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Abstract 

Texas Hold’em Poker is, nowadays, the most popular poker game in casinos and 

online gambling websites. 

Conversely to other games, like chess or backgammon, where all the information 

about the game state (e.g. position of all the pieces on the board) is available at any 

given time, in Texas Hold’em players must rely on imperfect information, for making 

their decisions along the way (since they do not know the hands of the others). 

The complexity of the game makes its complete formal analysis (and solution) 

unfeasible, thus heuristics are introduced.  

Expert poker players will always try to base his/her actions not only on the cards 

they hold, but also on an estimation of the cards they think the opponents hold. This 

adds an incredible amount of unpredictability into the game while the players try to 

adapt the best they can, and strategies such as bluffing and trapping arise. It is a hard 

task to create a competitive computer poker program able to play efficiently against 

human players. 

For about a decade, research groups and hobbyists have tried different approaches 

to this interesting engineering problem. These approaches included knowledge-based 

systems, simulation, game-theoretic methods, and adaptative information game-tree 

search. The goal of this work was to review these approaches, and to define and 

implement an architecture for an intelligent agent capable of playing Texas Hold'em 

Poker, competitively, against human and non human agents. Its architecture extends 

many existing features (such as opponent modeling), as well as implementing new 

methods (e.g. a more accurate way to estimate the winning odds against multiple 

opponents). 

The intelligent agent was then put to prove against several different agents and the 

results obtained are very positive, showing the agent performing well against average 

and strong players. Based on the assessment of results, conclusions were taken and a 

road map was drawn for further improving the intelligent agent. 



Resumo 

Poker Texas Hold’em é, hoje em dia, o jogo de poker mais popular nos casinos, 

reais e online. 

Ao contrário de outros jogos, como xadrez ou gamão, em que toda a informação 

sobre o estado do jogo é conhecida (p.e. a posição de todas as peças no tabuleiro), a 

qualquer momento, para todos; em Texas Hold’em os jogadores têm de basear as suas 

decisões ao longo do jogo em informação imperfeita (pois as cartas dos adversários 

estão escondidas). 

A complexidade deste jogo torna impossível a sua completa análise formal (e 

solução), e portanto heurísticas são introduzidas. 

Um jogador experiente tentará sempre que as suas acções reflictam não só as cartas 

que ele possui, mas também as cartas que ele julga que os oponentes possuem. Isto faz 

com que este jogo se torne muito imprevísivel, à medida que cada jogador se tenta 

adaptar o melhor possível aos outros. Surgem assim estratégias como bluffing e 

trapping. Criar um programa de computador, capaz de jogar eficientemente contra 

jogadores humanos, é uma tarefa díficil. 

Durante a última década, grupos de pesquisa e investigadores independentes 

tentaram diversas novas abordagens a este interessante problema de engenharia. Estas 

abordagens incluem sistemas de conhecimento, métodos de simulação, teoria de jogos, 

e pesquisa em árvore de informação adaptativa. 

Esta dissertação visa cobrir estas abordagens, definir e implementar uma 

arquitectura de um agente inteligente, capaz de jogar poker Texas Hold’em a um nível 

competitivo contra agentes humanos e não humanos. Esta arquitectura implementa 

várias metodologias já existentes (como opponent modeling), assim como re-inventa 

algumas destas (p.e. um novo método para calcular a probabilidade de ganhar contra 

diversos oponentes, que oferece mais precisão). 

O agente inteligente foi então posto à prova contra diversos outros agentes, e os 

resultados obtidos são bastante positivos, mostrando uma boa performance do agente 

contra jogadores intermédios e jogadores fortes. Tendo em conta os resultados, 

conclusões foram tiradas, e algumas perspectivas para melhorar o agente são aqui 

expostas. 
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Chapter 1 

1. Introduction 

Poker is a very interesting game from the point of view of Artificial Intelligence 

[39]. Its unique attributes make it different from other games, and an important (and 

difficult) problem to solve. 

From a perspective of Game Theory [16], which was one of the first scientific 

approaches to it, it is a game of imperfect information. Unlike chess, where at each 

moment players have access to all the information of the game, in poker, players hold 

cards unknown to their opponents.  

It’s a game of “luck”. Its non-determinism comes from randomly shuffling the deck 

at the beginning of every new game. This causes the incomplete knowledge of the 

players, since after the deck is shuffled and the cards dealt, each player only knows the 

cards he holds. 

Furthermore, the outcome of a game is only partially observed, meaning that every 

time a player folds, we don’t get to see his cards, and so we can’t assert with certainty 

the strategy he employed. 

For all the above reasons, poker has a high level of unpredictability and 

deceitfulness, as each player tries to adapt to his opponents, in order to maximize his 

winnings by outsmarting their opponents. 

Because every action has an unpredictable outcome, actions must be chosen from a 

probability distribution. “Opponent Modelling” is the method of creating this 

distribution based on the information we have from the opponents.  
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1.1 Motivation 

The motivation behind this work is that the Texas Hold’em poker-game is hitherto 

unsolved. Formally (e.g. from the perspective of Game Theory), no optimal solution has 

been found yet. And unlike other games like chess or backgammon, computer programs 

have not been able to surpass the best humans in this game. This is due to the fact that 

traditional methods, used in other games, are incapable of handling Poker’s unique 

properties. 

In fact, it is a very difficult engineering task to build a program capable of playing 

poker on the level of an average human player. One sensible aspect of the program must 

be to adjust itself to its opponents playing style very quickly, in an effective way. 

Humans make use of their intuition for this. 

Regarding poker, its popularity has exploded in the beginning of the 21st century, 

with many online casinos making this game available to play in the Internet.  

In 2005, more than US$ 60 billion was gambled on online poker casinos, with an 

estimate of 1.8 million players per day.  This has become a gigantic industry, with 

effects on the high-stakes world of investing. The online poker revenues have escalated 

from $US 82.7 million in 2001, to $US 2.4 billion in 2005. The forecast is to hit $US 24 

billion by 2010 [33]. 

The major motivation for this work has been to follow the most recent 

developments in poker AI, and to improve them in order to create an Intelligent Agent 

capable of good results. 

1.2 Goals 

The goal of this work is to create a successful intelligent poker agent. 

In order to do so, many steps have been taken: from researching and investigating 

previous successful attempts, to defining our own agent’s architecture and 

implementing these concepts in a new way. 

The implemented agent is not expected to be a winner against other well 

established poker agents, developed by research groups over a period of several years. 

However, it should be designed to use the best known methods, and try to innovate in 

some way. Special attention was given to the latter point, during this work. 

The degree of success of such an agent is difficult to measure. 

Nonetheless, the assessment of results should accomplish to show us the progress in 
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development, and an estimation of the agent’s expected profit over time against other 

players. 

The difficulty level, as well as the playing style of the agent’s opponents should 

vary, in order to test the agent in different scenarios. 

It has also been defined that the agent should be able to employ some poker 

strategies in his playing style, such as “trapping” and “bluffing”. These strategies add 

uncertainty to his playing style, and make it much harder for his opponents to accurately 

model it. (please refer to Appendix A on poker terms.) 

1.3 Summay of Contents 

This document is divided into six chapters. 

Chapter 1 is the Introduction, and gives us a big picture about the project and its 

context. It also provides an overview view over the rest of this document. 

The second chapter is intended to introduce us to Texas Hold’em Poker, by giving 

us a brief explanation of how the game is played, and after discuss the problems of 

implementing a computer program for playing poker. 

In the third chapter, previous theories and algorithms for a computer poker agent 

are discussed. 

The most important chapter is the fourth chapter, where the developed agent is 

broken down to its components and described in detail. From its design to the 

implementation. 

Chapter 5 covers the assessment of the results. The new agent is tested in different 

scenarios and the outcome is thoroughly discussed. 

Finally, the sixth and last chapter of the thesis addresses the conclusions of this 

work and discusses the possibilities of future improvements. 
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Chapter 2 

2. An Overview of Poker 

Poker has been played since the 19th century [34]. Throughout time, the rules have 

evolved and it became more widespread. Recently, poker’s popularity sky rocketed, and 

nowadays, poker is played in online casinos by hundreds of thousands of people per day 

and by celebrities on television [35]. 

Poker is a card game, in which players bet that the “hand” they have is better than 

their opponents’ hand. All bets go into a pot, to be collected later by the winner. 

The winner is the player who makes an un-called bet, leading all other remaining 

players out of the hand. If in the end of the final round, there are two or more players 

remaining, then the winner is the player who holds a “hand” with the highest value. (See 

Poker Hank Rankings chapter for details about the value of a “hand”). 

There are many poker variants. The most popular nowadays, and relevant to this 

project, is Texas Hold’em. It is the poker variant used to determine the world champion 

at the annual World Series of Poker. 

Within Texas Hold’em, the betting structure can be No-Limit, Fixed Limit, or Pot 

Limit. 

This work discussed in this thesis regards the Texas Hold’em variant, and is 

focused on the Fixed Limit structure. 

2.1 Texas Hold’em Rules 

This chapter is intended to cover the rules of Poker Texas Hold’em, and give an 

overview of this game. 

Poker Texas Hold'em is a community card game, which means some cards are 

played face-up in the table, and can be used by all the players. Each player also holds 2 
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private cards, called hole cards, which he/she uses together with the 5 community cards 

in order to make the best possible 5-card hand. 

Before the game starts, one player is assigned to be the dealer, and his seat is 

marked with a dealer button. This position is rotated clockwise at the end of every 

round. 

The two players on the left of the dealer start by putting a predetermined amount of 

money into the pot. This is to ensure that there is action with every hand. It is called 

posting the blinds. The first player on the left of the dealer puts the small blind, which is 

half the minimum bet, and the second player puts the big blind, which is the minimum 

bet for this table. 

In the image below, player “F” is the dealer, marked with the dealer button. Player 

“A” is posted the small blind, and player “B” posted the big blind. The seats between 

player “F” and player “A” are empty (awaiting players). 

 

 

Fig 1: The dealer and the blinds. 

 

This game consists of 4 betting rounds, in which the players can act. 

In every betting round, each player acts in turn, clockwise. When it is a turn of a 

player to act, he can decide upon several possible actions. If someone already betted 

money into the pot in this round, then the player can: 

o Call – Match/equal the other player’s bet. 

o Raise – To increase another player’s bet. 

o Fold – Forfeit cards and thus giving up on the pot. 

If no one betted so far in this round, then the player’s options are the following: 
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o Check – Passing on making an action. 

o Bet – Put money in the pot, and so force the opponents to Call the bet if they 

want to continue in this hand. 

o Fold – Forfeit cards and thus giving up on the pot. 

The players continue to act, in each round, until everyone matches the amount 

betted/raised by a player. The player that bets may only act again in the same round if 

another player re-raises him. 

The first betting round is called Pre-Flop, and the players are given 2 cards faced 

down, which remain private for each player’s opponents. These are the hole cards (also 

called pocket cards). 

And so the betting round starts, and the first player to act is on the left of big blind 

seat. This player has to decide whether to Call the big blind, Raise, or simply Fold his 

cards. 

Logically, the only player who is given an opportunity to Check in the Pre-Flop 

phase is the Dealer, if nobody else raised. 

After this betting round is complete, come 3 more betting rounds, called the Post-

Flop rounds. From now on, the first player to act is always the player on the left of the 

dealer. 

 

 

Fig 2: Post-Flop betting rounds. 

 

The second betting round is called Flop. Three community cards are dealt face up 

to the middle of the table. These cards are shared by all the players and can be used in 

combination with hole cards each player holds. 
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So the second round of bidding begins, and only ends when all the players put the 

same amount on the pot, or fold. 

When this round is finished, the dealer turns 1 more community card face up in the 

table, and a new betting round starts. This third round is called the Turn, and proceeds 

similarly to the previous round. 

The fourth round is the River. The last community card is dealt and displayed on 

the table, starting a new betting round. 

In all the previous rounds, if all but one player folds, then the remaining player is 

declared the winner of this hand and wins the pot on the table. At this point, this player 

may choose to show his hand to the players, or muck it, which means to throw the hand 

away without showing anyone what it was. 

If after the River, there are still two or more players in the hand, a Showdown phase 

takes place. In this phase, all players show their cards, starting with the last person to 

bet. However, after the first player shows his cards, other players may choose to muck 

their hand, which is basically the same as folding. This is an important part of poker as 

you can muck to keep other players from learning your playing style. 

Players can use any combination of seven cards – the five community cards and 

their two hole cards – to form the best possible five-card poker hand. 

The player with the best hand wins the pot. (See chapter below). 

2.1.1 Poker Positions 

One important aspect of poker to retain regards the position of the players in the 

table. The position in which you play a hand, relative to the dealer (or button) can be as 

important as the cards you hold. 

This is due to the fact that the later you are to act in a hand, the more players have 

acted before you, and so you have gathered information about their actions. 

