
Faculdade de Engenharia da Universidade do Porto

Monitoring Multicast Traffic in

Heterogeneous Networks

Filipe Miguel Monteiro da Silva e Sousa

Thesis submitted fulfilling the requirements for the Degree of

Master in Electrical and Computers Engineering

Major in Telecommunications

Supervisor: Manuel Alberto Pereira Ricardo (PhD)

July of 2008

c© Filipe Sousa, 2008

Resumo

Num futuro próximo, diversos tipos de terminais móveis com uma panóplia de tecnologias
sem fios integradas estarão ao dispor dos utilizadores. Será posśıvel o estabelecimento
de ligação com qualquer uma das tecnologias, de forma transparente, e permitindo a
mobilidade do utilizador, sem qualquer quebra de serviço. Supletivamente, novos tipos de
aplicações, como o video streaming de um para muitos, têm novos requisitos de tráfego de
rede, como maiores larguras de banda e garantias de Qualidade de Serviço. O objectivo
do projecto DAIDALOS é desenvolver, testar e demonstrar uma arquitectura baseada no
protocolo de rede IPv6. Este é utilizado para fazer a integração de todas a tecnologias de
rede com Qualidade de Serviço e mecanismos de segurança.

Neste contexto, os fornecedores de serviços de rede irão possuir um processo de controlo
de admissão de sessões por forma a garantir a qualidade de serviço das aplicações. Esse
processo aceitará as novas sessões conforme o estado das reservas já efectuadas. Por
forma a permitir uma maior alocação de sessões do que a capacidade máxima da rede,
novos algoritmos de controlo de admissão de sessões estão a surgir. Desta forma, ficará
possibilitada uma utilização mais eficiente dos recursos da rede. Esses algoritmos requerem
informação sobre a rede, nomeadamente sobre os recursos dispońıveis e sobre os parâmetros
de qualidade de serviço.

O objectivo desta tese é especificar, desenvolver e avaliar a arquitectura de um sistema
de monitorização de rede que seja pouco intrusiva e transparente para os utilizadores, e
que não afecte a qualidade de serviço das sessões em curso. Com este propósito, foram
consideradas as duas técnicas de medidas existentes, medição passiva e medição activa.
O modus operandi das medidas passivas caracteriza-se por calcular as métricas desejadas
mediante a análise do tráfego actual. Esta técnica acarreta problemas de escalabilidade que
podem ser colmatados com o recurso a técnicas de amostragem. Estas traduzem-se numa
diminuição do esforço de processamento para o cálculo das métricas de QoS, associada a
uma baixa taxa de erro. Por sua vez, as medidas activas também podem levantar alguns
problemas devido á injecção de tráfego na rede que pode afectar as sessões em curso dos
utilizadores. As medidas activas são utilizadas para testar o acréscimo de um utilizador a
um grupo de multicast. O teste deverá ter um débito baixo mas suficientemente alto para
emular o comportamento do utilizador. Nesta tese, é avaliado o ńıvel de intrusão deste
tipo de testes.

i

ii

Abstract

In a near future, a user will have different types of mobile terminals with several wireless
technologies integrated. A mobile terminal will be seamlessly connected to any technology,
allowing the user’s mobility and maintaining sessions’ continuity. Applications such as
video streaming from one-to-many have new traffic requirements, such as large bandwidths,
and Quality of Service (QoS) guarantees. The DAIDALOS project objective is to develop,
test and demonstrate an open architecture based on the network protocol IPv6. This
protocol is used to integrate all the network technologies with QoS capabilities, and in a
secure communication environment.

In the DAIDALOS framework, the network providers are developing a call admission
control process to guarantee the quality of service for each application. This process
will decide if it accepts a new session based on the current reservations. In order to
maximize the number of sessions accepted, novel call admission control algorithms are
being developed. These algorithms require network information, related to the resources
available and QoS parameters.

The objective of this thesis is to specify, develop, and evaluate a network monitoring
architecture used to monitor network resources in a non intrusive way, without affecting
the QoS of the running sessions. To fulfill this objective, multicast admission control
scenarios were studied and requirements were specified. From the scenarios, metrics and
measurement techniques were defined.

In order to achieve our purpose, two existing measurement techniques: passive and ac-
tive - were implemented and compared. The modus operandi of the passive measurements
is to use the network traffic in order to calculate the required metrics; this technique is
not scalable and, in order to overcome this problem, sampling methods were developed.
The adoption of these sampling methods reduces the overall processing effort, with a small
measured error. On the other hand, active measurements can also raise problems, since
user sessions can be affected by injection of test traffic into the network. The test of a new
user joining a multicast group demands an active measurement technique. The test should
have low bit rate, but sufficient high to emulate the new user behavior. The intrusiveness
of the test traffic is also evaluated in this thesis.

iii

iv

Acknowledgements

The author would like to thank a number of people for making this work possible. First
and foremost, Dr. Manuel Ricardo for always believing in me and for invaluable advice
and help.

I would also like to thank my colleagues at INESC Porto for their support, in particular
Ricardo Morla for useful advice, but also Rui Campos, Gustavo Carneiro, Ricardo Duarte,
and Carlos Pinho, for their valuable feedback. The INESC Porto institution in general
also deserves my appreciation, for providing me with an excellent environment to complete
this work, as well as the University of Porto.

Finally, I would like to thank my family and my fiancée for all the help I received
throughout these last months.

The work presented in this report was partially funded by the EU project DAIDALOS
(phase 1: IST-2002-506997, phase 2: IST-2005-026943).

The author

v

vi

“Computer Science is no more about computers
than astronomy is about telescopes.”

E. W. Dijkstra

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Objectives and strategy . 2
1.4 Thesis structure . 3

2 State-of-the-art 5
2.1 IP version 6 . 5

2.1.1 IPv6 Header . 6
2.1.2 IPv6 Addressing . 7

2.2 IP Multicast . 8
2.2.1 Multicast Listener Discovery Protocol 9
2.2.2 Protocol Independent Multicast . 9

2.3 Quality of Service . 10
2.3.1 Differentiated Services . 10
2.3.2 Integrated Services . 11
2.3.3 Quality of Service Parameters . 12

2.3.3.1 One-way-delay . 12
2.3.3.2 Delay Variation (Jitter) . 13
2.3.3.3 Packet Loss Ratio . 14

2.4 Network monitoring . 14
2.4.1 Active measurement . 15
2.4.2 Passive measurement . 16
2.4.3 IPFIX architecture . 17
2.4.4 Sampling schemes . 19

2.5 Multicast monitoring tools . 22
2.5.1 Multicast Reachability Monitor (MRM) 22
2.5.2 Multicast Beacon . 23
2.5.3 Multicast Quality Monitor . 24

2.6 Context for network monitoring - DAIDALOS Project 25
2.6.1 Network Architecture . 25
2.6.2 Classes of Service . 27
2.6.3 Monitoring System Integration . 28

2.7 Summary . 28

ix

x CONTENTS

3 Network monitoring requirements and system specification 31
3.1 System requirements . 31

3.1.1 Multicast QoS signaling scenario . 31
3.1.2 Network measurements for call control admission 33

3.2 Architecture design . 36
3.2.1 Measurement Platform . 36
3.2.2 CMS architecture . 37
3.2.3 NME architecture . 43

3.3 Implementation of NME functions . 44
3.3.1 ActiveMeasure . 44
3.3.2 QoSMeasure . 46
3.3.3 QoS Calculator . 50

3.4 Integration . 52

4 Measurements results analysis 55
4.1 Test Scenario . 55
4.2 Results . 56
4.3 Evaluation . 60

5 Conclusions 65
5.1 Summary . 65
5.2 Achievements . 66
5.3 Future Work . 66

A Monitoring platforms evaluation 69
A.1 Platform Description . 69

A.1.1 Open Internet Measurement Project (OpenIMP) 69
A.1.2 IP Probes . 70
A.1.3 Monitoring Platform for Mobile Flows (MPMF) 70
A.1.4 NeTraMet . 71

A.2 Evaluation . 71
A.3 Licensing and availability . 75

A.3.1 OpenIMP . 75
A.3.2 IP Probes . 75
A.3.3 MPMF . 75
A.3.4 NeTraMet . 76

A.4 Conclusions . 76

B DAIDALOS testbed 77
B.1 Accident and University scenario . 77
Index . 81

List of Figures

1.1 Internet Growth. 1

2.1 IPv6 and IPv4 header. 6
2.2 Scenario with multicast and unicast flow. 8
2.3 DiffServ Node. 11
2.4 One-way-delay between two hosts. 12
2.5 Delay variation (Jitter). 13
2.6 Packet Loss between two hosts. 14
2.7 Active Measurement. 15
2.8 Passive Measurement. 16
2.9 Reference Architecture. 18
2.10 IPFIX Device. 18
2.11 IPFIX Template. 19
2.12 Sampling Schemes. 20
2.13 Multicast reachability monitor. 23
2.14 Multicast Beacon. 23
2.15 Multicast quality monitor centralized control. 24
2.16 Daidalos QoS network architecture. 26

3.1 QoS multicast signaling. 32
3.2 Multicast measurement scenario. 35
3.3 Message sequence chart for multicast measurements scenario. 35
3.4 OpenIMP architecture. 37
3.5 CMS - Architecture and interfaces. 38
3.6 DAIDALOS components interfacing with CMS. 38
3.7 Central Monitoring System (CMS) composite structure diagram. 39
3.8 Class Diagram of CMS SOAP API. 41
3.9 NME component diagram. 43
3.10 NME Composite Structure Diagram. 44
3.11 Graphical user interface for configuring the function QoSMeasure. 52
3.12 Graphical user interface for configuring the function ActiveMeasure. 53

4.1 Test Scenario. 55
4.2 Active measurement results . 57
4.3 Passive measurement results - One-Way-Delay. 58
4.4 Passive measurement results - Jitter . 59
4.5 Passive measurement results - Packet Loss 60
4.6 One-Way-Delay Error . 61
4.7 Jitter Error . 61

xi

xii LIST OF FIGURES

4.8 Packet loss sampling error . 62
4.9 Metrics Computation Time. 62

B.1 DAIDALOS testbed . 78

List of Tables

2.1 Sampling Schemes Overview. 20
2.2 QoS requirements for four classes. 27

3.1 Types of Data exchanged with the CMS. 39
3.2 SOAP measurement interface overview. 42
3.3 SOAP NME management interface overview. 42
3.4 NME interface overview. 44

A.1 Comparison between the monitoring platforms 72

xiii

xiv LIST OF TABLES

Acronyms

4G Fourth-Generation Communications System . 33

A4C Authentication, Authorization, Accounting, Auditing and Charging 25

AAA Authentication, Authorization and Accounting . 31

AG Accounting Gateway . 28

AN Access Network. .26

ANQoSB Access Network Quality of Service Broker . 27

AR Access Router . 26

ARM Advanced Router Mechanisms . 27

BGP Border Gateway Protocol . 9

CAC Call Admission Control . 65

CMS Central Monitoring System . xi

CNQoSB Core Network Quality of Service Broker . 26

DAIDALOS Designing Advanced network Interfaces for the Delivery and
Administration of Location independent, Optimised personal Services 24

DiffServ Differentiated Services . 10

DSCP DiffServ Code Point . 27

ER Edge Router . 26

GUI Graphical User Interface . 36

ICMPv6 Internet Control Message Protocol Version 6 . 9

IGMP Internet Group Management Protocol . 9

IGMPv3 IGMP version 3 . 9

IntServ Integrated Services . 10

IP Internet Protocol . 6

IPFIX Internet Protocol Flow Information eXport. .17

IPPM IP Performance Metrics . 36

IPsec IP security . 6

IPv4 Internet Protocol version 4 . 5

IPv6 Internet Protocol version 6 . 5

L3 Layer 3 . 33

MAC Medium Access Control . 5

xv

xvi LIST OF TABLES

MIB Management Information Base . 15

MLD Multicast Listener Discovery . 9

MLDv1 MLD version 1 . 9

MLDv2 MLD version 2 . 9

MMSP MultiMedia Service Proxy . 27

MT Mobile Terminal . 26

NME Network Monitoring Entities .27

OID Object IDentifiers . 15

OpenIMP Open Internet Measurement Project . 36

PBNMS Policy Based Network Management System. 27

PIM Protocol Independent Multicast. .9

PIM-DM PIM Dense Mode . 9

PIM-SM PIM Sparse Mode . 9

PIM-SSM PIM Source Specific Multicast . 10

PSAMP Packet Sampling. .36

QoS Quality of Service . 10

RP Rendezvous Point . 9

RSVP Resource Reservation Protocol . 11

RTP Real Time Protocol . 14

SLA Service Level Agreement . 16

SNMP Simple Network Management Protocol . 15

SPP Service Provision Platform . 26

SSM Source-Specific Multicast .10

TTL Time To Live . 6

VoIP Voice over IP . 5

Chapter 1

Introduction

1.1 Motivation

The networks and communications paradigms are changing because new communications
scenarios and applications are arising. The voice communications are transported not
only by circuit-switched but also by packet-switched networks. Moreover, applications like
peer-to-peer and video streaming have been adopted world wide, increasing the network
traffic and establishing new requirements. To overcome the resources starvation, network
operators need to manage the resources, by adopting protocols or call admission control
functions.

Figure 1.1: Internet Growth.

Multicast is a good solution to help solving the resources starvation; it reduces the
amount of traffic in the network when streaming a video from one source to several re-
ceivers. The resources reserved for a flow may consider statistical multiplexing effects. The

1

2 Introduction

real traffic profile of the flows may be unpredictable. In order to improve the efficiency of
resources usage,and take advantage of the statistical multiplexing gains, we propose the
use of a network monitoring system to monitor the available resources in the network.
The monitoring results are then used for optimized admission decisions and to multiplex
data streams.

1.2 Problem statement

The focus of this study is to use measurements to aid in the admission control of new
multicast flows. When a client needs to join a multicast session, for instance a video
streaming, the network operator should decide if it accepts this new session based on the
current reservations. Since the profile of the flows, that are already transported over the
network, is unpredictable, the network resources usage can be improved by admitting more
flows than the maximum network capacity. This concept is defined as overbooking and
may also benefit from the ”‘statistical multiplexing gain”’, characteristics of the bursty
(variable-bit rate) traffic. Using this technique, the network operator can allocate more
sessions than those enabled by the real network capacity. The problem of overbooking
is that it can cause network congestion and degradate the quality of all user sessions. A
possible solution to overcome this problem consists in monitoring the state of network re-
sources before accepting new sessions. In order to pursuit this requirement, the monitoring
system should perform tests aimed at evaluating the network resources available.

1.3 Objectives and strategy

The DAIDALOS project is the main driver for this work and most of the requirements are
defined taking into consideration the DAIDALOS objectives. The focus of the project was
to design, prototype and validate the necessary infrastructure and components for efficient
distribution of services over diverse network technologies beyond 3G. The prototype is
the result of the integration of complementary network technologies in order to provide
pervasive and user-centered access to services.

In order to evaluate the distribution of services over the network, it is necessary to
monitor these services and also the network resources. The objective of this work is to
specify and develop a solution to monitor the network resources in a non intrusive and
seamless way, without affecting the quality of service of the running sessions. One major
requirement is that the intrusiveness of these tests should be minimum to avoid disturbing
the running sessions.

The strategy adopted for this research work is to:

1. Define requirements for the network monitoring system;

2. Study the available measurements tools;

1.4 Thesis structure 3

3. Specify a network monitoring architecture;

4. Develop software components;

5. Evaluate the solution.

The definition of requirements for the network monitoring system is important in
order to specify the granularity of measurements, the necessary metrics, and the network
measurement points. Scenarios for call admission control for multicast sessions with QoS
shall also be studied.

Since the required measurements can be complex, the integration of available open
source measurement tools should be evaluated. Moreover, the exchange of the measure-
ment results should be researched, as well as the existence of libraries providing this
functionality.

The specification of a network monitoring architecture based on the state-of-the-art
and on the main forums is the next task. Moreover, it is necessary to identify which
entities are going to interface with the network monitoring system and how this interface
is going to be implemented. It is also important to characterize how measurement results
are going to be computed and exported to other entities.

The next step is to develop specific measurement functions that will perform the func-
tionality drawn during requirements specification. These functions will be responsible for
collecting and executing network tests in order to produce the metrics specified in the
early stages.

An evaluation of the specified architecture and developed measurement functions is
performed. The idea is to evaluate if the objectives were fulfilled and the requirements
met.

