

FACULTY OF ENGINEERING OF THE UNIVERSITY OF PORTO

Performance Analysis of a

Database Caching System

In a Grid Environment

Luis Albino Nogueira Ramos

Graduated in Informatics and Computing Engineering
By the Faculty of Engineering of the University of Porto

Dissertation submitted in partial fulfillment of

the requirements for the degree of
Master of Informatics Engineering

Dissertation prepared under the supervision of

Dr. Gabriel de Sousa Torcato David
from the Department of Electrical and Computer Engineering

of the Faculty of Engineering of the University of Porto

Porto, September 2007

to little birds who are the secrets of living

Resumo

O CERN é o maior centro de investigação em física de partículas do mundo onde milhares
de físicos estudam os constituintes fundamentais da matéria. O maior projecto do CERN é o
Large Hadron Collider (LHC), um acelerador de partículas constituído por vários detectores
que observam e registam as colisões de partículas que acontecem no LHC.

A LHC Computing Grid (LCG) fornece à comunidade de físicos uma infra-estrutura de
computação distribuída para armazenamento, distribuição e análise dos 15 PB de dados
produzidos por ano pelo LHC. A LCG fornece serviços e infra-estruturas para a replicação e
acesso distribuído a dados em ficheiros. Dado que parte dos dados são armazenados em bases
de dados, serviços e infra-estruturas similares são necessários para esses dados.

O projecto Distributed Deployment of Databases (LCG3D) fornece a infra-estrutura de
distribuição de bases de dados da LCG e é responsável pela investigação de técnicas de
distribuição de bases de dados a usar na LCG. As técnicas de distribuição de bases de dados
usadas são: a solução comercial para replicação de bases de dados Oracle Streams, e o
sistema de cache de bases de dados FroNtier. FroNtier é uma técnica de distribuição de bases
de dados baseada no caching dos resultados de queries. Uma hierarquia distribuída de caches
é colocada entre os clientes da base de dados e o servidor de base de dados.

Esta tese propõe, em estreita colaboração com o projecto LCG3D, a elaboração de uma
análise sistemática de desempenho do pacote de software FroNtier. Adicionalmente, a tese
documenta os problemas de consistência da cache em discussão na comunidade FroNtier.

Inicialmente, esta tese documenta o estudo das áreas de investigação e tecnologias
envolvidas: computação em grid, técnicas de distribuição de bases de dados, análises de
desempenho e monitorização de desempenho.

A metodologia da análise consiste na definição de um conjunto de cargas de trabalho,
factores, métricas, e num conjunto de experiências que melhor combinam estes valores.

O principal produto resultante desta tese é uma plataforma de testes de desempenho
baseada em Linux desenvolvida para automação da execução das experiências da análise.

Os resultados mais relevantes da análise de desempenho ao FroNtier são: (i) a compressão
de dados no servidor FroNtier melhora o desempenho global do sistema; (ii) o nível 1 é o
melhor nível de compressão; (iii) um servidor FroNtier serve queries de 20-30MB sem
problemas e até 80 clientes simultâneos; (iv) testes executados com uma carga de trabalho
real mostram que um sistema Oracle tem um desempenho melhor que um sistema FroNtier.
No entanto, a resolução dos problemas detectados no FroNtier, juntamente com a utilização
de caches espalhadas pela grid inverterão este resultado; (v) genericamente, uma instalação
FroNtier cobrindo uma base de dados permite que mais clientes sejam suportados.

As soluções para os problemas de consistência das caches são apresentados sob a forma de
políticas para a manutenção da consistência de dados e, numa abordagem diferente, é
apresentado um protótipo de um mecanismo de invalidação de cache.

O sistema FroNtier tem ainda de provar a sua fiabilidade e o seu desempenho. Apesar de
ser muito atractivo como uma solução leve para a distribuição de bases de dados, os
problemas de consistência de dados e a falta de provas de desempenho em cenários reais são
ainda factores que afastam os interessados.

Abstract

CERN is the largest particle physics centre in the world where thousands of physicists
study the fundamental constituents of matter. CERN’s latest project is the Large Hadron
Collider (LHC), a particle accelerator containing several detectors that observe and record the
particle collisions happening in the LHC.

The LHC Computing Grid (LCG) provides the physics community with a distributed
computing infrastructure for storage, distribution, and analysis of the 15 PB of data produced
per year by the LHC. LCG provides with services and infrastructures for the replication and
distributed access to file based data. As part of the data will be stored in databases, similar
services and infrastructures are required for data stored in relational databases.

The project entitled Distributed Deployment of Databases (LCG3D) provides the database
distribution infrastructure for the LCG and is responsible for the investigation of database
distribution techniques to be used in the LCG. The database distribution techniques used are
the commercial product for database replication Oracle Streams, and the database caching
system FroNtier. FroNtier is a database distribution technique based on the caching of
database query results. A distributed hierarchy of cache servers is introduced between the
database clients and the database server.

This thesis proposes, in close collaboration with the LCG3D project, the elaboration of a
systematic performance analysis of the FroNtier software package. Additionally, this thesis
documents the cache consistency issues under discussion inside the FroNtier community.

Before digging into the FroNtier performance analysis, this thesis documents an extensive
study of the research areas and technologies involved: grid computing, database distribution
techniques, performance analysis, and performance monitoring.

The analysis methodology consists in defining a set of workloads, factors and performance
metrics together with designing a list of experiments that best combine these values.

The main deliverable result of this thesis is a Linux based performance test framework
developed to automate the execution of the analysis’ experiments.

The FroNtier performance analysis most relevant results are: (i) payload compression on
the FroNtier server boosts the systems’ global performance; (ii) level 1 is the best
compression level; (iii) FroNtier can handle queries of 20-30MB with no issues and up to 80
clients working simultaneous ly; (iv) tests performed with a real scenario workload showed
that Oracle performs better than the FroNtier setup. Nevertheless, the resolution of the issues
detected in the FroNtier setup together with the use of Squid caches spread around the grid
will invert this result; (v) generally, a FroNtier setup covering an Oracle database allows a
much larger number of clients to be handled.

The available solutions to the cache consistency issues are presented as cache consistency
policies, and on a different approach, a cache invalidation mechanism is prototyped.

FroNtier has still to prove its reliability and performance. Despite being very attractive as
a light-weight solution for database distribution, cache consistency issues and lack of real
scenario performance proofs are still setting stakeholders aside.

Table of Contents

Chapter 1 - Introduction..13
1.1 Background ..13

1.1.1 CERN ...13
1.1.2 Large Hadron Collider (LHC)..13
1.1.3 LHC experiments ...14
1.1.4 Worldwide LHC Computing Grid (LCG)..17
1.1.5 Data distribution, processing and analysis ...18
1.1.6 Summary..19

1.2 Motivation..19
1.3 Objectives...20
1.4 Structure ...20

Chapter 2 - Grid computing ..21
2.1 Grid projects and middleware ..22
2.2 Grid services ..23

2.2.1 Job Management Services..23
2.2.2 Data Management Services..25
2.2.3 Information, Monitoring, and Accounting Services28
2.2.4 Security services ..30
2.2.5 Conclusion ...34

2.3 LCG infrastructure ...34
2.3.1 LCG site architecture ...36

2.4 Databases and the Grid ..37
2.5 Summary..38

Chapter 3 - Database Distribution Techniques ...39
3.1 Oracle Streams ...40
3.2 FroNtier ..42

3.2.1 FroNtier deployment ..43
3.2.2 Cache Consistency Issues ..44

Chapter 4 - Performance Analysis Methodology..49
4.1 Methodology definition ...49
4.2 Goals statement ..51
4.3 List services and outcomes ..52
4.4 Metrics selection..52
4.5 Parameters selection...55
4.6 Factors selection...58
4.7 Evaluation technique selection...60
4.8 Workload selection ..60
4.9 Experiment Design...63
4.10 The Test Framework ..64

4.10.1 Test Control: Load Driver and Integration Unit ..65
4.10.2 Test Monitoring..68

4.11 Summary..81
Chapter 5 - Performance Analysis of FroNtier ...82

5.1 Test Setup ...82
5.2 Test Plan: the Experiments ..83

5.2.1 Analysis methodology ...84
5.2.2 Experiment 1 - Access Methods Comparison..84
5.2.3 Experiment 1.1 - Access Methods Comparison with 4 client nodes86
5.2.4 Experiment 1.2 - Access Methods Comparison with 5 client nodes88
5.2.5 Experiment 2 - FroNtier Server Access Analysis ..89
5.2.6 Experiment 2.1 - FroNtier Server Analysis with No compression..............93
5.2.7 Experiment 2.2 - Compression and Compressibility95
5.2.8 Experiment 2.3 – Big Queries Analysis...98
5.2.9 Experiment 2.4 – Error Rate Analysis ...100
5.2.10 Experiment 3 - Squid Cache Access Analysis ...102
5.2.11 Experiment 4 - COOL Workload Analysis..104
5.2.12 Experiment 5 – Tier-1 Access Analysis...105
5.2.13 Experiment 6 - ATHENA Workload Analysis ..107
5.2.14 Additional Experiments ...109

5.3 Summary..110
Chapter 6 - Conclusions ..111

6.1 Tests Conclusions ..111
6.2 Contributions ..113
6.3 Future Work ...114

Acronyms ..115
References ...117
Appendix I – Test Web Report ...120

Table of Figures

Figure 1 - LCG 3D Service Architecture ..39
Figure 2 - Database Replication with Oracle Streams ..40
Figure 3 - Downstream Capture Setup at Tier 0 ...41
Figure 4 - FroNtier package overview ..43
Figure 5 - 3D FroNtier/Squid production setup ..44
Figure 6 - FroNtier Test Framework Components..65
Figure 7 – Access methods comparison with 1MB queries and a single client node

(throughput / number of clients) ..86
Figure 8 – Access methods comparison with 1MB queries and 4 client nodes (throughput /

number of clients) ..87
Figure 9 – Access method comparison with 1MB queries and 5 client nodes (throughput /

number of clients) ..88
Figure 10 - FroNtier analysis with compressed 100kB queries (throughput and CPU% /

number of clients) ..90
Figure 11 – FroNtier analysis with 100kB compressed queries (throughput and load

average / CPU%)..90
Figure 12 - FroNtier analysis with 1MB queries and different zip levels (throughput /

number of clients) ..91
Figure 13 - FroNtier analysis with 10kB queries and different zip levels91
Figure 14 - FroNtier analysis with 7 clients and different zip levels (throughput / query

size (kB))..92
Figure 15 - FroNtier analysis with 1MB compressed queries and different compressing zip

levels (throughput / query size (kB)) ...93
Figure 16 - FroNtier analysis with different sizes of compressed queries (throughput /

query size (kB))..94
Figure 17 – Data compressibility and Throughput with no compression (throughput /

compressibility(%))..96
Figure 18 – Data compressibility and Throughput with compression level 1 (throughput /

compressibility (%))...97
Figure 19 – FroNtier analysis with 1MB queries against a table with 30% compressible

data (throughput / number of clients)...98
Figure 20 – FroNtier analysis with big compressed queries (throughput / query size (MB))

..99
Figure 21 - % of failed queries with different query sizes and different number of clients

(% of failed queries / number of clients)..101
Figure 22 - Throughput and % of failed queries for 2,73MB queries with different number

of clients (MBps and % of failed queries / number of clients) ..101
Figure 23 - Squid analysis with 1MB queries and different compression levels (throughput

/ number of clients) ..103
Figure 24 – COOL workload analysis with different access methods and compression

levels (throughput / number of clients)..104

Figure 25 - Tier-1 execution analysis with different access methods and compression
levels (throughput / number of clients)..106

Figure 26 – Athena workload analysis using Oracle and Squid methods (throughput /
number of clients) ..108

Chapter 1 - Introduction

This chapter presents some background information about the institution where this
project took place, and how the work developed for this thesis fits in the institution's projects.
The thesis motivations and objectives are stated, and finally, the structure of the thesis is
described.

1.1 Background

This section describes the scientific background in which the project was developed,
namely, the institution, the particle accelerator, the scientific experiments underway, the
computing challenges that arise from particle physics, and the computing grid.

1.1.1 CERN
The European Organization for Nuclear Research (CERN) [1] is the largest particle

physics centre in the world. It is situated west of Geneva between France and Switzerland and
it is currently funded by 20 European countries. In 1954, CERN started the European
research on High Energy Phys ics (HEP). HEP studies the fundamental constituents of matter
and forces between them (quarks, electrons, neutrinos, photons, etc.). Higher and higher
energies are required to delve deeper and deeper into matter.

CERN's greatest scientific achievements are the discovery of the neutral currents in 1973,
and the discovery of the W and Z bosons in 1983. These discoveries together confirmed the
electroweak theory of the Standard Model that unified the electromagnetic force and the
weak force. For these discoveries and others, several CERN collaborators were awarded the
Nobel Prize in Physics.

Cutting-edge particle physics research requires advanced technology and CERN works
closely with the industry. The applications of particle research done at CERN are vast and
include fields as medicine, technology, industry, and research in other fields.

CERN's biggest technological achievement with a world wide impact in culture, economy,
politics, and everyday life happened in 1989 when Tim Berners-Lee, a scientist at CERN,
conceived and developed the World Wide Web for automatic information sharing between
scientists working in different universities and institutes all over the world.

At the bottom line, in its quest for higher particle interaction energies, CERN exists
primarily to provide European physicists with tools that meet research demands at the limits
of human knowledge, namely particle accelerators and detectors.

1.1.2 Large Hadron Collider (LHC)
Presently, the main research program at CERN is the particle accelerator Large Hadron

Collider (LHC) [2] approved in 1995 and planned to start operations in 2007 with a final cost
of almost 3000 million euros. It lies in a circular tunnel around 100 meters below the ground
with a circumference of 27 kilometers. LHC will generate two beams moving in opposite
directions inside the tunnel with particles traveling at 0.035km/h below the speed of light.
LHC is a versatile accelerator as it can collide beams of both proton and heavy ions.

14 Chapter 1 - Introduction

One of the main innovations of the LHC is its size and energy level. LHC will heat matter
at a temperature 100000 times higher than the temperature at the center of the sun, and will
compress it to a point that the pyramid of Kheops would fit in a pinhead. When operating,
LHC will be the world's largest and highest energy particle accelerator. LHC will enable the
discovery of new physics and dig deep into matter. One of the expected scientific results
coming from LHC is the observation of the Higgs boson that is the predicted by the
electroweak theory, and is the only Standard Model particle not yet observed.

LHC have in different points of the tunnel four experiments where particle beams will
collide. These experiments are huge machines that incorporate hundreds of different detectors
that will observe and record what happens when the beams collide. LHC and its experiments
will run and produce huge data amounts during approximately 20 years. It is expected a data
volume of 15 PB (15360 TB) per year. This data will be accessed and analyzed by half of the
world's particle physicists (around 5000) in some 500 research institutes and universities from
more than 80 countries worldwide.

1.1.3 LHC experiments
The four LHC experiments are A Toroidal LHC ApparatuS (ATLAS), the Compact Muon

Solenoid (CMS), the LHC-beauty (LHCb) and A Large Ion Collider Experiment (ALICE).
LHCb is a specific experiment designed to study the decay of a type of particles called B-

mesons.
ALICE is a general-purpose experiment optimized for heavy-ion reactions that aims to

study the physics of the quark-gluon plasma: a phase of matter formed at very high energy
densities.

CMS and ATLAS are general purpose proton-proton detectors designed to exploit the full
discovery potential of the high energy beams generated by the LHC, for example, the
observation of the Higgs particle, which explains the origin of the spontaneous symmetry
breaking mechanism in the electroweak sector of the Standard Model.

ATLAS will be the largest and more complex detector ever built with 45 meters long and
25 meters in diameter. CMS is the heaviest detector complex weighting more than 10
thousand tones.

The LHC will produce a beam of particles that collide 40 million times per second in each
experiment’s pit. Here, each one of these collisions (also called events) produces thousands
of particles that are tracked by detector complexes deployed around the main accelerator tube
in a layered structure.

These huge assemblies of measurement devices can identify the position of all types of
particles such as hadrons, electrons, photons, and muons to a fraction of a millimeter and
distinguish its individual track among thousands of other particles.

To interact and read from all these devices a very large set of electronic and computational
components have to be deployed. Depending on the experiment the names and roles of these
systems may change. Here, a generic overview is made. Apart from the low level electronics
that constitute all detectors, the typical components of a detector system are a Data
Acquisition System, a High-Level Trigger system, and a Control System.

1.1.3.1 Data Acquisition System (DAQ)
The task of a DAQ system is to control the complete data acquisition process that consists

of gathering information about the collisions (events), analyzing them, selecting the most

1.1 Background 15

interesting ones, collecting all detector information at the time of each event, and storing
them for further off- line analysis.

The process starts at the lowest level components of a detector: the detector’s read out
electronics that identify and measure the physical events. The main functions of a DAQ
system are to realize the dataflow from these detector electronics up to the data storage. The
major steps in this process are the assemblage of all event fragments gathered by different
hardware components (event building) and the filtering of events to meet storage availability
(event filtering) before writing selected events to mass storage.

At the LHC, bunches of particles will collide 40 times per second and each of these
crossings will result in an average of 20 proton-proton events. The data size of one of these
events is fixed and is defined by each experiment based on its requirements: the event sizes
go from 25kB in LHCb to 12,5 MB in ALICE. The very high event rates (almost 1Ghz of
proton-proton events) together with the referred event sizes will result in very high data rates
from the detector’s electronics to the DAQ system. If no filtering is done, this operation
would demand a storage capacity many orders of magnitude larger than the available
nowadays.

Through the steps of data flow management, the DAQ system is thus responsible for
reducing the data rates so that the mass storage available is efficiently used. This event
filtering process is a rather important step for the overall success of the scientific task as from
the initial 40 million bunch collisions per second only about 100 are stored for analysis (a
reduction of O(10^7)).

This selection process is usually too complex and its rejection rate to high to be achieved
in only one pass, so it is done in several steps (trigger levels) that are a mix of hardware and
software triggers. Each trigger level has an average acceptance rate that depends on the
amount of the data needed to store the information about an event (event size), the frequency
of events (event rate), the available bandwidth between system resources, etc.

The DAQ system is thus not only responsible for getting the detector data by interacting
with the detector electronics, but also for interacting with the different trigger systems that
select the most interesting events.

The first data selection is done directly after the measurement at the electronics level
where fragments of an event are detected and analyzed.

The first level triggers are the first software triggers that are typically a event- filter CPU-
farm that makes a short first analysis on given event fragments and decides whether the event
fragment should be stored for further analysis or not.

Upon a positive first level trigger decision about an event, the fragments belonging to a
specific event are assembled (event building) and sent to the next event filtering stages. This
process ends with the High-Level Trigger that is the final event filtering stage. It is the
responsibility of the DAQ to control the data flow to and from the High-Level Trigger farm.

After filtering and assembling all information about a given event the DAQ system is
responsible, as a final stage, for writing the accepted events to permanent data storage for
further analysis.

The DAQ system also performs data quality and performance monitoring and overall
control of the system.

Though there are a lot of commonalities between experiments, a DAQ system has to be
heavily adapted for each experiment.

16 Chapter 1 - Introduction

1.1.3.2 High-Level Trigger system
The High-Level Trigger system (HLT) is the last filtering and more elaborated stage

before a given event goes to storage and further off- line analysis.
The HLT algorithms operate on full information gathered for a specific collision (event

data) plus the detector configurations at the time of the event, and are in some cases
responsible for a first event classification.

The task of the HLT is to select the most relevant events by executing physics selection
algorithms on a large collection in order to reduce the data volume. This should be done
preserving the events with the most interesting physics content.

These objectives are achieved by using a rather large computer cluster where the event
rate is reduced by detailed analysis of its physics. The event size is reduced by keeping only
the interesting parts of a given event and by compressing event data.

The output rate of the HLT filtering is scaled to the event size of the experiment. So, for
example, ALICE events will have an output rate of 100hz (HLT will classify as interesting
100 events per second in average), while LHCb events will have an output rate of 2000hz.
This means that the throughput needed to move the data from the HLT to the storage can
reach values of 1,25GB per second (100 events of 12,5 MB each, per second). Event derived
data should also be taken into account on these calculations as, for example, the
reconstruction data size per event is around 100kB per event.

1.1.3.3 Control System
In order to make human interaction with such a machine as an experiment possible, one

integrated system with coherent user interfaces and system responses should be deployed.
The control system of an experiment provides a unified view of the experiment and a central
point from where all operations are initiated and controlled, typically a control room. It also
provides a collection of interfaces that allow independent concurrent activities on parts of the
experiment by different operators, for example, non-expert shift-crews and sub-detector
experts.

The control system acts as glue between the various elements of the experiment as the
DAQ, the HLT, and all other experiment equipment. It ensures the correct and safe operation
of the experiment equipment providing control, configuration, and monitoring functionalities.
Depending on the experiment, this system is structured in different sub-systems.

The ultimate objective of such a system is to assure the high quality of the physics data
taken by the experiment. Moreover, it is supposed to be operational throughout all phases of
the experiment thus having strong requirements on availability and reliability.

Examples of tasks achievable through an experiment control system are the general basic
control, configuration and monitoring of different systems as the detector electronics, the
event-filter farm, the cooling systems, the power supplies, etc. This implies that the control
system is able to communicate and coordinate operations with these specific lower level
components and control systems. The control system is also the interface with all external
infrastructural systems and services as the LHC accelerator itself or the global safety system.

The control system usually includes functionalities to control, configure, and monitor the
DAQ system, but excludes any management, processing, or transportation of event data. The
DAQ system deals with event data read from the detectors, while the control system deals
with data related to the operational system status and parameters of the machine when the

1.1 Background 17

event data was taken. Close interaction between these systems is required as these two types
of data need to be correlated for offline analysis.

In terms of monitoring services, the control system can display available online status
information and operational configuration of all the experiment equipment and can also
signal any abnormal behavior like errors, warnings, alarms, or just diagnostics messages sent
by different applications.

In terms of configuration services, a control system provides a framework for storing and
accessing large amounts of information describing the online system.

In terms of control, the system handles all actions initiated by the operator, gives guidance
to the operator, implements verification, diagnostic and recovery mechanisms such as being
capable of taking appropriate actions automatically in specific situations.

1.1.4 Worldwide LHC Computing Grid (LCG)
All four experiments have different computing models for the analysis of the data after the

described process of data acquisition. Nevertheless, all experiments have the same goal: to
distribute the huge amounts of data taken down in the experiment pit to hundreds of institutes
around the world, and provide the physics community with a computing resource for further
analysis.

A traditional approach to this problem would be to centralize all the needed storage and
computing power at one location near the experiments. For the LHC, a distributed approach
was chosen as it offers two main advantages, namely the distribution of the significant costs
of maintaining and upgrading the needed resources, and the absence of single points of
failure with data replication and computing resources failover. On the other hand, a
distributed system like a grid presents significant challenges as ensuring network bandwidth
between resources, managing software versions installed in different sites, managing and
protecting the data in heterogeneous environments, etc.

To face this challenge the project Worldwide LHC Computing Grid (LCG) [3], [4] was
setup in 2001. The LCG project has the mission to develop, build and maintain a distributed
computing infrastructure for the storage and analysis of data from the four LHC experiments
for the entire HEP community that will use the LHC.

LCG is a collaboration between CERN (the host laboratory) with the four LHC
experiments and all the computer centers around the world that commit to provide resources
for the LHC data storage and analysis. LCG represents an enormous technological challenge
that will assure the access to the proposed computing infrastructure provided by more than
100 institutions in more than 20 countries and involving more than 25 funding agencies.

In order to plan the deployment of the LCG infrastructure, the experiments have put
together a number of requirements for the LCG. These requirements drive the LCG resources
needs and software developments. Though each experiment has defined quite different
requirements in terms of data volumes, computing power and services a lot of commonalities
exist. In terms of total data volumes, the experiments require a CPU capacity of around
100.000 CPUs, about 60 PB of disk storage and 50 PB of mass storage.

The infrastructure that LCG will provide to support the computing models and
requirements of the LHC experiments is a computing grid that will rely on a set of software
packages commonly called grid middleware. These packages offer grid users a set of
functionalities such as authentication, job submission, distributed file management, storage
services, and distributed database services.

18 Chapter 1 - Introduction

The LCG is implemented in a distributed tiered model:
- Tier-0 is the accelerator centre at CERN which is divided in:

o the online layer: the experiments’ pits where data acquisition is done);
o the offline layer where data is backed up, initially processed, and then

distributed to Tier-1 centers.
- Tier-1 centers are 11 large centers spread around the world with sufficient storage

capacity for a large fraction of the data that will hold most of the data analysis.
- Tier-2 sites are around 100 centers in around 40 countries that can store sufficient data

and provide adequate computing power for simulation and end-user data analysis.
- Tier-N computing resources are mainly local clusters in university departments or

individual PCs used by individual scientists to access grid facilities.

1.1.5 Data distribution, processing and analysis
LHC data will flow from online systems in the experiments’ pits to hundreds of points

around the world where it will be managed, processed and analyzed. This distribution will
follow the hierarchical architecture of the grid.

Depending on the experiment, the first processing of data can be done either on the online
farm of the experiment or at the Tier-0 farm. In all cases a master copy of the data is stored
on tape at Tier-0, and a second copy of the data is stored across the Tier-1 centers associated
with the experiment.

Each Tier-1 centre serves a number of LHC experiments (most of them serve several
experiments). The responsibilities of Tier-1 centers depend on the experiment. Typically,
Tier-1s are responsible for managing their data storage systems and for providing computing
power. These resources will be used by re-processing and analysis processes.

Tier-2 centers will provide computational power and storage services for simulation and
for end-user ana lysis. Tier-2 centers obtain data from Tier-1 centers and send generated data
back to Tier-1 centers for permanent storage.

Tier-N facilities lying in universities and laboratories will also process and analyze the
LHC data.

When a given event passes all the online filtering stages, it is sent for off- line processing
where new higher level data is generated from it. Event data gathered directly in the detector,
like times and voltages, are referred as raw data. This data has to be processed several times
before being analyzed by physicist. Typical off- line data processing tasks are calibration,
alignment and reconstruction.

Alignment and calibration are procedures tasks that, from raw data, generate non-event
data that is needed for the reconstruction of event data as, for example, information about the
detector’s configuration at the event time. These tasks are performed several times during the
event lifecycle from triggering to analysis.

Reconstruction is the process where the raw data is reconstructed into tracks and energy
levels. This is generally a CPU-intensive programmatic activity that requires an extended
period of time. Reconstruction jobs need access to condition and calibration data relevant to
the particular raw data under reconstruction. The final output of a reconstruction process is
referred as reconstructed data.

For each event, reconstruction can be done several times over raw data and over already
reconstructed data. Moreover, further processing (alignment and calibration) of reconstructed

1.2 Motivation 19

data is performed and leads to improved calibration data that can be again reconstructed. At
any stage, end user analysis can be performed using reconstructed data.

These processing steps vary between experiments but they always produce different data
formats describing the event, each of them providing different levels of detail. All different
types of data, from raw to processed data types, have to be managed and stored in permanent
data storage either in Tier-0 and/or Tier-1s. Thus, raw data will be processed (alignment and
calibration) and reconstructed at the Tier-0 according to the scheme of the experiment, and
the resulting datasets will be distributed to Tier-1 sites. These processing stages continue with
further event reconstruction taking place at Tier-1s. Selected sets of event data are transferred
to Tier-2 centers which support iterative analysis by users. As physics applications may need
to navigate from reconstructed data to raw data, usually, raw events and corresponding
reconstructed data are stored in the same site.

1.1.6 Summary
“Discovering new fundamental particles and analyzing their properties with the LHC

accelerator is possible only through statistical analysis of the massive amounts of data
gathered by the LHC detectors ATLAS, CMS, ALICE and LHCb, and detailed comparison
with compute-intensive theoretical simulations.” [3].

This generic problem statement is a rather typical one in HEP computing. In HEP
computing most of the data is read-only, there is a small number of concurrent users, the
transaction rates are very low, data loss is acceptable (tolerance to certain degrees of data
inconsistency), and there are only a few data dependencies as each event is processed
independently. On the other hand, HEP computing involves huge data volumes and rates (up
to 100PB, 1.5GB/s), fully distributed environments, and project lifetimes of several years
with the continuous development of new analysis applications (around 20 years for the LCG).

With this background context, this thesis will describe how grid and database technologies
are used to solve these computing problems.

