forms
and reports, and connect them together with macros. All database tables, queries,
forms, reports, macros, and modules are stored in the Access Jet database as a single
file. Microsoft Access applications can adopt split-database architecture. The database
can be divided into a front end database that contains the application objects (queries,
forms, reports, macros, and modules), and is linked to tables stored in a back end
shared database containing the data. Microsoft Access offers several ways to secure
the application while allowing users to remain productive. [14]

4. OleDB - Object Linking and Embedding Database, separates the data store from the
application that needs access to it through a set of abstractions that include the
datasource, session, command and rowsets. This was done because different
applications need access to different types and sources of data and do not necessarily
want to know how to access functionality with technology-specific methods. OLE DB
is conceptually divided into consumers and providers. The consumers are the
applications that need access to the data, and the provider is the software component
that implements the interface and therefore provides the data to the consumer. [15]

5. DataGridViewExtension - Component that extends the standard DataGridView
control, with functionalities such as Export (MS Excel, HTML and PDF). The design
time support allows you to integrate it in any existing application. [16]

53

4.6 Test Planning

 For a good test plan on PSPChecker it was necessary to do a careful planning of all stages
of testing.

The level of the test (when it is applied), the technique being used, the criteria for
classification of tests and the type of software to be used for testing should be defined.

It should be clear which testing levels will be applied:
• Conversion test;

• Interface tests that ensure the good use of the interface of the product;
• Security tests to ensure that the developed product meets all the requirements of

confidentiality and information security;
• Performance tests that will confirm or not the minimum performance required.

For this project the IEEE Std 829-1983 and the IEEE Standard for Software Test
Documentation were used as references.

4.6.1 Test Items (Modules)

In this first phase of testing it is necessary to identify the items to be tested.

Project modules

Identifier Module Description

MOD_TEST_A

Module Import Data

Tests related to options of importing data locally
or remotely.

MOD_TEST_B Module Verification Tests about the automatic verification on-process
PSP.

MOD_TEST_C Module Export Tests related with export Data in a different
format.

MOD_TEST_D Module Charts Tests about the creation of charts.

Participants

All the items here described should be analyzed and tested by the developers and
knowledge experts in the subject PSP. In this project participants will have to be very active and do
tests in a comprehensive manner to avoid future failures.

54

4.6.2 Test Items (Sub-Modules)

For each module described before there are some tests for the related sub-modules. This
description will be presented next.

Module Import Data

• Check Valid File

Identifier TEST_A_01

Module Identifier MOD_TEST_A

Description Checks if a file is valid (Option

Locally)

Pre-Condition The file should be in Access format

Expected result “File successfully upload”

Risk High

• Valid Login

Identifier TEST_A_02

Module Identifier MOD_TEST_A

Description Checks if it is a valid information

Pre-Condition Fulfill the Text Area

Expected result “Successfully login”

Risk Very High

• Invalid Login

Identifier TEST_A_03

Module Identifier MOD_TEST_A

Description Performs user authentication

system with one of the wrong fields

Pre-Condition Fulfill the Text Area

Expected result “Invalid login”

Risk Very High

• Import Data

Identifier TEST_A_04

Module Identifier MOD_TEST_A

Description Imports data locally or remotely

Pre-Condition Choose Data (remote or local)

Expected result “Import data successfully”

Risk Very High

55

• Verify data in Database

Identifier TEST_A_05

Module Identifier MOD_TEST_A

Description Verifies if data is well fulfilled in

the Database.

Pre-Condition Database being fulfilled.

Expected result -

Risk Very High

Module Verification

• Choose Process

Identifier TEST_B_01

Module Identifier MOD_TEST_B

Description Chooses a valid process (PSP 0,1,2)

and checks if the item information is

correct.

Pre-Condition -

Expected result -

Risk Medium

• Create a custom Process

Identifier TEST_B_02

Module Identifier MOD_TEST_B

Description Creates a custom process and

verify if the items are being added to

the final list for verification.

Pre-Condition -

Expected result -

Risk High

• Check automatic verification

Identifier TEST_B_03

Module Identifier MOD_TEST_B

Description Does an automatic verification of

the checklist to see if the items are

verified.

Pre-Condition Choose a typical process or custom
one.

Expected result “Successfully check of items”

56

Risk Very High

• Check information of automatic Verification

Identifier TEST_B_04

Module Identifier MOD_TEST_B

Description Checks if the information that

appears in screen is equivalent to the

expected result.

Pre-Condition Choose a typical process or custom
one.

Expected result -

Risk Very High

Module Export

• Execute Export

Identifier TEST_C_01

Module Identifier MOD_TEST_C

Description Executes an export of the final

result from the automatic verification.

Pre-Condition Had already done the automatic
verification.

