
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Content Blaster: the online show
generator

Paulo Eduardo Gonçalves de Freitas Pereira

Report of Project

Master in Informatics and Computing Engineering

Supervisor: Ademar Aguiar (PhD.)

17th July, 2009

Content Blaster: the online show generator

Paulo Eduardo Gonçalves de Freitas Pereira

Report of Project

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: Ana Paula Cunha da Rocha (Auxiliar Professor)

External Examiner: Carlos Miguel Ferraz Baquero Moreno (Auxiliar Professor)

Internal Examiner: Ademar Manuel Teixeira de Aguiar (Auxiliar Professor)

17th July, 2009

Abstract

As a consequence of the Web 2.0 phenomenon in recent years, people are no longer mere
consumers of the web—they’re also producers. If the amount of online information was
already beginning to be a problem that motivated the creation of search engines, the surge
of user-generated content made it clear that search engines aren’t enough to filter through
all the available information. The web is suffering from an information overload, and
even our natural filtering skills are no match for it.

However, there’s one technique which is very helpful to filter through the immense
amount of information available today—recommendations. Everyone’s friends, family
and colleagues know what each other like and inform them about what may be of their
interest.

Recommender systems automate this collaborative word of mouth behavior, providing
recommendations to their users based on other like-minded individuals have enjoyed in
the past. As these systems are usually web-based, people need to be sitting in front of their
computers, which is a major shortcoming. However, people carry their mobile phones
everywhere, and many enjoy the comfort of their sofas when watching TV, which may be
connected to a set-top-box—but they don’t have recommendations on those devices.

This report introduces Content Blaster, a project that seeks to fulfill what’s missing
in recommendation systems, providing a web interface for recommendations but also a
programming interface, so applications can be created for any online device, extending
the usefulness of recommendations to a broader audience.

It reviews the state of the art in recommendation systems and proposes a solution for
ubiquitous recommendations of webpages. The solution takes advantage of both Slope
One, a simple but accurate recommendation algorithm with good performance, and filter-
bots, automatized agents that rate webpages based on their tags.

Technologies used are then explained, and design and implementation details are also
provided, with a special focus on the recommendation algorithms used and the usefulness
of the Ruby on Rails framework during development. It then evaluations the proposed
solution in terms of performance, and details the conclusions, limitations and benefits
of the project. Finally, the report provides some insights on how the system could be
improved in the future with enhanced content visualization, some additional new features
and applications in other devices.

i

ii

Resumo

Como consequência do fenómeno da Web 2.0 nos últimos anos, as pessoas já não são
meros consumidores da web—são também produtores. Se a quantidade de informação
disponı́vel online era já um problema que levou à criação de motores de busca, a explosão
de conteúdo criado por utilizadores tornou claro que os motores de pesquisa não são
suficientemente capazes de filtrar toda esta informação. A web sofre de um problema de
excesso de informação, e nem os nossa capacidade natural de filtrar as coisas é capaz de
o enfrentar.

Não obstante, existe um método natural extremamente útil para filtrar informação:
recomendações. Cada um sabe o que os seus amigos, famı́lia e colegas gostam, e informam-
nos do que pensam ser do seu interesse.

Os sistemas de recomendação automatizam este processo natural, dando recomendações
aos seus utilizadores baseado no que outros indivı́duos com preferências semelhantes
gostaram no passado. Sendo estes sistemas tradicionalmente baseados na web, obrigam
a que os seus utilizadores estejam sentados em frente aos seus computadores, o que nem
sempre é desejável. No entanto, as pessoas carregam consigo os seus telemóveis e muitas
têm em casa uma set-top-box ligada à televisão. Mas não conseguem ter recomendações
nesses aparelhos.

Este relatório apresenta o Content Blaster, um projecto que visa colmatar o que falha
nos sistemas de recomendação, criando uma interface web que disponibiliza recomenda-
ções, mas também uma interface que permite que qualquer programador leve as recomen-
dações até uma aplicação para qualquer dispositivo com uma ligação à Internet. Efectiva-
mente, isto permite levar a utilidade das recomendações a uma maior audiência.

O relatório também revê o estado da arte dos sistemas de recomendação e propõe uma
solução para recomendações ubı́quas de páginas web. Esta solução tira partido do Slope
One, um algoritmo simples e com boa performance, mas que oferece ao mesmo tempo
recomendações de qualidade. Este algoritmo combina também a utilização de filterbots,
agentes automatizados que votam nas páginas web baseando-se para isso nas suas tags.

Seguidamente são explicadas e detalhadas as tecnologias utilizadas, bem como o de-
senho e a implementação do sistema, com particular pormenor nos algoritmos utilizados
e na utilidade prática da utilização da framework Ruby on Rails. É também avaliada a
solução proposta em termos de performance, e apresentadas as conclusões, limitações e
benefı́cios do projecto. Finalmente, são referidas algumas possibilidades de desenvolvi-
mento futuro, como a melhoria na visualização dos conteúdos, funcionalidades adicionais
e aplicações em outros dispositivos.

iii

iv

Acknowledgements

To everyone at Fraunhofer Portugal for making it an extraordinary place to work, spe-
cially to all the students and the IT guys for the fun.

To Filipe Abrantes and Ademar Aguiar for the patience needed to supervise an annoying
and sometimes lazy student.

To the online communities for being so helpful and passionate, whose spend their time
helping people so everyone can get better on what they do.

To Levi Figueira for revising this report and his questions about Rails that keep pushing
me ahead.

To my colleagues back at the design classes, for teaching me other ways to look at things.

To everyone I worked, studied or partied during these years, specially to the VMT group
for the exchange of knowledge, frustration and motivation—we did it!

To everyone who dressed in black like me for so many days and nights, specially to those
I shared a spoon with, you shaped me more than you think.

To everyone at NIFEUP, for our discussions (even the pointless ones), all the mockery,
the long nights spent working, the long nights spent not working, the weird stuff that hap-
pened sometimes, for helping me and letting me help them. Thank you all for being such
awesome friends and teaching me so much.

To Joana, for her love, strength and support when things didn’t look pretty at all.

To my family for their love, specially to my mother, who did everything beyond imagin-
able during these years so I could be here finishing my thesis.

v

vi

“Simplicity is the ultimate sophistication”

— Leonardo DaVinci

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Project . 3
1.3 Motivation and Objectives . 3
1.4 Report Overview . 4

2 State of the Art 5
2.1 Recommender systems . 5

2.1.1 Definition . 5
2.1.2 Types . 6

2.2 Content-based systems . 6
2.3 Collaborative filtering systems . 8

2.3.1 Notation . 9
2.3.2 Memory-based . 9
2.3.3 Model-based . 12
2.3.4 Comparison of memory and model-based algorithms 13
2.3.5 Item-based . 13

2.4 Hybrid systems . 17
2.4.1 Combining separate systems . 17
2.4.2 Adding characteristics . 18
2.4.3 Unified system . 19
2.4.4 Summary . 19

2.5 Comparison of recommender systems 19
2.6 Real-world recommender systems . 20

2.6.1 StumbleUpon . 20
2.6.2 Digg . 21
2.6.3 Summary . 22

2.7 Chapter summary . 22

3 Solution Specification 25
3.1 Overview . 25
3.2 Recommender System . 25
3.3 Tagging . 27
3.4 Voting scheme . 28
3.5 Usage . 28
3.6 Third-party support . 29
3.7 Chapter summary . 29

ix

CONTENTS

4 Technology 31
4.1 Ruby . 31
4.2 Ruby on Rails . 32

4.2.1 Philosophy . 32
4.2.2 MVC . 33
4.2.3 ORM . 34
4.2.4 REST . 34
4.2.5 Plugins . 35
4.2.6 Data formats . 35
4.2.7 Summary . 37

4.3 MySQL . 37
4.4 Apache HTTP Server . 37
4.5 Chapter summary . 38

5 Design 39
5.1 Logical Architecture . 39

5.1.1 Components . 39
5.1.2 Entities . 40

5.2 Physical Architecture . 42
5.3 Decisions . 43

5.3.1 MVC Application . 43
5.3.2 API Endpoints . 44

5.4 Chapter summary . 44

6 Implementation 45
6.1 Database . 45
6.2 Slope One . 46

6.2.1 Computing deviations . 46
6.2.2 Generating predictions . 48

6.3 Tagging . 48
6.4 Application . 49

6.4.1 Bookmarklets . 49
6.4.2 API calls and response . 50

6.5 Chapter summary . 53

7 Solution Evaluation 55
7.1 Algorithms . 55
7.2 Methodology and results . 56
7.3 Discussion . 56
7.4 Chapter summary . 57

8 Conclusions and Future Work 59
8.1 Conclusions . 59
8.2 Limitations . 60
8.3 Future Work . 60

8.3.1 Content visualization . 60
8.3.2 Improving recommendations . 61
8.3.3 New features . 61

x

CONTENTS

8.3.4 Extended tagging . 61
8.3.5 Clients for other devices . 61

References 68

A Alexa Top Sites 69

B StumbleUpon categories 71

C Digg topics 73

D Transcript of conversation 75

E SQL Implementation 77

F SQL Batches implementation 79

G MySQL Configuration 81

xi

CONTENTS

xii

List of Figures

4.1 Model-View-Controller . 33

5.1 Content Blaster Component Diagram . 40
5.2 Content Blaster Class Diagram . 41
5.3 Content Blaster Network Diagram . 42
5.4 Application MVC Diagram . 43

6.1 Database Entity Relationship Diagram 45

xiii

LIST OF FIGURES

xiv

List of Tables

2.1 Comparison of recommender systems 19

4.1 HTTP methods used in REST . 35
4.2 REST on Rails . 35

5.1 API Endpoints . 44

7.1 Run times of the algorithm implementations 56

xv

LIST OF TABLES

xvi

Definitions

3G Third generation of mobile phone communication standards.

Click-through rate The rate of people clicking on a particular item out of the total num-
ber who see the item.

Conversion rate The rate of clicks that result in a commissionable activity such as a sale
or lead.

Netbook A small and economical laptop computer designe for basic actions such as text
processing or wireless browsing.

RESTful The property of a system that complies to the REST principles.

Set-top box A device that enables the display of cable or satellite signal on a television.

xvii

DEFINITIONS

xviii

Abbreviations

API Application Programming Interface

HTTP Hypertext Transport Protocol

JSON JavaScript Object Notation

MVC Model-View-Controller

ORM Object-Relational Mapping

REST Representational state transfer

RSS Really Simple Syndication

UGC User-Generated Content

URI Uniform Resource Indicator

URL Uniform Resource Locator

XML Extensible Markup Language

xix

ABREVIATIONS

xx

Chapter 1

Introduction

This section briefly presents the project’s context, purpose and scope, while also detailing
the report structure, providing an overview of each of the remaining chapters.

1.1 Context

In recent years, with the increasing popularity of Web 2.0 platforms and technologies
such as blogging, social networks and media-sharing platforms, there has been a mas-
sive growth in content at our disposal. Internet users stopped being mere consumers and
started creating content, taking advantage of the proliferation and ease of use of the new
platforms and tools. As of today, a lot of user-generated content is watched and created
every day [Cer07]. Take YouTube as an example, which doubled the video length getting
uploaded per minute between 2007 and 2009 [Rya09] and now places third in the Alexa
Traffic Rank, that tracks the world’s most visited websites [Alea].

The World Wide Web changed its face completely, and half of the top ten websites
in the Alexa Traffic Rank are now social networks, blogging platforms or media-sharing
sites (see Appendix A). Platforms like these empower the production and publishing of
user-generated content, the kind of content responsible for the enormous growth of the
web in recent years. While the quantity and availability of content may be what makes
the web great, it also poses a problem to users as they have to filter as much information
as possible in order to find their way around this massive web. As [Cer07] put it,

“(. . .) it seems likely that unless we learn to harness the energy unleashed by
the Internet, we will soon be buried in an avalanche of information.”

The information overload on the web is a long-standing issue that led to the creation of
multiple search engines. Furthermore, the one which used a particular approach to rank-
ing webpages was the one which stood above the competition—Google. They created and

1

INTRODUCTION

patented the PageRank algorithm [Goo], which takes in account the number of inbound
links of a page—to put simply, if many sites link to a particular page, it’s because that’s a
good one [Seg07]. The hyperlink is perceived as the way of a webpage saying “this other
webpage has relevant content”, and by doing this on an huge scale, Google capitalized
on the opinion of the entire web about itself. Using this approach, Google was doing
something entirely different than just indexing webpages—they were entering the field of
collective intelligence, defined as

“(. . .) the combining of behavior, preferences, or ideas of a group of people
to create novel insights.” [Seg07]

Collective intelligence isn’t something entirely new—everyone does it, when asking for
opinion or advice to family, friends and coworkers. However, websites are capable of
using the world wide web to collect opinion at a massive scale, and most importantly,
gather valuable new information from it.

Others have followed behind Google’s footsteps on turning collective intelligence into
their advantage, like e-commerce websites, most noticeably Amazon.com, which deliv-
ers personalized content according to a user’s habits of consumption. On the home page,
users are presented with items that match their preferences, and they’re given recom-
mendations throughout the website. Using these tools as a marketing strategy, Amazon
managed to beat the competition in both click-through and conversion rates [LSY03]. In
fact, as of 2006, 35 percent of Amazon’s sales were a result of recommendations [Mar06].

The success of recommendation systems drove the emergence, popularity and success
of many other websites using them, such as Last.fm, StumbleUpon and Netflix.

Last.fm, a music service that learns what its users like and recommends more music,
videos and concerts [Las]. The service became very popular among music-lovers
and was bought by CBS in 2007, for $280 million [Tim07].

StumbleUpon, a service that recommends webpages based on the pages that a user previ-
ously liked or disliked [Stub]. Users became very addicted to the service, constantly
using it to discover new websites, which led to its success and acquisition for $75
million in 2007, by eBay [eBa07].

Netflix, the world’s largest movie rental service, in which 60% of the rentals come from
a recommendation system [Netb]. The recommendations are so crucial to their core
business that they offer a $1 million prize to anyone who manages to improve their
system’s accuracy by 10% [Neta].

It can be said that there’s too much of everything on the web, and that that’s the reason why
search engines are so popular. However, search engines promote a trial and error behavior,
with users spending their time checking every result until they’re satisfied. Most people
try only the first few results, and rarely adjust their queries. [Nie08].

2

INTRODUCTION

Recommendation systems are much more personalized than search engines, and pro-
mote the discovery of new things—even without an explicit search [Por06]. And while
they may be wrong at times, so can the search results. However, discovering interesting
stuff is much more fun than adjusting keywords on search engines. This way, users can
actually enjoy the searching and learning processes, which is a reason behind recommen-
dation systems’ success and popularity.

1.2 Project

This project focused on the design and development of Content Blaster—a recommenda-
tion system for anything that can be accessed via a URI, but not as a traditionally closed
application or product. Instead, anyone is able to build applications on top of the sys-
tem, taking advantage of the data that it provides and gathering more users in the process.
Content Blaster is a proof of concept. It was created from scratch—a base system which
can be further improved and expanded—and it’s by no means a finished product.

This project was developed during eighteen weeks at the Fraunhofer headquarters in
Portugal, at the AICOS research center. Fraunhofer is a German non-profit organization
with more than 80 research centers and 50 institutes in Germany, which creates research-
based products for the industry, the services sector and public administration [Fraa]. The
Fraunhofer AICOS institute started in May 2008 as a joint project between Fraunhofer and
the University of Porto, and develops market-oriented solutions based on research and de-
velopment in the area of assistive information and communication technologies—creating
solutions that lower the technical and financial barriers that usually hamper people from
using them [Frab].

1.3 Motivation and Objectives

The growth in 3G access, smartphone and netbook sales is a clear indicator that an in-
creasing number of people want to remain connected to the Internet constantly [NPD09,
IT 09, USA09]. As mentioned before, with users being both consumers and producers,
it’s expectable that the web won’t stop growing anytime soon—users need a way to man-
age the information overload on every Internet-capable device they have.

The aforementioned popularity of recommendation systems coupled with the ever-
increasing number of mobile and desktop internet users creates a gap that this project
attempts to fill, providing a way for users to have a recommendation system everywhere
they go, in every device they have. The recommendation system shouldn’t be a single
application or product, but a platform capable of learning what its users’ preferences are.

