
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Improving Database Reporting
Processes with XML Technologies

(Case Study of Sage Next)

Ricardo Miguel dos Santos Leandro

Report of Project

Master in Informatics and Computing Engineering

Supervisor: João Correia Lopes (Assistant Teacher)

3rd March, 2009

Improving Database Reporting Processes with XML
Technologies

(Case Study of Sage Next)

Ricardo Miguel dos Santos Leandro

Report of Project

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: Ana Paula Cunha da Rocha (Assistant Teacher)

External Examiner: José Carlos Leite Ramalho (Assistant Teacher)

Internal Examiner: João Correia Lopes (Assistant Teacher)

20st March, 2009

Abstract

This project aims to prove that it is possible to use XML language specifications and
associated technologies in the creation of reports. The current engine to generate reports
owned by Sage was made more than 15 years ago and has been in use ever since. Due
to its level of rudimentariness, an improvement was needed. The ability to export reports
onto other commercial report generating platforms is a crucial step to Sage’s ERP (Sage
Next) evolution. Therefore, the use of an XML language to define reports will increase
their portability.

To make a new reporting architecture, some XML technologies, a programing lan-
guage and a reporting tool were chosen. After that, an XML language based in Microsoft’s
Report Definition Language (RDL) was developed: the SRDL (Sage Report Definition
Language). To prove that the created SRDL had the desired complexity it was made a
conversion process from the reports of the previous reporting engine to the new architec-
ture. After that, an application was developed using an API (Application Programming
Interface) of a commercial reporting tool (List & Label) to output the converted reports.

To access the suitability of the components of the architecture developed in this work,
four distinct reports were tested. All the results were successful, showing that with the
created SRDL it is possible to create reports with a different tool, while maintaining the
same visual look.

In the future, more tests will be made with the developing of a component, which will
feed the new reporting engine with real data from several types of databases.

i

Resumo

Os objectivos deste projecto direccionam-se no sentido de provar que é possível usar
especificações de linguagens XML e as tecnologias associadas ao XML na criação de
relatórios. O actual motor de geração de relatórios da Sage foi criado há mais de 15 anos
e tem sido utilizado desde então. Por ser rudimentar, mostrou-se necessária uma melhoria.

A capacidade de exportar relatórios para outras plataformas de geração de relatórios
comerciais é um passo crucial para a evolução de um ERP da Sage: o (Sage Next). Assim,
o recurso a uma linguagem XML para definir os relatórios irá aumentar a sua portabili-
dade.

Para fazer uma nova arquitectura de criação de relatórios foram escolhidas algumas
tecnologias XML, uma linguagem de programação e uma ferramenta de geração de re-
latórios. Posteriormente, uma linguagem XML baseada na RDL (Report Definition Lan-
guage) da Microsoft foi desenvolvida: a SRDL (Sage Report Definition Language).

Para provar que a SRDL criada tinha a complexidade desejada, foi feito um processo
de conversão dos relatorios do antigo motor de geração para a nova plataforma. Em
seguida, uma aplicação foi desenvolvida usando a API (Application Programming In-
terface) de uma ferramenta de criação de relatórios comercial para gerar os relatórios
convertidos.

Após terminar a maioria dos componentes da arquitectura, foram testados quatro re-
latórios distintos. Todos os resultados foram bem sucedidos, provando que com o SRDL
criado é possível criar relatórios com uma ferramenta diferente, mantendo a mesmo as-
pecto visual.

Futuramente, mais testes serão feitos com o desenvolvimento de um componente que
irá alimentar o novo motor de geração de relatórios com dados reais de diversos tipos de
bases de dados.

ii

Acknowledgements

For all the support, advice and constant availability I must thank João Correia Lopes. For
all the help integrating in Sage and for all support when developing new ideas and not
giving up on them I must thank Jorge Morais. To Sage I must thank the opportunity they
gave me to accomplish this project and to be a part of a big company.

To my girlfriend I thank all the inspiration, motivation and the encouragement to suc-
cessfully finish this project. To my parents and my sister I thank the everlasting support
they gave when I needed the most. To my friends I thank the courage and the moments of
joy they gave me.

Ricardo Leandro

iii

“Design is not just what it looks like and feels like. Design is how it works.”

Steve Jobs

iv

Contents

1 Introduction 1
1.1 Scope . 1
1.2 Project . 2
1.3 Objectives and Motivation . 2
1.4 Report Structure . 3

2 Bibliographic Review 5
2.1 Introduction . 5
2.2 Technology Review . 5

2.2.1 Sage Next’s Current Reporting Technologies 6
2.2.2 State of the art: Technologies and their Limitations 8
2.2.3 Technologies Used in the SRDL Project 10

2.3 Conclusions . 12

3 Report Making Architectures 13
3.1 Problem Analysis . 13

3.1.1 Sage Next’s current reporting architecture 14
3.1.2 Intended Reporting Architecture 14
3.1.3 Requirements . 16

3.2 Methodology to be applied . 16
3.2.1 Converting to SRDL . 16
3.2.2 Generating the Report . 16

3.3 Summary and conclusions . 17

4 Implementation 19
4.1 Project’s Architecture . 19

4.1.1 Report Description Data Dumper 21
4.1.2 Text to XML . 21
4.1.3 XML to SRDL with Saxon . 22
4.1.4 SRDL Engine/Report Generator 22
4.1.5 Data Feeder . 23