1.2 Motivation

The accelerator LHC will produce huge amounts of data that will be distributed and
analyzed using the LCG. LCG provides services and an infrastructure for replication and
distributed access to file based data. Physics applications and grid services require a similar
infrastructure for data stored in relational databases as several applications and services
already use RDBMS.

The project Distributed Deployment of Databases (LCG3D) [5] was setup to provide the
database distribution infrastructure for the LCG. This includes the coordination of all the
database deployments in the LCG and the investigation of database distribution techniques to
use in the LCG.

The database distribution techniques used in the LCG3D project are the commercial
product for database replication Oracle Streams, and the database caching system FroNtier.
Both these offer advantages and disadvantages. Extensive tests of these technologies are
taking place at CERN in order to validate if they fulfill the LCG database requirements.
Inspired by these activities, this thesis was developed, in collaboration with the LCG3D
project, based on the validation tests of the FroNtier package, more specifically, the
evaluation of its performance.

20 Chapter 1 - Introduction

Additionally, several issues has been raised inside the community using FroNtier as
whether the cache consistency offered by the FroNtier package suits the applications that are
using it. This discussion gave origin to a study on data consistency issues and the definition
of cache consistency policies, and on a different approach, the development of a cache
invalidation mechanism that would solve the consistency issues.

1.3 Objectives

The main objective of the thesis is to elaborate a systematic performance analysis of the
database caching solution offered by the FroNtier package. This analysis should include
extensive performance testing of FroNtier which results in a FroNtier benchmark suite. This
benchmark should allow one to reproduce the analysis of any FroNtier servers, and help
estimating setup configurations for given performance/deployment needs.

The FroNtier performance evaluation together with the output of other test activities in the
LCG3D project will enable an interesting comparative analysis between FroNtier and other
database distribution techniques. This comparative analysis should be performance oriented
and FroNtier centered. Among the alternatives to FroNtier, a special focus will be given to
Oracle Streams, as it is one of the main technologies used in the LCG3D project.

This thesis’s analysis will help experiment and grid software managers to decide what type
of distribution technique should be used in their projects and estimate hardware, network, and
configuration needs for a given performance expectation. This study will stand as a
benchmark analysis for any FroNtier setup.

A broad study of the state of the art should be done for the scientific areas involved in this
work: grid computing, database distribution techniques, and performance analysis.

1.4 Structure

Chapter 2 briefly introduces grid computing and present s currently available solutions for
grid implementations with main focus on the solution used in the LCG.

Chapter 3 describes the database distribution techniques that were studied by the LCG3D
project.

Chapter 4 presents the methodology used in this work including an overview on Linux
monitoring tools and the description of the performance test framework developed for this
study.

Chapter 5 describes in detail the experiments executed for the analysis, the respective
results obtained, and the analysis conclusions.

Chapter 6 summarizes the analysis’ conclusions, presents this thesis’ major contributions
and some directions for future work.

Chapter 2 - Grid computing

Grid computing is a high throughput computing model based on the integration,
virtualization and management of distributed resources. A typical analogy is made with the
electrical power grid that offers the same characteristics as grid computing: unlimited
ubiquitous distributed power, transparent access, easy to plug in, a hidden complexity of the
infrastructure, etc. In a grid, the user does not need to define where the data resides or what
computers execute the jobs. This is again analogous to the electric power grid where the user
does not know where the generator is, nor how the electric grid is wired. Grid computing is
distinguished from conventional distributed computing by its focus on large-scale resource
sharing.

Grid computing is used in many different application domains that usually demand heavy
computation resources like simulations, forecasts, or analysis of huge amounts of data. Some
typical examples of grid applications domains are particle physics, aeronautics,
bioinformatics, biomedicine, weather forecast, business market simulation, etc.

Grids are either data or computing centric depending on application needs. Data grids and
comput ing grids are terms commonly used to designate this difference. From a different
perspective, grids’ focus is not performance but rather throughput, i.e., the objective here is to
maximize the number of executed jobs rather than optimize the speed of single jobs.

According to Foster, Kesselman and Tucke [6], grid technologies and infrastructures
support the coordinated sharing of diverse resources among distributed, heterogeneous, and
dynamic Virtual Organizations (VO). VOs are a key concept in grid computing. A VO is an
abstract ent ity that enables heterogeneous groups of individuals to share resources in a
controlled way, so that its members can collaborate in achieving a shared goal. Typically,
these groups of individuals are not part of the same administrative domain. A Resource
Provider is a facility offering resources (CPU, storage, or network) to other parties (VOs)
according to specific agreements. These agreements between Resource Providers and VOs
are the foundation of any grid infrastructure. They control the sharing of the resources,
defining what resources are shared, who is allowed to use them, and the conditions under
which sharing occurs.

From a complementary point of view [7], a grid can be seen as the integration of services
offered to users across distributed, heterogeneous, dynamic VOs. Proving this is the fact that
grid architectures are commonly service oriented architectures where services are offered by
different components. A service is a network enabled entity that provides some kind of
functionality used directly by VO users or by other services. Grid architectures consist of
definitions of protocols and services.

Interoperability and standardization are key features in grid technologies. Grid
infrastructures rely on very heterogeneous systems with resources provided by different
organizations. Interoperable solutions built on standards enable grid components to be seen as
a large single virtual computing system offering a variety of virtual resources.
Interoperability is achieved via the use of protocols that define basic resource sharing
mechanisms.

Grid infrastructures rely on one or more grid middleware software packages that offer a
set of services such as job submission, security, resource management, accounting, data

22 Chapter 2 - Grid computing

management, information services, etc. In a lower level, grids rely on resources that are
specific to fabrics like transport protocols, name servers, batch schedulers, security
infrastructures, site accounting, directory services, etc.

The user interface with a grid is made through the grid middleware. The middleware
allows the user to submit his job, read the status of the job, and get the output when finished.
Typical steps following the submission of a job are job allocation (where will the job run),
data access (where will the input data be), authentication, job execution, job monitoring,
problem recovery, etc.

2.1 Grid projects and middleware

The LCG architecture is based on a set of services and applications running on a grid
infrastructure [8]. This infrastructure is provided by the Enabling Grids for E-sciencE project
(EGEE) [9] in Europe, the Open Science Grid (OSG) [10] in the US, and the Nordic Data
Grid Facility [11] in the Nordic countries. Although these projects share many
commonalities, each of them offers a different grid environment with specific grid operations,
management boards, and most important, specific base set of middleware tools.

Most of the LCG computing sites and respective resources are part of the EGEE grid.
EGEE is a consortium of national and regional grid infrastructures and computing centers.
These entities together offer a single unified grid infrastructure with the same base
middleware, and a cooperative grid operation.

EGEE was designed to extend the grid set up by the LCG project. Starting with a working
grid for particle physics, the EGGE project expanded it to support other sciences by
deploying a robust grid infrastructure for science. Presently, it interconnects almost 200 sites
in almost 50 countries around the world, integrating several national and regional Grid
initiatives in Europe, such as, INFN Grid in Italy, DutchGrid in the Netherlands, and GridPP
in the UK. Currently, EGEE includes around 25000 CPUs and a storage capacity of 5 PB.

There are two middleware software packages currently deployed on the EGEE
infrastructure: LCG-2 [12] and gLite [13][14][15]. Both are suites of functional components
that provide a basic set of grid services. LCG-2 is the former middleware implementation
released by the LCG project: it is still widely deployed on EGGE. gLite, the successor of
LCG-2, is developed inside the EGEE project. It is designed to be lightweight and very
modular (it has 224 modules). These two software packages co-exist in different sites of the
LCG infrastructure.

These grid middleware implementations (gLite and LCG2) make use of external grid
software toolkits. The Globus Alliance [16] is a community of organizations and individuals
developing fundamental technologies for grid computing. One of the main projects of Globus
Alliance is the Globus toolkit [17]. The Globus toolkit is an open source software toolkit that
implements a basic set of grid protocols and services used for building grid systems and
applications. The Virtual Data Toolkit (VDT) [18] is a grid middleware package that provides
some components to both LCG-2 and gLite middleware. Conversely, some LCG-2 and gLite
components are also part of VDT.

2.2 Grid services 23

2.2 Grid services

As seen before, a grid infrastructure provides a set of grid services implemented by the
grid middleware. This section will briefly describe the typical grid services offered by most
middleware toolkits, and the implementations available in the LCG.

There are numerous grid middleware products capable of providing some of the
fundamental grid services, as job submission and management, grid data management, and
grid information services. The problem of interoperability has grown with the deployment of
different middleware packages and the inexistence of widely accepted, implemented and
usable standards.

The Open Grid Services Architecture (OGSA) [19] is a service-oriented architecture for
grid computing. This architecture tries to define a set of core “interfaces, behaviors, resource
models, and bindings” that can work as a standard for grid computing. The OSGA defines the
grid as a set of services and defines the behaviors those services should have. OGSA was
developed by the Open Grid Forum [20] community that leads the standardization effort of
grid computing technologies. OSGA defines models and standards for grid computing widely
based on web services technologies like WSDL and SOAP.

The Open Grid Services Infrastructure (OGSI) [21] proposes an infrastructure for
implementing grid services where, more interesting, the Web Services Resource Framework
(WSRF) is defined as one key innovation with possible impact in other fields: the stateful
web services. Web Services Resource Framework (WSRF) defines a stateful web services
infrastructure to model, access, and manage the state of a web service, to group services, and
to express service faults.

The next sections will describe OSGA services and how is this architecture implemented
in LCG by LCG2 and gLite middleware packages.

2.2.1 Job Management Services
Job management services are basically responsible for job submission and workflow

control in the grid. These services address problems related to job execution, including their
placement in appropriate computing facilities, submission, and lifetime management. Usually
these tasks include:

- Find candidate locations for execution - check what are the locations where a job can
execute; check resource requirements and restrictions such as memory, CPU, available
libraries, software dependencies, and licenses;

- Selecting the execution location - match submission requests and available resources
by applying different selection algorithms. These algorithms can enforce different
policies or service level agreements, and optimize different objective functions like
time, cost, reliability, resource availability, etc.;

- Preparing for execution – setup the execution environment includes deployment and
configuration of binaries and libraries, copy input data to the execution location, etc;

- Start the execution;
- Managing and monitor the execution – includes monitoring the state of the execution,

implement the appropriate recovery measures in case of failure, etc;

24 Chapter 2 - Grid computing

2.2.1.1 Workload Management Service
At a top level, these tasks are performed by a Workload Management System (WMS) that

encapsulates all aspects of executing a job in a Grid environment. A WMS is responsible for
accepting and satisfying job management requests coming from its users. The WMS uses
other services to accomplish its task, like the execution planning services used to select the
execution location of a job.

The user interface with the WMS is done using one of the available variations of the
standard Job Submission Description Language (JSDL) [22]. The JSDL (commonly called
JDL) is one of the most important artifacts of these services. It is a document submitted by
the user to the WMS that includes: the job description, the location of the binaries, the
requirements for the execution environment, the input data files or values, the dependencies,
etc. A JDL document is a record- like structure composed of a list of attribute-expression
pairs.

The implementations of the WMS available in the LCG are the LCG2 Resource Broker
and the gLite Workload Manager Service [23]. Both provide the facilities to manage jobs
(submit, cancel, suspend/resume, signal) and to inquire about their status.

The WMS is one of the key components of the middleware as it interacts with several
other grid services in different ways. For example, configuration services are used to prepare
the job execution environment ; the information services (the databases with metadata about
resources) are used to get all types of information about execution locations, policies, etc.;
and bookkeeping services are used to maintain the status of the job.

2.2.1.2 Computing Resource Services
In terms of computing power, the end points of a grid infrastructure are compute farms.

These farms can be computer centers with thousands of processors, or small batch systems
with a few processors. These computing infrastructures are managed by batch systems, or
Local Resource Management Systems (LRMS), that distribute and load-balance the CPU
resources in a given farm.

LRMS have different setups and configurations. To deal with this heterogeneity, a set of
services lie between the grid and the LRMS, working as grid interfaces to the LRMS. This
interface is called Computing Element (CE). A CE provides services for:

- job submission to the respective LRMS – it receives a computation request from a
WMS and sends the job to the respective computing resource in the local farm;

- publication of information about the CE through the grid information service – grid
information services are then used by WMS to select execution locations;

- publication of accounting information in the accounting services;
- job monitoring and trace mechanism by which job status can be obtained – update log

and bookkeeping services so that WMS can query the state of the jobs being executed;
- authentication and authorization mechanisms (see section 2.2.4.1).

In terms of submission there are two basic ways the CE can work:
- push model, where a job is pushed to a CE for its execution;
- pull model, where a CE asks a known WMS or a set of WMS for jobs.

A CE can be used directly by the end user or through the WMS that submits a job to a

selected CE.

2.2 Grid services 25

Both LCG2 and gLite offer implementations of a CE that handle typical job management
functionalities. Both implementations rely on the Globus Gatekeeper [17] to support
interfaces with several LRMS like BQS, Condor, LSF, etc. The LCG2 CE uses the Globus
Resource Allocation Manager for submitting jobs to the LRMS, while the gLite CE makes
use of Condor-C. Both LCG-2 and gLite CEs interface to the logging and bookkeeping
services (see section 2.2.3) to keep track of the jobs during their lifetime.

2.2.2 Data Management Services
Grid jobs need to access and move data stored somewhere on the grid. Data Management

Services offer the users ways to store, access, and transfer data on the grid.
Due to the typical fragmentation of a grid system, and to improve availability and

performance, data is commonly replicated in multiple locations across the grid. In order to
manage data replication, the grid provides file catalogues that contain metadata about the file,
like replica location.

Data Management Services can be divided in three categories: storage management, data
distribution, and file and replica management. Storage management includes the management
of the storage systems and the access to data. Data distribution services offer data transport
and placement functionalities. File and replica management services implement metadata
catalogues (file and replica catalogues) used to retrieve information about data resources on
the grid.

Data services should operate with generic data and do not assume any specify data
semantics. Thought data services may refer to generic file types, like flat files, databases,
streams, etc, in LCG these services are usually regarded as managing flat files. For example,
for database systems, specific services are setup up (see section 2.4).

The following sections describe in more detail each of the three types of data services.

2.2.2.1 Storage Management Services
Storage management services control the provision of storage to applications and other

services in the grid by implementing the interface with the storage resources. This interface
allows grid applications to access the heterogeneous storage facilities available on the grid in
a standard way. The service that encapsulates the storage system and the interface to it is
called Storage Element (SE). Like computing resources (CEs), data storage resources (SEs)
are the basic building blocks of a distributed computing infrastructure.

A SE is a grid service responsible for providing read and write access to data storage
systems. It works as a virtualization layer for storage systems that provides local or remote
space, raw or file system space, and manages quotas, file lifetime, and file properties like
encryption or persistency.

The basic functionality of a SE is to provide storage space for files. This is typically
achieved with a Mass Storage System (MSS), either disk space or disk space backed up by a
tape system. Typically, a site provides different quality SEs, for example, a SE for trans ient
data and another for permanent.

A SE has three external interfaces: the management interface (SRM), the POSIX-like I/O
interface (Grid I/O), and the file transfer interface (GridFTP).

The Storage Resource Manager (SRM) works as an interface between the SE and the
underlying storage system. An SRM interface must be implemented for each specific storage
system. This allows the SE to offer a standard interface to all types of storage systems. This

26 Chapter 2 - Grid computing

SRM interface provides a common set of storage systems’ functionalities (independent of the
implementation) that include mechanisms such as quotas, file lifetime management, pinning,
space reservation, etc.

The POSIX-like I/O, also called Grid I/O, provides users with mechanisms to hide the
complexity of file I/O with a storage resource. Using these services, a user application only
needs to use the Grid I/O API to directly access data on SEs. Grid I/O makes the interface
with the SE, the SRM and the security services on behalf of the user to get POSIX-like I/O
access to files on the SE. Typically, these tools also include interfaces with grid file
catalogues to enable an application to open files not based on their real name in the SE but
rather based on logical file names (see section 2.2.2.3 for more details).

The file transfer interface is supported by a file transfer protocol like GridFTP to enable
data transfer between the grid and the SEs. The GridFTP [24] protocol is an extension of the
FTP protocol designed for grid environments. It includes features such as being compliant
with the Grid Security Infrastructure (GSI) (see section 2.2.4). Normally this transfer service
is invoked indirectly through the File Transfer Service (see section 2.2.2.2) or through the use
of the SRM interface.

Additionally, a SE has to provide authentication, authorization, and accounting/ auditing
facilities. Data stored in a SE must be protected by Access Control Lists (ACLs). This is
implemented by the SE using the grid security services described in section 2.2.4. On the
other hand, the SE must provide sufficient information for tracing and auditing user activities.
The SE is also supposed to produce monitoring information about the usage of the storage
system according to a predefined schema.

Both LCG2 and gLite implement a SE. These SEs consist of SRM, a GridFTP server for
file transfer, and a tool for POSIX-like access to the data.

The LCG2 Disk Pool Manager (DPM) [25] is a lightweight implementation of a SRM
interface to disk only storage systems. gLite itself does not provide a SRM; instead, external
SRM implementations are used. The CERN Advanced Storage Manager (CASTOR) [26] is a
storage manager that, unlike DPM, provides a SRM interface to both disk and Mass Storage
Systems (MSS). CASTOR emulates a distributed file system and an associated tape storage
system. It is the most commonly used SRM in LCG, though DPM is used for smaller and
disk only grid sites. Other mass storage management systems for tape/disk systems in use in
LCG include dCache [27], the High Performance Storage System (HPSS) [28] and IBM
Tivoli [29].

LCG2 implements its own GridFTP interface to disk storage. Like the SRM, gLite itself
does not provide a GridFTP server; standard implementations like GridFTP server of the
Globus toolkit are used instead.

LCG2 and gLite themselves do not provide mechanisms for direct access to data on a SE;
instead, external packages like RFIO or dCap are used. In LCG2, the Grid File Access
Library (GFAL) offers a POSIX-like I/O abstraction layer over these packages for accessing
files in a SE. It provides access to files via their logical name by interfacing with a file
catalogue, and enforces access control lists specified in the catalogue if appropriate. In gLite,
these functionalities are implemented by the gLite I/O service [30]. gLite I/O currently
interfaces with the FiReMan and the LCG-RLS catalogues (see section 2.2.2.3 for details on
these file catalogues).

2.2 Grid services 27

2.2.2.2 Data Distribution Services
Data Distribution Services are data transfer and replication services. These services

provide data transfer mechanisms between resources, and a transfer control interface by using
appropriate protocols. A transfer can create a copy of the original file (replication) or migrate
it completely. Data distribution services are supposed to provide scalable and robust managed
data transfer between grid sites, to and from SEs. They should provide ways to specify the
Quality of Service (QoS), such as reliability of the transfer, the maximum bandwidth to use,
the required delivery time, or delivery guarantees.

Typical use cases of data transfer services include: movement of big chunks of data
between sites, for example, in LCG the distribution of data from Tier-0 to other tiers;
movement of files between SEs to push data closer to the CE where a specific job is running;
and staging of copies of files to the local machine where the job is running (done by the
WMS to avoid remote access to data on the SE).

File placement and replication services are services that manage the location of multiple
copies of data either to increase availability through redundancy or to improve performance
by reducing access times. These services provide a layer above the basic file transfer service
and implement routing and replication policies. They are quite rarely implemented as these
policies heavily depend on the application. For this reason, the data transfer services are
usually used directly by client applications.

LCG2 does not provide a File Transfer Service. The user is responsible to issue the
relevant commands to replicate files between SEs, for example, using GridFTP that provides
basic- level data transfer services between grid sites.

Though, in LCG, file placement and replication services are seen as an experiment
responsibility, the gLite File Transfer Service (FTS) [31] accepts data transfer requests and
executes them according to defined policies. Additionally, the File Placement Service (FPS)
makes use of file catalogues (see section 2.2.2.3) to provide logical file naming
functionalities.

2.2.2.3 File and Replica Management Services
File and Replica Management Services manage the description of data available in the grid

and provide lookup services in form of catalogues. Basically, these file and replica catalogues
consist of a list of files, replicas, and respective locations in the grid.

A File Catalogue Services usually includes the following features:
- File naming resolution – conversion from Logical File Names (LFN) to physical

storage locations;
- Hierarchical namespace – storage of directory structures;
- Access control to the catalogue – directory level access control that respects the

Access Control Lists (ACL) specified by either the user creating the entry or by the
catalogue administrator.

With this set of functionalities, grid users or applications do not need to know where the
files actually are, and, instead, use LFNs to refer to them. The file catalogue can then be used
to translate the LFN to a physical location.

Additionally to these functionalities, a typical use case for the file catalogues is the request
by the WMS for locations of SEs that contain a file (specified by a LFN). This info is used by
the WMS to determine which sites contain the data that the job needs.

28 Chapter 2 - Grid computing

Metadata catalogues are data services that store descriptions of data held in certain other
data services. Though the grid Information Services (see section 2.2.3) are responsible for
holding metadata about the available services on the grid, application specific metadata can
be stored in metadata catalogues. Metadata catalogues are typically implemented separately
from file and replica catalogues except in catalogues for file-based metadata, where the
metadata catalogue is seen as an extension of the file catalogue.

Both in LCG2 and gLite, a set of command line tools called lcg-utils can be used for
operations with the catalogues and files such as catalogue querying and file replication.

LCG inherited the Replica Management Service (RMS) from the European Data Grid
(EDG) project. The RMS provides a single interface for replica location and metadata
catalogues that maintain information about the existing replicas of a file and the mappings
between file identifiers and LFNs. This service is being phased out in LCG and, instead, LFC
(see below) is being used.

The basic functionalities of the LCG File Catalogue (LFC) are the direct translation of
logical file names to physical file addresses, and the identification of the site where a given
file resides. It offers a hierarchical view of the logical file name space and provides UNIX
style permissions and POSIX Access Control Lists (ACL). LFC supports metadata services
by associating key/value pairs with file entries. The gLite File and Replica Catalogue
(FiReMan) [32] offers the same set of functionalities as the LFC, together with some
additional features like the support for bulk operations. Recently, LFC has been chosen as the
supported file catalogue in LCG.

2.2.3 Information, Monitoring, and Accounting Services
Information services are a vital low-level component of a grid as most of the services in

the grid will use information services, either to publish information, or to consume
information. Information services implement mechanisms for accessing and manipulating
information about applications, resources and services in a grid environment. The term
information refers to data used for discovery, status monitoring, accounting and logging.
These types of data map to the four basic capabilities of an information service: monitoring,
accounting, discovery, and logging.

The monitoring services gather information from the different sites about all types of grid
services, and publish them. Published information can be from service usage statistics to
resource status information. These services are used by user applications, resources, and
services themselves.

The accounting services keep information about the usage of resources by the users by
tracing single transactions, like jobs or file requests. These services are used to produce
statistical reports, track resource usage for individual users, and to discover abuses.
Accounting information can be used, for example, to charge users for the resources they use,
and to implement resource sharing policies based on user quotas. Monitoring services use
accounting information, but the information and functionalities provided by monitoring
systems go beyond accounting information.

Service and resource discovery is a service offered to end users and to other services to
locate services available in the grid. Though it is designed primarily for queries, a mechanism
for service registration has to be associated. The service discovery service is typically a front
end to a directory system as it needs to be optimized for searches. Directory systems are easy

2.2 Grid services 29

to replicate, offer low latency response to high volumes of queries, and typically have an
associated caching mechanism.

The logging and bookkeeping services track jobs during their lifetime using information
gathered from the CEs. The logging service stores log records in a persistent database for a
long period of time. Logging data includes job status history, job execution statistics like
CPU consumption, memory usage, etc. The bookkeeping service stores actual information
about running jobs. It stores richer but more volatile data than the logged data. It acts as an
intermediary between log producers and consumers. Bookkeeping data includes important
points of the job life-cycle, the job description, the input and output file names, etc.

An example of use of information services in a grid: a data management service such as
FTS (see 2.2.2.2) publishes raw information about a file transfer in the monitoring
information service; this service is responsible for providing monitoring information such as
bandwidth, utilization patterns and packet size based on information published by other
services; this info is used by the WMS (see 2.2.1.1) to decide how to move a given file,
respecting the agreed QoS.

Though it is possible to use a single information service covering all available information
about a grid, typically, different information services are implemented separately, for
example, the information services for accounting are implemented with logging and
bookkeeping servers, while the service discovery service are implemented with a directory
system.

An information service has an associated data model and query language. Different grids
use different data models and query language for the information services. The most common
solutions are based on XML and XPath/XQuery query languages, or on relational models and
the SQL query language.

Information services publish and maintain data about resources in grids. In LCG, this
information is modeled after the Grid Laboratory Uniform Environment schema (GLUE)
[33]. The GLUE schema is an abstract model of grid resources that describes the resources
available at a site and the current state of those resources. Grid Information Services use
concrete schemas based on the GLUE schema.

In LCG, monitoring services are implemented with the Relational Grid Monitoring

Architecture (R-GMA) information service [34]. R-GMA is an implementation of the Grid
Monitoring Architecture of the Open Grid Forum [20]. It presents a relational view of the
collected data. It is basically a producer/consumer service: it models the information
infrastructure of a Grid as a set of consumers (that request information), producers (that
provide information), and a central registry which mediates the communication between
producers and consumers. R-GMA makes all the information appear like one large relational
database that may be queried to find the information required. R-GMA is currently also used
to collect LCG accounting records (see below). Both LCG2 and gLite use R-GMA.

In LCG, service discovery is implemented either using R-GMA or the Berkeley Database
Information Index (BDII). BDII is a scalable grid index information service which collects
discovery information from grid resources. It consists of a set of standard LDAP databases.
BDII follows the GLUE information model. Both BDII and R-GMA are used for monitoring
with LCG2: information providers inspect the status of grid services and publish their data
into BDII or RGMA. The gLite Service Discovery API [35] provides implementations of
service discovery interfaces to access the R-GMA and the BDII information services.

30 Chapter 2 - Grid computing

LCG2 accounting data is collected by the Accounting Processor for Event Logs (APEL)
system [36] which publishes its data into the R-GMA system. The gLite Accounting System
(DGAS) [37] is a full featured grid accounting toolkit that collects information about usage of
grid resources. This information can be used to generate reports but also to implement
resources quotas. DGAS integrates with the APEL system by feeding the R-GMA repository
using the APEL data format.

The gLite Logging and Bookkeeping services (LB) [38] tracks jobs managed by the
WMS. It gathers events from various WMS components and processes them in order to give
a higher level view of the status of job (with execution conditions and environment).
Additionally, gLite offers the Job Provenance (JP) service [39] that provides long-term
permanent storage of job related information (as stored in the LB) and allows end users to use
this data for data-mining, debugging, post-mortem analysis, etc.

2.2.4 Security services
Grid security services functionalities include:

- identification of users, systems, and services (authentication) ;
- access control to services and resources (authorization);
- information provision for analysis of events related to security (auditing);
- implementation of security-related VO policies;
- data transfers’ encryption and integrity checks;
- delegation mechanisms;
- mapping of global grid identities and roles to resource specific identities and roles.

The Grid Security Infrastructure (GSI) [40] of the Globus Toolkit (see section 2.1)
implements a collection of grid security services that follow the OGSA architecture (see
section 2.2). Although many models for grid security exist, the most used, and the one used in
GSI, is based on public key cryptography (or asymmetric cryptography). GSI provides
libraries and tools for authentication, authorization, delegation, and message protection that
use the Public Key Infrastructure (PKI) based on standard X509 certificates, the SSL/TLS
protocol, and X509 proxy certificates (an extension to X509 certificates to accomplish
delegation requirements of grid communities).

With the PKI encryption schema [41], a user has a private key that he uses to encrypt
messages. These messages can be decrypted by anyone using his public key. Using this
method, a user can “digitally sign” his messages, i.e., assure the receiver that the message
was not altered since it left the sender.

Another essential concept connected with the PKI is that of a certificate. A certificate
identifies every user and service on the grid, and contains information to authenticate the user
or service. A certificate is issued by a trusted third party called a Certificate Authority (CA).
The role of the CA is to issue (digitally sign) user certificates. A CA is usually run by a large
organization or commercial company because it must be trusted both by the sender and by the
receiver of any communication. A certificate is an authentication credential where the CA
asserts that a given name and a public key belong to the referred subject. Thus, a certificate
includes the subject name, the subject’s public key, the identification of the CA that issued
the certificate, and the digital signature of the CA. The standard X509 certificate format is the
most widely used for this purpose.