Content Blaster wants to be a personalized content provider for its users, where they
take the role of passive spectators that just like or dislike what they’re consuming, be it on

3

INTRODUCTION

a smartphone, netbook, tablet PC, set-top box or a regular desktop or laptop computer.

These are the objectives of this project:

1. Research and document the state of the art on recommendation systems.

2. Design and implement a recommendation system that:

• provides users with a way of voting how much they like a webpage;

• recommends webpages to its users, using a state of the art algorithm;

• is accessible over HTTP through a web-based application;

• supports third-party applications;

• is simple to implement and accurate within reasonable performance;

• is easy to understand and simple to use by end-users.

3. Test the performance of the aforementioned system

1.4 Report Overview

The rest of this report is structured as follows.

Chapter 2: “State of the Art” starts by reviewing the various types of recommendation
systems, comparing their strengths and weaknesses. It also provides an overview on
two popular web-based recommendation systems.

Chapter 3: “Solution Specification” presents a brief and high-level overview on the
proposed solution for the aforementioned objectives.

Chapter 4: “Technology” details the technologies used in Content Blaster and the rea-
sons that led to their choice.

Chapter 5: “Design” gives the reader a detailed specification of the logical and physical
architecture of the system. It also details some important design decisions.

Chapter 6: “Implementation” covers the most important implementation details of each
of the components in Content Blaster.

Chapter 7: “Solution Evaluation” evaluates the performance of the recommendation
algorithms used to generate recommendations in Content Blaster.

Chapter 8: “Conclusions and Future Work” reviews the project, drawing the neces-
sary conclusions and pointing its benefits and limitations. It also provides some
insights on which future developments have been considered.

4

Chapter 2

State of the Art

This section will provide an overview of recommender systems, detailing some types
of systems and their variants, comparing their advantages and drawbacks. It will also
describe how recommender systems are being used on extremely popular websites.

2.1 Recommender systems

Recommender or recommendation systems are present in many web-based applications
of different nature. These systems are very complex, so it’s fundamental to understand
them properly. This section will provide an overview on:

• what a recommender system is and what concepts are inherent to them

• three main types of recommender systems, their advantages and disadvantages

• some recommendation algorithms that serve Content Blaster’s purpose

2.1.1 Definition

A recommender system is one that uses the opinions of a large group of users to the
purpose of helping them to identify content that may be of interest to them—a task that
would be very difficult without the system, due to the overwhelming size of available
content pool [HKTR04].

Although recommender systems can vary much from one another, there are a num-
ber of essential concepts that exist in all of them: users, items, ratings, predictions and
recommendations. As these concepts represent the entities that play the main role in rec-
ommender systems, it’s essential to understand them properly.

User. Someone using the system. Users must be registered so their data can be tracked.

5

STATE OF THE ART

Item. An individual unit collected by the system. Items can be songs or artists, books,
webpages, people, or any commercial product—depending on the system’s specific
objectives and features. Users have some kind of interest in the content that moti-
vates them to use the system—be it reading, listening, watching, playing, buying or
selling.

Rating. The expression of an user’s preference on an item. The rating is the essential
piece in recommender systems, and its usage fundamentally determines how the
system will behave. Ratings may be explicit—when the user consciously gives
feedback on the item—or implicit—if the rating is inferred from user behavior, such
as purchase history on an e-commerce website like Amazon.com [BHK98]. If the
rating is explicit, it can be presented to the user on a discrete numeric scale, e.g.
from 1 (bad) to 5 (good), or in a qualitative one, such as thumbs up or thumbs down,
like StumbleUpon [BHK98, Stub, Stuc].

Prediction. The predicted value of a rating for an item that an user hasn’t rated yet. This
value lies on the same scale of the rating [SKKR01].

Recommendation. A list of the top-N items that the system predicts a user will like the
most. These are unrated items with higher predicted value for a specific user.

Recommender systems work by calculating predictions based on the actual ratings in the
system. The recommendations for a user are the items with higher predicted value for that
user [AT05].

2.1.2 Types

Even accounting for the specific characteristics of each recommender system, it’s com-
monplace to categorize them according to one of the following groups [AT05]:

• Content-based systems

• Collaborative filtering systems

• Hybrid systems

Each one of these groups will be discussed in the next few sections.

2.2 Content-based systems

Content-based systems recommend similar items to those that the user liked in the past.
Although this definition may seem to fit every type of these systems, that’s untrue—
this specific type of system uses the same techniques used in the fields of information

6

STATE OF THE ART

retrieval and information filtering [BS97, AT05]. That is to say that the system’s recom-
mendations are based on matching textual content about a set of items with the users’
preferences [IdGL+08].

Such systems gather content about its items—a set of attributes, such as extracted
keywords or descriptions characterizing the item [AT05, IdGL+08]. In order to generate
recommendations, this content is matched with each user’s profile—the preferences and
interests of that user, based on the features of the items the user has rated highly in the
past [BS97, AT05].

Because there are many variants of content-based systems and for the sake of compar-
ison, it’s important to define a pure content-based recommender system as

“(. . .) one in which recommendations are made for a user based solely on a
profile built up by analyzing the content of items which that user has rated in
the past.” [BS97]

Pure content-based recommender systems exhibit three main shortcomings: shallow anal-
ysis, over-specialization and new users.

Shallow analysis. Content-based systems are limited to the features that they are ca-
pable of extracting. This process works very well with textual data, but feature
extraction from graphics, video or audio, while possible, is a very sophisticated
problem [AT05, KT00]. Even with textual data, some features are very hard to
extract. In web pages, factors such as user experience or aesthetics are completely
ignored [BS97]. It may as well be impossible to differentiate between a well-written
and a badly written newspaper article on the same topic [SM95].

Over-specialization. Because the system only recommends items according to the users’
profile, the user is restricted to be recommended with items similar to those he al-
ready rated [BS97]. This may prevent serendipitous discoveries—the kind of dis-
coveries that the user wouldn’t make by himself [SM95]. It also may be problem-
atic for the user, as he’s subject to get multiple news articles describing the same
event [AT05]. Recommender systems should promote diversity in its recommenda-
tions, not homogeneity—serendipity is an important factor, as it may give the user
“important intellectual leaps of understanding” [IdGL+08].

New users. As the system creates the user’s profile based on the items he rated highly,
the user has to rate a considerable amount of items before he can be presented with
good recommendations. Because of that, the initial recommendations for a new user
may be unreliable [AT05].

7

STATE OF THE ART

2.3 Collaborative filtering systems

Collaborative systems or collaborative filtering systems don’t take into account the con-
tent of the items in the system [GSK+99]. Instead of recommending items because
they’re similar, the system recommends items that users with similar preferences have
liked [AT05]. The system starts by creating a set of neighbors for each user—those whose
taste is similar to that of the user—and then recommends items that those neighbors have
rated highly in the past [BS97, SKKR01]. Collaborative filtering makes possible to man-
age many types of content and to recommend items that are completely dissimilar to
those the user has previously liked, effectively overcoming the shallow analysis and over-
specialization problems of content-based systems [AT05, BS97].

Collaborative systems use very complex recommendation algorithms, and have many
variants, some of which will be properly detailed in the next few sections. For now, and for
the purpose of analysis and comparison with other recommender systems, it’s important
to define what a pure collaborative filtering recommender system is:

“(. . .) A pure collaborative recommendation system is one which does no
analysis of the items at all—in fact, all that is known about an item is a unique
identifier. Recommendations for a user are made solely on the basis of simi-
larities to other users.” [BS97]

Although pure collaborative systems overcome the main problems of content-based sys-
tems, they have their own shortcomings: scalability, sparsity and cold-start.

Scalability. In collaborative filtering systems, comparing a large number of user profiles
takes a considerable amount of time [LJB01]. Even when recommending items to a
single a single user, a recommender system may exhibit problems if the number of
items is very large [SKKR01]. It’s possible to improve performance and scalability
by reducing the data size—but at the cost of recommendations’ quality [LSY03].

Sparsity. In a recommender system, there may be a very large number of both users and
items. In this case, even with a large number of ratings, the user-item matrix may
be very sparse—that is to say that there are very few ratings considering the possi-
ble number of ratings if every user rated every item [SKKR01, HCZ04]. Sparsity
may cause very low similarity between two users, leading to a diminished num-
ber of recommendable items, which in turn renders collaborative filtering almost
irrelevant [HCZ04, BS97]. The sparsity problem is the biggest shortcoming of col-
laborative filtering systems [HCZ04].

Cold-start. The cold-start situation is closely related with sparsity, but in the special case
of a new user or item entering the recommender system [BH04]. In such case, the
user or item doesn’t have any known rating information. As collaborative systems

8

STATE OF THE ART

rely only on users’ ratings, an item which hasn’t yet been rated by a substantial
number users won’t be recommended frequently. The same is true for users, because
the system must have a sufficient number ratings from that user to provide him with
reliable recommendations [AT05]. This is the last problem is the same that content-
based systems have with new users.

As mentioned, pure collaborative filtering have three key advantages over content-based
systems [HKR02]:

1. They support items which content is difficult to analyze

2. The ability to recommend items based on their quality or taste

3. They can provide the user with serendipitous recommendations

Even with the aforementioned scalability, sparsity and cold-start problems, collaborative
filtering became the most successful breed of recommender systems [SKKR01]. They
may use a great variety of recommendation algorithms that have been traditionally clas-
sified as either memory-based or model-based [BHK98]. The rest of this section will
discuss these algorithms. It will also cover a different class of algorithms, known as item-
based [SKKR01].

2.3.1 Notation

This report will use a consistent notation to present the multiple metrics and algorithms
used in recommender systems, as follows.

U is the set of all users

I is the set of all items

Iu is the set of items rated by user u

R is the set of all ratings

ru,i is the user u’s rating on item i

ru is the user u’s average rating value

2.3.2 Memory-based

Memory-based algorithms operate over the entire user database to compute predictions
on the fly. These algorithms create a set of neighbors for each user [BHK98]. Such
neighborhood-based methods compute predictions based on the ratings of a user’s closest
neighbors. These algorithms can be decomposed in three steps [HKBR99, BKR07]:

9

STATE OF THE ART

1. Computing user similarity

2. Selecting neighbors

3. Generating predictions

Computing user similarity

The first step is to compute the similarity between users, so the neighbors can be selected.
This step uses the ratings as the input values and creates a similarity value between pairs
of users [BKR07]. The two most widely-used similarity measures are the Pearson corre-
lation coefficient and the cosine similarity.

The Pearson correlation coefficient was introduced by [RIS+94] and computes the
correlation between users u and v as defined in Equation 2.1.

simu,v =
∑i∈Iuv(ru,i− ru)(rv,i− rv)√

∑i∈Iuv(ru,i− ru)2 ·∑i∈Iuv(rv,i− rv)2
(2.1)

Where Iuv denotes the set of items rated by both user u and v.
Using cosine similarity, also called vector similarity [HKBR99], users u and v are

treated as m-dimensional vectors, where m = |Iuv|, and their similarity is measured by
computing the cosine of the angle between them [BHK98, AT05], as defined in Equa-
tion 2.2.

simu,v = cos(~u,~v) =
~u ·~v

‖~u‖2×‖~v‖2
= ∑

i∈Iuv

ru,i · rv,i√
∑ j∈Iuv r2

u, j ·
√

∑ j∈Iuv r2
v, j

(2.2)

Of these two metrics, Pearson correlation coefficient [HKBR99] is the most used in col-
laborative filtering recommender systems, and was proved by [BHK98] to outperform
cosine similarity.

Selecting neighbors

Instead of using the entire neighborhood of a user to serve as predictors during the next
step, collaborative filtering systems usually select just a subset of these neighbors, both
for performance and accuracy reasons. As the number of users in these systems grow,
performance becomes an issue, and very similar neighbors are much more valuable than
distant ones, providing more accurate predictions [HKBR99].

There are two techniques to filter neighbors: similarity threshold and nearest-K neigh-
bors [ZP07].

Correlation thresholding selects neighbors with a similarity value greater than a given
threshold value. However, choosing this threshold may be a problem, as an high

10

STATE OF THE ART

threshold may select a very small neighborhood and a low threshold may result in
a very large one, rendering almost useless the purpose of selecting a subset of the
neighborhood [HKBR99]

Nearest-K neighbors is a simple technique that selects the top K neighbors in terms of
similarity value [ZP07].

Between these two, nearest-K neighbors was found by [HKBR99] to be the best option,
providing good results without major performance problems.

Generating predictions

The final step to provide recommendations is generating predictions from the selected
neighborhood. The simplest way to generate is through a simple weighted sum over the
neighbors’ ratings, using the similarity value as the weight—so the most similar neighbors
become predominant [AT05].

In order to generate the prediction pu,i for a user on a particular item, weighted sum
uses the set of user u’s neighbors who rated that item, denoted Ûu.

pu,i =
∑v∈Ûu

simu,v · rv,i

∑v∈Ûu
simu,v

(2.3)

One major drawback of weighted sum is that it doesn’t take into account how users rate
their times—each one may have his own way of using the rating scale. So, to circumvent
this shortcoming, instead of using the ratings of a neighbor, the deviation from mean or
adjusted weighted sum uses their deviation from the neighbor’s average rating value to
compute the prediction [AT05, HKBR99].

pu,i = ru +
∑v∈Ûu

simu,v · (rv,i− rv)

∑v∈Ûu
simu,v

(2.4)

Deviation from mean is clearly a more complex algorithm than weighted sum, but [HKBR99]
found it to be more accurate.

Summary

Memory-based collaborative filtering is fairly simple, and has a significant number of
options in terms of which algorithms to pick for a recommender system. There are some
improvements on these systems that weren’t presented, such as default voting, inverse
user frequency and case amplification [BHK98]. For instance, case amplification operates
on the similarity value between two users, setting a new sim′u,v to be used when calculating

11

STATE OF THE ART

predictions.

sim′u,v =

{
simρ

u,v if simu,v ≥ 0
−(−simρ

u,v) if simu,v < 0w

However, as techniques such as these are just small improvements on established algo-
rithms, further research on these topics is out of the scope of this project and, therefore,
this report.

2.3.3 Model-based

In contrast to memory-based algorithms, model-based algorithms use the ratings set to
build a model of user preferences using statistical and machine learning techniques, and
then infer the predictions from this model [AT05]. This model can be built using many
different techniques, but this section will focus only on the model proposed by [BHK98],
where the prediction is viewed from a probabilistic perspective.

pu,i = E(ru,i) =
n

∑
v=0

v×Pr(ru,i = v|ru, j, j ∈ Iu) (2.5)

It’s assumed that the ratings values are integers between 0 and n. The probability ex-
pression is the probability that a user u will give a particular rating v to item i, based
on his previously rated items Iu. In his research, [BHK98] proposed two models for the
probabilistic model: cluster models and Bayesian networks.

Cluster models’ idea is that there are certain types of users with similar preferences,
and it works by clustering the users into classes. Given a particular class, the ratings
are independent. Parameters such as probability of class membership and the conditional
probability of ratings given a class are learned from the available data.

The other model is a Bayesian network where items are the nodes and its states are the
possible rating values, including no rating in a domain without a default rating [AT05].
The algorithm created by [BHK98] searches through multiple model structures for the de-
pendencies of each item, resulting in a network where items’ parents serve as predictors.
This technique computes predictions based on a decision tree for how a user will rate a
specific item.

These probabilistic models are an example of a wide array of choices for model-based
algorithms, such as latent semantic analysis, statistical models, decision trees, aspect
models, Bayesian models, linear regression, maximum entropy models, neural networks
or singular value decomposition [LM05, BH04, AT05].

12

STATE OF THE ART

2.3.4 Comparison of memory and model-based algorithms

Memory-based collaborative filtering algorithms are clearly much simpler than its model-
based counterpart, and produce reasonable recommendations as well [PHLG00]. They
are easier to use as they have less parameters that need tuning and new data can be easily
and incrementally added—reasons that made them more prevalent among recommender
systems [BH04].

However, model-based systems have better accuracy, performance and efficiency when
generating recommendations, and they handle sparsity better than memory-based sys-
tems [PHLG00, BH04, AT05].