4.2 SRDL’s Architecture . 23
4.2.1 SRDL Schema Structure . 24
4.2.2 SRDL XSL transformation process 25

4.3 Conclusions . 26

v

CONTENTS

5 Case Study 27
5.1 Input Data . 27
5.2 Transformation Process . 28
5.3 Output results . 30
5.4 Conclusions . 30

6 Conclusions and Future Work 35
6.1 Project Objectives Accomplishment . 35
6.2 Future Work . 36

References 37

vi

List of Figures

2.1 Sage Map Designer . 6
2.2 Crystal Reports Designer . 7
2.3 List & Label Designer . 8
2.4 fyiReport Designer . 10
2.5 Visual Report from Sage Accouts . 11

3.1 SAGE Next’s Current Reporting Architecture 14
3.2 Intended Reporting Architecture . 15

4.1 SRDL Project Architecture . 20
4.2 SRDL Schema structure . 23
4.3 Header Example . 24

5.1 Sage Next Report . 27
5.2 SRDL file . 29
5.3 XML dataset . 31
5.4 SRDL Engine Interface . 32
5.5 List & Label Viewer . 32
5.6 SRDL Report . 33

vii

Abbreviations

XML eXtensible Markup Language
XSLT eXtensible Stylesheet Language Transformations
RDL Report Definition Language
SRDL Sage Report Definition Language
ERP Enterprise Resource Planning
VB Visual Basic
API Application Programming Interface
POS Point Of Sale

viii

Chapter 1

Introduction

All around the world, companies are becoming more and more connected internally and
with other companies. They want immediate responses to costumers when they make
large orders or when shipments from suppliers are delayed. Moreover, managers want to
know what impact these events will have on the business and how their business is at any
point in time [Lau06].

This thesis presents a new reporting architecture model for Sage Portugal’s applica-
tions. Sage Next, which is a ERP program for medium sized companies uses three types
of report generating tools: List & Label, Crystal Reports and the third one, Sage Map,
self-made. The first two reporting tools are different commercial solutions, which require
using its proper report designer for creating of report layouts. The self-made reporting
tool (Sage Map) has been in service for 15 years and, using it to create new reports or
correcting old ones, is a highly demanding and time consuming task that Sage Portugal
wants to improve. For costumers it means they cannot easily move reports between differ-
ent reporting tools and the options available for choosing new tools, that work with their
existing execution environments, are few [Cor05].

In order to create a new reporting process, a report description language in XML was
needed so that it would serve as an intermediate between Sage Next program and the
report renderer tools.

1.1 Scope

Sage Portugal is a business software oriented developer company that provides solutions
to all kinds of companies: from individual and medium sized to big ones with a busi-
ness volume higher than five million euro. Their products offer solutions intended for

1

Introduction

POS (points of sale), CRM (Custumer Relationship Management), accounting and busi-
ness planning. One of that solutions is Sage Next which is designed for medium sized
companies. This product is a small ERP with an integrated system containing several
applications that help companies by making daily operations easier and faster.

“Informed decision making is important at all levels within an organization,
and easy access to accurate information is also essential.”[Say07]

Sage Next solution provides helpful information on the business welfare through reports
containing either summarized or extensive data. There should be a tool with the ability
to extract and summarize this data in order to allow key decision makers to have a better
view of the business model and take companies in the best possible direction [Pec04].

As was said previously, reporting tools are essential in ERP programs so the reporting
engine within the ERP needs to be a well designed and future proof engine.

1.2 Project

This project consists on creating a new reporting architecture model for Sage programs
replacing the old one with improvements in its processes and adding new features. The
new model will support exporting the report’s layouts to XML and will enable their in-
dependence from Sage Next. The language of the XML files exported will have to be a
well defined one containing all aspects of Sage’s programs reporting area. Finally, with
the aid of a reporting tool’s (List & Label) API, an application will be made to parse the
created XML files and render the reports, maintaining their previous visual style. This
application not only will prove that the created language contains all that is needed by
Sage Next program, but will also aid the conversion process of all the old reports (more
than 2000).

1.3 Objectives and Motivation

The goal of creating a Report Definition Language is to promote an interoperability of
commercial reporting products. This can be done by defining a common schema allowing
an interchange of report definitions [Cor05].

As it is said above, the Sage Report Definition Language project consisted on creating
and RDL language in XML to be used on Sage programs as an intermediary between
them and reporting tools.

After its creation, it was needed a proof that the created language was comprehensive
enough to define all aspects of Sage programs’s reports. A reporting tool like List & Label
was chosen as a report renderer and the result had to resemble as closely as possible to
the old Sage Map reports’s visual style.

2

Introduction

Developing this project is an important step on Sage Next’s life cycle, because the
reporting model will be improved, clearing it from older technologies and enabling the
use of different reporting tools in the future.

1.4 Report Structure

This chapter is devoted to the presentation of the document, its purpose and structure,
seeking to guide the reader in order to give a better reading experience. In chapter 2 it
will be presented a detailed study of state of the art reporting technologies as well the
one owned by Sage. In chapter 3 it will be showed a more comprehensive study of the
reporting solution that was designed describing not only the current architecture of Sage
Next program but also the one intended by Sage. Then, on chapter 4, it will described the
architecture that was implemented, explaining all its components and processes, as well as
the created XML language for defining reports (SRDL) and its main features. Finally, in
chapter 6 an analysis on all the work made is presented as well as the level of satisfaction
of each accomplished objective. After that improvements and new features that could be
added to the reporting process in the future will be showed.

3

Chapter 2

Bibliographic Review

In this chapter it will be explained all the investigation process behind the solution design
and what technologies were involved in it. To begin with the current reporting tools used
in Sage Next application will be explained. After that, it will be made an analysis on the
other possible technologies to be used, their limitations and fitness for this project.

2.1 Introduction

This project was developed in order to evolve the reporting model in Sage’s programs
replacing older technologies. The main problems with the older model were the absence
of a reporting language to define database reports and a very restrictive report design tool
that is attached to Sage Next program.