 

Besides defining some seats as Button, Small Blind and Big Blind, we can classify 

the players’ seats in a hand in 3 categories: Early Position, Middle Position and Late 

Position. 

Let’s consider a poker table with 10 players. This is called a full-ring table. 
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Fig 3: Positions of the players at a poker table. 

In this scenario, the first three players (after the Button) would be in Early Position. 

The four next players would be said to be in Middle Position, and finally the last 3 

remaining players would occupy a Late Position. 

The exact number of players in each of these categories changes according to the 

number of players in the table, but the essence of this classification is still valid. 

Note: Besides full-ring tables, poker tables can be characterized as heads-up table 

(2 players) and short-handed table (3-6 players). 

2.2 Poker Hand Rankings 

In order to determine the winning hand, we have to able to rank hands. Here is a list 

of five-card poker hands rankings in descending order of strength. 

 

 

Royal Flush 

This is the best possible hand in standard five-card Poker. Ace, 

King, Queen, Jack and 10, all of the same suit. 

 

Straight Flush 

Any five-card sequence in the same suit. 
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Four of a kind 

All four cards of the same value (or rank). 

 

Full house 

Three of a kind combined with a pair. Ranked by the trips (three 

of a kind). 

 

Flush 

Any five cards of the same suit, but not in sequence. Ranked by 

the top card. 

 

Straight 

Five cards in sequence, but not in the same suit. The ace plays 

either high or low in the straight. Ranked by the top card. 

 

Three of a kind 

Three cards of the same value. 

 

Two pair 

Two separate pairs, and one kicker of different value. The kicker is 

used to decide upon a tie of the same two pairs. 

 

One pair 

Two cards of the same value. Three kickers. 

 

High card 

Any hand that does not qualify as one of the better hands 

above. Ranked by the top card, then the second card and so on. 

Table 1: Five-card hand ranks. 

 

Note: In Texas Hold’em, suits are not taken in consideration when ties occur with 

the best five-card hand. In the case of a tie, the pot is split equally among the winning 

hands. 

2.3 Fixed Limit Variant 

Fixed Limit is one of the possible variants within Poker Texas Hold’em. 
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Contrarily to the No-Limit variant, the bet amount is fixed, and so the players can 

only choose the action to take, having no decision on the amount to bet. 

Poker tables have two pre-defined values: small bet and big bet. The small bet is 

the same as the minimum bet (mentioned above). A poker table would typically show 

these values in the format “$1/$2”, meaning, in this case, that the small bet is $1 and the 

big bet is 2$. 

In Fixed Limit, in the two first betting rounds (Pre-Flop and Flop), the bet value is 

defined to be the small bet, and in the remaining two rounds (Turn and River), it is 

equal to the big bet. 

Another rule of this variant, is that the maximum number of raises is limited to 

three. To demonstrate this, let’s consider the following example: a poker table “$1/$2”, 

in the Turn stage, with only 3 remaining players in the current hand. The action goes as 

follows: 

• Player “A” bets $2. (lays down $2 in the table) 

• Player “B” raises $2. (lays down $4 in the table, to include Player “A” bet) 

• Player “C” re-raises $2. (lays down $6 in the table, to include former bets) 

• Player “A” has now two options if he wants to continue playing this hand: 

either Calls the bets that Player “B” and Player “C” made, to a total of $4, or re-

raises $2 (putting this way more $6 in the table). 

If Player “A” decides to re-raise, then he is said to cap the pot. This means that the 

remaining players in the hand will only be able to Call Player’s “A” re-raise (if they 

wish to continue in this hand,) but they won’t be allowed to re-raise anymore in this 

round. And so after Player “A” re-raise, both Player “B” and Player “C” would have to 

pay more $4 (two big bets) to remain eligible to win the this hand’s pot. 

2.4 Computer Poker 

As already referred, the game of poker has interesting, unique properties that can’t 

be found in other games. Due to this fact, poker has been used as a testbed in different 

areas [8], and provides excellent challenges to decision making under conditions of 

imperfect information [1]. 

Creating a computer program capable of playing poker in a world-class level poses 

itself as a challenge. In fact, so far, the poker programs haven’t evolved to the point of 
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surpassing the best human poker players, in any variation of Texas Hold’em [32]. This 

is due to a number of reasons. 

The scientific community has been approaching this problem in different ways, 

over a number of years. From those contributions, one must be emphasized: the 

University of Alberta Computer Poker Research Group (CPRG) with numerous papers 

and thesis on the poker game-playing AI [11]. These approaches, as well as the CPRG 

research results, methodologies and algorithms, will be addressed in the next Chapter. 

From a game-theoretic perspective, it is unfeasible to compute an optimal solution 

to the problems in the poker’s domain. In fact, even the two-player Texas Hold’em 

game has a search space size of )10( 18O  [15]. 

The outcome of every action in poker depends immensely on the actions of the 

other players and the accuracy of the model we constructed of them. Even an optimal 

poker strategy (a strategy that minimizes loss against any possible opponent’s strategy) 

could prove to be not as effective or profitable as another one (maximal strategy), 

which would better exploit the opponents’ weaknesses [1, 15]. This is the reason why 

Opponent Modelling is a main component of any good poker program.  

Furthermore, humans make use of their intuition in poker, and so, change their 

playing style very fast to adapt to their opponents style and to avoid being accurately 

modelled. This issue was discussed in the past, as “tracking a moving target” [13]. 

On the other hand, computers are able to make use of their processing speed and 

calculate statistics and probabilities that help them to make decisions. While this is true, 

the possibilities in a poker hand grow exponentially, and the use of processor speed is 

limited when faced with expensive calculations, as we’ll see in the next chapter. 

These computations are also limited by the time to act. When playing poker online, 

each player has a limited time to act, and in order to make the game fluid, poker AI 

agents’ aim at a response time of a few seconds per action, at most [1]. This is also 

important when assessing results, as the chance element plays an important role in the 

outcome of a hand, numerous trials must be made in order to observe useful properties. 

Moreover, the task of assessing a poker agent’s performance is not a trivial one. It 

should be tested in a large diversity of scenarios. These scenarios should include human 

players with different playing styles. However, establishing dozens or hundreds of 

thousands trials with human players can be very difficult and time-consuming. 

So far, the best poker agents have focused on a very specific variant of Texas 

Hold’em, in order to attain a good result. Previous agents have focused mostly on Limit 

Heads-up tables, Limit Full ring tables, and more recently No-Limit Heads-up tables. 
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In conclusion, Poker Texas Hold’em has great complexity, and tackling effectively 

the problem of building a high performance computer program has proved to be a hard 

challenge in the domain of Artificial Intelligence, yet to be solved. 
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Chapter 3 

3. Previous Approaches 

As mentioned before, in the last decade computer poker has become a center of 

attention to the scientific community. 

There have been many approaches and developments in this field, and this chapter 

is meant to give an overview of the former approaches and methodologies, up to the 

state of the art. 

Most of the literature contributions have come from the University of Alberta 

Computer Poker Research Group (CPRG) [11]. 

3.1 Deterministic Rule-based methods 

One intuitive approach is to design a set of rules that handle specific situations in 

the game play. 

This type of “expert system” has been proven efficient in games where there are 

only a few distinct cases to be handled. However, poker has a very rich context, and 

trillions of distinct scenarios may arise during a game [4]. 

Furthermore, this system is also limited by the knowledge of the domain expert, for 

it can only be as strong as its creator. 

These limitations have been historically proven, by the program Turbo Texas 

Hold’em, written by Bob Wilson [4]. After more than 15 years of development, this 

computer program was able to handle thousands of different scenarios. Even so, it can 

be easily defeated by average players. 

A deterministic rule-based approach will always decide upon the same action, 

given a specific context of the game. In game theory this is known as a pure-strategy. 

Due to this fact, opponents can easily model the gameplay of an agent that implements 

this approach, and rapidly exploit it. 



 

14 

Unpredictability is one important aspect in poker, and strong players must be able 

to change their playing style over time. 

For example, if we know that our opponent always raises pocket Aces in the pre-

flop stage, we can correctly infer that he doesn’t have this hand if he takes another 

action in this stage of the game. These inferences about the opponent’s hand are useful 

to correctly decide upon an action, and therefore become profitable. 

A more general method is the probabilistic rule-based approach, which defines a 

randomized mixed strategy for a specific context (e.g. a probability distribution over a 

set of possible actions). This approach is able to handle unpredictability much better. 

3.2 Probabilistic Formula-based methods 

This approach is much less rigid than the deterministic rule-based approach, for it 

abstracts different scenarios into a much smaller number of circumstances. This 

abstraction is made by using formulas, which consider several variables pertaining to 

strategic elements in the game. 

However, this approach still runs on the same limitations as the rule-based 

approach, even if to a lesser extent. 

The most robust and well-known agents that implement this approach are Loki and 

Poki, both developed by the CPRG. 

The following sub-chapter will go over the main aspects of these agents. 

3.2.1 Loki and Poki’s architecture 

Loki, and its successor Poki, are agents designed to play in the variant Limit Texas 

Hold’em, and play best in a full ring table. They were developed by the CPRG. 

These agents introduced some new, important, methodologies such as: 

• Pre-Flop Hand Evaluation. 

• Post-Flop Hand Ranking. 

• Hand Strength, Hand Potential, Effective Hand Strength. 

• Opponent Modelling. 

The betting strategy of these agents is divided between before the flop and after the 

flop, and is significantly different. Before the flop, the agent’s decision is much simpler, 
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since it only considers its private, two hole cards, as opposed to the post-flop decision, 

whereas it has to analyse how its own cards combine with the community cards already 

revealed on the table. 

Pre-Flop 

In the pre-flop, there are ���� � � 1326 different hands. 

However, since many of these are equivalent before the flop (e.g. 3d6d is 

equivalent to 3c6c), we can narrow down to 169 distinct hand types (13 paired hands, 

78 suited hands and 78 unsuited hands). 

The value of each of these hands is called an income rate, and is computed based on 

a technique known as roll-out simulation. This method is done offline, and consists of 

playing several million games (trials) where all players call the first bet. All hands then 

proceed to showdown without any further betting. 

This method is also commonly referred to as all-in equity, since after calling the 

first bet, all players are assumed to be all-in. 

This method provides an approximation of the expected value of the pocket hands, 

and is useful to decide upon a strategy in the pre-flop phase. 

A refinement to this technique is the iterated roll-out simulation. It is done by 

repeating iterations of this technique, but deciding the action for each player in 

accordance with the result of the previous iteration. This means that the weakest hands 

will be folded pre-flop, providing a better estimation of the real expectancy of each 

hand. This is based on the assumption that most weak hands never get to see the flop. 

The results obtained are quite similar to the group rankings suggested by 

professional player David Sklanksy, and are shown in the table below. 
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Group 1 Group 2 Group 3 Group 4 

+2112 
+1615 
+1224 
+935 
+1071 

AA 
KK 
QQ 
JJ 
AKs 

+714 
+915 
+813 
+858 
+718 

TT 
AQs 
AJs 
KQs 
AKo 

+553 
+657 
+720 
+767 
+736 
+555 

99 
JTs 
QJs 
KJs 
ATs 
AQo 

+481 
+515 
+450 
+655 
+338 
+449 
+430 
+694 

T9s 
KQo 
88 
QTs 
98s 
J9s 
AJo 
KTS 

Group 5 Group 6 Group 7 Group 8 

+364 
+270 
+452 
+353 
+391 
+359 
+305 
+222 
+245 
+538 
+469 
+427 
+386 
+448 
+422 
+392 
+356 
+191 

77 
87s 
Q9s 
T8s 
Kj0 
QJo 
JTo 
76s 
97s 
A9s 
A8s 
A7s 
A6s 
A5s 
A4s 
A3s 
A2s 
65s 

+304 
+335 
+238 
+185 
+306 
+287 
+167 
+485 
+327 

66 
ATo 
55 
86s 
KTo 
QTo 
54s 
K9s 
J8s 

+214 
+92 
+41 
+141 
+127 
+199 
-15 
+106 
+196 
+356 
+309 
+278 
+245 
+227 
+211 
+192 
+317 

44 
J9o 
43s 
75s 
T9o 
33 
98o 
64s 
22 
K8s 
K7s 
K6s 
K5s 
K4s 
K3s 
K2s 
Q8s 

-75 
+87 
+119 
+65 
-129 
-42 
-83 
+144 
+85 
-51 
+206 
-158 
-181 
+41 
+85 
-10 

87o 
53s 
A9o 
Q9o 
76o 
42s 
32s 
96s 
85s 
J8o 
J7s 
65o 
54o 
74s 
K9o 
T8o 

Table 2: Income Rate Values vs. Sklansky Groups. 

 

There is a strong correlation between Sklansky groups and the results of the roll-out 

simulations (table 2). CPRG preferred to use the computed results [4]. 

The abstraction of these hands to single income rates comes with some limitations. 

