
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Software Knowledge Management
using Wikis: a plugin for weakly typed

pages

Michał Kacprzyk

Dissertation

Master in Informatics and Computing Engineering

Supervisor: Ademar Aguiar (PhD.)

25th March, 2010

Software Knowledge Management using Wikis: a plugin
for weakly typed pages

Michał Kacprzyk

Dissertation

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: Maria Cristina Ribeiro (PhD.)

External Examiner: Isabel Ramos - DSI/UMinho (PhD.)

Internal Examiner: Ademar Aguiar (PhD.)

25th March, 2010

Abstract

This thesis addresses the topic of software knowledge management using wikis.
In 2010 virtually all Internet users know at least one wiki - Wikipedia - ”the largest

and most popular general reference work on the Internet”. The example of Wikipedia
shows that wikis are a very good collaborative tools. In fact wikis are widely used around
the world in various applications, also in software engineering companies.

The software engineering was introduced because of burning need to create better
quality software. Hardware evolution was very fast and informal software development
was not sufficient any more. The software engineering consists of sets of activities and
models, which covers whole life-cycle of the software. There is a lot of knowledge in-
volved in software engineering. Basically, creation of software is about incrementally
transforming and formalizing knowledge - from the idea of needed application into the
specific source code. Usually, there is many people collaborating on the particular soft-
ware and they need to exchange the knowledge many times. They also need to know the
new technologies, common practices, policy of the firm etc.

Because software engineering is knowledge intensive activity, any tool that can help
to manage the software knowledge will be also helpful in improving software engineering
activities. In order to find that tools, we can look into the modern discipline called knowl-
edge management. Besides of giving general awareness of knowledge related processes,
it brings set of practical tools useful to improve organization’s knowledge infrastructure.
It can be generally divided into two knowledge management strategies: codification, to
capture and store explicit knowledge, and personalization, to improve tacit knowledge
sharing through improving connectivity between people.

When we connect the collaborative power of wikis, knowledge intensive software en-
gineering activities and knowledge management, we will get an interesting combination.
Although wikis are already useful tools, they can be improved even further.

One of the problems I have encountered in the past during application of wiki in the
software engineering company was struggle between freedom of creating wiki pages and
formality of software engineering. One of the possible solutions is the idea of wiki pages
loosely connected to page types. Creation of the prototype of this solution is described
step by step, from the idea and design into implementation and validation. It can be useful
to add formalized structure into wiki without loosing the openness and flexibility.

i

ii

“All that we are is the result of what we have thought.
The mind is everything.

What we think, we become.”

— Buddha

iii

iv

Contents

1 Introduction 1
1.1 Outline . 3

2 The theory behind the subject 5
2.1 Software engineering . 5

2.1.1 Software process activities . 6
2.1.2 Software process models . 7

2.2 Knowledge management . 15
2.2.1 Knowledge . 16
2.2.2 Tacit and Explicit Knowledge 18
2.2.3 Knowledge management Life Cycle 21

2.3 Software knowledge management . 22
2.3.1 Knowledge management strategies and generations 24
2.3.2 Post-Mortem Analysis . 25

2.4 Tools for software knowledge management 26
2.4.1 Wikis . 29
2.4.2 Semantic wikis . 32

3 WeakType plugin 37
3.1 WeakType idea . 37
3.2 Creation of the plugin . 38

3.2.1 Specification . 38
3.2.2 Architectural design . 40
3.2.3 Interface design . 42
3.2.4 Component design . 44
3.2.5 Data structure design . 46
3.2.6 Algorithm design . 48
3.2.7 Implementation . 51

4 Validation and Use-Cases 53
4.1 Scenario 1 - Web development . 53

4.1.1 Use-Case 1 . 54
4.1.2 Use-Case 2 . 55

4.2 Scenario 2 - Migration of the documentation 60

v

CONTENTS

5 Conclusion 63
5.1 Results . 63
5.2 Future work . 63

References 66

vi

List of Figures

1.1 Chosen significant knowledge sharing related events. 2

2.1 The waterfall model. 8
2.2 Evolutionary development. 9
2.3 Component-based software engineering. 10
2.4 Incremental delivery. 11
2.5 Spiral development. 12
2.6 The Rational Unified Process. 14
2.7 Relation of data, information, knowledge and wisdom. 17
2.8 Tacit and explicit knowledge[NT95]. 19
2.9 Knowledge management Life Cycle[SAA99] 21
2.10 General map of knowledge management tasks. 23
2.11 Wiki Wikipedia page. 30
2.12 RDF triple . 33
2.13 Albert Einstein page’s categories in Wikipedia. 34

3.1 Base wiki page. 38
3.2 Type page. 39
3.3 Base wiki page with WeakType plugin data. 39
3.4 Result page. 40
3.5 General view of whole process. 41
3.6 Architectural design. 42
3.7 Relations between interface elements. 43
3.8 States of the syntax component. 44
3.9 States of the action component. 45
3.10 Source code of the headers in DokuWiki. 46
3.11 Structure of this chapter as a DokuWiki headers. 46
3.12 Structure of this chapter as tree of headers. 47
3.13 Pass 1: Get match and not match base lines. 49
3.14 Pass 2: Recreate matching array. 50

4.1 Brief from the meeting with client. 56
4.2 Brief with the structure of ”bussines card” type. Graphics adapted from

[Kam09]. 57
4.3 Bussines card page converted into portal type structure. 58
4.4 Finished brief of portal page. 59
4.5 Example of not unified documentation page. 61
4.6 Page with the structure of ”JCL” type. 61

vii

LIST OF FIGURES

4.7 Improved structurized documentation page. 62

5.1 Idea of interface improvement. 64

viii

Definitions and Abbreviations

AD Anno Domini

API Application Programming Interface

BC Before Christ

CASE Computer Aided Software Engineering

CICS Customer Information Control System

CMS Content Management System

COBOL COmmon Business Oriented Language

DB DataBase

FTP File Transfer Protocol

GNU GNU’s Not Unix

GPL General Public License

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hypertext Transport Protocol

IBM International Business Machines

IDE Integrated Development Environment

JCL Job Control Language

KM Knowledge Management

MOSS Microsoft Office Share Point Server

MS Microsoft

NATO North Atlantic Treaty Organization

PC Personal Computer

PHP PHP Hypertext Preprocessor

ix

DEFINITIONS AND ABBREVIATIONS

PMA Post-Mortem Analysis

RDF Resource Description Framework

REXX REstructured eXtended eXecutor

RUP Rational Unified Process

SE Software Engineering

SPARQL SPARQL Protocol And RDF Query Language

SVN Subversion

TFS Team Foundation Server

UML Universal Modelling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

USB Universal Serial Bus

W3C World Wide Web Consortium

WSS Windows Share Point Services

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

x

Chapter 1

Introduction

”Egyptian hieroglyphs are generally considered the earliest writing systems it emerged
about 3400-3200 BC.”1. ”The immediate predecessor to modern paper is believed to
have originated in China in approximately the 2nd century AD.”2 ”The age of printed
book started in 1450s by printing Gutenberg Bible.”3”In 1936 Alan Turing provided an
influential formalisation of the concept of the algorithm and computation with the Turing
machine.”4 ”The term software engineering first appeared in the 1968 NATO Software
Engineering Conference and was meant to provoke thought regarding the current ”soft-
ware crisis” at the time.”5 ”The IBM Personal Computer, commonly known as the IBM
PC, is the original version and progenitor of the IBM PC compatible hardware platform.
It is IBM model number 5150, and was introduced on August 12, 1981.”6 ”WikiWikiWeb
is a term that has been used to refer to four things: the first wiki, or user-editable website,
launched in 1995 by Ward Cunningham.”7 ”Wikipedia was launched in 2001 by Jimmy
Wales and Larry Sanger and is currently the largest and most popular general reference
work on the Internet”.8

All information in the first paragraph are taken directly from the Wikipedia - ”the
largest and most popular general reference work on the Internet”. It is at least amazing
that people from the level of hieroglyphs came to the tool like Wikipedia. When we look
at the figure 1.1 we will see the time line divided by some key events in the evolution
of ways of sharing knowledge. It is clearly visible that this process progresses rapidly.
When we consider that 10 years ago, there was no Wikipedia, it is impossible to predict
what will come in the next 10 years. However, we can identify major trends - growing of
knowledge repositories and improving ways of sharing knowledge.

1http://en.wikipedia.org/wiki/Writing system
2http://en.wikipedia.org/wiki/Paper
3http://en.wikipedia.org/wiki/Gutenberg Bible
4http://en.wikipedia.org/wiki/Computer
5http://en.wikipedia.org/wiki/Software engineering
6http://en.wikipedia.org/wiki/IBM PC
7http://en.wikipedia.org/wiki/Wikiwikiweb
8http://en.wikipedia.org/wiki/Wikipedia

1

INTRODUCTION

Figure 1.1: Chosen significant knowledge sharing related events.

Software engineering comes from burning need to create good quality software. Pro-
cess of software creation is often called software development and it can be compared to
building a house. In the beginning there is only an idea of having a new house. It is fuzzy
and very general, but it can already have some specifications like: ”I want to have a big
kitchen and two bedrooms”. During the process of thinking about it, bit by bit, new ideas
come to mind: ”It should be located in the quiet countryside, but not too far from the city.
It has to be warm in the winter and cool in the summer”. When we have quite sufficient
for us specification, we can go to the architect for the design. The design can be based
on the existing one or build from the scratch. After having general design of number and
placement of rooms, number of floors, occupied surface etc., there is a time to think of
all other, more specific things... At some level of designing, we start actually building a
house, now we need a lot of social and management skills to hire right people and coor-
dinate them properly. Of course, we can not forget about a budget and a time. But, in
many cases this is not the end of designing, now more specific things come to play: type
of building materials, heating, roof surface, windows, placement of electric sockets and
lamps. Later, even more specific things like a kind of floor and wall surface, bathroom
equipment become to be important. It takes really a lot of effort to come to the moment,
when you can paint the walls with your favourite colors and buy furniture. Hopefully,
there is a moment when finally everything is finished and you can move in.

This metaphoric process shows that software creation is complex, containing many

2

INTRODUCTION

steps and it needs knowledge from many sources. The knowledge is gathered and stored
incrementally during the process of creation. Like in the creating a painting, it starts from
first line, sketch, first layer of paint, second layer. . . It is very similar to the process of
creation of a wiki page.

We can investigate the evolution of Albert Einstein page in English Wikipedia, using
revision history. First revision was created on 5 November 2001, it consisted of 8036
chars and no pictures or tables. In November 2003 about 300th revision of the page was
available which consisted of 22 666 chars and one big picture. In November 2005 it was
about in 2500th revision which consisted of 42 289 chars, 8 pictures and several tables,
data becomes organized in sections. Up to now - the time of writing this thesis, about 13
000th revision of the page is available. It is consisted of 87 061 chars, many tables and
pictures.