The design tool had lack of functionalities that are of the most importance when creat-
ing or modifying reports: lack of a conditional language and variables to write formulas,
lack of debugging help, lack of an undo functionality and absence of colors for format-
ting purposes. Finding existing solutions for creating a Report Definition Language was
not an easy task, since only one existing possible solution was found. Microsoft’s Report
Definition Language specification was a well designed implementation of the concept and
it contained all that was needed for creating Sage Next reports layouts. Far more com-
plex than the RDL language desired Sage, only a subset of this specification was used for
creating Sage’s RDL.

2.2 Technology Review

In this section, the technologies involved in the SRDL project will be explored for a better
understanding of Sage Next and its problems.

4

Bibliographic Review

Figure 2.1: Sage Map Designer

2.2.1 Sage Next’s Current Reporting Technologies

As already explained (see section 2.1),Sage Next is one application that uses a proprietary
format for the definition of a report. In this section Sage Map as well as the other three
existent technologies that are used for reporting, will be analyzed,

2.2.1.1 Sage Map

Sage Map is a reporting tool formed by a report template designer and report generating
application embedded in Sage Next (see figure 2.1). The template designer does not have a
WYSIWYG 1 editor and lacks the existence of a conditional language to write formulas.
The layout visual editor is not an easy tool to work with. Most of the time, tricks and
workarounds are needed in order for the reporting engine to output what is intended.
Despite having some mathematical functions to write simple formulas, they do not have
sufficient complexity to make all the needed procedures in the reporting area.

2.2.1.2 Crystal Reports

“Crystal Reports remains the market leader and de facto standard for business
and corporate report writing.”[Pec04]

1What you see is what you get

5

Bibliographic Review

Figure 2.2: Crystal Reports Designer

Crystal Reports is, as shown before, the number one in data base reporting and this hap-
pens because it is not only a result of a “marriage of two former competitors”[Pec04]
but also the most powerful application in the area. It supports: sorting and grouping in
reports, creating geographic maps, formulas, custom functions, a variety of tools to make
reports visually appealing, cross-tabs, charts, sub-reports, reporting from SQL databases
and exporting reports to different file formats like XML among others [CRY09]. De-
spite being the most complete reporting solution, Sage’s costumers complained about its
complex interface when trying to customize their reports.

2.2.1.3 List & Label

List & Label is a reporting tool made by combit Software GmbH and it was the last one
added to Sage Next’s reporting architecture. List & Label is a powerful tool, with which
anyone can use, quickly and effectively, to fulfill all the reporting needs. It has a freely
distributable designer, available in 15 languages, causing impression on customers with
the final product. [cSG09]

In figure 2.3, an example of the designer working can be seen. With combit Software’s
List & Label reporting solutions, any developer can add a reporting engine to it’s own
applications easily, and quickly create reports assisted with useful functions. To integrate

6

Bibliographic Review

Figure 2.3: List & Label Designer

the report generator into an existing application, a large variety of programming languages
like Java, Visual Basic, Clarion, Cobol, Delphi and C#.NET are available.

2.2.2 State of the art: Technologies and their Limitations

In this section the possible technologies as well their features will be analyzed to deter-
mine their importance to this project.

“In today’s database reporting market, most vendor applications use a propri-
etary format for the definition of a report. In addition, vendors that provide a
report execution usually only support their own design tools.” [Cor05]

In other words, proprietary formats for defining reports are used in most vendor appli-
cations like the ones used in Sage Next. Using different formats is not efficient because
reports made with one tool can not be used by other tools for report generation. Further-
more when it is needed to upgrade reports from one format to another the report has to
be done from scratch. A research was made to find out if there was a solution to this
problem.

2.2.2.1 Microsoft RDL

Microsoft tried to solve problems in the reporting area by creating a RDL language. Their
objectives for the RDL development were very clear: “The goal of Report Definition

7

Bibliographic Review

Language (RDL) is to promote the interoperability of commercial reporting products by
defining a common schema that allows interchange of report definitions.” [Cor05]

Microsoft RDL development started before 2003 and, since then, they launched three
versions of the RDL’s specification. The version used was the 2005 version because when
the project started the 2008 version was not available yet.

This technology is intended to promote the interoperability of commercial reporting
tools and allow the interchange of report definitions. RDL is also meant to be fully en-
capsulated. This means that when successfully interpreting an RDL document, it should
not be required any understanding of the source application. Also, with RDL it should be
possible to output a variety of formats like web pages, PDF or XML.[Cor05].

This technology consists of an XML schema containing all the parts that describe
the three kinds of information that a report can have: data, layout and properties. Data
represents the informations on how to obtain the real data, like SQL queries, as well
the structure of the data. The Layout part is where it is described, how the data will
be presented and where the formatting information is provided. The last part is where
properties, such as author, parameters and images within the report, are.

2.2.2.2 fyiReporting

After analyzing Microsoft’s RDL, it was found a project using it. fyiReporting is an open-
source RDL project that has a powerful reporting tool. This tool has support for charts
tables and free forms and outputs in several formats. The output formats can be: HTML,
HTML, PDF, Excel, RTF, XML, .Net Control, Web Archive, and print. This project is re-
leased under the terms of the Apache License Version 2 which allows the use of the RDL
Project 4 libraries and programs in either open source or commercial applications as long
as they credit fyiReporting Software, LLC. fyiReporting project includes a WYSIWYG
designer which allows the creation of reports without any knowledge of RDL. Also, wiz-
ards are available for creating new reports and for inserting new Tables, Matrices, and
Charts into existing reports.[fS09] In figure 2.4 it can be seen the fyiReport designer.