Some hands with lower expectancy can be played under special circumstances (e.g. for 

one bet to call in a late position, after many players called). Also, there are certain hands 

that can easily draw into a very strong hand, such as a flush or a straight. These are 

called drawing hands. 

So, after Loki/Poki has received its hole cards, it looks up the table for the income 

rate value of the hand. 

Then, it uses a formula-based approach to govern the betting strategy for the pre-

flop. This system makes use of expert knowledge that has been defined by a poker 

expert. 
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Post-Flop 

For the post-flop stages, Loki/Poki computes several variables such as hand 

strength (HS), positive potential (PPot), negative potential (NPot), and effective hand 

strength (EHS). These variables are used to assess Loki/Poki’s (hereafter only referred 

to as Poki) hand value relative to the board (community cards). 

Hand strength is an estimation of the probability that our hand is better than the 

hand of a given opponent. A simple calculation of the HS is to enumerate all other 

possible hands and compare them to ours, using a Hand Ranking function. 

After the flop, there are only more �
�� � � 1081 distinct hands an opponent might 

hold. By computing the number of times our hand wins, loses and ties against every 

possible opponent’s holdings, we get the probability of currently having the best hand, 

against a random hand. 

Figure 4 shows the algorithm for a simple HS raw calculation. 

 

HandStrength(ourcards,boardcards) 

{ 

  ahead = tied = behind = 0 

  ourrank = Rank(ourcards,boardcards) 

/* Consider all two-card combinations of the remaining cards. */ 

for each case(oppcards) 

{ 

 opprank = Rank(oppcards,boardcards) 

 if(ourrank>opprank)  ahead += 1 

 else if(ourrank==opprank)   tied += 1 

 else     behind += 1 

 } 

handstrength = (ahead+tied/2) / (ahead+tied+behind) 

return(handstrength) 

} 

Fig 4: Hand Strength calculation. 

 

This value is un-weighted, since we’re considering that the opponent is equally 

likely to hold any of these 1081 possible hands. However, this enumeration can take 

into account our belief about the possible hand of the opponent. Instead of adding one to 

each counter for ahead, tied and behind, we can add a weight representing the 

probability of the opponent holding a specific hand. 

Weighting the enumerations will be further discussed below. 

The HS estimation is an important measure, but only reflects the current situation. 

Since in the flop there are still two more board cards to be revealed, and in the turn one 

more, the hand potential calculation is introduced. 
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Hand potential is divided in positive potential and negative potential. 

PPot is the chance that a hand, which is currently not the best, will improve to win 

at the showdown. NPot is the chance that a currently leading hand ends up losing. 

Similarly to the HS calculation, PPot and NPot are calculated by enumerating all 

possible opponent’s hands and all future board cards to come, and count how many 

times the hand is behind, but ends up ahead (PPot), and the number of times the hand is 

ahead but ends up behind (NPot). The algorithm is given in Figure 5. 

 

HandPotential(ourcards,boardcards) 

{ 

/* Hand Potential array, each index represents ahead, tied, and behind. */ 

integer array HP[3][3] /* initialize to 0 */ 

integer array HPTotal[3] /* initialize to 0 */ 

 

ourrank = Rank(ourcards,boardcards) 

/* Consider all two-card combinations of the remaining cards for opponent. */ 

for each case(oppcards) 

{ 

   opprank = Rank(oppcards,boardcards) 

   if(ourrank>opprank)  index = ahead 

   else if(ourrank=opprank)   index = tied 

   else     index = behind 

   HPTotal[index] += 1 

   

  /* All possible board cards to come. */ 

  for each case(turn) 

  { 

     for each case(river) 

     { /* Final 5-card board */ 

     board = [boardcards,turn,river] 

     ourbest = Rank(ourcards,board) 

    oppbest = Rank(oppcards,board) 

     if(ourbest>oppbest)   HP[index][ahead] += 1 

     else if(ourbest==oppbest)    HP[index][tied] += 1 

     else     HP[index][behind] += 1 

    } 

  } 

  } 

/* PPot: were behind but moved ahead. */ 

PPot = (HP[behind][ahead] + HP[behind][tied]/2 

+ HP[tied][ahead]/2) / (HPTotal[behind]+HPTotal[tied]/2) 

/* NPot: were ahead but fell behind. */ 

NPot = (HP[ahead][behind] + HP[tied][behind]/2 

+ HP[ahead][tied]/2) / (HPTotal[ahead]+HPTotal[tied]/2) 

return(PPot,NPot) 

} 

Fig 5: Hand Potential calculation. 
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Computing hand potential may be crucial, but is also expensive, given the real-time 

constraints of the game (about one second per decision). In the flop, if we enumerate all 

possible scenarios to come (990 possible cards for turn and river), may prove to be as 

slow as 2000 milliseconds per computation [1]. 

In practice, a fast approximation of the PPot calculation can be used, such as only 

considering the next card to come (one card look-ahead). This decreases the calculation 

time to about 280 milliseconds [1]. 

Also, in hand potential calculation, we can weight the enumeration of the possible 

opponent’s holding, with a probability (discussed below). 

The effective hand strength (EHS) combines hand strength and potential to give a 

single measure of the relative hand strength against an active opponent. 

CPRG suggests that the NPot is not as important as PPot for betting purposes, and 

so only uses the first for in the EHS calculation: 

��� � �� � �1 � ��� � ����     (1) 

By not accounting for the NPot, Poki bets his hand more aggressively, despite good 

draws being possible for his opponent. As a consequence the opponent will either fold 

or pay to draw. 

These calculations are with respect to one opponent, but can be extrapolated to 

multiple opponents by raising it to the power of the number of active opponents. Using 

a raw (un-weighted) EHS, we can account for n active opponents, by generalizing the 

last equation to: 

��� � ��� � �1 � ���� � ����     (2) 

In the case we are considering the opponent’s playing style, and thus a different 

probability distribution over possible hands of the opponent, then this formula can be 

generalized to be made in respect to each opponent i: 

���� � ��� � �1 � ���� � �����     (3) 

The EHS value is a very important factor when deciding on an action to take, as it 

estimates our winning probability. 
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Weighting the Enumerations 

The calculations of Hand Strength and Hand Potential assume that the opponent is 

equally likely to hold any possible two card combination. This is an incorrect 

assumption. 

For example, after the pre-flop stage, the probability of an opponent holding high 

ranked cards is bigger than holding a hand like 7c2h. 

Poki handles this by maintaining weight tables for every active opponent. A weight 

table enumerates all possible hands an opponent might hold and assigns to each of them 

a probability. This probability reflects Poki’s belief that the opponent holds a specific 

hand. 

Every time an opponent takes an action, the weight table is updated to reflect this 

action, by using Opponent Modeling. Opponent Modeling will be discussed in the next 

chapter. 

Poki uses a weighted Hand Strength and Hand Potential calculation, by considering 

the weight tables of each opponent in the computation.  

Post-flop betting strategy 

After the former calculations, Poki’s decision is managed by a set of betting rules, 

defined by a poker expert. 

These betting rules take into account factors like pot odds, implied odds, relative 

betting position, betting history of the current game, etc [4]. 

In Loki-1, the output of this rule-based or formula-based betting strategy would 

dictate the decision of the agent for the situation. However, since Loki-2, the new 

system makes use of probability triples. The formula-based betting strategy outputs a 

probability triple, with the probability for fold, check/call, and bet/raise. Poki then 

generates a random number in the range of zero to one, and uses it to choose an action 

according to the probability triple. This makes Loki-2 and Poki much more 

unpredictable, as it can opt for a different strategy in the exact same context. 

The details of the expert knowledge in the betting strategy of Poki are unknown, as 

CPRG opted not to discuss these [4]. 

3.2.2 Opponent Modeling 

Opponent Modeling is a crucial component of a good poker program. 
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While in games such as chess, this particular aspect is not necessary to achieve a 

world-class level of play, in poker, opponent modeling directly addresses the 

information about the game, which is unknown to the players (opponent’s hand, cards to 

come, etc…), and the deceitfulness of the opponents (strategies like bluffing and 

trapping). 

One must be able to predict opponents’ play, and also to avoid being predicted. 

Opponent Modeling is used by agents such as Poki (discussed previously 

throughout Section 3.2.1). 

Poki uses it in two different ways: to deduce the strength of an opponent’s hand, 

based on his betting actions, and to predict their action in a given situation of the game. 

Opponent modeling can use a fixed strategy, and therefore be independent of the 

opponent in question – Generic Opponent Modeling, or can be relevant to each specific 

opponent – Specific Opponent Modeling. 

Statistics-based Opponent Modeling 

One intuitive way of predicting a player’s actions is to expect him to behave the 

same way as he did in the past. For example, if a player is known to bet 40% of the time 

immediately after the flop, then one could infer that the player normally bets with the 

top 40% of their hands, in the same exact situation. 

The first opponent modeling technique implemented by Poki was a statistical table, 

which collects the betting frequencies of the opponent, in a variety of contexts. 

The context is defined by some important factors, such as the betting round (pre-

flop, flop, turn, river), bets to call (zero, one, two or more), etc… 

Many actions must be observed for the prediction to converge to a useful value. So, 

a context can neither be defined too narrow, since it will take too long to collect enough 

samples for each scenario, or too broadly, as it will fail to capture relevant information 

from the different circumstances. 

Another concern of defining a context too narrow (defined by many context 

variables), is that while it’s still in the process of gathering observations from the 

opponent’s play, the opponent might already be changing his strategy, rendering the 

prediction useless. 
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Neural Networks-based Opponent Modeling 

Artificial Neural Networks (ANN) have been known for their ability to learn and 

identify patterns in noisy data [13]. In the past, they have been applied to computer 

poker, with the goal to create a more general system for opponent modeling. 

In 1999, an ANN that consisted of nineteen input variables (context items such as 

the number of players, game stage, etc…), and three outputs (fold, check/call, bet/raise) 

was trained offline with data from human players. [13] 

The objective of this experiment was to identify factors that either influence, or are 

correlated with a player’s next action. 

Two particular strong features for prediction were identified and added to the 

existing statistical opponent modeling, to create new contexts. This improved version 

proved to be better than the former one [6]. 

The efficiency of the neural network was also put to trial, and showed promising 

results. 

 

 

Fig 6: A Network after being trained. (Shown correctly predicting a call) 

 

ANNs have proved themselves to be a useful way to model poker players, with a 

predicting accuracy higher than in the previous opponent modeling systems. However, 

neural networks have only been used as an off-line technique, and may not be feasible 

in real-time. CPRG has been experimenting using a real-time neural network system to 

replace the frequency table entirely [4]. 
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3.3 Simulation methods 

A poker program based on expert rules is limited by the prohibitively large domain 

space of poker. In fact, having rules covering every relevant situation in detail is not 

feasible. 

An alternative to having a betting strategy that relies on expert knowledge, is to 

have a simulation-based betting strategy. 

Simulation is defined as the repetition of many trials, in order to obtain a statistical 

average. In a Monte-Carlo simulation each trial consists of randomly selecting from the 

complete domain of possibilities. 

One example of a simulation is the roll-out simulation discussed in the preflop 

betting strategy of Poki, to estimate income rates of the starting hands. 

Poki supports a simulation-based betting strategy, since the early version of Loki-2. 

When faced with a decision, Poki invokes a simulation routine that assigns different 

hands to his opponents and plays out the game from the current state until the end, n 

number of trials. This routine helps Poki decide which action to take (Fold, Check/Call, 

or Bet/Raise), by selecting the action with the highest expected value. 

The expected value of a Fold decision can be calculated without simulation since 

there is no future profit or loss. For the other two decisions, this routine estimates their 

expected values. In order to do so, each trial is played out twice: the first one considers 

the consequence of a check/call, and the second one considers that Poki bets/raises. 

These expected values are computed by calculating the amount of money Poki wins or 

loses by the end of the trials. 

Throughout the simulation, the future actions of the opponents can be selected 

randomly from the possible actions or selected from a probability distribution, after 

consulting the Opponent Modeling component. 

After many trials the expected value of these decisions will start to converge. 

However, with randomly sampling the opponent’s possible hands, it can take a long 

time for the simulation to converge on accurate estimates. 

To cover for this, Poki implements Selective Sampling, which consists on selecting 

hands for the opponents based on a probability distribution. This probability distribution 

reflects the likelihood of an opponent holding each possible hand, and is computed by 

using weight tables maintained for each opponent. 

Selective sampling and simulation-based betting strategy has been experimentally 

proven to get better results than a simple formula-based betting strategy [8], and to 
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inherently deal with complex strategies such as check-raising without providing any 

additional expert knowledge [4]. 

3.4 Game-Theoretic methods 

In game theory, all two-player zero-sum games have at least one equilibrium 

strategy. Playing an equilibrium strategy ensures that an agent will obtain at least the 

game-theoretic value of the game, and that the other players can not benefit by changing 

their own strategy unilaterally. In the long run, an agent that implements this strategy 

will not lose, and might profit due to opponent’s errors. 