Memory-based systems use a very large database to generate their recommendations,
while the model produced by the Bayesian network is much smaller—but building this
model is computationally expensive and may need to be performed when new data is
added to the system [BHK98, PHLG00]. Despite being very fast and small, the model is
inappropriate for systems in which user preferences changes rapidly [SKKR01].

When comparing memory and model-based algorithms, [BHK98] found that Bayesian
networks with decision trees at each node and deviation from mean using the Pearson
correlation coefficient outperformed other algorithms in most of their tests. They didn’t
prefer one over the other, and explained that such choice must take other factors into
account, such as the nature of the database and the application.

2.3.5 Item-based

As mentioned before, collaborative filtering systems traditionally explore the similarity
between users to generate predictions and have two major drawbacks: scalability and
sparsity. From the many techniques focused on overcoming these problems, item-based
collaborative filtering [SKKR01] is particularly interesting and is being used successfully
on Amazon.com [LJB01, LSY03].

The idea behind this technique is that users will like items which are similar to those
they have liked in the past, and will avoid those which are similar to the ones they have
disliked. This train of thought doesn’t require the analysis of a user’s neighborhood when
he requests a recommendation to the system. Instead, item-based collaborative filtering
explores similarity between items, recommending similar items to those the user has liked
before, instead of items that similar users have liked. Because the recommendation sys-
tem doesn’t analyze the user’s neighborhood, it tends to generate recommendations much
faster [SKKR01].

The rest of this section will present and compare two different algorithms: traditional
item-based collaborative filtering, as proposed by [SKKR01] and the Slope One algorithm
created by [LM05].

13

STATE OF THE ART

Notation

Some additional notation is required for item-based algorithms, as follows:

Ui is the set of users who rated the item i

Ui j is the set of users who rated both item i and j

ri is the item i’s average rating value

Item-based collaborative filtering

This technique was proposed by [SKKR01] and behaves much like memory-based algo-
rithms, calculating item similarity values with either correlation or cosine similarity, but
on the item space. The algorithm uses only a subset of each item’s most similar items to
generate the prediction.

Just as traditional memory-based algorithms, similarity between items can be calcu-
lated with Pearson correlation coefficient or cosine similarity, as defined by Equations
2.6 and 2.7, respectively.

simi, j =
∑u∈Ui j(ru,i− ri)(ru, j− r j)√

∑u∈Ui j(ru,i− ri)2 ·∑u∈Ui j(ru, j− r j)2
(2.6)

simi, j = cos(~i,~j) =
~i ·~j

‖~i‖2×‖~j‖2
= ∑

u∈Ui j

ru,i · ru, j√
∑v∈Ui j r2

v,i ·
√

∑v∈Ui j r2
v, j

(2.7)

However, there’s one fundamental difference between user-based and item-based algo-
rithms. In the former, similarities are calculated along a single user, while the latter
calculates similarity across users, who may use the rating scale in their own way. In order
to circumvent this problem, [SKKR01] proposes the adjusted cosine similarity measure,
which subtracts the user average rating from each one of his ratings.

simi, j = ∑
u∈Ui j

(ru,i− ru)(ru, j− ru)√
∑v∈Ui j(rv,i− rv)2 ·

√
∑v∈Ui j(rv, j− rv)2

(2.8)

This new measure alone results in much better accuracy compared to pure cosine or
correlation-based similarity [SKKR01].

Just like traditional memory-based algorithms—where most user pairs don’t have a
common item—in item-based collaborative filtering most item pairs have no common
user, so iterating through all item pairs is inefficient. In order to circumvent this problem,
[LSY03] proposed a way to find which pairs of items were rated by a same user. Instead
of iterating through all possible item-item pairs, which would take n2 iterations for n

14

STATE OF THE ART

items, he suggests another technique. For each item, it checks users who have rated it
and find out other items they have rated. These items share a user with the current item,
thus constituting valid item pairs who share at least one user. These pairs are recorded for
later use. After using this technique, the algorithm can now calculate the similarity for the
recorded pairs only. This optimization wasn’t used by [SKKR01] but it’s an improvement
to be considered.

When computing the predictions, [SKKR01] considers two techniques: weighted sum
and regression. The weighted sum technique is identical to the one used in memory-based
algorithms, but on the item space. The regression technique uses a linear regression
model. However, as regression is overall less accurate than weighted sum and always
less accurate than user-based algorithms [SKKR01], and for the sake of comparison with
Slope One, it won’t be part of this discussion and comparison with the Slope One algo-
rithm. The weighted sum calculates the prediction pu,i based on item i’s similar items that
the user u has rated, denoted as Îi.

pu,i =
∑ j∈Îi

simi, j · ru, j

∑ j∈Îi
|simi, j|

(2.9)

Just like the memory-based approach only needs a subset of the user’s neighbors, this
algorithm only needs a fraction of the item similarities, so [SKKR01] explored a differ-
ent approach to his algorithm. Instead of storing all item-to-item similarity values, the
algorithm creates a model with the top-l most similar items of each item, thus naming l
the model size. Using a model size smaller than the maximum possible number produces
less accurate recommendations, but delivers a much improved performance [SKKR01].
When computing the prediction for a user on a specific item, the algorithm only uses the
top-k neighbor items rated by that user, where k < l. The model and neighborhood sizes
aren’t fixed, and may be tuned for optimized performance and accuracy.

Although item-based algorithms are a complete new approach to recommender sys-
tems, they’re most commonly classified as model-based systems [SKKR01, PPM+06,
DK04], because of their model learning step, the item-to-item similarity computation,
which is done offline. However, as the algorithm proposed by [SKKR01] is so similar to
traditional memory-based algorithms, there are a few researchers who classify item-based
collaborative filtering as a memory-based technique [AT05, BH04].

Item-based collaborative filtering is a novel type of collaborative filtering, and just like
there are many user-based algorithms, item-based collaborative filtering can take many
forms—the aforementioned algorithm is just one of those. The next section will discuss
another one, the Slope One algorithm, and compare it with both item-based and user-
based algorithms.

15

STATE OF THE ART

Slope One

The Slope One algorithm was created by [LM05] and constitutes another approach at
item-based collaborative filtering. This technique is easier to implement, provides accu-
rate results and is divided in two parts—computing deviations and generating predictions.

Much like the previously mentioned algorithms, it computes a numeric value corre-
sponding to a relation between users or items. While in most cases this value denotes
similarity, Slope One computes the average deviation of an item i with respect to item j.

dev j,i = ∑
u∈Ui, j

ru, j− ru,i

|Ui, j|
(2.10)

It can be derived from Equation 2.10 that devx,y = −devy,x. As such, the item deviation
matrix, which contains all the item-to-item deviations, is skew-symmetric: MT =−M.

Using the deviation value, a way to predict the rating of a user on a specific item given
any of his ratings could be a simple pu,i = ru, j + devi, j formula. To compute predictions
for a user, the Slope One algorithm extends this formula to all of his rated items which
have at least one deviant item.

pu,i = ∑
j∈Du,i

devi, j + ru, j

|Du,i|
(2.11)

Where Du,i is the set of all items rated by user u that are deviant in relation to i, that is
Du,i = { j| j ∈ Iu∧ i 6= j∧ |Ui, j| > 0}. Since sometimes every item rated by a user has at
least one deviant item, this approximation can be considered:

∑
i∈Iu

ru,i

|Iu|
' ∑

j∈Du,i

ru, j

|Du, j|

Applying this approximation in Equation 2.11 makes the formula simpler, giving the basic
Slope One formula, a simple average of deviations.

pu,i = ru + ∑
j∈Du,i

devi, j

|Du,i|
(2.12)

However, this formula doesn’t take into account how many users have rated both i and
j. This motivated [LM05] to create a variant, the Weighted Slope One. This variant is a
weighed average of deviations, in which the uses the number of users that rated a common
pair of items as the weight.

pu,i =
∑ j∈Du,i(devi, j + ru, j) · |Ui, j|

∑ j∈Du,i |Ui, j|
(2.13)

16

STATE OF THE ART

Summary

The item-based collaborative filtering developed by [SKKR01], using weighted sum with
adjusted cosine similarity, produces better recommendations than the best user-based al-
gorithm in terms of accuracy. It’s capable of scaling as well, as as it pre-computes a
model which size may be tuned to improve performance. Effectively, [SKKR01] created
a novel, better approach to collaborative filtering, used successfully at very large recom-
mender systems such as Amazon.com [LJB01].

In the case of Slope One, [LM05] compared both variants against the aforementioned
item-based algorithm and an user-based algorithm using weighted sum of Pearson cor-
relation coefficient similarities. All three variants of Slope One shown better recommen-
dation accuracy than the other item-based algorithm created by [SKKR01]. Interesting
enough was the fact that every Slope One algorithm proved worse than the user-based
algorithm in terms of accuracy. This contradicts the results of [SKKR01], where his item-
based algorithm proved to have better accuracy than the best user-based algorithm, which
also used Pearson correlation coefficient. Although the trustworthiness of Slope One’s re-
sults may be up for discussion, the difference in terms of accuracy is very small, and Slope
One shows an unprecedented simplicity.

Comparing both variants of the Slope One algorithm, Weighted Slope One shows a
mere improvement of 1% in accuracy over the basic algorithm, but at the cost of a more
complex formula.

2.4 Hybrid systems

Hybrid systems combine two or more types of systems, seeking to overcome one’s draw-
backs with the other’s strengths, resulting in an unique system with less drawbacks [Bur02].
Hybrid systems can be made up either by combining separate systems, adding character-
istics of one to the other, or creating a new unified system [AT05].

2.4.1 Combining separate systems

This type of hybrid systems implements separate recommendation techniques with the
results of each one being combined by weighting, switching or mixing.

Weighting. A weighted hybrid recommender is one that uses multiple recommendation
methods, and computes their outputs into a single one. The simplest way to do
this is by a linear combination of the recommendation values [AT05], but there are
some other variants of weighted systems. In past work, [CGM+99] used an hybrid
of content-based and collaborative filtering, but gradually adjusted the weight fac-
tors on each system as their predictions are confirmed or disconfirmed by the user.

17

STATE OF THE ART

Although weighted hybridization brings together each technique’s advantages, com-
mon weaknesses among techniques aren’t avoided—using a content-based method
and a collaborative filtering method wouldn’t solve their common cold-start user
problem [Bur02].

Switching. This type of system switches between recommendation methods, using some
quality metric to make the choice of which to use among the available ones [AT05].
This technique can be sensitive to each technique’s advantages and drawbacks, with
the added cost of using what may be a complex and parameterized criterion and
doesn’t overcome their common drawbacks [Bur02].

Mixing. Mixed systems employ all the available techniques to produce recommendations
and present them at the same time. This effectively promotes each technique’s ma-
jor advantages, as both recommendations are shown. The major problem with this
approach is that because recommender systems usually require the ranking of rec-
ommendations or choosing a single best recommended item. In either case, mixed
systems fall short and some other technique must be used.

2.4.2 Adding characteristics

Most commonly, this type of systems is based in collaborative filtering while also main-
taining a content-based profile for each user. Collaborative filtering operates over the
content-based profiles instead of commonly rated items [AT05]. Fab [BS97] and filter-
bots [SKB+98] are two example of this type hybrid systems.

Fab uses a content-based system to build a model of user profiles, and uses this en-
tire model as the input for a collaborative filtering system, and user get recommendations
for items that match a similar user profile or their own profile. Fab avoids the sparsity
problem, as well as the new item problem. So-called “grey sheep” users, who have very
specific preferences and don’t fall into any group of users can get accurate recommenda-
tions as well [Bur02].

In past work, [SKB+98] developed a collaborative filtering system in which some
users were filterbots—content-based filtering agents that rate items based on their con-
tent [GSK+99]. These agents rate items based on some criterion—the length of a doc-
ument, the number of external references to it, or the spelling correctness—and act as
pseudo-users in the system, helping users with better recommendations [SKB+98]. The
filterbots technique is very simple, as collaborative filtering systems don’t have to treat
them differently—they are virtually identical to any other user. Later work by [GSK+99]
proved that a system with multiple users mixed with multiple agents is the best overall
scheme for a hybrid system using the filterbots technique.

18

STATE OF THE ART

2.4.3 Unified system

This type includes every other system that uses both systems in such a way that doesn’t
fit the previous types of hybridization. For example, the work of [BHC98] demonstrated
better recommendations using both content and collaborative features in a single rule-
learning system. Hybrid unifying systems are very complex and require deep research, so
further discussion on these topics is out of this project’s scope.

2.4.4 Summary

Hybrid systems appear in many forms, motivated by the weaknesses of both collaborative
filtering and content-based systems. Hybrid systems have proved to provide more accu-
rate recommendations than pure systems [AT05], but as many of them employ two fully
operational techniques, they do require a considerable implementation effort. The only
exception may be the filterbots technique, as adding these agents to an already existent
collaborative filtering system is fairly easy and the agents may be adapted to match the
system’s characteristics [GSK+99].

2.5 Comparison of recommender systems

The recommender systems discussed in the previous sections exhibit advantages and
shortcomings, with hybrid systems trying to bring each one’s advantages together. Ta-
ble 2.1 lists the most important advantages and drawbacks of content-based and collabo-
rative filtering systems.

Table 2.1: Comparison of recommender systems

METHOD ADVANTAGES DRAWBACKS

Collaborative
filtering

Independent of medium
Serendipity

New users
New items
Sparsity

Content-based Recommends recent items
Doesn’t need many users

Can’t analyze some media
New users
Over-specialization

Both content-based and collaborative filtering exhibit problems when providing recom-
mendations to new users, but content-based systems are immune to the cold-start items
issue, because new items don’t need many ratings to be recommended to someone. How-
ever, because content-based systems analyze content only, they’re affected by over-specialization,
in contrast with the serendipity of collaborative filtering that may actually surprise and en-
gage its users. The characteristics of content-based systems also makes them dependent
of their ability to extract features from the content, which sometimes may be impossible,

19

STATE OF THE ART

while collaborative filtering is independent to the medium of the item, while also being
able to recommend and item based on quality or aesthetics. But their major shortcoming
may be operating in sparse environments, where their accuracy is deeply affected, but
this problem is less pronounced in model-based or item-based systems. Hybrid systems
try to get the best of both approaches. They usually provide more accurate recommenda-
tions, but they’re also more complex, in some cases implementing two fully operational
recommendation algorithms.

2.6 Real-world recommender systems

There are a few web-based recommender systems that became very popular in recent
years. This section presents two recommender systems for webpages: StumbleUpon [Stua]
and Digg [Diga].

2.6.1 StumbleUpon

StumbleUpon is a free web-based service recommendation engine that helps people dis-
cover new websites. It’s used through a toolbar installed on users’ internet browsers, and
has two fundamental concepts: Like/Dislike and Stumbling.

Like/Dislike. Users may mark any webpage as liked or disliked by themselves by press-
ing either the “thumbs up” or “thumbs down” button on StumbleUpon’s toolbar.

Stumbling. The name given to the act of getting consecutive recommendations. This is
derived of the “Stumble!” button that takes users to a recommended webpage when
clicked.

After registering on StumbleUpon, a user must select any number of topics of his pref-
erence. These topics are grouped under categories, which can be found on Appendix B.
While the core of the user experience is based on liking/disliking pages and stumbling,
users may also:

• Comment and tag pages

• Add other users as friends and share pages with them

• Browse pages by topic, tag or media type (some particular topics represent media
types, such as Photography, News or Videos)

• Stumble by topic

• Search for pages

• Stumble based on a search query

20

STATE OF THE ART

Although the StumbleUpon team doesn’t provide detailed explanation on the system’s un-
derpinnings, they have published a brief overview on their recommendation engine [Stuc].
StumbleUpon recommends pages using three techniques, based on the ratings of the user
or their friends: topics, socially endorsed pages and peer endorsed pages.

Topics are provided via a classification engine that operates on users’ ratings on web-
pages.

Socially Endorsed Pages are pages recommended by friends. This may refer to pages
shared by friends.

Peer Endorsed Pages are endorsed by similar users. This is the part where Stumble-
Upon provides more detail, saying that “rating websites updates a personal profile
(weblog) and generates peer networks of websurfers linked by common interest”

StumbleUpon uses all three techniques when recommending webpages, being a complex
hybrid system, but they provide no detail on how much each technique weights on the
final recommendations. Although StumbleUpon is an hybrid system, every information
available makes it feasible to conclude that the system doesn’t use any content-based
technique.