Although this was a complete tool, Sage wanted to use List & Label because of com-
mercial interests.

2.2.2.3 Sage 50 Accounts 2009

After the beginning of this project (during the RDL implementation), Sage Portugal was
informed that another division of the company in the United Kingdom had already solved
similar problems in the reporting area. The tool, which is embedded in Sage’s program
Sage 50 Accounts 2009, is called Sage Report Designer and has a powerful desktop ap-
plication for designing reports with a WYSIWYG editor. This tool enables the creation

8

Bibliographic Review

Figure 2.4: fyiReport Designer

of summaries or in-depth reports of key business information (i.e. balance sheets). It sup-
ports generating reports in a variety of formats including PDF, HTML, XML and BMP.
It also has a Query Engine which provides access to databases and a number of data
providers. The Query Engine includes a rich, extensible expression language which can
be supplemented with application-specific functions. In figure 2.5 it can be seen the report
designer.

2.2.3 Technologies Used in the SRDL Project

In this section, the technologies chosen for this project will be reviewed and their contri-
bution to this project will be explained.

2.2.3.1 XML technologies

XML Schema is an XML technology standard developed by W3C and released in 2004.
This technology has a single modeling language, which is very flexible and powerful, yet
relatively simple to implement.. The XML Schema standard is namespace-sensitive, as it
can be used to process documents with elements and attributes from different namespaces.
Elements are used to define elements. These elements can have simple content or have a
more complex one containing several elements [Bra02]. The main reason for using this

9

Bibliographic Review
!"#$%!&"''%()*+,$**%-'"./01&% !(2-3456789:64;53;<=%

% !"#$%>?%@.A%%%B0,/+A$,.+"'% -"#$%CD%

%

!"#$%&'()*'+",$-.'/&01%2'3&,"#4&%'-00."5-2"14'

E+#)1$%CF%*G0H*%.G$%&"+,%9$I01.%2$*+#,$1%*J1$$,K%6G+*%G"*%.G$%/0''0H+,#%/$".)1$*L%

%

• M"+,%A$*+#,%*)1/"J$%N%.G+*%"''0H*%&",+I)'".+0,%0/%.G$%!$J.+0,*%",A%7'$&$,.*%HG+JG%

&"O$%)I%.G$%1$I01.%PQ%I0+,.+,#R%J'+JO+,#R%A1"##+,#%$.JK%%

• 600'P"1*%",A%&$,)*R%HG+JG%J",%P$%&0S$A%",A%J)*.0&+T$A%PQ%.G$%)*$1K%

• 600'P0U%H+,A0H*R%HG+JG%J",%P$%A0JO$A%".%.G$%*+A$%0/%.G$%*J1$$,%01%*$.%.0%V:).0%

W+A$X%*0%.G$Q%0,'Q%*'+A$%+,.0%S+$H%HG$,%.G$%&0)*$%G0S$1*%".%.G$%*+A$%0/%.G$%*J1$$,K%

6G1%"1$%*$S$1"'%.00'P0U%H+,A0H*L%

o 9$I01.%7UI'01$1R%*G0H+,#%.G$%1$I01.%*.1)J.)1$K%

o -10I$1.+$*R%*G0H+,#%.G$%I10I$1.+$*%0/%.G$%*$'$J.$A%$'$&$,.Y*Z%

o <"1+"P'$*R%*G0H+,#%"''%.G$%A"."%/+$'A*%"S"+'"P'$%.0%I'"J$%0,%.G$%1$I01.%

o 600'P0UR%*G0H+,#%.G$%7'$&$,.*%"S"+'"P'$%.0%I'"J$%0,%.G$%1$I01.%

o E+'$%7UI'01$1R%*G0H+,#%.G$%*"S$A%1$I01.*%/01%.G$%J)11$,.%"II'+J".+0,K%

67676 89&':&,"#4',$%;-5&'

6G$%A$*+#,%*)1/"J$%+*%"%S$1Q%I0H$1/)'%.00'%/01%J1$".+,#%"..1"J.+S$%1$I01.*%",A%+,J01I01".$*%"%

,)&P$1%0/%"AS",J$A%/$".)1$*K%

676767(<4'0.-5&'&:"2"4#'

7'$&$,.*%J",%P$%&0S$A%",A%1$*+T$A%+,%.G$%*.",A"1A%H"Q%PQ%A1"##+,#%.G$%*$'$J.+0,%G",A'$*K%

6$U.%J",%P$%$A+.$A%A+1$J.'Q%0,%.G$%A$*+#,%*)1/"J$K%%

%

Figure 2.5: Visual Report from Sage Accouts

technology was that one of the most important objectives of this project is creating an
XML language with a complex structure to define reports.

XSLT is a specification of a language for transforming XML documents into other
XML documents. It is designed to be used as part of XSL, which is a style-sheet language
for XML with a vocabulary for specifying formatting. “XSL specifies the styling of an
XML document by using XSLT to describe how the document is transformed into another
XML document that uses the formatting vocabulary.”[W3C99b] These technologies were
used because it was needed a process to convert from one language to another with a
totally different structure.

2.2.3.2 C#.NET

C# is an objective oriented programing paradigm, adequate to the development of this
project. This technology has a fast learning curve, so it was chosen due to the small
amount of available time to finish this project (five months).

10

Bibliographic Review

2.3 Conclusions

There are several technologies on the reporting area, each of them containing different
designer and different file formats. After this investigation a decision was made to create
a subset of Micrsoft’s RDL specification. Moreover, a process to convert Sage Next’s pro-
prietary report definition file format to SRDL (Sage RDL), was going to be created. For
printing or generating the reports, List & Label tool was chosen by Sage. Not only for
commercial reasons but also because it had API functions, which could help the develop-
ment of the reporting engine.