1.4 Thesis structure

The chapters are organized as follows. Chapter 2 provides an introduction to the basic
mechanisms of IP multicast and QoS, including an analysis of potential problems. Next,
the main network monitoring mechanisms and the reference architecture are described. At
the end, the context of network monitoring and the summary of the adopted technologies,
as well as their importance for the performed work, are presented.

Chapter 3 specifies the requirements and the design of the network monitoring system
architecture. The implementation of the measurement functions and the impact on the
architecture are also provided. The last section describes how the measurements functions
were integrated into the network monitoring architecture.

The collected measurements are analysed on Chapter 4. First, test scenarios and
performed tests are defined. From these, measurements were collected and analysed.
An evaluation of the architecture and the implemented functions is provided taking into
consideration the collected measurements.

4 Introduction

Chapter 5 concludes the thesis work. It presents an overview of the studied technolo-
gies, advantages of deployed architecture, and an evaluation of the implemented solution.
At the end, the major achievements are presented and the plans for future work drawn.

Chapter 2

State-of-the-art

The chapter presents the technologies and protocols mentioned in the thesis, and describes
their importance for the performed work. Since IPv6, multicast and QoS are important
for the work description, a small summary for each one is provided. After that, the
major network monitoring topics and the reference monitoring architecture are introduced.
Next, multicast network monitoring tools are presented, emphasising on the less intrusive
techniques. At the end, a brief description of the project DAIDALOS architecture and
QoS entities is provided in order to better define the context of problem.

2.1 IP version 6

Internet Protocol version 6 (IPv6) is a network layer protocol that ensures end to end
(source to destination) packet delivery. This protocol is designed as the successor of the
Internet Protocol version 4 (IPv4) [1] and it was designed to overcome the address ex-
haustion caused by the small size of IPv4 addresses and the increasing number of Internet
nodes. The IPv6 protocol increases the network address size from 32 bits to 128 bits,
or approximately 3.4× 1038 addressable nodes, allowing a larger address space and more
flexibility in the assignment of network addresses. The multicast routing scalability is
improved by adding a new field, called scope, to multicast addresses. Moreover, it sim-
plifies the auto-configuration of addresses using a stateless procedure. When the host
connects to the network, it sends a router solicitation request, and the router replies with
a router advertisement, containing the network prefix. The host receives the network
prefix and composes the final network address using its network interface Medium Access
Control (MAC) address. Another major modification is the header format simplification.
By making some of the header fields optional, or even dropping them, the processing
cost for handling an IPv6 packet on each router is reduced. Although the bandwidth
cost is also limited, by dropping some header fields, the packet overhead is higher (the
network address’ size increased four times), especially when the payload size is small,
like for Voice over IP (VoIP) applications. In these cases, a reduction of the overhead is

5

6 State-of-the-art

possible by adopting some header compression methods. IPv6 also improves the support
for extensions and options, making more efficient the packet forwarding and adding more
flexibility for introducing new options in the future. The new extensions, such as authen-
tication, data integrity and, optionally, data confidentiality, allow more secure and private
communications that were optional in IPv4, by the adoption of IP security (IPsec). Mo-
bility is also enhanced in IPv6 because it supports stateless auto-configuration of Internet
Protocol (IP) addresses and it avoids triangular routing, typical on IPv4 networks, when
using Mobile IP.

2.1.1 IPv6 Header

The IPv6 packet is decomposed in two main parts: the header and the payload. The Fig-
ure 2.1 depicts the main differences between the IPv4 and IPv6 header [2]. As mentioned
in Section 2.1, the IPv6 header resulted from a simplification of the IPv4 header. Several
fields, that were available on the IPv4 header are not present in the IPv6 header, like iden-
tification, flags, fragment offset, header checksum, options and padding. The elimination
of the header checksum from the IPv6 header happened because the verification is already
performed by the lower layers. This way, the processing cost is diminished, as it is no
longer necessary to recompute the header checksum on each router (each time a packet is
forwarded by the router, some fields, like the Time To Live (TTL), are changed and the
checksum has to be recomputed).

0 31

IHL Total LengthType of ServiceVersion

8 16

Identification Flags Fragment Offset

Header ChecksumTime to Live Protocol

Source Address

Destination Address

Options Padding

Payload Length Next Header Hop Lim it

Version Type of Service Flow Label

Source Address

Destination Address

0 318 16

New field in IPv6

Name and position changed

Dropped fields between versions

Fields kept between versions

IPv4 Header IPv6 Header

Figure 2.1: IPv6 and IPv4 header.

The first 40 octets (320 bits) of the packet contain the IPv6 header which is composed
by the following fields:

Version - (4 bits) IP version, for IPv6 its 6.

Traffic class - (8-bits) packet priority delivery value. The packet is classified and priori-
tized according to this field.

Flow label - (20 bits) specifies special router handling from source to destination(s) for
a sequence of packets.

2.1 IP version 6 7

Payload length - (16 bits) Payload length in bytes.

Next header - (8 bits) specifies the next encapsulated protocol. The protocol field of
IPv4 is replaced by a Next Header field. This field usually specifies the transport
layer protocol used by a packet’s payload.

Hop limit - (8 bits) replaces the TTL field of IPv4, but both fields specify the hop limit
for a packet.

Source address - (128 bits) source address of the node.

Destination address - (128 bits) destination address of the node.

The main difference between both headers is the size. When the options field in IPv4
is not used the header size is 20 octects but in the IPv6 header is 40 octets. The IPv6
header overhead is given by formula:

Overhead =
IP Header Size

IP Header Size+ Payload Size

For a small payload size, the overhead will be very high, which is the typical scenario for
VoIP applications. To overcome this problem, header compression methods like ROHC,
presented in [3], can be applied.

2.1.2 IPv6 Addressing

In [4], it is specified the addressing architecture of the IPv6 protocol and addresses formats.
IPv6 addresses are 128 bit identifiers for an interface, or for a set of interfaces, and are
divided into three types of addresses:

• Unicast;

• Anycast;

• Multicast.

The unicast address is used to uniquely identify a single interface. The communication
between two unicast addresses is a one-to-one communication. A packet with a unicast
address in the destination address field is delivered to the interface identified by that
address. Unicast IPv6 addresses can be decomposed in the following types:

• Global unicast addresses;

• Link-local addresses;

• Site-local addresses;

• Unique local IPv6 unicast addresses;

8 State-of-the-art

• Special addresses.

The global unicast addresses are used to communicate over the Internet, while the
Link-local and Site-local have a local scope and are limited to link or site communications,
respectively.

The anycast address identifies a set of interfaces. The communication between a unicast
addresses and a anycast address is considered a one-to-one communication. When a packet
is sent with an anycast address in the destination address field, it is delivered to only one
of the interfaces that belongs to that anycast address. The adopted metric to select the
interface from the group is the shortest routing distance.

A Multicast address is an identifier for a set of interfaces that typically belong to
different nodes. The communication between a unicast address and a multicast address
is considered a one-to-many communication. This means that multicast is used for group
communications. A packet with a multicast address in the destination address field is
delivered to all the interfaces that belong to this group (i.e. are identified by that address).

IPv6 multicast addresses are defined in [5], and begin with the prefix FF00::/8, and
their second octet identifies the addresses’ scope, i.e. the range over which the multicast
address is propagated. Commonly, used scopes include link-local (0x2), site-local (0x5)
and global (0xE).

2.2 IP Multicast

The IP multicast is a routing technology that was developed to conserve the links band-
width by reducing the traffic when it is necessary to stream information from one source
to thousands of receivers. The alternative to this scenario is to establish n connections
(where n is the number of receivers) between the information source and the receivers, as
it is depicted in Figure 2.2. In some links, the information is duplicated, exhausting the
link bandwidth.

Streaming
Server

Streaming
Server

Network without Multicast Protocol Network with Multicast Protocol

Figure 2.2: Scenario with multicast and unicast flow.

2.2 IP Multicast 9

The solution is to replicate the information in some routers resulting in a more ef-
ficient delivery of data to multiple receivers. This benefits low-bandwidth applications
if we considered thousands of receivers. In the case of high-bandwidth applications, like
videoconferencing, corporate communications, and distance learning, the advantage is even
bigger. The multicast technology basically allows a group of receivers to subscribe an inter-
esting data stream. The hosts are not limited to any physical or geographical boundaries.
The hosts subscriptions in the local IPv6 networks are managed by the Multicast Listener
Discovery (MLD) protocol [6]. The routing information is then disseminated across the
domain using protocols such as Protocol Independent Multicast (PIM) [7].

2.2.1 Multicast Listener Discovery Protocol

The MLD protocol is implemented by routers, and by end hosts, to manage multicast
groups on IPv6 local area networks. This protocol is similar to the Internet Group Man-
agement Protocol (IGMP) for IPv4 access networks. The end hosts request to join a
multicast group to the access router (i.e., the router directly attached to the host link). If
the end host is accepted to join the multicast group, it becomes a multicast listener, and
it receives all the packets intended to the multicast group. Instead of creating a new pro-
tocol, MLD is based on Internet Control Message Protocol Version 6 (ICMPv6) messages.
The first version was MLD version 1 (MLDv1) and it is specified in [8]. The translation
of the IGMP version 3 (IGMPv3) [9] protocol for IPv6 semantics gave raise to the next
version, MLD version 2 (MLDv2). The latest version allows a multicast listener to receive
packets from a specific multicast source address. Both versions of the MLD protocol are
interoperable.

2.2.2 Protocol Independent Multicast

PIM is used to provide multicast routing information for the routers in a domain. It
enables the distribution of data one-to-many and many-to-many. This protocol relies on
other routing protocols, like Border Gateway Protocol (BGP), to discover the network
topology. Depending on the number of receivers, and how they are distributed on a
domain, different variants of this protocol can be adopted. There are four variants of
PIM:

PIM Sparse Mode (PIM-SM) - suited for sparsely populated domains, it builds uni-
directional shared trees rooted at a Rendezvous Point (RP). The RP is a router that
is used as the root of the shared tree for a multicast group. The join messages from
the receivers are sent towards this router and senders transmit the data to the same
point [7].

PIM Dense Mode (PIM-DM) - suited for densely distributed receivers and the shared
tree is build using a flooding mechanism. The source starts sending multicast data-
grams for all the areas of the network. After some time if some areas of the network

10 State-of-the-art

do not have any subscriptions (i.e. join messages), the protocol will prune off the
forwarding branch by instantiating a prune state [10]. The main differences between
PIM-SM and PIM-DM are quite obvious, PIM-DM does not have a RP and only
explicitly triggered prunes and grafts are transmitted.

Bidirectional PIM - it is a variant of PIM-SM that builds shared bi-directional trees
connecting multicast sources and receivers, more information is available in [11].

PIM Source Specific Multicast (PIM-SSM) - it is a specific application of PIM-SM
using a Source-Specific Multicast (SSM) [12] service. This one is identified by a
(S,G) pair and it is denominated as channel. When SSM service is deployed, an IP
datagram is transmitted by the source S to a SSM destination G. Receivers need to
subscribe the channel (S,G) using a MLDv2 or IGMPv3 in order to receive the IP
datagram.

2.3 Quality of Service

The common scenario in our days is a best-effort network connection. This means that
network operators do not offer Quality of Service (QoS) for their users. In order to provide
a good quality of service for all applications and users, the network operators just over-
provision the capacity so that it would be possible to accommodate the peak traffic load.
This solution is not efficient, considering that the internet traffic is increasing very rapidly,
close to doubling each year since 1997 and that users are demanding for quality of service
for some new applications like VoIP. A way to solve the problem is to provide different
priorities to different applications or ensuring a certain level of performance to a data flow.

In wireless networks, the capacity is limited and very important to guarantee the qual-
ity of service for real-time applications such as VoIP or online games. The VoIP applica-
tions are very sensitive to packet delays and packet losses, so these metrics must be kept
below the required values. This can be achieved by dynamically controlling the scheduling
priorities for that session, taking into consideration the desired monitored metrics; this
is called Differentiated Services (DiffServ) and it is defined by [13]. Another solution is
to reserve resources on the path for that data flow, guaranteeing the same metrics, this
technique is defined as Integrated Services (IntServ) [14].

2.3.1 Differentiated Services

DiffServ is a coarse-grained, class-based mechanism for traffic management that enables
the deployment of scalable service discrimination in the Internet. This is achieved by
implementing on each node queue management disciplines where each packet can be dif-
ferentiated, i.e. a per-hop behavior. The architecture assumes that packets are market in
some edge-router and other routers treat this packet according to this marking. This is a

2.3 Quality of Service 11

Figure 2.3: DiffServ Node.

scalable architecture because routers only need to keep the state of a few classes. There
are defined three per-hop behaviors:

Default PHB - which is typically best-effort traffic; when the traffic does not match any
of the defined classes, it is treated as best-effort traffic.

Expedited Forwarding (EF) PHB - traffic is treated as high strict priority. This is
used for low-loss, low-latency real-time applications, like VoIP [15].

Assured Forwarding (AF) - it provides assurance of delivery as long as the traffic does
not exceed the initial specified rate [16]. When congestion occurs, the traffic that has
a higher probability of being dropped is the one not complying with the pre-defined
rate.

Four AF classes were defined, and in each class, a minimum bandwidth was guaranteed,
and it is possible to differentiate them among three different levels of drop precedence.
The definition does not require, but does imply, that each AF class should use a separate
queue.

2.3.2 Integrated Services

Integrated Services specify a fine-grained QoS system, where resources are explicitly man-
aged in order to meet application requirements. A protocol is used to explicitly request
resources for an application. Resource Reservation Protocol (RSVP) [17] is used by hosts
to request specific levels of QoS for application data streams or flows. The routers between
the sender and listener receive a PATH message with the traffic specification (TSPEC)
and request specification (RSPEC). Each router needs to decide if it can support the reser-
vation and send a reservation message (RESV) back to the sender. All routers involved
need to store a state for each flow and police it. A soft state is used in order to cancel
a reservation when a node does not refresh the reservation path. The individual routers
may, at their option, police the traffic to check that it conforms to the flow specs.

12 State-of-the-art

2.3.3 Quality of Service Parameters

A quality indicator is needed in order to analyse the quality of a multicast session. QoS
parameters are used to evaluate not only the session quality but also the performance of
the network. The most important parameters are described next, taking into considera-
tion that these are imperative for multicast and multimedia environments. For real-time
communications, one of the most important parameter is one-way-delay because it can
reduce the interactivity dramatically. The delay variation, together with the packet loss
ratio can also affect the applications performance, e.g. for VoIP applications, these are
critical parameters.

2.3.3.1 One-way-delay

The definition of delay is the latency between the transmission of packets by one host and
successful reception by other host. The delay must consider not only the network latency,
(i.e. time difference between the transmission of packet by a network interface and the
reception by another one that belongs to a different host) but also the time that it takes
to transmit the packet from the application to the network interface.

H o s t BH o s t A

t A 0

t A 1

t B 0

t B 1

P a c k e t f ro m A to B

t A t B

Figure 2.4: One-way-delay between two hosts.

One-way-delay (OWD) measures delay in one direction, e.g. from host A to host
B. This is useful for video streaming applications that use unidirectional flows, but also
for bidirectional flows used by video conference applications, because the delay can have
different values in each direction that must be considered. The hosts clocks should be
highly synchronized to measure OWD. An example is given in Figure 2.4, were each host
has its own independent time line (tA and tB).

∆tOWD = trcvd − tsent (2.1)

In the time tA0 = tsent, the application sends a packet to host B with a timestamp
inside. The packet leaves the network interface from host A at tA1. This delay is introduced
by the operating system and the networking hardware. Host B receives the packet from

2.3 Quality of Service 13

A at tB0 = tsent. The application running on host B receives the packet from the network
interface on tB1, and extracts the timestamp sent by host A. The OWD is calculated by
Equation 2.1, and it is the difference between the received time (by host B application)
and the sent time (by host A application). In order to synchronize the clocks of both
hosts, it is necessary either, to use NTP protocol, or a GPS on each host.

2.3.3.2 Delay Variation (Jitter)

The delay variation can be defined as the inter-arrival variation of packets at the receiving
host over a period of time [18].

H o s t BH o s t A

t A 0

t A 1

t B 0

t B 1

P a c k e ts f ro m A to B

t A t B

Figure 2.5: Delay variation (Jitter).

There are two different mechanisms to calculate jitter, one assumes that a timestamp
is sent inside the packet and the other one uses the difference between time of arrivals
between packets. For each method, it is applied a percentile (usually 90th or 95th) in order
to eliminate the single, and exceptionally high, delays.

The delay variation is calculated using the OWD measurements. Equation 2.2 presents
this method that relies in the clocks synchronization and on a timestamp that is sent inside
the packet.