2.2 Grid services 31

In a grid where the standard X509 certificates and the PKI are used, each user holds a
unique authentication credential, i.e., a X509 certificate issued by a CA. This credential is the
basis for all the security functionalities available in the grid.

2.2.4.1 Authentication and Authorization
Authentication is concerned with identifying users, systems and services by verifying

some kind of given proof of identity. It is used whenever a context for message exchange
needs to be established in a grid. Examples of authentication procedures include: the
evaluation of a username/password pair; the authentication through a Kerberos mechanism
where a ticket is passed to the service provider that determines the authenticity of the ticket;
and, the most common in grid environments, the use of the X509 certificates.

In LCG, authentication functionalities are based on GSI, i.e., on PKI and X509
certificates. The CAs that issue the certificates in LCG are accredited by entities called
Authentication Policy Management Authorities. Users and services can request a certificate
to one of the accredited CAs. This certificate is then used for authentication in all resources in
the grid.

Authorization services are responsible for implementing access control policies. Given an
authenticated user and a specific resource that the user wants to access, the authorization
service decides whether or not the user is authorized to access the resource. A user may be
member of any number of VOs, and a VO can have a complex structure with groups and
subgroups. A VO gives its members access to various types of resources and grid services are
responsible for respecting this access policies. To accomplish this, the system must keep
information regarding the relationship of the user with the VO (groups and roles), and what is
the user allowed to do at specific resources owing to his membership of a particular VO. In a
grid environment, it is not possible to administer authorization information on a site basis as
users have administrative deals with the organization they work in and with their local site
only. To solve this problem, two kinds of authorization services exist: policy assertion
services and attribute authorities.

Policy assertion services give a user (or a set of users) the explicit privileges to perform an
action (or set of actions) on a specific resource (or set of resources). These services are
implemented by policy statement services like the Community Authorization Service [42].

Attribute authorities services issue attribute certificates that associate a user with a set of
attributes (roles, group membership, etc.) in a trusted manner. The resource uses these user
attributes, asserted by the attribute authority, when evaluating user access requests. Public
key certificates are meant for authentication while attribute certificates for authoriza tion.
Although there is a standard defined for X509 Attribute Certificates [43], instead of a
separate attribute certificate, an extension of the public key certificate can be used to place
the authorization attributes. Both solutions offer advantages and disadvantages. In LCG,
authorization services implement access control functionalities based on extended X509
certificates that contain user attributes based on roles and groups taken from the VO
Membership Service.

The Virtual Organizations Membership Service (VOMS) [44] is the most popular system
for managing authorization information in grid infrastructures. It is used to manage the
information about user’s roles, and user’s membership to groups and sub-groups inside a VO.
In a first step, the VO manager assigns the user these roles and memberships; with this
information, VOMS provides a service to generate extended user certificates containing the

32 Chapter 2 - Grid computing

credentials stored in the VOMS server, i.e., VOMS is an attribute authorities service.
Although X509 Attribute Certificates could be used, VOMS attributes are embedded in the
users’ certificate, enabling the client to provide authentication and authorization credentials in
a single operation.

VOMS is implemented with a client-server architecture where the VOMS server is
basically a front-end to a RDBMS with all the information about user accounts and VOs. The
VOMS client allows users and administrators to access and manage the server repository.
Administrators can also manage VO membership with the VOMS administrator web
interface. The VOMS client can also be used to generate user certificates. These certificates
are issued using information from the VOMS server, and include: user credentials, VOMS
server credentials, time of validity, and authorization information. The authorization
information contained in the certificate extension can be read by grid services (WMS, CE,
file catalogues, etc.) to give or not the user access to its resources. It is commonly used to
maintain ACLs.

Both LCG2 and gLite use VOMS for authorization information management. Access
control to resources is implemented with VOMS authorization attributes stored in the
certificate of the user.

2.2.4.2 Identity and credential mapping
An identity mapping service is responsible for transforming an identity that exists in one

domain into a significant identity within another domain. This service is concerned with user
name mapping issues rather than user authentication/authorization. It is used when a resource
do not understand grid credentials natively, but instead use a different mechanism to identify
users. For example, a user may have an X509 certificate for authentication against a grid CE;
the identity mapping service would map this certificate to a site specific identity that has
meaning inside that particular CE environment, for example, an UNIX account.

Credential mapping services implement the same functionality but applied to credentials,
i.e., group membership, privileges, and roles associated with a given entity. For example, the
credential conversion service may convert an attribute certificate into a form of attribute list
that is understood by the authorization service. This functionality makes the different
credential types interoperable. Additionally, these services implement credential conversion
policies, and depend on the identity mapping service.

VOMS (see above) provides mechanisms for identity mapping by using user roles. A user
certificate issued by VOMS includes authorization information that is used, for example, by
the CE to map the grid user identity to a local user and group.

In addition to VOMS, local site authorization grid services like LCAS and LCMAPS can
be used [45]. The Local Center Authorization System (LCAS) is a service used locally on
sites to enforce local security policies. The Local Credential Mapping Service (LCMAPS) is
a framework that can load and run credential mapping plug- ins. LCMAPS can map users to
local accounts (like UNIX, AFS, or Kerberos). Both LCAS and LCMAPS interoperate with
VOMS servers. The Grid User Management System (GUMS) [46] is a grid identity mapping
service that performs identity mappings and communicates them to the CEs. GUMS is used
in the Open Science Grid (OSG), and it is used by gLite via a dedicated LCMAPS plug- in.

2.2 Grid services 33

2.2.4.3 Proxy certificates
User single sign-on is one of the basic objectives of a grid authentication service. Grid

authentication services should provide an identity credential with universal value in the grid
that works with the many different systems, services, etc.

Delegation is used by grid users to temporarily grant a subset of their privileges to another
entity. Examples of delegation include: a user that needs to move a file needs to grant file
access rights to a file transfer service, so that the service can perform the file transfer on his
behalf; a user grants privileges to a process that must run without intervention; brokering
services that acquire resources on behalf of the user; etc.

Standard X509 public key certificates do not include capabilities to implement these
features. The most widely adopted mechanism in the grid community, including the GSI, to
implement single sign-on and delegation capabilities is the use of X509 Proxy Certificates
(PC) [47].

X509 Proxy Certificates allow any user to dynamically assign a new identity to an entity,
and to delegate a subset of his privileges to that identity. A PC is an X509 certificate signed,
not by the CA, but by the user himself. A PC has a unique identity derived from the identity
of the user, and a distinct public and private key pair. It may contain authorization
information (controlled by the user or by some auxiliary service) that is placed in one of the
X509 extensions available. The schema is recursive as a PC can be used to sign a new PC.

PCs can be used for delegation: the user generates and sends a PC to a given service;
whenever the invoked service takes actions on behalf of the user, the service uses the PC to
delegate the privileges included in the PC. Services that act on behalf of the user shall use
PCs derived from the original user certificate.

PCs can be used for single sign-on: the user, after creating a PC, keeps a new certificate
and a private key. This private key does not need to be encrypted as the proxy has a short
lifetime: file system level protection is typically enough. In this scenario, the user, in order to
create a PC, has to type his password to access his long term private key. After this, the non-
encrypted private key of the PC is used to authenticate in all services needed.

To authenticate in a service using PCs, the user sends his X509 certificate and a PC to the
service. In this scenario, two verifications are done by the service: the user’s public key
(taken from the user’s certificate) validates the signature on the proxy certificate, and the
public key of the CA validates the signature on the certificate of the user. This mechanism
establishes a chain of trust from the CA to the proxy through the user.

In LCG, VOMS use these authentication and delegation mechanisms provided by GSI.
The proxy certificates used in LCG are, in fact, VOMS certificates that are issued by a
VOMS server. These proxy certificates have a special format that includes an authorization
extension. A user, before starting a job in LCG, must acquire the VOMS proxy certificate that
is signed by his VO and only valid for a limited period of time. The extra authorization
information is placed as a non-critical extension in the proxy, so that these certificates can be
used with services not aware of VOMS.

MyProxy [48] is a credential repository that helps the user managing and protecting files
containing sensitive data like private keys. MyProxy is a rather simple service that stores user
X509 PCs for later access. Additionally, the PCs are protected by a pass-phrase, and users
and administrators can set access control policies on the credentials in the repository.

34 Chapter 2 - Grid computing

2.2.4.4 Audit and secure logging
The audit services are responsible for producing log records of security-related events.

These audit records are analyzed by VO security administrators to determine whether defined
security policies are being followed.

Having shared requirements with the accounting services, auditing services enable VOs to
determine precisely who did what, where and when. The audit process consists of enforcing
uniformity of audit information, easing the process of combining audit information from
different sources, and identifying abnormal events registered in the logs.

Although a dedicated audit service would bring some benefits, typically, auditing does not
require a separate grid service. Instead, logging and accounting services are used for
imposing a set of logging policies. In LCG, the gLite Logging and Bookkeeping services (see
section 2.2.3) are used for auditing purposes.

2.2.5 Conclusion
Though, in this section, we only mentioned the LCG-2 and the gLite middleware

implementations, several other implementations co-exist in EGGE, OSG, NDGF, and other
grid projects around the world. Interoperability between middleware implementations is an
essential component of the system. Grid services must be provided in a way that applications
should not need to be aware of which grid infrastructure they are running on. EGEE, OSG
and the Nordic Data Grid Facility share a lot of commonalities in terms of grid services
implementations (like CEs, SEs, WMSs, information system schemas, etc) but they are still
not completely interoperable. There is a strong collaboration between the institutions
involved to ensure that these grid infrastructures can interoperate transparently.

Grid middleware packages must have a well defined life-cycle support. This process
manages the integration of the middleware components into a coherent distribution. It
includes the testing and certification of middleware components, the management of the
deployment process (update procedures, security fixes, and configuration management), the
establishment of feedback loops, and general maintenance.

Application domain specific considerations can be taken into account when designing grid
middleware components. Typically, grid infrastructures offer additional functionality to
fulfill the needs of different application domains. In the LCG, the ARDA project investigates
the area of distributed analysis together with the LHC experiments, and is meant to influence
the evolution of the LCG middleware packages in that respect.

2.3 LCG infrastructure

Although grid services are conceptually nearly the same in all modern grid infrastructures,
there is a big number of specific characteristics on every grid infrastruc ture. This section
describes the LCG infrastructure as an example of a grid infrastructure.

As seen in section 1.1.4, the LCG is implemented in a distributed tiered model. The Tier-0
at CERN, will held : the data acquisition, part of the data processing, and the data distribution
to Tier-1 centers, where most of the data analysis will be performed. Tier-2 and Tier-N sites
will held simulation processing and end-user data analysis. All these sites together will form
the LCG infrastructure where grid users will profit from the available grid services to analyze
the data acquired in the LHC experiments.

2.3 LCG infrastructure 35

All sites in LCG will provide basic grid functionality being that Tier-1 centers will provide
a more complete set of grid services. Each Tier-1 centre will have specific agreed obligations
to support particular VOs. Additionally, Tier-1s must provide required services, like archival
storage resources, to Tier-2 centers.

Typically due to specific design or development options, in a grid, not all VOs (the LCG
experiments in the case of the LCG) rely on the complete set of grid services. It is common to
have in a grid infrastructure, not only different middleware implementations, but also VO
specific grid services that interoperate with the standard services and tools provided by grid
infrastructure.

Production- like exercises are performed periodically in the LCG infrastructure to exercise
its capacity and limits [4]. In December 2005 there was a data recording test at CERN that
moved data from a simulated generator to disk, and then to tape. The data rate of 750 MB/s
was sustained for one week. Similarly, in April 2006, a data transfer test from Tier-0 disk
storage to Tier-1 tape storage sustained a transfer rate of 1,6GB/s for three weeks. Both tests
were performed using the CASTOR mass storage system.

In the LCG, since the middleware packages and the operational policies of the
infrastructure projects are different, the operational control is the responsibility of each of the
different grid infrastructure projects: EGEE (Europe, Asia, and Canada), Open Science Grid
(USA), and Nordic Data Grid Facility (the European Nordic countries). A huge effort for the
coordination of these operations is needed.

Grid support services are typically divided in user support, and grid operational support.
The Grid Operations Centers [49] provide essential grid operational support services, such as
maintaining configuration databases, operating the monitoring infrastructure, and controlling
the accounting system. The Grid Call Centers provide a user support structure that covers
both the grid and the computing service operations.

A basic requirement in the LCG infrastructure is the need for very good network
connections between sites. LCG Tier-0 and Tier-1s are inter-connected by dedicated 10Gbit
links. Other tiers are inter-connected by general purpose research networks.

The complete list of LCG Tier-1 sites is show on table 1.

Tier-1 name Tier-1 location
ASCC Taipei, Taiwan
BNL Upton, NY, USA
CERN Geneva, Switzerland
CNAF Bologna, Italy
FNAL Batavia, IL, USA
IN2P3 Lyon, France
GridKa Karlsruhe, Germany
SARA/NIKHEF Amsterdam, The Netherlands
NDGF Nordic countries
PIC Barcelona, Spain
RAL Didcot, United Kingdom
TRIUMF Vancouver, Canada

Table 1 - Tier-1 centers and their locations

36 Chapter 2 - Grid computing

2.3.1 LCG site architecture
Each site in LCG, independently of what tier it belongs to, has its own management

boards, local policies, planning activities, budget constraints, monitoring solutions,
comput ing and storage facilities, etc. The grid copes with this heterogeneity by offering a
virtualization layer that hides these differences among sites. Nevertheless, each site is
responsible for maintaining its local computing infrastructure, and implementing the low
level components of the grid, for example, a batch system with which the CEs interact.

The site architecture at Tier-0 and Tier-1s is based on three functional units: computing
(CPU) resources, online (disk) storage, and archival (tape) storage. The other tiers do not
typically provide tape storage.

An archival storage system consists of a tape system with a front-end disk cache running a
storage management system like CASTOR. An online storage system supports file level
access, and so, in addition to GridFTP (also available in tape systems), a POSIX-like
interface is offered. As seen in section 2.2.2.1, the services presented by storage systems
follow the Storage Resource Management (SRM) interface that runs above the transport layer
(GridFTP or POSIX-like interface). Storage will appear as a Storage Element on the grid.
Tier-1 centers are required to archive, reprocess, and serve as necessary, a fraction of
experiment's data.

Site computation services are implemented us ing computing farms together with a
computing resource management system. An example of such a system is the batch scheduler
called Load Sharing Facility (LSF) that is used in the CERN computing farm at Tier-0. LSF
is a general purpose distributed batch system used to distribute and load-balance the CPU
resources in a computing farm. In order to make better usage of resources available, a batch
system like LSF makes a cluster of computers look like a single virtual system. With LSF,
hosts from various vendors can be integrated into the same system. LSF can automatically
select hosts in a heterogeneous environment based on the current load conditions and the
resources requirements of the applications. LSF deals well with thousands of running and
queued jobs.

Both storage and computing systems need an associated local infrastructure management
system. The local infrastructure management system used at CERN is the Extremely Large
Fabric management system (ELFms) [50]. ELFms is a low-level node management system
developed at CERN that provides a consistent full- life-cycle management and high
automation level. It contains three components:

- quattor [51], a powerful system administration toolkit for the automated installation,
configuration, and management of clusters and farms running Linux or Solaris.

- The LHC Era Monitoring (LEMON) monitoring system [52]. On every monitored
node, a monitoring agent launches and communicates with sensors which are
responsible for retrieving monitoring information. The extracted samples are forwarded
to a central measurement repository (see section 4.10.2.7 for more details).

- The LHC-Era Automated Fabric (LEAF) [53] toolset enables high- level commands to
be issued to sets of quattor-managed nodes, and allows hardware equipment to be
visualized and easily located in a computing center.

2.4 Databases and the Grid 37

2.4 Databases and the Grid

Most middleware implementations provide an infrastructure for distributed access and
replication of file based data (see section 2.2.2). Nevertheless, most of the user applications
and grid services require a similar infrastructure for data stored in relational databases as
many applications and services rely on Relational Database Management Systems (RDBMS).
RDBMSs offer a structured, flexible, and consistent way of storing data at the cost of
introducing some complexity in the data management process.

The distributed grid environment, and, in the case of the LCG, the layered grid model,
imply that grid users will be distributed around many different sites in the grid. For this
reason, distributed database access and the consequent need for database replication are
major requirements in grid deployments. Moreover, high levels of availability and scalability
are generally required for grid databases. At the bottom line, reliable database services are
required at almost all grid sites whereas, small and peripheral grid sites, may rely on other
bigger sites for these services.

The database distribution model for a given grid depends on the requirements of the
individual applications using the grid and on the grid infrastructure itself. Different
technological solutions can be used to fulfill those requirements. One of the most important
application aspects, in terms of database deployment, is whether it runs centrally or locally. If
the application runs centrally, replicas of those databases are typically needed across the grid.
Conversely, if the application runs locally, it will probably need not only replication but also
database synchronization mechanisms.

A common example of the need for database replication in a grid is the replication of file
catalogues (see section 2.2.2.3) to different grid sites (e.g. in LCG from Tier-0 to Tier-1).
Grid file catalogues, as most of the grid services, can run as central services in main sites, or
as local catalogues in smaller sites. The deployment of mechanisms for replication and
consistency maintenance is mandatory in both cases.

A LCG specific example of required database services are the experiment specific
applications that use conditions databases. These databases store information about several
experiment aspects that need to be indexed to space and time coordinates. Conditions data, as
much of the data in LCG, will be collected at the online sites of Tier-0. This data needs to be
shipped to the main off- line site of Tier-0 for backup and analysis. In order to fulfill these
requirements, a database copy or replication mechanism needs to be deployed. Moreover, the
databases deployment on both sites must be synchronized, i.e., RDBMS and infrastructure
choices, support services, etc. must be decided in agreement between the two parties: the
experiments and the LCG project.

A distributed database deployment solution implies a database support service. Database
support services on a grid are different from generic grid support services and require very
different and specific expertise. These support services have to cope with technological
options, like the RDBMSs being used, as different RDBMSs imply different expertise.

The data volume requirements for a distributed database infrastructure are obviously
essential factors on the design phase of such a system. The estimated size of the databases
used in the LCG is 1% of the total file based data, which is 15 PB per year. This estimate
points to 150 TB per year of database data, and an associated database backup volume of 375
TB per year. As the data volumes are extremely big and the accuracy of these estimations can
be rather low, the database infrastructure must be scalable. This means that the infrastructure

38 Chapter 2 - Grid computing

must scale well, not only in terms data volumes, but also in terms of database server
performance.

The setup of the LCG database distribution infrastructure and the deployment of the
database services are coordinated by the project LCG Distributed Deployment of Databases
(LCG3D) [5]. The goals of this project are to provide a consistent way of accessing database
services at all the LCG tier sites, and to investigate distribution techniques to make this
possible.

The LCG3D project offers an infrastructure for consistent distributed deployment of
databases at the LCG sites that includes the deployment and test of database replication
mechanisms. This infrastructure is based on an independent set of databases loosely coupled
via asynchronous data replication or data copy mechanisms. More details about this
infrastructure and the replication techniques used can be found in chapter Chapter 3 -.
Moreover, LCG3D offers a consistent way of accessing database services in LCG through the
development of the CORAL project (see chapter Chapter 3 -).

2.5 Summary

This chapter introduced some basic grid computing concepts and described a grid as a
collection of interoperating services serving a group of Virtual Organizations. Concise
descriptions of these services were presented along with examples of currently available
implementations.

Chapter 3 - Database Distribution Techniques

Several alternatives exist to connect database clusters and replicate data in a distributed
environment which provide different levels of redundancy, data consistency and scalability.
This chapter will discuss the topic of database distribution techniques.

For smaller data volumes and in reliable network environments direct synchronous data
copying can be perfectly acceptable (in an Oracle database [54] via database links or
materialized views [55]). For larger volumes of read-only data with well-defined physical
conditions, the exchange of complete tables or tablespaces as files may be an option (e.g.
Oracle transportable tablespaces [56], SQLite [57] or MySQL [58] files).

The general case though is more difficult to handle as database data may be updatable,
contain complex relations between different database schemas, or network problems may
exist. In these cases, more advanced database distribution techniques have to be selected.

The next sections will describe the two main distribution techniques studied: Oracle
Streams and FroNtier. Oracle Streams [59] is an Oracle product that can maintain consistency
between relational data at different sites. FroNtier [60], combined with the web caching
server Squid [61], is a database caching solution that, in cases where data is read-only, offers
very good performance though some data consistency rules have to be followed.

With these technologies available, in LCG, the proposed database service architecture is
summarized in Figure 1 [62] where O stands for Oracle Database, F for FroNtier server, S for
Squid Cache server and M for MySQL Database.

Figure 1 - LCG 3D Service Architecture

40 Chapter 3 - Database Distribution Techniques

3.1 Oracle Streams

The Oracle Streams product enables the propagation of data (single tables or complete
schemas) from one database to another keeping it up to date in Real Time. The data is
propagated in a stream that routes the specified information to subscribed destinations.

Streams utilize the database redo logs to capture data or schema changes on the source
database side (in this case, the LCG Tier-0 databases). These changes are then shipped via an
asynchronous propagation process to one or more destination databases (in this case, the LCG
Tier-1 databases). The changes are shipped between databases encoded inside Logical
Change Records (LCRs). At the destination, these LCRs are applied in correct transactional
order. Complex filter rules can be used to select what data should be propagated. In case of
network problems or database service intervention, change records are kept on the source
system and are automatically applied when the service is re-established.

Streams can be setup to provide a unidirectional or bi-directional connection between
databases. Even though bi-directional streams have been tested successfully, they add
significant complexity to the deployment as conflicts between updates on both streams
endpoints may arise, and need to be handled.

A schematic description of the streams setup deployed in the LCG is shown in Figure 2.

Figure 2 - Database Replication with Oracle Streams

The architecture of Oracle Streams is based on three basic components: Capture, Staging
(or Propagation) and Consumption (or Apply).

Capture
Oracle Streams capture events into the staging area in two different ways: implicitly or

explicitly. With implicit capture, the server does a log-based capture of DML and DDL
events from the source database. After retrieving the changed data, the capture process
formats it into a LCR, and places it in a staging area for further processing. The capture
process can filter LCRs based on defined rules, so that only specific changes to desired
objects are captured.

3.1 Oracle Streams 41

The database process which is capturing and queuing changes can optionally be executed
on a separate machine (see Figure 3) to minimize the impact of the capture process on the
source database. This is called downstream capture.

Figure 3 - Downstream Capture Setup at Tier 0

Explicit capture allows applications to explicitly generate events and place them in the
staging area. User applications can explicitly enqueue user messages representing events into
the staging area. These messages are formatted as LCRs, which will allow them to be
consumed by the apply engine, or they can be formatted for consumption by another user
application.

Staging (or Propagation)
Once captured, events are published in a staging area which is a storage queue of captured

events. Subscribers, registered destination databases, examine the contents of the staging
area, and determine whether or not they have an interest in an event. A subscriber can either
be a user application, another staging area, or an apply process. Other staging areas can
subscribe to events in another staging area, and transformations can be performed as events
enter, leave, or propagate between staging areas. In the simplest case, the subscribers are
apply processes from the destination databases, and events remain in a staging area until
consumed by all subscribers.

Consumption (or Apply)
Events in a staging area are consumed by subscribers that are either apply processes, or

applications using an API. Implicitly enqueued events can be dequeued by a default apply
process, or by a user-defined apply process. The default apply process directly applies the
DML or DDL represented in the LCR to a local Oracle table. A user-defined apply function
can be built for specific cases.

Automatic conflict detection mechanisms between data in the source and destination
databases can be setup : unresolved conflicts are placed in an exception queue. Moreover, it is
also possible to define rule based configurations.

Summary
A key advantage of Oracle Streams, with respect to other mechanism such as application

specific copy tools or data caching, is their simple and generic semantics. Many key LCG
database applications have been validated in the streams environment, and continue to
function without any application changes, or application specific replication procedures.

42 Chapter 3 - Database Distribution Techniques

3.2 FroNtier

FroNtier is a data distribution technique based on the caching of database query results
that can be used for read only access. Instead of providing a connected set of distributed
database servers, that is hard to deploy and maintain, here a distributed hierarchy of
independent cache servers is introduced between database clients and a (central) database
server. The FroNtier package was developed in order to deploy a standard web proxy cache
server (Squid) to cache database data.

FroNtier is a simple application that encodes the communication between database client
and server into HTTP requests. It is a Java servlet [63] that runs in the servlet container
engine Tomcat [64]. The HTTP requests encode select statements, and the replies encode
database result sets in XML [65] format. FroNtier translates the select statement encoded in
the HTTP request, executes the statement through a JDBC connection in the database server,
and encodes the result set in a XML file. The operation mode of FroNtier can be described by
the following sequential steps:

- HTTP request encodes select statements;
- FroNtier reads the select statement of the HTTP request;
- FroNtier executes the statement in the database;
- FroNtier encodes and ships the result set to the client ;
- HTTP reply encodes DB result sets in XML format.

These resulting XML query results are then cached using the HTTP caching server Squid,
so that the same DB query, issued by many different clients, will be executed only once in
the DB.

The COmmon Relational Abstract Layer software package (CORAL) [66], [67] is part of
the LCG framework and, with its plug- ins, offers end users a set of standardized methods to
access database sources such as Oracle, MySQL and SQLite. A FroNtier plug- in to CORAL
[68] has been developed, which maps SQL queries to FroNtier HTTP requests, and extracts
query results from the XML documents generated by FroNtier. This plug- in has embedded
fail-over mechanisms that allow the user to specify multiple FroNtier servers, and cache
servers to be contacted. Apart from being a read-only source, FroNtier acts in CORAL as any
other data source.

Squid is a popular free proxy caching server that is mostly used to speed up web servers
by caching repeated requests. Although it is primarily used for HTTP and FTP, it supports
many protocols. Squid is highly configurable, provides extensive access control, a variety of
cache sharing protocols, and several monitoring options. By deploying a central database, and
a FroNtier server, one may easily deploy as many caching servers (Squids) as needed in any
N-tier site to cache XML documents with database result sets. Squid can be setup in two
different ways: as a normal proxy cache server working for a set of clients, or as a reverse
proxy cache that lies in front of the server and acts as the server itself.

The overall view of the system is shown in Figure 4. The principal component is a server
hierarchy that application clients contact. The server layer translates the client request into a
data query, and returns to the client the desired information in a serialized form. The CORAL
FroNtier plug- in receives the encoded object, de-serializes its contents, and delivers it to the
client.

3.2 FroNtier 43

Figure 4 - FroNtier package overview

The key advantage of the FroNtier/Squid system is its lower administration requirement in
comparison to a full database server deployment. As squid servers are easier to configure and
maintain they may simplify the provision of a local database cache if human resources are
limited.

Moreover, datasets used in physics computing for data analysis are generally small or
medium, and the same datasets are typically accessed many times. This application
characteristic makes the wide-are data caching a rather useful strategy.

Squid is very effective in providing read-only access to the static database information that
FroNtier serves. Including a proxy-caching server layer in the system brings many
advantages to a system like low latency, high scalability, ease of deployment, and
maintainability.

One of the major disadvantages of the caching approach is that all database queries need to
be performed upstream to the central database at least once. This can become a problematic
bottleneck of the system. This is the reason why this database distribution solution works
well with applications where the data is mostly read-only, and the queries repetitive.
Repeated queries will always be found in the caching server, and will not result in real
database queries.

Another major disadvantage of FroNtier is the cache consistency problems that may arise
from its use. Once a query is cached in the Squid, there is no defined way to invalidate the
cache in case the data is updated on the backend database. To overcome this problem one can
setup a cache invalidation mechanism (see section 3.2.2), or define strict cache refreshing
policies to avoid data inconsistency. In this case, as squid cache servers are not aware of
database updates, applications running in a FroNtier/Squid environment need to be carefully
designed to avoid possibly subtle consistency issues caused by stale cached data.

3.2.1 FroNtier deployment
A FroNtier deployment consists of a central database server that contains the data, the

FroNtier server(s) near the database that serve the data to caches, and a distributed and
typically hierarchal structure of cache servers (Squids). With this structure the clients access
their local Squid cache. If the requested contents are not available there, the local Squid cache
will automatically forward the request to the parent Squid cache or, in the case of the base

44 Chapter 3 - Database Distribution Techniques

Squid caches, to the FroNtier server. The FroNtier server will serve the requested content to
the Squids that will cache the reply, and serve it to the user that initially sent the request.