Sage Portugal intended to use SAGE 50 Accounts 2009 reporting engine and designer,
and convert Sage Next’s report definition files to this tool’s file format. Unfortunately,
there was not any documentation available about it and this tool was only found two
months after the beginning of the project. Despite the fact that Sage Portugal’s intentions,
it was decided to continue with the original planning.

11

Chapter 3

Report Making Architectures

In this chapter, the main architectural aspects of the project are going to be explained.
To begin with, it will be described the current reporting architecture of Sage Next. Then,
Sage’s intended reporting process will be analyzed in order to identify its requirements
and possible problems. Finally, it will be explained the possible reporting solution that
was implemented.

3.1 Problem Analysis

Sage Next’s current reporting model uses three different programs to generate reports.
Each program needs a file containing the report’s template and a connection with the
database in order to generate the report. The first report generator used was Sage Map
(section 2.2.1.1) that was created internally and was sufficient to Sage demands despite
its problems and inefficiencies. With the appearing of Crystal Reports technologies, Sage
started to create new report templates with it. The conversion of all the older report tem-
plates created with Sage Map was not an easy task due to huge differences between tech-
nologies. So, the only way would be to create from scratch the more than two thousand
report templates.

With the lack of manpower and time to convert all the older reports, only the new ones
were created, but it got worse when complaints from clients started to emerge. When
clients wanted to change the template they had to use the Crystal Reports designer tool.
Because the tool was not an user friendly application, a new reporting tool was chosen.
List & Label’s solution had, in Sage’s opinion, a much more user friendly design tool, so
new report templates were now created with this tool.

12

Report Making Architectures

Figure 3.1: SAGE Next’s Current Reporting Architecture

At this point, in Sage Next coexisted three different technologies for the same purpose
and a new model for reporting was needed, which was the reason to start the project
described in this dissertation.

3.1.1 Sage Next’s current reporting architecture

As seen in figure 3.1, in the current architecture all three kinds of report templates formats
are used to generate reports. The decision of what reporting tool to use when running Sage
Next, is hard-coded in the application’s menu. When a report is triggered by the menu,
it calls the reporting engine to generate the report. Then, the engine will connect to the
database and to get input data, and then output the generated report.

3.1.2 Intended Reporting Architecture

In order to unify the process, it is needed an intermediary between all three kinds of
file formats and a reporting tool. The new reporting architecture (as seen in figure 3.2)
contains a new file format for report templates (SRDL file). This new format consists of
an XML file with a proper language capable of containing all the definitions for report
creation. Due to Sage’s interests the data connection options were left aside from this
new format. The new file is obtained through a conversion process by another component
of the architecture using also XML technologies.

13

Report Making Architectures

Figure 3.2: Intended Reporting Architecture

14

Report Making Architectures

3.1.3 Requirements

In order for this new reporting architecture to successfully create reports, maintain the
visual style of the old ones, some requirements were identified.

• An XML Language capable of defining all aspects of SAGE Next’s Reports;

• A conversion process from the old format to the XML Language;

• An application to render the report.

The XML Language designed was based on Microsft’s RDL and will be described on
the next chapter. For the language creation a XML Schema was developed for purposes
of XML validation and to help creating new reports in the future. In this project only the
oldest of the file formats (Sage Map) was chosen to convert to the new XML one. This
was done due to time limitations and Sage priorities.

3.2 Methodology to be applied

In this section the major steps of the intended architecture and the technologies that will
support them will be explained.

3.2.1 Converting to SRDL

The Sage Map file is filled with binary data structures so its contents are unreadable to
ordinary people. To overcome this problem, a co-worker made a tool that could write
the data in plain text. Now, with the data in a readable way, it is easier to process it
and convert it into other formats. A possible converting process from a text file to an
XML one with a totally different structure is to first convert to an XML file, maintaining
the logical structure, and then change the language of the XML file. This process takes
advantages of XSLT technology due to its capabilities to describe how an XML document
is transformed into another one with different vocabulary or even changes in structure .
The conversion process to SRDL will start with the creation of an XML schema based on
Microsoft’s RDL and then develop a XSLT file. The schema will contain all the elements
necessary to generate reports similar to Sage Next’s ones. The XSLT must define all the
rules to convert the first XML file to SRDL. To make this process possible an application
is needed, like Saxon, to apply the transformation between XML languages.

3.2.2 Generating the Report

The initial part of the process consisted in parsing the generated SRDL file, now it must
be used a technology capable of generating reports. To do this, it is needed a report gen-
erating tool (like List & Label’s) with an API, and a programable language (like C#.NET)

15

Report Making Architectures

to develop an application. In this application, the API functions will open the report tool’s
designer and then the final report. While the generating application is being developed,
some changes will have to be made to the SRDL in order to maintain the former re-
port’s visual style. The testing phase will start without accessing any database, since the
database component will only be made after the generating component is done by a Sage
coworker.

3.3 Summary and conclusions

This chapter, it can be verified that Sage Portugal had major problems in Sage Next’s
reporting processes. Sage wanted to unify the reporting technologies and in this process
get rid of Sage Map.

To improve reporting processes it is needed a RDL (Report Definition Language) and
a reporting tool with a usable API. The technologies that are going to be used are: XML
technologies (XSLT and XML schema), C#.NET and List & Label. A new architecture
will be developed to meet Sage’s demands and accurately improve the reporting processes.
Next chapters will explain it in detail.

16

Chapter 4

Implementation

In chapter 4 a deepen study of the developed architecture will be presented. First, all of
the components of the architecture will be described and how they were integrated. After
that, the main features of the created RDL (SRDL) will be analyzed.