Expected result “Successfully export to PDF Format”

Risk High

• Verify document created

Identifier TEST_C_02

Module Identifier MOD_TEST_C

Description Verify if document is with the

correct format and information

Pre-Condition Execute before an exportation

Expected result -

Risk Low

Module Charts

• Create Chart

Identifier TEST_D_01

Module Identifier MOD_TEST_D

Description Creates a chart with statistics from

the final results of verification. Also

here the type of chart can be chosen.

Pre-Condition Had already done the automatic

57

verification.

Expected result “Successfully created the chart”

Risk Medium

• Verify format of chart

Identifier TEST_D_02

Module Identifier MOD_TEST_D

Description Verifies if a chart is in the correct

format chosen before

Pre-Condition Had already done the option “create
chart” and chosen the format.

Expected result -

Risk Low

4.6.3 Acceptance Tests

Testing Acceptance uses project documentation to prepare design, procedures and test cases.
This methodology allows us to verify accuracy and understand information in the documentation in
the areas covered by the tests and determines if the project is being developed according to
specification.

Conversion Testing

In order to verify if the imported files in Access format are well allocated in the database tests
to verify data integrity are made.

These tests consist of verifying that data entered in the database correspond to the information
contained in the Access file.

Interface Tests

In order to verify interoperability of the interface between the user and the system an interface
testing tool will be used, which will determine whether, given certain user actions, the system
behaves as expected.

Security Tests

The availability of this data system entails a responsibility to remain private on the option
remote data. The access with invalid sets of user / password will be tested. Apart from these tests it
will also be checked if it is possible to download information without being authenticated.

58

4.6.4 Criteria Accepted/Denied

Performed tests must meet certain criteria for approval or disapproval to guarantee the
reliability of the tool. For this reason, these criteria should be well defined prior to testing and
should clarify what kinds of results raise approval:

• If a test result is consistent with the expected result.
• If the test was unable to prove a failure.

Or, what kinds of results lead to failure:

• Failure to comply with established quality standards.
• Results of a test are not compatible with the expected.

• Faults found in software.

If a test is approved we can proceed with the validation of that functionality. In case of

disapproval to correct the problem some changes must be made up in the code depending on the
type of failure found.

4.6.5 Test Procedures

In order to achieve success, in the testing process it was needed to plan a series of tasks to be
performed.

These tasks were:
1. Plan the test.
2. Identify requirements for the test.
3. Assess the risk.
4. Develop strategies to implement the test.
5. Generate test plan.
6. Identify and describe test cases.
7. Identify and structure test procedures.
8. Check test coverage.
9. Implement test.
10. Identify the specific functionality in the test model design and implementation.
11. Run test.
12. Evaluate the test run.
13. Check the results.
14. Deal with unexpected results.
15. Register anomalies.
16. Determine if the completion criteria and success criteria of the test were met.

59

Chapter 5 - Experimentation

This chapter will present the product developed according to the specification in the previous
chapters. This chapter will provide an overview of the user experience on working with
PSPChecker.

For accessing the tool the user should click on PSPChecker executable. Once entered in the
tool the user can choose from remote or local import of data. The difference between those two has
already been described earlier. Since in the end of this report a user’s guide will be presented, this
chapter will describe several conditions that could happen when selecting one PSP level with a
database selected. These results are different depending on the information detailed on PSP
Students Workbook.

For an easier comprehension some situations and expected results will be described next.
For these examples the level PSP customized will be used, because in this way it is easier to

understand what is showed in the figures.
As a first example, the set of items from Time Log will be used, the items of most importance

to check there are: Process steps are sequenced appropriately and Times were recorded as the work was

done. So after selecting on “PSP customize”, one of the several Time Log, the initial result should
be like the next figure, where all data is correctly introduced.

All the following figures are part of the PSPChecker or PSP Student Workbook.

 Figure 33– Example 1 - working with time Log

60

Now we have the same example but some data is changed, like Coding Phase is used in the
middle of a planning phase and one of the copied time is exactly equal in different phases. This
second point can indicate that the times were copied between them instead or calculate the exact
start or finish of a task or phase. The next figure shows that the red lines mean that the information
is wrong, because of the reasons previously presented.

 Figure 34- Example 2 - working with time Log (Error Info)

61

In this tool there are some items that are not available to check automatically at this point and
others are not available because it is just impossible to check the quality of data since these points
can change for each project. The easier points to notice that are: PSP DS Templates, Code Review
Checklist and Design Review Checklist. In these items PSP refers that it is important to notice if
these second checklists are related to the project at that moment and if those checklists and
templates makes sense. This can only be checked manually so the tool indicates that those points
are N/A to be checked automatically.

Figure 35 - Example 3 - working with not available options

Until now all examples were only using customize checklists, so this next example will show
the structure of a PSP level 1, with the fulfillment of previous values related with previous projects.
Some values were not fulfilled, so in this way PSPChecker will show points that were achieved and
points that were not achieved.