That example shows that wikis are a good tool to gather and systematize incrementally
growing knowledge. As we already know, the process of development is about combin-
ing and converting knowledge into the final product. Although, wikis are already very
useful in software development, they still can be improved. In the journey to build better
knowledge related tools, nowadays, using wikis as a base can be seen as ”standing on the
shoulders of giants”. In this thesis it is expected to see wikis in the wider context and try
to implement one of the wiki’s improvement ideas.

1.1 Outline

The thesis is organized into 5 chapters.

Chapter 1 - Introduction
Introduces into the thesis, shows context of the work, motivation and expected results.

Chapter 2 - The theory behind the subject
It is a review of actual chosen literature and conceptions about the subject. It is based
on the academic research, white papers and well-known books. It is subdivided into 4
sub-chapters.

Chapter 2.1 - Software engineering
Introduces general concepts of Software Engineering. Describes origin and purpose of
existence of such field of science. Shows general concerns of the field such as steps
of software process activities. Then, it presents several software process models from
traditional waterfall model to modern Rational Unified Process.

3

INTRODUCTION

Chapter 2.2 - Knowledge management
Introduces general concepts of knowledge management. It starts by defining key objects
of KM interest - data, information and knowledge. Later, it describes popular conception
of tacit and explicit knowledge and ways of transforming it from one to another. At the
end, it describes example of knowledge management life cycle. Because field of knowl-
edge management often use indirect ways of sharing knowledge like stories, metaphors
and proverbs, this sub-chapter is written in a similar style.

Chapter 2.3 - Software knowledge management
This sub-chapter connects two previous ones. It shows concepts of ”organizational learn-
ing” and ”learning software organization” and enumerates knowledge needs of software
engineering companies. Later, it divides knowledge management into generations and
shows general strategies, particularly used in software knowledge management - codifi-
cation and personalization. At the end, it shows one simple, but very useful tool from
knowledge management - Post-Mortem Analysis.

Chapter 2.4 - Tools for software knowledge management
Firstly, it treats about tools used in the particular steps of software creation process. It dis-
tinguishes tools useful on the level of project from management tools. It briefly describes
enterprise software knowledge management tools from main vendors like Microsoft and
IBM, also shows open source alternatives. Secondly, in more details wikis and semantic
wikis are described.

Chapter 3 - WeakType plugin
This chapter shows a creation process of the tool - practical part of thesis. Firstly, it
introduces the idea of weak type wiki pages. Secondly, it shows step by step, the cre-
ation process of the proposed solution. The steps are: specification, architectural design,
interface design, data structure design, algorithm design and implementation.

Chapter 4 Validate and case studies
This chapter shows examples of practical applications of the created prototype. It is di-
vided into two scenarios. First describes usage in a web development company as a tool
to support requirements gathering process. In the second scenario, prototype is used to
unify the structure of the system documentation.

Chapter 5 Conclusion
Final chapter concludes all the work done. It describes results and gives ideas for the
future work.

4

Chapter 2

The theory behind the subject

2.1 Software engineering

This chapter is going to sketch general ideas about software engineering. After short
introduction, the main software engineering activities and models are briefly described.

The term software engineering was invented in 1968 during the NATO conference
about ”software crisis”[NR69]. The reason of this crisis was the introduction of new
computer hardware which allowed to build much bigger and complex software. It became
clear that informal software development was not sufficient. New techniques and methods
were needed. These techniques become part of software engineering.

The definition says:

”Software engineering is the application of a systematic, disciplined, quan-
tifiable approach to the development, operation, and maintenance of software,
and the study of these approaches; that is, the application of engineering to
software”[IEE04]

Software engineering has many linkages with other fields of science. One obvious
connection is with computer science since software is dedicated for computers. Next con-
nection which is strongly connected to the first one is with physics, because physics is the
foundation of today’s electronic computers. Passes through the electronics, because of
the types of processors, memory, input and output devices to which it has to be adapted.
Draws abundantly from the “queen of sciences”1 mathematics, for example in areas such
as algorithms optimization. On the other hand, psychology, because the software is cre-
ated by the people and often for the people as the end user. Worth to point here is the
fact that at present only a human can create software. It is not possible to create soft-
ware by computers only, but of course without computers probably software engineering

1Carl Friedrich Gauss referred to mathematics as “the Queen of the Sciences”

5

THE THEORY BEHIND THE SUBJECT

would not be ever invented. Software engineering due to the rapid spread of computers
and networks is also related to sociology.

Currently, the software serves people in virtually all areas of life. Specialists, re-
searchers and all the average office workers uses it every day to improve the efficiency
and quality of their work. The software allows to solve problems in which use of tradi-
tional piece of paper and a pencil did not give sufficient results in a finite time. In personal
life, it can provide us an entertainment with computer games, whether to allow to make
specific holiday plan. Lets us communicate faster, easier and with more people simulta-
neously. Enhances discovery, selection and sharing informations. We can find countless
number of examples which shows how software is useful and needed now-days. It is clear
that the modern technologies which includes billions of lines of code are present every-
where. It is very difficult today to imagine how would our lives look like if the software
does not exist at all. Once we realized the magnitude of the subject, we can briefly con-
sider what would happen if the software was of poor quality or created with significant
delay. We can easily imagine the possible tragedies which may happen if the software
dedicated for “critical system” such as air traffic control system would have been full of
errors.

2.1.1 Software process activities

From global point of view, software development is a process of solving, often sophisti-
cated problems with knowledge, effort and tools. In almost every software process there
are few common characteristic activities:

Software specification
During this activity the functionality of the system is decided.“Software specification or
requirements engineering is the process of understanding and defining what services are
required from the system and identifying the constraints on the system’s operation and
development.”[Som07] This activity can be divided into four phases:

1. Feasibility study

2. Requirements elicitation and analysis

3. Requirements specification

4. Requirements validation

Software design
In this activity the solution for the system is developed, software architecture is decided,
design patterns are chosen. As a result detailed design is created. “A software design is a

6

THE THEORY BEHIND THE SUBJECT

description of the structure of the software to by implemented(. . .).”[Som07] This process
can be divided into six parts:

1. Architectural design

2. Abstract specification

3. Interface design

4. Component design

5. Data structure design

6. Algorithm design

Software implementation
Now previously created design is implemented. The reusable software and implemen-
tation patterns can be used. “The implementation stage of software development is the
process of covering a system specification into an executable system.”

Software verification and validation
This activity is done to make sure that the software meets specification and customer’s
needs.”(. . .)verification and validation is intended to show that a system conforms to
its specification and that the system meets the expectations of the customer buying the
system.”[Som07] One important part of verification and validation is testing. Testing pro-
cess can be divided into:

1. Basic/Unit Test

2. Functional/Integration Test

3. System Verification

4. Acceptance Test

Software evolution
The system changed to meet changing customer needs.“The flexibility of software sys-
tems is one of the main reasons why more and more software is being incorporated in
large, complex systems.”[Som07]

2.1.2 Software process models

In software engineering there is many software process models designed to improve soft-
ware development. Few main models are presented below:

7

THE THEORY BEHIND THE SUBJECT

Figure 2.1: The waterfall model.

The waterfall model
In this model the fundamental process activities such as specification, development, val-
idation and evolution are represented in separate process phases: requirements specifi-
cation, software design, implementation, testing etc. It is the first model of software
development process which was published. As we can see in the figure 2.1 the model
contains five main phases:

Requirements definition System’s functionality, constraints and aims are decided dur-
ing consultations with system users. Later they are defined in detail and become
system specification

System and software design Overall system architecture is established. In software de-
sign process the main system abstractions and their relations are decided and de-
scribed.

Implementation and unit testing The program representation of software design is cre-
ated. Normally it is a set of programs or program units. During unit testing each
unit is tested and verified if it meets the specification.

Integration and system testing Program units or programs are integrated into complete
system and testes as whole to make sure that the software meets requirements. After
testing finished software is delivered to the client.

Operation and maintenance It is normally the longest life-cycle phase. The system is
in practical use by end users. During maintenance correcting errors, which haven’t

8

THE THEORY BEHIND THE SUBJECT

been discovered earlier, takes place. In this phase also the software is improved
to meet user’s needs. In principal, every phase ends with one or more documents
that are approved. In theory next phase should not start before previous one ends,
but in practice often all phases overlap and feed information to each other. During
design some problems with specification may appear, during implementation prob-
lems with design are discovered. ”The software process is not simple linear model
but involves a sequence of iterations of the development activities.”[Som07]

Evolutionary development
In this case the activities of specification, development and validation are interleaved. The
main idea is to create the prototype rapidly from abstract specification and then expose it
to the client and through many versions create the final system which will satisfy user’s
needs.

Figure 2.2: Evolutionary development.

Two types of evolutionary development are:

Exploratory development The development starts with the well understood parts of the
system. The system grows by adding new features which the client proposes.

Throwaway prototyping The development starts with poorly understood requirements.
Exposing the prototype to the client helps to better understand the requirements.

Component-based software engineering
In this approach the significant part is use of reusable components. The development pro-
cess is based on combining this components rather than creating the system from scratch.

9

THE THEORY BEHIND THE SUBJECT

Figure 2.3: Component-based software engineering.

Software reuse takes place in many software projects. Usually it is informal. However,
lately component-based software engineering has emerged and is widely used. This ap-
proach is based on a large set of reusable software components. In component-based
software engineering specification and validation phases are similar to other processes.
Differences appears in intermediate phases:

Component analysis In this stage components which may match to the requirements are
found. Usually it is impossible to find components which match the requirements
perfectly, found components provide only part of the required functionality.

Requirements modification In this stage the requirements are re-analyzed in context of
information about found components. The requirements are modified so they can
match to the available components. It is possible to go back to component analysis
if it is not possible to change requirements sufficiently.

System design with reuse Design of the system framework is created or an existing
framework is reused. The base for the design is the set of components which are
reused. If reusable components are not available for some features of the system, it
is needed to design new software component.

Development and integration The software which cannot be based on reused compo-
nents is developed and integrated together with components to build new system.

The Component-based software engineering has many big advantages. First of all, use
of already created components reduces time needed to create the software, as well as costs
and risks. On the other hand reused components may not fit exactly the requirements. This
may lead to create the system which not meets user’s needs.

Iterative development
The idea of the iterative process is that the specification is developed together with the
software. The software is created in many iterations rather than in linear process, which
may be seen as a more natural way of software development, since in normal life also we

10

THE THEORY BEHIND THE SUBJECT

do not solve the problem at once, but work on different parts of it separately.
Models created to support iterative development are:

Incremental delivery It is a combination of waterfall and evolutionary model. In this
model customers identify the services which should be provided by the software.
They also decide which services are the most important and which are the least im-
portant to them. Delivering of the system is divided into defined number of delivery
increments. The most important services are delivered first. When system incre-
ments are decided, detailed definition of the requirements for the service which
should be delivered in first increment takes place. Then the increment is developed.
Analysis of the requirements for further increments may take place during devel-
opment of the previous one, but it is not possible to change the requirements for
the actual increment. When the new increment is delivered to the customer, it is
integrated with already existing parts so the functionality of the system evolves with
every delivered incrementation.