This solution offers very good performance, a simple deployment, but, as seen before,
introduces some cache consistency issues.

The FroNtier production setup in LCG is shown in Figure 5.

Figure 5 - 3D FroNtier/Squid production setup

The LCG Tier-0 setup consists of 3 load-balanced worker nodes running FroNtier that
access the central database server which is a 4-node Oracle Real Application Cluster [69]. On
these same 3 nodes there are 3 Squid servers running in reverse proxy mode. Several Squid
servers will be deployed in N-tier sites to serve local user applications. It is expected that
Tier-1 nodes are bigger and faster nodes as they will serve Tiers-2 caches.

3.2.2 Cache Consistency Issues
Several issues have been raised inside the community using FroNtier as whether the cache

consistency offered by the FroNtier package suits the applications using it. This topic has
received special attention as it is critical to the application stakeholders’ choice of database
distribution technique.

The cache consistency problem is that once a result set is cached in the Squid, there is no
defined way to invalidate the cache in case the data is updated on the backend database. So,
data consistency is not granted by the system and workaround methods have to be used to
avoid this problem.

 The different methods to avoid data inconsistency on a FroNtier setup are:
- define strict cache refreshing policies at application level;
- define cache refreshing policies at system level;
- setup a generic and automatic cache invalidation mechanism.

3.2 FroNtier 45

The following paragraphs describe each of these three options.

3.2.2.1 Strict cache refreshing policies at application level
This solution assumes that Squid cache servers are not aware of database updates and no

action in taken directly on the cache servers to refresh its contents. These assumptions mean
that applications running in this environment, and particularly its data models, need to be
carefully designed to avoid possibly subtle consistency issues caused by stale cached data.

This solution uses the Squid feature where an application can issue a database request to
the Squid forcing a data refresh. In these requests, the Squid cache does not use its cache
contents but, instead, forwards the request to the FroNtier server that gets fresh data from the
database.

The general policy defined is based on the concept of refreshed lookup tables. The
application data models are based on lookup tables that are always refreshed (queries to these
tables are always issued with the force refresh option). These lookup tables contain references
to data tables that can be cached. The policy defines then that the lookup table records cannot
be replaced or deleted, but only appended. This means that every time the database is
updated, a new lookup record is created for the new data in the data tables while the old
lookup records point to the old data values that may be cached.

The definition of this kind of strict policies for applications using controlled database
updates on controlled database models is very difficult, especially in large software projects.
For this reason, some functionalities that help implementing these policies were incorporated
in the software framework (CORAL). CORAL provides an abstract interface that enables the
client application to define refreshing policies at schema, table, or query level. It is the
responsibility of the application to define the consistency policy by using this interface. This
implies that the application must be designed specifically for FroNtier and would not work
with other database access methods like direct Oracle access.

At a bottom line, these policies define a valid solution for the FroNtier data consistency
problem with a very high impact on application development.

3.2.2.2 Cache refreshing policies at system level
A second approach to the cache consistency problem defines system level policies that do

not impact the application development process but, based on cache cleaning actions, solve
the problem in a system-wide perspective.

A first loose refreshing policy of this type solves the problem by setting server side scripts
(on the Squid servers) that completely cleans the cache contents every static time interval.
This way, no stale data is kept for more than the time interval defined.

Although this policy offers a very simple solution to a rather complex problem, it does not
offer complete data consistency as when the database is updated, the cache servers will
service stale data until the next cache cleaning action. Moreover, with this policy, data that
was not updated will also be removed from cache, i.e., it will have to be requested to the
database and cached the next time a client requests it.

A more strict approach to system policies defines that the cache cleaning scripts should
only be executed when the database is updated, i.e., every time the database is updated, all
the caches will be cleaned.

This solution offers complete data consistency but introduces other problems. If the
database is updated to many times the cache servers will be overloaded with cleaning scripts.

46 Chapter 3 - Database Distribution Techniques

This solution also introduces a synchronization problem as people doing the update may not
be aware of the need to clean the caches. Additionally, the same cache can be used for
different applications, which means the cache state will depend on other applications. Finally,
this solution does not solve the problem of the data that is not updated being removed from
cache.

3.2.2.3 Cache invalidation mechanism
A third approach to the data consistency problem is the development of a cache

invalidation mechanism that invalidates individual cache objects based on the auditing of the
database update operations. In this setup, cache servers are registered in the database, and
changes in the database are propagated to the caches using cache invalidation messages. For
example, if a database table is updated, all caches receive an invalidation message for all
cached documents referring to the updated table.

In order to analyze the viability of a cache invalidation mechanism like this, a cache
invalidation prototype for FroNtier was developed in the context of this thesis.

A cache content invalidation mechanism over a Squid, FroNtier, and Oracle database
setup should be based on the following parts:

- Detect database changes;
- Propagate invalidation messages to Squid caches;
- Purge cached content in Squids.

Alternative implementations of each of these parts were analyzed.

Detect database changes
There are several ways to detect changes in an Oracle database. Four methods were

identified: the view ALL_TAB_MODIFICATIONS of the Oracle data dictionary, database
triggers, database auditing, and the Oracle Log Miner.

Oracle database triggers detect changes within an Oracle database. Triggers are callback
functions associated with a set of firing conditions. Every time the trigger conditions are
satisfied, the callback function is automatically executed by the database. This solution could
be used to detect table updates and set the invalidation logic on a trigger call back function.
Nevertheless, to setup the invalidation mechanism a database or schema wide update
detection is needed. Database triggers can only be setup at table level, i.e., there is no
database or schema wide update trigger.

The Oracle data dictionary view ALL_TAB_MODIFICATIONS contains all data
modifications occurring in all tables of a given database. This view is not suitable for the
prototype as it is updated off- line with up to three hours delay after the table modification.

The Oracle database offers a set of powerful auditing features. Using auditing
functionalities, a complete table modification log can be obtained for a complete database.
The setup of the auditing is rather straight forward, as a simple SQL command starts the log
collection.

The Oracle Log Miner is an Oracle tool that also offers powerful auditing features by
analyzing the database logs. This solution could suit the needs for an invalidation mechanism
as it offers more information about database modifications, and introduces less performance
overhead than the auditing solution. The significant disadvantage of this solution is its more
difficult process of deployment, compared with the auditing solution.

3.2 FroNtier 47

Due to its simplicity and requirements fulfillment, the auditing solution was chosen to
implement the detection of database modifications. The setup is completed with the use of a
trigger on the log table. This trigger fires a procedure that starts the invalidation procedure.

Propagate invalidation messages to Squid caches
After detecting what tables are updated, and when are the tables updated, one needs to

define a method to identify what Squids and what Squid objects should be invalidated due to
a given database modification. This enables the communication of the table modification in
the database to the Squid caches.

As Squid servers cache query - query result pairs and not table data, the major task to
perform here is the conversion from a table name (modified in the database) to a cached
object name, i.e., a query string. Two solutions were identified:

In the first solution, Squid servers using a given database are registered in the database.
Every time a table is modified in the database, the database trigger function sends the table
name to all Squid servers. Each Squid server receives an invalidation message containing a
table name. In this setup, each Squid server scans its cache contents searching for queries on
the modified table and purge them. This solution has the advantage of being simple and easy
to deploy. On the other hand, it can considerably load the Squid server with the invalidation
messages processing. Nevertheless, considering the application characteristics, the database
update frequency is rather low. Additionally, at Squid server level, the typical bottleneck is
the network bandwidth and not the CPU.

The second solution is based on FroNtier server instead. In this setup, the FroNtier server
keeps the list of Squid servers, and is registered in the database to receive the names of the
modified tables. For each query received from a registered Squid server, the FroNtier server
logs the Squid server identification, the requested query, and the tables of the requested
query. This logging could be done at FroNtier servlet level or using the apache logs on the
FroNtier server. When the FroNtier server receives a database invalidation message with a
table name, it sends an invalidation message to all Squids who requested queries with that
table. This invalidation message, from the FroNtier server to the Squids, contains the list of
all the queries requested by the destination Squid. These queries are stored in the logs on the
FroNtier side, and, when received by the Squid server be immediately invalidated without
further processing. This solution takes the processing of invalidation messages from the
Squid servers to the FroNtier server but, instead, introduces a rather heavy overhead of
logging and processing the invalidation messages to the FroNtier server CPU which is a
typical bottleneck.

The base option here is to do the mapping between tables and queries in the Squid server
(first solution) or in the FroNtier server (second solution). At a bottom line, the first solution
is preferable for the main reason that is it simpler. The first solution would be based on an
invalidation unit running on each Squid server that handles most of the invalidation work.

The bigger challenge of this setup is the complexity of maintaining the invalidation unit
code on all Squids deployed over the grid. This number is rather large, for example, the
current FroNtier setup for the CMS experiment is composed of 32 Squid servers spread
around Tier 1s and Tier 2s centers of the LCG.

Apart from the chosen solution there are some issues common to both solutions. When a
table is modified, all queries on that table are invalidated. Nevertheless, when a table is
updated, not all previous queries on that table are necessary invalid, for example, queries on

48 Chapter 3 - Database Distribution Techniques

data not updated of the modified table. In these cases, there is always the danger of
invalidating objects that are still valid (over-invalidation). This is one example of why the
invalidation procedure can be tricky, and why the invalidation rules should be detailed
analyzed before implementation.

Another issue that must be taken into account is the necessity to register the Squid cache
hierarchy, so that the second level Squids (using other Squids as backend) also receive
invalidation messages. Alternatively, a system for sha ring invalidation messages between
Squids could be setup.

Purge cached content in Squids
The last step of the invalidation process is the actual purge of the Squid objects from the

cache. This is a rather straight forward process that can be accomplished in two ways: the
HTTP purge command that can be issued externally to any Squid cache, or the Squid purge
tool that has to run locally on the Squid server. The HTTP purge command can only purge
one object at a time while the Squid purge tool uses regular expressions for purging multiple
objects with one command. As the installation of the Squid purge tool could be integrated in
the deployment of the invalidation unit, it is considered the best option between the two.

3.2.2.4 Cache Consistency Summary
This section presented the data consistency issues of the FroNtier/Squid project and

described three possible approaches to handle these issues.
FroNtier is not able to replace a database access method with exactly the same consistency

semantics as a direct database connection, except with the implementation of an invalidation
mechanism. Generally, FroNtier/Squid does not offer data consistency warranties by it self.
Conversely, the projects using it do not require 100% of data consistency, although it would
be preferable. Therefore, applications running on top of FroNtier/Squid setups will always
have to be aware of the consistency issues in order to maintain the desired level of data
consistency.

 The discussion on the trade off between data consistency level and data consistency
maintenance complexity is still on going. Policies that offer “sufficient” data consistency for
the application have to be defined, taking into account the application access/update sequence
of the application. In the LCG, most of the application data will be updated, rather than
replaced.

Finally, this brief discussion on the setup of an invalidation mechanism for FroNtier
showed the viability of the project, and identified the different issues that have to be taken
into account when developing such a solution. If such a prototype was to be developed, it
could be tested using the tools developed for this thesis, and the performance overhead
introduced by the invalidation mechanism could be measured.

Chapter 4 - Performance Analysis Methodology

Performance analysis is a key step in the design of new computer systems including
processors, languages, operating systems, networking architectures, user applications, or
database systems. Several techniques are used in performance evaluations such as statistics,
probability theory, experimental design, measurement, simulation, queuing theory, data
analysis, and data presentation.

Performance evaluations are required at every stage of the life of a software system,
including its design, development, sales, use, upgrade, etc. Evaluations are typically needed
to compare alternative software systems or, in cases where no alternative exist, to evaluate
the current system to identify what components of the system are the bottlenecks, and, with
this information, reconfigure, tune, or upgrade the system. The different alternatives for
database distribution presented in the previous chapter are not directly comparable as they
use different replication schemas that offer different levels of latency, data consistency, and
redundancy. Nevertheless, evaluating each of the alternatives can provide useful insight on
the technology, for example, by finding bottlenecks or by identifying the optimal
configuration.

This chapter will make a brief overview of performance evaluation terminology and
techniques while exposing the methodology used in the performance evaluation of FroNtier.

4.1 Methodology definition

Several performance analysis methodologies exist, such as measure the performance of a
system under a real workload, simulate a workload measuring the system behavior, or build
an analytical model of the system.

Performance evaluations commonly consist of monitoring a system while loading it with a
given workload, and, from these measurements, build a model of the system. An analytical
model can be built from scratch without measurement in order to predict the performance of
the system.

The most common method to compare the performance of two systems is called
benchmarking. This technique consists of analyzing the behavior of the systems under
specific designed workloads (benchmarks).

As there is no standard measurement environment or technique for the wide variety of
software systems, the base steps of a performance evaluation are to select the best evaluation
technique, the best performance measures, and the best measurement environment.

Typical problems occurring in performance evaluations are: specifying performance
requirements, evaluating design alternatives, comparing two or more systems, determining
the optimal value of a parameter (system tuning), finding the performance bottleneck
(bottleneck identification), characterizing the load on a system (workload characterization),
determining the number and size of components (capacity planning), or predicting the
performance at future loads (forecasting).

Based on R. Jain [70], we can define a performance evaluation methodology composed of
the following steps:

50 Chapter 4 - Performance Analysis Methodology

Define the system and state evaluation goals
The first step in the methodology is to define the system to be tested. Without

understanding the system and its boundaries one is unable to evaluate it. After defining the
system, the analyst should define the goals of the evaluation. One of the most common
reasons of failure of a performance evaluation is an unclear definition of the goals of the
evaluation. The goals statement should be clear and unbiased, i.e., should be easily
understandable and not based on results expectations.

List services and outcomes
If we look at the system under evaluation as a service provider, we can identify the

services it provides. For example, a database system provides services such as: query tables,
create tables, populate tables, etc. This list of services and possible outcomes of each service
is the base of the evaluation methodology. It is used in the selection of metrics, parameters,
workloads, etc.

Select metrics
Metrics are the criteria used to evaluate the performance of a system, for example, the

response time or the throughput. Metrics should be representative of the system behavior, and
relevant for the problem.

Select parameters
Parameters are configurable elements of the system. System parameters are parameters of

a given setup of the system. Workload parameters are parameters that vary with user requests.
It is quite important to identify the complete set of parameters of the system under evaluation.

Select factors and their values
Factors are selected parameters used as variables on the evaluation. A performance

evaluation is commonly based on the study of the impact of the variation of the factors on the
system. The correct use of parameters and factors is another critical point in an evaluation.
Not all parameters have an equal effect on the performance, some parameters maybe used as
factors while othe rs may be fixed at their typical values. It is very important to identify the
parameters which, if varied, will have significant impact on performance of the system.

Select evaluation technique
Evaluation techniques are: measurement, simulation, or analytical modeling. Different

evaluation techniques have different speed, accuracy, cost, etc.

Select workload
Workloads are the requests made by the user to the system, for example, the queries and

other requests the user executes on a database. Workloads define how the system under test
will be exercised. All results depend on the correctness and representativeness of the
workloads used. Moreover, a workload can exercise different services with different levels of
detail, and can have different levels of repeatability.

Design experiment
The experiment design defines a set of experiments that aim to provide most information

with least effort. The definition of the experimental design based on existing techniques help

4.2 Goals statement 51

organize a set of measurement or simulation experiments to obtain maximum information
with minimum number of experiments. A precise experimental design uses the correct level
of detail (right number of measurements and parameter values) to separate the effects of
individual factors.

Analyze and interpret data
After executing the experiments, a precise analysis of the gathered data is fundamental. A

common mistake is to not actually analyze the data taken and, instead, collecting a lot of data,
and doing no analysis. While analyzing data one should make sensitivity analysis, analyze
outliers, analyze measurements variability, validate measurements, and take into account
system details like caching effects, buffer sizes, monitoring overhead, testing conditions, etc.

Present results
The last part of the evaluation is the presentation of the conclusions. Effective result

presentation to project stakeholders and managers can determine the success of a
performance evaluation. This step is commonly under valuated and a lot of unsuccessful
cases can be explained by wrong result presentation. Result presentation should be concise,
should use graphical data as much as possible, and should report on assumptions and
limitations of the evaluation.

At a bottom line, an evaluation should be based on problem definition and result
presentation instead of using a model as an end in itself.

This list of steps defines a systematic approach that can help getting to accurate

conclusions and avoiding typical errors in performance evaluations. The next sections
describe the process of using the defined methodology and discuss all the listed topics in
detail.

4.2 Goals statement

The main objective of this thesis is to elaborate a systematic performance evaluation of the
FroNtier package. The database caching solution offered by FroNtier can be exercised in
multiple ways. The methodology defined in the previous section will be followed for this
FroNtier performance evaluation.

Before executing a performance analysis one should clearly understand the problem. The
following questions help understand the FroNtier problem:

- How fast are the individual components of the system (Database, Application Server,
Cache Server and Network)?

- What impact has different data (content, size, storage type, compression), different
complexity database schemas, or different caching policies in the performance of the
system?

- How do database throughput, network bandwidth, payload size, number of clients, or
server CPU usage correlate?

- How can performance bottlenecks be identified in such a complex software stack?
Additionally to the performance evaluation resulting from this testing activity, a

benchmark for FroNtier servers will be developed so that it can be reused in future

52 Chapter 4 - Performance Analysis Methodology

evaluations or comparisons. This benchmark is supposed to be independent of the application
and of the database schema in use.

In a lower level, the objective of this evaluation is to identify performance bottlenecks of a
given FroNtier setup in an easy manner. Moreover, the performance evaluation should
include the complete software stack involved in the FroNtier package, i.e., the CORAL /
FroNtier plug- in, the FroNtier Client, the Squid servers, and the FroNtier Servlet (see section
3.2 for more details).

Based on these goals, the following sections will describe the methodological steps for
developing FroNtier tests.

4.3 List services and outcomes

If we look at the system under evaluation as a service provider, we can identify the
services it provides.

As see in section 3.2, FroNtier is a rather simple system. The services provided by a
typical database system are, for example, query table, create tables, populate tables, etc.
FroNtier is a slightly different system primarily because it is a read only system, i.e., write
operations are no t part of the FroNtier services.

In a general way, the base service offered by FroNtier is the ability to select different
columns in different tables in any schema of a specific Oracle database. The ability to access
the data through Squid caches or directly from the FroNtier server in a controlled manner
could be defined as a service. In this evaluation, this feature will be considered a parameter as
the workloads exercised will be the same for FroNtier server and for Squid caches.

The outcomes of the base service of FroNtier are always XML files containing the query
results. This XML file is transmitted over an HTTP connection and can represent the
following outcomes: a valid result set with the correct answer to the query, a valid result set
with the wrong answer to the query, or an error code and respective message.

4.4 Metrics selection

Performance metrics are the criteria used to evaluate the performance of a system, for
example, the response time (the time to serve a request), or the throughput (the number of
transactions per second).

After listing the services and outcomes of the system, we should define metrics for each of
the services provided by the system. A number of metrics should be selected to separately
measure the speed, the reliability, and the availability of each of the services.

The speed is measured when the system can execute the requested job correctly. Examples
of speed metrics are the response time, the response rate (throughput), and the resource
utilization. These metrics are known respectively as responsiveness (time to do the job),
productivity (number of jobs per unit of time), and utilization (percentage of time the
resource of the system was used).

The reliability is measured when the system works but executes the job with errors or
incorrectly. It is important to define all the different types of errors.

The availability is the ratio between the time the system is working normally (uptime) and
the time the system can not execute user requests (downtime). As with errors, the different

4.4 Metrics selection 53

downtime modes should be classified and measured separately. For example, a system can be
down due to network failure or software failure.

In systems with many users, special attention should be given to differences between
individual metrics and global metrics. Individual metrics are metrics for each user, while
global metrics reflect the system-wide perspective. For example, availability is a global
metric, while throughput can be either global or individual. Optimizing a system for a global
metric is different from optimizing it for individual user metrics. A typical case is the
individual throughput of a user that can be easily optimized by compromising the global
throughput. In this case, system-wide throughput, and its distribution among all users should
be studied.

After selecting the metrics, some of them can be identified as potential interesting for the
analysis. For example, the ratio between two metrics that do not vary between them can be
used instead, for example, the ratio between throughput and response time.

Some commonly used performance metrics are:
- the response time is the time between the user request and the system response. It can

be defined as the time between the user request and the beginning of the response, or
between the user request and the end of the response. The end of the response should be
considered in the case where the response is long (for example in a database system);

- the variability of the response time is usually a very important metric as it tells
whether the system is performing constantly;

- the reaction time is the time between the submission of the request, and the beginning
of the processing. To measure the reaction time the system must be monitored;

- the stretch factor is the ratio between the response time and the load. Usually the
response time increases with the load on the system;

- the throughput is the rate (requests per unit of time) at which the requests can be
served by the system. The throughput is measured in jobs per second on batch systems,
in packets per second on networks, in transactions per second on database systems, etc.

o the throughput of a system generally increases as the load of the system
initially increases; after a certain load the throughput stops increasing, and
may start to decrease. The maximum achievable throughput under ideal
workload conditions is called nominal capacity of the system. For networks,
for example, this nominal capacity is called bandwidth.

o Often, the response time at maximum throughput is too high to be acceptable.
In such cases, it is more interesting to know the maximum throughput
achievable without exceeding a pre-specified response time limit. This may
be called usable capacity. In most application the optimal operating point is
the point where the throughput reaches its maximum where the response time
is still good: this is the point where the response time increases rapidly in
proportion to the load on the system, and the throughput gain is small. Before
this point the response time does not increase significantly, but the throughput
rises as the load of the system.

o It is also common to measure capacity in terms of load, for example, the
number of users rather than the throughput;

- the fairness of the distribution of the throughput; as for response time, the variability
of the individual throughputs should be analyzed;

54 Chapter 4 - Performance Analysis Methodology

- the efficiency is the ratio between the maximum achievable throughput (usable
capacity) with the nominal capacity; a throughput of 85Mbps in a 100Mbps connection
denotes a connection with 85% of efficiency;

- the utilization of a resource is the ratio of time a given resource is busy servicing
requests. It may be the usage of resources such as CPU, disk, memory, network, etc.
The resource with the highest utilization is called the bottleneck. Performance
optimization on this resource will have the highest payoff. Finding the utilization of
various resources is one of the most important parts of a performance evaluation, i.e.,
system monitoring (see section 4.10.2);

- the reliability is usually measured as the probability of errors, or the mean time
between errors;

- the availability is usually measured as the Mean Time to Failure, which is the mean
uptime;

- a famous metric is the cost/performance ratio where the performance can be defined as
one of the metrics above, for example, the global throughput.

For this performance evaluation, the following metrics were selected:

- the global throughput of the system is the base performance metric used in this study
– the throughput is measured not in transactions per second (as typically done in
database systems), but instead in data bytes per second, so that the obtained values are
independent of the transaction size ;

- the response time - the request processing time (reply time) is included;
- the variability of the individual and global throughput;
- a slightly adapted stretch factor, i.e., the ratio between the throughput and the load of

the system;
- the utilization of resources – CPU consumption, memory usage, disk space, and

network bandwidth for clients, FroNtier servers, Squid servers, and database servers.
This metric is of major importance for bottlenecks identification, and will be further
discussed in section 4.10.2;

- the reliability - the probability of errors (typically occurring under heavy load);
- the cost/performance metric will not be directly used, but the performance impact of

the hardware resources (for example, FroNtier servers or Squid caches) will be
analyzed.

Conversely, some metrics are not considered useful and will not be used. The variability

of the response time is assumed to be the same as the variability of the throughput and
therefore is not used. The reaction time will not be used as its values for FroNtier are
typically insignificant. Moreover, these values are mainly dependent on network latencies
between system components. As very low response times are acceptable in FroNtier setups,
the nominal capacity is the same as the usable capacity. For this reason, the efficiency (ratio
between the usable capacity and the nominal capacity) will not be used in this evaluation.
Finally, the availability will not be used as it is a metric commonly used for analyzing
systems in production, which is not the case.

4.5 Parameters selection 55

4.5 Parameters selection

Parameters are configurable elements of the system. It is quite important to identify the
complete set of parameters of the system under evaluation. If a parameter is not taken into
account, it can introduce significant errors in the analysis. There are two types of parameters:
system parameters or workload parameters.

System parameters are parameters of a given setup of the system under study. Their values
can be tuned by system administrators. Examples of system parameters are the number of
FroNtier servers of a given setup, or the value of some operating system parameter in the
FroNtier server.

Workload parameters are parameters that vary with user requests. Their values are
controlled by the end user or end application. Examples of workload parameters are query
sizes, or FroNtier documents compression level.

We start by identifying all types of parameters of a FroNtier system. Along with the list of
parameters, we define, for each parameter, its type (categorical or quantitative), its possible
values (levels), and its typical value (the value used in experiments if the parameter is not
selected as an experiment factor).

In a FroNtier setup, the identified system parameters are:
- number and configuration of FroNtier, Squid, and database servers (memory, number

of CPUs, disk, etc.):
o these three groups of parameters are all quantitative;
o possible values depend on available technology and budget. In our particular

case, only the number can be changed as 2 servers are available;
o except the number of FroNtier/Squid servers that as a typical value of 1, these

values will not be changed during the experiments (section 5.1 describes the
hardware setup used in this evaluation).

- servers network connections speed:
o quantitative (bits per second);
o 10Mbps, 100Mbps, or 1Gbps;
o 100Mbps (1Gbps is not available for testing).

- FroNtier server distribution:
o categorical;
o all FroNtier server distributions. FroNtier server distributions used in this

evaluation were versions 3.1 and 3.3. Version 3.1 introduced FroNtier
documents compression. Version 3.3 included a feature that using the HTTP
keepalive feature reduced error rates for high load tests;

o FroNtier server version 3.3.
- FroNtier client distribution (it is considered a system parameter as it works together

with server distributions):
o categorical;
o all FroNtier client distributions. The FroNtier client distribution used was the

one directly associated with the distribution of the FroNtier server: versions
2.4 and 2.5;

o FroNtier client version 2.5.
- CORAL distribution (as the FroNtier client, it works together with the FroNtier server

distributions):

56 Chapter 4 - Performance Analysis Methodology

o categorical;
o all CORAL distributions. CORAL 1.3, CORAL 1.5, and CORAL 1.6 were

used. CORAL 1.3 changed the mapping between database data types and
CORAL data types (data sizes are different). CORAL 1.5 introduced
compatibility with FroNtier documents compression;

o CORAL 1.6.
- Squid distribution:

o categorical;
o all Squid distributions;
o Squid cache version 2.5.

- FroNtier servlet configuration – maximum active database connections in FroNtier
servlet:

o quantitative;
o any positive number (0 means no limit). The sum of the values of this

parameter in all FroNtier servlets connecting to the same database user must
be lower than the database’s maximum number of sessions per user;

o 10.
- Squid configuration - cache size:

o quantitative (bytes);
o 0 to maximum cache size (in this case, 150GB of disk);
o 0 (empty, or nearly empty caches).

- Squid configuration - cache peering (Squid peers can share cache content):
o categorical;
o yes/no: use cache peering between Squid servers or not;
o no, as only one Squid server will be typically used.

- Squid configuration - cache hierarchy:
o categorical;
o yes/no: use Squid cache hierarchy or not;
o no, as one Squid server will be typically used.

- server’s operating system parameters - TCP window size:
o quantitative (bytes);
o 0 to the maximum size specified in /proc/sys/net/core/wmem_max and

/proc/sys/net/core/rmem_max (typically 128kB);
o 64kB.

- database parameters (total database size, query caching, memory structure’s sizes,
max sessions per user, etc.):

o quantitative;
o hardware dependent ;
o section 5.1 describes the database setup used on the experiments.

- number of client nodes:
o quantitative;
o between 1 and 15 (client nodes available for these tests);
o 10.

- location of client nodes:
o categorical;
o any computing center in the LCG;

4.5 Parameters selection 57

o CERN tier-0.
- configuration of the client nodes:

o quantitative;
o depends on the technology and budget;
o section 5.1 lists the characteristics of the client nodes used in the experiments.

- number of test clients running in each client node:
o quantitative;
o any positive number;
o 2.

Complementarily, the workload parameters are:

- Number of queried tables:
o quantitative;
o any positive number (typically small);
o 1.

- Number of result columns:
o quantitative;
o 1 to 1000;
o 1.