It’s important to notice that StumbleUpon doesn’t use a recommender engine as part
of a feature—the only purpose of the system is to discover new webpages. StumbleUpon
recently hit an impressive number of seven million users [Kir09], is ranked 425th on the
Alexa Traffic Rank [Alec], and has been growing in popularity, reaching between 4 and 6
million unique visitors per month in the January–May period of 2009 [Comb].

StumbleUpon is an example of the popularity of recommender systems and a proof
that recommender systems are capable of scaling, given proper optmization.

2.6.2 Digg

Digg is a social news website, where content is submitted and promoted by users [Digb].
It works in a very simple way:

1. A user submits a webpage to Digg. Inside Digg, pages are known as stories and
must belong to a single topic.

2. Digg users vote on stories based on some criterion—most commonly, if they like
them. An user can only vote on a page once, and a vote is known as a digg inside
the Digg community. Many website owners add Digg badges to their pages. These
badges show the number of diggs of that page and have a button to digg it that
particlar page, so it’s easier for vistors to digg without ever going to Digg.com itself.

21

STATE OF THE ART

3. The stories with the most diggs are promoted to Digg’s frontpage. The number
of diggs of a story is a measure of how popular that it is, and being on the Digg
frontpage is a huge source of new visitors for any website.

As the popularity of Digg increased, the number of new stories being submitted each day
started to grow up to a enormous amount, which motivated Digg to create a recommen-
dation engine so users could filter new stories without being overwhelmed [Ros09]. This
recommendation was further detailed in [Kas]. Digg’s recommender is a pure user-based
collaborative filtering system that computes a correlation coefficient between users and
selects users’ neighborhoods with correlation thresholding. The correlation is only based
on the last thirty days of activity and is computed for user u as

corru,v =
Diggsu,v

Diggsu

where Diggsu is the number of diggs of user u and Diggsu,v is the common number of
diggs among users u and v. These correlations are computed both at a global and a topic
level (Digg’s topics are listed in Appendix C). This system is very exposed to users, as
they known why a particular story was recommended and can view their neighbors and
their dugg stories [Ros09].

When developing the system, scaling was constantly considered, as Digg has dozens
of thousands of new stories on a daily basis. Everytime a user diggs a story, the correlation
coefficients between him and every other user are recomputed, which was only possible
with the creation of a custom database management system, tailored to the specific needs
of Digg [Ros09].

Digg is even more popular than StumbleUpon, with more than 30 million unique
visitors per month in the January–June period of 2009 [Coma], and it’s ranked 165th on
the Alexa Traffic Rank [Aleb].

2.6.3 Summary

Both Digg and StumbleUpon proved that recommender systems with simple concepts can
be successful and popular, helping users to filter through the ever-increasing amount of
content available on the web. Although scaling is a very serious problem in large systems,
they have both proved capable of handling it properly.

2.7 Chapter summary

This chapter reviewed the work on the field of recommender systems, fundamental to
the planning, design and development of Content Blaster. It started by presenting both
content-based and collaborative filtering systems.

22

STATE OF THE ART

Content-based techniques have proved inappropriate to use when content analysis is
difficult or impossible. On the other hand, collaborative filtering strives in the same condi-
tions but has its own drawbacks: sparisity and scalability. Model-based techniques try to
address these shortcomings. They provide better recommendations than memory-based
algorithms, even in sparse environments, but they’re very complex when compared to
memory-based systems’ simple and straightforward design. All of these techniques are
user-based, but an item-based algorithm proved better than the best user-based technique
without being overwhelmingly complex. This algorithm was compared to another item-
based technique, Slope One. They both provide reasonably good recommendations, but
the latter has a significantly simpler implementation.

The section also presented hybrid systems, which try to bring together the best of
the previous ones. They usually succeed but often require the implementation of two
recommender systems, which means an increased development effort. The only exception
are filterbots, agents that act as pseudo-users, rating items based on their content.

Finally, two popular real-world web-based systems were presented, Digg and Stum-
bleUpon. Both systems proved capable of handling the scalability problem, and their
popularity and success constitute an extra motivational factor for this project.

23

STATE OF THE ART

24

Chapter 3

Solution Specification

This chapter presents the solution defined to address the objectives enumerated in Sec-
tion 1.3, based on the research documented on Chapter 2.

3.1 Overview

Content Blaster is a web-based recommender system for webpages, accessible via a web
browser. Each page may have any number of tags that are automatically fetched from
other websites, but Content Blaster’s users may add their own.w

Content Blaster is an hybrid recommender system, using the Slope One collaborative
filtering algorithm combined with filterbots. Each filterbot corresponds to a tag in the
system, and automatically likes pages that were tagged with the tag it represents.

Using just their browser, users may like, dislike and tag any webpage, and get rec-
ommendations from Content Blaster. The system also provides third-party access via a
simple API, so it can be extended to other applications and devices.

The next sections will present the system with more detail, explaining the reason be-
hind the choices that were made when designing Content Blaster.

3.2 Recommender System

As mentioned before, Content Blaster is an hybrid recommender system, using the Slope
One collaborative filtering algorithm coupled with simple tag-based filterbots. This deci-
sion is the result of the research on recommender systems, considering Content Blaster’s
objectives and constraints.

As mentioned in Section 1.3, Content Blaster should “provide users with a way of
voting how do they like a webpage”. Nowadays, users not only spend their time reading

25

SOLUTION SPECIFICATION

documents, but they’re constantly watching videos, browsing photos, playing games and
listening to music on websites. The web is a platform that supports multimedia content,
and not every webpage is mostly composed of text. With that in mind, collaborative
filtering systems were easily preferred over content-based ones, because of their ability to
operate regardless of the item’s content. Both Digg and StumbleUpon support any type
of media, and as far as it’s known, they don’t analyze their webpages’ content either.

The three types of collaborative filtering techniques were considered for Content Blaster.
Based on the research presented in Chapter 2, they were compared in terms of dealing with
sparsity, recommendation quality, difficulty of implementation and scalability. Some of
these metrics are fundamental to any recommender systems, whether others have particu-
lar interest in collaborative filtering systems, as it’s the case of Content Blaster.

Dealing with sparsity. Sparsity is the major drawback of collaborative filtering tech-
niques, and the memory-based methods are the most affected. Both model-based
and item-based systems show better results than memory-based ones under a sparse
environment.

Recommendation quality. Model-based schemes have proved more reliable than memory-
based schemes, but they’re much more complex. The item-based algorithm of [SKKR01]
also proved to outperform the best user-based algorithm in both performance and
accuracy.

Difficulty of implementation. Despite all their weaknesses, memory-based methods are
very easy to implement, specially when compared to their model-based counter-
parts. As mentioned before, item-based and memory-based methods are very simi-
lar in terms of implementation.

Scalability. Scalability is a serious problem in every recommender system. Model-based
and item-based techniques provide fast recommendations, but at the cost of an ex-
pensive learning phase. In item-based systems, tuning the model size may help to
optimize this learning phase. Memory-based schemes are more affected by scalabil-
ity problems, but it’s important to remember that both Digg and StumbleUpon have
proved capable of overcoming this problem, handling millions over users everyday.

The technique chosen for Content Blaster was item-based collaborative filtering, as it is
easy to implement while also providing good results even in sparse environments. It’s
important to remember that one of the objectives for Content Blaster was to be “accurate
within reasonable performance”—a minor gain in accuracy may not be worth a major
sacrifice in simplicity or scalability.

The choice of which item-based algorithm to use was the most difficult to make. The
results of [LM05] contradicted with [SKKR01] and it’s debatable if a relatively new algo-
rithm as Slope One is effectively better than traditional item-based algorithms. However,

26

SOLUTION SPECIFICATION

both of them are on pair in terms of accuracy, as the reported improvement of Slope One
was minor. Taking this very little difference in accuracy into consideration, Slope One’s
simplicity in terms of design and implementation is remarkable, being the factor that fa-
vored it over traditional item-based collaborative filtering.

On Content Blaster, the algorithm runs periodically to provide and store item-to-item
deviation values. After this step, it also computes and stores predictions for every user—
the system doesn’t compute recommendations in real-time. This was done for perfor-
mance reasons, because a shared computer was used for deployment. The recommenda-
tion given to a user is one of the top ten predicted items, chosen randomly, so the user
won’t always get the same recommended item if he doesn’t rate it.

3.3 Tagging

In Content Blaster, users may add tags to a page when they like or dislike it. This is done
to alleviate the cold-start problem with the help of filterbots, which represent pseudo
users in the system. Instead of analyzing the page’s content—which is a difficult task
considering the multimedia support in the web today—the system uses tags added by its
users, that help to categorize and describe that page’s content. As tags are optional in
order to make the rating process easier and faster for users, Content Blaster also fetches
tags from other websites that aggregate and organize a huge number of webpages: Digg,
StumbleUpon and Delicious.

Digg. As mentioned before, Digg groups their stories into topics. Content Blaster users
the name of the topic of a page as the tag

StumbleUpon. StumbleUpon works like Digg, but users may also add tags to their pages.
Both topics and tags are extracted from StumbleUpon.

Delicious. Delicious is a social bookmarking website, where users can “save, manage
and share web pages from a centralized source” [Del, Yah]. Delicious’ users aren’t
forced to choose one of the predefined topics to categorize their page—they may
add their own tags. Content Blaster uses those tags.

When a page is added to Content Blaster, the system searches these three other websites
for the newly added page. If it’s already there, it fetches the topics and tags used on
those systems to categorize the page, and uses that information to tag the page on Content
Blaster. When any number of tags is added to a page in Content Blaster, the bots which
represent those tags automatically like that same page. If a new tag enters the system, the
corresponding bot is automatically created.

Using filterbots helps to alleviate the cold-start problem, because a new item will
automatically have a number of filterbots that like it. This means that new users, which

27

SOLUTION SPECIFICATION

only like one or two items, will get recommendations from the bots which also liked that
item, and new items will get recommended faster [PPM+06]. It will also helps to deal
with sparsity, as two items which have a common tag will have at least one common
user [SKB+98].

This technique is relatively simple to use, but as a result, the number of bots can be
very large. Considering the popularity and size of Digg, StumbleUpon and Delicious,
together with user-added tags, it’s expected that most items will have tags, effectively
helping to address some of the traditional collaborative filtering techniques’ drawbacks.

3.4 Voting scheme

The voting scheme wasn’t subject to much discussion. A like/dislike scheme was easily
preferred because it’s much simpler for users than a discrete numeric scale, as they only
have to ponder between two options. This voting schema may be used in Slope One, as it
was confirmed by its inventor to be scale invariant (see Appendix D). Non-numeric voting
schemes are used with success in both Digg and StumbleUpon.

3.5 Usage

Content Blaster is used through two buttons added to a regular browser: Like/Dislike and
Blast me!.

Like/Dislike Opens a small window in which users can add tags to the page and mark it
as liked or disliked.

Blast me! Redirects the user to a recommended page.

These buttons may be displayed using one of three techniques: installed toolbars, frame
toolbars and bookmarklet buttons.

Installed toolbars. The website requires users to install a software add-on that adds func-
tionality to their browsers. This method doesn’t add content to the page—the toolbar
becomes part of the browser’s interface. This is the preferred method of Stumble-
Upon.

Frame toolbars. The toolbar is displayed on the website, with the actual page being
seamlessly inserted on a frame below the toolbar. This method tries to overcome
the need of users having to install software. However, as frames replacee the actual
page’s URL with another one, they break the functionality of the back button and
may pose a problemf for search engines [Nie99]. This is the preferred method of
Digg.

28

SOLUTION SPECIFICATION

Bookmarklet buttons. Bookmarklets are just like regular bookmarks, but they execute
some other function than opening a page when clicked. They can be added to an
existing browser toolbar by dragging them from any page to the toolbar, where they
appear as buttons. This doesn’t require installing software, overcomes the problems
of using frames and may also be used in some mobile browsers. This is the preferred
method of Content Blaster.

3.6 Third-party support

Content Blaster was designed to support third-party applications via a simple applica-
tion programming interface. Any developer may incorporate Content Blaster’s features
into any application, using the user’s security token for authentication. Content Blaster
supports the following operations:

• Liking, disliking and tagging webpages

• Getting a list of recommendations

3.7 Chapter summary

This chapter started by presenting a brief overview of Content Blaster. The Slope One
algorithm was chosen taking into consideration factors such as dealing with sparsity, rec-
ommendation quality, difficulty of implementation and scalability, as it provides accurate
recommendations with an extremely simple design and good performance.

The following section presented the motivation and reasons behind the choice of using
filterbots, agents that improve recommendation quality by acting as users which rate pages
based on their tags (added by both users and third-party services).

The rest of the chapter explained the solution used for the voting scheme used in the
system, the reasonably simple and small feature set available to both users and third-party
developers, and how they can use those features.

29

SOLUTION SPECIFICATION

30

Chapter 4

Technology

Content Blaster is a web-based application developed in Ruby on Rails, a Ruby frame-
work. It uses a MySQL-powered database, and runs on a Apache server with the Passen-
ger module. This chapter will explain these technologies and why they were chosen.

4.1 Ruby

Ruby is a dynamic and object-oriented language used for multiple purposes, created by
Yukihiro Matsumoto, also known as Matz [FM08]. Matz wanted to create a “language
that was more powerful than Perl, and more object-oriented than Python”, and his phi-
losophy for Ruby is better explained with a quote of his own:

“Ruby is designed to make programmers happy”

Ruby was inspired by languages such as Lisp, Smalltalk and Perl, and its core character-
istics and features are [Rub, FM08]:

Open source. Ruby’s license allows anyone to use, copy, modify or distribute it.

Pure object-oriented. In Ruby, everything is an object, including classes, modules and
data types—even numbers, booleans and null values which in other object-oriented
languages are known as primitives. An object’s properties are known as instance
variables and actions are methods.

Flexible. Not only it features dynamic typing, but also very powerful reflective and metapro-
gramming capabilities. Ruby doesn’t restrict what a programmer can do. Any part
of Ruby code can be removed, redefined or extended, even at runtime. This isn’t
only true for a programmer’s own code, but also for core Ruby classes such as Ob-
ject and String.

31

TECHNOLOGY

Multi-threading with green threads. Ruby can run multiple threads, but without relying
on the operating system capabilites. This means that Ruby threads can only use a
single processor.

Automatic memory management. Like other languages such as Java and contrary to C,
developers don’t manage the program’s memory usage.

Portable. Ruby can run on most operating systems and platforms, such as GNU/Linux,
Mac OS X, Windows 95 and beyond, and many others.

Exception handling. Ruby can recover from errors just like Java, C++ or Python.

The most used version of Ruby is version 1.8.7, an implementation written in C which
interprets the language. This interpreter is known as MRI—Matz Ruby Interpreter. The
most recent version of Ruby is version 1.9 where Ruby is compiled to bytecode before
being interpreted with YARV—Yet Another Ruby Virtual machine—a virtual machine cre-
ated for Ruby.

4.2 Ruby on Rails

Ruby on Rails, also known as Rails, is a “framework that makes it easier to develop,
deploy, and maintain web applications” [RTH09]. It was created when David Heinemeier
Hansson was working on Basecamp, an online project management service owned by
37signals, an american company which creates web applications. Ruby on Rails was part
of Basecamp, from which it was extracted and released as an open source framework
in July 2004. Since its creation, Rails has become a mature and popular framework,
which powers well-known application such as Twitter, Hulu, iLike, Scribd, Basecamp,
Shopify and Github [Rai]. The rest of this section will present the most important Rails
characteristics and features for this project.

4.2.1 Philosophy

Rails’ uses two very important principles that guided the Rails framework and their users,
which are convention over configuration and don’t repeat yourself [RTH09].

Convention over configuration seeks to decrease the number of decisions and configu-
rations that a programmer has to do. By complying its default behavior and values,
programmers only have to specify what is unconventional. Having a set of default
values and procedures, Rails’ programmers can enjoy its simplicity while not losing
any flexibility.