∆tjitter = maxk

(∣∣∣∣∑n
i=0 ∆tOWDi

n+ 1
−∆tOWDk

∣∣∣∣) (2.2)

The variation of the interarrival time can be calculated based on the inter-time arrival
of packets to host B. For this calculation, a constant flow with a well-defined inter-packet
distance is required. This method does not require to have the clocks synchronized and to
send a timestamp inside packets because it relies only on the host B clock. In Equation
2.3, it is shown how the interarrival time is calculated and only based on the time of the
arrival of packets to host B. The interarrival variation is given by Equation 2.4.

∆tinterarrivaln = tBn − tBn−1 (2.3)

14 State-of-the-art

∆tjitter = maxk

(∣∣∣∣∑n
i=1 ∆tinterarrivali

n+ 1
−∆tinterarrivalk

∣∣∣∣) (2.4)

Multimedia application already uses similar methods to calculate the jitter. Real Time
Protocol (RTP) [19] introduces these mechanisms in order to manage the playback buffer
implemented in the application. A timestamp is sent by the source, inside the RTP
header, to the receiver which calculates the jitter. Nevertheless, the jitter is a parameter
that should be carefully calculated in order to predict the behavior of an application.

2.3.3.3 Packet Loss Ratio

The real-time applications are very sensitive to high packet losses, so this is in fact one of
the most important parameters. High packet losses are the cause of the lack of resources
on over-provisioned networks.

H o s t B
H o s t A

t A 0

t A 1

t B 0

t B 1

P a c k e ts f ro m A to B

t A t B

p
1

p
2

p
3

t A 2

t B 2

Figure 2.6: Packet Loss between two hosts.

To measure packet loss, a sequence number on the sender, i.e. host A, must be inserted.
An host detects that a packet was lost when it receives non-consecutive sequence numbers.
Figure 2.6 gives an example of how it can be calculated. Host A adds a sequence number
to each packet it sends. Host B receives p1 and then p3, and since the subtraction of both
sequence numbers is higher than 1, it is detected that packets were lost. The number of
packets lost is given by the difference between the sequence number minus 1.

RTP protocol provides a sequence number on the header that can be used to calculate
the packet loss ratio.

2.4 Network monitoring

Network monitoring is an important function for network management because it facili-
tates the detection of fault links and network performance degradation. Moreover, it helps
planning the network growth by profiling the users traffic.

2.4 Network monitoring 15

Traditionally, the monitoring function is implemented by pooling a network element
for the current status. Simple Network Management Protocol (SNMP) is used as com-
munication protocol to pool the network elements. The SNMP protocol was developed to
manage network elements and used to communicate with the SNMP agents. Essentially,
SNMP agents expose management data on the managed network elements as variables
(e.g. system uptime). The variables are organized in hierarchies that are described by
Management Information Base (MIB). Each variable is identified by Object IDentifiers
(OID). MIBs use the notation defined by ASN.1.

For applications that require flow-based IP traffic measurements, a SNMP architecture
does not solve the problem because MIBs do not record the flow states for further pro-
cessing and metrics computation. So it is important to have a standard way of exporting
information related to IP flows to QoS monitoring applications, for instance. This section
defines several techniques to monitor the QoS parameters of a network and presents the
reference architecture that was adopted to measure and export the monitoring results to
collectors.

2.4.1 Active measurement

The active measurement is performed by injecting traffic into the network. In the most
typical case, there is a sender that transmits traffic to a receiver that is listening. The

PC2

Network Interface

Packet ReceiverSeq=1TimeStamp= 12CurrentTime=14Packet GeneratorSeq=1TimeStamp = 12 DelayCalculation
Test flow

Network Interface

PC1

Figure 2.7: Active Measurement.

traffic distribution pattern (e.g. periodic, poisson, burst, etc) is configured in the sender.
Additionally to this parameter, it also requires the definition for each distribution of some
extra ones, e.g. for the periodic traffic pattern, the parameters are the packet rate and
the payload size. The sender must send inside each packet a sequence number and a
timestamp. This one will correspond to the time at which the packet was sent by the
sender, as for the sequence number, it is necessary to track the number of packets that are
lost or to check if they reached the receiver in a different order. In the receiver, the sequence
number and the timestamp are used to compute several QoS metrics. To compute OWD,
the receiver extracts the timestamp from each packet and subtracts the time of arrival of

16 State-of-the-art

that packet. Moreover, packet loss can also be calculated using the sequence number. This
metric has different definitions, but the most common one, adopted by RTP, just counts a
packet as lost if it just arrives in a different order or if it simply does not arrive because it
was discarded by the network. These errors are detected by the receiver when the sequence
number, that travels inside the packet, is not consecutive with the one received previously.
The main disadvantage of this measurement is that this solution is intrusive from the
network point of view, since it injects traffic. It also demands a time synchronization
between both probes. The advantages are enormous, it is up to the probe to schedule the
tests, it can select the desired traffic pattern, and the amount of injected traffic can be
controlled. The solution is considered scalable because the volume of information and the
number of probes is controllable and so is the computation time for the intended metric.
Active measurements are used in different applications but most of them are related,
either to network maintenance, or to network performance monitoring. In the case of
maintenance, it is used to detect the point of failure in the network and also to debug the
problem. Network performance is important because it can affect both users and services
performance, so it requires to know in advanced the normal network baseline. This way,
when a pre-determinated threshold is reached, an alarm is sent. Besides the presented
applications, active measurement is also used to verify Service Level Agreement (SLA)
conformance, to aid the call admission control algorithms, and for traffic engineering.

2.4.2 Passive measurement

The passive measurement relies upon the traffic gathered from the network. It is necessary
at least a probe to collect measurements. The most common application is traffic volume

Network Interface Network Interface

ExportExport Packet Id=1TimeStamp= 14Packet Id=1DTimeStamp = 12
DelayCalculation

Data flow

Figure 2.8: Passive Measurement.

accounting. For metrics more complex, extra calculation has to be performed. This is

2.4 Network monitoring 17

done correlating the information between the probes. To measure the One-Way-Delay,
the same packet must be detected in different points of the network. In this case, to
compute a hash for the packet on each probe is mandatory. That later one can be used
to correlate packets and compute delay. For each packet captured by the probe, a packet
identifier must be extracted. A hash function can be used to calculate a unique identifier
for a packet. Moreover, the time of arrival of the packet is also collected. The packet
identifier and the timestamp are sent to a calculation function that can be co-located in
one of the probes or in a different one. The packets are correlated and the timestamps are
compared. The delay can be considered as the subtraction of both timestamps, taking into
account that the probes are located in different points of the network. The disadvantage
of this solution is that all the information on the network must be captured which, in some
cases, is not scalable. The main advantage is that it is not intrusive like the previous one.

2.4.3 IPFIX architecture

This section defines an architecture for IP traffic flow monitoring, measuring and ex-
porting. It provides a high-level description of an Internet Protocol Flow Information
eXport (IPFIX), device’s key components and their functions. The Figure 2.9 depicts the
reference architecture that is described in detail in [20]. The functional components ap-
pear in the figure, inside brackets. The applications and their interface are not defined by
the standard. IPFIX protocol is used to exchange measurement information between the
exporting processes and collecting processes. An export can be done to one or more collec-
tors. Usually, there is an IPFIX device with an observation point running a metering and
an exporting process, but there are some configurations where measurement results can
be agreggated and exported to a collector. The IPFIX exporter exemplifies this scenario,
and as it can be observed, only the exporting process is running. The applications, like
traffic accounting or QoS monitoring, are the final consumers for the monitoring results.

The figure 2.10 shows a typical IPFIX Device where the IPFIX components are shown
in rectangular boxes. An IPFIX device must always have at least one Metering Process
that is associated to an Observation Domain. The function of the Metering Process is to
observe the packets that pass through Observations Points, associate a timestamp to each
one and classify them into flows. The Metering Process must then maintain a database
with all the flow records collected from an Observation Domain and also the statistics
associated with the metering process itself. A Metering Process may select only a set
of packets that transverse the Observation Point using a specific criteria. Two different
methods were defined to select packets: sampling and filtering. The sampling function
determines which packets are selected for measurement, based on a sampling criteria (e.g.
select the first 10 packets received at an Observation Point). The filter function only selects
the packets that match the header fields with the filter condition (e.g. protocol == TCP).
In order to better characterize a flow record, the measured Observation Point must be
known, so IPFIX devices should send this information to collectors. An Observation

18 State-of-the-art

IPFIX Device (i)
[Observation Point(s)]
[Metering Process(es)]
[Exporting Process(es)]

[*Application(s) 1] [*Application(s) n]

IPFIX Exporter
[Exporting Process(es)]

Collector (j)
[Collecting
Process(es)]
[*Application(s)]

Collector (n)
[Collecting
Process(es)]
[*Application(s)]

IPFIX Device (m)
[Observation Point(s)]
[Metering Process(es)]
[Exporting Process(es)]

Collector (1)
[Collecting
Process(es)]

Figure 2.9: Reference Architecture.

IPFIX Device

E
x
p
o
r
t
i
n
g

P
r
o
c
e
s
s

Metering Process NMetering Process 1
Metering Process 1 Metering Process NObsv. Domain NObs. Pt .k+1 . .M

Obsv. Domain NObs. Pt .j+1 . .MObsv. Domain 1Obs. Pt .1 .. j
Obsv. Domain 1Obs. Pt .1 . .k

Packets
In

Packets
In

Export packets
to

collector

....

....

....

....

Figure 2.10: IPFIX Device.

2.4 Network monitoring 19

Domain is a logical block that groups several Observation Points within an IPFIX Device.
The Exporting Process is the functional block that interfaces with Metering Process(es)
and with the Collecting Process on the Collector(s). It gets the flow records from the
Metering Process(es) and sends data to one or more IPFIX Collectors using the IPFIX
protocol. The Collecting Process must receive and store the control information. After
that, it can decode and store the flow records using the control information. To interpret
Flow Record’s Information Elements, an IPFIX Collector needs to know the template
used.

In order to transmit IP Traffic Flow information from an Exporting Process to a
Collecting Process, a common representation of flow data is required, following the format
of template and data sets defined by IPFIX.

Figure 2.11: IPFIX Template.

As it can be seen on Figure 2.11, the message contains the IPFIX header and two
IPFIX Sets: One Template Set that introduces the build-up of the Data Set used, as
well as one Data Set, which contains the actual data. The template set only needs to
be transmitted one time, since the Collection Process buffers the templates each time it
receives a new one.

2.4.4 Sampling schemes

The problem with passive measurement is that the number of captured packets cannot be
controlled, so a problem arises when a metric for a large amount of information has to be
computed. Moreover, in the case of multi-point measurements, to compute one-way-delay
for instance, the probe must export the collected information to one point, so that it will
be possible to compute one-way-delay as explained before. This creates an additional
problem related to the amount of measurement results that are exported from one point
and travel through the network till the collector. From the network management point of
view, measurements should represent a small fraction of the total operational cost, so the
amount of resources spent in order to fulfill this task should be limited and small. The

20 State-of-the-art

best solution is to reduce the amount of traffic and computation needed by collecting the
minimum amount of information.

Table 2.1: Sampling Schemes Overview.

Selection Scheme
Deterministic

Selection
Content-

dependent
Category

Systematic Count-based X - Sampling
Systematic Time-based X - Sampling
Random n-out-of-N - - Sampling
Random Uniform probabilistic - - Sampling
Random Non-uniform probabilistic - (X) Sampling
Random Non-uniform flow-state - (X) Sampling
Property Match Filtering X (X) Filtering
Hash Function X X Filtering

Sampling techniques appear as the best solution in order to provide information about
a specific characteristic of the parent population with a representative sample. Different
sampling methods are presented in [21] and [22]. A sampling method is characterized
by three parameters, the sampling algorithm, the trigger type used to start the sampling
interval, and the interval length. The sampling algorithm is responsible for the selection of
each sample and it can be decomposed into three basic processes: systematic, random and
stratified. The systematic sampling is a deterministic process that selects the start and
duration of the selection intervals. There are two different systematic sampling schemes:
count-based and time-based. In the count-based sampling scheme, the start and stop
trigger of the sampling interval are defined accordingly to the packet spatial position, (i.e.
packet count). The time-based sampling scheme defines the same triggers using time-
based intervals (i.e. start time and stop time). Table 2.1 shows that both schemes are
content-independent selection schemes. On Figure 2.12, these schemes are the ones that
require less processing effort because they are based in simple timers and counters.

Processing
Effort

Required
Traffic Information

Uniform
probabilistic

Systematic
time-based

Systematic
time-based

Filtering

Probabilistic
time-based

Probabilistic
count-based

Probabilistic
content-based

n-out-of-N

Probability
calculation

Random
numbers

Counters

Time Packet count Packet content

Figure 2.12: Sampling Schemes.

2.4 Network monitoring 21

The random sampling scheme relies on a random process to select the starting points
of the sampling interval. With this scheme, each obtained element is independent from the
other, guaranteeing an unbiased estimation. It implies the generation of random numbers
that require an higher processing effort when compared with the systematic sampling
scheme. The standard [22] defines four different methods for random Sampling:

n-out-of-N - from N, the parent population, n elements are randomly selected. The best
example is the generation of an array with n elements, and each element is a random
number in the range [1,N]. A packet is then selected if the packet position is equal
to one element of the array; in the end, n packets are selected.

Uniform Probabilistic - sampling packets are selected independently with a uniform
probability p. One example is to flip a coin for each packet, and select that packet,
if the coin shows tails.

Non-Uniform Probabilistic - in this method, the sampling probability depends on
the selection process, so it is not constant like before. The objective is weight the
sampling probabilities to enhance the chance of selecting rare packets, which may
be important for the measurement process.

Non-Uniform Flow State Dependent - a packet selection depends not only on the
state of the flow to which the packet belongs to, but also on the state of the other
flows that are being observed.

The random sampling methods require more processing effort than systematic ones
because it implies to compute a random number, which is more complex than just counting
packets.

The stratified sampling is composed by several steps. The first step is to group packets
from the parent population into subsets using a specific criteria, and then apply to each of
them the sampling method. One example is to segment the parent population into time
intervals, using a time-based sampling scheme. For each time interval, a random sampling
process selects packets with a probability p.

Filtering is a deterministic process for selecting packets based on the packet content.
The disadvantage is that it requires more traffic information than the other deterministic
processes (count-based and time-based sampling). There are two filtering techniques:

Property Match Filtering - a packet is selected when a field of the packet header is
matched with a predefined value (e.g. ipv4.prococol == TCP). In [23], there is a
specification of all IPFIX flow attributes and a support for the usage of masks and
ranges by adding explicit fields (e.g. netmasks for IP addresses).

Hash-based Filtering - a hash function is used to generate a pseudo-random variate
based on the packet content, or some portion of it. The packet is selected if the

22 State-of-the-art

generated variate is an element of the pre-defined selection group. Using this tech-
nique, the selection of the same subsets of packets in different Observation Points is
possible.

The hash-based filtering needs more processing effort than any other schemes because
it has to compute a hash based on the packet content. Moreover, it can requires more
information because the hash can only be calculated by using some specific fields, or in
some cases, using the payload. This is performed in the scenario of multi-point measure-
ments, where it is necessary to compute metrics using measurements from more than one
Observation Point. To guarantee that the same packet is selected, the computed hash
number should be the same on both points. To do so, the header fields and the packet
payload must be equal. In some cases, some fields have to be excluded (e.g. Hop Limit
on IPv6 changes every hop).

2.5 Multicast monitoring tools

The section presents some measurement tools that are able to compute QoS metrics for
multicast networks. Each of them uses a different procedure or method to obtain similar
results.

2.5.1 Multicast Reachability Monitor (MRM)

The multicast reachability monitor (MRM, [24]) was developed to facilitate the automated
fault detection and fault isolation in large multicast networks. It works on a centralized way
with several probes scattered over the network and it can send alarms in real-time when
there is a reachability problem. The MRM is composed by three different components, the
MRM manager, the MRM test sender and the MRM test receiver. The MRM manager
controls the measurement process by starting and stopping the MRM test sender/receiver
components and it informs the diagnostic tests to run. It also specifies the type of reports
that MRM test receiver should send and collects the generated reports. Once the MRM
manager starts a test, the MRM test sender creates a packet stream and sends it into
the network. The MRM test receivers analyse the packets sent and report the acquired
information to the MRM manager.