- Number of result rows:
o quantitative;
o depends on database distribution;
o 10000.

- Number of columns in each queried table:
o quantitative;
o 1 to 1000;
o same as number of result rows.

- Number of rows in each queried table:
o quantitative;
o depends on database distribution;
o same as number of result columns.

- C++ data types (database column types):
o categorical;
o int (NUMBER(10)), float (BINARY_FLOAT), double

(BINARY_DOUBLE), std::string(x) (VARCHAR2(x)), and coral::Blob
(BLOB);

o std::string(100).
- Size of records in table:

o quantitative;
o depends on database distribution;
o 40 bytes.

- Query data:
o categorical;
o real application data, simulation data, or random data;
o random data.

- Query data compressibility (randomness):

58 Chapter 4 - Performance Analysis Methodology

o quantitative;
o 0 to 100% (relation between the network data and the database data);
o 90% (network data is 90% the size of the database data).

- Query frequency or client delay time between queries:
o quantitative (seconds);
o any number;
o 0 seconds.

- FroNtier documents compression factor:
o categorical;
o between 0 and 9, where 0 represents no compression, 1 minimal compression,

and 9 maximum compression;
o 5: medium compression.

- database access method:
o categorical;
o direct FroNtier access, Squid cache access, access to Squid but forcing cache

refresh on each query, and direct database access;
o direct FroNtier access.

- CORAL client connection mode:
o categorical;
o connect on every query and connect only once;
o connect only once.

4.6 Factors selection

Factors are selected parameters used as variables on the evaluation. This performance
evaluation studies the performance impact on the system of the variation of the factors.

All software systems have a huge number of parameters. Nonetheless, not all parameters
have an equal effect on the performance; some parameters can be used as factors while others
may be fixed at their typical values. It is very important to identify the parameters which, if
varied, will have significant impact on performance of the system. The values that a given
factor can take are called levels. The levels of a given factor are a subset of all the possible
values of the parameter associated with the factor.

In this section, we proceed with the discussion on which parameters will be used as
factors. Workload parameters and system parameters can be equally chosen as factors. First
experiments will use a small number of factors (primary factors) and levels, while later
experiments will use a expanded number of factors (secondary factors). So, from the list of
parameters defined in the previous section, a list of primary and secondary factors and
respective levels was built.

The parameters chosen as primary factors are:
- number of clients – it is derived from other parameters. It is calculated as follows:

number of clients = number of nodes * number of clients in each node
o The levels are 1, 2, 5, 10, 20, 50, 80, and 100;

- query size (as seen on the database) - it is derived from other parameters. It is
calculated as follows (record size as seen in DBA_USER_TABLES.AVG_ROW_LEN
after computing table statistics):

query size = number of result rows * number of result cols * record size

4.6 Factors selection 59

o The levels are 1kB, 10kB, 100kB, 1MB, and 10MB;
- FroNtier documents compression factor:

o levels are 0, 1, 5, and 9;
- data access method:

o levels are direct FroNtier access, Squid cache access, access to Squid but
forcing cache refresh on each query, and direct database access.

The parameters chosen as secondary factors (listed by order of importance) are:

- number of queried tables:
o Levels are 1, 2, 5;

- FroNtier server distribution:
o levels are version 3.1 and version 3.3 (to analyze keepalive function impact);

- location of client nodes:
o levels are CERN tier-0 and FNAL tier-1;

- CORAL client connection mode:
o levels are connect on every query and connect only once;

- number of FroNtier/Squid severs:
o levels are 1 and 2;

- maximum active database connections in FroNtier servlet:
o levels are 5, 10, 20;

- number of rows in each queried table :
o levels are same as number of result rows and 10 times that number;

- C++ data types (database column types):
o levels are int (NUMBER(10)), float (BINARY_FLOAT), double

(BINARY_DOUBLE), and std::string(x) (VARCHAR2(x));
- query data:

o levels are random data and simulation data;
- query data compressibility:

o levels are 5, 30, 50, 70, 90;
- query frequency:

o levels are 0, 10, 30, and 60;
- squid configuration:

o cache size, cache peering, cache hierarchy.

The number of database servers is not possible to be elected as a factor as only a limited

number of servers is available for testing. Excepting the maximum active database
connections in FroNtier servlet, all nodes and server parameters (test clients, FroNtier, Squid,
and database) are tuned for their typical values, and are only modified if a test result indicates
a better value for a specific parameter. The speed of the network connections between nodes
and servers is fixed at 100Mbps as higher speeds are not available. FroNtier client and
CORAL distributions are used in accordance with the FroNtier server distribution in use.
There is no identified reason to test different versions of Squid. The number of columns in
each queried table is supposed to have a very small impact on the performance on the system,
therefore, was set with its typical value.

60 Chapter 4 - Performance Analysis Methodology

4.7 Evaluation technique selection

A rather base step on a performance evaluation is to select the evaluation technique to be
used. The performance techniques most widely used are: measurement, simulation, and
analytical modeling.

Measurement consists of monitoring a system while loading it with a given workload. To
measure the performance of a software system two tools are needed: one to load the system
(load driver), and another to measure the results (monitor). These elements will be discussed
respectively in sections 4.10.1 and 4.10.2.

Analytical modeling consists of using an abstract model of a system to analyze its
behavior. A model must be designed to be similar to the real system in structure and
behavior. An analytical model defines a system in terms of its components, and a
mathematical or logical specification of those components. The analyst can then take
conclusions about the model analytically, for example, using mathematical procedures to
reason about the specification. Two key steps in analytical modeling are the processes of
validate and verify the built model. Validation makes sure the model is the adequate for the
defined purpose, while verification makes sure the model was well built.

Simulation consists of building a simulator that imitates the behavior of the system under
study. Simulations are based on models, but go a step further on the details obtained by
developing a simulator that computes the model. A simulation can be understood as a model
animation. To execute a simulation, often the mathematical model is translated to a computer
program, and the simulation consists of running the program with controlled inputs. The
analysis is done over the output of that computation.

In order to decide what technique to use one can take into account several considerations
such as the life-cycle stage of the system, the time available for the execution of the
evaluation, the accuracy needed on the analysis, the costs, etc.

For example, if a given product is in design phase, it is not possible to make measurements
of the system. If there is not enough time to do measurements (usually the slowest technique),
a simulation or an analytical model should be used instead. Conversely, if a big level of
accuracy is needed, measurement techniques should be applied, as they offer the biggest
accuracy.

As FroNtier is still on validation phase, no real production environment exists, and the
time and cost of the evaluation are not real constraints, the measurement of the system is the
obvious option for the evaluation technique.

4.8 Workload selection

Workloads are the requests made by the user to the system, for example, the queries and
other requests the user executes on a database. The terms benchmark and workload are used
synonymously: the process of comparing the performance of two or more systems by
measurements is called benchmarking, and the workloads used in the measurements are
called benchmarks.

There are two types of workloads: real workloads and synthetic workloads. A real
workload is the workload of a system in normal operation; it usually can not be repeated, and
thus, it can not be used as test workload. Nevertheless, in some cases the real workload can
be captured, and used later as test workload. A synthetic workload has similar characteristics

4.8 Workload selection 61

but it is produced artificially, so that it can be repeated. Synthetic workloads can typically be
modified easily and can include features not seen in real workloads.

The workload selection is the most crucial part of any performance evaluation project. It is
easy to take misleading conclusions if the workload is not properly selected. If a workload
model is built, the effect of changes in the system can be studied in a controlled manner by
varying the parameters of the model.

When defining the workloads, the major considerations to take into account are: the

services exercised by the workload, the level of detail, the representativeness of the
workloads, the timeliness, the loading level, the impact of external components, and the
repeatability.

If we look at the system as a service provider, as seen in section 4.3, we can base the
workload definition in that list of services. In our specific case, FroNtier is defined as a single
service system: the ability to reply to database queries, i.e., to retrieve different columns in
different tables in any schema of a specific Oracle database.

The level of detail at which the workload exercises the service can go from exercising all
types of requests to only exercise the most common requests. Alternative approaches exist,
such as, associate a frequency to each request type, and exercise each request the percentage
equivalent to that frequency. Another alternative is to collect a time-stamped sequence of
requests in a real system and use it as test workload. In FroNtier, different types of queries to
the database have to be exercised, for example, big/small queries, single/multiple table
queries, single/multiple column querie s, different column types, etc.

A test workload should be representative of the real application in terms of arrival rate of
the requests, resource exercise, and resource usage. Although there is still no real application
running FroNtier, this evaluation will try to do some approximations to the expected real
FroNtier workloads. The arrival rate of the requests can be easily controlled through the
query frequency used by the test client. Concerning the resource exercise, FroNtier offers a
single service that uses all resources on the system, i.e., the FroNtier servers, the Squid
servers, the FroNtier and Squid servers’ elements as disk, memory, CPU, and network. The
level of resource usage can be easily controlled with the number of nodes, number of clients
in each node, size of the query, etc.

Workloads should simulate the usage patterns of real applications as much as possible.
The sequence of service requests is usually a very important factor on building the workload.
Although the FroNtier server is a stateless system, the Squid caches are not. As the requested
queries to the Squid caches may, or may not, be cached, the order of arrival of the requests is
a significant factor. In this evaluation, the test clients will generate synthetic workloads that
will control, on the client side, whether the queries are cached or not. On the server side, the
queries will always be cached except an explicit refresh is requested by the client. The
assumption is that, in terms of performance, there is no difference between a Squid cache
miss (requested object not found on the cache) and a Squid cache forced refresh (client
requests a cache refresh). In fact, a Squid cache miss is slightly slower than a Squid cache
forced refresh as it includes a failed cache object matching.

The loading level at which the workload will exercise the system should be taken into
account when defining workloads. A workload can exercise a system to its full capacity,
beyond that capacity, or to the real level of load of the system. In this evaluation, the

62 Chapter 4 - Performance Analysis Methodology

objectives take us to the analysis of stress conditions, i.e., identification of the full capacity of
the system by analyzing its behavior in the transition between full capacity and beyond.

Another important aspect is the impact of externa l components on the performance of the
system. Different workloads get different impact from external components. The network
bandwidth available can be considered an external component with great influence on the
system. For example, a workload that exercises queries on big database tables depends more
on the network bandwidth available that a workload exercising queries on small database
tables: this has to be measured and taken into account.

Workloads should be easily repeatable and give results with low variance. A workload that
makes random demands on resources will need more runs to get meaningful results. Real user
systems are most of the times not repeatable. The analysis of the real-user environment and
the capture of its key characteristics is called workload characterization. Several statistical
techniques can be used for workload characterization such as averaging, dispersion analysis,
histograms, principal-component analysis, Markov models, clustering, etc. All workloads
used in this evaluation will be highly repeatable as they are synthetically generated. This
implies a careful analysis of the results variability.

Three workloads are used in this evaluation:

- CORAL - a purely synthetic workload that exercises the CORAL/FroNtier Plug- in
API with simple queries to a test database structure;

- COOL - based on the COOL API usage patterns ;
- ATHENA – a simulation application called Athena

These workloads are shown as a set of user transactional scripts, i.e., queries to the system
and on the Athena workload, some computation on the client side. All the workloads are
executed by the same load driver. This load driver consists of a client program that reads a
client script with a executable or a list of database queries (see section 4.10.1 for more
details).

The CORAL workload is a purely synthetic workload exercising the CORAL/FroNtier

Plug- in API with simple queries to a test database structure. This workload consists of a list
of queries based on the variation of the workload parameters selected as factors in section
4.6. Together with this list of queries, a database creation script is developed to create the
database against which the queries can be executed.

The following query is an example of a query of this workload:
SELECT string FROM T_STRING where rownum < 10000;
The table T_STRING is a single column table with 10000 rows of varchar2(100) filled

with the function dbms_random.string('X', 100) that generates random strings
of 100 characters, resulting in an average record size of 104bytes (4 bytes of row header).

The factors and respective levels used in this example are:
- query size: 10000 * 1 * 104 = 1MB;
- number of queried tables: 1
- number of rows in each queried table: 10000;
- C++ data types (database column types): std::string(100);
- query data: random data.

We would then need to define in the load driver the remaining workload parameters, i.e.,
the FroNtier document compression factor, the database access method, CORAL client

4.9 Experiment Design 63

connection mode, and the query frequency. As from this example we could vary any factor to
any other level, this workload defines the base for the experiments described in the next
section.

The second workload is based on the usage patterns of the COOL API. The queries used in

this workload are captured from a typical utilization of the COOL API. The logs of an
application using the COOL API were captured, and the queries related to COOL were
retrieved. As the COOL API uses the CORAL layer, this workload will exercise both the
CORAL and the COOL layers. It consists of a list of COOL queries that are executed (using
CORAL) against a COOL database structure filled with random data. The following query is
an example of a COOL query:

SELECT "OBJECT_ID", "CHANNEL_ID", "IOV_SINCE", "IOV_UNTIL",
"USER_TAG_ID", "SYS_INSTIME", "ORIGINAL_ID", "NEW_HEAD_ID", "X0"

FROM IOV_F0001_IOVS
WHERE (((IOV_SINCE <= 0) AND (0 < IOV_UNTIL)) OR ((0 <=

IOV_SINCE) AND (IOV_SINCE <= 0)))
ORDER BY CHANNEL_ID ASC, IOV_SINCE ASC
Here we can see that this workload explores much more varied query types. Nevertheless,

this workload is used for a much limited analysis of specific factors (see section 5.2.11 for
more details).

The Athena workload consists of a simulation program that has a very similar behavior to

the final data analysis programs in terms of data access pattern and data processing on the
client. When using this workload, each client will run an Athena job that accesses a specific
database structure and processes the queried data. These simulation jobs use the COOL API
and so, the CORAL layer to access the database, i.e., all the software stack is used in this
workload. So, this workload will put more load on the client CPU and the database access
pattern will be very sparse compared to the other workloads used in this study. Section 5.2.13
describes the experiment with this workload).

4.9 Experiment Design

In order to take meaningful conclusions for the different levels of the selected factors, it is
very useful to isolate the measurement of the impact that each factor has on the performance
of the system, and, additionally, to analyze the performance effects between factors, i.e., how
the impact on performance of a factor is influenced by the other factors. In this last case, it is
also interesting to see if the variation of a single factor reflects a performance variation, or if
this performance variation is introduced by random variations of uncontrolled parameters.

For these purposes, there are several experimental design techniques that help organize
experiments to obtain maximum information (most effective data analysis) with least effort
(the minimum number of experiments). An experiment design consists simply on the number
of experiments, the factor level combination for each experiment, and the number of
repetitions of each experiment. This section briefly describes the three options for the
experiment design.

64 Chapter 4 - Performance Analysis Methodology

Simple Design
This naive experiment design follows the idea of “change one thing at a time”. It bases all

the experiments in a typical configuration of the system, and then varies a factor at a time to
see how that factor impacts performance. This technique only tries all levels of a factor
against the typical value of the others.

This design may easily lead to wrong conclusions as the effect of one parameter may
depend on the other one. The following experimental designs are considered better.

Full Factorial Design
This design explores all possible combinations of all levels of all factors. The advantage

here is that every possible combination is tested. All interactions between factors can be
found. The problem introduced by this design is the time cost involved in executing all
possible combinations. Typically, this design technique defines a number of experiments too
large that can be reduced by:

- reduce the number of levels of each factor;
- reduce the number of factors;
- use fractional factorial design (see below).

A full factorial design that uses two levels for each factor needs 2k experiments. This is a
very popular design called 2k design.

Fractional Factorial Design
While the full factorial design crosses all levels of each factor with all others, in the

fractional factorial design, only some levels of some factors are crossed with others. This
drastically reduces the cost of the experiments. On the other hand, it introduces some
complexity in the analysis, and some interactions between factors may be lost.

The experiment design methodology for this evaluation is based on the following steps:

- validate method with experiments that use few factors and few levels (2k design);
- proceed to experiments using large number of factors but a limited number of levels

each. This helps determining the relative effect of the various factors and sorting out the
factor impact importance (2k design);

- continue with experiments using the simple design. This will allow us to do a basic
analysis of the impact of a large number of individual factors and its numerous levels;

- finish with detailed experiments using few factors but a lot of levels. Here a full
factorial analysis is used.

The details of each experiment are documented in chapter Chapter 5 -.

4.10 The Test Framework

In order to accelerate the execution of the experiments, a test framework was developed. It
automates most of the experiment execution and data gathering. It is composed of a load
driver and a monitoring unit. Additionally, the load driver is integrated within a test control
unit that, besides managing the execution of the client emulators, includes an integration
program that gathers client and monitoring data into a single analysis point.

The following figure shows the base architecture of the test framework:

4.10 The Test Framework 65

Figure 6 - FroNtier Test Framework Components

The following sections describe the control unit (load driver and integration unit) and the
monitoring unit of the test framework.

4.10.1 Test Control: Load Driver and Integration Unit
The test control unit of the test framework is composed of the load driver and the

integration unit.
Load drivers are tools used to load the system in order to measure its performance.

Commonly, a load driver is an automated software tool that connects externally to the system
under analysis, and acts as a user putting the system under a predefined workload. These
tools can simulate many users in a very controlled and repeatable way.

The load driver developed to run the FroNtier tests consists of a program that starts the test
clients in the client nodes, and a client program that, in each client node, reads a client script
with a list of database queries and executes them against a given database.

Usually, user emulators are controlled by a script file that contains the workload the user
should exercise. This script file contains the definition of the values of most of the workload
parameters, such as, the characteristics of the requests/queries, the delay between requests,
the client configuration, and the data access method. The client script for FroNtier tests is
composed of two files: the client configuration script and the client workload script. The
client configuration script is a shell script that contains the client configuration parameters as
the zip level to be used by the client, the database connection string, client workload script
file location, etc. Conversely, the client workload script contains the database queries to be
executed by each client. The following code is an example of a client workload script (written
in XML):

66 Chapter 4 - Performance Analysis Methodology

<?xml version="1.0" ?>
<queryList>
 <query>
 <select>
 <col>string</col>
 </select>
 <table>T_STRING</table>
 <where>rownum <= 10000</where>
 </query>
</queryList>

Other system parameters are defined together through a global configuration file

(additionally to the client scripts). This configuration file is also used by the integration unit
of the test framework. The following code is an example of a configuration file (written in
XML):

<?xml version="1.0"?>
<testConfig>
 <testNodes>
 <client mon="on">lxb0677</client>
 <client mon="on">lxb0678</client>
 <client mon="on">lxb0679</client>
 </testNodes>
 <monitoring>
 <server>lxb5556</server>
 <server>lxfsrk402</server>
 </monitoring>
 <execution numBoxes="17" numThreadsPerBox="3"
 numClientsPerBoxInit="1" numClientsPerStep="1" stepPeriod="1800"/>
 <locations baseDir="/afs/cern.ch/user/l/lramos/work/perf/"/>
 <clientConf testClientCmd="runFrontierClient.sh"
 testClt_queryListFileName="queryList.xml"/>
</testConfig>

In this file, several parameters are defined as the name of the client nodes and the servers

to be monitored, the ramp up strategy (number of clients per box, number of clients to
increment, and step period), test directories, test executables, and other configuration files (as
the client workload script file).

In each test node, the client configuration script (shell script) is executed. It reads the
client workload script (XML) and executes the Frontier client test (C++) that uses the
CORAL/FroNtier Plug- in (C++) to execute the defined queries against the FroNtier server.
Each client executes the queries, gathers the database results, and outputs the defined metrics
(as, for example, throughput) until a shutdown message is received from the central load
driver. Meanwhile, the integration script is executed to gather the metrics printed by each test
client.

4.10 The Test Framework 67

Using these configuration files, the framework manages the execution of the experiments
through a list of programs. The following listing shows an example execution of the program
that starts the experiment:

$./startClients.py test_run_64
1 job(s) started…
ssh -x lxb0677 ‘…<setup_environment_commands>…
FroNtierAccess_CoralPerfClient /dbdev/Oracle queryList.xml 1 0
> $FRT_TEST_DIR/logs/test_run_64/log_lxb0677-0.log
2> $FRT_TEST_DIR/logs/test_run_64/log_lxb0677-0.err'

The only command line parameter is the name of the experiment that is used to identify

the experiment. Additionally to this program, the framework includes programs to check the
status of the execution, and to finish the execution. Examples of the execution of these
programs follow:

$./statClients.py
Test clients running at lxb0677 -> 1

$./stopClients.py
ssh(10069) Received disconnect from 128.142.196.68:Command terminated on

signal 15.

The integration unit is the part of the framework that gathers client and monitoring data

into one repository by parsing the test client log files and querying the monitoring unit. This
ensures that the data gathering process is not synchronized with the clients’ execution.

This integration unit consists of a single program that can be executed anytime provided
that there are execution logs available for the experiment. The following example shows the
execution of the integration unit:

$./analiClients.py test_run_64
Reading /afs/cern.ch/user/l/lramos/work/perf/logs/test_run_64
Downloading lemon plots to disk...
Registering jobs status...
Done!
Report available at logs/test_run_64/index.php

The result of the analysis of the client log files is a web report containing all the data

gathered from the clients and monitoring unit. This web report contains the following
information:

- experiment name;
- experiment configuration summary (configuration files);
- experiment execution time;
- servers and clients monitoring information;
- results (metrics).

The results section shows the following information:

68 Chapter 4 - Performance Analysis Methodology

- individual client results with execution time, number of queries, error reports,
individual throughput, etc.;

- instant aggregated throughput (plot with the aggregated throughput every 2 minutes of
the experiment);

- aggregated throughput per number of clients (plot with aggregated throughput for each
ramp up stage with different number of clients);

- table with aggregated throughput values per number of clients.
Appendix I shows an example of these web reports and details the servers’ monitoring

plots. Although further scripts could be developed to parse each web report and gather
information from each experiment in an automated manner, this step is done manually.

4.10.2 Test Monitoring
This section documents the extensive study of the state of the art of monitoring tools, more

specifically, Linux performance monitoring tools. This study helped on the decision of what
monitoring tools or system should be used as the monitoring unit for this evaluation.

A monitor is a tool that observes activities on a system. Usually a monitor observes a
system, gathers statistics, analyze the data, and presents results. Some monitors identify
problems and suggest solution.

Though monitors are not specific to performance analysis (they are used by programmers,
system administrators, and system managers), monitoring is the first and key step in
performance measurement.

A monitor can be event driven or timer driven. Event driven monitors are activated when
an event occurs. Timer driven monitors, or sampling monitors, are activated at a fixed time
intervals that can be configured. If the event are to frequent event driven monitors can
introduce a big overhead. If time intervals are to big, timer driven monitors can miss
important system activities or events.

Another way to classify monitors is according to the method used to display the results.
Online monitors show system status continuously or at a given frequency, while batch
monitors are run once and collect results that can be analyzed later.

An alternative way to monitor a system is to analyze the system logs that are normally
produced. With this monitoring technique, one does not need to build a monitor, but needs to
build a log analyzer instead. Moreover, logs may not contain all the information desired.

The Linux operating system has a considerable number of performance tools ([71], [72]),

being most of them performance monitoring tools.
Performance is influenced by many factors, for example, processor speed, memory size,

number of network or disk controllers, size and speed of disks, the workload, the data access
patterns, the user usage patterns, etc.

Performance monitoring tools are typically used to identify performance bottlenecks. The
typical measurement elements are CPU, memory, network, and disk I/O. Each of these
elements has different performance metrics that can be monitored, for example, the CPU
utilization and the load average are two metrics for CPU monitoring. Understanding how the
system behaves in terms of these elements is the key to identify performance problems.

Before using a given performance tool for monitor the behavior of a system, one needs to
understand how each of these tools work. Usually each tool uses a specific measurement
technique for a given metric. And, although no tool displays all statistics, some of the tools

4.10 The Test Framework 69

display the same statistics. These are reasons to use different tools for the same
measurements to get deeper insight.

Generally, the act of observing a system modifies its behavior. Performance tools change
the way the system behaves when gathering information about it. When using the tools, this
performance overhead introduced by the tool itself should be taken into account. Typically,
low overhead tools give a less precise view of the system; while high-overhead represent a
bigger price to pay for deeper insight into the system behavior.

The kernel of the Linux operating system is primarily responsible to control how processes
access the devices available on the system. A common way to optimize the performance of
the system is to change these parameters. The /proc virtual directory contains a number of
files describing the system’s status; including running processes. Some of the files in /proc/
contain the values of kernel parameters. These files can be edited by the user. Alternatively,
the /sbin/sysctl command, and the file /etc/sysctl.conf are used to view, set, and automate
kernel settings in the /proc/sys directory.

The following sections describe what metrics are typically used for each system element,
and what tools are used to monitor these metrics.

4.10.2.1 CPU
The CPU utilization is one of the most important metrics to monitor in a system. Tools

shown in this section help answer questions like: where is the processor spending time
(operating system or applications)? Is the processor idle? Are there too many processes trying
to run?

The most basic tool to measure the system’s CPU load in Linux (and most UNIX based
operating systems) is uptime [74], which displays the load average of the system.

$ uptime
17:06:14 up 7 days, 5:06, 83 users, load average: 1.24, 1.01, 1.34

The load average can be defined as the average number of tasks that are runnable.

Runnable tasks are those that are either currently running, or those that can run but are
waiting for a processor to be available. Three numbers are typically shown for the load
average over the periods of the 1, 5, and 15 last minutes.

For ideal CPU utilization, the maximum load average should be equal to the number of
CPUs available. This number can be obtained by looking at the contents of /proc/cpuinfo that
shows a list of CPUs available, and respective characteristics. A load average less than 2.00
on a two-CPU machine indicates that the processors still have additional free cycles. The
same would be true on a four-CPU machine with a load average less than 4.00, and so on.

The analysis of the load average is not as straight forward as it might seem as the formal
definition of the load average is the sum of the run queue length (sampled every 5 seconds),
and the number of jobs currently running on the CPUs. Thus, load average also counts as
runnable all jobs in the run queue waiting on disk, or on I/O to a distributed file system.
Moreover, the internal calculation of the load average is not a geometric average, but rather
an exponentially-damped time-dependent average [74]. Load average is a moving average
where more weight is given to the latest data (also referred as exponentially weighted moving
average). This type of moving average reacts faster to recent value changes than a simple
moving average.

70 Chapter 4 - Performance Analysis Methodology

The second most used metric for CPU is the CPU utilization. The CPU utilization
represents the percentage of time that the CPU was effectively used. A value of 100% means
that there are no free cycles available. This value is given for each CPU available in a given
system. A CPU bottleneck is usually detected by a high CPU utilization coupled with a high
load average.

In a Unix based system, the CPU can be in one of the following seven states:
- User – the CPU is executing at user level, i.e., running users’ programs including

library calls;
- System – the processor is executing at system level, i.e., kernel code on behalf of the

application;
- Nice – the CPU is executing at user level with ‘nice’ priority. ‘nice’ is a command

used to set the scheduling priority of a job (both lower and higher than the default);
- Idle - the CPU is not doing actual work, and the system has no disk or network I/O

requests pending;
- iowait – the CPU is idle, and the system has a disk or network I/O request pending;
- irq - the CPU is executing high priority kernel code handling a hardware interrupt

(interrupt handles have very high priority and run very quickly);
- softirq - the CPU is executing kernel code handling a hardware interrupt but with low

priority, also called, soft- interrupts. Typically happens immediately after an interrupt
handling.

There are several tools to analyze these states, and the overall CPU utilization.
The Multi Processor Statistics tool (mpstat, provided by the sysstat rpm) [75] reports

processor related statistics.

$ mpstat 5 -P ALL
CPU %user %nice %system %iowait %irq %soft %idle intr/s
all 1.30 19.40 2.90 0.50 0.50 0.70 74.70 2692.60
0 1.60 16.40 1.80 1.00 0.80 1.40 77.00 2583.20
1 1.00 22.40 4.00 0.00 0.20 0.00 72.40 109.20

The previous example shows the output of mpstat. It shows utilization details of each of

the available CPUs. mpstat makes real-time measurements of the CPU utilization, and
accepts the length of the measurement (in seconds) as a parameter. In the example above, we
can see the CPU utilization percentages during the 5 seconds following the execution of the
command.

The first column of the output (CPU) produced by mpstat is the processor number; the
value ‘all’ indicates tha t statistics are calculated as averages among all CPUs. The values
shown represent, for each CPU (each line), the percentage of the total time the CPU spent in
each state (column). For example, in the 5 seconds following the execution of the command,
CPU 1 spent 72.4% in an idle state. The last column, ‘intr/s’ shows the total number of
interrupts received per second by the CPUs.