Don’t repeat yourself means that tany information should be located in only one place.
Not only this is simpler and easier to do, both in terms of architecture and code, but

32

TECHNOLOGY

it’s better prepared for the future—programmers can change something without the
need to rewrite and reorganize many parts of the application, which done incorrectly
may lead to inconsistency.

4.2.2 MVC

Ruby on Rails makes it easier for programmers to create applications because it imposes
the usage of the model-view-controller (MVC) architectural pattern. This way, applica-
tions are better organized, with everything in its right place. Every Rails application is
split into models, views and controllers.

Model. A model is the part responsible for maintaining the state of an application. Most
times, this state is stored in a database. Besides maintaining the state of the data, it
sets constraints on that data, e.g. a blog Article which must have a title. By keeping
these constraints in the model, there’s no way to break them anywhere throughout
the entire application, so the data will always be consistent and valid.

View. A view generates what is displayed to users—a user interface. This is usually a vi-
sual representation of a model, but a model may have multiple views. For example,
a blog will have many articles that are accessible through the model and displayed
using a view. A view can have multiple formats, e.g. a RSS feed, and is used ex-
clusively for output. Although a view may provide users with ways to input data, it
never handles that same data.

Controller. The controller controls the entire application. It handles events from users,
interacts with the model, and renders a view, as depicted in Figure 4.1. In Rails,
requests pass through a routing component before reaching the controller. This
component selects the appropriate controller based on the requested URL.

Model

ViewController

Database

Browser

Figure 4.1: Model-View-Controller

33

TECHNOLOGY

4.2.3 ORM

Object-relational mapping is a programming technique used for abstracting database ac-
cess. ORM libraries map database tables to classes. This way, programmers can use
databases as though they were using simple classes, without worrying about data type
conversions and database queries. A table is mapped to a class, a row is mapped to an
object, and a column is mapped to objects’ attributes [Amb]. So, if a programmer wants
to change the name of the first user named John, he may do

johns = User.all(:name => "John")

john = johns.first

john.name = "Johnny"

john.save

The first and last lines of code are mapped from Ruby code to a database query. In the
first line, the ORM maps the selected table rows to johns, an array of User objects. The
last line updates the name of the first user to “Johnny”.

Ruby on Rails includes its own ORM library, called ActiveRecord [RTH09], which
also adds support for table constraints, triggers, relationships, inheritance and much more
so that the programmer doesn’t have to bother with complex database queries.

The first line of code is also an example of the philosophy of Rails. When the database
schema file is created, the above code sample works even if the User model is defined as

class User < ActiveRecord::Base

end

One of the many Rails conventions is that database table names are in the plural form of
model names. The model class User works because the table is named users. Because
Rails doesn’t repeat itself, the User model knows that a name field exists because that’s
already defined the database schema file.

Rails and ActiveRecord are capable of working regardless of the database system
in use if a database adapter is available. Available adapters include MySQL, SQLite,
PostgreSQL and Oracle.

4.2.4 REST

REST is an architectural style which considers the web as a collection of resources ad-
dressable with Uniform Resource Identifiers (URIs). A resource is the conceptual target
of its URI. Each resource may have multiple representations, and provides a common
interface to act upon it [FT00]. To make this clearer, an webpage isn’t a resource, it’s a
representation of a resource in HTML, normally accessed through a GET request on its
URI [Tom04]. However, there are other methods such and GET, which are used in REST

34

TECHNOLOGY

to use resources as listed in Table 4.1. Notice the similarity between a method’s name and
the verbs used in the description of the result action.

Table 4.1: HTTP methods used in REST

METHOD ACTION

GET gets information from the resource
POST adds information to the resource
UPDATE updates information in the resource
DELETE deletes the resource

Rails can take advantage of REST principles to use shorter and clearer URLs and provide
programmers with an easy way to create APIs in many formats. Taking a blog for exam-
ple, REST can be used in Rails to create an interface such as the one listed by Table 4.2.
It’s important to notice that Rails can also render non-HTML views, provided that the
developer implements the necessary requirements.

Table 4.2: REST on Rails

URL METHOD ACTION

/articles GET displays a list of articles
/articles.rss GET displays a list of articles in the RSS format
/articles POST adds a new article to the article list, passed on the

request body
/articles/1 GET displays a specific article
/articles/1.xml GET displays a specific article in the XML format
/articles/1.json PUT updates a specific article with the data passed on the

request body as a JSON object
/articles/1 DELETE deletes a specific article

4.2.5 Plugins

Other benefit of using Rails its vast collection of user-developed plugins. As of today,
there are over 1000 plugins [Cur] that extend the Rails core, plugins that provide multiple
authentication methods, plugins that enhance the views, plugins for multimedia, file man-
agement, testing, searching, web services, optimization, security, integration, and many
more. And because Rails is Ruby, it can also use user-made Ruby libraries too. This
effectively helps to make the development process faster, as it’s easy to find libraries and
plugins with very high quality and tested by both developers and users.

4.2.6 Data formats

Content Blaster supports third-party applications with its REST API. Nowadays, most
applications’ APIs are available in many data formats, being XML and JSON the most

35

TECHNOLOGY

popular ones. Both formats are used to serialize data, and Rails has built-in support for
conversion between ActiveRecord and XML/JSON. This section will take a closer look
at these formats.

XML

XML is a text-based general-purpose markup language. It’s considered an extensible
language, because it allows users to create custom markup languages. It’s fundamentally
important on the Web, where it’s used for data exchange [W3C]. In the context of Ruby
on Rails, it’s used for providing and consuming web services. Take for example this code
sample:

<?xml version="1.0" encoding="UTF-8"?>

<user>

<id type="integer">1</id>

<name>John</name>

<age type="integer">34</age>

</user>

This code is very easy to read, and represents a user named “John”, aged 34 and whose id
is 1. This could be the response for a request on the path /users/1.xml, as it represents
an ActiveRecord object serialized into XML. As XML is supported by most programming
languages, it’s a common format for an APIs that want to broaden the potential set of
third-party applications using its services.

JSON

JSON is a data interchange format, based on a subset of JavaScript, a popular client-
side scripting language. It’s a text-based very lightweight alternative to XML for data
exchange [JSOa]. Take the following code as an example:

{"user": {"id": 1, "name": "John", "age": 34}}

The code represents a JSON object, and is equivalent to the XML code of 4.2.6. Com-
pared to XML, JSON is simpler and more readable. Unlike XML, JSON doesn’t need to
specify the data type of some attributes—being a subset of JavaScript, a value can hold
strings, numbers, booleans, null, arrays or other JSON objects—but it isn’t extensible, so
it’s limited to these types [JSOb].

JSON is rising in popularity for simple data exchange when extensibility isn’t re-
quired. JSON code is easier to read and write, much smaller and faster to parse.

36

TECHNOLOGY

4.2.7 Summary

Ruby on Rails’ vast set of features helps developers to focus and work on their problem
instead of laying groundwork for their applications. By complying to Rails conventions
and taking advantage of both Rails built-in features as well as third-party libraries and
plugins, developers can get their work done much faster. Rails has its downsides too,
being the main ones the learning curve and application performance, due in part to Ruby’s
performance. While the first one is rendered irrelevant due to the author’s past experience
with the framework, performance can be improved because Rails is flexible enough to skip
its own processes when needed and to cooperate with other languages and applications—
if needed, a developer may create Ruby libraries using C, which can be used by Rails as
if they were pure Ruby libraries. It’s important to notice that, while scaling is more of a
problem in Ruby on Rails than in other frameworks and languages, very popular websites
such as Twitter, Hulu, Basecamp and Shopify are developed in Ruby on Rails, which is
an evidence that Rails is capable of scaling if optimized properly.

4.3 MySQL

MySQL is an open source relational database management system with over 100 million
copies distributed throughout the world, with customers including many of the world’s
most popular websites, such as Wikipedia, Facebook or Digg. It’s provided free of charge,
but there’s an enterprise version that provides support to its customers [Suna, Sunb].
MySQL was originally developed by a swedish company, but it was bought by Sun Mi-
crosystems in Februrary 2008 for 1000 million dollars [Sun08]. It’s a fast system, easy to
setup, contains a vast documentation and a large developer community, works perfectly
with Rails and provides everything needed for Content Blaster to work.

4.4 Apache HTTP Server

The Apache HTTP Server is a robust, full-featured and open source HTTP server devel-
oped by the Apache Software Foundation. It provides a vast set of important features,
such as basic authentication, digest authentication, content negotiation, HTTPS, virtual
hosting, CGI and IPv6. It’s available for most operating systems, such as GNU/Linux,
FreeBSD, Solaris, Mac OS X and Microsoft Windows [Apa].

Because it can be extended with modules, Apache supports popular programming lan-
guages for web development such as PHP, Python on Perl. Phusion Passenger, also known
as mod rails, is an open source module for the Apache HTTP Server for deployment of
Ruby and Ruby on Rails applications, created by Phusion [Phu]. As it’s the easiest way

37

TECHNOLOGY

to deploy a Rails application, it has become the de facto standard in the Rails community
for production deployment, and Phusion also provides commercial support.

4.5 Chapter summary

This chapter presented the technologies used by Content Blaster, starting by Ruby on
Rails, a full-featured framework that provides a set of conventions, features—such as
JSON/XML support, MVC and ORM—and plugins that make it very easy for developers
to create and maintain web applications rapidly.

Ruby on Rails is built on top of Ruby, a multi-purpose dynamic and powerful language
that can also be extended with C-based libraries when extreme performance is required.

The natural companions of Ruby on Rails are MySQL, Apache and Passenger, robust
open source tools that work perfectly with Rails, a setup that has become the standard for
developing Ruby on Rails applications.

38

Chapter 5

Design

This chapter will cover Content Blaster’s design, providing detail in both logical and
physical architecture, and highlighting the main design decisions taken during the project.

5.1 Logical Architecture

Logical architecture focuses on the system’s organization in terms of components and
entities. This section covers these topics, explaining the division of Content Blaster into
four components, how they relate, and which entities are used along the entire application.

5.1.1 Components

Content Blaster is divided into four main components, Database, Slope One, Tagging and
Application as depicted in Figure 5.1.

Database. The database component is a MySQL database designed to map the system’s
entities and their relations. It’s the central repository for all the data used by the
three other components.

Slope One. Slope One is the item-based collaborative filtering algorithm that powers
Content Blaster. Its characteristics enforced the separation in two phases. In the
first one, the deviations phase, the algorithm computes item-to-item deviations be-
tween every pair of items rated by at least one common user. Next follows the
predictions phase, which uses both the users’ ratings and their items’ deviations.
This step generates predictions for all users, attributing a predicted value to unrated
user-item pairs. These steps are normally run sequentially, but the current design
allows one step to be independently executed.

39

DESIGN

Content Blaster

«component»
Application

«component»
Database

«component»
Tagging«component»

Slope One

External
Service

Third-Party
Application

Device

Device

Figure 5.1: Content Blaster Component Diagram

Tagging. The tagging module extracts tags from third-party tag providers. Its current
design consists of a class for each supported provider, which manages all the data
interchange. All of these classes provide a common interface, returning a list of tags
when passed a valid URL. The module also features a main class, which uses these
interfaces to collect and merge the tags provided by each tag provider. This design
makes it easy to add, change or remove services without affecting the other ones.

Application. This component is the core of Content Blaster and is responsible for holding
the business logic and keeping its integrity, security and safety; enforcing constraints
and triggers on entities and their relations; maintaining the system’s state stored in
the database; using the tagging module when a new item enters the system; and
interacting with both users and third-party applications using the API.

5.1.2 Entities

Both the Slope One, application and tagging components use the system-wide defined
entity set. This section provides an overview on these entities and their relationships,
under the form of the class diagram of Figure 5.2 and a description of each one of these
entities and relationships.

40

DESIGN

Content

<<Interface>>
Viewer

UserBot

Prediction

<<Interface>>
Taggable

Tag

Tagging Deviation

Rating
0..*

0..*

0..*

0..*

0..*

0..*

1

1

0..*0..*

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 5.2: Content Blaster Class Diagram

Content. The reason why Content Blaster exists is to recommend content—known as
items to the recommender system. A Content has an unique URL and may have
multiple tags.

Viewer. Content Blaster needs ratings to provide recommendations to its users. An in-
dividual who rates a Content is known as a Viewer. This entity is just an interface
entity, because both users and filterbots can rate Content.

Rating. The Rating entity holds the relationship between a Content and a Viewer, quan-
tified by a numeric value: 10 if the viewer likes the content, and 0 if he doesn’t.

User. An user is an human individual who rates content and to whom recommendations
are given. An user must provide an username, password and email when register-
ing, with the username and password being used for authentication. The system
automatically generates a security token that is used for API authentication.

Bot. This entity represents the filterbot that automatically rates Content based on its tags.

Tag. Both users and the tagging module may provide tags to describe content. Tag is
the entity which represents these tags, and it holds a single word. A Content is a
Taggable entity which may have multiple tags through the Tagging entity, which
represents the relationship between a Tag and a Content. When a new tag is created,

41

DESIGN

the system automatically creates a Bot associated with it. When a content is tagged,
it’s automatically liked by the Bot associated with that tag.

Deviation. This entity holds the relationship between two contents in the form of a nu-
meric value computed by Slope One, noted as devi, j. As this value is fundamental
to generate predictions, the system needs to be able to differentiate between item i
and j, given devi, j 6= dev j,i. The Deviation entity holds i as the pivot element, and j
as the deviant element.

Prediction. A Prediction holds the relationship between a Content and a User, quantified
with a numeric value computed by the Slope One algorithm.

5.2 Physical Architecture

Physical architecture focuses on the networking layering that Content Blast is part of.
Figure 5.3 represents the simple physical architecture of Content Blaster. It runs on a
single server, where users and API consumers connect to it over the Internet using the
HTTP protocol. Content Blaster also connects to multiple tag providers using HTTP.

Content Blaster

Digg

StumbleUpon

Delicious

UserAPI
Consumer

Figure 5.3: Content Blaster Network Diagram

42

DESIGN

5.3 Decisions

This section focuses on the major design decisions taken during development.

5.3.1 MVC Application

The most important decision in terms of design still left to explain is the usage of a MVC
architecture in the application module. Figure 5.4 represents the models, views and con-
trollers of the system. The application has more models than those which are depicted
in the figure—one model for each entity listed in 5.1.2—but the diagram only represents
the ones that interact with the controllers available for end-users and their most important
views. A description of each controller and its responsibilities follows.

Models User Rating Tag Content Predictions

Controllers User Session Account Ratings Contents

Views
/login

/account/new

/account /save /recommended

Figure 5.4: Application MVC Diagram

User Session. Handles users’ session management, providing login and logout. Displays
the login form.

Account. Creates user accounts, displays the account creation form and the account in-
formation screen for the current user.

Ratings. Manages the users’ rating process, displaying the rating form when the user
clicks the “Like/Dislike” bookmarklet button.

Contents. Displays recommendations to users. When a user clicks “Blast Me!” this
controller renders a view which informs the user that he is being redirected to the
recommended content.

43

DESIGN

5.3.2 API Endpoints

Another important decision to make was the API design—how to handle authentication,
data formats and REST. The Content Blaster API is completely RESTful, available in
both XML and JSON, and is part of the same MVC application presented before, but it
only uses the Ratings and Contents controllers. To handle authentication, the user must
pass his security token as a request parameter. Table 5.1 lists the available endpoints of
Content Blaster’s API in the JSON format.

Table 5.1: API Endpoints

METHOD URL ACTION

POST /ratings.json Rates an item
GET /contents/recommended.json Returns a list of recommended items

For the XML format, URLs must end with .xml instead of .json.

5.4 Chapter summary

This chapter provided an overview on Content Blaster’s design. It’s divided into four
modules: a Database which stores all the data, Slope One, which implements the rec-
ommendation algorithm; Tagging, which interacts with tag providers for the system’s
contents; and Application, the core of Content Blaster, which is responsible for holding
the business logic together, interacting with users and using the other modules. The sys-
tem also has multiple entities, such as users, bots, contents and tags, as well as entities
expressing relations between them, such as ratings, deviations, taggings and predictions.

Content Blaster is accessed over the Internet using HTTP, but it also uses third-party
services over the same infrastructure.