Figure 2.13 provides an overview of the MRM components interaction. The MRM
manager is running on a router, it configures the other routers and end-systems to either
perform the MRM test sender function or MRM test receiver. There is also one case where
a router assumes both functions. The MRM test senders generate a packet flow that is
received by the MRM test receivers. Each MRM test receiver computes the measurement
results, like packet loss, and if it is below a threshold, it estimates that the router is not
reachable.

2.5 Multicast monitoring tools 23

Test receiver

Test receiver
Test sender/

receiver

Manager

Test sender

Figure 2.13: Multicast reachability monitor.

2.5.2 Multicast Beacon

The NLANR/DAST (National Laboratory for Applied Network Research/Distributed Ap-
plications Support Team) created the Multicast Beacon on 2004. The tool was developed
in perl and was intended to be a multicast diagnostic tool that would provide statistics
and diagnostic information about a multicast group’s QoS. Multicast beacon working
principle is very similar to the MRM. An example of a configuration is depicted in Figure
2.14.

Multicast beacon
server

Beacon
Messages

Beacon Client

Beacon Client

Beacon Client

Control and
report messages

Figure 2.14: Multicast Beacon.

There is a multicast beacon server that controls the multicast beacon clients and which
also collects the measurements results and computes the QoS parameters. The multicast
beacon clients are periodically sending IP multicast packets using the RTP protocol to
a predefined multicast group. The multicast beacon clients reports the measure data to

24 State-of-the-art

the multicast beacon server. The server computes a matrix with performance indicators
for all the active multicast beacon clients. These results can be accessible through a web
server.

2.5.3 Multicast Quality Monitor

The multicast quality monitor (MQM) was developed to measure the reliability and the
quality of service of an IP multicast network [25]. The main objective of the MQM is
to aid a network administrator to detect a fault, or a performance degradation, of an IP
multicast network. This is achieved by measuring the connectivity between several nodes
and estimating the QoS for each of these connections. In Figure 2.15, an example of a cen-
tralized management scenario is shown. This tool also allows a distributed scenario, but in
order to interact with other Designing Advanced network Interfaces for the Delivery and
Administration of Location independent, Optimised personal Services (DAIDALOS) com-
ponents, a central station that manages all the measurements and collects the information
is required.

Control Traffic
Control Traffic

Control Traffic

Measurement Traffic

Measurement Traffic

Measurement Traffic

Probe B

Probe C

Probe A

Figure 2.15: Multicast quality monitor centralized control.

The control traffic is independent from the measurement traffic. A management sta-
tion controls all the probes and collects the measurement results. Nest, the collected
information can be used to calculate QoS parameters such as the one-way-delay. The
probes just inject measurement traffic (i.e. RTP streams) into the network and collect the
results that later are exported to the management station. This solution is similar to the
ones presented before but it can calculate more metrics and it is less intrusive.

2.6 Context for network monitoring - DAIDALOS Project 25

2.6 Context for network monitoring - DAIDALOS Project

The DAIDALOS [26] project’s vision is that mobile users need to access to different ser-
vices seamlessly and they are not concerned about the underlying technology. They also
demand for personalized services that are transparently provided. To achieve this vi-
sion, there must be an integration of a complementary range of heterogeneous network
technologies, in a scalable and seamless way. Moreover, for the network operators and
service providers this becomes a good opportunity to develop new business models and
new profitable services (voice, data, multimedia) for this integrated mobile world. The
main objective of the project is to develop, test and demonstrate an open architecture
based on a network protocol (IPv6) that integrates all the network technologies with QoS
capabilities, under a common Authentication, Authorization, Accounting, Auditing and
Charging (A4C) framework, and in a secure communication environment. The provision
of seamless end-to-end QoS in such a demanding and heterogeneous scenario, with no per-
ceived service degradation for the user when moving across different access technologies,
is one of the main challenges in Daidalos. Briefly, the network architecture and their ele-
ments focusing in the network monitoring and QoS area will be described, namely because
these are the main topics of this thesis.

The architecture is composed by to three main areas; QoS management: policy based
management and network monitoring. The QoS management is performed by several el-
ements and their main function is to implement admission control mechanisms, negotiate
the QoS for each service and application and implement traffic shaping and policing tech-
nics. Moreover, policy based management system manages and configures the network
elements through policies, facilitating the administrator work and also the negotiations
with other administrative domains. Network monitoring aids in the admission control pro-
cess and collects information about the user traffic volume that is exported to the billing
system.

2.6.1 Network Architecture

Figure 1 depicts the proposed QoS architecture that supports several access networks,
each of them capable of handling several access technologies, like UMTS, DVB-T, 802.11,
802.16.

The shown QoS architecture allows for different operators to work in a common envi-
ronment, with support for access services and other transport and advanced services. All
operators may have special contracts between each other and/or federation mechanisms,
enabling a better integrated service to the end user. DiffServ is used to support QoS in
the core network, achieving scalability and performance.

In broad terms, this architecture is more flexible, and presents a more comprehensive
set of characteristics, such as: a fully integrated approach to IP-based communication

26 State-of-the-art

with different types of applications and protocols, including adaptive applications, mul-
ticast and broadcast; the customization/optimization of the architecture according with
the expected service mix to support; and the integrated support of multiple QoS service
models, according to the overall network configuration (defined by operator policies).

In Figure 2.16, several access networks are depicted, connected to a core network; each
administrative domain is connected to other domains through Edge Router (ER). In each
access network, Mobile Terminal (MT), Laptops and PDAs, are connected to the network
through Access Router (AR). Each AR may incorporate a QoS client able to request
QoS resources (and/or QoS services) to the network in an implicit or explicit way. The

Administrative Domain

Administrative Domain

Access Network

Service Provisioning
Platform 1

Access Network

Access Network

Core Router

Core Router

Core Router

QoS Client

QoS Broker MMSP

A4C

QoS BrokerMMSP

Edge Router

ARM(QoS Manager)

PBNMS

CMS

Network Monitoring Entity

Figure 2.16: Daidalos QoS network architecture.

QoS Broker performs admission control and manages network resources. It also performs
load balancing of users and sessions among the available networks (possibly with different
access technologies) to optimize the usage of operator resources and maximize operator’s
income, by setting off network-initiated handovers.

The Core Network Quality of Service Broker (CNQoSB) manages the core resources
in terms of aggregates, and the communication with other administrative domains.

While basic QoS services are provided intrinsically by the Access Network (AN), more
advanced services are supported by a Service Provision Platform (SPP) in the core net-
work.

2.6 Context for network monitoring - DAIDALOS Project 27

In the AN, service proxies are deployed for efficient service provision. The MultiMedia
Service Proxy (MMSP) controls the multimedia sessions. MMSP and QoS Broker in the
Access Network Quality of Service Broker (ANQoSB) can, together, provide the adequate
network-level QoS to a multimedia stream, through the high level knowledge of active
services and the available network resources. The QoS definitions at the domain level are
provided by a Policy Based Network Management System (PBNMS), and then provided by
the ANQoSBs to the ARs in the different AN. For authentication and accounting purposes,
an A4C server is also present in each domain. The AR contains a set of advanced functions,
which comprises connection tracking, per-application flow DiffServ Code Point (DSCP)
marking, and the means to translate other QoS reservation mechanisms, such as IntServ
RSVP reservations, into DiffServ DSCP marking and QoS Broker requests. The entity
supporting all these functions is denominated by Advanced Router Mechanisms (ARM).

To aid in the admission control procedure performed by the QoS Brokers, this archi-
tecture also includes a real time network monitoring system, which comprises Network
Monitoring Entities (NME) located in several points of the network, and a CMS. The
NMEs can perform passive and active probing of the network, and the CMS controls the
monitoring process, processing the measurements, and propagating the measurement re-
sults to the QoS Brokers in the network and other entities (e.g, A4C server for charging
and SLA conformance testing).

2.6.2 Classes of Service

For real-time services, QoS becomes very important since these services demand for a
minimum quality.

Table 2.2: QoS requirements for four classes.

Application
Delay (ms)

upper bound
on mean delay

Jitter (ms)
upper bound

Packet loss (%)

Interactive audio and
video

150 50 0.1

Transaction data
interactive

400 50 0.1

Video and audio
streaming, short

transactions, bulk data
1000 Not specified 0.1

Legacy applications, low
cost services

Not specified Not specified Not specified

Each network QoS class ensures certain edge-to-edge QoS guarantees, described by
parameters as delay, jitter, packet loss and bandwidth availability. Based on the QoS
requirements of the Daidalos architecture, it was proposed to implement 4 network QoS

28 State-of-the-art

service classes: conversational, transactional, streaming and best effort traffic. Perfor-
mance parameters of the network service QoS classes are derived from ITU-T Y.1541.
The defined service set can be treated as a subset of service classes defined in that rec-
ommendation. Since the ANQoSB only has information on the network services to be
delivered, it is required to map the application QoS parameters to network QoS param-
eters. This mapping can be made in the QoS client, ARM or in the MMSP, depending
on the signaling strategy used. The network service is described by two parameters: the
network service QoS class (where the class is specified by a set of QoS parameters), and
the bandwidth to be reserved. The definition of the network service classes is conformant
with DiffServ network architecture.

2.6.3 Monitoring System Integration

The network monitoring system is composed by a CMS and several NMEs scattered across
the network. The CMS is the controlling and aggregator element for the whole monitor-
ing system. This unit interfaces with other entities such as QoS Brokers, Accounting
Gateway (AG), PBNMS. The interface with the QoS Brokers is used to fetch the network
QoS information for traffic admission control algorithm. The interface with the AG is to
perform SLA validation and to exchange accounting information. The NMEs are located
at strategic points in the network and may perform passive or/and active measurements.
Periodically, measurements information is sent to the CMS using the IPFIX [27] protocol.

2.7 Summary

The DAIDALOS project envisions a user with different types of mobile terminals with sev-
eral wireless technologies integrated. For the user applications, all these wireless interfaces
should appear seamlessly, maintaining session’s continuity. Moreover, the network should
provide mechanisms to guarantee the quality of service for some applications. IPv6 was
selected for network protocol because of these requirements. It supports sessions mobility
more efficiently than IPV4, by avoiding triangular routing. It also has a larger address
space that allows a user, in a near future, to have several mobile devices with public IP
address.

Multicast is the most efficient form to stream contents from one-to-many or even
many-to-many communications. The MLDv2 was adopted because it supports IPv6 and
allows the mobile terminals to join a multicast group. PIM-SM is the selected protocol to
exchange multicast routing information between routers.

In DAIDALOS, information about resources usage is required in order to manage the
admission of new multicast flows into the network. This information can be obtained by
a network monitoring system, which coordinates the measurements tasks and collects the
measurements results. Moreover, several methods can be deployed to collect the required
QoS metrics that aid in the admission control decision algorithm. Active measurements

2.7 Summary 29

are one possible approach but they can be very intrusive. The passive measurements
method can be a good solution but it raises several scalability and privacy issues. Sampling
appears as the best solution to overcome the lack of scalability of the passive measurements
method. A monitoring platform should be compliant with the IPFIX standard in order
to be scalable and interoperable with the DAIDALOS architecture.

30 State-of-the-art

Chapter 3

Network monitoring requirements

and system specification

The chapter is devoted to the definition of the system requirements and the presentation
of the designed architecture, that complies with the work objectives and the specified
requirements. The implemented metering functions are also presented and so is the way
by which they are integrated on a multicast monitoring scenario.

3.1 System requirements

This section contributes to the identification of the network monitoring system require-
ments. These are drawn both from the DAIDALOS project and from this thesis work.
The approach selected to define these requirements consisted in deriving the role of the
network monitoring System in the multicast QoS signaling scenario.

3.1.1 Multicast QoS signaling scenario

In Figure 3.1, a message sequence diagram with the multicast source subscription, and a
MT that issues a join to the multicast group announced by the source, are depicted. The
SSM model is considered, namely its deployment in the PIM-SM protocol. The multicast
source should be registered at an AN QoS broker in order to perform the resource and
QoS management of the future listener requests. A Multicast Subscription System is used
to communicate the needed parameters (source and multicast address, class of Services,
bandwidth, etc.) between source and ARs. The ARs forward the incoming requests to the
ANQoSB using DIAMETER1 protocol. CNQoSB performs the management of inter-AN
and inter-domains joins to the multicast group.

The multicast shared tree must have the same QoS levels on the different branches, i.e.
all multicast listeners are restricted to a single level of QoS. This means that the multicast
source specifies the QoS parameters for a group and multicast listeners can either accept

1Successor of the RADIUS protocol used for Authentication, Authorization and Accounting (AAA)

31

32 Network monitoring requirements and system specification

Figure 3.1: QoS multicast signaling.

3.1 System requirements 33

or reject it. This scenario assumes that both multicast sources and listeners are registered
and authenticated in the A4C. The user requests for a set of multicast groups/sources by
sending a MLD Report to the AR, this one encapsulates this request into a DIAMETER
message and sends it to the ANQoSB. The request is forwarded to the CNQoSB that
sends the request to the ANQoSB in the AN where the source is located. This ANQoSB
performs the Layer 3 (L3) call admission control, using network measurements in order
to verify if there are resources available between the AR and the ER, both from the AN
where the multicast source is located. It is also checked that the core trunk, connecting
both ANs, has enough capacity to support the new flow. When the request is accepted,
the message is forwarded through the CNQoSB back to the ANQoSB from the AN where
the multicast listener is located. Before accepting the multicast flow, this Broker performs,
like before, a L3 call admission control. The objective is to check the available resources
between the AR that received the MLD report and the ER from the AN. If it accepts, a
MLD Query message is sent to the MT (or multicast listener) and a PIM-SM join message
is sent to the RP. At the end, the multicast session is established between the MT and the
multicast source. PIM-SM switches from the shared tree to the shortest path tree when
the listener AR receives the first multicast packets indicating the source address (thus
using the RP only for source discovering).

Multicast is complex and it requires the allocation of multiple network resources. The
monitoring system can provide information about the network availability, in real-time.
The monitoring system can play an important role in the access network selection pro-
cedure too, gathering information on resources allocated for multicast flows in Fourth-
Generation Communications System (4G), accessing technologies and evaluating the pos-
sibility of vertical handovers.

3.1.2 Network measurements for call control admission

The network measurements are used to trigger QoS control functions. The admission con-
trol function is responsible for the acceptance or rejection of a new flow (unicast or mul-
ticast), keeping the information on the resources assigned to each one of them. Although
the resources reserved for each flow may take into consideration statistical multiplexing
effects through the reservation of an effective bandwidth, in order to perform an accurate
reservation, it is required, a priori, to know exactly the description of the flow traffic pro-
file. Since this one may be unpredictable, in order to improve resource usage efficiency,
making use of the statistical multiplexing gains, it should be possible to monitor the avail-
able resources in the network. The monitoring results are used for optimized admission
decisions. Network measurements can also be used to manage the network connections
between different access networks, or even, between administrative domains.

In Section 3.1.1, a scenario for the establishment of a multicast session with QoS is
presented. From this scenario, it can be concluded that edge-to-edge active measurements
are required to perform admission control for multicast flows (e.g. accept or deny a join

34 Network monitoring requirements and system specification

from a user). This requirement implies that measurements between the edge router ER
and the ARs (i.e. the first hop for the terminals) must be performed. Since it is possible to
have asymmetric routing, active measurements on the reverse path, i.e. from the AR-to-
ER should be executed. Passive tests can also be performed but they require the existence
of multicast traffic on the AN.

To accomplish the requirements presented above, several types of network measure-
ments must be performed:

• passive metering probes - for observation of QoS and used bandwidth;

• active metering probes - for continuous AR-to-ER QoS measurements.

For some QoS metrics and decision processes based on them, to have statements about
the one-way QoS in the network need to be done, e.g. about one-way delay, jitter, and loss.
In this case, multi-point measurements can be used, as they are performed between two
or more probes which take part in the same monitoring task. Such task can be performed
using passive or active measurements. The results can be used by entities such as brokers
or routers which closely interact with the network to control their behaviors, i.e. influence
admission, policing, and queuing on these entities. The admission control and resource
management functions that run inside ANQoSBs need to receive regularly measurements
results with this information. Based on it, they decide what flows to accept and reject.

Figure 3.2 shows how multicast measurement can be implemented. Like in Section
3.1.1, it is assumed that a source is already subscribed and there are two listeners on
AN1. Before admitting new multicast flows on AN2 and AN3, network measurements
must be done. A measurement task is scheduled per AN in order to collect measurements
information about the available resources. This task schedules an active measurement
between the AN NMEs. It can be observed that the NME closer to ER sends a multicast
flow to the other NMEs.