As mpstat, the Virtual Memory Statistics (vmstat) [76] is a real- time performance
monitoring tool. Vmstat has a broader usage than mpstat as it provides information about the
run queue, the CPU usage, and the memory usage (see next section for more details on
memory usage analysis). Vmstat also provides information for individual CPUs.

4.10 The Test Framework 71

$ vmstat -m 5
Procs| memory | swap | io | system | cpu
r b | swpd free buff cache | si so | bi bo | in cs | us sy id wa
3 0 | 1066 21 38 509 | 0 0 | 65 118 | 21 10 | 37 10 44 9
1 0 | 1067 21 38 509 | 0 0 | 0 316 | 449 894 | 54 9 37 0

The previous example shows the output of vmstat. Each line of the output is a sample

taken for a given period of time, in the example, 5 seconds. Each column of the output as the
following meaning (sections memory, swap and io are covered in the following sections):

- procs – r - the size of the run queue is the number of active tasks waiting for CPU;
- procs – b – the number of blocked processes waiting for I/O;
- system – in – number of interrupts fired;
- system – cs – number of context switches occurred, i.e., number of changes of running

process on the CPU;
- cpu – us – percentage of CPU user time (including nice time);
- cpu – sy – percentage of CPU system time (includes irq time and softirq time);
- cpu – id - percentage of CPU idle time.
- cpu – wa – percentage of CPU I/O wait time;

Vmstat offers a slight more compact version of the CPU metrics as mpstat, some insight
on the run queue size adding to the load average values, and the number of context switches
that can be related to the number of interrupts.

Both mpstat and vmstat are tools with low performance impact on the system which make
them good candidates for constant monitoring.

The commands ps (see section 4.10.2.2), iostat (see section 4.10.2.3), top, and sar (see
section 4.10.2.5) also provide CPU usage metrics like mpstat, but are generally more limited.

The /proc file system provides a way to analyze and control the Linux operating system,
more precisely, its kernel. Here one can check kernel data structures, system characteristics,
system parameters, etc.

The file /proc/stat contains information about kernel activity since the system first booted.
Here one can get absolute numbers for the typical CPU usage metrics; like time spent
executing in user mode, time spent executing in kernel mode, number of interrupts served,
time spent waiting for I/O operations, number of context switches, number of processes, and
threads created, etc. This file can be useful for fine grained analysis of CPU usage with the
disadvantage of needing further processing and calculations.

Procinfo is a tool that analyzes the /proc filesystem, and gives the user a report similar to
the one provided by vmstat. Additionally, procinfo shows the number of interrupts generated
by each device, allowing the analyst to identify the exact bottleneck device, if that is the case.

The time command gives the time a command took to execute, and divides this time in
real time (time from the beginning to end of the execution), user time (time that the CPU
spent executing this application’s code), and system time (time that the CPU spent executing
system code on behalf of the application).

System level limits can sometimes be an issue, as a specific operating system limit can
significantly degrade the performance of the whole system. The command ulimit provides the
ability to analyze and control the resources available to user processes. Limits can be
imposed on items like the maximum CPU time a process can use, the maximum size of a file,

72 Chapter 4 - Performance Analysis Methodology

the maximum processes for a given user, the maximum memory for a single process, etc. All
these limits can be controlled with ulimit.

4.10.2.2 Memory
Before doing an overview of the tools for analyzing the system memory usage, some basic

concepts about memory in the Linux operating system are introduced.
Although memory speeds continue to increase, reading and writing to memory takes

longer than executing code on the CPU. CPUs spend a significant amount of time idle
waiting for memory operation. This is the basic reason why memory usage is a common
performance bottleneck.

Any given system as a fixed amount of physical memory (RAM). Typically, this memory
is divided in fixed-sized pages. Instead of navigating in the memory byte by byte, the
operation system uses these pages as the basic unit of navigation.

Virtual memory is the capability of the operating system to move less frequently used data
from memory to disk while presenting the applications a virtual memory space supported
both on physical memory and disk. Thus, if the physical memory of a system is not enough to
run the application the hard drive is used. The disk space used of this is called the swap
space. Although swapping is a very good technique to run processes that demand a lot of
memory, it can be extremely slow as it resides on disk access speed, typically several orders
of magnitude slower than memory access. For this reason, the swap can quickly become a
bottleneck, and its management can have enormous consequences on the system
performance.

Conversely, if there is too much physical memory available, the operating system will
move frequently used files to the physical memory to avoid disk I/O. This can greatly
improve the performance of a system if the accessed files fit into the memory cache. This is
called disk cache and differs from processor cache.

Extra physical memory available is also used for buffering data that needs to be written to
disk. If an application has to write some data to disk that takes a long time, the operating
system can let the application continue execution by placing the data on these data buffers.
With this the application does not need to wait for disk I/O, and the buffers can be written to
disk at some point in the future.

Linux tries to use as much memory as possible for the cache, and buffers so a system
memory can be almost full only with these. This is not necessary a bad thing, as the operating
system does a dynamic management of the memory. For example, if the system needs the
memory used for cache for something considered more important, the cache is flushed to disk
and that memory space can be used. Future access to files in that cache fragment has to
depend on disk I/O.

The Virtual Memory Statistics (vmstat) command (see previous section) is primarily a tool

for system memory usage analysis. From the output of the command, the sections memory
and swap refer to memory analyzes, and show the following information:

- memory – swpd – the amount of memory currently swapped to disk (in kilobytes);
- memory – free – the amount of memory not being used (in kilobytes);
- memory – buff – the size of the system buffer for I/O data structures (in kilobytes),

memory space used to cache data structures before writing them to disk;

4.10 The Test Framework 73

- memory – cache – the size of the system disk cache (in kilobytes), memory space used
to store data previously read from disk;

- swap – so – the amount of memory swapped out to disk (in kilobytes); reflects the
swapping activity as data is swapped out to the swap space, it is a normal part of the
memory management procedure as unused memory is moved to disk;

- swap – si – the amount of memory swapped in from disk during the sample (in
kilobytes), represents pages that are swapped back to the physical memory. Unlike
swap out operations, swap in operations denote that swapped memory pages are, in
fact, being needed; usually shows that the total amount of memory available is not
enough for optimal execution;

The columns ‘swpd’, ‘si’, and ‘so’, are useful to check whether the system is swapping,
and if so, swapping rates can be registered.

The command ps (Process Status) [77] is probably one of the oldest and feature-rich

commands to extract performance information. It is especially useful for analysis of process
specific performance statistics. Ps provides static information about running processes (such
as the command name), and dynamic information (such as the memory and CPU usage). The
command ‘ps aux’ shows the total percentage of system memory and the amount of physical
memory that each process consumes. Ps shows the virtual memory size that a given process is
using, the amount of the process’ physical memory, the amount of memory that the
executable uses, etc.

Under the /proc file system one can find the files /proc/meminfo and /proc/slabinfo that

capture the state of the virtual memory. On these files we can find the total amount of
physical memory of the system, the total amount of unused memory, the size of the buffer
cache for I/O operations, the amount of cache memory that has been swapped out in the swap
space, the size of the swap space on disk, the amount of memory used by the kernel data
structures (/proc/slabinfo), etc. These files can be captured periodically to establish a pattern
of memory utilization.

Also under the /proc file system, the /proc/<pid> virtual directory (where pid is the PID of
the process) contains information about the process that is not available through any other
performance tool. For example, /proc/<pid>/status is a file that contains most of the
information shown by ps, plus some more fields like the amount of memory the libraries are
using, the size of the process’ data, or the amount of virtual memory locked by the process.
/proc/<pid>/maps contains details about how memory is allocated for a given process, such as
files used by the process and their location.

The virtual directory /proc/sys/vm/ contains a list of files where kernel memory settings
can be seen and changed. Examples of these are the total buffer memory size, and the
thresholds for swap management.

The file /proc/modules contains the list of modules loaded into memory. It can be useful to
detect modules that are not used and fill the memory space unnecessary.

Many other commands exist for system memory analysis. For example, the tool swapon

can be used to list active swap devices; the tool free gives an overall view of how the system
is using the available memory; slabtop can be used to analyze the internal kernel caches sizes;

74 Chapter 4 - Performance Analysis Methodology

ipcs is used to track what processes are allocating system shared memory, semaphores, or
memory queues; etc.

4.10.2.3 Disk I/O
Although the speeds of the I/O devices continue to increase, I/O throughput and latency

are still orders of magnitude slower than equivalent memory access. Because many
workloads have a substantial I/O component, I/O can easily become a significant bottleneck
to overall throughput and application response times.

The I/O access patterns exercised by the applications are an important characteristic of the
workload of a given system. Disk drives are able to handle large sequential transfers better
than small random transfers. Applications typically rely on the capability to access data in
random locations on disk. As a result, the I/O access patterns tend to be a mix of sequential
and random accesses. The I/O system performance can be severely impacted by the access
pattern of the workloads.

When analyzing I/O performance, it is essential to know the limitations of all the
components of the underlying storage system. The analyst needs to understand not only the
storage devices limitations, but also the way the system is interconnected and structured. One
should have in mind that the I/O performance cannot exceed the performance of the
underlying hardware. In addition, it is not obvious to distinguish between ha rdware and
software bottlenecks.

The main objective of the analyst in terms of I/O operations is to increase data transfer
rates to and from storage devices and reduce I/O latencies. For this reason, performance is
often evaluated in terms of overall throughput and latency of I/O requests. The latency of a
request is the time the request had to wait for the I/O operation.

If software optimization is not enough, many hardware solutions for increasing I/O
performance exist including faster disk drives, better disk type like SCSI disks, and larger
disk cache sizes. Another hardware solution to increase the I/O performance of a system are
the RAID systems (Redundant Array of Independent Disks) that increase access parallelism
by striping data across multiple disk drives. RAID systems offer better I/O performance by
using multiple hard drives to share or replicate data among the drives. RAID systems
combine multi low cost drives into a single logical unit that is seen by the operating system.

The disk I/O queue is where the kernel puts the I/O requests. Here the requests can be
grouped before the actual I/O operations.

The Linux operating system offers several different tools for performance evaluation of
the disk I/O subsystem. Typical monitored metrics are: the total number of I/O operations
processed by the system, the number of I/O operations per logical disk drive, the overall I/O
transfer rate. These tools can be used to identify I/O bottlenecks, what disks are being used,
how much I/O each disk is performing, and what the latencies are.

As for CPU and memory, vmstat (see previous sections) also produces statistics about the

usage of each disk in the system, within a given time interval. The statistics collected by
vmstat are: the total number of reads and writes, the total number of sectors read and written,
the amount of time spent reading and writing to disk, and the total amount of time spent
waiting for I/O to complete. Vmstat offers a rather basic but useful set of disk usage metrics.

4.10 The Test Framework 75

The iostat command [78] is a disk I/O specific tool that monitors system I/O activities and
generates reports. As vmstat and mpstat, iostat analyzes the system during a given interval of
time. These reports can be used to change system I/O configuration and, for example, balance
the I/O load among physical disks. An example execution of iostat is shown below:

$ iostat -k 5
Linux 2.4.21-47.0.1.EL.cernsmp (lxplus055.cern.ch) 12/19/2006

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
hda 37.60 209.60 186.40 1048 932
hda1 10.00 206.40 13.60 1032 68
hda3 24.00 3.20 153.60 16 768

Each line reports statistics about one logical disk. The disk/device name, in the first

column, is followed by the following values:
- tps - number of I/O requests that were issued to the logical disk;
- kB_read/s and kB_wrtn/s –data rate read from and written to the logical drive;
- kB_read and kB_wrtn - amount of data read from and written to the logical drive ;

With the option –k, one can see the same numbers in number of blocks instead of Kbytes.
The option –x shows an extended I/O usage report with information such as the average wait
time, the average service time, the average request size, average size of the request queue.
Iostat also provides CPU utilization that can sometimes be useful in comparing directly
against the I/O activities.

The tool lsof (list open files) shows the user which processes have a particular file open. It

can also show what processes are using files in a particular directory. In the Linux operation
system, it is not easy to find out what process is causing a given I/O activity. Although lsof
doesn’t show the amount of I/O on each file, it can show what processes are generating I/O
operations.

/proc/sys/fs/* contains a number of files to control kernel parameters related to the file

system. For example, /proc/sys/fs/file-max contains the maximum number of file handles a
user can get. /proc/partitions contains a list of all disks and partitions available with
respective name and size.

The df [79] command reports file system disk space usage, and how each partition on the

disks are mounted to the file system directories.

Hdparm is a powerful tool that measures hard disks speed, and tune how the kernel is

using the hard disks available on the system. This tool includes a benchmark for disks, and
can greatly help improving the I/O operations.

4.10.2.4 Network I/O
Computer networking and network performance analysis [80] are computer disciplines by

themselves. The Linux operating system supports features such as packet forwarding, firewall

76 Chapter 4 - Performance Analysis Methodology

operations, proxy, tunneling, and aliasing; and implements the three lower network layers:
link, network and transport.

At the link level (e.g. Ethernet), the system sends information to the network as a series of
frames. When analyzing a system, it is fundamental to know the speed of the underlying
physical network to which the system is connected. Current Ethernet interfaces typically
support 100Mbps and 1Gpbs. The underlying network elements like switches and routers can
be the bottlenecks as they may or may not support such speeds.

At the transport layer (typically TCP or UDP), Linux uses the socket/port concepts: local
applications use network sockets to connect to ports on remote systems. Tools exist to
monitor the traffic on a given network port.

Upper network layers may send information units much bigger than the size of a transfer
unit of a given layer. Each layer breaks everything up into transfer units to send them to the
network. At the link layer, the maximum size of data in a frame is called the MTU (maximum
transfer unit) that influences the datagram size at IP level. At TCP level, the MSS (maximum
segment size) is the maximum size of data in a packet and is set in each host. Nevertheless,
the TCP packet sizes may change depending on which hosts are communicating.

Generally, bigger sizes offer better performance (smaller header overhead), but increase
the probability of frame loss. The value of this configuration parameter should depend on the
quality of the network to which the node is connected.

In terms of network monitoring, the common performance metric is the rate at which data
traffic is flowing through each of the network layers.

The Linux operating system provides tools for network administration, monitoring,
troubleshooting, and security. This section explores some of these tools. Different monitoring
tools typically work with different network layers.

The command ping verifies if a host has a working network connection. ping uses the

Internet Control Message Protocol (ICMP) by sending a small packet through the network to
a given IP address. If a reply is received, the computer network connection is alive. Ping is
also useful to tell how many routers exist between the source and the destination host.

ifconfig (Interface Configure) displays information about the network interfaces like
interface address, the MTU, and counts of packets received and sent (successful and
erroneous). It also shows basic network statistics since the system as booted that, if
monitored, can be of great interest.

traceroute tracks the network path between two hosts registering: the routers of that path,
and the time spent between each router.

The route command can be used to manage the route tables of a system.
mii-tool is an Ethernet specific tool primarily used to configure Ethernet devices; it also

shows information about the device, like link speed and duplex settings.
ethtool is similar to mii- tool as it is used to manage the Ethernet devices of the system; but

it is more powerful than mii- tool with more options and statistics.
Ethereal and tcpdump are very useful tools for network traffic monitoring and analysis as

they capture all the packets going through the wire.
host and nslookup use a Domain Name Server (DNS) to translate a host name to a IP

address or vice-versa. nslookup is quite more limited than host.

4.10 The Test Framework 77

The netstat utility [81] is one of the most frequently used tools for monitoring network
connections and collect network statistics in a Linux system. netstat displays a large amount
of information related to the networking subsystem like the list of active sockets for each
network protocol, the network routes, and statistics of the network interfaces (number of
incoming and outgoing packets, and the number of packet collisions).

The basic feature of netstat is to display the list of existing sockets. The example below
depicts a basic netstat execution example.

$ netstat
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
Tcp 0 56236 lxplus009.cern.ch:ssh abpc10881.cern.ch:1752 ESTAB
tcp 0 0 lxplus009.cern.ch:5206 pclhcb49.cern.ch:x11 ESTAB
tcp 0 0 lxplus009.cern.ch:3472 lxmrra3801.cern.ch:ssh ESTAB

The first column contains the protocol of the socket. The second and third columns contain

the number of bytes currently in the socket queues. Following columns show addresses and
port information. The last column shows the socket state.

Netstat can also show the amount of network traffic flowing throw the network.

$ netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 447134403 0 0 0 454272843 0 0 0 BMRU
lo 16436 0 34022740 0 0 0 34022740 0 0 0 LRU

The first column showing the interface name is followed by the MTU column that shows

the current MTU for that interface. The RX and TX columns show how many packets were
received or transmitted error- free (RX-OK/TX-OK), damaged (RX-ERR/TX-ERR), dropped
(RX-DRP/TX-DRP), and lost (RX-OVR/TX-OVR). The last column shows the configuration
flags of the interface. These statistics on the number of packets sent and received is of high
importance to investigate network performance.

Netstat can display the kernel interface-specific counters for statistics about UDP/TCP
traffic that the system has sent and received since the last boot. These counters include the
Simple Network Management Protocol (SNMP) Management Information Base (MIB) and
other Linux-specific counters. The list of counters is available in the files /proc/net/snmp and
/proc/net/netstat files. The following example shows these network counters for UDP traffic.

$ netstat -s -u
Udp:
 18219472 packets received
 67 packets to unknown port received.
 5624 packet receive errors
 27962977 packets sent

78 Chapter 4 - Performance Analysis Methodology

Additionally, netstat can map network sockets to the processes using them; and, as
ifconfig, it can display information about the network interfaces of the system.

The tool Gkrellm provides a graphical view of some performance metrics. Its unique

feature is that it shows which system services are consuming different amounts of network
bandwidth.

Lsof (see section 4.10.2.3) provides a list of currently opened files that includes network

files, i.e., network sockets. This tool can be used to list opened TCP and UDP sockets and
associated processes.

Several Linux kernel parameters can be used to control and improve the network behavior

of a system. These parameters can be found under the file system /proc/sys/net. For example,
/proc/sys/net/core/wmem_default and /proc/sys/net/core/rmem_default contain the default
sizes of the TCP send and receive windows, and /proc/sys/net/core/wmem_max and
/proc/sys/net/core/rmem_max contain the maximum sizes of the same windows. These four
parameters can greatly influence the network performance of the system.
/proc/sys/net/ipv4/tcp_timestamps controls the use of timestamps in the TCP header, and
/proc/sys/net/ipv4/tcp_sack enables TCP selective acknowledgements.

The Andrew File System (AFS) and the Network File System (NFS) are distributed

network file systems that enable transparent access to remote disk resources. This is done by
incorporating a file system from a remote machine into the local file system. The nfsstat tool
can be used to collect NFS statistics as, for example, the number of NFS API calls (reads and
writes). These numbers can be helpful to understand the performance of a system that uses
these technologies.

Several tools have been presented in this section: tools to inspect connections on the

system (mii- tool and ethtool), tools to monitor the amount and type of packets flowing
through the network interfaces (ifconfig, gkrellm, netstat), tools that display the different
types of IP traffic and the amounts of each type of traffic (gkrellm, netstat), tools for system
administration (ifconfig, host, nslookup, and the kernel parameters), tools for network
troubleshooting (ping, route, traceroute), and tools for network traffic content analysis
(ethereal and tcpdump). All these tools can, in some way, be used for analyze and optimize
the performance of a system.

4.10.2.5 General Monitoring Tools
top is a very complete performance monitoring tool for Linux as it sums information seen

previously in other tools like ps, vmstat, uptime, etc. top provides a real-time interactive
overview of the system load (CPU and memory), and all running processes that are shown in
a sortable list.

The SAR utility is another rather complete and versatile performance tool that collects a
wide range of system activity metrics such as the CPU utilization, the rate of context switches
and interrupts, the rate of paging in and paging out, the shared memory usage, the buffer
usage, and network usage. Sar distinguishes itself from other performance monitoring tools
because it constantly collects and automatically logs the performance metrics in a set of log

4.10 The Test Framework 79

files. Moreover, the format of these logs and, as vmstat, the number and frequency at which
the tool collects statistics can be configured. These features together greatly improve the
easiness of a performance evaluation.

The Nmon tool, developed by IBM, is designed for monitoring and analyzing performance
data in AIX and Linux systems. The long feature list includes monitoring of CPU utilization,
memory usage, Kernel statistics, run queue information, disk I/O rates, disk I/O transfers,
disk I/O read/write ratios, file systems space, network I/O rates, network transfers, network
read/write ratios, paging space, paging rates, Network File System (NFS), and several AIX
specific features. Nmon also includes a tool to generate graphs from its output.

Although, these three generic tools are very complete, and include enough features to
analyze the performance of a system, generally, specific tools offer more details: for example,
mpstat for CPU, vmstat for memory, iostat for disk I/O, and netstat for network.

4.10.2.6 Tracing and profiling tools
The previous sections described mostly system-wide performance tools. Tools with

process specific analysis capabilities such as ps or top were referred. All these tools help to
determine how the system, or a specific process, is behaving in terms of CPU utilization,
memory, etc. In this section two other techniques for process specific performance analysis
are described: tracing tools and profiling tools.

Tracing tools can help determine what libraries and system calls in a given process are

being made and how long those calls take.
The tool strace (System Trace) [82] traces the system calls that a program makes while

executing. System calls are function calls made into the Linux kernel by or on behalf of an
application. strace can show the system calls made by the application and by the libraries the
application uses. It can provide a table showing the frequency of each system call and the
total time spent in calls of that type. This tool helps understanding how a given application
interacts with the kernel.

ltrace (Library Trace) is similar to strace, but it lists calls made by an application to
libraries. Ltrace lists library calls and shows the name of the functions, arguments, return
values, and the time spent in each call. It helps identifying what library calls are being made
and how long do they take.

Ltrace lists only the name of the library functions. In order to identify the exact library
where the listed functions are, one can use tools like ldd or objdump.

Profilers are another way of analyzing the behavior of an application. Profilers help

tracing the execution of a program and time the execution of the different parts of the
program, typically, each function of the program. This information can be used to tune the
application by identifying the most frequent and time consuming parts of the code. Three
profilers are described here: gprof, that analyzes the call graph of a given process; oprofile, a
more complete and system-wide profiler; and memprof, a memory profiler.

gprof is a profiling tool that displays the program’s call graph. Given a program, gprof
lists the called functions of the program and calculates the amount of time spent in each call.
gprof instruments the source code of the application under study and then runs the application
to produce a sample file. To accomplish this task, the application source code must be
available for the instrumentation. Although gprof shows the exact list of functions being

80 Chapter 4 - Performance Analysis Methodology

called, and make an approximation of the time spent in each call, it will most likely add some
overhead and change the performance behavior of the application being measured.

Oprofile is a system-wide profiler that tracks where CPU time is being spent. It can be
used to analyze single processes or an entire system. oprofile is a lower-overhead tool than
gprof because it does not require code instrumentation. It measures some events not
supported by gprof, but does not build call graphs by default like gprof. Using processor
counters, oprofile can measure very low level information like cache misses, floating point
operations, etc. Instead of recording all the processor events, it uses sampling which only
introduces a small overhead, but makes the analysis of results complex. The oprofile
reporting tool displays the collected samples and which executables or libraries are
responsible for them. Oprofile annotation tool can extract information about performance
samples and, for example, link samples to specific source code lines. Oprofile also offers a
GUI that enables the graphical control of the tool.

Gprof and oprofile only work with static languages like C or C++. For dynamic languages
like Java, python or Perl other profiling tools exist with similar functionalities.

Memprof is a profiler of memory usage that shows the amount of memory a program is
using and which functions are responsible for that. Memprof updates information
dynamically as the application is running.

Valgrind is a tool for memory debugging, memory leak detection, and profiling. It is a

high overhead tool but it can be very useful detecting problems like usage of uninitialized
memory, access to already freed memory, accesses to non allocated memory, and memory
leaks.

ld.so is the Linux loader that loads the libraries of dynamically linked applications

(application that use shared libraries). It connects symbols that the application uses with the
functions provided by the libraries. As different libraries are originally linked at different and
sometimes overlapping places in memory, the linker needs to check all the symbols and
manage all the needed memory relocations. The Linux loader runs automatically before the
execution of any dynamically linked application. Although this step is done transparently for
the user, it can significantly slow down the startup up of an application. The tool prelink can
be used to speed up the linkage process. It reorganizes the libraries of the entire system so
that they do not overlap in memory. If configured, the Linux loader command (ld) can print
statistics about the linkage process. As this can be an application bottleneck, these values can
be rather useful.

4.10.2.7 Distributed Monitoring with LEMON
Monitoring a distributed system is more difficult than monitoring a centralized system. In

distributed systems, monitors are commonly divided in components to allow distribution. An
example of architecture of a distributed monitor is a layered structure with components as an
observer, a collector, an analyzer, and a presenter.

The LHC Era Monitoring (LEMON) [52] is a distributed monitoring system that uses this
architecture. On every node monitored by LEMON, a monitoring agent (collector) launches
and communicates with sensors (observers) which are responsible for retrieving monitoring
information. The extracted samples are sent to a central measurement repository where they

4.11 Summary 81

are analyzed (analyzer). The user can access monitoring information in several ways
(presenters) including a web interface and a programmatic API to the repository.

4.10.2.8 Monitoring Unit
In this section we have presented the performance tools that could be, in some way, useful

for this thesis work. Several other performance tools exist that could complement the ones
described here. A general conclusion is that there is no single tool that provides all relevant
performance statistics on Linux. Almost all the tools shown in this section offer some sort of
information not available on order tools.

The monitoring unit of the FroNtier test framework makes use of several of the
performance tools described in this section. Some tools are directly used by the test clients for
self monitoring, while others are used indirectly through LEMON.

In the client side, mpstat, uptime, and vmstat are used to collect, respectively, the CPU
utilization, the load average, and the memory consumption. LEMON is used to analyze all
the utilization metrics of the servers: FroNtier, Squid, and database.

4.11 Summary

This chapter presented the methodology used in the performance evaluation of FroNtier.
Additionally, section 4.10 presented the test framework developed to execute the tests while
section 4.10.2 documented an extensive study of the state of the art of monitoring tools.

Chapter 5 - Performance Analysis of FroNtier

The previous chapter described in detail the performance analysis methodology of the
database caching system FroNtier/Squid and the test framework used to automate those tests.
This chapter presents the experiments conducted based on that methodology and using that
framework.

This chapter is structured in two sections. Section 1 describes the test setup in terms of
hardware and software configuration of the different components of the system: FroNtier
servers, database servers, and client servers. Section 2 documents the experiment s detailed
design, execution, and individual experiment result analysis.

5.1 Test Setup

A FroNtier setup is based on a collection of nodes, each running a FroNtier server and a
Squid server that connect to a backend database server. A test system was setup parallel to
the LCG 3D FroNtier production setup (see section 3.2.1). This section describes the software
and hardware setup of the test clients and servers of this test setup.

FroNtier/Squid Server Setup
The FroNtier/Squid test nodes are servers with Dual Intel(R) Xeon(TM) CPUs running at

2.80GHz, 2GB RAM, 150GB hard drive, and Fast Ethernet (100Mbps) connections. Gigabit
Ethernet connections were considered (for both production and test setup) but no justification
for those speeds was found.

The FroNtier/Squid test nodes run on Scientific Linux 3 (a Linux distribution based on
Red Hat 3 with Linux Kernel version 2.4) with Java 1.4.2_06-b03, Tomcat 5.5.0.28-11,
FroNtier Servlet 3.4, and FroNtier Squid 1.0rc4 (includes Squid v2.5.STABLE7 and
additional scripts). Both FroNtier and Squid are deployed as RPMs using Quattor [51].

The most important FroNtier servlet configuration options (taken from the configuration
of the JDBC connection to the database) are:

- maxActive – 10
o defines the maximum active database connections ;

- validationQuery - select 1 from dual
o defines the validation query to verify the presence of the database;

- session-timeout - 30
o database session timeout.

Although there are three nodes available for the evaluation, the typical value for the
number of FroNtier and Squid servers is 1.

The most important Squid cache server configuration options are:
- Size of the in memory cache: 512MB (25% of the 2GB RAM);
- Maximum Object Size: 256MB;
- Maximum Object Size In Memory: 1MB;
- Cache size in disk: 90GB;
- Squid always runs in http accelerator mode (as a reverse proxy server).