Figure 2.4: Incremental delivery.

Spiral development This model was introduced in 1986 by Barry Boehm.[Boe86] As
the name tells, the software process is presented as a spiral, instead of a sequence of
activities. Spiral is divided into a loops, where every loop is one phase of software
process. In this model risks are consider as the main driver, so the risk management
is crucial. As it can be seen on figure 2.5, each loop is split into four sectors:

• Objective setting - in this stage specific objects for the current loop are de-
cided. The management plan is created. The risks are identified and the main
strategies to handle risks are planned.

• Risk assessment and reduction - as it was stated before, risks are the main
driver in this model. In this stage of the loop, detailed analyzing of every risk
takes place and sufficient steps to reduce the risks are taken.

11

THE THEORY BEHIND THE SUBJECT

Figure 2.5: Spiral development.

• Development and validation - when the software risks are evaluated, appro-
priate development model is chosen. For example, if the main risks are con-
nected with possibility of poor understanding of the user requirements, best
development model may be throwaway prototyping model.

• Planning - in the final stage of the loop, the project is reviewed to decide
whether to continue with the next loop of the spiral. If the continuation with
the next loop is decided, then plans for the next phase of the project are made.

The Rational Unified Process
In this place it is worth to mention about the Rational Unified Process which is a great ex-
ample of modern process model which brings together elements from all of three generic
models: The waterfall model, Evolutionary development, Component-based software en-
gineering. In this model main drivers are risks and use-cases. RUP identifies four phases
in the software process.

Inception This phase is strongly connected with business side of the project. The main
goal is to achieve concurrence among all stakeholders(entities connected to the
project in any way). The result of this phase should be the estimation of the costs

12

THE THEORY BEHIND THE SUBJECT

and risks and decision if the project is possible to do and worth of doing. The mile-
stones could be: define significant use-cases, choose candidate architecture, setup
project environment. Essential activities in this phase may be:

1. ”Formulating the scope of the project.

2. Planning and preparing a business case.

3. Synthesizing a candidate architecture.

4. Preparing the environment for the project.”[RKd03]

Elaboration ”The goals of the elaboration phase are to develop an understanding of the
problem domain, establish an architectural framework for the system, develop the
project plan and identify key project risks.”[Som07] As the result of this phase,
we should get stable base for the next Construction phase, which means detailed
architecture description and development plan. Essential activities in this phase
may be:

1. ”Defining, validating and baselining the architecture.

2. Refining the Vision.

3. Creating and baselining detailed iteration plans for the construction phase.

4. Refining the development case and putting in place the development environ-
ment.

5. Refining the architecture and selecting components.”[RKd03]

Construction Now, it is the time to create working system. ”The construction phase
is essentially concerned with system design, programming and testing”.[Som07]
As the result of this phase we should get working software ready to deliver to the
customer as well as the documentation connected to the project, needed for the
users. Essential activities here are:

1. ”Resource management, control and process optimization

2. Complete component development and testing against the defined evaluation
criteria

3. Assessment of product releases against acceptance criteria for the vision.”[RKd03]

Transition This phase is basically connected with last correcting and moving the project
from development environment to the real environment of the end users. This phase
may be very complex as well as very simple, it depends on the type of the product. In
most of the software development models, this phase is ignored but in fact it should
be threaten as a very important part of the project, since all in all the software is
created for the users so concern about their reaction for the ready product should be
taken seriously. Essential activities would be:

13

THE THEORY BEHIND THE SUBJECT

Figure 2.6: The Rational Unified Process.

1. ”Executing deployment plans.

2. Finalizing end-user support material.

3. Testing the deliverable product at the development site.

4. Creating a product release.

5. Getting user feedback.

6. Fine-tuning the product based on feedback.

7. Making the product available to end users.”[RKd03]

As it can be seen on the figure 2.6, in the RUP there are following workflows:

”Business Modeling
The business processes are modeled using business use cases.

Requirements
Actors who interact with the system are identified and use cases are developed to
model the system requirements.

Analysing and Design
A design model is created and documented using architectural models, component
model, object models and sequence models

Implementation
The components in the sytem are implemented and structured into implementation
sub-systems. Automatic code generation from design models helps accelerate this
process.

14

THE THEORY BEHIND THE SUBJECT

Test
Testing is an iterative process that is carried out in conjunction with implementation.
System testing follows the completion of the implementations.

Deployment
A product release is created, distributed to users and installed in their workplace.

Configuration and change management
This supporting workflow manages changes to the system.

Project management
This supporting workflow manages the system development.

Environment
This workflow is concerned with making appropriate software tools available to the
software development team.”[Som07]

The main activities and models connected with the software engineering has been
presented. As we can see, they cover whole software life cycle. The waterfall model is
presented as a traditional way of developing software on the other side RUP is an example
of the modern approach. In the next chapters we will deal with the knowledge which flow
between stages of software engineering processes.

2.2 Knowledge management

We can start the discussion about knowledge management from the definition bellow:

”Knowledge management is a framework and tool set for improving the orga-
nization’s knowledge infrastructure, aimed at getting the right knowledge to
the right people in the right form at the right time.”[SAA99]

As we can see, this definition is fairly simple in terms of structure. Like in the other
areas of the management there is a framework bringing together and ordering a certain
activities. Also there is an area of specific tools. If it was the definition of e.g. electricity
supply management, then probably because of its transparency, it would not be required
to continue the discussion about definition. However, here we have a word knowledge as
the key object. The meaning of knowledge is probably known by everyone in their own
intuitive way, but it is not trivial to explain.

15

THE THEORY BEHIND THE SUBJECT

2.2.1 Knowledge

It is logical that to talk about knowledge management we must first define what the knowl-
edge is. As it turns out, this question troubled thinkers for a very long time. Already
ancient Greece philosophers like Aristotle and Plato were interested in the subject of
knowledge. They called it episteme - certain and indisputable knowledge, which was op-
posite to doxa - flattering statement. In Greek philosophy there was also a term used to
describe knowledge that is strictly practical - techne. Work in exploring the intricacies
of knowledge continued over the centuries. As a result, there is a section of philosophy
called epistemology, and the details of it are written in hundreds of books.

This demonstrates the fact that knowledge is not easily definable object. Perhaps for
this reason, many authors of literature related to knowledge management often defines
knowledge not explicitly. Instead they are using phrases that describe it.

”Knowledge is not what you know but is what you do.”[SAA99]

This quote can be interpreted as, an indication that a true knowledge is a knowledge
used in action. Seems to have a profound sense because of the complexity of the real
world. Theories developed even by the best theorists still tend to by roughly verified by a
reality.This state of affairs succinctly describes the following quotation.

”The illusion of accuracy can be created if people avoid comparison. . . , but in
dynamic, competitive, changing environment, illusions of accuracy are short-
lived, and they fall apart without warning. Reliance on a single, uncontradicted
data source can give people feeling of omniscience, but because those data are
flawed in unrecognized ways, they lead to nonadaptive action.”[Wei85]

To define something well, we go to the origin of that object many times.

”Knowledge derives from minds at work.”[DP00]

At present, only the people’s minds are able to create knowledge. Science is still far
from clear understanding of what really happens in human head. For example, if we com-
pare a well trained human with the best computer program in the ultimate complex game
of Go2 a human will win. On the other side, even the simplest calculator is better than a
human in multiplication. Perhaps the problem is that currently even the best computers,
are based on the Cartesian logic and the human mind is probably not.

Of course, there are working definitions of what knowledge is and what distinguishes
it from similar entities. When we look at the figure 2.7, we will see the link between data,
information, knowledge and wisdom.

2http://en.wikipedia.org/wiki/Go

16

THE THEORY BEHIND THE SUBJECT

Figure 2.7: Relation of data, information, knowledge and wisdom.

17

THE THEORY BEHIND THE SUBJECT

Starting from the bottom, the data is a ”Set of discrete, objective facts about events”.[DP00]
An example of a data set is a telephone billing founded on a staircase. It contains a list of
calls made and received by a certain number within a certain period of time. This finding
may not be relevant for us, the bare data is quite useless. How Peter Drucker said: ”In-
formation is data endowed with relevance and purpose.” As can be seen in the diagram,
it happens through a set of operations. If we enter billing owners number into our own
phone, with little luck, it may belong to our friend. In this case, the data is embedded with
a broader context, which may give us a cause for further analysis. When we divide all
rows from billing for incoming and outgoing calls we make the categorization of the data.
Then we can do some calculations e.g. add the cost of all outgoing calls. Because billing
has been laying on the ground for some time, some data has become illegible, we can
correct our data by peeling off the damaged lines. The data could also be condensed e.g.
by selecting only calls lasting longer than 10 seconds. In this way, the data is transformed
into information. Then, by comparing new information with the currently held we can
conclude that our friend is talking on the phone much more than we expected, resulting
in a very high phone bill. Combining this with our knowledge of the rates of different
operators we can come to the conclusion that our friend should necessarily change the
provider of telephone services. In this way, the bare data turned into knowledge.

This simplifies description in some way, reflects the process of transforming data into
knowledge. Our considerations can be summarized with working definition of knowledge
proposed by Prusac and Davenport.

”Knowledge is a fluid mix of framed experience, values, contextual informa-
tions, and expert insight that provides a framework for evaluating and incor-
porating new experiences and informations. It originates and is applied in the
minds of knowers. In organizations, it often becomes embedded not only in
documents or repositories but also in organizational routines, processes, prac-
tices, and norms.”[DP00]

Somehow added to the chart on the top appears wisdom, which is probably even harder
to define than knowledge. You could identify it as a useful knowledge and skills proper
to use in the right place, time and in the appropriate way.

2.2.2 Tacit and Explicit Knowledge

At one European Go Congress, a teacher from Japan has told a story. When he first
came to Europe to teach Go, he was very surprised by the quantity of questions about
the motivation of each sequence of moves he showed. Audience was still asking: ”why
here?”, ”why it is more important than that?”, ”why this is a good move? ” etc. At the
beginning, he had the impression that players in Europe want to have a specific answer

18

THE THEORY BEHIND THE SUBJECT

Figure 2.8: Tacit and explicit knowledge[NT95].

for everything, even if it was impossible to give such an answer. Over the years of work
in Japan, sensei was accustomed to something almost opposite. There was enough that
professional Go player said: ”This is a good move.” In one book there is an exercise
consisting of setting day by day the same situation on the board and repeat: ”White has a
better position.” until we are totally convinced that it is true.

In the culture of the West emphasis is placed on the explicit knowledge. We often do
not realize the importance of tacit knowledge.