In Figure 3.3, the message sequence chart of the scenario described above is shown.
After starting the measurement tasks on all the NMEs (senders and receivers), the probes
start sending packets to test the connections. NME1 is considered the entry point of the
AN2 for the multicast flow, and it is the probe in the AN closer to the source. The other
NMEs, the receivers, are closer to the terminals, usually installed on the first hop routers.
The active tests are done either using permanently assigned multicast addresses or setting
up a new multicast group. NME1 sends traffic to the other NMEs using a multicast
address. Each receiver can then compute the delay based on the timestamps that are
carried inside the test packets. To cover the asymmetric routing problem, the receivers
also send unicast traffic back to NME1. The measurement results (i.e. delay, jitter, packet
loss) are then exported to CMS-DB where they can be aggregated.

3.1 System requirements 35

CNQoSBroker

MMSP

A4C

CMS

Administrative

Domain A

AN1

AN2

ER1AnQoSBr

AnQoSBr

ER2

AN3
AnQoSBr

ER3

Application Garden

ER4

Streaming Server

NME3

Multicast Flow

Measurements Active flow

NME2

NME4

NME5

NME6

NME1

Exported Results (IPFIX) from NMEs

Export calculated metrics to ANQoSB

NME8

NME7

NME9

Figure 3.2: Multicast measurement scenario.

Multicast Manager CMS NME1 (Sender) NME2 (Receiver)

Initiate Monitoring Task

Start Task
Start Task

Ok

Ok

Perform Monitoring Task

Export Interval Expiry

Data Export

Start Task

Ok

Send Probe Multicast Data Packets

CMS-DBNME2 (Receiver)

Export Interval Expiry

Data Export

Send Probe Unicast Data Packets

Send Probe Unicast Data Packets

Export Interval Expiry

Data Export

Start Task

Ok

Figure 3.3: Message sequence chart for multicast measurements scenario.

36 Network monitoring requirements and system specification

3.2 Architecture design

The CMS is the main component of the monitoring architecture. Besides interfacing with
the other DAIDALOS components, its main function is to manage measurement tasks
and collect the measurements results in a database. The DAIDALOS components request
the desired measurement tasks and it is up to CMS to configure them and to collect the
results. If the measurements task is accepted by CMS, the results will be re-exported from
the database to recipient component, i.e. the component that requested the measurement
task. From this brief description, it can be observed that the required functionalities are
complex. It implies a function to manage the measurement tasks requests from the other
components, a function to control the probes (i.e. NMEs) configuring the required mea-
surement task, and also a protocol to transfer measurements results between the compo-
nents. It was decided that a platform could facilitate some of the required functionalities,
so a study was conducted to evaluate four different ones. This study is briefly presented
in Appendix A. The conclusion is that Open Internet Measurement Project (OpenIMP)
platform is the broadest platform because it supports both IPv4 and IPv6, active and pas-
sive measurements and it is compliant with the standards IP Performance Metrics (IPPM)
[28], IPFIX [27] and Packet Sampling (PSAMP) [29].

3.2.1 Measurement Platform

The Figure 3.4 shows the OpenIMP Internet measurement platform which was developed
for distributed IP traffic and quality of service measurements. This platform uses one
central measurement control unit and multiple measurement units (probes). The probes
are distributed within the network, and they can passively monitor network traffic or do
active performance measurements. The measurement tasks are configured on the mea-
surement control unit which distributes single measurement tasks to the remote probes.
The measurement results are sent to the measurement collector, using IPFIX protocol,
and are stored in the central results database. It is possible to do further evaluations and
to display the measurement results using a Graphical User Interface (GUI).

The OpenIMP system consists of the following components:

Passive probes - devices connected to network tabs or optical splitting boxes at special
network locations (e.g. at ARs) that passively filters incoming traffic and perform
special operations like IP flow classification.

Active probes - they generate and receive test traffic.

Collector - it requests/collects the measurement result data from the distributed probes
and stores it in the results database.

3.2 Architecture design 37

System
Management

DB

results
Database

OpenIMP

CollectorPassive
Probe

Active
Probe

Measurement Data Exchange

GUIMeasurement
Control Unit

System Control

QoS
Evaluation

Controller Controller Controller

Controller

Figure 3.4: OpenIMP architecture.

QoS evaluation - it calculates IP QoS metrics like one-way-delay, jitter and packet loss
from the measurement data stored in the results database. The metrics results are
stored on the same database.

Measurement control unit - it manages the measurement system, pushes measure-
ment tasks to the distributed probes and it executes complex measurement tasks.

The components can be accessed via a common control interface which offers a text
based command line interpreter. Unfortunately, the OpenIMP platform does not provide
an interface to outside components to manage measurement tasks. The platform has a
web interface where it is possible to manage measurement tasks and evaluate collected
measurement results. Moreover, it does not provide all the required metrics.

3.2.2 CMS architecture

In Figure 3.5, it is presented CMS interfaces towards the other DAIDALOS components
and the attached probes, designated by NMEs. Measurements results are pushed by
NMEs in regular interval, using IPFIX, and stored in the CMS database, i.e. OpenIMP
results database. The other DAIDALOS components can receive the measurement results
by polling or querying this database or by configuring the CMS using a SOAP API, to
re-export the results to this component.

The physical export of results will be usually done from the probes (NMEs) to the
CMS and then further from the CMS to the final recipients in order to ensure that the
receivers of the result data will get it from a central trusted component. The NMEs, on
the other hand, need a security association (e.g. key pair) to the CMS.

The CMS interfaces with the components shown in Figure 3.6. For the AG, only
accounting information related to user traffic is exported. This component assumes that
there is a default policy to account the traffic from specific user sessions. It also interfaces

38 Network monitoring requirements and system specification

OpenIMP measurement platform

Management interface

Daidalos Components

SOAP over HTTP IPFIX

Proprietary API

QoS Active
Probe

QoS
Passive
Probe

NME

Accounting
Probe

Router
statistics

AG ANQoSBroker PBNM

IPFIXProprietary API

CMS

Figure 3.5: CMS - Architecture and interfaces.

CMS
QoSBroker AG

PBNMS

NME

S
O

A
P

S
O

A
P IP

F
IX

IPFIX

SOAP

IPFIX

Figure 3.6: DAIDALOS components interfacing with CMS.

3.2 Architecture design 39

with the ANQoSB and the CNQoSB for configuring on-the-fly QoS measurements tasks
and exports the collected measurements back to these components using IPFIX. PBNMS
can configure default network measurement policies and it can monitor the status of NMEs.
The NME is the other component that interacts with CMS. NMEs can be configured
by CMS, using a proprietary interface, based on TCP strings. Moreover, the NME can
export the collect measurements and also report their status. On Table 3.1, the exchanged
information between CMS and the other components is summarized.

Table 3.1: Types of Data exchanged with the CMS.
Entity Type of exchanged data
AG - Flow Accounting Measurement Results (IPFIX)

Measurements (IPFIX)
QoS Broker Session termination information (IPFIX)

Configuration information : Monitoring Tasks (SOAP)

Policies and Configuration Data (SOAP)
PBNMS NME Status Data (SOAP)

Configuration information : Monitoring Tasks (TCP)
NME (probes) Measurement Results (IPFIX)

NME Status (TCP)

The information’s model and the functionality of the main CMS modules are presented
in the CMS composite structure diagram in Figure 3.7. Three components are easily
identified:

CmsModules active class CMS {1/1}CmsModules active class CMS {1/1}

ToNMEsToNMEs FromNMEsFromNMEs
FromANQoSBrokerFromANQoSBroker

FromCNQoSBrokerFromCNQoSBroker

FromPBNMSFromPBNMS

FromA4CFromA4C

ToANQoSBrokerToANQoSBroker

ToCNQoSBrokerToCNQoSBroker

ToA4CToA4C

cc : CmsController

cc : CmsController
pAPIpAPI

ce : CmsExporter

ce : CmsExporterpIPFixpIPFix

OpenImp : OpenIMP

OpenImp : OpenIMP

pControllerpController

pDataBasepDataBase

pCollectNmeInfopCollectNmeInfopControlNmepControlNme

Interfaces::APIs::CMS::CMS_API

Interfaces::APIs::CMS::CMS_API

Figure 3.7: CMS composite structure diagram.

40 Network monitoring requirements and system specification

cmsController - it provides an interface to manage the addition and removal of mea-
surements tasks and monitor the NMEs’ status.

cmsExporter - it is used to export QoS measurements and accounting data to external
components.

OpenIMP - it represents the database which holds NMEs and the running measurement
tasks information.

The CMS controller exhibits a SOAP-based control interface which lets external com-
ponents access its functions in order to start, schedule and terminate measurement tasks,
as well as to fetch the NMEs tasks status. It is the central access point for all CMS-
external applications, i.e. there is no direct communication between external components
and NMEs, collector, or the database. The CMS controller receives the monitoring tasks
via its SOAP control interface. The controller generates and sends the related commands
to the OpenIMP measurement system. The OpenIMP controller then transfers the related
measurement tasks to one of the measurement NMEs, depending on the type of task and
the functionality requested.

NMEs send the measurement result data to the OpenIMP collector which stores the
data in its central measurement result database. If some post analysis of the measurement
data is needed then the analysis component is invoked. The CMS Exporter collects the
data from the database and exports it to the specified destinations. This export happens
at regular intervals or at the end of a measurement.

In specific cases where no post processing is needed but result data shall be delivered
with low delay to the final receiving component (e.g. AG or ANQoSB), a CMS task may
contain the directive to export results directly from the NME to the recipient without
invocation of OpenIMP collector, database, and exporter. In this case, a security token on
each message exchanged between the DAIDALOS component requesting the measurement,
CMS and NME must be sent in order to ensure the measurement information authenticity.

The Figure 3.8 exhibits the class diagram of CMS SOAP API and Tables 3.2, 3.3
summarize the most important methods for the developed work. Two different interface
classes were defined : cmsMeasurementIf and cmsManagementIf.

The cmsMeasurementIf is used to add, remove, and list measurement tasks. In order to
add a measurement task, several parameters must be specified, like measurement function
to use, task duration, export interval, collector address, etc. The removal only needs the
taskId parameter. Moreover, all the methods from this class have a authorization token
parameter, which is obtained when the user authenticates into CMS.

The cmsManagementIf manages the NMEs addition and removal. By having a list of
all the NMEs available on the network, it is easier to add measurement tasks, specially
when we also know their current status. There are other methods related to the user
management but they are not important for the implementation.

3.2 Architecture design 41

<
<

in
te

rf
ac

e
>

>

c
m

s_
_A

ut
h

en
tic

a
tio

n_
if

 ge
tA

u
th

e
nt

ic
at

io
n

To
ke

n
(

lo
gi

n
: x

sd
::

st
ri

ng
, p

as
s

wo
rk

d
 :

xs
d:

:s
tr

in
g)

 :
xs

d:
:s

tr
in

g

<<
in

te
rf

ac
e

>
>

cm
s_

M
a

na
ge

m
en

t_
if

 us
e

rA
dd

(a
ut

hT
o

ke
n

:x
sd

::s
tr

in
g

, u
se

rT
yp

e
:c

m
s_

_
U

se
rT

yp
e,

 lo
gi

n
:x

s
d:

:s
tri

n
g,

 p
a

ss
w

or
d:

 x
sd

::s
tr

in
g

)
us

e
rR

e
m

ov
e(

 a
ut

hT
ok

en
:x

sd
::

st
rin

g,
lo

g
in

:x
sd

::s
tr

in
g

)
us

e
rU

pd
at

e
(a

u
th

T
ok

en
:xs

d:
:s

tr
in

g
, u

se
rT

yp
e:

cm
s_

_
Us

e
rT

yp
e,

 lo
gi

n
:x

s
d:

:s
tr

in
g,

 p
a

ss
w

or
d:

 xs
d

::s
tr

in
g

)
nm

eA
dd

 (
a

ut
h

To
ke

n:
xs

d:
:s

tri
n

g,
 c

on
tr

ol
S

oc
ke

tA
dd

re
ss

:x
sd

::
st

rin
g

, c
o

nt
ro

lP
ro

to
c

ol
:S

tri
ng

):
xs

d:
:s

tr
in

g
nm

eR
em

ov
e

(a
ut

h
To

ke
n:

xs
d:

:s
tri

n
g)

nm
eL

is
t(

 a
ut

hT
o

ke
in

:x
s

d:
:s

tr
in

g
)

<
<

in
te

rf
a

c
e

>
>

cm
s

__
M

ea
su

re
m

e
nt

_
if

ta
sk

A
dd

 (
au

th
T

ok
en

 :
xs

d
::s

tri
ng

,
m

ea
su

re
m

en
t

: c
m

s_
_

M
F

un
ct

io
n,

 d
u

ra
ti

on
 :

cm
s

__
D

ur
a

tio
n,

 o
bs

er
v

at
io

n
Po

in
ts

 :
cm

s
__

O
bs

er
va

tio
nP

o
in

t [
1

 ..
 *]

,
fil

te
r

: x
sd

::
st

rin
g,

 s
am

pl
in

g
: c

m
s_

_S
a

m
pl

in
g,

 e
xp

or
t :

 c
m

s_
_E

xp
or

t)
 :

xs
d:

:s
tri

n
g

ta
sk

R
em

ov
e

 (
au

th
T

ok
en

 :
xs

d
::s

tr
in

g,
 ta

sk
Id

 :
xs

d:
:s

tri
n

g)
ta

sk
Li

st
 (

a
ut

h
T

ok
e

n
:

xs
d:

:s
tr

in
g

) :
 c

m
s_

_T
a

sk
[*

]

<
<

e
n

u
m

e
ra

ti
o

n
>

>

c
m

s_
_

U
se

rT
yp

e

M
E

A
SU

R
E

M
E

NT
M

A
N

AG
EM

E
N

T

<
<e

n
um

e
ra

ti
on

>>

cm
s_

_N
M

E
C

on
tro

lP
ro

to
co

l

FH
G

_
v1

PT
IN

NM
E

n
m

eI
D

:x
s

d:
:s

tr
in

g
co

nt
ro

lP
ro

to
c

ol
:c

m
s_

_N
M

E
C

on
tro

lP
ro

to
co

l
co

nt
ro

lP
ro

to
v

ol
V

er
si

o
n:

 x
sd

::s
tr

in
g

co
nt

ro
lS

oc
ke

tA
dd

re
s

s:
 x

sd
::s

tri
ng

<
<i

n
te

rf
a

ce
>

>

C
M

S
_A

P
I

m
ea

s
ur

e
m

en
t

m
ea

s
ur

e
m

en
t

m
a

na
ge

m
en

t

m
a

na
ge

m
en

t

au

th
en

tic
a

tio
n

au

th
en

tic
a

tio
n

F
ig

ur
e

3.
8:

C
la

ss
D

ia
gr

am
of

C
M

S
SO

A
P

A
P

I.

42 Network monitoring requirements and system specification

Table 3.2: SOAP measurement interface overview.
Function Parameters Returns Description

Filter (srcaddr,
dstaddr, protocol,)
Function name,
Function parameters String TaskId Add new task

TaskAdd measurement Ok/error to CMS
param. (start time,
stop time,
report interval)
export parameters
(collector address,)

TaskRemove String taskID Ok/error Remove named task
from CMS

List of tasks Get list of currently
TaskList None Ok/error configured tasks

Table 3.3: SOAP NME management interface overview.
Function Parameters Returns Description

Name, ipaddr,
NmeAdd ctrlport, funclist, Ok/error Add new NME

capabilities, to CMS

Remove named
NmeRemove String Name Ok/error NME from CMS

Array of NMEs,
NmeList None Ok/error Get list of all NMEs

3.2 Architecture design 43

3.2.3 NME architecture

NMEs are monitoring probes located in routers implemented by software. The measure-
ment tasks for these probes have to be carefully setup. For example, in order to monitor
the QoS metric one-way-delay, the packets should be captured on the wireless network
interface, i.e. before they are sent to the wireless access point or the WiFi card, so that
they also capture the time needed for routing the packets in the AR. This is especially
important in the case in which measurement results from different monitoring tasks are
combined.

As presented in Figure 3.9, the NME exposes two different interfaces. One is for the
management of measurement tasks or to get the NME status, and the other interface
is devoted to the export of measurements from the NME to the CMS collector. There
are other interfaces presented in the figure that are not used in this implementation but
that are intended to extend the NME functionalities. For example, to add support to
inter-domain measurements.