Finally, the section explained how the application module is designed using the Model-
View-Controller architectural pattern and presented the API provided by Content Blaster,
which is REST-compliant and available in both XML and JSON formats.

44

Chapter 6

Implementation

This section covers the most important implementation details on each of Content Blaster’s
main components.

6.1 Database

The database is mapped from system’s entities and relations, as depicted in Figure 6.1.

+ i d integer(10) ...
URL varchar(255) ...

Content

i d integer(10) ...
#pivot_id integer(10) ...
#deviant_id integer(10) ...

value float(10) ...

Deviation

+ i d integer(10) ...
username varchar(255) ...
email varchar(255) ...
crypted_password varchar(255) ...
salt varchar(255) ...
api_token varchar(255) ...

User

+ i d integer(10) ...
tag_id integer(10) ...

Bot

+ i d integer(10) ...
name integer(10) ...

Tag

+ i d integer(10) ...
content_id integer(10) ...
taggable_id integer(10) ...

taggable_type integer(10) ...

Tagging

+ i d integer(10) ...
user_id integer(10) ...
content_id integer(10) ...

value float(10) ...

Prediction+ i d integer(10) ...
content_id integer(10) ...
viewer_id integer(10) ...

viewer_type varchar(255) ...
rate float(10) ...

Rating

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 6.1: Database Entity Relationship Diagram

45

IMPLEMENTATION

There are two important details that need some explanation.

• A tag only exists in the database if it’s tagging at least one content. For example, if
the only item tagged with a tag music loses that tag or is destroyed, the music tag,
its associated bot and ratings are deleted as well.

• The class diagram of Figure 5.2 had two interface entities: Viewer and Taggable.
The workaround used by Rails in such case is to add a field to the relationship table.
This field holds the type of the realization of that interface. For example, both users
and bots can have ratings, but there’s no viewers table in the database—a rating has
a viewer type, which can be “user” or “bot”. Rails infers which relationship to build
based on this field.

6.2 Slope One

The Slope Algorithm is implemented in Ruby and SQL. All the facilities provided by
Rails’ ActiveRecord were avoided, as they degrade performance a little. However, for
hundreds or thousands of queries, this little performance loss results into a major one. The
algorithm is divided into two phases which may run independently: computing deviations
and generating predictions.

Despite the fact that this algorithm could have been implemented in another language,
Ruby was chosen because it integrates very well with the rest of the system and also helps
to make the development faster, as it’s easier to code. The implementation uses Ruby for
the most part, using only some SQL queries to fetch data from the database. One of the
major drawbacks of Ruby is its performance, but making calculations in SQL proved to
be slower in comparison to Ruby. During development, three variants of the deviations’
computation phase were implemented and compared in terms of performance. The results
of this comparison are provided in Chapter 7.

This section will now present some implementation details of each phase.

6.2.1 Computing deviations

This phase computes item-to-item deviations using the Slope One algorithm. It’s divided
into three sequential steps:

1. Fetching ratings

2. Making calculations

3. Storing results

46

IMPLEMENTATION

Fetching ratings

Deviations are calculated using the ratings of both users and filterbots. This step fetches
all the ratings from the database using SQL, and stores them in an array. In this array, the
element with index i stores all the viewers which rated the content with id i and the value
of their rating. The following code snippet exemplifies such structure for contents with
ids 244 and 245.

244 => {:User_25 => 10.0,

:Bot_14 => 10.0},

245 => {:User_25 => 1.0,

:User_30 => 10.0,

:Bot_30 => 1.0}

Making calculations

This step calculates the item-to-item deviations defined in Equation 2.10 and it uses the
previously created structure. One option to compute deviations is to iterate through every
possible pair of items. However, that would take n2− n iterations, considering n as the
total number of items. Considering that deviations are symmetrical, devi, j =−dev j,i, this
step only computes deviations for the pairs where the pivot id is lower than its deviated
items’ ids, that is {devi, j|i ∈ I∧ j ∈ I∧ i < j}. This only requires n2−n

2 iterations, half of
the previous number.

For each item i in the previously created structure, the algorithm checks each other
item j with an higher id and selects the common viewers between them. For these viewers,
it calculates the deviation as the average difference between the viewer’s ratings on item
i and j. This is better understood by looking at the following pseudocode.

FOR EACH item_i

FOR EACH item_j with higher id than item_i

common_viewers = intersect(item_i.viewers, item_j.viewers)

sum = 0

FOR EACH viewer IN common_viewers

sum += item_i[viewer].rate - item_j[viewer].rate

deviation = sum / common_viewers.size

Storing results

This step executes the SQL query that saves all the computed deviations to the database,
in the deviations table.

47

IMPLEMENTATION

6.2.2 Generating predictions

This step generates predictions using the basic Slope One scheme defined in Equation 2.12.
To generate predictions for an item, the scheme calculates the average deviation of that
item in relation to the items already rated by the user. This means that in the deviation pair,
the pivot element must not have been rated by the user. The Content Blaster implementa-
tion iterates through all users, generating predictions for each one. This section explains
how predictions are computed for a single user. The algorithm executes the following
steps:

1. Selects all the items which were rated by the user using an SQL query.

2. Uses an SQL query to fetch all the deviations that contain at least one item rated by
the user. It does not check whether the rated item is the pivot or the deviant element
of the deviation, because the previous phase only saved those deviations in which
the pivot element id is smaller than the deviant element id.

3. Iterates through every user deviation:

(a) Checks if the user rated the pivot element, the deviation element, or both:

• If the user only rated the deviant the algorithm continues.
• If the user only rated the pivot, the algorithm uses the reverse deviation

devdeviant,pivot = −devpivot,deviant . This is done because the Slope One
scheme only considers the deviations where the pivot element wasn’t al-
ready rated by the user, but the previous phase only saved those deviations
where the pivot element id is smaller than the deviant element id. For
this deviation, it considers the deviant element as the pivot element and
vice-versa, using the symmetrical value.
• If the user has rated both, the algorithm skips this iteration.

(b) Saves the deviation value to an accumulator variable. This accumulator sums
all the deviations’ values, grouped by their pivot element, and also stores how
many values where already summed for that pivot element. Using the sum and
the total of values summed, the mean value can be calculated later.

4. For each pivot in the accumulator, it sums the user’s average rating with the mean
value of that pivot’s deviations, which gives the predicted value for that pivot.

5. Stores all the user’s predictions in the predictions table on the database.

6.3 Tagging

The tagging component consists of a central module which interacts with the modules
responsible for each supported third-party service. These modules are built in Ruby, and

48

IMPLEMENTATION

they must fulfill two requirements. First, they must have an url_tags method, which
accepts an URL string. Second, that method must return a predefined structure represent-
ing the retrieved tags and format for that URL. Because some services allow their users
to have their own tags, it also includes the number of occurrences of each tag. Each ser-
vice may use whatever technique or implementation is desired, as long as it follows these
rules. An example of the structure returned by a service may be

{:format => {:video => 1},

:tags => {"amelie" => 25,

"trailer" => 25,

"movie" => 21,

"french" => 2}}

As mentioned before, the services currently supported by Content Blaster are Digg, Stum-
bleUpon and Delicious. All of these services use the HTTParty library for consuming web
services, with automatic parsing of JSON and XML responses [Nun08].

While Digg and Delicious both JSON APIs which make it very easy to retrieve the
tags, StumbleUpon doesn’t have an API. Instead, Content Blaster gets the HTML of
StumbleUpon’s page on that URL. These pages display information about the page, in-
cluding the tags, so Content Blaster needs to parse those pages to retrieve the tags.

6.4 Application

The application component, as the core component that interacts with users and controls
the other components, has a reasonable level of complexity. Because Content Blaster
follows Rails’ conventions, most of it is easily handled with the framework. Even the
authentication method, which is usually a complex feature, was easily done using the
Authlogic plugin [Bin08]. This plugin automatically generates a secure encrypted pass-
word when users register an account, creates a security token used for API authentication,
enhances security with protection from brute-force techniques and provides several useful
methods to manage access control in both the interface and the API.

However, there are two important implementation details that require further expla-
nation: the technique used for creating bookmarklets, and the format for API calls and
responses.

6.4.1 Bookmarklets

Bookmarklets are regular bookmarks that execute some JavaScript code when clicked, in-
stead of opening a new page, and are supported in every major web browser. JavaScript is
a popular client-side scripting language which is also supported by every major browser.

49

IMPLEMENTATION

Bookmarklets are used in two different cases, rating a page and getting a recommenda-
tion.

Rating a page. The bookmarklet for the “Like/Dislike” button is fairly simple. It uses
JavaScript methods to open a new popup window with a custom size, which displays
a view from the Ratings controller with a form that allows users to save the rating.

Getting a recommendation. This bookmarklet changes the URL in the browser’s ad-
dress bar to a view from the Contents controller, which then redirects the user to a
recommendation.

6.4.2 API calls and response

As mentioned before in Section 5.3.2, the Content Blaster API provides two endpoints
for third-party developers, one to rate items with a POST request, and the other to get a
list of recommendations with a GET request. This section cover the specification of the
API, detailing the required request parameters and the response content and status codes
for both errors and successful calls.

Response codes

Content Blaster API returns appropriate HTTP status codes in every request:

200 OK Successful call.

302 Not Modified No new data to return, used when there are no recommendations to
provide.

400 Bad Request Request is invalid, perhaps required parameters are missing.

403 Forbidden Wrong API token.

404 Not Found Invalid URI requested.

500 Internal Server Error Internal malfunction in Content Blaster.

Error messages

Content Blaster API returns error messages in both JSON and XML formats, explaining
what is wrong and what the user can do to overcome the problem. A possible error in
XML could be this one:

<?xml version="1.0" encoding="UTF-8"?>

<hash>

<request>/contents/recommended</request>

50

IMPLEMENTATION

<error>You do not have privileges to access this page.</error>

</hash>

In JSON, the same error looks like this:

{ "request": "/contents/recommended",

"error": "You do not have privileges to access this page."}

Authentication

Endpoints which require authentication need a api_key parameter in the URL. This
parameter is the user’s security token which can be found in Content Blaster’s homepage
when authenticated.

Recommendations

This API endpoint provides a list of 10 recommendations.

Relative path
/contents/recommended.{xml|json}

Method
GET

Requires authentication
Yes.

Parameters
None required.

Response
This sample response lists only 2 recommendations instead of the usual 10.

<?xml version="1.0" encoding="UTF-8"?>

<contents type="array">

<content>

<url>http://www.stickyscreen.org/</url>

<created-at>2008-10-25T21:44:13Z</created-at>

</content>

<content>

<url>http://justwatchthesky.com/</url>

<created-at>2008-12-30T15:05:47Z</created-at>

51

IMPLEMENTATION

</content>

</contents>

Rating

This API endpoint allows a user to rate a content.

Relative path
/ratings.{xml|json}

Method
POST

Requires authentication
Yes.

Parameters
The parameters for this endpoint include containers that contain other parameters.

• rating

– value. Required. Must be either like or dislike.

– content.

∗ url. Required. Must be a valid URL.

∗ tags. Optional. List of space-separated words.

Response
The response is the rated content.

{ "content":

{ "url": "http://www.stickyscreen.org/",

"created_at": "2008-10-25T21:44:13Z" }}

Sample request body
This is a sample like request with three tags.

<rating>

<value>like</value>

<content>

<url>http://justwatchthesky.com/</url>

52

IMPLEMENTATION

<tags>typography design music</tags>

</content>

</rating>

6.5 Chapter summary

This chapter covered some implementation details of the project, starting by the database
and the recommender algorithm. This algorithm is executed mostly in Ruby and fetches
data with pure SQL queries instead of ActiveRecord, as it degrades performance. An
important optimization was to compute only half of the item-to-item deviations, as the
deviations matrix is symmetrical. Next, the section covered some details of the applica-
tion, including the bookmarklets technique and the API calls and responses. The Content
Blaster API is completely RESTful, supports XML and JSON, and makes appropriate use
of HTTP status codes.

53

IMPLEMENTATION

54

Chapter 7

Solution Evaluation

Usually, recommender systems are evaluated in terms of performance and accuracy. In
terms of accuracy, recommender systems use samples of very large publicly available data
sets, measuring the error of their computed predictions. Available data sets include the
MovieLens, EachMovie, Book-crossing and Jester Jokes data sets from the GroupLens
research group [Gro].

However, there’s no publicly and legally available data set for websites, and Content
Blaster is a recent project, which current data set contains approximately 100 items, 12
users and 200 user ratings. For comparison, [SKKR01] uses a test data set of approxi-
mately 950 users, 1600 items and 100000 ratings. It’s impossible to make a reasonable
accuracy analysis using Content Blaster’s tiny data set. Additionally, as the algorithm
used by Content Blaster was already subject to comparison with other algorithms in terms
of accuracy, measuring it isn’t very fundamental in this project either.

What is fundamental to analyze and discuss is the performance of the algorithm, be-
ing this a Ruby web-based recommender system. This section covers the performance
analysis of the algorithm used in Content Blaster, comparing it to other implementations
developed during the project, and withdrawing conclusions from it.

7.1 Algorithms

It was decided to compare three different implementations of the Slope One algorithm:

SQL. A single SQL query which computes all the deviations.

SQL Batches. Multiple SQL queries, each of them computing deviations for an item.

Ruby. Using SQL only to fetch data, calculations are done in Ruby.

Before they were tested, it was expected that the SQL implementation would be the fastest,
as Ruby is reportedly slow. SQL Batches is very similar to the first one, but was developed

55

SOLUTION EVALUATION

to alleviate the database from extreme load during a long period, which should be caused
by the SQL implementation. The Ruby implementation was expected to be the slower,
as it uses Ruby for the most part, in contrast to the first one. The SQL and SQL Batches
queries can be found in Appendixes E and F, respectively.

7.2 Methodology and results

The three versions were implemented and compared in terms of performance, using a
synthesized data set with 400 users, 1000 items and 80000 ratings. The versions were
tested in order (SQL, SQL batches and Ruby), computing and inserting the deviations in
the database, with the deviations table being cleared in between. Each version was tested
five times. The run times, in seconds, are listed in Table 7.1.

Table 7.1: Run times of the algorithm implementations

t1 t2 t3 t4 t5 t
SQL 91 90 91 91 91 90,8
SQL BATCHES 93 94 93 95 92 93,4
RUBY 78 79 79 78 78 78,4

Before diving into what can be concluded from the test, it’s important to refer how the
run times for the SQL and SQL Batches implementations were achieved. With the default
MySQL configuration, the best time for the SQL implementation was over 250 seconds.
As these results were totally unacceptable, a proper MySQL configuration was deemed
necessary. These results use the best of ten different MySQL configuration files.

Even more important is the fact that the performance of these SQL-based algorithms
is very sensitive to the MySQL configuration. The process of optimizing this configura-
tion for optimal results was anything but straightforward, as it isn’t very clear how some
parameters affect the run times. Sometimes, making more memory available for MySQL
resulted in improved performance in one implementation, but worse in the other. The re-
sults listed in Table 7.1 use the best overall configuration in the tests that were performed.
This configuration can be consulted on Appendix G.

The MySQL ratings table had was also optimized, with the necessary indexes for
optimized query performance.

7.3 Discussion

The results were surprising, as the Ruby implementation proved better every time than the
SQL-based implementations, contrary the expectations. This is specially relevant as the
SQL-based implementations were optimized during the course of days, and the ratings
table had the necessary indexes for the queries performed. The Ruby implementation

56

SOLUTION EVALUATION

results were the best overall with an average of 78,4 seconds, which is 86% of the next
best implementation with 90,8 seconds. The SQL Batches implementation proved to be
the worst implementation, with an average of 93,4 seconds, and with unstable results, as
low as 92 seconds but peeking at 95. Both the Ruby and the SQL implementation were
very stable.

While the SQL-based implementations were subject to configuration and indexes opti-
mizations, the Ruby implementation has further room for improvement. First, it’s possible
to use the JRuby—a Ruby interpreter based on Java—which adds support for native op-
erating system threads, making Ruby capable of using multiple processors, contrary to
the standard implementation. One other option is to make a Ruby extension in C, which
may dramatically improve performance, as C is many times faster than Ruby, or using a
complete different language.