”Knowledge of experience tends to be tacit, physical, and subjective, while
knowledge of rationality tends to be explicit, metaphysical, and objective.”[NT95]

Ikujiro Nonaka and Hiroaka Takeushi in their book ”The Knowledge-Creating Com-
pany” introduced distinction between tacit and explicit knowledge presented in the figure
2.8. The core of their theory is the types of knowledge conversion spiral connecting each
field of the diagram. In this way, there are four areas of knowledge conversion:

Socialization: From Tacit to Tacit

”Socialization is a process of sharing experiences and thereby creating
tacit knowledge such as shared mental models and technical skills.”[NT95]

The good example of the socialization process is when a new born baby starts its
life. It does not know any language and did not ever go to any school. Nevertheless,
it learns rapidly how to move, walk, pronounce the words and talk. It is done only
through the observation and imitation of the environment. After this example, it is
impossible to deny the enormous power of knowledge achieved in this way.

Externalization: From Tacit to Explicit

”Externalization is a process of articulating tacit knowledge into explicit
concepts. It is a quintessential knowledge-creation process in which tacit

19

THE THEORY BEHIND THE SUBJECT

knowledge becomes explicit, taking the shapes of metaphors, analogies,
concepts, hypotheses or models.”[NT95]

Nice example of externalization comes from my friend. She once said in her work
that she would like to prepare a pizza. Then her colleague response that he knows
how to make it, so she asked him about the recipe. Colleague thought for a moment
and then began to dictate - ”Necessary components are the oil, flour and yeast. You
must knead them together and put in the fridge for half an hour, to yeast grown.
Later, just spread it on to the oiled form and arrange the components you like.” My
friend wrote down the whole formula, and ask whether she understood everything
correctly. Next day she prepared the pizza precisely with the the given recipe. The
pizza was impossible to eat. She went back to her colleague and described what she
has done step by step. A colleague was very amused that she did not use the water
to make the yeast grow. This ingredient was so obvious to him that he completely
forgot about it.

Presentation of tacit knowledge in the form of perfectly corresponding explicit con-
cepts may be difficult. Therefore, in this process there the metaphors, analogies,
stories, etc. are often used, which indirectly show the subject of knowledge. It is
much easier for human to understand and remember a good story, than a ”cold”
logical reasoning.

Combination: From Explicit to Explicit

I believe that academical work on a thesis is a great example of combination. Stu-
dent is going through many documents about the given subject. The documents
contain externalized knowledge from many sources and points of view. Student is
combining it and during this process he creates new explicit knowledge.

Internalization: From Explicit To Tacit

”Internalization is a process of embodying explicit knowledge into tacit
knowledge. It is closely related to ”learning by doing””[NT95]

When we start to learn how to drive, we have almost no tacit knowledge about it. So
we go to driving course where instructor tells us a lot of things. What is a gearbox,
when to turn on a lights, where is a break, what a road signs mean etc. In the middle
of the course, we are driving with a lot of things in our mind, but we are driving. It
can be said that it is ”explicit knowledge in action”. After one year of experience we
can easily drive, talk and think about our business simultaneously. Now our driving
depends fully on a tacit knowledge.

20

THE THEORY BEHIND THE SUBJECT

A spiral in the figure represents a continuous process of passing knowledge through
various stages, resulting in a continuous knowledge growing. It is nicely described by
quote bellow.

”Knowledge is the only resource that increases with use.”[PRR00]

2.2.3 Knowledge management Life Cycle

The figure 2.9 presents knowledge management Life Cycle. It is a good backbone to
segregate main knowledge management activities.

Figure 2.9: Knowledge management Life Cycle[SAA99]

Identify In the beginning of any knowledge initiative, we have to identify already ex-
isting knowledge. For the purpose of illustration we can create fictional company
case.

A manager of infrastructure department in a bank has 100 experienced developers in
the COBOL and the IBM Mainframe applications designed for 3270 terminal. The
technology has already over 40 years, so it slows down the development process.

Plan He wants to implement new technology to improve speed and quality of develop-
ment process. As current system based on IBM Mainframe and COBOL is very
stable and fast, he wants to avoid changing it. Instead, he wants to take advantage
of full potential of desktop computers nowadays as tool for developers.

Acquire and Develop He puts the experts to find out, if there are any solutions on the
market that meets the requirements. Then, he makes contact with software company
and set up pilot program. During the pilot program few of employees go through
new tool training program and acquire new knowledge.

Distribute The pilot program is finished, and he is happy of results achieved by the pilot
group. Now, he wants to propagate a new knowledge towards company. There are
many principles telling how to do it best, there are also many software solutions
which will be reviewed in the next chapter. To keep things simple for usage of this
”Knowledge management Life Cycle” description, lets describe only one proverb.

”The knowledge exchange mechanism:
Knowledge sharing = communication + knowledge recreation.”[SAA99]

21

THE THEORY BEHIND THE SUBJECT

We, people, are very diverse. Each of us process the incoming informations in his
own unique way. It is that way because of gens, life experience etc. That is why, it
is impossible to just ”copy knowledge from brain to brain”. We learn by combining,
what we already know with new information. Our knowledge is more created than
copied. That is why, the best way to distribute knowledge is by improving right
side of above equation. There are, nowadays, thousands of ways how to improve
communication. One of them is by implementing well suited computer system, but
we should be aware that it is not enough.

”Do not expect software to solve your knowledge problem.”[DP00]

Even the best knowledge management computer system will fail, if people will not
use it. Considerations about ”how to make people share the knowledge” and ”how
to improve the knowledge recreation” are beyond of the scope of this document.

Use the knowledge Our employees now are using new software to develop and maintain
old school applications. They are happier and more effective.

Maintain In the active working environment, there is a possibility of arising of problems
and bugs. That is why, we should maintain the quality of our knowledge.

Dispose When there will be no more COBOL systems left, knowledge about it will be
probably no more needed. That is the moment, when the knowledge management
chain ends.

Fictional case described above is intended to show general idea of the knowledge
management life cycle. In fact there are many conceptions and techniques which can be
used in the particular steps. Some of them will be presented in the next sub-chapter.

2.3 Software knowledge management

There is a lot of knowledge involved in software engineering processes. Software projects
need collaboration of many peoples at all levels of software creation process. Most of
the people involved have wide knowledge about computer technology, programming lan-
guages, software engineering methods, software testing. Virtually everyone has to know
at least something about each software engineering activities.

There are several reasons why software engineering may want to interest in knowledge
management. First of all, there is a need to continuous adaptation, because computer
world is changing so fast. ”Knowledge helps a software organization to react faster and
better.”[Sch09] Well managed knowledge may help to avoid making the same mistakes.
On the other side, it can help recreating good practices and solutions. Both can be done on

22

THE THEORY BEHIND THE SUBJECT

Figure 2.10: General map of knowledge management tasks.

the level of organization, it is called organizational learning. Figure 2.10 presents general
overview of knowledge management tasks in software organization.

”We tend to think of learning as a process by which individuals gain new knowledge
and insights and thereby modify their behaviour and actions. Similarly, organizational
learning entails new insights and modified behaviour. But it differs from individual learn-
ing in several respects. Firstly, organizational learning occurs through shared insights,
knowledge and mental models. Thus, organizations can learn only as fast as the slowest
link learns. Change is blocked unless all of the major decisions makers learn together,
come to share beliefs and goals and are committed to take actions necessary for a change.
Secondly, learning builds on the past knowledge and experience - which is in memory. Or-
ganizational memory depends on institutional mechanisms(e.g., policies, strategies, and
explicit models) used to retain knowledge.”[Sta94]

There is also child concept called learning software organization. ”In this context,
Feldmann and Althoff have defined a ”learning software organization” as an organization
that has to ”create a culture that promotes continuous learning and fosters the exchange
of experience”.[BD08]

Rus enumerates several knowledge needs of software engineering company.[RL02]

23

THE THEORY BEHIND THE SUBJECT

Acquiring knowledge about new technologies. This kind of knowledge is hard to esti-
mate, but quick acquiring and mastering this kind of knowledge is crucial to soft-
ware organization.

Accessing knowledge about domain for which software is being developed. Software de-
velopment for e.g. chemical company differs from software development for trav-
eling company.

Sharing knowledge about local policies and practices. As it was told before, each orga-
nization have own polices, practices etc., which can be called in general culture of
organization. This knowledge in many cases is shared only at informal meetings. It
takes time for new employee to get it in that way.

Capturing the explicit knowledge and knowledge ”who knows what”. Capturing the
explicit knowledge will be discussed later. In the software organizations there are
naturally emerged experts, who hold knowledge about the specific areas. There are
cases, where ability of fast contacting them can be crucial. Unfortunately, they are
often hard to find, also, some day they can leave an organization leaving knowledge
gap behind. It is possible, that the gap will be noticed only when the knowledge will
be needed.

Collaborating Software development is the group activity, independent of space and
time. Developers can work in different places, like office and home. It is impor-
tant to keep ability of high level cooperation between members. It means, easy
access to a virtual ”workplace” and synchronization mechanisms.

2.3.1 Knowledge management strategies and generations

Knowledge management concept emerged in mid- 1980s and grows rapidly from the
1990s.[RL02] First workshop on ”learning software organizations” was organized in 1999.
[BD08] Over 20 years of active presence in the business and academic fields of knowl-
edge management created many ideas and tools. There are attempts to categorise it. For
purpose of this document only two will be described briefly: main strategies and genera-
tions.

As the field becomes more mature it changes and evolves. there are attempts to divide
knowledge management into two generations. ”In the introduction to the book Challenges
and Issues in knowledge management, in the field of management consulting, Buono
and Poulfelt claim that the field is moving from first to second generation knowledge
management.

In the first generation knowledge management, knowledge was considered as a posses-
sion, something that could be captured, thus knowledge management was largely a

24

THE THEORY BEHIND THE SUBJECT

technical issue on how to capture and spread the knowledge through tools like man-
agement information systems, data repositories and mechanistic support structures.

The second generation of knowledge management is characterized by knowing-in-action.
Knowledge is though of as a socially embedded phenomenon, and solutions have to
consider complex human systems, communities of practice, knowledge zones, and
organic support structures. The change in knowledge management initiatives is seen
to go from a planned change approach to a more guided changing approach.”[BD08]

According to Hanssen there are two main strategies for knowledge management -
codification and personalization.[HNT05] In the area of software engineering knowledge
management both are used.