John Nash extended the idea of equilibrium strategies to N-person games, using 

poker as an example [38].  Unfortunately, finding exact equilibrium solutions is limited 

to relatively small problem sizes, and is not practical for most real domains. 

Some abstraction techniques have been used in the past to reduce a two-player 

Texas Hold’em game space of 1018 to a highly abstracted model with a game space of 

107. This model captures the most essential properties of the real domain, such that an 

exact equilibrium strategy can be computed and mapped back onto real poker. This has 

proved to be a very useful approximation of an equilibrium strategy for the real domain 

[14]. 

These solutions were used to create substantially improved poker-playing programs 

by the CPRG. This class of programs, collectively called PsOpti or Sparbot, was able to 

defeat strong human players and be competitive against world-class opponents [14]. 

Indeed, Sparbot proved to be hard to intimidate, and showed good results in his 

game against world-class player Gautam Rao [4]. However, this agent also showed 

some flaws, as this approach only gives a crude approximation of a true equilibrium 

strategy. 

It is believed that over time an experienced poker player can discover subtle 

tendencies in Sparbot’s playing style, and efficiently exploit them [4]. 

Nevertheless, this approach represented a large leap forward in the abilities of 

poker-playing programs. 
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3.5 Adaptative Imperfect Information Game-
Tree Search 

As discussed in the last chapter, if there was a program based on an exact 

equilibrium solution, then no human or computer player could expect to defeat it, in the 

long run. However, finding an exact solution for a game with the dimensions of poker 

will be unfeasible in the foreseeable future [15]. 

Furthermore, as mentioned before, a poker-program that would implement this 

strategy would only ensure that it could not be defeated. In order to convincingly win 

against other players, one must exploit their mistakes, and rapidly adopt counter-

strategies. 

This is the difference between optimal play and maximal play. An agent that 

implements a maximal strategy would try to exploit their opponent’s weaknesses in 

order to maximize profit. 

Agents that implement the Game-Theoretic approach have a practical limitation by 

using a fixed strategy. 

Adaptative Imperfect Information Game-Tree Search approach deviates itself from 

searching an optimal strategy, to attempt to exploit perceived patterns or biases in the 

opponent’s playing style and by adapting to dynamically changing conditions. In order 

to do so, it uses built-in data structures for Opponent Modeling. 

Two algorithms were implemented: Miximax and Miximix. These algorithms 

compute the expected value (EV) at decision nodes of an imperfect information game 

tree. And thus, are able to handle efficiently the stochastic element of poker. 

The difference between the two algorithms is that Miximax always chooses the 

action with the highest EV. This is called a pure strategy, and leads to predictable play 

that can be exploited by an observant opponent. On the other hand, Miximix uses a 

mixed strategy by selecting the action from a probability distribution. 

This architecture has been implemented in the computer program Vexbot. This 

agent defeats Sparbot and PsOpti convincingly and poses a much tougher challenge for 

strong human players [4]. 

It learns to defeat all known programs by a large margin, over time. However, its 

limitation also comes from this, as its performance is much worse in the beginning of a 

match, until enough data has been collected [15]. 
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Chapter 4 

4. A new approach: HuBot 

As stated in the Introduction, a new agent was built during the course of this work. 

This agent that goes by the name of HuBot implements a probabilistic formula-based 

approach with opponent modeling. 

Despite being based on the award winner poker agent Poki, it diverges itself from 

any other agent by using new methods that have been later proved to be efficient, either 

empirically (by observing the decisions of the agent) or experimentally (by analysing 

the winning rate after thousands of games). 

HuBot is an agent capable of playing Texas Hold’em in the Limit variant. It has 

been designed to play best in a full ring table. This was decided because (a) there are 

other agents capable of playing world-class in a table with few players, and because (b) 

in a full ring of players some multi-player complexities arise, that the algorithms must 

consider and which have not yet been addressed properly. 

Being Poki the state of the art full ring Limit Texas Hold’em computer agent, 

developed by a team over many years, it was only natural first to arm HuBot with the 

same successful techniques, in order to surpass them. 

As a good poker program must be able to make good decision in a very short time 

period, some new methods proposed in this research are meant to improve the 

performance of the agent, while others are intended to improve the efficiency. 

4.1 HuBot’s Architecture 

The architecture of HuBot consists of several components that interact with each 

other, creating an information flow consistent with the underlying framework. 

An overview of HuBot’s architecture is shown in Figure 7. 
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In general, the program’s components are related to eith

pre-flop, or the betting strategy

Before the flop, there isn’t much information to account for, since there aren’

community cards yet. So, more attention is given to the post

relatively simple expert system is capable of playing well in the pre

Firstly, the agent’s private hand is assessed, by using the “Income Rate ta

the “Threshold tables”. One strategy is selected, from a fixed set of strategies,

the value computed for the hand and the position of the active players.
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This pre-flop procedure is explained in detail in Section 
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Fig 7: The architectural concepts of HuBot. 

 

In general, the program’s components are related to either the betting strategy in the 

strategy in the post-flop phase of the game. 

Before the flop, there isn’t much information to account for, since there aren’

community cards yet. So, more attention is given to the post-flop betting strategy, as a 

relatively simple expert system is capable of playing well in the pre-flop phase [4].

Firstly, the agent’s private hand is assessed, by using the “Income Rate ta

the “Threshold tables”. One strategy is selected, from a fixed set of strategies,

the value computed for the hand and the position of the active players.

lect an action in the pre-flop, when HuBot is presented with a decision.

flop procedure is explained in detail in Section 4.3. 

 

er the betting strategy in the 

Before the flop, there isn’t much information to account for, since there aren’t any 

flop betting strategy, as a 

flop phase [4]. 

Firstly, the agent’s private hand is assessed, by using the “Income Rate tables” and 

the “Threshold tables”. One strategy is selected, from a fixed set of strategies, based on 

the value computed for the hand and the position of the active players. The strategy is 

ted with a decision. 
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In the next stages of the game (Flop, Turn and River), each time is HuBot’s turn to 

act, its decision follows the same, single path. Section 4.4 describes it in detail. 

Initially, some important values are estimated, representing the Hand Strength and 

Hand Potential of the agent’s hand against his opponents. After, these values go into a 

more complex formula-based system, and an action is decided. The calculation of these 

values is biased, taking into account the probability distribution of the hands the 

opponent might hold. This probability distribution is maintained for each player in a 

weight table, and updated after an action has been observed during game play. 

Furthermore, the opponent model of each player also includes a table with the 

action frequencies of the player, used in the re-weighting system. This includes HuBot 

itself. 

Opponent modeling and the re-weighting method are topics of discussion in Section 

4.5. 

4.2 Meerkat API 

The agent HuBot has been developed in Java, under the Meerkat API framework, 

from Poker Academy Pro 2.5 [37]. This API allows programmers to plug in their own 

custom agents, providing a stable framework that handles all game state information 

and more. 

The public game state information and history is kept in the object GameState, 

which can be queried by accessing any of its methods. Also within this object, one 

PlayerInfo object is stored for each player, in order to access public information about a 

specific player. 

Other important data structures defined by the Meerkat API are the classes Card, 

Hand and Deck. A Card is defined by a rank {0 to 12} and suit {0 to 3}, therefore 

abstracting all 52 cards of a normal deck. A Hand stores several Card’s and provides 

methods to handle these. 

In order to use this framework, all agents must implement the provided interface 

Player. The Player objects (representing both human players and computer players) are 

each given cards in the beginning of the game, and prompted for decisions, when 

necessary. These decisions come in the form of the object Action. 

Some important events are fired when it requires HuBot’s attention. These are: 

� public void holeCards(Card c1, Card c2, int seat) { 

An event called to tell us our hole cards and seat number. 
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� public Action getAction() { 

Requests an Action from the player. Called when it is the player’s turn to act. 

� public void gameStartEvent(GameInfo gInfo) { 

A new game has been started. 

� public void stageEvent(int stage) { 

A new betting round has started. 

� public void showdownEvent(int seat, Card c1, Card c2) { 

A showdown has occurred. 

� public void actionEvent(int pos, Action act) { 

An action has been observed. 

� public void gameOverEvent() { 

The hand is now over. 

4.3 Pre-Flop Betting Strategy 

The betting strategy used in pre-flop is relatively simple, and is based in two parts: 

the assessment of the initial hand of the agent, and an expert system that selects a 

strategy to use during pre-flop. 

4.3.1 Initial Assessment 

The assessment of the hole cards of HuBot is done by using Income Rate tables. 

These tables define a value for each distinct hand before the flop. While these values do 

not necessarily reflect an accurate estimate for the expect value of the hand, they do 

provide a first-order approximation. This topic has been described in Section 3.2.1.1. 

There are three Income Rates tables loaded into memory in the beginning of a 

match. These tables were created taking into account the number of opponents, and so, 

there is one table for heads-up, one table for a group of three or four players, and one 

table for five or more players. 
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 2 3 4 5 6 7 8 9 T J Q K A 

2 -6 -462 -422 -397 -459 -495 -469 -433 -383 -336 -274 -188 -39 

3 -180 21 -347 -304 -365 -418 -447 -414 -356 -308 -248 -163 -1 

4 -148 -69 67 -227 -273 -323 -362 -391 -334 -287 -223 -133 32 

5 -121 -38 31 122 -198 -230 -270 -303 -309 -259 -200 -103 64 

6 -174 -95 -10 64 206 -151 -175 -204 -217 -235 -164 -72 23 

7 -208 -135 -47 35 108 298 -87 -106 -112 -128 -124 -26 72 

8 -184 -164 -83 2 93 168 420 -5 6 -10 -10 22 126 

9 -146 -128 -111 -26 64 153 245 565 134 118 118 151 189 

T -88 -68 -46 -29 59 155 268 383 765 299 305 336 373 

J -38 -15 1 30 51 147 256 377 536 996 380 420 462 

Q 35 49 72 99 127 162 268 384 553 628 1279 529 574 

K 117 141 167 190 223 261 304 423 591 669 764 1621 712 

A 269 304 333 363 313 365 416 475 644 720 815 934 2043 

Table 3: Income Rate table for 7 players. 

 

In the table above, each cell defines a distinct hand. Suited hands are shown in the 

bottom left part of the table, whereas unsuited hands are shown in the top right triangle 

of the table. 

HuBot looks up in one of these tables the value of its initial hand, selecting the 

table based on the number of expected players that will see the flop. The number of 

expected players is calculated this way: 

������� _"#$_�%&'�() � *+,_-+./.*�001  

� 3/�4.4565�7_36.7 � �.8�590_36.70/: � *+,_-+./.*�001�  (4) 

 

� num_guaranteed is the number of players that have already put money into the 

pot, and therefore committed themselves to play the hand. This includes the 

blinds and HuBot (the agent considers that he will play the hand). 

� active_players reflects the number of players still active in this hand, including 

the players already committed. 

� probability_play is a fixed value, selected ad hoc. It defines the probability of a 

player to play his hand in the preflop. This value is currently set to 0.4, after 

empirical testing. 
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Succinctly, this formula can be read as: the expected number of players is the 

number of players already committed (and blinds) plus each remaining player that 

hasn’t acted yet times 0.4. 

The expected_num_players variable is then rounded to nearest integer and falls into 

one of the groups of players: group.TWO, group.THREEORFOUR, 

group.FIVEPLUS. 

Afterwards, the Income Rate table used is selected, based on the group decided, and 

a value is retrieved representing the expected value of the agent’s hand. 

4.3.2 Choosing a strategy 

There are six possible strategies to choose from in the preflop: Make0, Call1, 

Make1, Call2, Make2, and Make4. These strategies are sequential rules defined by a 

poker expert, and are described in the next Section in more detail. 

One strategy is selected when it is HuBot’s first time to act in the pre-flop. After a 

strategy has been selected, it is used for all further decisions in the pre-flop. 

In order for HuBot to choose a strategy, threshold values are assigned to the six 

strategies, giving lower values to the passive strategies and higher values to the 

aggressive strategies. These threshold values define the minimum value that a hand 

must have in order to play the hand with this strategy. For example, Make4 strategy, 

which tries to raise the pot every time, might have a threshold value of 900, forcing 

HuBot to only play this strategy when it has a very high pocket pair, or a hand such as 

Ace-King suited. 

Thresholds have a base value, but also vary according to the expected number of 

players and the position of the agent in the table. The position is defined by the 

proximity to the dealer in this hand (i.e. the dealer is in position zero, the player on the 

right of the dealer is in position one, and so on...). 

The linear formulas used to compute the thresholds have been described in detail in 

[7] and the threshold values have been proposed by the professional poker player Darse 

Billings. 
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4.3.3 Rule-based strategies 

These strategies share the name of Loki-1 strategies, but have little in common, as 

they implement a more sophisticated system. A small overview of the six possible 

strategies is given below: 

 

• Make0: Usually fold, except when the agent is in the blinds. 