62

Figure 36 – Example 4 – Use of PSP Level 1 example

Examples like export data or import data are already referred in the requirements section. In
the next examples the information that each menu contains (Menu and Help) will be introduce. In
the first menu the following options can be chosen: PSP 0, PSP 0.1, PSP 1, PSP 2, PSP 2.1 and
customize. The second contains the Help contents. This option was still not made because the
knowledge of experts is necessary to agree which information should contain this option.

Figure 37 - Example 5 – Menu Options

63

Chapter 6 - Conclusions

Since the beginning of this project the main goal was clearly to help determine the main
requirements and functionalities of PSPChecker. Some requirements were prioritized but in the end
most of them were made to help teachers reduce feedback time and improve the teaching of PSP. So
we conclude that the overall result is positive, since most of the functionalities were implemented
and the ones that were not, was because there must be an agreement with a third entity (SEI/CMU,
e.g. import remote data).

When this project started, a main issue was that teachers had to spend 30 minutes with each
student since they had to check all items manually. However, after the creation of PSPChecker the
time will be reduced because now only some manual information needs to be checked, for instance
to see if tests or defects are corrected.

During the development of this project several issues appeared but they were easily solved,
either with the help of advisors or internet search.

To conclude this chapter it is important to refer some interesting points for future work. As
main points we add:

1. Benefits of using PSP (business environment) – Like the previous study of
teaching PSP in universities, it would be interesting to check the benefits of using
this tool as a complement to good practices in companies of different sizes.

2. Creation of a globally tool system – To guarantee the creation of an online
version with the same characteristics as this one.

3. Possibility of verifying data quality – To check the data quality in database to
guarantee that all information is strictly the necessary one.

64

65

References

[1]- Watts Humphrey, W.S.: A Discipline for Software Engineering. Addison-Wesley,
Reading, Mass. (1995)

[2]- CMMI official page. Available From: http://www.sei.cmu.edu/cmmi/start/index.cfm

[3]- TSP official page. Available From: http://www.sei.cmu.edu/tsp/

[4]- PSP official page. Available From: http://www.sei.cmu.edu/tsp/

[5]- W. S. Humphrey, Introduction to the Personal Software Process. Addison-Wesley,
1997.

[6]- UPSP official page (Swedish university project webpage). Available From:

http://www8.cs.umu.se/~jubo/UPSP/

[7]- Teaching PSP: Challenges and Lessons Learned - IEEE SOFTWARE Magazine,
September/October 2002

[8]- Zeljka Car : A METHOD FOR TEACHING A SOFTWARE PROCESS BASED ON
THE PERSONAL SOFTWARE PROCESS, University of Zagreb, Faculty of
Electrical Engineering and Computing

[9]- M. Postema, M. Dick, J. Miller, S. Cuce, Tool Support for Teaching the Personal
Software Process. Computer Science Education, Vol. 10, No. 2, 2000, pp.179-193.

[10]- D. Rosca, C. Li, K. Moore, M. Stephan, S. Weiner, PSP-EAT – Enhancing a
Personal Software Process Course. Proceedings of the 31st ASEE/IEEE Frontiers in
Education Conference, October 10 - 13, 2001 Reno, Nevada

[11]- I. Syu, A. Salimi, M. Towhidnejad, T. Hilburn, A Web-Based System for
Automating a Disciplined Personal Software Process (PSP). Proceedings of the 10th
Conference on Software Engineering Education and Training (CSEET '97), April 13 -
16, 1997, Virginia Beach, VA.

[12]- ISO/IEC 9126 .Definition Available from:
http://pt.wikipedia.org/wiki/ISO/IEC_9126

66

[13]- WebService. Definition. Available From: http://en.wikipedia.org/wiki/Webservice

[14]- Access Database wiki source. Available From:
http://en.wikipedia.org/wiki/Microsoft_Access

[15]- OLeDB Definition. Available From: http://en.wikipedia.org/wiki/OLEDB

[16]- DataGridViewExtension official page. Available From:
http://completit.com/communityserver/blogs/dgve/default.aspx

67

Appendix A

A.1 Personal experience with PSP

During the realization of this project was necessary to gain knowledge relative with usage of
PSP templates. From the several levels of PSP was chosen the level 0 for being the easiest to
understand and fulfill all the required fields. So was decided to create as a mini project the
elaboration of one of the items related defect log in this case “Total compile defect fix times are less

than compile time”. So what will be presented next is some figures with fulfill of data related with the
mini project. All figures belongs to PSP Student Workbook.

Figure 38- PSP Level 0 - Project Summary Example

68

 Figure 39 - PSP Level 0 – Time Log Example

Figure 40- PSP Level 0 – Defect Log Example

69

As final conclusion on using PSP methodologies, personal opinion is that PSP really helps
organize the realization of a project. Help improve accuracy and avoid made all the time the same
mistakes. When time and other information is saved in some kind of template is easier to reach this
data and understand what went wrong.