<<component>>

NME

pL32NMEapipL32NMEapi

APIs::NME::NME_apiAPIs::NME::NME_api
pL3_IPFixpL3_IPFix

IPFix::IPFix_If::NME_AGIPFix::IPFix_If::NME_AG

L3_CMSApiL3_CMSApi
SOAP::CMS_if::CMS_APISOAP::CMS_if::CMS_API

SOAP::CMS_if::CMS_API, IPFIXSOAP::CMS_if::CMS_API, IPFIX

pL32IPFIXpL32IPFIXIPFix::IPFIXIPFix::IPFIX

pL32MNSISpL32MNSIS
NSIS_MNSLP::NSIS_QOSNSLP_If::NSIS_MeteringNSIS_MNSLP::NSIS_QOSNSLP_If::NSIS_Metering

NSIS_MNSLP::NSIS_QOSNSLP_If::NSIS_MeteringNSIS_MNSLP::NSIS_QOSNSLP_If::NSIS_Metering

Figure 3.9: NME component diagram.

The Figure 3.10 shows a more elaborate diagram where the most important compo-
nents in the NME architecture are depicted. The base components are the scheduler, the
controller, and the exporter. These are responsible for the management of measurement
tasks and the export of the results. In the middle of the figure, the functions that per-
form all the work are presented: VolumeAccount; ActiveMeasure; QoSMeasure. Each of
these functions measures specific network characteristics, either by passively monitoring
the network or by injecting packets into it.

In table 3.4, it is provided an overview of the NMEs controller interface. This interface
is used by CMS to configure measurements tasks on the NMEs. It is also possible to
fetch the information related to a measurement task or to get the current status of the
NME. To add a measurement task to a NME, CMS can invoke the add task method with
the correct parameters, like taskId, filter, measurement function to run, task duration,

44 Network monitoring requirements and system specification

ToCMSCollectorToCMSCollector

FromCMSFromCMS

Control : Controller

pControlpControl

Export: Exporter
pIpfixpIpfix

qos : QoSMeasure

count: VolumeAccount

activeMeas : ActiveMeasure

sch: Scheduler

Figure 3.10: NME Composite Structure Diagram.

collector address, etc. The measurement function to be used is selected using the option
”‘-a”’, and it is possible to transfer extra parameters related to this function.

Table 3.4: NME interface overview.
Function Parameters Returns Description
add task < task id > [-wait] Ok/error Add new task to

-r <filter> the NME. The action
-a <action><actionopts> parameter specifies
[-m <moptlist>] the function.
-e < ropts >parameters

<task id> Remove task
rm task [, <task id>,..] Ok/error from the NME

get info [tasklist | task=<task id>] String get task information

status String get NME status

3.3 Implementation of NME functions

3.3.1 ActiveMeasure

The function was implemented using a third party tool known as Multi-Generator (MGEN).
This corresponds to an open source software developed by the Naval Research Laboratory
(NRL) PROTocol Engineering Advanced Networking (PROTEAN) Research Group. The
tool can be used to perform IP Multicast performance tests using UDP traffic. From the
tests, performance statistics can be calculated, like throughput, packet loss rates, one-
way-delay, jitter. To configure the tests, a script is generated with the right parameters.

3.3 Implementation of NME functions 45

The tests are then logged into a log file that is read by this function and translated into
an IPFIX template.

The sender and receiver sides should be configured differently. The sender should send
multicast traffic to all the receivers on that AN. One flow per class of service, defined
in Section 2.6.2, is generated to test the available resources for each class. Below, the
automatically generated script on the sender side is presented. From the script, four
different flows can be identified, with a multicast IPv6 address, using a site-local scope,
so that all routers from that AN can receive it. Since permanently assigned multicast
addresses are used, to join a multicast group is not required. The test traffic was modeled
by a Poisson stream with constant payload size (of 1000 bytes) because it represents the
worst case when several CBR streams are aggregated [30]. The last line is used to receive
test packets from the receivers and tests if the route between the sender and the receiver
is symmetric or asymmetric.

#Multicast Flows

0.0 ON 1 UDP SRC 5002 DST FF05::2/5001 POISSON [1000 1000] LABEL 0x1000000

0.0 ON 2 UDP SRC 5002 DST FF05::2/5002 POISSON [1000 1000] LABEL 0x2000000

0.0 ON 3 UDP SRC 5002 DST FF05::2/5003 POISSON [1000 1000] LABEL 0x3000000

0.0 ON 4 UDP SRC 5002 DST FF05::2/5004 POISSON [1000 1000] LABEL 0x4000000

#Receive Unicast Test

0.0 LISTEN UDP 5100-5109

In each receiver, a script to listen the multicast flows generated by the sender is gen-
erated. Below, four unicast flows are presented and, just like before, they are used to test
the reverse path. The ”‘LABEL”’ option is used to mark the packets with a DSCP value
in order to classify them into four different classes.

File receiv.mgn

#Receive Multicast Test

0.0 LISTEN UDP 5000-5009

#Unicast Flows

0.0 ON 1 UDP SRC 5102 DST 2001::2/5101 POISSON [1000 1000] LABEL 0x1000000

0.0 ON 2 UDP SRC 5102 DST 2001::2/5102 POISSON [1000 1000] LABEL 0x2000000

0.0 ON 3 UDP SRC 5102 DST 2001::2/5103 POISSON [1000 1000] LABEL 0x3000000

0.0 ON 4 UDP SRC 5102 DST 2001::2/5104 POISSON [1000 1000] LABEL 0x4000000

Most of the parameters that appear in the script can be configured by CMS using
the NME interface. The activeMeasure function is managed by the controller component,
presented in Section 3.2.3. When the activeMeasure function is selected as measurement
action, a specification for the sender or the receiver is required with the following param-
eters:

46 Network monitoring requirements and system specification

−a activemeasure send < srcport > < dstip > < dstport > < pktlen > < pktps >

−a activemeasure receive < dstport >

The DSCP is not a parameter of the function so, by default, four flows are created,
one for each predefined class. In order to configure the unicast measurements, the same
commands must be run again in order to create the sender and receiver of the unicast
flows.

The QoS metrics owdmin, owdavg, owdmax, jittermin, jitteravg, jittermax, packet lossavg,
packet lossmax are computed on each receiver. The metrics are then exported using the
template specified below.

export_fields_t sla_fields[] = {

{IPFIX_ENO_DAIDALOS, IPFIX_FT_METERSTARTTIME, 4},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_METERSTOPTIME, 4},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_SOURCEADDRESSV6, 16},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_DESTINATIONADDRESSV6, 16},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_OWDMINDELAY, 4},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_OWDAVGDELAY, 4},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_OWDMAXDELAY, 4 },

{IPFIX_ENO_DAIDALOS, IPFIX_FT_MINJITTER, 4 },

{IPFIX_ENO_DAIDALOS, IPFIX_FT_AVGJITTER, 4 },

{IPFIX_ENO_DAIDALOS, IPFIX_FT_MAXJITTER, 4 },

{IPFIX_ENO_DAIDALOS, IPFIX_FT_AVGPACKETLOSS, 2 },

{IPFIX_ENO_DAIDALOS, IPFIX_FT_MAXPACKETLOSS, 2 },

{IPFIX_ENO_DAIDALOS, IPFIX_FT_THROUGHPUT, 4 }

};

The exported template has all the required measurements between two end-points; in this
case, the sender and the receiver of the active test. The CMS can later aggregate the
information from the multicast and unicast tests and send it to the final recipient, i.e.
ANQoSB.

3.3.2 QoSMeasure

The implementation of the QoSMeasure function, that passively measures the multicast
traffic, is described next. The main objective of this function is to capture all the multicast
flows between the ER-and-AR and, for each packet, calculate a unique identifier. The flow

3.3 Implementation of NME functions 47

records are then exported to CMS collector using IPFIX protocol. The Packet Capture
library (libpcap) was used to capture the packets because it provides a high level interface.
The NME interface has a parameter called filter that can be used by this function to
capture specific traffic. For instance, there may be times when it is needed to capture
multicast sessions with destination port=1234. The chosen library also supports filters,
so the original NME parameter can be forwarded to libpcap.

The procedure is quite simple: when a packet is captured by libpcap, a callback func-
tion is called to process the packet. This function will perform the packet selection and it
will also store all relevant fields in a flow record. This means that the function keeps track
of all the flows. The main problem it that the required metrics imply multi-point measure-
ments, i.e. the same packet must be univocally identified in more than one observation
points. The solution mechanism devised to solve this problem is message digesting, which
consists in hashing the packet with an algorithm, like SHA1 (Secure Hash Algorithm) or
MD5, resulting in a small length hash. This can be considered like a packet signature,
even though ciphering is not employed. The hash univocally identifies the packet among
all the others, with a certain probability of error. However, there is an important issue
that must be considered before computing the hash, the packet content used to compute
the hash should be the same on both observation points. Since the observation points are
located in different routers, there is at least one IPv6 header field that is modified, the
Hop Limit (this field is decreased each hop). In order to get the same hash in different
observation points, this field should not be considered to the hash function. Each time
a packet arrives, a timestamp for the arrival time must be stored. For computing some
metrics, time synchronization between observation points must be ensured; for example,
NTP protocol can be used to synchronize all observations points. Moreover, a new flow
record is created when a packet arrives and does not belong to any of the stored flow
records.

As mentioned in Section 2.4.4, it is impossible to capture all the packets, process them
and export measurement data to CMS. To overcome this problem three sampling schemes
were tested:

• time-based;

• count-based;

• hash-based;

These sampling schemes are applied on per flow basis. This can be identified as strati-
fied sampling method, because it implies a first selection of the population and, after this,
a sampling scheme is used. In [31], several methods were compared and the stratified
sampling method was characterized as being the more accurate. For the time-based and
count-based sampling schemes, parameters were used to characterize the sampling, the
interval and the spacing. The interval can be spatial or time variable and it is used by the

48 Network monitoring requirements and system specification

sampling method to identify the duration of the capture. Spacing is variable like interval
but it identifies the amount of time, or the number of packets, not captured between each
interval.

The time-based sampling is implemented using a timer function, i.e. for each flow two
different timers, one for interval and the other with spacing time, were developed. When
a packet arrives, and the flow record is already created, the function retrieves the time of
arrival of the last packet received. Using this information, and with the current time, it
is possible to classify the packet as to be inserted into the flow record or to discard it.

The count-based sampling is more simple; for each flow the total number of captured
packets on the flow record is maintained. Each time a packet is captured and belongs to
flow i, the packet count is retrieved for that flow. If the conditions presented below are
met, the packet is discarded, if not, the relevant packet information is inserted in the flow
record.

If ((flow_rec->packet_count[i] % (opts->sinterval + opts->sspacing))

< (opts->sinterval + opts->sspacing))

&& ((flow_rec->packet_count[i] % (opts->sinterval + opts->sspacing))

>= (opts->sinterval))){

mlogf (2, "Count-Based sampling - ignored packet\n");

}

else {

mlogf (2, "Count-Based sampling - insert packet\n");

}

Hash based filter is the other scheme implemented. The scheme requires more pro-
cessing effort because it implies, before applying the sampling method, to compute a hash
based on the packet content. This process was already described before, since the hash is
always necessary in order to compute some metrics. In fact, in some situations, we can
consider a different identifier extracted from the header information. For instance, if we
consider RTP traffic, the sequence number can be used to identify a packet. Although, this
scheme comes from the filtering of specific packets based on the computed hash, it can be
guaranteed that this is a random process, because of the SHA1 algorithm used to generate
the hash. A rate is specified and a mask is generated according to this parameter. Each
time a packet arrives, the hash is computed and a logic operation is executed between the
mask and the hash number. If the result is 1, the packet is selected and inserted into the
flow record.

The sampling parameters are configured by CMS using the NME interface. The QoS
function is managed by the controller component, presented in Section 3.2.3, that performs
the interface with CMS. When it is selected, the QoSMeasure function as measurement

3.3 Implementation of NME functions 49

action can specify the sampling parameters:

−a qosmeasure < sampling −method > < interval > < spacing > < rate >

The sampling-method and its parameters can be configured. If the time-based or count-
based sampling scheme is chosen, it is mandatory to also add the interval and the spacing
parameter. If the hash-based sampling scheme is selected, it is only needed to specify the
sampling rate.

There is another important interface that is used to export the measurements to the
CMS collector. It is required to specify two export templates that are related. The first
one, depicted below, describes a flow, i.e. 5 tuple source and destination IP addresses,
source and destination ports and protocol. Besides this information, the samplerId, or IP
address of the probe, is also provided in order to identify the observation point for further
processing. Generic flow statistics, like total number of packets and average throughput
and the DiffServ code point of the class of service, are also exported.

export_fields_t qosMeasure_fields[] = {

{IPFIX_ENO_FOKUS, IPFIX_FT_TASKID, 4},

{IPFIX_ENO_FOKUS, IPFIX_FT_FLOWID, 4},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_SAMPLERID, 20},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_SOURCEADDRESSV6, 16},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_DESTINATIONADDRESSV6, 16},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_TRANSPORTSOURCEPORT, 2},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_TRANSPORTDESTINATIONPORT, 2},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_IPPROTOCOL, 1},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_DSCP, 1},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_NUMPKTS, 4},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_THROUGHPUT, 4}

};

To each flow record, a captured packet information is associated and presented below.
The mapping between both templates is done with the IPFIX FT TASKID, IPFIX FT FLOWID
and IPFIX FT OID. Moreover, the hash number represented by NSEQ (in the template
IPFIX FT NSEQ) is sent together with the time of the arrival of the packet, in order to
compute metrics like one-way-delay or jitter.

export_fields_t qosMeasure_flow_fields[] = {

{IPFIX_ENO_FOKUS, IPFIX_FT_TASKID, 4},

{IPFIX_ENO_FOKUS, IPFIX_FT_FLOWID, 4},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_OID, 20},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_NSEQ, 4},

{IPFIX_ENO_FOKUS, IPFIX_FT_TSTAMP_SEC, 4},

50 Network monitoring requirements and system specification

{IPFIX_ENO_FOKUS, IPFIX_FT_TSTAMP_NSEC, 4},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_PL_SIZE, 2},

};

The exporter is invoked at each exporting interval, which is also specified by CMS
to the controller component. When the current measurements must be exported, the
exporter component accesses the flow records and sends the information using the template
presented above. To avoid conflicts between the exporter and the QoSMeasure function
that inserts information into flow records(because flow records are kept in shared memory),
a mutex was implemented. After the export, all records are cleared.

3.3.3 QoS Calculator

The QoS calculator was a function implemented to perform some computation of the QoS
metrics presented in Section 2.3. It can also be considered as a function that runs inside
the NME, like the ones presented in Figure 3.10, but it is not mandatory. This function
can run inside CMS in order to compute the desired metrics using the measurements
collected and stored in the results database. This function works in conjunction with the
ones described before, the first ones collect the measurement from specific observation
points, either passively or actively, and the QoS calculator computes the required metrics
and aggregates the measurements to be exported to the ANQoSB.

The task seams to be quite simple but it can be very complex because of the amount
of measurements stored in the result database. To compute One-Way-Delay, packets
from different observation points (or NMEs) must be matched and the time of arrival
from these packets has to be subtracted. In order to simplify the matching function, the
common flows between observation points are identified. For each flow common to more
than one observation point, packets can be matched using the IPFIX field denominated as
IPFIX FT NSEQ. When a packet is matched, the one-way-delay between the observation
points can be calculated by subtracting both packets timestamps, and this metric is then
stored in a array associated to the flow. The observation points pairs are also stored for
further processing.

The delay variation is calculated like in Equation 2.2, and two consecutive delay values
are at least necessary. Packet loss is calculated by identifying, for identical flows transvers-
ing more than one observation point, the difference between the packets sent and received
for each class of service. The final required metrics are: owdmin, owdavg, owdmax, jittermin,
jitteravg, jittermax, packet lossavg, packet lossmax. To obtain these metrics, the gsl library
is used to calculate for each metric the minimum, the average and the maximum values.
Taking into consideration the error of some metrics, a percentile is used to eliminate the
most diverse values.

Before, exporting results to the ANQoSB component, measurement values must be
aggregated by class of service, by multicast group and also by observation points. The

3.3 Implementation of NME functions 51

idea is to join all the different flows arrays and calculate the metrics considering the
aggregation parameters mentioned before.