• Call1: Calls one bet. 

• Make1: Calls one bet in late position. On rare occasions raises. 

• Call2: Can call as much as two bets. 

• Make2: Raises up to two bets. On rare occasions folds. 

• Make4: Tries to cap the pot. 

 

Each strategy contains expert knowledge, and handles different case scenarios. 

These scenarios are distinguished based on several context variables, such as: 

- how much money has the agent already committed into the pot; 

- how many bets is the agent facing, in order to call; 

- number of players yet to act in this round; 

- the ‘percentile’ variable. 

The percentile represents how close the value of the agent’s hand is to the next 

strategy’s threshold value. It is used by some strategies to smooth the thresholds, 

deciding upon different actions based on the value of the hand. For example, let’s 

consider that HuBot is playing the hand AsJs, which has an expected value of 720. 

The thresholds for the strategies Make2 and Make4 were respectively 480 and 900, 

thus Make2 strategy was selected. percentile is calculated this way: 

��(��"�;%� � ��<=
><
?<<=
>< � @. BCD    (5) 

In this example, since the percentile is above 0.49, if HuBot is faced with a 

scenario when no player has raised yet, it will raise. However, in the same scenario, 

with a lower percentile, HuBot might simply check. 

Furthermore, in these strategies’ rules, special treatment is given if HuBot is 

playing the small blind or big blind. 
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Fig 8: Rules of strategy Make1. 

 

Figure 8 shows the rules of one of the strategies. The algorithm starts by evaluating 

rules that consider if the agent is already committed. If not, then other rules are 

evaluated, from the most aggressive to the most passive. In the end, if no rule was 

selected, then a default action is taken. In the case of Make1, the default action is to 

Call. 

All the other strategies follow this same structure. 

These rule-based strategies have been adjusted throughout HuBot’s version. The 

most extensive improvement took place in version 1.08. Since then, results are very 

satisfactory regarding the frequency of hands played in the pre-flop. The percentage of 

flops seen for HuBot is around 22%, which is the percentage suggested by Poker 

Academy Pro, as shown in Figure 17, in Chapter 5. 

Before the flop, weight tables aren’t taken into account when HuBot chooses an 

action to take, but are, nonetheless, updated whenever an action from a player is 

observed. This re-weighting system is explained in detail throughout section 4.5.1. 

4.4 Post-Flop Betting Strategy 

After the flop, HuBot chooses an action by evaluating its hand in relation to the 

board, and by using a set of betting rules and formulas to translate this value into an 

action. HuBot’s beliefs about the hands its opponents might hold are accounted for in 

this phase of the game, and greatly influence the agent’s decision. 
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4.4.1 Hand Evaluation 

For evaluating a hand in post-flop, HuBot uses the Hand Strength (HS) and Hand 

Potential algorithms, described in Section 3.2.1. 

However, against multiple opponents, the Hand Strength algorithm results have a 

degree of error [7]. This error comes from the fact that the algorithm doesn’t handle 

each opponent independently, and so ignores the interdependencies that arise from the 

fact that two players cannot hold the same card. For example, situations where one 

player is holding AhQh and another is holding QhJs should not be considered in the 

calculation, since they are naturally impossible to occur. 

In order to treat each opponent independently, the algorithm would need an extra 

iteration layer for each opponent. Each additional iteration layer increases the 

computational complexity by a factor of about 1000, making it unfeasible to compute 

with just three players. 

The method of extrapolating Hand Strength against multiple opponents, described 

before (Eq.3), can be replaced by a better approach, in order to minimize the average 

error of this estimation. 

In [9], one abstraction was proposed, called Expected Hand Strength Squared – 

E[HS]2. This method is based in the Sum of Squares approach and measures the 

expected value of the square of the hand strength. In practical terms, the goal of E[HS]2 

is make the better hands carry more weight in the calculation than the weaker hands. 

This idea has been extended to introduce a new approach – EHSn. Instead of 

squaring the winning percentage of every hand (HS), we exponentiate this value to the 

power of the number of opponents. The final result is calculated by adding the 

exponentiated values for every possible board cards in the River. 

Figure 9 shows an un-weighted EHSn calculation, done in the flop with a two-card 

look-ahead. 
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HandStrength(ourcards,boardcards) 

{ 

   totalBoards = 0 

   /* All possible board cards to come. */ 

   for each case(turn) 

   { 

  for each case(river) 

  { /* Final 5-card board */ 

     board = [boardcards,turn,river] 

    ourrank = Rank(ourcards,board) 

     winds = ties = showdowns = 0 

     totalBoards++ 

 

  /* Consider all two-card combinations of the remaining  

  cards for opponent. Excludes the board cards.*/ 

  for each case(oppcards) 

 { 

       opprank = Rank(oppcards,board) 

     if(ourrank>opprank)   wins += 1 

      else if(ourrank==opprank)  ties += 1 

      else           showdowns += 1 

 } 

 hs = (wins + (ties/2)) / showdowns 

  EHSn += hs ^ nr_opponents 

} 

   } 

   EHSn = EHSn / totalBoards 

   return EHSn 

} 

 

Fig 9: Raw EHSn calculation in the flop. 

 

In practice, HuBot considers the weight tables of each opponent when calculating 

the EHSn, thus calling it wEHSn. This calculation is done simply by (a) adding an 

iteration layer per opponent, of the nested for cycle that enumerates all opponent hands; 

and (b) adding weights to the possible opponent’s hands, instead of incrementing it. 

With this new method, the average error is much lower than with the previous 

approaches (see Figure 10). 



 

Fig 10: Comparison of multiple opponent Hand Strength extrapolation methods

In Figure 10 the average error (in percentage) of three different Hand Strength 

Extrapolation methods 

extrapolating HS by multiplying the HS of each opponent together, suggested in earlier 

papers of the CPRG, which formula is explicit in Eq.3. The red bars regard a very naive 

method that consists in simply using the HS from the hardest opponent (the one wi

best winning percentage against our hand). The yellow bars are the average error of the 

EHSn method. 

These results come from testing these methods against a Monte Carlo simulation, 

based on several thousand 

degree of error by itself, represented in the green bars. The average error of the Monte 

Carlo simulation was of 0.4%, and it also reflects the accuracy of this test.

One important observation is that the yellow bar never exceeded the 1% 

error. 

Another variable HuBot estimates is the Positive Potential (

the Hand Potential algorithm (see Section 3.2.1

The algorithm described was simply adjusted to account for 

Regarding the considerations of m
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Comparison of multiple opponent Hand Strength extrapolation methods
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extrapolating HS by multiplying the HS of each opponent together, suggested in earlier 

papers of the CPRG, which formula is explicit in Eq.3. The red bars regard a very naive 

method that consists in simply using the HS from the hardest opponent (the one with the 

best winning percentage against our hand). The yellow bars are the average error of the 

These results come from testing these methods against a Monte Carlo simulation, 

hands and flop cards chosen randomly. Thus, it also holds a 

degree of error by itself, represented in the green bars. The average error of the Monte 

Carlo simulation was of 0.4%, and it also reflects the accuracy of this test. 

One important observation is that the yellow bar never exceeded the 1% average 

PPot), calculated using 

The algorithm described was simply adjusted to account for weight tables. 

ultiple opponents in the Hand Potential calculation, it 
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is believed that the value of Hand Potential against one player is a simple but reasonable 

estimate [7]. 

Therefore, before calling the Hand Potential function, the agent combines the 

weight tables of all the active opponents into one unique table, or in other words, 

averages the probability distribution over the possible hands for his opponents. This 

new table is called a field array, and is then used to calculate the Positive Potential for 

HuBot’s cards, storing the result in a variable called faPPOT. 

In the Hand Strength and Hand Potential algorithms, there is a function called 

within to rank the hands. The goal of this function is to assign to all possible hands 

different values, such that better hands have higher value, and worse hands have lower 

value. This value is then used to compare hands, and easily determine which one is the 

best. 

While ranking functions can be used to rank 5-card hands and 6-card hands, it’s 

more common in Texas Hold’em to use them for ranking 7-card hands, which consist of 

the 2 cards of the player and the final 5 cards at the River. 

In the algorithm of EHSn (Figure 9), we can see that the ranking function is called 

exactly 1,071,271 times: 

E472 H � E
47
2 H� E452 H � 1071271 

This includes ranking 1,070,190 opponent’s hands, within the inner loop of the 

algorithm. 

E472 H� E452 H � 1070190 

Thus, the speed of this function is of great importance. Throughout the years, many 

developers came up with new hand ranking algorithms, consistently trying to improve 

the efficiency. These algorithms have evolved a lot since CPRG ranking function, 

which had an average ranking speed of 1,165,716 hands per second. 

Currently, the state of the art algorithm, which implements the fastest function, is 

the RayW Look-Up Tables Hand Evaluator [17], which is able to evaluate an average of 

142,779,680 hands per second. However, the current implementation of this algorithm 

suffers some limitations, as it uses about 128Mb of memory, and is only available for 

ranking 7-cards hands. 

Since HuBot requires a java algorithm, able to rank also 5-cards hands, it is 

currently using Steve Brecher’s Hand Evaluator [36], which can rank about 34,659,212 

hands per second. 

(6) 

(7) 
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These speed results have been calculated experimentally, by enumerating all 

possible 7-cards hands, and ranking each and every one of them. 

However, there is some redundancy in ranking 1,071,271 hands (Eq.6). In fact, in 

the Flop stage, there are only four unknown cards to account for: two board cards yet to 

come, and the two cards the opponent holds. So, there are only �474 � � 178365 unique 

rankings for a specific flop board and the agent’s hand. This means that the agent 

should rank exactly this number of hands, and not more. 

To account for this, HuBot implements a pre-calculation table, where the ranks of 

the 178,365 hands are calculated in the beginning of the flop, and stored in this table for 

the rest of that game. Therefore, this table substitutes the ranking function, as the values 

can be obtained by simply looking up in the table. 

The result is a considerable improvement in speed, in the calculations of Hand 

Strength and Hand Potential throughout the program. 

However, the inner loop is still executed 1,070,190 times (Eq.7). 

4.4.2 Formula-based system 

After evaluating his hand, HuBot decides upon its action based on a set of formulas 

and rules, by using the calculated variables wEHSn and faPPOT. In fact, the agent 

bases his decision on one of six possible strategies (e.g. betting based on the strength of 

his hand). 

Each strategy has a priority, determining the order in which the strategies are 

considered. Higher priority is given to strategies such as check-raising and semi-

bluffing, whereas passive strategies such as calling based on showdown odds has the 

lowest priority. Whenever a strategy isn’t chosen, the strategy with the next highest 

priority is considered. 

Before its first action in the flop, HuBot calculates a variable called aggressiveness 

factor that will influence the way he plays his hand until the rest of the game. This 

variable is a number chosen randomly from 0 to 99. 

The six possible strategies in the post-flop are presented below, from the one with 

the highest priority to the one with the lowest: 
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1. Check-raise 

A check-raise strategy consists in checking as the first action, with the intention of 

raising in the same betting round after an opponent bets. Therefore, this strategy should 

be used when we hold a very good hand. 

HuBot only uses this strategy maximum one time per game, and only if the 

aggressiveness factor is more than 0.74. So, if HuBot hasn’t employed this strategy 

before, he will use it in 25% of the following situations: 

- When his Hand Strength (wEHSn) is superior to 0.85, he’s sitting in an earlier 

position of the table, and there are at least two more players to act after HuBot. 

The two last considerations are done to ensure that there is a good probability that 

someone might bet after the agent checks. 

By only using it 25% of the times, it adds unpredictability to the agent’s playing 

style, causing his actions to have a dual interpretation, and a harder task for his 

opponents to infer a conclusion with certainty. 

 

2. Based on strength 

If HuBot can’t check-raise, then the next strategy in line to be considered is to 

bet/raise or call based on his Hand Strength. 

The first step of this strategy is to check if the wEHSn of the agent’s hand is higher 

than 0.70. If so, HuBot bets or raises. However, if his Hand Strength is between 0.50 

and 0.70, the agent acts with more cautious. In this scenario, the agent’s goal is to make 

one bet, and so, if someone else already betted before him, he will simply call the bet. 

In the cases that he is facing zero bets to call, HuBot will bet himself. However, 

with an exception: 50% of the times that he is in an earlier position with two or more 

opponents yet to act, he will simply call. This is done because HuBot predicts with a 

high probability that someone else will already bet. 

 

3. Semi-bluff 

Semi-bluffing is a strategy that consists in betting, in the Flop or Turn, with a hand 

that has a good chance of winning by the showdown. This strategy has been successful 

in earlier versions of Poki. 