Overall, it’s best to rely on MySQL as little as possible. Besides being very sensitive to
configuration, programming languages may offer other capabilities, such as native thread-
ing and distributed computing. Other factor to consider is that putting the database in an
extreme load affects the users, as they’re constantly using the database when interacting
with Content Blaster.

Considering these results and what has been discussed, the other phase of the algorithm—
generating the predictions—followed the same ideas, using Ruby for the most part and
SQL exclusively for fetching the necessary data.

7.4 Chapter summary

This chapter covered the performance analysis of three different implementations to com-
pute deviations in the Slope One algorithm. One used a single SQL query to make all
the calculations; other used one SQL query for each item, which did all the necessary
calculations for that item; and the last used Ruby for the most part, using SQL only to
fetch the data from the database. Tests proved that Ruby provided the best overall per-
formance, which could be further improved with native multi-threading or using another
programming language.

It also explained why it wasn’t considered fundamental to analyze the accuracy of rec-
ommendations, as Slope One was already tested against other algorithms, and the current
Content Blaster data set is too small to make a feasible analysis.

57

SOLUTION EVALUATION

58

Chapter 8

Conclusions and Future Work

This section presents the conclusions gathered from this project and what may be done to
make Content Blaster better in the future.

8.1 Conclusions

The main objectives presented in Section 1.3 have been fulfilled. Content Blaster is a
web-based recommendation system that makes it very easy for a user to express their
preference over any webpage their visiting.

It works with two very basic buttons on the browser, and it can even be used on a last-
generation smartphone such as the iPhone. One of the motivations behind this work was
to strive for ubiquity in recommendations, which is only possible through the available
API, which is also very simple to use and makes a proper use of HTTP to provide helpful
error messages to third-party developers.

During the project’s development, it became clear that Ruby on Rails was a very good
choice for Content Blaster. All the groundwork provided by ActiveRecord and the MVC
architecture was fundamental in making the system operational very quickly. The vast ar-
ray of available plugins was very helpful for authentication, HTTP requests in the tagging
module, access control and HTML parsing.

The precious time saved by using Rails was then available to focus on the implemen-
tation and optimization of the Slope One algorithm. Slope One’s implementation proved
reasonably easy, and the performance tests were fundamental. Without them, Content
Blaster would have kept using the first implemented method, which computed the item-
to-item deviations in one huge SQL query. Even though the development of both SQL-
based implementations was very time-expensive and they ended up not being used, they
were valuable in determining which implementation to use. Making the decision to go

59

CONCLUSIONS AND FUTURE WORK

with Slope One was hugely beneficial for this project, and having enough information to
consciously make that decision was fundamental.

What’s interesting and original in Content Blaster is that it leverages the power of
the users by combining tags retrieved from other websites as filterbots in a recommender
system. This may prove to be very important, but only when the data set is large enough
will it be possible to analyze its accuracy.

Content Blaster is now up, running and providing recommendations. Its components
are clearly separated and organized, and each of them may be improved or rebuilt inde-
pendently, combined in a simple but solid infrastructure.

8.2 Limitations

Content Blaster still has some limitations which couldn’t be addressed during the course
of this project.

First and foremost, there’s no clear prediction on how scalable the system is. Although
the algorithms were tested with large data sets, that’s not the same as having to generate
recommendations and still be a robust and responsive system to its users and third-party
developers. Content Blaster’s performance must be constantly monitored as the system
grows, and it may be necessary to physically separate the Slope One algorithm from the
rest of the application, so it can use dedicated resources.

Another current limitation is the server infrastructure. Content Blaster runs on a shared
server alongside other projects, which is the main reason for computing predictions offline
and storing them in the database.

8.3 Future Work

Content Blaster is now a solid infrastructure that may be improved. During the course
of the project, many ideas were considered, but most of them couldn’t have been imple-
mented within the available timeframe. This section presents some of those ideas.

8.3.1 Content visualization

Each content recommended is displayed as is: a regular webpage. However, Content
Blaster could enhance how users visualize their content. For example, videos from pop-
ular websites like YouTube of Vimeo could be extracted from their full rendered page
so the user can focus on what really matters. Another idea is to improve the readability
of news websites, using a bigger font size and removing a great part of the surrounding
elements. For photo websites such as Flickr or Picasa, Content Blaster could display a
better photo gallery, with improved navigation and full-sized images.

60

CONCLUSIONS AND FUTURE WORK

8.3.2 Improving recommendations

Although the system’s performance has been strongly considered during this project, it
could be further improve. This is also true in terms of accuracy. Possible solutions in-
clude testing the Weighted Slope One scheme, pre-computing which pairs of items have
a common user, experimenting with other database management systems, not storing all
the item-to-item deviations, using an item neighborhood to compute predictions or testing
the algorithm in other programming languages.

8.3.3 New features

Currently, the application component of Content Blaster doesn’t provide many features to
its users. Future work may add features such as browsing all the content in the system by
tags, searching or filtering recommendations based on a search query or a particular tag,
and importing rated items from other websites such as Digg or StumbleUpon. This way,
users could experiment with other ways of finding content, spending more time and rating
more items, which effectively improves the system’s data set.

8.3.4 Extended tagging

Nowadays, websites like YouTube, Flickr, any blog based on the Blogger and Wordpress
engines, and news aggregators such as Technorati and Newsvine, allow their users to tag
their content. The tagging system could be extended to support those websites, retrieving
tags from a particular content page.

8.3.5 Clients for other devices

Taking advantage of the system’s API, applications for other devices could be developed
in the future. For example, it would be interesting for users to enjoy personalized content
on their set-top-boxes within the comfort of their living rooms. As Content Blaster strives
for ubiquity in recommendations, mobile devices such as the iPhone or Android-based
phones could also be interesting platforms for development.

61

CONCLUSIONS AND FUTURE WORK

62

References

[Alea] Alexa Internet, Inc. Alexa top sites. http://www.alexa.com/
topsites. Accessed 9th June 2009.

[Aleb] Alexa Internet, Inc. digg.com – traffic details from Alexa. http://www.
alexa.com/siteinfo/digg.com. Accessed 23th June 2009.

[Alec] Alexa Internet, Inc. stumbleupon.com – traffic details from Alexa. http://
www.alexa.com/siteinfo/stumbleupon.com. Accessed 23th June
2009.

[Amb] Scott W. Ambler. Mapping objects to relational databases: O/R mapping
in detail. http://www.agiledata.org/essays/mappingObjects.
html. Accessed 25th June 2009.

[Apa] Apache Software Foundation. Apache core features. http://httpd.
apache.org/docs/2.2/mod/core.html. Accessed 26th June 2009.

[AT05] Gediminas Adomavicius and Er Tuzhilin. Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible extensions.
IEEE Transactions on Knowledge and Data Engineering, 17:734–749, 2005.

[BH04] Justin Basilico and Thomas Hofmann. Unifying collaborative and content-
based filtering. In ICML ’04: Proceedings of the twenty-first international
conference on Machine learning, page 9, New York, NY, USA, 2004. ACM.

[BHC98] Chumki Basu, Haym Hirsh, and William Cohen. Recommendation as classi-
fication: using social and content-based information in recommendation. In
AAAI ’98/IAAI ’98: Proceedings of the fifteenth national/tenth conference on
Artificial intelligence/Innovative applications of artificial intelligence, pages
714–720, Menlo Park, CA, USA, 1998. AAAI Press.

[BHK98] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. Technical Report MSR-TR-
98-12, Microsoft Research, 1998. Published by Morgan Kaufmann Publish-
ers.

[Bin08] Binary Logic. Authlogic released! rails authentication done
right. http://www.binarylogic.com/2008/10/25/
authlogic-released-rails-authentication-done-right/,
October 2008. Accessed 28th June 2009.

63

http://www.alexa.com/topsites
http://www.alexa.com/topsites
http://www.alexa.com/siteinfo/digg.com
http://www.alexa.com/siteinfo/digg.com
http://www.alexa.com/siteinfo/stumbleupon.com
http://www.alexa.com/siteinfo/stumbleupon.com
http://www.agiledata.org/essays/mappingObjects.html
http://www.agiledata.org/essays/mappingObjects.html
http://httpd.apache.org/docs/2.2/mod/core.html
http://httpd.apache.org/docs/2.2/mod/core.html
http://www.binarylogic.com/2008/10/25/authlogic-released-rails-authentication-done-right/
http://www.binarylogic.com/2008/10/25/authlogic-released-rails-authentication-done-right/

REFERENCES

[BKR07] Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. Distributed collabora-
tive filtering with domain specialization. In RecSys ’07: Proceedings of the
2007 ACM conference on Recommender systems, pages 33–40, New York,
NY, USA, 2007. ACM.

[BS97] Marko Balabanović and Yoav Shoham. Fab: content-based, collaborative
recommendation. Communications of the ACM, 40(3):66–72, 1997.

[Bur02] Robin Burke. Hybrid recommender systems: Survey and experiments. User
Modeling and User-Adapted Interaction, 12(4):331–370, 2002.

[Cer07] Vinton G. Cerf. An information avalanche. Computer, 40(1):104–105, 2007.

[CGM+99] Mark Claypool, Anuja Gokhale, Tim Miranda, Pavel Murnikov, Dmitry
Netes, and Matthew Sartin. Combining content-based and collaborative fil-
ters in an online newspaper. In In Proceedings of ACM SIGIR Workshop on
Recommender Systems, Berkeley, CA, USA, 1999. ACM.

[Coma] Compete, Inc. Site profile for digg.com (rank #18). http://
siteanalytics.compete.com/digg.com/?metric=uv. Accessed
23th June 2009.

[Comb] Compete, Inc. Site profile for stumbleupon.com (rank #291). http://
siteanalytics.compete.com/stumbleupon.com/?metric=uv.
Accessed 23th June 2009.

[Cur] Benjamin Curtis. Ruby on rails plugins — agilewebdevelopment. http:
//agilewebdevelopment.com/. Accessed 25th June 2009.

[Del] Delicious. http://delicious.com. Accessed 24th June 2009.

[Diga] Digg. http://digg.com. Accessed 22th June 2009.

[Digb] Inc. Digg. How Digg works. http://digg.com/how. Accessed 23th
June 2009.

[DK04] Mukund Deshpande and George Karypis. Item-based top-n recommendation
algorithms. CM Transactions on Information Systems (TOIS), 22(1):143–
177, 2004.

[eBa07] eBay, Inc. eBay acquires StumbleUpon. http://investor.ebay.com/
releasedetail.cfm?ReleaseID=246467, May 2007. Accessed 10th
June 2009.

[FM08] David Flanagan and Yukihiro Matsumoto. The Ruby Programming Lan-
guage. O’Reilly Media, Inc., 2008.

[Fraa] Fraunhofer-Gesellschaft. Fraunhofer-Gesellschaft: About us. http://
www.fraunhofer.de/EN/company/index.jsp. Accessed 11th June
2009.

[Frab] Fraunhofer Portugal. AICOS: About us. http://www.aicos.
fraunhofer.pt/index.php?id=289. Accessed 11th June 2009.

64

http://siteanalytics.compete.com/digg.com/?metric=uv
http://siteanalytics.compete.com/digg.com/?metric=uv
http://siteanalytics.compete.com/stumbleupon.com/?metric=uv
http://siteanalytics.compete.com/stumbleupon.com/?metric=uv
http://agilewebdevelopment.com/
http://agilewebdevelopment.com/
http://delicious.com
http://digg.com
http://digg.com/how
http://investor.ebay.com/releasedetail.cfm?ReleaseID=246467
http://investor.ebay.com/releasedetail.cfm?ReleaseID=246467
http://www.fraunhofer.de/EN/company/index.jsp
http://www.fraunhofer.de/EN/company/index.jsp
http://www.aicos.fraunhofer.pt/index.php?id=289
http://www.aicos.fraunhofer.pt/index.php?id=289

REFERENCES

[FT00] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web
architecture. In ICSE ’00: Proceedings of the 22nd international conference
on Software engineering, pages 407–416, New York, NY, USA, 2000. ACM.

[Goo] Google. Corporate information — technology overview. http://www.
google.com/corporate/tech.html. Accessed 10th June 2009.

[Gro] GroupLens Research. Data sets. http://www.grouplens.org/
taxonomy/term/14. Accessed 28th June 2009.

[GSK+99] Nathaniel Good, J. Ben Schafer, Joseph A. Konstan, Al Borchers, Badrul Sar-
war, Jon Herlocker, and John Riedl. Combining collaborative filtering with
personal agents for better recommendations. In In Proceedings of the Six-
teenth National Conference on Artificial Intelligence, pages 439–446, Menlo
Park, CA, USA, 1999. American Association for Artificial Intelligence.

[HCZ04] Zan Huang, Hsinchun Chen, and Daniel Zeng. Applying associative retrieval
techniques to alleviate the sparsity problem in collaborative filtering. ACM
Transactions on Information Systems (TOIS), 22(1):116–142, 2004.

[HKBR99] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl.
An algorithmic framework for performing collaborative filtering. In SIGIR
’99: Proceedings of the 22nd annual international ACM SIGIR conference
on Research and development in information retrieval, pages 230–237, New
York, NY, USA, 1999. ACM.

[HKR02] Jon Herlocker, Joseph A. Konstan, and John Riedl. An empirical analysis
of design choices in neighborhood-based collaborative filtering algorithms.
Information Retrieval, 5(4):287–310, 2002.

[HKTR04] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T.
Riedl. Evaluating collaborative filtering recommender systems. ACM Trans-
actions on Information Systems (TOIS), 22(1):5–53, 2004.

[IdGL+08] Leo Iaquinta, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro,
Michele Filannino, and Piero Molino. Introducing serendipity in a content-
based recommender system. In HIS ’08: Proceedings of the 2008 8th Inter-
national Conference on Hybrid Intelligent Systems, pages 168–173, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[IT 09] IT Facts. 58% of americans have a mobile phone
with web connectivity. http://www.itfacts.biz/
58-of-americans-have-a-mobile-phone-with-web-connectivity/
12965, May 2009. Accessed 12th June 2009.

[JSOa] JSON. http://www.json.org/. Accessed 26th June 2009.

[JSOb] JSON: The fat-free alternative to XML. http://www.json.org/xml.
html. Accessed 26th June 2009.

[Kas] Anton Kast. Recommendation engine. http://digg.com/
whitepapers/recommendationengine. Accessed 23th June 2009.

65

http://www.google.com/corporate/tech.html
http://www.google.com/corporate/tech.html
http://www.grouplens.org/taxonomy/term/14
http://www.grouplens.org/taxonomy/term/14
http://www.itfacts.biz/58-of-americans-have-a-mobile-phone-with-web-connectivity/12965
http://www.itfacts.biz/58-of-americans-have-a-mobile-phone-with-web-connectivity/12965
http://www.itfacts.biz/58-of-americans-have-a-mobile-phone-with-web-connectivity/12965
http://www.json.org/
http://www.json.org/xml.html
http://www.json.org/xml.html
http://digg.com/whitepapers/recommendationengine
http://digg.com/whitepapers/recommendationengine

REFERENCES

[Kir09] Marshall Kirkpatrick. StumbleUpon hits 7 million users, quietly 50
http://www.readwriteweb.com/archives/stumbleupon_
hits_7_million_users.php, February 2009. Accessed 23th June
2009.

[KT00] Mei Kobayashi and Koichi Takeda. Information retrieval on the web. ACM
Computing Surveys (CSUR), 32(2):144–173, 2000.

[Las] Last.fm. About Last.fm. http://www.last.fm/about. Accessed 10th
June 2009.

[LJB01] Gregory D. Linden, Jennifer A. Jacobi, and Eric A. Benson. Collabora-
tive recommendations using item-to-item similarity mappings. United States
Patent 6266649, July 2001.

[LM05] Daniel Lemire and Anna Maclachlan. Slope one predictors for online rating-
based collaborative filtering. In SDM ’05: Proceedings of the Fifth SIAM
International Conference on Data Mining, pages 471–475. SIAM, 2005.

[LSY03] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommen-
dations: Item-to-item collaborative filtering. IEEE Internet Computing,
7(1):76–80, January 2003.

[Mar06] Matt Marshall. Aggregate knowledge raises $5M from Kleiner,
on a roll. http://venturebeat.com/2006/12/10/
aggregate-knowledge-raises-5m-from-kleiner-on-a-roll,
December 2006. Accessed 10th June 2009.