Following the aggregation, the metrics are exported using the template presented be-
low:

export_fields_t mcast_fields[] = {

{IPFIX_ENO_DAIDALOS, IPFIX_FT_METERSTARTTIME, 4},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_METERSTOPTIME, 4},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_OID1, 20},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_OID2, 20},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_MULTICASTGROUP, 16},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_TRAFFICDIRECTION, 1},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_DSCP, 1},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_OWDMINDELAY, 4},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_OWDAVGDELAY, 4},

{IPFIX_ENO_DAIDALOS, IPFIX_FT_OWDMAXDELAY, 4 },

{IPFIX_ENO_DAIDALOS, IPFIX_FT_MINJITTER, 4 },

{IPFIX_ENO_DAIDALOS, IPFIX_FT_AVGJITTER, 4 },

{IPFIX_ENO_DAIDALOS, IPFIX_FT_MAXJITTER, 4 },

{IPFIX_ENO_DAIDALOS, IPFIX_FT_AVGPACKETLOSS, 2 },

{IPFIX_ENO_DAIDALOS, IPFIX_FT_MAXPACKETLOSS, 2 },

{IPFIX_ENO_DAIDALOS, IPFIX_FT_INTHROUGHPUT, 4 },

{IPFIX_ENO_DAIDALOS, IPFIX_FT_OUTTHROUGHPUT, 4 }

};

The QoS Calculator function supports a list of parameters, allowing more flexibility.

"options:\n"

" -h this help\n"

" -v verbose level\n"

" --maxdelay <s> to determine packet loss\n"

" --stat <outfile> write statistic data to <outfile>\n"

" --collector <host:port> collector to send results to\n"

" --startts <val> evaluation start time\n"

" --stopts <val> evalutatin stop time\n"

" --tid-res <val> task id\n"

" --tid <val>,..<val> tasks id\n"

Besides the collector address (in this case is the ANQoSB), the start and stop time of
the evaluation can be specified. The other parameters ”‘–tid*”’ are mandatory because
the taskId that has to be evaluated must be specified. The ”‘–tid-res”’ parameter can be
used to identify the taskId of the calculation function so that CMS can keep track of the
measurement results.

52 Network monitoring requirements and system specification

3.4 Integration

The interfaces were already defined so that integration would be an easy step to accom-
plish. The NME component works like a wrapper for the implemented measurement
functions. As mentioned in Section 3.2.3, the controlling functions were already defined,
the specific parameters from each function were the only thing left to test. The IPFIX
export was also very peacefully integrated since the platform already provided an IPFIX
library which only needed to be extended with some new fields. The OpenIMP platfom
provided a PHP interface through a web server. This GUI was extended in order to allow
the testing of the new functions. This way, it was possible to configure graphically and
to visualize the measurement results. Figure 3.11 depicts the GUI for configuring the
function QoSMeasure, i.e. passive test with sampling methods. As it can be observed, the
calculator is also selected in this interface, simplifying the configuration. In the Figure
3.11, the interface to configure the function ActiveMeasure is also shown.

Figure 3.11: Graphical user interface for configuring the function QoSMeasure.

The functions can also be configured using the command line interface provided with
the OpenIMP platform. This type of configuration requires a connection with each of the
NMEs that are needed to configure. On the other hand, the GUI allows a more simple and
quick interface, for instance, it is possible for the QoSMeasure function to select several
NMEs and also the QoS calculator. The NMEs appear in the GUI as drop down lists
because they are initially added into the CMS. This one maintains the current status of
all NMEs and their capabilities, i.e. the function they support.

3.4 Integration 53

Figure 3.12: Graphical user interface for configuring the function ActiveMeasure.

54 Network monitoring requirements and system specification

Chapter 4

Measurements results analysis

A test scenario, based on the DAIDALOS Testbed, is defined in this chapter. Using
this scenario, several experiments were executed in order to evaluate the functions imple-
mented.

4.1 Test Scenario

A small segment of the DAIDALOS testbed is depicted in Figure 4.1. The full scenario
is presented in the Annex B. The test scenario is elaborated in order to evaluate the
measured metrics before exporting them to the ANQoSB.

Figure 4.1: Test Scenario.

The ANQoSB can configure the required measurements using the SOAP API. CMS
configures the measurements on the NMEs, depending on the requested functionality. The
NMEs perform the required measurements and export the results to CMS. Some of the
measurements results, i.e. passive measurements, need to be post-processed by a second
NME, using the QoS calculator function. The tests consisted in the evaluation of the

55

56 Measurements results analysis

intrusiveness of the activeMeasure function and the accuracy of resulting QoS metrics.
A second set of tests were executed to the qosMeasure function and the associated QoS
calculator. Sampling methods were tested and the QoS calculator processing effort was
estimated.

The NMEs were configured to run on the ER1 and AR1. To test the activeMeasure
function, a measurement task was configured between both routers, and the results were
exported to the CMS collector. The traffic was injected using a Poisson distribution. Four
different flows were used to collect QoS performance metrics for each of the QoS classes
previously defined.

The function qosMeasure was tested with the help of mgen measurement tool. Test
traffic was injected from the core network (which is located upstream ER1), to the termi-
nals Songoku and Centauro. The NMEs, on the routers ER1 and AR1, were configured
to collect the multicast flow information, and export it to CMS. The QoS calculator then
used this information to compute the required QoS metrics.

4.2 Results

The scenario presented before was used to collect the network performance metrics, either
by the executing active tests, with the activeMeasure function, or passively monitoring
the network with the qosMeasure function.

The first scenario was the evaluation of the activeMeasure function and of the exported
metrics, i.e. One-Way-Delay, jitter, and packet loss ratio. The collected results are de-
picted in Figure 4.2. This one presents the calculated metrics on the Maria’s Terminal
for a user session. The intrusiveness of the measurements are evaluated by injecting four
multicast flows from the ER1 to the AR1 and monitoring how the user session is affected.
The test active traffic is injected at different average bit rates, but with a constant payload
size of 1370 bytes. The Figure shows that for the higher bit rates the One-Way-Delay and
Jitter increased both their average values and maximum values. The average packet loss
ratio for the different scenarios is considered 0. Moreover, the network performance was
not affected, since the bottleneck of the scenario is located on the wireless technology, but
active measurements are only executed till the AR

The passive measurements rely in the capture of network flows. If all the packets are
captured, the QoS calculator has to process the information and to compute the required
metrics. This can affect the responsiveness of this function, since for the same interval
of time, more data must be selected from the database and processed. To overcome this
problem, sampling methods were used. One of them, the random sampling method, was
selected to calculate a hash, in order to synchronize the sampling processes. The other
sampling methods (i.e. count-base and time-base) would required a sequence number
so that the same information, collected in different observation points, would matched
together. These methods can be used when RTP flows are captured because the header of

4.2 Results 57

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.05 0.055 0.06 0.065 0.07 0.075 0.08

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n
(s

ec
)

One-Way-Delay (sec)

haitian.570.latency.gplot

rate270
rate570
rate770

(a) One-Way-Delay Probability Density Function.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

Jitter (sec)

rate270
rate570
rate770

(b) Jitter Probability Density Function.

Figure 4.2: Active measurement results

58 Measurements results analysis

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

One-Way-Delay (sec)

(a) Probability Density Function.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

One-Way-Delay (sec)

5
10
25

(b) Cumulative Density Function.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10 20 30 40 50 60 70 80 90 100

|e
rr

or
| (

%
)

Percentile (%)

5
10
25

(c) Sampling error.

Figure 4.3: Passive measurement results - One-Way-Delay.

4.2 Results 59

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 0.01 0.02 0.03 0.04 0.05 0.06

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

Jitter (sec)

(a) Probability Density Function.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Jitter (sec)

5
10
25

(b) Cumulative Density Function.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100

|e
rr

or
| (

%
)

Percentile(%)

5
10
25

(c) Sampling error.

Figure 4.4: Passive measurement results - Jitter

60 Measurements results analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

P
ac

ke
t l

os
s

ra
tio

Time (sec)

Packet Loss ratio with random sampling method (rate=100%)

Flow 1

Figure 4.5: Passive measurement results - Packet Loss

this protocol carries a sequence number. In the scenario, only UDP flows were considered,
so a hash had to be calculated per captured packet.

The Figure 4.3 shows the One-Way-Delay metric error for the different sampling rates
and, for a sampling rate of 10%, the error is considered acceptable. The other metrics
are also depicted in Figure 4.4 and Figure 4.5. The probability density function helps
to identify how the values (One-Way-Delay and Jitter) are distributed. The cumulative
density function depicts the differences between the selected sampling rates. The sampling
error shows that for a sampling rate of 10% the required Percentils (5%, 50% and 95%)
have a small error.

4.3 Evaluation

The enormous amount of measurement data that can be collected from the network is
resource consuming; but sampling provides adequate techniques to overcome this problem.
The computation of QoS metrics (e.g. delay, jitter, packet loss) can be one of the main
problems, since it can affect the response time of the network monitoring system. We
will present the results of sampling methods and their accuracy, taking into account the
elapsed time of the QoS calculator function. The process of measuring data traffic metrics
consists of the following steps:

• capturing packets from the wire;

• filtering packets;

• packet classification;

• processing the packet and its header fields to compute the metric of interest;

4.3 Evaluation 61

• exporting the results to a central collector entity for further processing;

• computation of metrics and aggregate measurement per class of service and obser-
vation points pairs;

• exporting the results to ANQoSB.

0%

1%

1%

2%

2%

3%

3%

4%

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

|e
rr

o
r|

 (
%

)

Percentile(%)

Figure 4.6: One-Way-Delay Error

0%

10%

20%

30%

40%

50%

60%

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

|e
rr

o
r|

 (
%

)

Percentile(%)

Figure 4.7: Jitter Error

Multipoint measurements were implemented. The sampling method needs to guarantee
that the same packets were captured at all the involved measurement points so that metrics
such as delay can be obtained. In order to perform this task, a hash-based method was
selected to synchronize the sampling processes. This method is based on a deterministic
function, based on the packet content; it is a special form of filtering that provides a
pseudo random selection. Several tests were executed with different flow types to analyze
the error related to the implementation of the hash-based sampling and the performance
of the computation algorithm.

The tool mgen was used to generate different types of flows, following a Poisson traffic
distribution. CMS was configured to monitor these flows using different sampling fractions

62 Measurements results analysis

0%

5%

10%

15%

20%

25%

30%

35%

1% 2% 5% 10% 20% 25% 50% 75% 80% 90%

|e
rr

o
r|

 (
%

)

Sampling Rate(%)

Figure 4.8: Packet loss sampling error

-90%

-80%

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

C
o

m
p

u
ta

ti
o

n
 T

im
e

(%
)

Sample Fraction (%)

Without DB optimization with DB optimization

Figure 4.9: Metrics Computation Time.

4.3 Evaluation 63

and to compute the QoS metrics for each of them. The metrics selected were those used
by the call admission control algorithm.

Figure 4.6 and 4.7 present the evaluation performed to the sampling method mentioned
above. The Y axis represents the Percentile of the calculated metrics relative to the
measured error caused by sampling. The tests were realized several times in order to
calculate the mean sample values and the respective confidence interval for a sampling
rate of 10%. This sampling rate achieved good results with a low measured error for the
One-Way-Delay and Jitter calculation. The One-Way-Delay has a small error for all the
Percentil’s, but jitter has a high error for the lowest Percentils. Since the median and the
95% have errors below 10%, this can be considered a possible sampling rate to be adopted.
The Figure 4.8 depicts the packet loss ratio error, the high error is justified by a small
number of samples and a high packet loss ratio.

Besides the accuracy, the resource consumption of the implemented algorithm was also
measured. The Figure 4.9 shows the percentual computation time relative to the sample
fraction 100%. The measurements are stored in the results database and the structure of
this database will be reflected on the performance of the metric computation algorithm.
Several tests were made without any optimization of the database but the results were
poor. This was caused by the lack of an index on the database. A database index is a data
structure that improves the speed of operations in a table. They can be created using one
or more columns, providing the basis for both rapid random lookups and efficient ordering
of access to records. It was detected that some queries were performed using the flowId
and taskId columns as conditions. After altering the tables and adding the flowId and
taskId as index, we decreased the computation 4 times (below 1 second). As the sample
fraction decreases, less time is required to compute the QoS metrics, because we are using
fewer measurements to calculate the same metrics. Based on the evaluation performed we
concluded that the metrics computation time can be decreased by implementing a hash-
based sampling scheme, still obtaining metrics with a good accuracy. The computation
time can be easily decreased if the database table index is modified. This can be seen as
a requirement for the IPFIX protocol, where it is required to specify a field’s template to
be the index or primary key of the database table.

64 Measurements results analysis

Chapter 5

Conclusions

5.1 Summary

This thesis presents a network monitoring solution for a multicast Call Admission Control
(CAC) algorithm, developed for the DAIDALOS project. First, the adopted technologies,
like IPv6, Multicast, and QoS, are briefly presented. Multicast monitoring tools are also
studied but only a few of them fulfill the requirements. Multicast Quality Monitor is
one of the possible tools that can be integrated into the monitoring system. Although it
can manage measurement tasks and export measurements results to a central entity, the
export is not compliant with the standards.

The admission of new multicast flows in the network requires information about the
available resources. This can be obtained by a network monitoring system which co-
ordinates the measurements tasks and collects the measurements results. The network
monitoring system is compliant with the IPFIX standard and proves to be scalable and
interoperable. System requirements were specified, based on the ANQoSB call admission
control algorithm. An architecture was designed in order to fulfill the requirements and to
interface with the other DAIDALOS components, using the current standards, like IPFIX.

Multipoint measurements and sampling methods were implemented. The selected
sampling methods ensure that the same packets are captured at different measurement
observation points. The synchronization of all the sampling processes can be guaranteed
by a hash based method. The packets are selected based on their content, providing a
pseudo random selection mechanism.

Active measurements were implemented based on an open source tool and the per-
formed evaluation proved that, for this application scenario, the measurements are not
very intrusive. Nevertheless, a feedback mechanism, based on the collected passive mea-
surements, can be implemented to avoid the disruption of users’ sessions. CMS can con-
figure a bandwidth threshold per interface on each NME that sends an IPFIX report
when the bandwidth reaches the specified threshold. CMS can either remove the active
measurement, or just change the average bit rate of each active test.

65

66 Conclusions

5.2 Achievements

The main achievements of this work are the solution developed for multicast network
monitoring used for call admission control, and the performed evaluation of the sampling
methods and active measurements. Three measurement functions were developed and in-
tegrated into the network monitoring system. One of them is used to passively measure
the network QoS metrics. Sampling methods were implemented and integrated into this
function. A hash-based method was used in order to synchronize the sampling processes
and facilitate the QoS metrics calculation. A template for exporting the measurements,
based on flows, was defined. The second function was implemented in order to calculate
QoS metrics from the collected measurements of the previous function. Scalability and
performance concerns were considered, not only related on the way data is fetched from
the database, but also on the way packet matching process is performed. The calculated
QoS metrics are then exported using a defined IPFIX template. The third function ex-
ecutes active tests on the network using a predefined multicast group. In order to test
route asymmetry, unicast tests were performed on the reverse path. This function does
not require any additional computation probe, because the metrics are calculated on the
receiver side. Since the tests can be controlled, it is possible for a probe running on a
router to perform the calculation of the QoS metric. These metrics are then exported to
a central database and aggregated using a defined IPFIX template.

Sampling methods were evaluated in terms of accuracy for the selected QoS metrics.
The main objective was to understand the real network gain in usage and processing
effort for the QoS calculator by having sampling methods implemented. Sampling is very
important because it can reduce the amount of measurements to be exported to a collector,
and thus reduces the amount of network usage. Moreover, in order to calculate QoS metrics
for multi-point measurements it requires to match the information from both points and
calculate the QoS Metrics using all the collected information. This can be a burden for
the QoS calculator, and it can require more time to calculate the QoS metrics. When a
sampling method is used, the processing effort and the network traffic for exporting the
measurements can be diminished. The problem is that sampling inserts an error in the
QoS metrics estimation. So it requires a compromise between the sampling rate and the
processing effort, so that the system would be able to respond in real-time.

5.3 Future Work

For future work, we can think about many different topics. One idea is to dynamically
adjust passive and active measurements parameters. When the network load is high,
measurements can lead to the disruption of user sessions or high packet drops. To prevent
this scenario, the passive functions could monitor the routers queue, and signal the active
measurement functions each time the router is dropping a lot of packets. In this way, the

5.3 Future Work 67

active measurement functions can diminish the packet rate or even stop the tests in order
to avoid user sessions’ disruption. For passive measurement functions a similar mechanism
can also be applied. When the network’s usage is high, the passive measurement function
could adjust the sampling rate in order to capture less packets. A smaller set can also give
good results, but with less processing effort or even exported information traffic.