Codification can be described as ”people to documents”. In Nonaka model it is con-
nected to process of externalization of knowledge. The main idea is to build best
possible computer system to store and receive knowledge. It supports reuse of
knowledge, but on the other hand relies on investment in knowledge storing sys-
tem. In this strategy people should be encouraged and rewarded for using and
contributing in the knowledge storing system.[HNT05] It is more related to ex-
plicit knowledge and thus to traditional development methods such as the waterfall
process.[NB07]

Personalization can be described as ”person to person”. In Nonaka model it is connected
to process of socialisation of knowledge. The main idea is to develop best possible
networks to connect people so tacit knowledge can be shared. In this strategy people
should be rewarded for directly sharing knowledge with others. It relies on individ-
ual expertise, question ”who knows what” fits in this strategy.[HNT05] It is related
more to tacit knowledge and will support agile software development.[NB07] It can
be described with quote bellow:

”Knowledge management is about facilitating knowledge sharing by peo-
ple. It is about increasing their connectivity.”[SAA99]

2.3.2 Post-Mortem Analysis

PMA(Post-Mortem Analysis) also called project retrospective is an example of knowl-
edge management tool often used in software engineering from corporations like Mi-
crosoft and Apple Computer to medium and small companies.[AdOdSBD07] The PMA
is a tool to externalize knowledge and it fits into codification strategy. Maybe it sounds bit
sophisticated, but main concept behind it is very simple. It can be described in two steps:

1. Gather all participants from just finished project

25

THE THEORY BEHIND THE SUBJECT

2. Ask them to identify the aspects of project which:

(a) Worked well and should be repeated in the future.

(b) Worked badly and should be avoided in the future.

(c) What was merely ”OK”, but leave room for improvement.

[SDHM03]
As the main idea behind PMA is so simple, the tool is flexible and can be used in

many ways. It is flexible in:

• Phase of the project - it can be done after finishing whole project or after reaching
milestone

• Context - questions can be asked from general to very specific aspects like pro-
gramming techniques used

• Time and place - it can be done as short(e.g. 2 hours with all + 1 hour with team
leader) interview with all participants at once or on the individual meetings

• Structure - it can be relatively informal or formal and precisely structured

[AdOdSBD07]
PMA helps to avoid ”lost knowledge” problem. As Anquetil claims, it is a huge

problem in a software maintenance. It takes from 40% to 60% of software maintenance
effort to understand the system maintained. ”The knowledge is ”extracted” at great cost
from detailed analysis of the system’s source code.”[AdOdSBD07] On the other hand, it
is relatively easy to capture this knowledge during a software creation.

2.4 Tools for software knowledge management

As the software engineering is about effectively creating the computer software, there
are many applications to support SE activities. We are talking about tools for knowledge
management in software engineering, so about connection of two disciplines. We can
approach it from direction of software engineering tools and knowledge management
tools. We begin from software engineering side. Briefly describing in the order of the
waterfall model we have:

Software specification is theoretically possible in the simplest case by meeting the client
once and trying to imagine and remember ”what he wants?”. In the real life it takes
many documents, UML(Universal Modelling Language) diagrams and discussions
of various kind to create professional specification. The software to support this is
focused on improvement of client-engineer communication, quality of exchanged

26

THE THEORY BEHIND THE SUBJECT

documents and diagrams. We can name Microsoft Visio as the leading diagrams
creating tool.

Software design also in the simplest case is possible just in the mind of the engineer. To
support design of bigger projects there are many tools mostly based on UML. They
can even create source code from UML diagrams. We can name here open source
ArgoUML3.

Software implementation is also possible by using only the simplest text editors like
”notepad” to write a source code. But everyone, who actually tries it knows that it
is hard. That leads to extending text editors with various features to make software
development easier and more efficient. Source code’s syntax highlighting to avoid
syntactic mistakes and make the code more ”visible” for humans is one of the basic
improvements. Later, it becomes possible to fold and unfold parts of code, editor
starts to make suggestions about keywords, variables etc. When text editor starts
to organise whole programming project, enable to create GUI by moving the build-
ing blocks by the mouse and debugging whole application it cannot be called ”text
editor” anymore. It becomes IDE(Integrated Development Environment). Leading
open source projects are Eclipse4 and NetBeans5, a well-known commercial solu-
tion is Microsoft Visual Studio.

Because the source code changes during development and in most cases there is
more than one developer, revision control systems were created. Very popular ex-
amples are SVN and GIT.

Software verification and validation is important because of complexity of computer
software. It is almost impossible to create software without bugs. That is why there
are bugs tracking systems like Bugzilla6 or Mantis Bug Tracker7.

The applications described can be somehow called knowledge management tools as
they support codification(e.g. in form of diagrams) and personalization(e.g. by the UML
diagrams to support engineer-client communication). But it is only on the level of one
project. Previously, we have talked about management of the whole software engineering
institution knowledge. To accomplish this task different software is needed.

Microsoft Team Foundation Server is one of the complete solutions for managing
whole life-cycle of team projects. It contains work item management, source control, bug
tracking, reports generator and detailed guides for Microsoft versions of software devel-
opment processes. It uses Windows SharePoint Services as a web portal and document

3http://argouml.tigris.org
4http://www.eclipse.org
5http://www.netbeans.org
6http://www.bugzilla.org
7http://www.mantisbt.org

27

THE THEORY BEHIND THE SUBJECT

repository which is integrated with Microsoft Office Applications.[Mic10] Along with the
Visual Studio and Microsoft Windows of course, it virtually covers all needs of software
engineering process. On the other hand, it can be an expensive solution and the users are
forced to learn and follow Microsoft’s way of doing things.

The main rival on the market for the Microsoft’s solution is Jazz from IBM. ”Jazz is
an IBM Rational initiative to help make software delivery teams more effective.”[IBM10]
It consists whole family of ”Rational” products. The main one is Rational Team Concert
with similar features to Microsoft TFS. It helps in management of work items, has source
control, building the management, iteration planning support and automated reports gen-
eration. To collaboration on the documents it can use Lotus Quickr and Microsoft Share-
Point. To support social networks it can connect with Lotus Connections or Microsoft
Office SharePoint Server’s social networking features. The main idea again is that a Team
is the most important in the software development. The second important thing is that,
as IBM says they are intended to ”break the walls between the tools”. That is why IBM
solution can or have to collaborate with software from various vendors. Of course, this
solution is also commercial and can cost a lot.

On the other side of the commercial wall, there are open source solutions. We can
use Redmine8 for the project management, along witch GIT or SVN for source con-
trol, NetBeans or Eclipse as the main IDE, wikis as the main documentation holder,
XMPP(Extensible Messaging and Presence Protocol) for communication, Linux as op-
erating system etc. We can also build social network with e.g. Elgg9. In fact, there is
many possibilities in the open source world to build functionality in many aspects similar
to provided by commercial tools described above. It all comes free of charge and can be
precisely suited to needs of institution. It sounds great, but there is always second side
of a coin. In the case of open source applications we have responsibility for connecting
all the parts together and maintaining it. As the most popular open source licence GNU
GPL(General Public License) says:

”This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.”[Fre07]

In the case of open source solutions, institution does not have to pay for a software,
but does have to have open source solutions specialists. To find the best suited solution,
configure and maintain it on the level of organisation certain knowledge is necessary. In
the case of commercial solutions a lot of job is already done, but on the other hand, it is
expensive and we have to do things in the way proposed by the solution seller.

8http://www.redmine.org
9http://elgg.org

28

THE THEORY BEHIND THE SUBJECT

Software engineering side of tools has been briefly described. Now, we will jump to
the opposite point of view. It can be summarized by the question: ”What tools used for
knowledge management in general can be useful for software engineering?”.

Now, we will take a closer look on the already mentioned solutions - Microsoft Share
Point and IBM Lotus R© Quickr R©.

Share point is a collaboration portal allowing to share documents and other informa-
tion through web based portal between end users in the company. The name ”Share Point”
refers to several products, the most important are WSS(Windows Share Point Services)
and MOSS(Microsoft Office Share Point Server). WSS is a free of charge addition to
Windows Server and can be downloaded from Microsoft webpage. It provides many fea-
tures including CMS, blogs, wikis, documents library, bug tracking, search engine and
many more. It is mainly foundation to the MOSS, but well used can be very useful for
small and medium companies. For the enterprise clients Microsoft offers MOSS. It is a
commercial product, based on a WSS core.

IBM’s product in the same area is the IBM Lotus R© Quickr R©. It contains similar
features like wikis, Blogs, File Sharing, Documents Libraries, Forums etc.

2.4.1 Wikis

In 2010 probably majority of the Internet users know at least one wiki - Wikipedia pre-
sented in the figure 2.11. A story of wiki started in 1994, when Ward Cunningham began
to develop WikiWikiWeb - the first wiki. He originally described it as ”the simplest online
database that could possibly work”. At the beginning of his work, he created number of
wiki design principles:

• ”Simple - Easier to use than abuse. A wiki that reinvents HTML markup ([b]bold[/b],
for example) has lost the path!

• Open - Should a page be found to be incomplete or poorly organized, any reader
can edit it as they see fit.

• Incremental - Pages can cite other pages, including pages that have not been written
yet.

• Organic - The structure and text content of the site are open to editing and evolution.

• Mundane - A small number of (irregular) text conventions will provide access to
the most useful page markup.

• Universal - The mechanisms of editing and organizing are the same as those of
writing, so that any writer is automatically an editor and organizer.

29

THE THEORY BEHIND THE SUBJECT

Figure 2.11: Wiki Wikipedia page.

• Overt - The formatted (and printed) output will suggest the input required to repro-
duce it.

• Unified - Page names will be drawn from a flat space so that no additional context
is required to interpret them.

• Precise - Pages will be titled with sufficient precision to avoid most name clashes,
typically by forming noun phrases.

• Tolerant - Interpretable (even if undesirable) behavior is preferred to error mes-
sages.

• Observable - Activity within the site can be watched and reviewed by any other
visitor to the site.

30

THE THEORY BEHIND THE SUBJECT

• Convergent - Duplication can be discouraged or removed by finding and citing
similar or related content.”[Cun94]

As time shows this principles are brilliant. Wikis rapidly spread around the world.
There is number of wiki implementations, both commercial and opensources. One of the
most popular is ”MediaWiki” originally for use on Wikipedia10. Implementations differ
in details and purposes, we will describe few for a general view of the subject:

TiddlyWiki 11 is nice to begin with, because it is the smallest possible one. In fact, it is
only one file! It is simple and useful, for small projects like personal notes. It can
be easily send by the email or held on pendrive.

doxWiki 12 is a bigger one, but still very small(about 200kB after installation) wiki im-
plementation. It comes with simple HTTP server written in perl so there is no need
to set up ”big” web server like Apache. It needs only perl and web browser, so it
also can be easily take away with an ”USB thumb”.

dokuWiki 13 is a wiki implementation suited for small and medium company’s docu-
mentation needs. It is written in PHP and uses plain text files to store pages. It has
already about 500 plugins.

Twiki 14 is aimed to enterprise market. ”It is typically used to run a project development
space, a document management system, a knowledge base, or any other groupware
tool, on an intranet, extranet or the Internet”.

TikiWiki 15 is all in one solution. It brings along wiki, forums, blogs, bug tracker etc.