5.2 Test Plan: the Experiments 83

Database Server Setup
The test setup uses an Oracle database for all the tests as this is the database techno logy

mainly used in the project. The backend Oracle Database used for the tests runs on a Dual
Intel(R) Xeon(TM) CPUs running at 2.80GHz, 2GB RAM, 150GB hard drive, and Fast
Ethernet (100Mbps) connections. The Oracle Database version is the 10gR2 (10.2.0.3)
running on Linux Red Hat 3.

Clients Setup
The test clients run in dedicated nodes with dual Pentium III 1GHz, 500MB RAM, Hard

drive with 16GB and Fast Ethernet (100Mbps). These nodes run Scientific Linux 3 (a Linux
distribution based on Red Hat 3 with Linux Kernel 2.4). Clients run CORAL version 1.6.3
with the FroNtier Client plug- in version 2.5.1 (patched to output the test metrics).

5.2 Test Plan: the Experiments

After having defined, in the previous chapter, the experiment design, the workloads, the
test parameters, and factors, in this section we put all these values together by defining the
actual tests cases. The main choices here are what factors should be crossed, the experiment
designs, and the workloads.

As seen in section 4.6, the parameters chosen as primary factors are: number of clients
with levels 1, 2, 5, 10, 20, 50, 80, and 100; query size with levels 1kB, 10kB, 100kB, 1MB,
and 10MB; FroNtier documents compression factor with levels 0, 1, 5, and 9; and data access
method with levels direct FroNtier access, Squid cache access, access to Squid forcing cache
refresh on each query, and direct Oracle database access. Additionally, the secondary factors
are: number of queried tables with levels are 1, 2, and 5; FroNtier server version with levels
3.1 and 3.3; client nodes location with levels CERN tier-0 and FNAL tier-1; CORAL client
connection mode with levels connect on every query and connect only once; number of
FroNtier/Squid severs with levels 1 and 2; maximum active database connections on the
FroNtier servlet with levels 5, 10, and 20; number of rows in each queried table with levels
same as number of result rows and 10 times that number; C++ data types with levels int
(NUMBER(10)), float (BINARY_FLOAT), double (BINARY_DOUBLE), and std::string(x)
(VARCHAR2(x)); query data with levels random data and simulation data; query frequency
with levels 0, 10, 30, and 60; and squid configuration such as the cache size, cache peering,
and cache hierarchy.

As seen in section 4.8, the possible workloads are the CORAL workload, the COOL
workload, and the Athena workload.

As seen in section 4.9, the possible experiment designs are the simple design, the full
factorial design (including the 2k design), and the fractional factorial design.

The client ramp up strategy is defined in the global configuration file (see section 4.10.1).
In every experiment, the number of client nodes, the initial and total number of client
processes to run in each node, the experiment duration, and the client step number are
defined. For example, if the number of clients of an experiment is 4, 8, 12, 16; the number of
nodes can be 4, the initial number of processes 1, the total number of processes 4, and the
client step 1. So, the test starts with 1 process running in each of the 4 nodes; in intervals of
the experiment duration, the number of clients in each node will be added in 1 (the client step
number) until the total number of processes (4 in this case) is reached.

84 Chapter 5 - Performance Analysis of FroNtier

The test duration of an experiment should be enough that the difference between “one
successful query” and “zero successful queries” is ignorable. For example, on a test with
queries of 1MB, after 30 minutes of execution on the client, if no payload is retrieved, it
means that not even 0,5kBps (1MB divided by 1800 seconds) were achieved by this single
client. Note that, if it is a test with 100 clients, this value is not ignorable as the aggregate
throughput could be 50kBps (0,5kBps times 100 clients). So, the test duration in this case
should be bigger than 30 minutes.

The metrics selected for the evaluation and gathered by the integration unit of the test
framework are: the global throughput, the variability of the individual and global throughput,
the stretch factor, the resource utilization, and the reliability.

The following sub-sections describe the experiments executed. Each experiment is a
selection of one workload, one experiment design, and a collection of factors and levels.

5.2.1 Analysis methodology
The coherency of the results is tested by comparing the replication values against each

other and identifying major discrepancies (using a verification script).
The first analysis step is to manually analyze the monitoring plots of the FroNtier servers,

oracle servers, and clients, in terms of resource usage (CPU, network, memory, disk, etc.).
This step enables the identification of bottlenecks: very high resource usage nearly the
maximum available defines a bottleneck (100% CPU consumption, 100Mbps network
utilization, etc.). Some resources as disk and memory are not that relevant in these tests as
they are normally not a bottleneck. Nevertheless, it is useful to verify its utilization.

Finally, the most significant metrics, such as individual throughput and stretch factor, are
selected for analysis according to the results obtained.

A word should be said about statistical analysis of the results. Some statistical techniques
were used to summarize measured data, especially in representing results variability (values
as geometrical mean, variance and standard deviation). Additionally, more advance statistical
techniques could be used, for example, confidence intervals or regression modeling. These
techniques would allow to best describe the data taken in the experiments, to estimate the
contribution of each factor to the performance, and to isolate measurement errors.
Nevertheless, these techniques were not used as the level of precision and time scale for that
was not the desired, i.e., a faster and less statistically precise analysis was needed.

5.2.2 Experiment 1 - Access Methods Comparison
Description: compare the different access methods with a single client node
Parameters:

- Compression factor (zip level) – 5
Workload: CORAL
Factors:

- Number of clients with levels 1, 3, 5, 7 (single client node)
- Query size with levels 10kB, 100kB, 1MB
- Data access method with levels direct FroNtier access (FroNtier), Squid cache access

(Squid), and direct database access (Oracle)
Experiment Design: Full factorial design with 2 repetitions
Experiment duration: 300 seconds
Number of experiments: 4 x 3 x 3 x 2 repetitions = 72

5.2 Test Plan: the Experiments 85

Experiment 1 - Conclusions

FroNtier Access
For direct FroNtier access, with up to 7 clients running in a single client node, the

bottleneck is the CPU consumption on the FroNtier server. The only exception happens when
the query size is very small (10kB) and the bottleneck is shared with the DB CPU
consumption. FroNtier server CPU consumption with a single client node reaches values of
100% when 7 clients are running.

The bigger the query size, the bigger the load on the FroNtier server. This is explained by
the compression work on the FroNtier server. The higher the load on the FroNtier server, the
lower the load on the DB, as the bottleneck on the FroNtier server reduces the DB request
rate.

Oracle Access
In this case, the FroNtier server is not used as the clients access the database directly. The

DB network consumption gets to 3MBps and stops. As the network connection is 100Mbps
(12,5MBps), this means that, in this case, the network is not a bottleneck.

The load on the DB CPU is never very high with 10-40% CPU consumption and a load
between 0,5 and 1.

The client CPU utilization is between 10-70% and the load between 0,5 and 2,5.
None of these values represent a bottleneck but all values are quite high, particularly on

the DB CPU (the CPU load gets to 1). We can consider that no bottleneck was reached and,
as it will be seen in the next point, the system may well get to higher throughputs.

Squid Access
In this access mode, even using only one client node, the network utilization on the

FroNtier/Squid server is very high (6MBps). The network bottleneck is assumed to be over
12,5MBps (100Mbps). On the other hand, the CPU load on the FroNtier server and on the
DB is very low as all the accesses are issued to the Squid cache where the objects are cached
and already compressed.

In this test case, the bottleneck is detected at the client node level where the CPU
utilization goes from 50% to 100% (with 5 and 7 clients), and the load average gets to a
maximum of 7 (proportional to the number of clients). These high loads on the client CPU
are caused by the decompression work that as to be done by the clients, even if the query is
cached on the Squid.

Throughput Analysis
The following plot shows the achieved throughput using the three access methods: direct

FroNtier access (FroNtier), Squid cache access (Squid), and direct database access (Oracle).
The horizontal axis represents the number of clients (#clients) and the vertical axis the
throughput obtained in database rows per second (each row has 100 bytes). The query size is
1MB.

86 Chapter 5 - Performance Analysis of FroNtier

Figure 7 – Access methods comparison with 1MB queries and a single client node (throughput / number

of clients)

In this plot we can see that, for 1MB queries, the maximum throughput achieved with
direct FroNtier access is 6600 rows per second (640kBps). As seen in the previous point, the
bottleneck here is the CPU consumption on the FroNtier server.

Oracle access maximum throughput is 18500 rows per second (1800kBps). As the plot
shows, the throughput (green line on the plot) does not stabilize and may well be bigger for a
bigger number of clients. This shows that the system did not saturate.

Squid maximum throughput is 65000 rows per second (6400kBps). As seen before the
bottleneck here is the client node CPU utilization.

For smaller query sizes, all methods perform worse. This is explained by the overheads
introduced in each result set. This performance degradation is proportional between access
methods except for Oracle access that performs proportionally better than the other access
methods (half the throughput of Squid) with very small queries (10kB). This is explained by
the bigger overhead that FroNtier and Squid introduce in the result sets.

For all query sizes, both Squid access and FroNtier access reach the maximum throughput
with only 3 clients while Oracle access scales better until 7 (or more) clients. The Squid
performance bottleneck is explained by the client CPU saturation and the FroNtier access by
the FroNtier server CPU saturation. Oracle access seems to stand more clients. The setup
used in the next experiment will try to avoid these bottlenecks and will allow different
bottlenecks to arise.

5.2.3 Experiment 1.1 - Access Methods Comparison with 4
client nodes

Description: compare different access methods with several client nodes
Parameters:

- Compression factor (zip level) – 5
Workload: CORAL
Factors:

- Number of clients with levels 4, 8, 12, 16 (4 client nodes)
- Query size with levels 10kB, 100kB, 1MB
- Data access method with levels direct FroNtier access (FroNtier), Squid cache access

(Squid), and direct database access (Oracle)
Experiment Design: Full factorial design with 2 repetitions

5.2 Test Plan: the Experiments 87

Experiment duration: 300 seconds
Number of experiments: 4 x 3 x 3 x 2 repetitions = 72

Experiment 1.1 – Conclusions
For FroNtier access, the conclusions are exactly the same as for the single client node test

(experiment 1). The FroNtier server is always saturated with 100% CPU utilization and load
averages that grow up to 10 (for a dual processor machine). No stress is involved in the client
side and the CPU utilization on the DB server is about 20%, even with 16 clients.

When Oracle direct access is used, the FroNtier server is not used. Here we observe the
same behavior for all query sizes: very low load on the clients (10% CPU consumption with
0,5 load average), very high load on the DB server with CPU consumption of 20-90% and a
load average of up to 6 (both proportional to the number of clients), and very high network
traffic with 6MBps.

For Squid access, the bottleneck with several client nodes is the network with 12MBps
(96Mbps) being reached with 16 clients. For query sizes of 100kB and 1MB the client CPU
utilization is 50% with loads of 1,5; the CPU consumption on the FroNtier/Squid server is
only 10% (servicing cached queries); and there is almost no activity on the DB server as all
user queries are cached. For small query sizes (10kB), although the network throughput is
very high (8MBps), the bottleneck on the client nodes is still noticed with 90% CPU
consumption (load average of 3 with 16 clients). This is due to the overhead introduced by
many small queries. Changing from single client node to several client nodes made the
bottleneck move from the client CPU utilization to the network utilization.

The following plot shows the achieved throughput using the three access methods: direct
FroNtier access (FroNtier), Squid cache access (Squid), and direct database access (Oracle).
The horizontal axis represents the number of client scripts running on 4 test nodes (#clients)
and the vertical axis the throughput obtained. The query size is 1MB.

Figure 8 – Access methods comparison with 1MB queries and 4 client nodes (throughput / number of

clients)

Comparing this plot with Figure 7 (experiment 1), we can identify different interesting
points:

- FroNtier access shows the same behavior with saturated FroNtier server CPU;
- Squid access is stabilizing much higher with network saturation (100Mbps) instead of

client CPU saturation;

88 Chapter 5 - Performance Analysis of FroNtier

- Oracle access is more stable and does not scale as good as with one client node (DB
CPU bottleneck seems to be achieved);

Again in all cases, small query size of 10kB has strong impact on the performance as
overhead sizes and payload sizes are of comparable orders of magnitude.

5.2.4 Experiment 1.2 - Access Methods Comparison with 5
client nodes

Description: same experiment as experiment 1.1 but with higher number of clients and
fixed query size of 1MB.

Parameters:
- Query size - 1MB

Workload: CORAL
Factors:

- Number of clients with levels 10, 15, 20, 25, 30 (5 client nodes)
- Data access method with levels direct FroNtier access (FroNtier), Squid cache access

(Squid), and direct database access (Oracle)
Experiment Design: Full factorial design with 2 repetitions
Experiment duration: 300 seconds
Number of experiments: 5 x 3 x 2 repetitions = 30

Experiment 1.2 – Conclusions
The following plot shows the throughputs for different number of clients and different

access methods.

Figure 9 – Access method comparison with 1MB queries and 5 client nodes (throughput / number of

clients)

With a bigger number of clients, the behavior for all three access methods was the same as
in experiment 1.1. Here we can see that all values for all access methods are stable which
means at least one of the system components is saturated:

- Squid access stabilizes at 12MBps with saturated network;
- Oracle access gets to 2,5MBps with saturated database CPU;
- FroNtier access gets to 600kBps with saturated FroNtier server CPU.

5.2 Test Plan: the Experiments 89

The following additional conclusions can be taken: FroNtier puts very low load on the
client CPU (5%), Oracle puts average low load on the client CPU (20%), and Squid puts
considerable load on the client CPU (40%).

Experiment 1 - Questions
How would a combined access (FroNtier + Squid) compare with Oracle for this simple

workload, and for simulation or real workloads?

5.2.5 Experiment 2 - FroNtier Server Access Analysis
Description: FroNtier server base performance analysis from the end user perspective
Parameters:

- Data access method - direct FroNtier access
Workload: CORAL
Factors:

- Number of clients with levels 1, 3, 5, 7 (one client node)
- Query size with levels 10kB, 100kB, 1MB
- Compression factor (zip level) with levels 0, 1, 5, 9

Experiment Design: Full factorial design with 2 repetitions
Experiment duration: 300 seconds
Number of experiments: 4 x 3 x 4 x 2 repetitions = 96

Experiment 2 - Conclusions

Resource Usage Analysis
Regarding the tests without compression (using zip level 0), when queries are small

(10kb), the bottleneck is the database CPU with very high utilization. Nevertheless, with
bigger query sizes (100kB and 1000kb) there is no apparent bottleneck although high
consumption of DB CPU, client CPU, and network is observed.

For tests using compression, it is obvious that the bottleneck is the FroNtier server CPU
with utilizations over 90% (result set compression consumes much of the FroNtier server
CPU). The only exception is when the compression factor is 1 (less and faster compression)
and the query size is 10kb where the FroNtier CPU utilization falls to 70% and the DB CPU
utilization grows higher.

The following plot shows the aggregate throughput (in rows per second) and CPU
utilization on the FroNtier server per number of clients when executing 100kB direct
FroNtier access queries using a compression level of 5.

90 Chapter 5 - Performance Analysis of FroNtier

Figure 10 - FroNtier analysis with compressed 100kB queries (throughput and CPU% / number of

clients)

In this plot, the CPU utilization on the FroNtier server and the throughput grow with
similar rates, and, most important ly, we can see the throughput reaching its maximum at 6000
rows per second (almost 600kBps) when the CPU utilization is reaching the 100%.

The following plot shows the throughput and load average plotted against the CPU
utilization for the same test with 100kB compressed queries.

Figure 11 – FroNtier anal ysis with 100kB compressed queries (throughput and load average / CPU%)

Frontier access with 100kB compressed queries
Throughput and CPU (per # of clients)

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7 8

of clients

T
h
ro

u
g
h
p
u
t

c)

0

10

20

30

40

50

60

70

80

90

100

C
P
U

 %

b

Aggregate Throughput (rows per second) Server CPU utilization

Frontier access with 100kB compressed queries
Throughput and load average (per CPU%)

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100

CPU%

T
h
ro

u
g
h
tp

u
t (

kB
p
s)

0

1

2

3

4

5

6

L
o
ad

 A
ve

ra
g
e

 d

Aggregate Throughput (rows per second) Server Load Average (optimal = 2)

5.2 Test Plan: the Experiments 91

In this plot, we can see the growth rate of the throughput relative to the CPU utilization,
i.e., the throughput grows constant with the CPU utilization. The load average grows
exponential relative to the CPU utilization and gets up to 6 (the optimal value, for this two
processors server, is 2).

Some conclusions can be taken from this experiment in terms of resource utilization:
- Bigger query sizes and higher compression factors imply higher use of FroNtier CPU;
- Higher use of FroNtier CPU implies less use of the DB CPU (as the global throughput

is lower);
- The higher the compression factors the faster the bottleneck is reached.

Throughput Analysis
The following plot shows the throughputs for different number of clients and different

compression factors (zip levels) for 1MB direct queries to the FroNtier server.

Figure 12 - FroNtier analysis with 1MB queries and different zip levels (throughput / number of clients)

With this specific payload (1MB CORAL direct queries to the FroNtier server), zip level 0
(no compression) performs at least 5 times better than the other zip levels. Additional, all
compressing alternatives show similar performances.

The following plot is similar to the previous but the query size is 10kB instead of 1MB.

Figure 13 - FroNtier analysis with 10kB queries and different zip levels

92 Chapter 5 - Performance Analysis of FroNtier

(throughput / number of clients)

With 10kB queries, the performance is very different and stands as an exception to bigger
query sizes. In this case the performance is the same for all zip levels. This exception is
explained by the fact that the non compressible overhead of all packages (where the result set
is encapsulated) and the network overhead are of the same order of magnitude of the actual
payload data. The throughput degradation for more than 3 clients is again explained by the
FroNtier and network overhead that affect the performance.

The following plot shows the throughputs for different query sizes and different
compression factors (zip levels) when 7 clients are executed against the FroNtier server.

Figure 14 - FroNtier analysis with 7 clients and different zip levels (throughput / query size (kB))

As we can see in this plot, the bigger the query size, the bigger the difference between no
compression and all compressing zip levels (granted that the experiment is done below the
network bottleneck value).

From these previous plots, we can conclude that payload compression introduces a great
load on the FroNtier server and degrades the performance, granted that a good network
connection is available. This reveals the importance of understanding if payload compression
is worth it. This will be have to be studied using different payloads that will, in some cases,
overload the FroNtier CPU and, in other cases, the network bandwidth.

Compression Level Analysis
The following plot shows the throughputs for different number of clients and different

compression factors (zip levels) when 1MB queries are executed against the FroNtier server.

5.2 Test Plan: the Experiments 93

Figure 15 - FroNtier analysis with 1MB compressed queries and different compressing zip levels

(throughput / query size (kB))

For all query sizes (1MB query size is depicted in the previous plot), 5 clients (running on
one client node) are enough to get to the maximum throughput, with the FroNtier server CPU
consumption as the bottleneck.

Zip level 1 is worse for few clients, as there is enough available CPU on the FroNtier
server to compress result sets efficiently. Nevertheless, for bigger number of clients (where
FroNtier server CPU is much more loaded), zip level 1 performs better than other zip levels
as it better uses the short FroNtier server CPU resources. This can be seen in the previous plot
where zip level 1 (red line) starts with worse throughput and, as the number of clients grows,
gets higher throughput than the other two zip levels.

Experiment 2 – Questions
How does FroNtier perform with more clients using zip level 0?

5.2.6 Experiment 2.1 - FroNtier Server Analysis with No
compression

Description: FroNtier server analysis with zip level 0 (no compression) and many clients
Parameters:

- Data access method - direct FroNtier access
- Compression factor (zip level) - 0

Workload: CORAL
Factor:

- Number of clients with levels 5, 10, 15, 20, 25 (5 client nodes)
- Query size with levels 10kB, 100kB, 1MB

Experiment Design: Full factorial design with 2 repetitions
Experiment duration: 300 seconds
Number of experiments: 5 x 3 x 2 repetitions = 30

94 Chapter 5 - Performance Analysis of FroNtier

Experiment 2.1 – Conclusions

Resource Usage Analysis
For all query sizes, this experiment puts low load on the client node as, even running 5

clients, each node shows a CPU utilization of 20% and a load average lower than 0,5.
In the FroNtier server, one can observe a rather high network activity (proportional to the

throughput) of up to 6MBps. The CPU utilization is proportional to the number of clients
running and to the query size; it grows from 10% to 70% and the load average from 1 to 3 (25
clients with 1MB queries).

In the database server we can observe network traffic of up to 5MBps and a CPU
utilization that is inversely proportional to the load on the FroNtier server, i.e., the bigger the
query and the number of clients, the higher load on the FroNtier server and less load on the
DB. The CPU utilization on the DB server goes from 65%-90% (10kB queries) to 20-30%
(1MB queries), the load average goes from 1 up to 5 (10kB queries).

Although all the utilization values are very high, these values indicate that no single
resource holds as the bottleneck. In this case, we can consider that the system is saturated as a
whole.

 Throughput Analysis
The following plot shows the throughputs for different number of clients and different

query sizes using zip level 0.

Figure 16 - FroNtier analysis with different sizes of compressed queries (throughput / query size (kB))

In this experiment, we tried to force the limits of the FroNtier server working with no
compression. In Figure 12 we could not saturate the system with no compression as the
throughput was still going up even with 7 processes running in one client node. From the
previous plot we can see that, for all query sizes, 15 clients (3 processes in each of the 5
client nodes) is the point where the maximum throughput is achieved. For example, with
queries of 1MB, using zip level 0 (no compression), the clients achieved an aggregated
throughput of 40000 rows per second, i.e., almost 4MBps, while other zip levels get only to
600kBps. This represents a factor of more than 6 between compressing and non compressing
zip levels.

5.2 Test Plan: the Experiments 95

Compressing the result sets in the FroNtier server aims to improve the throughput by
assuming the bottleneck is the network bandwidth. The numbers obtained in this experiment
should induce some further investigation of the big impact of compression on a FroNtier
setup.

Experiment 2.1 - Questions
What is the relation with zipping performance and compressibility?

5.2.7 Experiment 2.2 - Compression and Compressibility
Description: zip levels analysis with different compressibility levels of the workload
Parameters:

- Query size - 1MB
Workload: CORAL
Factor:

- Number of clients with levels 5, 10, 15, 20 (5 client nodes)
- Compression factor (zip level) – 0, 1, 5, 9
- Query data compressibility with levels 5, 30, 50, 70, 90%

Experiment Design: Full factorial design with 1 repetition
Experiment duration: 300 seconds
Number of experiments: 4 x 4 x 5 x 1 repetition = 80

Experiment 2.2 – Observations: a word about compressibility
Data compressibility is a very important factor in this FroNtier performance analysis. High

compressible data bursts the use of compression algorithms in the FroNtier server as the time
lost in the FroNtier server CPU compressing the data will represent a considerable gain in the
network utilization. Conversely, low compressible data makes compression a waste of time as
the time lost in the FroNtier server compressing data will not influence the network
bandwidth utilization.

In practical terms, the main question in this analysis is: how compressible will be the real
data produced by the accelerator systems at CERN? And the follow up question is: what data
should be used to analyze the FroNtier system?

As real data is still not available for testing, only two data sources could be used for this
analysis: random data or simulation data. Simulation data is generated by the accelerator
simulation programs. At the time of this study, it was not possible to obtain usable simulation
data. Nevertheless, some insights about this data were obtained; most importantly: experts
stated that simulation data has average compressibility. So, if we take 50% compressibility as
the simulation data compressibility, we can use this value as input for the random data
generation.

Although several random data generators exist, the obvious choice was the Oracle
database random data generator as it is very conveniently available inside every Oracle
database.

To achieve low compressible data in an Oracle database table, not only the data must be
random (supplied by the Oracle random number generator) but it must fill all the spectrum of
representability of the data type in use, i.e., randomness depends on what data type is used to
the store the generated values. Random numbers should spread the full possible values of a
storage data type, i.e., random numbers size must be the size of the storage field. In order to

96 Chapter 5 - Performance Analysis of FroNtier

fill a 32bit integer field one has to use random numbers of 32bits. If 16bits are used in a 32bit
field, the data will be highly compressible, although random numbers are used. Floating point
numbers offer a special challenge as the generated numbers must cover the complete range of
possible floating point numbers, which is not sequential.

Experiment 2.2 – Conclusions

Resource Usage Analysis
In this experiment, resource usage at DB and client level is always comfortably below the

maximum capacity. The bottleneck here is always the FroNtier server CPU: maximum
throughput is typically achieved with 100% CPU utilization and load average of 8.

Throughput Analysis
The following plot shows, for the different data compressibility levels and compression

level 0 (no compression), the different data flows at different points of the system.

Figure 17 – Data compressibility and Throughput with no compression (throughput / compressibility(%))

In this plot, the blue line shows the throughput seen by the clients (the real data
throughput), the pink line shows the network usage between the clients and the FroNtier
server (XML documents), and the yellow line the network usage between the FroNtier server
and the database server (standard JDBC connection).

As expected, we can see that, with no compression, compressibility and throughput are
independent. As the used compression level is 0 (no compression), the network usage
between the clients and the FroNtier server and the network usage between the FroNtier
server and the database server are both constant, and so, independent from the
compressibility.

The network usage between the clients and the FroNtier server (around 4.8MBps) is
higher than the network usage between the FroNtier server and the database server (around
3.6MBps) due to character encoding techniques. The connection between the FroNtier server

Data Compressibility and Throughput
Zip Level = 0 (no compression)

0

1

2

3

4

5

6

7

0 20 40 60 80 100

Data Compressibility (%)

T
h
ro

u
g
h
p
u
t

(M

B
p
s)

 h

Client Throughput Client/Frontier net usage Frontier/DB net usage

5.2 Test Plan: the Experiments 97

and the database is a standard JDBC. The connection between the clients and the FroNtier
server is based on XML documents generated by the FroNtier server that encodes the result
sets using the base64 encoding. Base64 is an ASCII based representation that uses 4 bytes to
encode 3 bytes (6 bits from each of the 4 bytes). This encoding is safer to transmit binary data
inside the XML files as it only uses readable ASCII character codes to represent binary data.
Conversely, it uses more space to represent the same binary data. Base64 is theoretically 25%
less efficient (it uses 4 bytes to encode 3 bytes) which is exactly what we can see on the
previous plot: 4,8MBps of JDBC binary data and 3,6MBps of base64 data on XML files
(75% of 4,6MBps) that flow between the client and the FroNtier server.

The following plot shows the same information as the previous plot for the test case with
compression level 1, which is the lowest compression level.

Figure 18 – Data compressibility and Throughput with compression level 1 (throughput / compressibility

(%))

The meaning of the lines on this plot is the same as on the previous. In this plot, the values
are much lower (expressed in kBps). Maximum client throughput is around 1500kBps instead
of 6,3MBps (with no compression). This is explained by the fact that this test case forces a
high FroNtier CPU load (which is the typical bottleneck when using compression).

The most interesting detail in this plot is the network usage between the clients and the
FroNtier server (pink line in the plot) that goes down with compressibility. The compression
is only seen here, the JDBC connection between the FroNtier server and the database is not
compressed. The more compressible the data is, the lower is the network usage between the
clients and the FroNtier server. If we draw a line (following the pink line) to the 100%
compressibility, we see that 50kB of network traffic is the point at which 100%
compressibility would be reached. So, for 1MB queries, there is 50-100kB of base network
traffic being used (base overhead), which is 5-10% of the query size.

Nevertheless, the most important conclusion here is that the client perceived throughput is
rather stable and independent from the compressibility of the data, provided we stay close to
the FroNtier CPU maximum load.

Data Compressibility and Throughput
Zip Level = 1

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100

Data Compressibility (%)

T
h
ro

u
g
h
p
u
t

(k
B

p
s)

 f

Client Throughput Client/Frontier net usage Frontier/DB net usage

98 Chapter 5 - Performance Analysis of FroNtier

The next plot presents the throughput achieved in this experiment with different number of
clients and different compression levels using 30% compressible data.

Figure 19 – FroNtier analysis with 1MB queries against a table with 30% compressible data (throughput /

number of clients)

This plot is equivalent to the plot in Figure 15 and works as a confirmation of the
conclusions taken there. In this case, as more clients are used (5 client nodes), all the values
are very close to the maximum throughput as the CPU usage in the FroNtier server is always
the maximum.

As we are testing 30% compressible data, compression level 1 (red line) has the best
performance and gets to the maximum throughput with less clients (10). We can conclude
that using higher compression levels and make an extra effort in trying to compress not very
compressible data (30%) is useless in this case.