4.1 Project’s Architecture

In figure 4.1 it can be seen the final architecture that was implemented to improve the
report generating process. This architecture is similar to the desired one by sage as seen
in figure 3.2. The Sage Map adapter, seen on figure 3.2, is composed of two components
on figure 4.1 (Report Defintion Data Dumper and Text to XML) wich will be described
later on this chapter. The SRDL Designer seen on figure 3.2 is composed by the XML to
SRDL component wich is seen on figure 4.1. The components SRDL Engine and List &
Label engine are the same on both figures 3.2 and 4.1.

The developed architecture is composed by six components: four applications, a re-
port generating tool and a XML transformation tool. Part of these components were made
by a Sage coworker which can be seen on the left side of figure 4.1 (Report Definition
Data Dumper and the Data Feeder). On the right side of the picture it can be seen the
other main components of the project that will later be analyzed: Text to XML, XML to
RDL, SRDL Engine, List & Label Engine. As seen on figure 4.1, on the new reporting
engine the Report Definition Data Dumper outputs a text file which will be then parsed
and transformed to XML. The Saxon application will then transform it into SRDL. Fi-
nally the SRDL engine will parse the SRDL file and receive data from the Data Feeder
component. After that, it will output the report with List & Label’s API functions. Now
all the components of figure 4.1 will explained one by one.

17

Implementation

Figure 4.1: SRDL Project Architecture

18

Implementation

4.1.1 Report Description Data Dumper

This component, made by a Sage co-worker in VB (Visual Basic), is embedded in Sage
Next and generates text files from the Sage Map files. These text files contain the descrip-
tion of all the composing parts of reports: general settings, parameters, headers, footers,
tables and text-boxes. The text file does not contain any type of data or its location, it
only has enough information to generate the report’s layout. The data definitions were
not included and they were only managed by the Data Feeder component. This was done
because Sage Next uses different types of databases and connections and dealing with
them directly on the report’s templates usually lead to connection errors.

4.1.2 Text to XML

This component is an application made in C#.Net that parses the text file generated by the
Report Description Data Dumper, embedded in Sage Next, and converts it into an XML
file, maintaining its logical structure as it can be seen below.

The text file’s structure example:

[Geral]

Altura=0

AlturaLinhas=0

ComoOrdenar=0

CondAcumular=

CondArea 1=

. . .

[Pedidos]

[Pedido 1]

Campo=1

ComoPedir=0

. . .

[Pedido 2]

Campo=76

ComoPedir=0

. . .

The XML file’s structure example

< R ep or t >
< G e r a l >

< A l t u r a >0< / A l t u r a >
< A l t u r a L i n h a s >0< / A l t u r a L i n h a s >

19

Implementation

<ComoOrdenar>0< / ComoOrdenar>
. . .

< / G e r a l >
< P e d i d o s >

< Ped ido i d =" 1 " >
<Campo>1< / Campo>
<ComoPedir>0< / ComoPedir>

. . .
< / Ped ido >
< Ped ido i d =" 2 " >

<Campo>76< / Campo>
<ComoPedir>0< / ComoPedir>

. . .
< / Ped ido >

. . .
< / P e d i d o s >

. . .
< / R ep o r t >

This was done to enable a more comprehensive study of Sage Map file structure and
to allow the use of XML technologies, such as XSL which transforms XML documents
from one dialect to another.

4.1.3 XML to SRDL with Saxon

This component is a batch file with instructions to call an application named Saxon for
the transformation process. This process consists on transforming the first XML file into
the XML file in SRDL, using the created XSL sheet and the SRDL schema. The SRDL
schema is an XML file which describes the structure of an RDL and it will be analysed
further in this chapter. For the transformation between XML languages, the Open Source
SAXON XSLT processor, was chosen instead of C# because the it was not found a class
implementing support xQuery functions. These functions are used in the transformation
process and are crucial to its functioning.

4.1.4 SRDL Engine/Report Generator

This C# .Net based application parses de XML file, calls List & Label API functions and
opens its report designer with the layout already created .

The C# .Net technology was used because List & Label has an API written in C #
and the technology has a large library of pre-coded solutions to common programming
problems like working with linked lists or memory management.

20

Implementation

Figure 4.2: SRDL Schema structure

For the final part of the report generating process, data from Sage Next’s database
needs to be injected into the report layout in order to fill the report tables with information.
This is done by the Data Feeder.

4.1.5 Data Feeder

The Data Feeder works as an interface between Sage Next’s database and the SRDL En-
gine. This part of the project was not finished due to Sage’s business priorities. Data sets
were manually created for the case study to feed the SRDL Engine.

4.2 SRDL’s Architecture

Like said before, the SRDL was based on Microsoft’s RDL and the schema can be seen
on figure 4.2.

21

Implementation

Figure 4.3: Header Example

4.2.1 SRDL Schema Structure

A report is mainly composed by three parts: header, body and footer. The headers and the
footers contain informations about the report like the title, the parameters, the name of the
company and page count. The body contains a table with columns on which the data will
be shown.

In RDL there is an important element which is the ReportItem. Each report item is
used to describe every atomic part of reports as they can specify a rectangle, a text box,
a line, an image or a data region.Besides that a report item can have another report item
inside, like a rectangle that has several text boxes or images.

On figure 4.3, an example of a report header with one image an some text boxes can
be seen. In RDL the header would look like the sample code below.