It is based on the Hand Potential estimation. If HuBot’s hand has enough chance to 

improve enough to call for a bet and a raise, then he will open the betting himself. 
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Semi-bluffing is done when faPPOT > pot_odds2, where: 

3���11:2 � 2 � 40�_:5K0
3��_:5K0 � 6 � 40�_:5K0  

This equation represents the money that we have to put on the pot (‘2 � 40�_:5K0’ 

is our bet, and possibly calling a raise), in proportion to the money that we can win (the 

current money in the pot plus an estimation of the bets in this round). 

The goal of this strategy is to bluff other players to fold after our bet. However, if 

that doesn’t work, our hand still has a good chance of winning. 

One restriction that HuBot implements for employing this strategy is that he must 

be in a late position, and only playing against one or two opponents. This has been 

established, after observing that against many opponents, this strategy doesn’t perform 

so well. 

In case no one raises his bet, HuBot will continue to bet (only to open the betting) 

in the subsequent rounds even without enough Hand Potential, as there is a reasonable 

chance of winning the pot immediately. This is known as a continuation bet. 

 

4. Bluff 

Bluff is a complex strategy that HuBot considers when it is up against only one 

opponent. 

This strategy takes into account several parameters, and for a positive scenario, it is 

only used 50% of the times. The scenario required for employing bluffing is very 

specific, and can be divided in two rules: 

- The agent is up against only one opponent, hasn’t used this strategy before in 

this game, and pot odds for the opponent must be worse than 7 to 1. 

- The predicted probability that the opponent will fold when faced against 

HuBot’s bet must be higher than HuBot’s pot odds and not inferior to 0.20. 

In poker, pot odds are the ratio of the current size of the pot to the cost of a 

contemplated call, and its calculation will be explained during the description of the 

next strategy. 

The first rule establishes a maximum of the pot odds for the opponent. This is done, 

because if the pot is big enough, an opponent might call us with virtually any hand, 

solely based on his pot odds. 

The second rule determines the probability of the opponent folding immediately 

after the agent’s bet, by using the Opponent Modeling, and getting this value from an 

(8) 
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Action Frequencies table (described in Section 4.5.2). It also ensures that the agent’s 

pot odds are good enough to cover for the opponent’s probability of folding. The reason 

behind this is that, if the opponent only folds very rarely in a specific situation, then 

HuBot should only bluff if he expects to have a good return of investment (good pot 

odds), knowing that usually he’ll get his bluff called. 

Due to the difficulty of testing the expected value of this strategy experimentally, it 

has only been tested empirically so far. The results have been very satisfactory, making 

bluffing a very profitable strategy, and also a good way to add unpredictability to the 

agent’s play. In fact, since HuBot is now able to bet with any possible hand, it makes it 

harder for the opponents to draw accurate conclusions from his actions. 

 

5. Pot odds 

If none of the above strategies were selected, it means that HuBot’s Hand Strength 

is less than 0.50. 

In case no one else before HuBot betted (zero bets to call), then the agent will 

simply check. However, when faced with bets to call, he will try to call based on pot 

odds and if it fails, based on showdown odds. 

‘Pot odds’ is the proportion between our winning chances to the expected return 

from the pot. 

Let’s consider an example: HuBot is in the River with a 20% chance of winning. 

His only opponent bets $4, making the pot contain $20. If the agent calls in this 

situation, he is expected to lose 4 times out of 5, losing $4 each time. However, 1 time 

out of 5, he’s expected to win $20. Thus, in the long run, based on his estimation of the 

percentage of winning, this decision will be profitable. 

The formula for calculating pot odds is defined below: 

3���11: � .,�+*�L�M.66
3��_:5K0 � .,�+*�L�M.66 

The concept for calling based on pot odds is slightly different. On the River, HuBot 

simply verifies if his Hand Strength (wEHSn) is higher than the pot odds. However, in 

the Flop and Turn, there are still more cards to come, and so, the decision is based on 

the Hand Potential. If the condition ‘N.��OL P 3���11:’ is accepted, then the agent 

will call. This considers that if the probability of getting a strong hand with the next 

card is higher than the current pot odds, then the profitable decision is to call. 

This strategy is very useful when we’re holding a drawing hand (see appendix A). 

(9) 
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6. Showdown odds 

‘Showdown odds’ is the last strategy considered to call for bets. 

It is a strategy considered only in the Flop and Turn stages, and addresses situations 

when the agent’s hand is strong enough to show profit by the showdown, therefore 

discouraging frequent bluffing by the opponent. This defensive strategy has been 

designed because calling based on pot odds only considers the immediate potential to 

improve. 

Showdown odds are calculated in separate ways for the Flop and for the Turn. On 

the Turn: 

:Q�R1�R*O11: � .,�+*�L�M.66 � 40�_:5K0
3��_:5K0 � .,�+*�L�M.66 � 2 � 40�_:5K0 

This formula is similar to the formula for the pot odds, except that it considers one 

more bet that the agent will call in the next stage, the River. 

The formula for the Flop is the following: 

:Q�R1�R*O11: � .,�+*�L�M.66 � 2 � 2 � 40�_:5K0
3��_:5K0 � .,�+*�L�M.66 � 2 � 4 � 40�_:5K0 

Simply, it expects that the agent will call one more bet in the Turn and one more 

bet in the River stages. In Limit Hold’em the bet size doubles when going to the Turn, 

and this is way the ‘bet_size’ is also doubled in the formula. 

Afterwards, the agent compares his Hand Strength at showdown (wEHSn) with the 

showdown odds in the form ‘R���* P :Q�R1�R*_�11:’, and if it’s higher then he 

will call. 

Finally, if this strategy isn’t also accepted for the current game situation, HuBot 

will simply fold his hand. 

 

Conclusion 

The limits used in the strategies above have been established in an ad hoc manner, 

by a poker expert, and tested empirically. 

Furthermore, these strategies are used, in the exact described form, whenever it is 

HuBot’s first action in a betting round. If it is subsequent action, slight changes are done 

to these strategies, depending on whether the first action was a check or a bet. These 

changes are not described in this document, as they are not significant. 

(10) 

(11) 
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With these six strategies, HuBot attempts to address important gameplay concepts 

in poker, such as deceitfulness and unpredictability. By doing so, it makes it much 

more difficult for an opponent to accurately model his playing style, and subsequently 

exploit it. 

4.5 Opponent Modeling 

The algorithms described for Hand Strength and Hand Potential are unbiased, by 

assuming that the opponent is equally likely to hold any possible two-card combination. 

As suggested before, small changes can be done to these algorithms in order to 

include a probability distribution over the possible hands. This is done in HuBot by 

using weight tables. This topic has been introduced in the end of Section 3.2.1. 

HuBot maintains a weight table for every player, including himself, and updates it 

after a player’s action. This is process is called re-weighting. 

A weight table consists of assigning values to each possible hand the opponent can 

hold. These values represent the conditional probability of the opponent having played 

that hand to the current point of the game. This can also be understood as the agent’s 

belief that the opponent is likely to hold such cards, considering his past actions in the 

game. 

The entries in the weight table vary from zero to one, rather than absolute 

probabilities, since the calculations for Hand Strength and Hand Potential require 

relative probabilities. In the beginning of each new game, all the values in the weight 

tables are set to one. 

4.5.1 Re-Weighting 

Weights are updated both after cards are dealt and after a player’s action. 

After HuBot receives its hole cards, many hands become impossible for the 

opponent’s to hold, and so, the weights for these hands are set to zero. The same 

happens whenever public board cards become known. 

Updating the weights after a player acts is more complex task, and is related with 

the “actionEvent(int pos, Action act)” event of the Meerkat API. 



 

In order to update the weights for a particular action, the agent needs to predict the

probability that the opponent would make that action in the current situation. Predicting 

an opponent’s action is described in the next Section
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a probability of raising of 20%, then µ should be the hand value of the last hand in the 

top 20% hands. 

So, in order to get µ, a sorted list of the hand values is created for all possible hands 

the player might hold. In the pre-flop stage, these hand values correspond to the Income 

Rates of the hands, and are retrieved from the table shown in Table 3. In the post-flop, a 

simple way to get the threshold would be to simply subtract the raise probability from 

one, and use the resulting value directly. However, this method has been proved to be 

error-prone in [1]. 

Therefore, for the post-flop, HuBot also creates a sorted list of hand values. These 

values are obtained by calculating the (weighted) Hand Strength and Hand Potential for 

each hand. Since this means an expensive computation, these algorithms only perform a 

1-card look-ahead. The hand value assigned to each hand is then a combination of the 

Hand Strength and Positive Potential values, as in Eq.3. 

In HuBot’s implementation, these sorted lists of hand values are stored in objects 

‘ValueSorting’. 

σ – Represents the uncertainty we have about our estimation of the raising 

probability of the player for this situation. This extends the premise above, by adding an 

interval to account for this uncertainty. In the interval ST � U , TW the function 

interpolates linearly between 0.01 and 1, according to the formula: 

/0R05-Q�_N.8��/ �  Q.*1_9.6+0 � µ � σ
σ  

In the pre-flop, the value of σ has been selected in an ad-hoc manner. It is 

established at 330, since 68.26% of the hands lie in the Income Rate range -323 to +336. 

For the post-flop, σ is calculated by the formula: 

σ � 0.4 � �1 � µ� 
By making σ vary with µ, we manage to address the tendency that loose players 

(players with a low µ) exhibit more uncertainty, whereas tight players (high µ) tend to 

be more consistent with the threshold. 

Another way to account for uncertainty is to establish a maximum limit to µ. This is 

done to prevent cases when µ is getting too close to the maximum hand value in the 

sorted list. HuBot defines this maximum value as the hand value of the last hand in the 

top 10% of the sorted list. 

The re-weighting function for the action check/call is slightly more complex: 

(12) 

(13) 
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Fig 12: Re-weighting function for a check/call. 
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weight table. For example, if a player checks, and later in that round is seen to raise, the 

threshold value for re-weighting will be higher, and so requires a new re-weighting. 

In this way, it is possible to adjust the weights correctly when a player uses a check-

raise strategy. 

However, if a player, intending to employ this strategy, checks in his first action 

and all the other players check as well, he will not be given the chance to raise in the 

same betting round. As a result of this, the re-weighting function will decrease the 

weights of very good hands, when in fact he might be holding one of these hands. 

To account for this, a minimum re-weighting factor is established for the hands 

with a hand value better than µ2. This value is exactly equal to our prediction 

probability that the player will raise, if given the opportunity, in the current round. 

In this way, even if a player fails to complete his check-raise strategy, the reduction 

of weights for the best hands will not be so drastic. 

4.5.2 Action Frequencies Tables 

HuBot implements a statistical-based Opponent Modeling, by keeping action 

frequencies tables for his opponents. This type of Opponent Modeling has been 

introduced in Section 3.2.2. 

The tables store the number of times a player folds, calls or raises, in a given 

situation. These frequencies are used in HuBot for computing the thresholds in the re-

weighting system and for predicting an opponent’s action in some parts of the program. 

An example of this is when HuBot considers bluffing in the post-flop by predicting that 

the opponent will fold if he bets. 

Each entry of the action frequencies table defines a possible context (or situation). 

HuBot maintains two such tables per player. 

The first table concerns only the first action of a player in a betting round. There are 

39 distinct contexts in this table, categorized by the three following properties: bets to 

call, round, and last action. 

Bets to call represents the number of bets necessary to call, and has three possible 

different values: {0, 1, 2+}. Round separates between the different betting rounds, and 

thus can assume four different values representing {pre-flop, flop, turn, river}. Last 

action represents the action taken by the player in the last betting round. It considers 

four different actions: {check, call, bet, raise}. 
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With these three properties, the contexts are broad enough to capture the essence of 

the opponent’s play. The number of entries in the table are: 3 Z 4 Z 4 � 48. However, 

some of these entries do not define a valid context: in the pre-flop, the variable last 

action is not used, since pre-flop is the first betting round. Therefore, these entries of the 

table are kept with the value zero. 

The choice to use these context variables was based on the results obtained in [6] 

and [13], after using an ANN for Opponent Modeling. 

 

 

Fig 13: A first Action Frequencies table, represented partially. 

 

Figure 13 shows the state of an Action Frequencies table for the first action of a 

player, after thousands of games have been played against this player. In the figure, 

there are only shown the contexts with zero bets to call, therefore, only the first 16 

entries of the table. 

In order to be able to adapt to the opponent’s changing strategies, if there are more 

than 30 observations for a particular context, then HuBot gives more weight to the last 

30 observations, when calculating the probability of an action taken place. This permits 

HuBot to track better moving targets – players that change their playing style over time. 

When playing against a new opponent, HuBot doesn’t have the convenience of a 

table filled with many observations. So, whenever there are less than 30 observations 

for given context, the agent combines the table entries in order to generate predictions. 

This technique works by merging similar contexts.  