Wikis, because of a great conceptions behind, are very useful as data repositories and
collaboration portals. As it was briefly presented before, commercial solutions from two
main vendors are actually based on existing Web 2.0 ideas interconnected with existing
desktop software. One could argue - if it is really necessary to buy such software, if we
can use just wiki instead, in which there are parts of this software anyway. In considering
purchase of tool like this, is important to ask ”what value is added by this tool and if it is
not the well known wine in the fancy new bottle”. Flexibility and scalability are the main
features of wiki which allows to appear as a single project’s page, but also as a corporate
portal. The usage depends only on the vision of the user and is not limited by ”hard
coded” parts. In the wiki everything is a page, and creating a page is very easy. Each page

10http://www.mediawiki.org
11http://www.tiddlywiki.com
12http://doxwiki.sourceforge.net
13http://www.dokuwiki.org
14http://twiki.org
15http://tikiwiki.org

31

THE THEORY BEHIND THE SUBJECT

can contain various content like plain text, formatted text, pictures, movies, diagrams,
LaTeX equations, highlighted source code and attachments of any kind. Still, because of
a unified style, pages remain easily readable. Each wiki page is a plain text, which makes
it easy to handle with external tools. A variety of plugins extends the flexibility of wikis
even further.

2.4.2 Semantic wikis

Semantic wikis follows the idea of implementing current Semantic Web technologies into
wikis. In this way wiki content can become ”computer readable”. We begin our trip to
semantic wikis by fast overview of core semantic web technologies. Then, the discussion
about semantic wikis on the example of Semantic MediaWiki16 will be taken.

Semantic Web is an idea of Tim Berners-Lee who created WWW standard and the
first Internet browser. The difference to already existing standards is that in Semantic
Web data have to be ”understand” not only by humans, but also by computers. It can be
done by describing all data by unified metadata. Later, it will be possible for computers
to do several operations on the described data like: improved searching, combining and
reasoning. Semantic Web is based on existing, well known standards like HTTP extended
by new ones on different abstraction level.

”Semantic Web it is collection of standard technologies to realize a Web of
Data.”[Her09]

To grasp the concept of Web of Data we first can look at the current situation. For
example, there are few social networking portals like Facebook or LinkedIn. If we fill
in our profile data and add our friends at one portal and we want to use another one we
have to do the whole work again. This is because there is no connection between those
two applications which held the personal data. It can be called ”Web of Applications”.
In the opposite, in ”Web of data” data chunks or generally speaking resources can be
interchangeable between applications. It can reduce redundancy, revision problems and
can have huge impact on the Internet as whole. The collection of basic ideas to implement
Semantic Web is described bellow.

URI(Uniform Resource Identifier) is a standard used to resource identification. In par-
ticular, URI is used to identify network resource. It is a parent concept to the
URL(Uniform Resource Locator)17.

The examples of URI are:

• http://www.server.com
16http://semantic-mediawiki.org
17http://tools.ietf.org/html/rfc2396

32

THE THEORY BEHIND THE SUBJECT

• ftp://ftp.server.com

• mailto: name@server.com

RDF(Resource Description Framework) is a language created by W3C18 to describe
Web resources in computer understandably form. It is a solution for enormous
amount of all kinds of data like: text, pictures, videos, sound files etc. in the In-
ternet. It is hard to manage or systematize this data. It can be compared to mixed
pages of book without table of contents or to box of dvd disks without labels. Table
of content in a book is a kind of ”metadata”, it is data about data. There are already
some examples of metadata in the Internet, like XHTML <meta> mark-up. But,
unfortunately, they are to ambiguous and not unified. The goal of RDF is to create
universal worldwide specification of describing metadata.

RDF can be based on XML, and consist of three main elements, called ”triple”, to
describe data. The example of triple is shown in the figure 2.12. This elements
are actually an extended link. It describes two ends of link e.g. ”This thesis” and
”wikis” and relation between them e.g. ”is about”.

Figure 2.12: RDF triple

SPARQL(SPARQL Protocol And RDF Query Language) is a query language created
to search through RDF metadata.

These three elements are enough to catch basics of Semantic Web, although there
are more specifications and work is in progress. For example, in February 2010
W3C opened Semantic wiki on Semantic Web standards19.

There are already several implementations of Semantic wiki like Platypus Wiki20,
IkeWiki21 and Semantic MediaWiki22. To show the power of semantic wikis several fu-
tures that distinguish Semantic MediaWiki from MediaWiki on the example of MediaWiki
based Wikipedia can be presented.

18http://www.w3.org
19http://www.w3.org/2001/sw/wiki/Main Page
20http://platypuswiki.sourceforge.net
21http://www.ikewiki.com
22http://semantic-mediawiki.org/wiki/Semantic MediaWiki

33

THE THEORY BEHIND THE SUBJECT

Category:1879 births
Category:1955 deaths
Category:19th-century German people
Category:20th-century German people
Category:People from Ulm
Category:Academics of the Charles University
Category:Albert Einstein|Albert Einstein
Category:German Jews
Category:German Jews who emigrated to the United States to escape Nazism
Category:German-language philosophers
Category:German Nobel laureates
Category:German pacifists
Category:German philosophers
Category:German physicists
Category:German refugees
Category:German socialists
Category:German vegetarians

Figure 2.13: Albert Einstein page’s categories in Wikipedia.

Search in Wikipedia we have only a possibility to text search. It is impossible for e.g.
to ask about all board games. If there is a page where words ”board game” are
mentioned it will be in the result of search, even if the whole sequence will be ”it is
the opposite to board game”. Semantic wiki can be more like query to the relational
database.

Lists in Wikipedia for e.g. the biggest cities in Europe sorted by the population must be
generated manually. But all big European cities have its unique pages in Wikipedia
with population included. If population of one city changes, we have at least two
places to change it. With semantic wikis it is possible to automatically generate
such lists by a proper query.

Categories in Wikipedia are widely used for structuring data. In the figure 2.13 are pre-
sented just few categories to which Albert Einstein’s page belongs. In this way it is
possible to find all Nobel laureates by browsing proper category. But categorization
structure like this is for sure hard to generate and maintain. In semantic wiki, again,
it is possible to achieve similar functionality by proper query.

Export to the external applications from Wikipedia can be done in a very limited way. It
is possible to export whole Wikipedia to an offline version e.g. for mobile phones23,
we can also imagine external use of Wikipedia’s categories. Other data are mostly

23http://www.legaltorrents.com/torrents/526-wikipedia-for-mdict—may-2009

34

THE THEORY BEHIND THE SUBJECT

impossible to export automatically. With semantic wiki situation is different, data
with RDF metadata can be easily shared through the network.

35

THE THEORY BEHIND THE SUBJECT

36

Chapter 3

WeakType plugin

3.1 WeakType idea

Wikis are already very useful tools for software engineering. However, there are still
functionalities that can be implemented into wikis to support software engineering even
better. It is especially interesting because wikis are in many cases open solutions encour-
aging people to improve them. Semantic wikis presented before are extending existing
wiki conception by the new one. Classic wikis are totally free in the terms of structure
and formalization of the data. This sometimes can lead to ”informational mess”. As it
was shown, Semantic Web conception implemented in wikis is highly beneficial in the
terms of structuralization of data. Unfortunately, there is also the other side of the coin -
Semantic Web technology’s ease of use.

”We need to make this technology dramatically easier to use, for both developers and
end users. Semantic Web technologies are difficult conceptually, even for experienced
software developers. It’s difficult to imagine nontechnical end users effectively authoring
RDF statements without software assistance. Even for sufficiently trained users, writing
the required precise statements takes much more time and effort than writing informal
text.”[Sou05]

Authors of white paper ”Incremental Knowledge Acquisition in Software Develop-
ment Using a Weakly-Typed Wiki” presents different idea of making wiki data more
structured. They introduces Weaki - wiki with weak types[CFFA09]. In the Weaki there
are special purpose pages called types. They are intended to provide structure for the
other pages. The conception of templates for wiki pages is well known. For example,
when we know that in our wiki will be many pages describing Use-Cases, we can create
Use-Case template page. This page will have only the structure, no content inside. Later,
when we want to create new Use-Case page, we can start from the Use-Case template and
fill it in with specific content. Weaki idea is in some way opposite. We start from creating
a ”normal” page and, after it, content reorganization according to chosen type is possible.

37

WEAKTYPE PLUGIN

The problem of this practical part of the thesis is to integrate elements of Weaki con-
ception into one of the well known wiki engines. It can be valuable to use in software
engineering knowledge management as it will support codification of knowledge.

3.2 Creation of the plugin

The problem introduced before is to create wiki with support of weakly typed pages.
This chapter is intended to present the creation process of this tool. The final result of
development should be the prototype code showing ”weakly typed idea” in action. Below
are several principles that the tool should follow.

• Tolerant - ”Interpretable behavior is preferred to error messages.”[Cun94]

• Organic - The structure and text content of the site are open for editing and evolu-
tion.

• Everything is a page - Authors may create and edit types through the same mech-
anism used to create and edit contents, as both types and contents are authored as
regular wiki pages.[CFFA09]

3.2.1 Specification

We begin with normal wiki page like this one in the figure 3.1.

Figure 3.1: Base wiki page.

As we can see, this page contains 4 headers and some text. Of course, in a real case,
a page can be much more complicated, but probably almost always it will contain one
or more headers to group the data. That is the reason, why the headers are the most

38

WEAKTYPE PLUGIN

important for us in this prototype. The tool should collect headers structure and look for
similar types. ”Type” in Weaki conception is a wiki page with defined structure intended
to be a template for other pages. We can see an example of the type page in the figure 3.2.
It contains only headers organized in such way, that it defines a ”use case” page.

Figure 3.2: Type page.

The tool should collect all headers from the base page and look for types with similar
structure. As a result, it should produce table with names of matching types, level of
matching and link to the second stage of processing. Tool can be activated by some new
wiki markup. Our base page with tool markup should look similar to the figure 3.3.

Figure 3.3: Base wiki page with WeakType plugin data.

As we can see, the ”Use-Case” type from figure 3.2 has been found and presented in
the generated table. Matching rate is 100%, because all headers presented in the type was
present in the base page. And finally, there is a link to the new, based on the type, page.
The second part of the tool processing begins with mouse click on that link. The Tool
should organize all matching headers in the way presented by the type. All the data that
does not match should be added below after special mark. As the final result, we should
obtain the page similar to the figure 3.4.

Whole process is presented in the figure 3.5.

39

WEAKTYPE PLUGIN

Figure 3.4: Result page.

3.2.2 Architectural design

Whole code should be integrated with the well-known, already existing wiki implemen-
tation. There are several reasons to support this idea. First of all, as we have seen before,
there are many wiki engines already on the market, most of them are available totally free
of charge and supplied with full source code. The license allows and even invites to use
them as the base for various applications. In many cases they are mature projects with
years of continuous tests and improvements. Second reason is that the Weaki conception
is based on wiki foundations. All the basic concepts are preserved and only few of them
are improved. As the purpose of this tool is only to show the idea in work, it would be a
massive waste of effort to build all the platform from scratch.