<PageHeader >
< H e i gh t >1725 px< / He i gh t >
< R e p o r t I t e m s >

< R e c t a n g l e >
<Name>PageHeader < / Name>

(. . .)
< R e p o r t I t e m s >

<TextBox>
<Name>0 ,1 < / Name>
<Top>105 px< / Top>
< L e f t >90 px< / L e f t >
< H e i gh t >915 px< / H e i gh t >
<Width>2325 px< / Width>
< S t y l e >

(. . .)
< B o r d e r S t y l e >

< L e f t >None< / L e f t >
< R i g h t >None< / R i g h t >
<Top>None< / Top>
<Bottom>None< / Bottom>

22

Implementation

< / B o r d e r S t y l e >
< T e x t A l i g n > C e n t e r < / T e x t A l i g n >

< / S t y l e >
<Value >@IINF< / Value >

< / TextBox>
(. . .)
<TextBox>

(. . .)
<Value >Dados da Empresa_Nome< / Value >

< / TextBox>
< / R e p o r t I t e m s >

< / R e c t a n g l e >
< / R e p o r t I t e m s >

< / PageHeader >

4.2.2 SRDL XSL transformation process

The XSL Sheet is an XML file with instructions to transform the XML file generated
from the Text to XML component to an XML file with the SRDL language. The process
involves using xPath queries to navigate the XML file and XSL functions for string com-
parison. An example of choosing the report’s orientation by querying the first XML file
and comparing string, can be seen below.

< R ep or t x m l n s : x s i =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e "
xs i :noNamespaceSchemaLoca t ion ="SRDL . xsd ">

< D e s c r i p t i o n >
< x s l : v a l u e −of s e l e c t =" R epo r t / G e r a l / T i t u l o / node () " / >
< x s l : t e x t > −
< / x s l : t e x t >< x s l : v a l u e −of s e l e c t =" R epo r t / G e r a l / S u b T i t u l o / node () ">
< / x s l : v a l u e −of >
< / D e s c r i p t i o n >
< O r i e n t a t i o n >
< x s l : c h o o s e >< x s l : w h e n t e s t =" Rep o r t / G e r a l / P o r t r a i t =0 ">
Landscape
< / x s l : w h e n >

< x s l : o t h e r w i s e > P o r t r a i t < / x s l : o t h e r w i s e >
< / x s l : c h o o s e >

< / O r i e n t a t i o n >
< R e p o r t P a r a m e t e r s >
(. . .)

23

Implementation

< / R e p o r t P a r a m e t e r s >
(. . .)

< / R ep o r t >

4.3 Conclusions

In this chapter it was seen how the components of the architecture were integrated and
implemented. It can be concluded that the developed RDL can potentially define all
aspects of reports. Furthermore, this architecture will provide a successful migration of
the old reports on an automated way and in less time, without losing their visual style. In
the next chapter, the proof of concept will be presented with an example of a conversion
of an old report to a new one.

24

Chapter 5

Case Study

In this chapter it will be presented an example of a conversion and generation of a report.
Then, it will be verified the level of satisfaction of the obtained results.

5.1 Input Data

To test the developed architecture, four reports were converted and generated. In figure 5.1
it can be seen one of them generated by Sage Map reporting application.

To convert one report to SRDL, first is necessary to get the data that defines the report’s
template layout from Sage Next. To do this, it is used one component from the created
architecture: the Report Definition Data Dumper. This component creates a text file with
that data in a text format, so it can be read and used by other components. The first lines
of the created file can be seen on the next page (the full file has more than 5000 lines).

Sage Portugal Demo

 Balancete Razão

 Período

 Pág. 1 de 1

 Exercício

 Período

 2007

 Tipo de Saldo Saldo das Somas Setembro

 Nº Contribuinte 599999999

 Gestão Comercial/Administrativa - Demonstração

 Conta Descrição
 Débito Crédito Débito Crédito

 Período Saldos

 11 CAIXA 6.112,00 20.001,00 13.889,00

 21 CLIENTES 2.768,44 2.768,44

 22 FORNECEDORES 12.500,00 12.500,00

 24 ESTADO E OUTROS ENTES PÚBLICOS 2.649,73 2.649,73

 42 IMOBILIZAÇÕES CORPÓREAS 15.000,00 11.441,58 3.558,42

 71 VENDAS 2.288,13 2.288,13

 Total 36.380,44 36.380,44 18.826,86 18.826,86

 Licenciado a Data Emissão 21-11-2008

Figure 5.1: Sage Next Report

25

Case Study

[Geral]

(...)

SubTitulo=Período

Titulo=Balancete Razão

(...)

[Areas]

[Area 0]

B:

Baixo=1

Cima=1

Direita=1

Esquerda=1

BDasLinhas=-2

CorL=0

Invisivel=0

Fonte=1

Q:

x1=0

x2=10845

y1=15

y2=1755

Quantos=9

[Area 1]

(...)

[Area 2]

(...)

Now this input data will pass through all the steps of the transformation to generate a
report.

5.2 Transformation Process

The transformation process begins with converting the text file to XML and then to SRDL.
This is done by two components (Text to XML and XML to SRDL) in a consecutively
way outputting an SRDL file ready to be used to generate a report or to be saved for
further use. In figure 5.2 there can be seen some lines of the generated SRDL file.

26

Case Study

Figure 5.2: SRDL file

27

Case Study

To generate the final output, data is needed to fill the report. The Data Feeder com-
ponent was not finished, so data sets were manually created in XML to feed data to the
report generator. In figure 5.3 it can be seen some lines of the file with the data. Having
the data and the RDL file ready it can now be tested one generation of a report.

5.3 Output results

In figure 5.4 it can be seen the developed application’s interface that can output report.
First it is selected a SRDL file and then, clicking the “Design/Print” button, the report will
appear in List & Label viewer. The data sets containing the report’s data must be in the
same directory of the SRDL file. In figure 5.5 the viewer with the generated report can be
seen. The List & Label viewer allows exporting the report in several formats like PDF or
HTML.