Considering this, the table seen in Figure 13 is organized from the most significant 

and general variables to the most specific. This means that, firstly contexts are grouped 
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by the same round, and then, if still there aren’t 30 observations, they are grouped by 

the same bets to call. 

In this way, it is possible to spot general trends of an opponent’s play with much 

fewer games played. 

In the case there aren’t 30 observations in the same bets to call group, then some 

default values are used, based on the bets to call variable: 

bets to call Fold Check/Call Bet/Raise 

0 0 0.7 0.3 

1 0.5 0.3 0.2 

2+ 0.7 0.2 0.1 

Table 4: Default frequency values for the first Action Frequencies table. 

 

These values are a crude estimation of the action frequencies for the average player, 

and were calculated by observing Action Frequencies tables of many players. 

Subsequent actions of a player in the round are addressed by a second action 

frequencies table. This is because a second action in the round is better predicted by 

taking into account another context variable: the action taken in the first round of the 

round, defined here also as last action. This variable has the domain {check, call, 

bet/raise}. 

This way it is possible to observe the number of times an opponent successfully 

performs a check-raise strategy. Modeling these types of complex strategies is 

important to make profitable decisions throughout the game. 

 

 

Fig 14: A second Action Frequencies table. 
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Figure 14 shows an Action Frequency table that keeps track of the second decision 

of a player in the betting rounds. 

This table has also been constructed from the most significant context variable to 

the most specific. In this case, contexts with the same last action can be merged to 

obtain a prediction. 

The default frequencies of this table are shown in Table 5. 

 

last action Fold Check/Call Bet/Raise 

Check 0.4 0.4 0.2 

Call 0.1 0.8 0.1 

Bet/Raise 0.1 0.6 0.3 

Table 5: Default frequency values for the second Action Frequencies table. 

 

Every time a player acts, these Action Frequencies tables are updated, considering 

whether it is the first action of that player in the round or the second. In the case it’s a 

subsequent action, these tables are not updated. 

However, the thresholds for subsequent actions used in the re-weighting functions 

are still derived from the second Action Frequencies table. This consideration is due to 

the fact that the playing style of a player after his second decision is usually coherent 

with his second decision. Not many strategies arise from the third action of a player in 

the same betting round. 

As a final note, whenever HuBot faces an opponent that he played against before, 

he loads into memory the previously saved Action Frequency tables for that player. To 

do so, HuBot always stores in files these tables for his opponents, after finishing a 

game. 

The results of HuBot’s statistical-based Opponent Modeling are very satisfactory, 

and can be seen under the next chapter. 
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Chapter 5 

5. Assessment of Results 

The assessment of the performance in poker is a difficult task, since the element of 

luck dominates the outcome of any game. 

Nonetheless, it is possible to measure the performance of a poker-playing program 

both empirically and experimentally. This chapter is dedicated to measure 

experimentally HuBot’s performance by playing thousands of hands. 

The unit of measurement is the average number of small bets per hand (sb/hand). 

After thousands of trials, this value should converge to a number, representing how 

good our program performs. The variance of one hand is estimated to be around 6 

sb/hand, by poker professional and creator of the CPRG, Darse Billings, in [30]. 

Therefore, the formula to estimate the variance after N hands is: 

variance � 6
√N 

For example, the variance after playing 10,000 hands is of 0.06 sb/hand, whereas 

after 40,000 hands the variance decreases to half, 0.03 sb/hand. 

HuBot has been tested experimentally, playing in Poker Academy Pro 2.5 [37], 

against several other agents, on a full ring table. This poker software makes the 

assessment of results easier, by displaying comprehensive graphs and analysis of the 

player statistics. 

In this experimental evaluation, three test scenarios will be presented and discussed. 

In the first, HuBot plays in the advanced table of Poker Academy, against an older 

version of himself. In the second experiment, HuBot shows off his superiority in the 

beginners table. In the third and last test, two versions of HuBot play in the advanced 

table: one with and the other without Opponent Modeling, and the results are compared. 

In all these three test scenarios, the table stakes are $1/$2, with a starting bankroll 

of $10,000 for every player. 

(14) 
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These tables are limited to a maximum of nine players. This is because the Poker 

Academy software forces that at least one human player must be playing in the table. 

For this reason, in the tests, a human player with the name “André” appears in the poker 

table, but is sitting out, and will not be dealt cards. 

5.1 Scenario One: Advanced table 

Here, HuBot plays against an older version of himself in the advanced table of the 

Poker Academy. 

This table contains the world’s best AI poker agents in Limit Texas Hold’em: Poki 

and Simbot. Poki is an award winner poker-program, created by the CPRG over a 

period of many years. Simbot is a simulation-based agent uses advanced modeling 

techniques to simulate the future betting rounds and decide on the most profitable 

action. 

Five Poki agents appear with the names Ogo Pogo, Sanja, Hooke, Erasmus, and 

Anders. Two Simbot’s are playing with names Hari and Ginger. 

These agents differ from one another, by having a different playing style. For 

example, while Ogo Pogo is a very loose aggressive player, Anders is much more 

moderate and has a tendency to check-raise. 

The current version of HuBot, version 113, is the result of this work and its 

implementation is described in this document. Version 90 of the HuBot has a primitive 

post-flop betting strategy, that doesn’t include strategies like bluffing and check-raising, 

and a few improvements over other parts of the game have been made since then. 

Figure 15 shows the bankroll graph for HuBotv113, after about 27,600 hands have 

been played. 
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Fig 15: Bankroll graph of HuBot v113, for scenario one. 

 

The income rate of HuBot was 0.00 sb/hand with a variance of about ± 0.035 

sb/hand. This value seems to fluctuate a bit in the graph. This can be just due to the 

stochastic element of poker, or by the Opponent Modeling struggling to track a moving 

target, as the opponents change their strategies. It’s hard to know for sure the reason 

behind this variation. A better inference could be made by observing the decisions of 

the players during these hands. 

 

 

Fig 16: Bankroll graph of HuBot v90, for scenario one. 

 

For HuBot v90, the income rate was -0.04 sb/hand, variance ± 0.03 sb/hand, after 

37,000 hands had been played. This graph seems to be very stable, with a continuously 

decreasing value. In fact, it is safe to say that HuBot v90’s opponents have found a way 

to exploit him. This agent plays a very regular post-flop strategy, without many 
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deceptive decisions. By doing so, his opponent’s are able to make a better guess about 

the cards he holds. Over time, this translates into a slow, but steady loss. 

Another interesting statistic concerns the frequencies of actions taken by HuBot 

v113. This is shown in Figure 17. 

 

 

Fig 17: Action frequencies of HuBot v113, for scenario one. 

 

As it can be seen, the pre-flop percentage of hands played is 22% and matches the 

percentage suggested by Poker Academy. The probability of winning at showdown 

seems good as well, with more than half times HuBot taking the pot. 

This agent is not so aggressive in the pre-flop stage, because it has been adapted to 

play against other poker agents. And usually, poker-programs tend to be tight, and do 

not bluff so often, having strong mathematical models. Therefore, HuBot has also a 

conservative style in pre-flop, to account for this. 

This test shows two positive results: 

1. Firstly, that the improvements done to the agent over time increased his 

performance and that this can be shown experimentally. 

2. Secondly, it is very satisfactory to see that the best poker-programs were unable 

to exploit HuBot v113, as he broke even. By managing complex strategies such 

as bluffing and check-raising, it seems the agent made himself a difficult target 

to be modeled by other agents. 
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5.2 Scenario Two: Beginners table 

Here, HuBot (version 113) faced seven different Jagbots and one Poki, in the 

beginners table. Jagbots are simple basic-strategy agents that are unable to adapt to the 

opponents. The only Poki agent in the table is named Kenny, and is a tight player with a 

deceptive style. 

After 52,629 hands, HuBot was the player with the biggest stack, by a large margin, 

as seen in Figure 18. 

 

 

Fig 18: Beginners table, after a HuBot v113’s winning. 

 

HuBot’s profit rate during the game was very stable at +0.08 bets/hand, variance ± 

0.025 sb/hand. In fact, the agent was dominating all the other players, having positive 

winning rates against each of his opponents, individually. 
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Fig 19: Bankroll graph of HuBot v113, for scenario two. 

 

Another interesting result, is that the agent performed much better against the 

opponents immediately on his right, than against the opponents on his left. This is 

because poker is played in a clock-wise order, thus the players on our left usually act 

after us, gaining a positional advantage. Playing a hand in a late position tends to be 

more profitable. 

As it can be concluded from this test, HuBot is capable of exploiting weaker 

opponents, even with a strong agent in the table. In fact, HuBot was able to outperform 

Kenny, showing a very stable, winning playing style. 

It is very important that a poker agent must be able to adapt to the weaker players 

efficiently, in order to establish his superiority. HuBot proved his ability to do so, by 

showing a good winning rate progression over more than 50,000 hands. 

5.3 Scenario Three: No opponent modeling 

This test takes place in the advanced table, and its goal is to demonstrate the 

significance of using Opponent Modeling. 

The current agent, HuBot version 113, played against a version of himself that uses 

no Opponent Modeling, that we’ll call HuBot version 113b. So, no weight tables are 

kept for the players, and the Hand Strength calculation is done unbiased, assuming an 

equal distribution over the opponent’s possible hands. Also, the Action Frequencies 

tables aren’t used, since there is no re-weighting done. As a consequence of this, the 

post-flop bluff strategy can’t be used, since it is not possible to predict the probability 

that an opponent will fold when the agent bets. 
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The advanced table has been described in Section 5.1. Basically, it consists of five 

Poki agents, and two simulation-based Simbots. 

By putting these two agents to play in this table, the performance of opponent 

modeling has been demonstrated without a doubt. 

 

 

Fig 20: Bankroll graph of HuBot v113 in scenario three. 

 

The test was stopped after 12,642 hands had been played, since the income rate 

values for the agents could be inferred. In the case of HuBot v113, it was expected that 

the income rate would be very close to the one obtained in the first test scenario, since 

they were playing in almost same conditions. This was seen valid, because when the test 

was stopped the income rate was +0.02 sb/hand, variance ± 0.05 sb/hand. 

 

 

Fig 21: Bankroll graph of HuBot v113b, for scenario three. 
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In the case of HuBot v113b, the income rate was -0.14 sb/hand, variance ± 0.05 

sb/hand, and can be seen by the graph of Figure 21. This result shows the importance of 

adapting our playing style to the opponents. 

The difference between modeling the opponents or not, in this test, was of about 

0.16 sb/hand. Although this large number, by itself, doesn’t prove that HuBot’s 

Opponent Modeling approach is entirely correct, it establishes the importance of the 

work done in this component of the project. 
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Chapter 6 

6. Conclusions and Future Work 

This work intended to explore the state of the art of computer poker (in Texas 

Hold’em), and develop a successful intelligent poker agent based on that research. 

Texas Hold’em was chosen for its unique properties that separate it from other 

games, described in the beginning of chapter 2. The domain was then restricted to Limit 

Texas Hold’em for simplicity, and to be able to focus more in-depth in one variant. 

In chapter 3, the rules of the game have been explained in detail, as well as the 

importance of the position of the players and the size of the table in poker. The 

difficulties of creating a non-human poker player come from the complexity of this 

game. In order to surpass all human players, a poker-program must account for the 

unpredictability and deceitfulness of human players. 

The first goal of this work was to research the most successful approaches used in 

the past to create an intelligent poker agent. Many papers and thesis have been written 

about the subject, and AI research groups have been looking into this topic for more 

than a decade. As a result, many different intelligent agents have been developed. 

Approaches have evolved, from a simple case-by-case rule system, to an innovative 

game-theoretical implementation. 

The second goal was to define an architecture based on one successful approach 

studied before. The approach chosen was a probabilistic formula-based system, as it had 

proven to shown the best results for the Limit variant of Texas Hold’em, played in a full 

ring of players. 

For the implementation, it was decided to develop the agent under the Meerkat API 

of Poker Academy, in order to minimize the time spent with the data structures and 

methods of the state of the game. This time was devoted to develop the intelligence of 

the agent. 

The main goal of this work was to develop the agent. The main components of the 

agent are the pre-flop betting strategy, the post-flop betting strategy, and the opponent 
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modeling. HuBot relies on an expert formula-based system for the betting strategies. 

This system was consistently adjusted by an expert poker player, throughout HuBot’s 

versions. 

The agent is capable of using complex strategies such as check-raise and bluff, to 

avoid having his playing style accurately modelled by his opponents. 

A crucial component of HuBot is the opponent modeling. It uses a new re-

weighting system, based on the frequency of actions of the opponents. Distinct 

situations of the game are grouped together in order to be able to rapidly adapt to an 

opponent’s playing style. This type of opponent modeling was proven to increase 

substantially the performance of the agent, in chapter 5. Further assessments were made 

in order to test the agent against different opponents, in a variety of scenarios. 