The tool will be based on the DokuWiki1. DokuWiki was created by Andreas Gohr
in June 2004. It is currently one of the most popular wiki engines in use2. It is released
under terms of GNU General Public License and the source code is well-documented.
DokuWiki is written in PHP language and based on plain text files. It has a generic plugin
interface, which simplifies the process of writing and maintaining plugins. There are over
581 plugins3 already available. Basing on these facts, it was decided that creating the
tool as a DokuWiki plugin is the best choice. As the DokuWiki is free of charge and
cross-platform (it basically needs only a working web server), there is no need to pay for
operating system neither. Ubuntu Linux4 together with Apache Web server and PHP are

1http://www.dokuwiki.org
2http://www.wikimatrix.org/stats.php
3http://www.dokuwiki.org/plugins
4http://www.ubuntu.com

40

WEAKTYPE PLUGIN

Figure 3.5: General view of whole process.

41

WEAKTYPE PLUGIN

Figure 3.6: Architectural design.

stable base for the tool. Whole architecture is presented in the figure 3.6.
Work with plugin system is good to begin from reviewing the list of already available

plugins5 and reading ”Development Resources” page of DokuWiki documentation6. ”At
the moment, DokuWiki features five different plugin types:

Syntax Plugins extend DokuWiki’s basic syntax.

Action Plugins can be used to extend or replace many aspects of DokuWiki’s core oper-
ations, from saving wikipages to adding new action modes.

Admin Plugins can provide administration functionality for DokuWiki - these plugins
are accessible to superusers and managers via the Admin button.

Helper Plugins can be used to provide functionality to many other plugins, so each plu-
gin does not have to re-implement a certain function over and over again.

Renderer Plugins allow to create new export modes and to replace the standard DokuWiki
xhtml renderer.”[dok10]

3.2.3 Interface design

One of the strong side of wikis is that all sites and functionalities are unified in the term
of interface. There are all clean(without unnecessary decorations) and thus easy to read
and navigate. Interface of the tool should be well integrated into this style.

The tool in the term of interface contains several parts. Relations between them are
presented in the figure 3.7.

5http://www.dokuwiki.org/plugins
6http://www.dokuwiki.org/development

42

WEAKTYPE PLUGIN

Figure 3.7: Relations between interface elements.

Activation of the tool will be done as a new wiki markup - [WeakType]. It is the core
idea in wikis to use the markups in the pages, so one additional markup fits in
general conception.

Presentation of matching types will be done as a yellow box at the top of the page.
The yellow color is common in DokuWiki to present additional features. It will
distinguish data generated by the tool from the content of the page. The box will
contain a table presented in a DokuWiki style. The table will contain one row for
one found type. The row will be divided into three fields: wiki link to the type page,
indicator of ”how much of the page match the type” and the link to generate the
fusion page.

Presentation of the fusion page will be done similarly to the presentation of the match-
ing types to keep consistency of the interface. It will look as a wiki page with
yellow box above. The box will contain short explanation and two buttons - save
and cancel.

Not matching data separator will be created by using standard wiki markup. There will
be the text ”Not matching data” surrounded by two horizontal lines.

43

WEAKTYPE PLUGIN

3.2.4 Component design

Analise of the DokuWiki plugin system shows, that to reach desired functionality two
main components are needed.

Figure 3.8: States of the syntax component.

Syntax component will be implemented as DokuWiki syntax plugin. The goal of this
component is to add a new recognized marker to the DokuWiki syntax. After the
marker is found this component should compare actual page with all types pages
and generate ”presentation of matching types” box (figure 3.8).

Action component will be implemented as DokuWiki action plugin. It will be activated
by the link from the table created by syntax component. After activation, it will
combine structure taken from type and content taken from base page to create ”pre-
sentation of the fusion page”. This component will be also responsible for saving
result page (figure 3.9).

44

WEAKTYPE PLUGIN

Figure 3.9: States of the action component.

45

WEAKTYPE PLUGIN

3.2.5 Data structure design

The wiki page is divided into sections by headers. The headers can be nested and overall
they create tree structure with root in level 0.

====== level1 ======
===== level2 =====
==== level3 ====
=== level4 ===

Figure 3.10: Source code of the headers in DokuWiki.

In the DokuWiki headers are represented like in the figure 3.10. For the example, if
this chapter will be a DokuWiki page, its source code will looks similar to the figure 3.11.
In the next figure 3.12 it is presented as a tree of headers.

====== Chapter 3 ======
===== WeakType idea =====
===== Creation of the plugin =====
==== Specification ====
==== Architectural design ====
==== Interface design ====
==== Component design ====
==== Data structure design ====
==== Algorithm design ====
==== Implementation ====

Figure 3.11: Structure of this chapter as a DokuWiki headers.

46

WEAKTYPE PLUGIN

Figure 3.12: Structure of this chapter as tree of headers.

47

WEAKTYPE PLUGIN

3.2.6 Algorithm design

Find matching types
The goal of this process is to create a table with matching pages. Each row contains one
special wiki page called type which is somehow similar to the base page. The tricky part
is to find out which type page is similar and how much.

Currently, it is done in the few steps:

1. Get all headers from current page.

2. For each header run fulltext search in the types namespace for text matching pages.

(a) For each result add matched type name into output table

(b) If there is more than one hit to one type, add 1 into match column(in the picture
there is 100%, but in current version it is just a number of hits)

Create type based version of the page
This step is to create type based fusion of the base page and the type page. It should be
done by combining the type structure and the base content.

Currently it is done in two passes:

1. Algorithm presented in the figure 3.13 creates arrays containing:

(a) all data matching to the type

(b) pall not matching data

2. Algorithm presented in the figure 3.14 recreates matching array in order to:

(a) add other type headers

(b) preserve type order of headers

48

WEAKTYPE PLUGIN

*********** pass 1 *******************
* Get match and not match base lines *

read the input files
get lines from base file into array
get headers from type file into array
add informational line at the beginning of "not match lines" array
for each line of base file

?cut off weaktype activation line
get level of header(if the line is not header the returned
level is irrelevant)
if (current line is a header) and (header level equal or
below previous founded one)

// we have found header interesting line
// let’s find out if there is matching header in the
array of type headers
for each type header from type headers array

get the text of the header
get the level of the header
get the markup of the header(e.g. ==== title ====)
get the title of base line header (cut off all "=")
if base line header text it the same like the type
header text

// have found matching header!
put the founded title into Match array
set found indicator
// The level is taken from the type so it is
// type based in this internal iteration there
// is nothing else to do

if not found any matching header form type file,
put the header into NotMatch output array

else - the line is not header or the header level is higher
than last founded one

if found indicator is set
Put the line into Match array

else
Put the line into NotMatch array

// Now, we have a completed NotMatchBaseLines array and
// MatchBaseLines with matching headers and content
// Since the result page should be type based, we need to add
// not matching headers from the type array to preserve
// the order of type page it was best to do the second pass.

Figure 3.13: Pass 1: Get match and not match base lines.

49

WEAKTYPE PLUGIN

******************* pass 2 ********************
* rebuild MatchBaseLines array, add rest type *
*** headers, preserve type order of headers ***

for each type header

for each line from Match array
get level of header(if the line is not header the
returned level is irrelevant)
if (current line is a header) and (header level equal
or below previous founded one)

// it is a interesting header line
if it match with header line

put it into the Match array
set found indicator

else - it does not match
set found indicator false

else - the current line is not a header or the level
above previous founded one

if found indicator is set
add it to output array

if it has not found any matching header with content in
base array
add empty header to the output

concatenate output arrays

Figure 3.14: Pass 2: Recreate matching array.

50

WEAKTYPE PLUGIN

3.2.7 Implementation

DokuWiki is written in PHP. To begin the implementation process it is worth to see doc-
umentation page about coding style7. There are several obvious reasons to have unified
style of code. I chose ”vim” as an editor.

To create DokuWiki plugin it is needed to obtain a proper skeleton. It can be generated
by the DokuWiki Plugin Wizard8.

Because the architecture of this tool is DokuWiki plugin, it is important to know not
only a PHP programming language, but also DokuWiki framework. To get familiar with
creating plugins it is nice to review already existing plugins9. The DokuWiki Develop-
ment API Reference10 is also a good place to look during the implementation. It is created
by PHPXref11 which is a nice developer tool itself.

7http://www.dokuwiki.org/devel:coding style
8http://dwpluginwiz.chimeric.de
9http://www.dokuwiki.org/plugins

10http://dev.splitbrain.org/reference/dokuwiki/nav.html?index.html
11http://phpxref.sourceforge.net

51

WEAKTYPE PLUGIN

52

Chapter 4

Validation and Use-Cases

4.1 Scenario 1 - Web development

We have an imaginary web development company named WebDevel. The company is
using DokuWiki with a prototype of WeakType plugin to collect and manage all the data
involved in development process. Normal life-cycle of project related knowledge has a
beginning similar to described below:

1. Client makes contact with WebDevel

2. WebDevel makes an appointment and creates ”Brief” as single Weaki page.

3. Brief page is compared by WeakType plugin with existing types in system.

In this scenario WeakType plugin has types listed bellow:

• auction

• business card

• client

• e-learning

• ecommerce

• forum

• portal

• portfolio

• project

• task

53

Validation and Use-Cases

• use case

• web page

4.1.1 Use-Case 1

Our first use case concerns bookstore company, which get contact with WebDevel to order
solution of selling books in the Internet. Info Books, as is the name of the company, has
10-year tradition and decided to widen its horizons in the world of Internet, but decided
to spend only a little money for the beginning. Info Books suggested and asked about
solution of making not the whole website, but single pages with books descriptions and
possibility of selling them. Most of books to sell are old and unique in single copies.

WebDevel worker at arranged meeting with Info Books, as a new client, gathered
information and prepared a brief from the meeting, which can be seen in the figure 4.1.
It presents the description of company’s various data to present in the Internet targeted to
sell products in the proper designed layout. It also contains description of sample product.

Brief consists of 5 sections.

1. Contact data

2. Clients - characterize company and its clients.

3. Content lists menu components.

4. Products section presents all kinds of information about product as unified sample
product to put on the page and technical selling details.

5. Graphics is a description of page layout with suggestions about colors, pictures and
atmosphere to create. It has attached sample product picture to put on the page.

Such brief is not clear, because client do not know exactly what he wants. He asks for
advice, prescribes ideas and expectations. Now, it is up to WebDevel to figure out what
kind of project offer to client. Having that brief WebDevel can use WeakType plugin to
get suggestions what kind of project matches the most to these requirements. WebDevel
has a list of project types it can produce.