Another topic of study can be a decentralized approach for the deployment of network
monitoring. For now, the major functionalities are provided by CMS, like measurement
tasks management, NMEs management, and results databases. To start, the architecture
can support more than one collector. Using this concept, the same collected measure-
ments can be reused by applications to calculate different metrics, reducing the amount
of monitored information. The second step should be decentralize the management of
measurement tasks. This is accomplished by the adoption of novel signaling protocols
like NSIS. This protocol has a specific application devoted to the metering configuration,
M-NSLP. By using path-coupled or path-decoupled messages, it is possible to configure
several probes.

Inter-domain measurements is also another topic that can be further developed. How
can measurements be exchanged or performed between two different administrative do-
mains, separated by several transit domains that can or cannot support measurements?
There are several possibilities. One is assuming that domains can cooperate and, in this
case, each domain executes measurements between its boundaries and exchanges measure-
ments with the neighbor domains. In an other scenario, where domains do not cooperate
and it is required to have end-to-end measurements, a negotiation process must exist. A
solution can be the adoption of the signaling protocol defined before, M-NSLP. This pro-
tocol negotiates only with the domains capable of understanding it and which can support
the desired measurement functions. There is a third alternative, where a trusted third-
party domain is responsible for performing and collecting the measurements on the other
domains, by using a well defined equipment.

68 Conclusions

Appendix A

Monitoring platforms evaluation

This section presents a comparison of the main characteristics and features of the available
monitoring and measurement platforms. The evaluated platforms were:

• Open Internet Measurement Project (OpenIMP);

• IP Probes;

• Monitoring Platform for Mobile Flows (MPMF);

• NeTraMet.

A.1 Platform Description

A.1.1 Open Internet Measurement Project (OpenIMP)

The Open Internet Measurement Platform (OpenIMP) has been designed to distribute
IP traffic and quality of service measurements. The range of measurements supported
includes volume, one-way-delay, round-trip-delay, jitter, and packet loss. IMP includes
passive and active measurement components, and it has a modular design that can be
adapted to several different kinds of measurements. The results can be used to feed other
platforms, for example, for usage-based accounting, SLA validation, intrusion detection
and traffic profiling. The time synchronisation is achieved either via a GPS signal or via
NTP. The OpenIMP main components are:

• Active meters;

• Passive meters;

• Data collector;

• Evaluation server - Results post-processing and visualisation;

• Measurement control unit with Web interface.

For the data export from the probes, the IPFIX protocol is currently used.

69

70 Monitoring platforms evaluation

A.1.2 IP Probes

The IP Probes were designed for distributed IP traffic and quality of service measurements.
The current version of the IP Probes platform performs only active measurements. The
range of measurements supported are one and two way delays (end-to-end), one and two
way delays with route specification, jitter and packet loss. At a higher layer, the platform is
integrated with another one, able to verify SLA, generate alarms, etc. The synchronisation
is achieved either via embedded GPS capabilities in the distributed active probes or via
NTP (less accuracy). The IP Probes main components are:

• Active meters;

• Element of operation, results visualisation and interface with external entities, ac-
cessible via a Web interface;

• Data Base for pre and pos processed results.

A.1.3 Monitoring Platform for Mobile Flows (MPMF)

The platform has been designed to evaluate IP traffic quality of service measurements,
with a special focus on IPv6 mobility scenarios. The MPMF is an operational distributed
passive monitoring system for a MIPv6 based access network. Its features are:

• Unequivocal identification of mobile IPv6 flows by the samplers;

• Graphical user interface (through which multiple performance information is made
available to the user);

• Assessment of individual flow identification parameters;

• Packet and time statistics, resourceful flow plot implementation including a high
precision zoom;

• Real-time network topology view and flow path display;

• Four network traffic sampling techniques for UDP and TCP protocols;

• The host, network, port and transport protocol oriented filtering of captured/sam-
pled traffic;

• Implementation of logging for saving and posterior loading of monitored network
traffic.

The MPMF main components are the sampler and collector.
Sampler:

• Hosted in the network elements;

A.2 Evaluation 71

• Captures the information in the network interfaces;

• Samples and filters the captured packets;

• Process IPv6 packets;

• Regularly sends the information to the collector.

Collector:

• Hosted in a server (dedicated machine);

• Receives all the information from the samplers;

• Process all the information received;

• Identifies and classifies flows;

• Controls the networks samplers (sampling and filtering).

The NetFlow9 protocol, defined by Cisco Systems, is used for the communication
between the sampler and the collector.

A.1.4 NeTraMet

NeTraMet is a meter for network traffic flows. It performs passive network monitoring.
NeTraMet measures one-way delays, packet losses and throughput. Synchronization can
be achieved either by a GPS signal (not embedded) or NTP. It has three components:

• Meters;

• Meter readers;

• Managers.

Although several modifications to this platform may be available, the default version will
be the one here analysed.

A.2 Evaluation

The table presented depicts a comparison between the monitoring platforms described.

72 Monitoring platforms evaluation

Table A.1: Comparison between the monitoring platforms

General Features OpenIMP IP Probes MPMF NeTraMet

IPv4 yes yes no yes

IPv6 yes yes yes no

Embedded GPS
synchronisation

yes yes no no

Accuracy of the packet
marking (using GPS)

≈100 µsec ≤100 µsec no no

NTP synchronisation yes yes yes yes

OS BSD/Linux BSD/Linux Linux BSD/Linux

Interface to external
elements (specify)

Web
interface for

control +
results GUI

Web services no no

Ethernet/Fast Ethernet
interface

yes yes yes yes

Wireless (802.11b)
interface

yes yes yes yes

Wireless (802.11g)
interface

yes yes yes yes

Bluetooth interface yes yes no yes

Self hardware platform yes yes no no

Dedicated Hardware
Network Processor

yes yes - -

Dedicated hardware
platform able to

integrate GPRS/UMTS
and GSM

measurements

no yes - -

Integrated 1xRTT
CDMA 2000 interface

no yes - -

Active Measurements yes yes no no

Packet Loss yes yes - -

One way Delay yes yes - -

Round Trip delay yes yes - -

One way jitter yes yes - -

Continues on Next Page. . .

A.2 Evaluation 73

General Features OpenIMP IP Probes MPMF NeTraMet

Round Trip Jitter no yes - -

Throughput yes yes very
intrusive

Route Specification for
each measure

no yes

Configurable packet
distributions

no yes

Configurable
interpacket time

distribution for packet
sending

yes yes

Configurable TCP/IP
layers

5 4 - -

DNS, HTTP
performance analysis

yes no - -

Total packets yes yes - -

Total bytes yes yes - -

Passive Measures yes no yes yes

Packet Loss yes - yes yes

Delay yes - yes yes

Jitter yes - yes yes

Instantaneous flow Bit
rate (for real time

visualisation)

no - yes yes

Flow bit rate (average) yes - yes no

Aggregate bit rate
(aggregate and view
flows with similar
characteristics)

yes - yes no

Path Discovery no - yes no

IPv6 Mobility aware no - yes no

Filters configurable
until the TCP/IP layer

n.

5 - 4 no

Retransmitted packets yes - yes no

RTP loss yes - no no

Continues on Next Page. . .

74 Monitoring platforms evaluation

General Features OpenIMP IP Probes MPMF NeTraMet

Tariff Formula
language to express
charging schemes

yes - no no

Display of charges per
flow

yes - no no

Centralised
Management

yes yes yes yes

Web Interface yes yes no no

Control interface with
specific software

yes no yes no

Command line control
interface

yes no no yes

Data Collector yes yes yes yes

Operation and Control
Element

yes yes yes yes

Interface towards a
management platform

no yes no no

Integrated Result
Visualization

yes yes yes no

Web based yes yes no -

Own visualization
system

yes no yes -

Zoom tool (zoom in
and out on the graphics

with the results)

yes no yes -

Integrated network
topology visualisation

no no yes -

Test Execution and
Reporting

Possibility to view the
test results in real time

no yes yes yes

Test Scheduler yes yes no no

Test Results
Storage/Centralized

yes/yes yes/yes yes/yes yes/yes

Interactive test mode
(real time test set-up)

yes yes no no

Continues on Next Page. . .

A.3 Licensing and availability 75

General Features OpenIMP IP Probes MPMF NeTraMet

Macros (templates) for
test specific ations

yes yes no no

SLA conformance
verification

yes yes no no

Report generation to
external systems

no no no no

Storage of complete
test results

yes yes yes yes

Storage of filtered test
results

yes yes no no

Other Features

Standards compliance
IPPM, IPFIX,

IPSAMP

IPFIX
export im-

plementation
in progress

no yes no

Transactions capture no no no no

A.3 Licensing and availability

A.3.1 OpenIMP

The IMP platform is a free software; it can be redistributed and/or modified under the
terms of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (optionally) any later version. Some metric computation
components can be restricted in their redistribution due to a separate copyright.

A.3.2 IP Probes

IP Probes can be provided free of charge for the DAIDALOS project.

A.3.3 MPMF

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (optionally) any later version.

76 Monitoring platforms evaluation

A.3.4 NeTraMet

NeTraMet is free software, distributed under the terms of the GNU General Public License.
A copy of this is provided with the NeTraMet software distribution files.

A.4 Conclusions

The main conclusion of this evaluation is that none of the available platforms fully comply
with all the necessary requisites. With the exception of NeTraMet, all the others present
a user friendly environment for test configuration and reporting. The OS in which these
platforms operate are indicated to the DAIDALOS environment.

OpenIMP - it is the broadest platform in the sense that it supports both IPv4 and
IPv6, both active and passive measurements and it goes in the analysis up to the
application layer. However, there are some features that make it incomplete and
some further evaluation must be done.

IP Probes - this platform lacks the passive monitoring features. In terms of active
monitoring, the measurement of application layer characteristics is still missing.
The existent interfaces with a network management system and with a QoS Broker
are good features. The possibility to have dedicated hardware to perform certain
functions may be a value added feature. Licensing and availability must be further
evaluated.

MPMF - this tool is limited to IPv6 passive monitoring. However, in this field, it im-
plements a set of very useful features, especially those related to IPv6 mobility and
route path discovery. Licensing and availability must be further evaluated.

NeTraMet - the default version of this tool operates in IPv4 only. Additionally, it
supports passive monitoring only. When compared to the other available platforms in
this segment (passive monitoring), the characteristics of the others are more suitable
for the DAIDALOS environment. However, the licensing and availability within the
consortium may be a determinant factor, due to the ”‘free”’ nature of this platform.

Appendix B

DAIDALOS testbed

B.1 Accident and University scenario

77

78 DAIDALOS testbed

F
igure

B
.1:

D
A

ID
A

L
O

S
testbed

Bibliography

[1] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Updated by RFC
1349.

[2] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC
2460 (Draft Standard), December 1998. Updated by RFC 5095.

[3] C. Bormann, C. Burmeister, M. Degermark, H. Fukushima, H. Hannu, L-E. Jonsson,
R. Hakenberg, T. Koren, K. Le, Z. Liu, A. Martensson, A. Miyazaki, K. Svanbro,
T. Wiebke, T. Yoshimura, and H. Zheng. RObust Header Compression (ROHC):
Framework and four profiles: RTP, UDP, ESP, and uncompressed. RFC 3095 (Pro-
posed Standard), July 2001. Updated by RFCs 3759, 4815.

[4] R. Hinden and S. Deering. IP Version 6 Addressing Architecture. RFC 2373 (Proposed
Standard), July 1998. Obsoleted by RFC 3513.

[5] R. Hinden and S. Deering. IP Version 6 Addressing Architecture. RFC 4291 (Draft
Standard), February 2006.

[6] R. Vida and L. Costa. Multicast Listener Discovery Version 2 (MLDv2) for IPv6.
RFC 3810 (Proposed Standard), June 2004. Updated by RFC 4604.

[7] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas. Protocol Independent Multicast
- Sparse Mode (PIM-SM): Protocol Specification (Revised). RFC 4601 (Proposed
Standard), August 2006. Updated by RFC 5059.

[8] S. Deering, W. Fenner, and B. Haberman. Multicast Listener Discovery (MLD) for
IPv6. RFC 2710 (Proposed Standard), October 1999. Updated by RFCs 3590, 3810.

[9] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan. Internet Group
Management Protocol, Version 3. RFC 3376 (Proposed Standard), October 2002.
Updated by RFC 4604.

[10] A. Adams, J. Nicholas, and W. Siadak. Protocol Independent Multicast - Dense Mode
(PIM-DM): Protocol Specification (Revised). RFC 3973 (Experimental), January
2005.

[11] M. Handley, I. Kouvelas, T. Speakman, and L. Vicisano. Bidirectional Protocol
Independent Multicast (BIDIR-PIM). RFC 5015 (Proposed Standard), October 2007.

[12] S. Bhattacharyya. An Overview of Source-Specific Multicast (SSM). RFC 3569
(Informational), July 2003.

79

80 BIBLIOGRAPHY

[13] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated Services
Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474 (Proposed Standard),
December 1998. Updated by RFCs 3168, 3260.

[14] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture:
an Overview. RFC 1633 (Informational), June 1994.

[15] B. Davie, A. Charny, J.C.R. Bennet, K. Benson, J.Y. Le Boudec, W. Courtney,
S. Davari, V. Firoiu, and D. Stiliadis. An Expedited Forwarding PHB (Per-Hop
Behavior). RFC 3246 (Proposed Standard), March 2002.

[16] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding PHB
Group. RFC 2597 (Proposed Standard), June 1999. Updated by RFC 3260.

[17] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation Pro-
tocol (RSVP) – Version 1 Functional Specification. RFC 2205 (Proposed Standard),
September 1997. Updated by RFCs 2750, 3936, 4495.

[18] B. Claise. Packet Delay Variation Applicability Statement. Internet-Draft draft-
ietf-ippm-delay-var-as-00, Internet Engineering Task Force, February 2008. Work in
progress.

[19] Audio-Video Transport Working Group, H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson. RTP: A Transport Protocol for Real-Time Applications. RFC 1889
(Proposed Standard), January 1996. Obsoleted by RFC 3550.

[20] G. Sadasivan. Architecture for IP Flow Information Export. Internet-Draft draft-
ietf-ipfix-architecture-12, Internet Engineering Task Force, September 2006. Work in
progress.

[21] P.D. Amer and L.N. Cassel. Management of sampled real-time network measure-
ments. In Local Computer Networks, 1989., Proceedings 14th Conference on, pages
62–68, 1989.

[22] N. Duffield. A Framework for Packet Selection and Reporting. Internet-Draft draft-
ietf-psamp-framework-12, Internet Engineering Task Force, June 2007. Work in
progress.

[23] J. Quittek, S. Bryant, B. Claise, P. Aitken, and J. Meyer. Information Model for IP
Flow Information Export. RFC 5102 (Proposed Standard), January 2008.

[24] K. Almeroth, K. Sarac, and L. Wei. Supporting multicast management using the
multicast reachability monitor. 2000.

[25] Falko Dressler. Scalable QoS Measurements in Multicast Environments. May 2003.
Published: Poster.

[26] S. Sargento, V. Jesus, F. Sousa, F. Mitrano, T. Strauf, C. Schmoll, J. Gozdecki,
G. Lemos, M. Almeida, and D. A10 Corujo Corujo. Context-aware end-to-end qos
architecture in multi-technology, multi-interface environments. In Mobile and Wire-
less Communications Summit, 2007. 16th IST, pages 1–6, 2007.

BIBLIOGRAPHY 81

[27] B. Claise. Specification of the IP Flow Information Export (IPFIX) Protocol for the
Exchange of IP Traffic Flow Information. RFC 5101 (Proposed Standard), January
2008.

[28] E. Stephan. IP Performance Metrics (IPPM) Metrics Registry. RFC 4148 (Best
Current Practice), August 2005.

[29] B. Claise. Packet Sampling (PSAMP) Protocol Specifications. Internet-Draft draft-
ietf-psamp-protocol-09, Internet Engineering Task Force, December 2007. Work in
progress.

[30] A. Bak, A. Beben, W. Burakowski, M. Dabrowski, M. Fudala, Z. Kopertowski, and
H. Tarasiuk. On handling streaming and elastic traffic in ip based aquila network:
measurement results.

[31] T. Zseby. Deployment of sampling methods for sla validation with non-intrusive
measurements. Proceedings of Passive and Active Measurement Workshop, 2001.

	Início
	Resumo
	Abstract
	Acknowledgements
	Contents
	List of figures
	List of tables
	Acronyms
	1. Introduction
	2 State-of-the-art
	3. Network monitoring requirements and system specification
	4. Measurements results analysis
	5. Conclusions
	Appendix A - Monitoring platforms evaluation
	Apeendix B - DAIDALOS testbed