5.4 Conclusions

Comparing both figures 5.1 and 5.6, a significant resemblance can be seen only with
minor differences. These differences were expected due to the use of different reporting
technologies, but they are insignificant because report’s layout is kept the same. It can be
concluded that the change of technologies did not affect the report, also the conversion
process to the new format is a lot faster than manually creating reports from scratch.

28

Case Study

Figure 5.3: XML dataset

29

Case Study

Figure 5.4: SRDL Engine Interface

Figure 5.5: List & Label Viewer

30

Case Study

Balancete Razão
Período

Pág. 1 de 1

Exercício

Período

2007

Tipo de Saldo Saldo das SomasSetembro

Nº Contribuinte 599999999

Gestão Comercial/Administrativa - Demonstração

Conta Descrição Período Saldos

Débito Crédito Débito Crédito

11 CAIXA 6.112,00 20.001,00 13.889,00

21 CLIENTES 2.768,44 2.768,44

22 FORNECEDORES 12.500,00 12.500,00

24 ESTADO E OUTROS ENTES PÚBLICOS 2.649,73 2.649,73

42 IMOBILIZAÇÕES CORPÓREAS 15.000,00 11.441,58 3.558,42

71 VENDAS 2.288,13 2.288,13

Total 36.380,44 36.380,44 18.826,86 18.826,86

Figure 5.6: SRDL Report

31

Chapter 6

Conclusions and Future Work

This project showed that it is possible to successfully use an XML language and associ-
ated technologies to describe database reports. The use of XML technologies will pro-
vide several improvements in Sage Next application. In this chapter all the conclusions
obtained during the development of this project will be shown and explained. First, an
analysis on the objectives’s accomplishment will be made. The parts of this project which
were not finished will be explained, showing what future work this project will need.

6.1 Project Objectives Accomplishment

The main objective of this project was to create an XML language capable to define
reports. To prove this, an old internal file format of one of Sage was chosen to covert to
XML. To prove the successful conversion, and that the XML language was complete, a
reporting tool was chosen to generate the reports.

The development of the XML language (called SRDL) was the first part of this project
to be considered finished. A complete XML schema based on Microsoft’s RDL was
successfully developed and ready for testing. The next part of the project to be concluded
was the process in which the files from Sage Map application were converted to SRDL
using XSLT transformation sheets. The XSLT was finished and tested successfully in
the four conversions that were accomplished. The SRDL report generator component was
developed and the four previous SRDL files were used successfully with manually created
test data. The Data Feeder component will feed the report generator with real data and
then more tests will be performed.

In all four reports the results showed successful results. Old and new reports had great
resemblance, only showing minor differences which could only be noticed by a trained
eye.

32

Conclusions and Future Work

6.2 Future Work

This project provided Sage with a new reporting architecture and process. Furthermore
the company will have now the ability to have its reports represented in a format inter-
operable, allowing for future usages. The Data Feeder component which can be seen on
figure 4.1 has not been completely finished due to Sage Portugal’s commercial priorities,
as said before in section 4.1.5. The next step in this project is to conclude this component
in order to make more testing.

In the future this project will be integrated in Sage Next architecture enabling the
ability to test the SRDL Engine with real data, and stop using of Sage Map old technology
to output reports.

33

References

[Bra02] N. Bradley. The Xml Companion. Addison-Wesley Professional, 2002.

[Cor05] Microsoft Corporation. Report Definition Language Specification, Novem-
ber 2005. Available in http://download.microsoft.com/download/6/5/
7/6575f1c8-4607-48d2-941d-c69622e11c32/RDL_spec_08.pdf, Last ac-
cessed in February 2009.

[CRY09] CRYSTALREPORTS. Crystalreports.com, 2009. Available in http://www.
crystalreports.com/, Last accessed in February 2009.

[cSG09] combit Software GmbH. Reporting tool list & label, 2009. Available in http:
//www.combit.net/en/reporting-tool/report-generator-List-Label, Last
accessed in February 2009.

[fS09] fyiReporting Software. fyireporting software, 2009. Available in http://
www.fyireporting.com, Last accessed in February 2009.

[Kay08] Michael Kay. Saxon the xslt and xquery processor, December 2008. Available
in http://saxon.sourceforge.net, Last accessed in February 2009.

[Lau06] Laudon & Laudon. Management Information Systems - The Digital Firm.
Prentice Hall, 2006.

[Pec04] George Peck. Crystal Reports 10 The Complete Reference. McGraw-
Hill/Osborne, 2004.

[Say07] Asif Sayed. Client-Side Reporting with Visual Studio in C Sharp. Apress,
2007.

[W3C99a] W3C. Xml path language, November 1999. Available in http://www.w3.
org/TR/xpath, Last accessed in February 2009.

[W3C99b] W3C. Xsl transformations, November 1999. Available in http://www.w3.
org/TR/xslt, Last accessed in February 2009.

[W3C04] W3C. Xml schema, October 2004. Available in http://www.w3.org/TR/
xmlschema-0/, Last accessed in February 2009.

34

http://download.microsoft.com/download/6/5/7/6575f1c8-4607-48d2-941d-c69622e11c32/RDL_spec_08.pdf
http://download.microsoft.com/download/6/5/7/6575f1c8-4607-48d2-941d-c69622e11c32/RDL_spec_08.pdf
http://www.crystalreports.com/
http://www.crystalreports.com/
http://www.combit.net/en/reporting-tool/report-generator-List-Label
http://www.combit.net/en/reporting-tool/report-generator-List-Label
http://www.fyireporting.com
http://www.fyireporting.com
http://saxon.sourceforge.net
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