Plugin says that the best match is ”auction”. It seems to be a good idea, because
auction services already exist in the Internet and designing the single product pages is
sufficient for selling them with reduced costs. Info Books can order an auction page
as a part of auction service, for example, allegro.pl. It is the biggest auction service in
Poland offering auctions of single products put out by company or physical person. Each
product has its page developed by seller with description, photos and all the information
for transaction needed. Plugin’s additional action is sorting the brief according to order in
”auction” type. Data are organized.

54

Validation and Use-Cases

How plugin did it? Brief consists of 5 sections describing main areas formed on the
basis of client needs: Contact, Clients, Content, Products and Graphics with Photos. All
these headers are also listed in the project type called ”auction”, because auction project
requires describing these sections. Of course, there are other project types which match
here like ”e-commerce”. Needs presented by Info Books are sufficient for creating an
online shop. This is why this proposition appeared after using this plugin. However,
Info Books is not ready for ordering an online shop. Less matching types are: portal and
portfolio, which also appeared here because of similar content.

4.1.2 Use-Case 2

This case concerns another client, Domiforte. This company is an intermediary in selling,
buying and renting residential properties. WebDevel has made for them business cart
website few months ago. Brief from this time improved by ”business card” type can be
seen in the figure 4.2.

Few months later, Domiforte contacted with WebDevel to order an Internet portal
which should present offers of luxury properties in prestigious locations. Thanks to the
business cart website, company has developed during these months. Portal is intended to
ensure the highest quality of presentation of offers and contact with customers. Available
offers must always be current.

This case is different from use-case 1, mainly because client knows exactly what he
wants and cooperation has already taken place - this case is an extension of existing
project.

Present business meeting consists in creating technical specification of the project,
portal appearance and content description on the basis of previous website. WebDevel
can reach a composed brief from 4.2 above and choose option ”Generate” at the ”portal”
position. In this way, plugin WeakType will generate the data structure needed to fill in
order to produce a portal (figure 4.3). Portal specification’s sections has been added.

Now, during the meeting, new data can be clearly added and old data refreshed (figure
4.4).

55

Validation and Use-Cases

Figure 4.1: Brief from the meeting with client.

56

Validation and Use-Cases

Figure 4.2: Brief with the structure of ”bussines card” type. Graphics adapted from [Kam09].

57

Validation and Use-Cases

Figure 4.3: Bussines card page converted into portal type structure.

58

Validation and Use-Cases

Figure 4.4: Finished brief of portal page.

59

Validation and Use-Cases

4.2 Scenario 2 - Migration of the documentation

In this scenario we have an imaginary development company. It uses IBM Mainframe
technology along with COBOL programming language, DB2 database and CICS trans-
action system. The main task of the company is to maintain and improve one existing
complex system. All documentation about the system was in 15 000 MS World docu-
ments. They were written during activity of the company in particular teams of develop-
ers. There was no unified structure of the documentation between the teams. One day,
company’s manager during browsing a Wikipedia become interested in benefits of wikis.
He analyzed documentation system used in the company and decided to create the new,
better one. New system is based on DokuWiki with WeakType plugin.

All documents were migrated from MS World format to DokuWiki by automatic tool.
It has already been enthusiastically adopted by employees regardless from some unavoid-
able migration errors. But still, documentation had no unified structure. Searching, nav-
igating and creating additional helpful extensions was difficult. Now, WeakType plugin
comes to play.

After analyzing components of the system analyst created types listed bellow:

• CICS transaction

• COBOL batch

• COBOL copybook

• COBOL online

• ControlM definition

• Data set

• DB2 table

• JCL

• REXX script

Now, unifying the structure of pages becomes much easier. It can be done by devel-
opers in few short steps:

1. Open not unified documentation page

2. Decide what is the page type

3. Use WeakType plugin to convert page to desired type

4. Improve the result of conversion

Simple example of this procedure is shown in the figures 4.5-4.7.

60

Validation and Use-Cases

Figure 4.5: Example of not unified documentation page.

Figure 4.6: Page with the structure of ”JCL” type.

61

Validation and Use-Cases

Figure 4.7: Improved structurized documentation page.

62

Chapter 5

Conclusion

5.1 Results

The subject ”Software Knowledge Management using Wikis” is wide and obviously can
be investigated much deeper. In this thesis the main software engineering activities and
models were presented with observation that modern models come from combining and
improving traditional ones. The knowledge management was presented as modern disci-
pline based on management, philosophy and humanistic sciences. The term of knowledge
was not easy to define because of its origin - complex human brain. However, it was pos-
sible to present some useful models related to knowledge. The review of literature gives
us the main knowledge strategies - codification and personalization. It was shown that the
tools and conceptual models of knowledge management can be effectively used in soft-
ware engineering activities. The reverse sentence is also true, software engineering tools
are very useful in knowledge management. Both codification and personalization can be
supported by proper software. Presented advantages of wiki systems showed that they can
be used in a various applications, particularly as a software knowledge management tools.
The wikis were distinguished into traditional and semantic wikis. In the terms of structure
restrictions traditional wikis have no restrictions at all, on the other side, semantic wikis
puts a lot of pressure on the data structure.

In the practical part of the thesis the prototype of DokuWiki plugin was designed
and built. The plugin implements elements of WeakType conception presented in the
[CFFA09]. It can be said that it fits in the place between traditional wiki and semantic
wiki. As chapter 4 shows, this prototype can be useful in the real applications.

5.2 Future work

Like it is almost always in software world, the plugin can be extended much further. In
the terms of architecture it can evolve from actual syntax plugin into the action plugin.

63

Conclusion

Figure 5.1: Idea of interface improvement.

So it can be active all the time without a need to activate it by inserting [WeakType]

mark. This change implies changes in the interface design. Presentation of the matching
types can be done as in the ”fold unfold list” similar to the wiki page menu. This idea is
presented in the figure 5.1.

In the terms of algorithm, both core components can be evolved. Finding the matching
types can be improved by using text mining techniques. Creating type based version of
the page can be improved by adding support to other kind of type structure elements like
empty tables etc.

All in all, we are living in a rapidly evolving world. Thirty years ago there was no
WWW, and now, it is used virtually everywhere. Fifteen years ago there was no wiki, now
there is the Wikipedia with 19.738.652 pages. It was never so easy to share the knowledge
like it is nowadays. Still we have a lot of things to improve. New achievements bring new
challenges.

64

References

[AdOdSBD07] N. Anquetil, K.M. de Oliveira, K.D. de Sousa, and M.G. Batista Dias.
Software maintenance seen as a knowledge management issue. Informa-
tion and Software Technology, 49(5):515–529, 2007.

[BD08] F.O. Bjørnson and T. Dingsøyr. Knowledge management in software en-
gineering: A systematic review of studied concepts, findings and research
methods used. Information and Software Technology, 50(11):1055–1068,
2008.

[Boe86] B Boehm. A spiral model of software development and enhancement.
SIGSOFT Softw. Eng. Notes, 11(4):14–24, 1986.

[CFFA09] F.F. Correia, H.S. Ferreira, N. Flores, and A. Aguiar. Incremental Knowl-
edge Acquisition in Software Development Using a Weakly-Typed Wiki.
2009.

[Cun94] Ward Cunningham. Wiki Design Principles.
http://c2.com/cgi/wiki?WikiDesignPrinciples, 1994. Accessed 1
February, 2010.

[dok10] dokuWiki. Plugin Development. http://www.dokuwiki.org/devel:plugins,
2010. Accessed 1 February, 2010.

[DP00] Thomas H. Davenport and Laurence Prusak. Working knowledge. Har-
vard Business Press, 2000.

[Fre07] Free Software Foundation, Inc., http://www.gnu.org/licenses/gpl-3.0.txt.
GNU GENERAL PUBLIC LICENSE Version 3, 2007. Accessed 1 Febru-
ary, 2010.

[Her09] Ivan Herman. Introduction to the Semantic Web. W3C,
http://www.w3.org/2009/Talks/0615-SanJose-tutorial-IH/Slides.pdf,
2009. Accessed 1 February, 2010.

[HNT05] M.T. Hansen, N. Nohria, and T. Tierney. What’s your strategy for man-
aging knowledge? Knowledge Management: Critical Perspectives on
Business and Management, 77(2):322, 2005.

[IBM10] IBM, http://jazz.net/about/about-jazz-vision.jsp. Jazz is an IBM Ratio-
nal initiative to help make software delivery teams more effective., 2010.
Accessed 1 February, 2010.

65

REFERENCES

[IEE04] IEEE Computer Society. Software Engineering Body of Knowledge
(SWEBOK). Angela Burgess, EUA, 2004.

[Kam09] Paula Kamińska. Wizerunek firm w internecie, 2009. Bachelor thesis,
Academy of Humanities and Economics in Lodz.

[Mic10] Microsoft, http://msdn.microsoft.com/en-
us/teamsystem/dd408382.aspx. Team Foundation Server Home,
2010. Accessed 1 February, 2010.

[NB07] S. Nerur and V.G. Balijepally. Theoretical reflections on agile develop-
ment methodologies. Communications of the ACM, 50(3):83, 2007.

[NR69] P. Naur and B. Randell. Software engineering-report on a conference
sponsored by the nato science committee. Nato, 1969.

[NT95] I.A. NONAKA and H.A. TAKEUCHI. The knowledge-creating com-
pany: How Japanese companies create the dynamics of innovation. Ox-
ford university press, 1995.

[PRR00] Gilbert Probst, Steffen Raub, and Kai Romhardt. Managing Knowledge
- Building Blocks for Success. John Wiley & Sons, 2000.

[RKd03] P.N. Robillard, P. Kruchten, and P. d’Astous. Software engineering pro-
cess with the UPEDU. Addison-Wesley, 2003.

[RL02] I. Rus and M. Lindvall. Knowledge management in software engineering.
IEEE software, pages 26–38, 2002.

[SAA99] G. Schreiber, H. Akkermans, and A. Anjewierden. Knowledge engineer-
ing and management: the CommonKADS methodology. the MIT Press,
1999.

[Sch09] K. Schneider. Experience and Knowledge Management in Software En-
gineering. Springer-Verlag New York Inc, 2009.

[SDHM03] T. Stalhane, T. Dingsoyr, G.K. Hanssen, and N.B. Moe. Post mortem-an
assessment of two approaches. Lecture notes in computer science, pages
129–141, 2003.

[Som07] I. Sommerville. Software Engineering. Addison-Wesley, Reading, MA,
8th edition, 2007.

[Sou05] A. Souzis. Building a semantic wiki. IEEE Intelligent Systems, pages
87–91, 2005.

[Sta94] R. Stata. Organizational learning—the key to management innovation.
The training and development sourcebook, page 31, 1994.

[Wei85] K. Weick. Cosmos vs. chaos: Sense and nonsense in electronic contexts.
Knowledge in organizations, pages 213–226, 1985.

66