[Neta] Netflix, Inc. The Netflix prize rules. http://www.netflixprize.com/
rules. Accessed 11th June 2009.

[Netb] Netflix, Inc. Press kit — Netflix facts. http://www.netflix.com/
MediaCenter?id=5379. Accessed 11th June 2009.

[Nie99] Jakob Nielsen. Designing Web Usability: The Practice of Simplicity. New
Riders Publishing, 1999.

[Nie08] Jakob Nielsen. User skills improving, but only slightly (Jakob Nielsen’s
Alertbox). http://www.useit.com/alertbox/user-skills.
html, February 2008. Accessed 12th June 2009.

[NPD09] The NPD Group. The NPD Group: Despite recession, U.S. smartphone
market is growing. http://www.npd.com/press/releases/press_
090303.html, March 2009. Accessed 12th June 2009.

[Nun08] John Nunemaker. It’s an HTTParty and everyone is
invited! http://railstips.org/2008/7/29/
it-s-an-httparty-and-everyone-is-invited, July 2008.
Accessed 28th June 2009.

66

http://www.readwriteweb.com/archives/stumbleupon_hits_7_million_users.php
http://www.readwriteweb.com/archives/stumbleupon_hits_7_million_users.php
http://www.last.fm/about
http://venturebeat.com/2006/12/10/aggregate-knowledge-raises-5m-from-kleiner-on-a-roll
http://venturebeat.com/2006/12/10/aggregate-knowledge-raises-5m-from-kleiner-on-a-roll
http://www.netflixprize.com/rules
http://www.netflixprize.com/rules
http://www.netflix.com/MediaCenter?id=5379
http://www.netflix.com/MediaCenter?id=5379
http://www.useit.com/alertbox/user-skills.html
http://www.useit.com/alertbox/user-skills.html
http://www.npd.com/press/releases/press_090303.html
http://www.npd.com/press/releases/press_090303.html
http://railstips.org/2008/7/29/it-s-an-httparty-and-everyone-is-invited
http://railstips.org/2008/7/29/it-s-an-httparty-and-everyone-is-invited

REFERENCES

[PHLG00] David M. Pennock, Eric Horvitz, Steve Lawrence, and C. Lee Giles. Collab-
orative filtering by personality diagnosis: A hybrid memory and model-based
approach. In UAI ’00: Proceedings of the 16th Conference on Uncertainty
in Artificial Intelligence, pages 473–480, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc.

[Phu] Phusion. Overview—Phusion PassengerTM (a.k.a mod rails / mod rack).
http://www.modrails.com/. Accessed 26th June 2009.

[Por06] Joshua Porter. Watch and learn: How recommendation systems are redefin-
ing the web. http://www.uie.com/articles/recommendation_
systems/, December 2006. Accessed 11th June 2009.

[PPM+06] Seung-Taek Park, David Pennock, Omid Madani, Nathan Good, and Dennis
DeCoste. Naı̈ve filterbots for robust cold-start recommendations. In KDD
’06: Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 699–705, New York, NY, USA,
2006. ACM.

[Rai] Ruby on rails: Applications. http://rubyonrails.org/
applications. Accessed 25th June 2009.

[RIS+94] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and
John Riedl. Grouplens: an open architecture for collaborative filtering of
netnews. In CSCW ’94: Proceedings of the 1994 ACM conference on Com-
puter supported cooperative work, pages 175–186, New York, NY, USA,
1994. ACM.

[Ros09] Kevin Rose. Recommendation engine rolling out this week! http://
blog.digg.com/?p=127, June 2009. Accessed 23th June 2009.

[RTH09] Sam Ruby, Dave Thomas, and David Heinemeier Hansson. Agile Web De-
velopment with Rails. Pragmatic Programmers, third edition, March 2009.

[Rub] About Ruby. http://www.ruby-lang.org/en/about/. Acccessed
25th June 2009.

[Rya09] Ryan Junee, The YouTube Team. Zoinks! 20 hours of video uploaded every
minute! http://www.youtube.com/blog?entry=on4EmafA5MA,
May 2009. Accessed 8th June 2009.

[Seg07] Toby Segaran. Programming collective intelligence. O’Reilly, first edition,
2007.

[SKB+98] Badrul Sarwar, Joseph Konstan, Al Borchers, Jon Herlocker, Brad Miller,
and John Riedl. Using filtering agents to improve prediction quality in the
grouplens research collaborative filtering system. In CSCW ’98: Proceed-
ings of the 1998 ACM conference on Computer supported cooperative work,
pages 345–354, New York, NY, USA, 1998. ACM.

67

http://www.modrails.com/
http://www.uie.com/articles/recommendation_systems/
http://www.uie.com/articles/recommendation_systems/
http://rubyonrails.org/applications
http://rubyonrails.org/applications
http://blog.digg.com/?p=127
http://blog.digg.com/?p=127
http://www.ruby-lang.org/en/about/
http://www.youtube.com/blog?entry=on4EmafA5MA

REFERENCES

[SKKR01] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based
collaborative filtering recommendation algorithms. In WWW ’01: Proceed-
ings of the 10th international conference on World Wide Web, pages 285–295,
New York, NY, USA, 2001. ACM.

[SM95] Upendra Shardanand and Pattie Maes. Social information filtering: algo-
rithms for automating “word of mouth”. In CHI ’95: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 210–217,
New York, NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[Stua] StumbleUpon. http://www.stumbleupon.com/. Accessed 22th June
2009.

[Stub] StumbleUpon. About StumbleUpon. http://www.stumbleupon.com/
aboutus/. Accessed 10th June 2009.

[Stuc] StumbleUpon. StumbleUpon’s recommendation technology. http://www.
stumbleupon.com/technology/. Accessed 12th June 2009.

[Suna] Sun Microsystems. About MySQL. http://www.mysql.com/about/.
Accessed 26th June 2009.

[Sunb] Sun Microsystems. MySQL customers. http://www.mysql.com/
customers/?id=34. Accessed 26th June 2009.

[Sun08] Sun Microsystems. Sun Microsystems announces completion of MySQL
acquisition; paves way for secure, open source platform to power the
network economy. http://www.sun.com/aboutsun/pr/2008-02/
sunflash.20080226.1.xml, February 2008. Accessed 26th June 2009.

[Tim07] The New York Times. CBS buys Last.fm, an online radio site.
http://www.nytimes.com/2007/05/31/business/media/
31radios.html, May 2007. Accessed 10th June 2009.

[Tom04] Ryan Tomayko. How i explained REST to my wife. http://tomayko.
com/writings/rest-to-my-wife, December 2004. Accessed 25th
June 2009.

[USA09] USA Today. Some PC makers don’t know what to do with
netbooks. http://www.usatoday.com/tech/products/
2009-01-19-netbooks-future_N.htm?csp=34, January 2009.
Accessed 12th June 2009.

[W3C] W3C. Extensible markup language (XML). http://www.w3.org/XML/.
Accessed 26th June 2009.

[Yah] Yahoo! Inc. About Delicious. http://delicious.com/about. Ac-
cessed 24th June 2009.

[ZP07] Jiyong Zhang and Pearl Pu. A recursive prediction algorithm for collabora-
tive filtering recommender systems. In RecSys ’07: Proceedings of the 2007
ACM conference on Recommender systems, pages 57–64, New York, NY,
USA, 2007. ACM.

68

http://www.stumbleupon.com/
http://www.stumbleupon.com/aboutus/
http://www.stumbleupon.com/aboutus/
http://www.stumbleupon.com/technology/
http://www.stumbleupon.com/technology/
http://www.mysql.com/about/
http://www.mysql.com/customers/?id=34
http://www.mysql.com/customers/?id=34
http://www.sun.com/aboutsun/pr/2008-02/sunflash.20080226.1.xml
http://www.sun.com/aboutsun/pr/2008-02/sunflash.20080226.1.xml
http://www.nytimes.com/2007/05/31/business/media/31radios.html
http://www.nytimes.com/2007/05/31/business/media/31radios.html
http://tomayko.com/writings/rest-to-my-wife
http://tomayko.com/writings/rest-to-my-wife
http://www.usatoday.com/tech/products/2009-01-19-netbooks-future_N.htm?csp=34
http://www.usatoday.com/tech/products/2009-01-19-netbooks-future_N.htm?csp=34
http://www.w3.org/XML/
http://delicious.com/about

Appendix A

Alexa Top Sites

The top 10 websites listed in the Alexa Traffic Rank as of June 9th 2009 [Alea]:

1. Google, http://google.com
Enables users to search the Web, Usenet, and images. Features include PageRank,
caching and translation of results, and an option to find similar pages. The com-
pany’s focus is developing search technology.

2. Yahoo!, http://yahoo.com
Personalized content and search options. Chatrooms, free e-mail, clubs, and pager.

3. YouTube, http://youtube.com
YouTube is a way to get your videos to the people who matter to you. Upload, tag
and share your videos worldwide!

4. Facebook, http://facebook.com
A social utility that connects people, to keep up with friends, upload photos, share
links and videos.

5. Windows Live, http://live.com
Search engine from Microsoft.

6. Microsoft Network (MSN), http://msn.com
Dialup access and content provider.

7. Wikipedia, http://wikipedia.org
An online collaborative encyclopedia.

8. Blogger.com, http://blogger.com
Free, automated weblog publishing tool that sends updates to a site via FTP.

9. Baidu.com, http://baidu.com
The leading Chinese language search engine, provides simple and reliable search
experience, strong in Chinese language and multi-media content including MP3
music and movies, the first to offer WAP and PDA-based mobile search in China.

10. Yahoo! Japan, http://yahoo.co.jp
Japanese version of Yahoo!

69

http://google.com
http://yahoo.com
http://youtube.com
http://facebook.com
http://live.com
http://msn.com
http://wikipedia.org
http://blogger.com
http://baidu.com
http://yahoo.co.jp

Alexa Top Sites

70

Appendix B

StumbleUpon categories

In StumbleUpon, every category collects a large number of topics, with over 500 topics
across all categories. As this number is very large, this Appendix only lists the categories,
in alphabetic order:

• Arts/History

• Commerce

• Computers

• Health

• Hobbies

• Home/Living

• Media

• Music/Movies

• Outdoors

• Regional

• Religion

• Sci/Tech

• Society

• Sports

71

StumbleUpon categories

72

Appendix C

Digg topics

The topics on Digg are grouped into containers. Containers and its topics are, in the same
order of Digg’s frontpage:

• Technology

– Apple
– Design
– Gadgets
– Hardware
– Tech Industry News
– Linux/Unix
– Microsoft
– Mods
– Programming
– Security
– Software

• World & Business

– Business & Finance
– World News
– Political News
– Political Opinion

• Entertainment

– Celebrity
– Movies
– Music
– Television
– Comics & Animation

• Gaming

73

Digg topics

– Gaming Industry News
– PC Games
– Playable Web Games
– Nintendo
– PlayStation
– Xbox

• Science

– Environment
– General Sciences
– Space

• Sports

– Baseball
– Basketball
– Extreme
– American & Canadian Football
– Golf
– Hockey
– Motorsport
– Olympics
– Soccer
– Tennis
– Other Sports

• Lifestyle

– Arts & Culture
– Autos
– Educational
– Food & Drink
– Health
– Travel & Places

• Offbeat

– Comedy
– Odd Stuff
– People
– Pets & Animals

74

Appendix D

Transcript of conversation

This is an adapted transcript of a conversation with the creator of the Slope One algorithm,
Daniel Lemire, on March 5th, 2009.

Paulo Pereira Do you know of any work addressing cold-start systems using Slope
One?

Daniel Lemire I don’t think that Slope One is different with relation to cold start. You
can use generic cold-start strategies.

Paulo Pereira Someone could have worked on an unified approach using Slope One.
I’m working on a “StumbleUpon for everything”.

Daniel Lemire StumbleUpon for everything? Don’t URIs cover everything already?
Paulo Pereira It’s my final 5-year MsC project. Also, could Slope One work with

thumbs up/down, like a discrete 0-1 scale? That was the idea.
Daniel Lemire For binary data, you might be better off with Greg Linden’s item-to-item

scheme.
Paulo Pereira The problem is that not only the users can “like” items, but they can

also “dislike”, contrary to Amazon.
Daniel Lemire Then it is not binary. And then Slope One should be applicable.
Paulo Pereira Yes. I’ll use a positive number “thumbs up”, but I must use zero or

negative for “Thumbs DOWN”. Was slope one tested with negatives?
Daniel Lemire Slope one is scale and translation invariant, see my article about the

concept: http://is.gd/lXc8

75

http://is.gd/lXc8

Transcript of conversation

76

Appendix E

SQL Implementation

This Appendix contains the SQL implementation used in the tests detailed in Chapter 7.

INSERT INTO deviations(pivot_id, deviant_id, value)
SELECT
ratings.content_id as pivot_id,
ratings2.content_id as deviant_id,
AVG(ratings.rate - ratings2.rate) as value

FROM ratings
INNER JOIN ratings as ratings2
ON ratings.viewer_id = ratings2.viewer_id
AND ratings.viewer_type = ratings2.viewer_type
AND ratings.content_id < ratings2.content_id

GROUP BY pivot_id, deviant_id

77

SQL Implementation

78

Appendix F

SQL Batches implementation

This Appendix contains the SQL Batches implementation used in the tests detailed in
Chapter 7. This query is run once per item, and it uses the id the current item, indicated
here by {CURRENT_ID}.

INSERT INTO deviations(pivot_id, deviant_id, value)
SELECT
{CURRENT_ID} as pivot_id,
ratings2.content_id as deviant_id,
AVG(ratings.rate - ratings2.rate) as value

FROM ratings
INNER JOIN ratings as ratings2
ON ratings.viewer_id = ratings2.viewer_id
AND ratings.viewer_type = ratings2.viewer_type
AND ratings.content_id = {CURRENT_ID}
AND ratings.content_id < ratings2.content_id

GROUP BY deviant_id

79

SQL Batches implementation

80

Appendix G

MySQL Configuration

This appendix contains the MySQL configuration used in the tests discussed on Chapter 7.

[client]
port = 3306
socket = /var/run/mysqld/mysqld.sock
max_allowed_packet = 32M

[mysqld]
skip-locking
skip-bdb
user = mysql
pid-file = /var/run/mysqld/mysqld.pid
socket = /var/run/mysqld/mysqld.sock
port = 3306
basedir = /usr
datadir = /var/lib/mysql
language = /usr/share/mysql/english
log-error = /var/log/mysql.log
bind-address = 0.0.0.0

character sets
character_set_server = utf8
collation_server = utf8_general_ci

innodb options
innodb_additional_mem_pool_size = 16M
innodb_buffer_pool_size = 256M
innodb_data_file_path = ibdata1:10M:autoextend
innodb_data_home_dir = /var/lib/mysql
innodb_file_io_threads = 4
innodb_thread_concurrency = 4
innodb_flush_log_at_trx_commit = 2
innodb_log_buffer_size = 64M
innodb_log_file_size = 80M
innodb_log_files_in_group = 3

81

MySQL Configuration

innodb_log_group_home_dir = /var/lib/mysql
innodb_max_dirty_pages_pct = 90
innodb_lock_wait_timeout = 120

myisam
key_buffer_size = 16M

general
connect_timeout = 10
back_log = 50
max_connections = 96
max_connect_errors = 10
table_cache = 2048
max_allowed_packet = 32M
open_files_limit = 1024
max_heap_table_size = 128M
tmp_table_size = 256M
tmpdir = /tmp
join_buffer_size = 4M
read_buffer_size = 4M
sort_buffer_size = 8M
read_rnd_buffer_size = 8M
thread_cache_size = 8
thread_concurrency = 8
query_cache_size = 128M
query_cache_limit = 2M
thread_stack = 192K
transaction_isolation = READ-COMMITTED

[mysqldump]
quick
max_allowed_packet = 16M

[mysql]
no-auto-rehash

[myisamchk]
key_buffer = 64M
sort_buffer_size = 64M
read_buffer = 2M
write_buffer = 2M

[mysqlhotcopy]
interactive-timeout

[mysqld_safe]
open-files-limit = 8192

82