The first scenario showed HuBot being able to stand up against the strongest known 

computer programs for multi-player Limit Texas Hold’em. Against average players, 

HuBot was able to consistently show profit. 

While these results are very promising, extensive tests must be done against human 

players, to effectively assess the agent’s performance, and discover his weaknesses. 

Throughout this work, many possible improvements were left undone, due to lack 

of time. However, if HuBot will be revisited in the future, some topics can be explored 

in order to increase his performance: 

• The use of an Artificial Neural Network, to predict opponent’s decisions in real 

time, as suggested in Section 3.2.2. 

• Instead of using only one model of predicting an action (such as statistical table, 

neural network, etc...), use a meta-predictor that calls the other models and 

evaluates the better decision based on the past accuracy of each of the models. 

This way, the agent can rapidly change his playing style, if another prediction 

model is getting a better accuracy in the recent hands.  

• The use of showdown information (hands shown by the end of the game) is 

crucial for human players to analyse their opponents’ playing style, and has been 

ignored in computer poker. If explored correctly in opponent modeling, this 

topic might be able to increase substantially the performance. 

• Refine the post-flop betting strategy with more rules and complex strategies, or 

simply replace it by a Simulation approach (and base HuBot’s decisions on the 

expected value of each possible action). 

• Give more credit to the position of the players, and the effect of this property on 

the actions of the players. The agent must be able to separate a context based on 
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the relative position of his opponents. E.g. most players are more prone to bluff 

if they are in a late position. 

• Improve the pot odds post-flop betting strategy, by taking into account the 

number of players in the formula. 

• Establish better default frequencies for the Action Frequencies table for the new 

opponents. These default values should be derived experimentally and adjusted 

to both the first and second Action Frequencies table. To get better initial 

estimations, different default tables might be considered, by observing how the 

player action frequencies approach a default table. This is based on the 

assumption that players can be divided in types: tight, aggressive, loose, passive.  

• In the pre-flop, instead of using Income Rate tables, evaluate hands by using the 

Monte Carlo method for calculating pre-flop equity. Make this calculation 

depend on the weight tables of every active opponent. 

This work is concluded with a feeling of satisfaction over the proposed goals. 

However, further work must be done in the agent for it to be able to compete with an 

expert human player. 
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Appendix A – Glossary of Poker 
Terms 

The following list of poker terms has been adapted from the Glossary of Poker 

Terms found in [4], and also re-used in [11]. For a more accurate and complete 

definition of poker terms and expressions, please visit the online Wikipedia: 

http://en.wikipedia.org/wiki/Poker_jargon. 

 

• All-in. To have one's entire stake committed to the current pot. Action continues 

toward a side pot, with the all-in player being eligible to win only the main pot. 

• All-in Equity. The expected value income of a hand assuming the game will 

proceed to the showdown with no further betting (i.e., a fraction of the current 

pot, based on all possible future outcomes). 

• Bad Beat. An unlucky loss. In particular, losing a game where the opponent 

probably should have folded, but instead got extremely lucky to win. 

• Bet. To make the first wager of a betting round (compare raise). 

• Bet for Value. To bet with the expectation of winning if called (compare bluff). 

• Big Bet. The largest bet size in Limit poker (e.g., $20 in $10-$20 Hold'em). 

• Big Blind. (sometimes called the Large Blind). A forced bet made before the 

deal of the cards (e.g., $10 in $10-$20 Hold'em, posted by the second player to 

the left of the button). 

• Blind. A forced bet made before the deal of the cards (see small blind and big 

blind). 

• Bluff. To play a weak hand as though it were strong, with the expectation of 

losing if called (see also semi-bluff and pure bluff , compare bet for value). 

• Board (or Board Cards). The community cards shared by all players. 

• Board Texture. Classification of the type of board, such as having lots of high 

cards, or not having many draws (see dry). 

• Button. The last player to act in each betting round in Texas Hold'em. Also 

called the dealer button, representing the person who would be the dealer in a 

home game. 

• Call. To match the current level of betting. If the current level of betting is zero, 



 

 

the term check is preferred. 

• Cap. (a) The maximum number of raises permitted in any single round of 

betting (typically four in Limit Hold'em, but occasionally unlimited). (b) (vt) To 

make the last permitted raise in the current betting round (e.g., after a bet, raise, 

and re-raise, a player caps the betting). 

• Check. To decline to make the first wager of a betting round (compare call). 

• Check-Raise. To check on the first action, with the intention of raising in the 

same betting round after an opponent bets. 

• Community Cards. The public cards shared by all players. 

• Connectors. Two cards differing by one in rank, such as 7-6. More likely to 

make a straight than other combinations. 

• Dominated. A Hold'em hand that has a greatly reduced chance of winning 

against another because one or both cards cannot make a useful pair (e.g., KQ is 

dominated by AK, AQ, AA, KK, and QQ, but not by AJ or JJ). 

• Draw. A holding with high potential to make a strong hand, such as a straight 

draw or a flush draw (compare made hand). 

• Draw Potential. The relative likelihood of a hand improving to be the best if it 

is currently behind. 

• Drawing Dead. Playing a draw to a hand that will only lose, such as drawing to 

a flush when the opponent already holds a full house. 

• Drawing Hand. A hand that has a good draw (compare made hand). 

• Dry. Lacking possible draws or betting action, as in a dry board or a dry game. 

• Equity (or Pot Equity). An estimate of the expected value income from a hand 

that accounts for future chance outcomes, and may or may not account for the 

effects of future betting (e.g., all-in equity). 

• Expected Value (EV) (also called mathematical expectation). The average 

amount one expects to win in a given game situation, based on the payoffs for 

each possible random outcome. 

• Flop. The first three community cards dealt in Hold'em, followed by the second 

betting round (compare board). 

• Fold. To discard a hand instead of matching the outstanding bet, thereby losing 

any chance of winning the pot. 

• Fold Equity. The equity gained by a player when an opponent folds. In 



 

 

particular, the positive equity gained despite the fact that the opponent's fold was 

entirely correct. 

• Forward Blinds. The logical extension of blinds for heads-up (two-player) 

games, where the first player posts the small blind and the second player 

(button) posts the big blind (compare reverse blinds). (Both rules are seen in 

practice, with various casinos and online card rooms having different policies for 

multi-player games that have only two active players). 

• Free-Card Danger. The risk associated with allowing an opponent to improve 

and win the pot without having to call a bet (in particular, when they would have 

folded). 

• Free-Card Raise. To raise on the flop intending to check on the turn. 

• Game. (a) A competitive activity in which players contend with each other 

according to a set of rules (in poker, a contest with two or more players). (b) A 

single instance of such an activity (in poker, from the initial dealing of the cards 

to the showdown, or until one player wins uncontested). 

• Game Theory. Among serious poker players, game theory normally pertains to 

the optimal calling frequency (in response to a possible bluff), or the optimal 

bluffing frequency. Both depend only on the size of the bet in relation to the size 

of the pot. 

• Hand. (a) A player's private cards (e.g., two hole cards in Hold'em). (b) One 

complete game of poker (see game (b)). 

• Heads-up. A two-player (head-to-head) poker game. 

• Hole Card. A private card in poker (Texas Hold'em, Omaha, 7-Stud, etc.). 

• Implied Odds. (a) The pot odds based on the probable future size of the pot 

instead of the current size of the pot (positive or negative adjustments). (b) The 

extra money a strong hand stands to win in future betting rounds (compare 

reverse implied odds). 

• Kicker. A side card, often deciding the winner when two hands are otherwise 

tied (e.g., a player holding Q-J when the board is Q-7-4 has top pair with a Jack 

kicker). 

• Large Blind (usually called the Big Blind). A forced bet made before the deal of 

the cards (e.g., $10 in $10-$20 Hold'em, posted by the second player to the left 

of the button). 

• Loose Game. A game having several loose players. 



 

 

• Loose Player. A player who does not fold often (e.g., one who plays most hands 

at least to the flop in Hold'em). 

• Made Hand. A hand with a good chance of currently being the best, such as top 

pair on the flop in Hold'em (compare draw). 

• Mixed Strategy. Handling a particular type of situation in more than one way, 

such as to sometimes call, and sometimes raise. 

• Offsuit. Two cards of different suits (also called unsuited, compare suited). 

• Open-Ended Draw. A draw to a straight with eight cards to make the straight, 

such as 6-5 with a board of Q-7-4 in Hold'em. 

• Outs. Cards that will improve a hand to a probable winner (compare draw). 

• Pocket Pair. Two cards of the same rank, such as 6-6. More likely to make three 

of a kind than other combinations (see set). 

• Post-flop. The actions after the flop in Texas Hold'em, including the turn and 

river cards interleaved with the three betting rounds, and ending with the 

showdown. 

• Pot. The common pool of all collected wagers during a game. 

• Pot Equity (or simply Equity). An estimate of the expected value income from a 

hand that accounts for future chance outcomes, and may or may not account for 

the effects of future betting (e.g., all-in equity). 

• Pot Odds. The ratio of the size of the pot to the size of the outstanding bet, used 

to determine if a draw will have a positive expected value. 

• Pre-fop. The first round of betting in Texas Hold'em before the flop, beginning 

with the posting of the blinds and the dealing of the private hole cards. 

• Pure bluff . A bluff with a hand that can only win if the opponent folds 

(compare semi-bluff ). 

• Pure Drawing Hand. A weak hand that can only win by completing a draw, or 

by a successful bluff . 

• Raise. To increase the current level of betting. If the current level of betting is 

zero, the term bet is preferred. 

• Raising for a Free-card. To raise on the flop intending to check on the turn. 

• Rake. A portion of the pot withheld by the casino or host of a poker game, 

typically a percentage of the pot up to some maximum, such as 5% up to $3. 

• Re-raise. To increase to the third level of betting after a bet and a raise. 



 

 

• Reverse Blinds. A special rule sometimes used for heads-up (two-player) 

games, where the second player (button) posts the small blind and the first 

player posts the big blind (compare forward blinds). (Both rules are seen in 

practice, with various casinos and online card rooms having different policies for 

multi-player games that have only two active players). 

• Reverse Implied Odds. The unaccounted (negative) money a mediocre hand 

stands to lose in future betting rounds (compare implied odds (b)). 

• River. The fifth community card dealt in Hold'em, followed by the fourth (and 

final) betting round. 

• Semi-bluff . A bluff when there are still cards to be dealt, with a hand that might 

be the best, or that has a reasonable chance of improving to the best if it is called 

(compare pure bluff ). 

• Second pair. Matching the second highest community card in Hold'em, such as 

having 7-6 with a board of Q-7-4. 

• Session. A series of games, typically lasting several hours in length. 

• Set. Three of a kind, formed with a pocket pair and one card of matching rank 

on the board. A very powerful and well-disguised hand (compare trips). 

• Short-handed Game. A game with less than the full complement of players, 

such as a Texas Hold'em game with five or fewer players. 

• Showdown. The revealing of cards at the end of a game to determine the 

winner. 

• Side pot. A second pot for the remaining active players after another player is 

all-in. 

• Slow-play. To check or call a strong hand as though it were weak, with the 

intention of raising in a later betting round (compare smooth-call and check-

raise). 

• Small Bet. The smallest bet size in Limit poker (e.g., $10 in $10-$20 Hold'em). 

• Small Blind. A forced bet made before the deal of the cards (e.g., $5 in $10-$20 

Hold'em, posted by the first player to the left of the button). 

• Smooth-call. To only call a bet instead of raising with a strong hand, for 

purposes of deception (as in a slow-play). 

• Suited. Two cards of the same suit, such as both Hearts. More likely to make a 

flush than other combinations (compare offsuit or unsuited). 

• Table Image. The general perception other players have of one's play. 



 

 

• Table Stakes. A poker rule allowing a player who cannot match the outstanding 

bet to go all-in with his remaining money, and proceed to the showdown (also 

see side pot). 

• Texture of the Board. Classification of the type of board, such as having lots of 

high cards, or not having many draws (see dry). 

• Tight Player. A player who usually folds unless the situation is clearly 

profitable (e.g., one who folds most hands before the flop in Hold'em). 

• Time Charge. A fee charged to the players in a poker game by a casino or other 

host of the game, typically collected once every 30 minutes. 

• Top Pair. Matching the highest community card in Hold'em, such as having Q-J 

with a board of Q-7-4. 

• Trap. To play a strong hand as though it were weak, hoping to lure a weaker 

hand into betting. Usually a check-raise, or a slow-play. 

• Trips. Three of a kind, formed with one hole card and two cards of matching 

rank on the board. A strong hand, but not well-disguised (compare set). 

• Turn. The fourth community card dealt in Hold'em, followed by the third 

betting round. 

• Unsuited. Two cards of different suits (also called offsuit, compare suited). 

• Value Bet. To bet with the expectation of winning if called (compare bluff ). 

• Wild Game. A game with a lot of raising and re-raising. Also called an action 

game. 
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