The same experiment executed with more compressible data (not shown in this plot)
shows compression level 5 performing as good as compression level 1 while compression
level 9 is always the worse compression level.

The compression level is a system parameter that will be defined and used always with the
same value. As compression level 9 always performs worse than the others (even with highly
compressible data) and compression level 5 only performs as good as compression level 1 in
highly compressible data, we can conclude from this experiment that compression level 1 is
most probably the best choice as most of the real data used in the project will not be highly
compressible.

5.2.8 Experiment 2.3 – Big Queries Analysis
Description: FroNtier server analysis using query sizes of up to 30MB
Parameters:

- Compression factor (zip level) – 5
- Query data compressibility - 50%

Workload: CORAL
Factor:

- Number of clients with levels 5, 10, 15 (5 client nodes)
- Query size with levels 1, 5, 10, 20, 30 MB

5.2 Test Plan: the Experiments 99

- Data access method - direct FroNtier access and Squid cache access
Experiment Design: Full factorial design with 2 repetitions
Experiment duration: 900 seconds
Number of experiments: 3 x 5 x 2 x 2 repetition = 60

Experiment 2.3 – Observations: real world query sizes
Experts state that real scenario normal queries will be around 2-3MB, while small queries

will be 100kB and bigger queries will reach 20-30MB. Until this point, tests were executed
with query sizes of 10kB, 100kB, and 1MB. We have seen that 10kB have a rather particular
behavior as their size is of the same order of magnitude as most of the overheads. Based on
the experts’ statement, we should ignore the issue with 10kB queries and further analyze the
behavior of the FroNtier server with queries of 20-30MB.

Experiment 2.3 – Conclusions
Executing this test against a Squid cache proved that big queries are not a problem for

Squid access. Using the Squid cache, the network bottleneck is reached in all cases, limiting
the maximum throughput. Moreover, as the data used in this experiment is 50% compressible
and the network link available is a 100Mbps connection, we could predict a maximum
throughput of around 25MBps, equivalent to 12,5MBps (100Mbps) times 2 (50%
compressibility): 20MBps were achieved.

Regarding the execution of the test against a FroNtier server using compression level 5,
the following plot shows the achieved throughput for each query size.

Figure 20 – FroNtier analysis with big compressed queries (throughput / query size (MB))

In this plot, we can see that the throughput behavior is the same for all number of clients.
The resource utilization is also the same as in other similar experiments: the CPU utilization
on the FroNtier server is very high (near 100% with loads of up to 10), and the CPU
utilization on the clients is rather low.

Additionally, for bigger number of clients (20 or 25), the aggregate throughput is lower
than the throughput achieved with 5, 10, and 15 clients. Two base reasons exist for this: for
bigger number of clients, each client request is longer, as more clients are saturating the
system, and so, the test duration should be bigger than 900 seconds (15 minutes). On the

100 Chapter 5 - Performance Analysis of FroNtier

other hand, testing with such a big number of clients (for just one FroNtier server) makes
server errors to be much more probable, which limits the throughput.

As a general conclusion, we can state that the FroNtier server can handle queries of
20MB-30MB with no issues. Nevertheless, the behavior of the FroNtier server under
extremely heavy load (bigger queries, bigger number of clients, and bigger test durations)
should be tested.

Experiment 2.3 – Questions
How does FroNtier server works under extremely heavy load? What is the error rates

progression? What is the capacity of a FroNtier server in terms of number of clients?

5.2.9 Experiment 2.4 – Error Rate Analysis
Description: FroNtier server capacity and error rates analysis
Parameters:

- Compression factor (zip level) – 0
- Data access method - direct FroNtier access
- FroNtier server distribution - 3.1

Workload: CORAL
Factor:

- Number of clients with levels 1, 5, 10, 20, 30, 40, 50, 80, 100, 150 (10 client nodes)
- Query size with levels 1.3, 2.7, 5.5, 11.2, 22.6 MB

Experiment Design: Full factorial design with 1 repetition
Experiment duration: 1800 seconds (30 minutes)
Number of experiments: 10 x 5 x 1 repetitions = 50

Experiment 2.4 – Conclusions
Test duration should be carefully controlled as, if a short duration is used, the obtained

values will not be stable and will show a great variability. In this experiment, with many
clients causing many errors and long response times, the test duration used was 30 minutes
(for each combination of levels).

The following plot shows the error rates (% of failed queries) for different query sizes and
number of clients. In it, we can see that the bigger the query size, the sooner the error rate
starts to grow, i.e., less number of clients are needed to saturate the server. If we consider
10% as the threshold for the maximum acceptable error rate, we can define the maximum
capacity for each query size for a single FroNtier server. For example, the server can handle
(with error rates below the defined acceptance threshold of 10%), 80 clients issuing queries
of 1,3MB, 30 clients issuing queries of 5,5MB, etc. Moreover, real clients will have a much
slower query frequency, thus, the real capacity of the server is expected to be quite higher
than these values.

5.2 Test Plan: the Experiments 101

Figure 21 - % of failed queries with different query sizes and different number of clients (% of failed

queries / number of clients)

As a detailed example, in the next plot we can see the error rate and the aggregated
throughput for queries with 2,73MB and different number of clients.

Figure 22 - Throughput and % of failed queries for 2,73MB queries with different number of clients

(MBps and % of failed queries / number of clients)

In this plot, we can see the maximum aggregated throughput being achieved with 5 to 10
clients and then the error rate starting to climb with 30/40 clients. Again, if we define the
acceptance error rate threshold as 10%, we can see that the maximum capacity for this setup
would be around 40/50 clients.

% of failed client requests
(per # of clients for different query sizes)

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200

of clients

%
 o

f f
ai

le
d
 c

lie
n
t r

eq
u
es

ts

1,3MB

2,7MB

5,5MB

11,2MB

22,6MB

Throughput + Error rate (for payload of 2,73Mbytes)

0

0,5

1

1,5

2

2,5

3

3,5

0 50 100 150 200

of clients

T
h
ro

u
g
h
tp

u
t (

M
B

p
s)

 ff
ff
ff

0

10

20

30
40

50

60

70

80

90

100

%
 o

f e
rr

o
rs

d

Aggregated Throughtput % of Errors

102 Chapter 5 - Performance Analysis of FroNtier

When many clients are running against a single server and the error rate is high (as we can
see on this plot with more than 50 clients), aggregate throughput goes slightly down as error
requests are also processed (before the error occurs) and do take server CPU time.

5.2.10 Experiment 3 - Squid Cache Access Analysis
Description: Squid cache base performance analysis from the end user perspective
Parameters:

- Data access method – Squid cache access
Workload: CORAL
Factors:

- Number of clients with levels 4, 8, 12, 16 (4 client nodes)
- Query size with levels 10kB, 100kB, 1MB
- Compression factor (zip level) with levels 0, 1, 5, 9

Experiment Design: Full factorial design with 2 repetitions
Experiment duration: 300 seconds
Number of experiments: 4 x 3 x 4 x 2 repetitions = 96

Experiment 3 – Conclusions

Resource Usage Analysis
In this experiment, the aim is to analyze the network usage between the servers and the

CPU utilization on the client nodes. As there is no compression work on the FroNtier server
(the documents are already compressed in the cache) and almost no access to the database is
done (except FroNtier metadata queries), the resource utilization is very low except on the
network and on the client CPU (where the documents are uncompressed).

When no compression is used, the bottleneck of the system is always the network usage.
In all cases, the network usage on the FroNtier/Squid server reaches 11,5MBps (96Mbps)
which is very close to the theoretical 100Mbps limit of the network. For example, with 4
clients, each client gets to 3MBps of network usage. The CPU usage on the FroNtier/Squid
server is 10% that represent the Squid server servicing cached queries and the FroNtier server
servicing the metadata queries. Although the client CPU is not a bottleneck on this case, it
gets to 70% with 10kB queries and to 30-50% with bigger queries.

When compression is used, the FroNtier/Squid CPU load is very low. As in experiment
1.1, with small queries of 10kB, although the network usage is high (8MBps), the bottleneck
is the client CPU that cannot handle so many small queries to uncompress and shows a CPU
utilization of over 90%. On the other cases, the bottleneck is the network usage between the
FroNtier/Squid server and the clients (11,5MBps).

In this experiment, there is almost no activity in the DB server as most of the queries are
cached. Nonetheless, FroNtier metadata queries issued by the client are not cached on the
Squid server. For each user query, FroNtier/Squid has to execute a certain number of
metadata queries to the database. These queries are queries to the Oracle data dictionary. As
these are the only queries that are not cached in the Squid server, the traffic generated by
these metadata queries can be measured on the network usage between the FroNtier server
and the database. For 10kB queries, the network traffic between the database and the
FroNtier/Squid server is 800kBps; for 100kB queries, 370kBps; and for 1MB queries,
280kBps. If the queries are bigger, this network usage between the FroNtier server and the

5.2 Test Plan: the Experiments 103

database is lower. To achieve similar throughput rates (limited by the network between the
FroNtier server and the clients) with smaller queries, a much bigger number of queries has to
be executed. This is why the database network usage goes down when the query size grows.

It is also important to understand the different types of overheads that exist in the system
as compressed payloads always include non compressible overheads. For example, in a query
of 10kB, overhead size can reach 50% of the transmitted data, and so, drastically influence
the performance. The types of overheads are: database overhead (each element on the
database has a storage overhead, for example, a row as a 4 bytes overhead), the network
overhead (network protocols overhead), FroNtier client overhead (xml documents
communication management like error control), CORAL FroNtier plug- in overhead, etc.

Throughput Analysis
The following plot shows the throughput achieved with different number of clients and

different compression levels for 1MB queries.

Figure 23 - Squid analysis with 1MB queries and different compression levels (throughput / number of

clients)

The first detail we should point out is the fact that cached Squid access is faster using
compression (red line appears below all the other lines). This is a basic fact about FroNtier:
no compression is faster when accessing FroNtier directly (Figure 12) and slower when
accessing Squid cached results (Figure 23). On Figure 12, when accessing the FroNtier server
directly, the bottleneck is the FroNtier server CPU, and so, no compression is faster as it puts
a lower load on the FroNtier server. On the other hand, in this plot, when accessing Squid
cached results, the bottleneck is the network usage and so, compressing the payload is
advantageous to explore the heavy loaded network link. If we assume that the real workloads
will be based on very repetitive access patterns, we can conclude that using compression on
the FroNtier server is advantageous.

Although, in this experiment, we used almost non compressible data, all workloads
include compressible metadata which explains the small difference between compression and
no compression. If the data was more compressible, compression tests would perform even
better than no compression.

104 Chapter 5 - Performance Analysis of FroNtier

In this experiment, we could observe the exact same behavior as depicted in Figure 7
where tests with 10kB queries would perform much worse than bigger queries due to the size
of the communication and metadata overhead.

5.2.11 Experiment 4 - COOL Workload Analysis
Description: FroNtier, Squid, Oracle performance analysis from the end user perspective
Parameters:

- Query size – 10000 database table rows of 159bytes each – 1,52MB
Workload: COOL
Factors:

- Number of clients with levels 4, 8, 12, 16 (4 client node)
- Data access method with levels direct FroNtier access (FroNtier), Squid cache access

(Squid), and direct database access (Oracle)
- Compression factor (zip level) with levels 0, 1, 5, 9 (for Squid and FroNtier only)

Experiment Design: Fractional factorial design with 2 repetitions – level Oracle of access
method factor is not mixed with zip levels (direct Oracle access cannot be compressed)

Experiment duration: 300 seconds
Number of experiments: 4 x (1 [Oracle] + 2 [FroNtier and Squid] x 4) x 2 repetitions = 72

Experiment 4 – Observations
This experiment uses the COOL workload as described in section 4.8. This workload is

used with the primary objective of validating the experiments done with the base workload
(CORAL) as it represents a step further on the test of the FroNtier software stack. The aim is
to find special behaviors that would not be seen using the base workload (CORAL).

This COOL workload is based on queries captured from a typical utilization of the COOL
API. It consists of a list of COOL queries that are executed against a COOL database
structure filled with random data.

Experiment 4 – Conclusions
The following plot shows the throughput achieved with the different access methods and

compression levels for different number of clients.

Figure 24 – COOL workload analysis with different access methods and compression levels (throughput /

number of clients)

5.2 Test Plan: the Experiments 105

This plot is very similar to Figure 7 where the performance of the various access methods
is depicted. On this plot, the compression levels are added to the access with FroNtier and
Squid.

Oracle access (black line) and FroNtier access with no compression (red line) have the
same behavior as the FroNtier server has only to forward the database results to the clients.
Nevertheless, a small degradation of FroNtier access is noticed with 12 and 16 clients where
direct Oracle access gets naturally faster.

Although Squid cached access (blue and orange lines) performs much better than Oracle
and FroNtier (red and black lines), the difference is smaller than when using the CORAL
workload (Figure 7). In this case, the COOL workload contains more overheads and metadata
queries. Moreover, Squid access with no compression (orange line) losses on overhead
compression, coral metadata queries compression, data compression, and, on this specific
case, on COOL metadata queries compression.

If we go from the non compressing lines (red and orange lines) to the compressing lines
(blue and green lines) we see: FroNtier gets much slower (red to green line) and Squid gets
much faster (orange to blue line). This happens because, on the FroNtier side, the FroNtier
server gets stuck with the compression tasks and, on the Squid side, the network is much
better used with compressed results. This factor is highly noticeable because the data used in
this experiment is highly compressible. The combined access question arises again: will the
combined FroNtier/Squid access (blue/green lines or orange/red lines) be faster than Oracle
access (black line)?

A major conclusion is that the throughputs achieved with this COOL workload are slightly
lower than the ones achieved with the CORAL workload. This can be simply explained by
the execution of more metadata queries by COOL. The more we move up testing the software
stack, the bigger this effect will be.

Apart from these conclusions, no major behavioral differences were noticed between the
COOL and the CORAL workload tests. All the factors in this experiment, as data
compressibility, number of clients, access method, etc., could be used for further analysis but
from this simple experiment we can conclude that no major differences will appear and so, no
further tests with the COOL workload will be done.

5.2.12 Experiment 5 – Tier-1 Access Analysis
Description: Analysis of the FroNtier server accessed from a Tier-1 site
Parameters:

- Query size – 1MB
- Test nodes location – Tier-1 site at FNAL

Workload: CORAL
Factors:

- Number of clients with levels 2, 4, 8, 16 (2 client nodes)
- Access method with levels FroNtier access (FroNtier) and Squid cache access (Squid)
- Compression factor (zip level) with levels 0 and 5

Experiment Design: Fractional factorial design with 1 repetition
Experiment duration: 300 seconds
Number of experiments: 4 x 2 x 2 x 1 repetition = 16

106 Chapter 5 - Performance Analysis of FroNtier

Experiment 5 – Observations and Network Tests
This experiment is similar to experiment 1 where CORAL workload is used and different

access methods are compared. The particularity here is that the client nodes location is the
Tier-1 site FNAL. As this tier-1 site is in the United States, the network link is a transatlantic
link and, although it is a good connection, it is naturally slower than the local connections
established between nodes at CERN tier-0. The main focus in this experiment is to analyze
the impact of this client relocation.

The first test activities performed at FNAL were directly related to network performance.
The quality of the network link to CERN was evaluated with standard network performance
tools. These first network tests confirmed that connections between nodes at CERN are
theoretical and practical 100Mbps connections, and connections between CERN and FNAL
nodes are connections with much higher latency, lower performance, and higher performance
variability. As a base line, a single node at FNAL connecting to a server at CERN can get a
maximum throughput of 2 Mbps (around 265kBps). Tests with more nodes at FNAL showed
that this throughput can grow over 10Mbps with parallelization as we will see in the
experiment comparing FroNtier and Squid access modes.

Experiment 5 – Conclusions
In this experiment, the CORAL workload is exercised using tier-1 nodes at FNAL. The

next plot shows the aggregated throughput achieved with different number of clients and
different access methods. In this case, the access methods are combined with compression
levels, namely, 0 (no compression) and 5 (medium compression).

Figure 25 - Tier-1 execution analysis with different access methods and compression levels (throughput /

number of clients)

In this plot, we can see that Squid access with compression level 0 (Squid ZIP0) performs
almost the same as direct FroNtier access with compression level 0 (FroNtier ZIP0). This
clearly tells us that the FroNtier CPU is not the bottleneck of the system. From these two
lines we can probably conclude that these values are following the network bottleneck of the
system that reaches a maximum of 1,6MBps (around 20Mbps).

Squid and FroNtier access from Tier-1 (FNAL)
Zip levels 0 (no compression) and 5

0

0,5

1

1,5

2

2,5

3

3,5

0 4 8 12 16

of clients

T
h
ro

u
g
h
p
u
t (

M
B

p
s)

h

Frontier ZIP5

Frontier ZIP0:

Squid ZIP5:

Squid ZIP0:

5.2 Test Plan: the Experiments 107

On the other hand, we can see the FroNtier access using compression (FroNtier ZIP5)
showing the exact same values obtained at CERN. Even from this tier-1 site, a few clients are
enough to saturate the FroNtier server CPU that shows very high CPU utilizations.
Conversely, the Squid access using compression (Squid ZIP5) shows the benefits of using
compression by performing better than the probable network bottleneck of 20Mbps. Squid
access with compression can get to 26,4Mbps (seen by the clients) in a 20Mbps network
connection. These 26,4Mbps depend on the compressibility of the data.

Although this was a very limited test on the tier-1 site, we could validate the execution of
the software on the tier-1 site. Moreover, we could verify that a few clients can saturate the
FroNtier server with direct access from tier-1, and that compressing cached documents can be
decisive to make the most of a short network connection.

5.2.13 Experiment 6 - ATHENA Workload Analysis
Description: Compare Oracle with FroNtier/Squid by executing the Athena workload
Parameters:

- Query size - 1MB
- Compression factor (zip level) – 5

Workload: ATHENA
Factors:

- Number of clients with levels 17, 34, 51 (17 client node)
- Data access method with levels Squid cache access (Squid) and direct database access

(Oracle)
Experiment Design: Full factorial design with 2 repetitions
Experiment duration: 1800 seconds
Number of experiments: 3 x 2 x 2 repetitions = 12

Experiment 6 – Observations
This experiment was very useful as its setup enabled a very effective system level

debugging. From this setup, some bugs and deployment issues were detected and solved. One
of the most important issues was detected in the interaction between the CORAL FroNtier
plug- in and the FroNtier client where a lot of validation queries were seen and considered
useless. These queries were simple empty queries to the database to test the presence of the
database. It was quite a big performance issue as there were between 4 and 6 of these queries
for each of the user queries.

Experiment 6 – Conclusions
This experiment has one major factor with two levels: the access method with levels

Oracle and Squid. We will compare the execution of the Athena job against the Oracle
database and its execution against the Squid server.

Resource Utilization
In terms of resource usage, the execution against a Squid server loaded the network

connection between the clients and the Squid server to a medium level below the bottleneck
(maximum of 4MBps) while the CPU on the Squid server had 10% utilization. The database
server had high CPU utilization (90% - load of 2 to 6) but a very network usage (maximum of
80kBps).

108 Chapter 5 - Performance Analysis of FroNtier

On the test case run against the Oracle database, the database was very loaded on both the
network (maximum of 4,5MBps) and on the CPU, with over 90% utilization and load
averages of up to 30.

The CPU on the client is, in both cases, under the bottleneck level and is, due to the
FroNtier payload decompression, less loaded using Oracle direct access.

The most stressed resource in this experiment is the database CPU. While directly
accessing Oracle puts a very high load on the database with very high network throughput,
accessing the database through the Squid server puts the database in a high load (but not as
high as in the other case) with a low network throughput. This low network utilization
(compared to the high load on the CPU) is due to the very high number of very small queries
(validation and meta-data queries issued by the Squid cache to the database).

Throughput Analysis
The following plot shows the aggregated throughput (in finished jobs per second) obtained

for the direct execution of the job against the Oracle database and the execution against the
Squid server.

Figure 26 – Athena workload analysis using Oracle and Squid methods (throughput / number of clients)

The main observation to this plot is that Oracle direct access (red line) performs better
than Squid cache access (green line). This was not the expected result as Squid cache should
show better performance by using cached queries. Nonetheless, this result is easily explained
by the existence of extra queries executed by FroNtier CORAL Plug- in (validation queries)
and by the many not cached metadata queries.

Oracle access and Squid access represent two methods of data access that, as seen before,
have different potential bottlenecks, i.e., Oracle access method will bottleneck on the
database server CPU or disk utilization, while Squid access will bottleneck on the network
utilization. As this experiment is executed on Tier-0 (the clients are very close to the servers),
the network connection are very fast and so, Oracle access can perform better than Squid
access.

Oracle direct access (red line) seems to scale more poorly than Squid access. This is an
expected result as Oracle direct access as to deal with all client queries while Squid access
can reuse the cache for its multiple clients.

5.2 Test Plan: the Experiments 109

It is important to notice here that this experiment is exercising not only the Squid cache in
the specific case but also the Oracle database cache. This experiment is exercising only a very
reduced part of the spectrum of possible queries and so, the database cache can handle all the
queries on this experiment. This is another important reason why the direct Oracle database
access is performing better. Nevertheless, in a real scenario, the data content will be much
bigger and the data sets will not fit in the database cache, and so, the performance will be
quite worse. In the Squid access case, the caches will be spread around different grid sites and
the Squid cache data in the disks (not exercised on this experiment) will be used. Moreover,
clients on the same site will more likely access the same data sets making the cache hits on
the Squid server more probable on the local Squid cache.

This experiment is very important for this study as it is very close to the real utilization.
The major difference to the real scenario is that much more clients will be executed. The
caching system will be in advantage as the caches will be spread around the grid and, in the
database direct access, all the clients will have to access one single central database.

5.2.14 Additional Experiments
This section briefly describes additional experiments with less impact on the conclusions.

CORAL Code Analysis
CORAL Plug- ins control the connections from the clients to the FroNtier server or to the

Oracle database (if the Oracle Plug- in is used). In a previous CORAL version, the plug- ins
were establishing a connection to the database every time a query was issued and no
connection reutilization was done. A version later, a connection pool was introduced and
database connections were reused between queries.

In this context, the FroNtier test framework was used to compare the performance impact
of this code change ; not only on the FroNtier plug- in but also on the Oracle one. The FroNtier
test client was used with the CORAL version working as the experiment factor.

The results of this experiment showed that this change had a big impact on the Oracle
plug- in performance while on the FroNtier plug- in no performance difference was noticed.

The Oracle plug- in working with the connection pool performs rather faster than the
previous version as direct Oracle connections to the database are connection based, so,
connection establishment is a considerable overhead. Reusing connection is therefore a
performance advantage and performed, in this experiment, 10 to 20% faster.

On the FroNtier plug- in, no differences were noticed. Although CORAL plug- ins abstract
layer running on the client is connection oriented, FroNtier is a connectionless system. As the
connection to the database is done on the FroNtie r server and not on the client, the FroNtier
plug- in could not take advantage of this improvement.

Query Frequency Analysis
Queries may either be done at a given rate, to simulate a given flow of information, or

continuously, to test the maximum capacity of a system. An average load test (non
continuous query rates) was executed to measure the impact difference to the high load tests
used throughout this study. In this experiment, each client waits a defined period between
requests, instead of being permanently sending query requests to the server.

The results obtained showed that no behavioral difference exists. Naturally, the server
capacity in terms of number of clients is higher, as the clients are sending queries to the

110 Chapter 5 - Performance Analysis of FroNtier

server at a slower rate. Nevertheless, if a sufficiently long test duration is used, the aggregate
throughput is the same as the throughput obtained in the high query frequency tests.

Tomcat Server Configuration Analysis
A final test compared the performance of the FroNtier server with different tomcat

configurations. One of the tested parameters was the validation query parameter in the
server.xml configuration file. This parameter defines what validation query the tomcat server
should use to validate the presence of the database. In this case the query in use was “select 1
from dual”.

In this experiment, the normal CORAL workload was executed against the server running
with and without the validation query on the configuration file. The results obtained showed
that no performance difference exists, most probably because this query is only executed in
the start up of the server.

5.3 Summary

This chapter described in section 5.1 the test setup in terms of hardware and software
configuration of the different components of the system: FroNtier servers, database servers,
and client servers. In a second part, section 5.2 documented the experiments design,
execution, and individual experiment result analysis. Major conclusions are summarized in
section 6.1.

Chapter 6 - Conclusions

The LHC, the new particle accelerator at CERN, will start in late 2007. The LHC
Computing Grid (LCG) will be used to process all the Petabytes of information that represent
the particle collisions happening in real time down in the LHC pits. A considerable part of
this information (around 10%) will be stored in a structured form inside databases. The LCG
3D project aims to deploy an efficient way to distribute these databases around all the LCG
sites so that scientists around the world can access the LCG databases. This thesis studied the
performance of FroNtier, one of the database distribution techniques used in LCG.

This chapter summarizes the major conclusions taken in this work about FroNtier, and
compares these results with the results obtained in the deployment and performance tests of
Oracle Streams (another database distribution technique). Finally, this chapter presents this
thesis’ major contributions to the research area and some directions for future work.

6.1 Tests Conclusions

FroNtier
In the previous chapter, the FroNtier performance tests were documented and its

conclusions were presented along with the results. The main general conclusions taken from
this study are:

- FroNtier server direct access is slower than Oracle direct access and Squid cache
direct access is faster than Oracle direct access. When using compression on the
FroNtier servers, FroNtier access gets much slower than Oracle access while Squid
access gets much faster than Oracle access;

- Payload compression on the FroNtier server is advantageous as it will boost the
systems’ global performance by efficiently using the short available network bandwidth
between the grid sites;

- Compression level 1 is the best choice for the compression level as it takes much less
CPU resources on the FroNtier server while compressing the data in a rather efficient
way compared to the other compression levels;

- FroNtier can handle queries of 20Mb-30Mbytes with no issues; the FroNtier server
used in this study can handle, with error rates below 10%, 80 simultaneous clients
issuing queries of 1,3MB, 50 clients issuing queries of 2,73MB, and 30 clients issuing
queries of 5,5MB. Real clients will have a much slower query frequency, thus, the real
capacity of the server is expected to be quite higher than these values;

- Using the CORAL/FroNtier framework to access structured conditions data with
COOL does not generate any performance problem;

- Tests performed from a tier-1 site (transatlantic connection) confirmed that a few
clients can saturate the FroNtier server with direct access from tier-1, and that
compressing cached documents can be decisive to make the most of a short network
connection;

- Tests performed at Tier-0 with the Athena workload, a workload very similar to the
real scenario, showed that Oracle performs slightly better than the FroNtier/Squid
setup. Some issues were detected in the FroNtier/Squid setup using the Athena

112 Chapter 6 - Conclusions

workload, as useless validation queries. The resolution of these issues will improve the
performance of the system. Moreover, as the Athena workload is executed on other
Tiers (farther away from the central database), FroNtier/Squid setup will get
comparatively faster than direct Oracle access. Further tests with real scenarios will
most probably confirm this statement;

- A FroNtier/Squid setup covering an Oracle database enables that database to handle a
much larger number of clients as many clients will not need to directly access the
database;

- The FroNtier/Squid solution has a rather important issue on cached data consistency.
Some of the existing solutions were discussed on section 3.2.2. Generally, depending
on the chosen cache invalidation policy, if cached data is used, FroNtier/Squid setups
are very effective and can efficient ly distribute data; conversely, if the data consistency
mechanism is too strict, than cache contents will not be used and FroNtier/Squid
solution becomes an inefficient data distribution mechanism;

- Application data access patterns are also very important as the query repetition rate
will influence the efficiency of the solution. HEP applications do typically repeat the
same queries and experts state that in the best cases, only 10% of the queries will not be
cached while all the other 90% of the queries will be cached. This will only be
validated at production phase.

At a bottom line, FroNtier is the primary replication technology used by the CMS
experiment to distribute database contents to the different grid sites and is being tested by
ATLAS as an alternative technology.

Oracle Streams
Oracle Streams is an alternative database distribution technique that is being deployed and

tested on the LCG sites (see section 3.1). It is the base technology for database distribution
for the experiments ATLAS and LHCb. Moreover, Oracle Streams will most probably be
used by all major experiments to move the database data from the online site (the experiment
pit) to the Tier-0 central grid site.

Although Oracle Streams allows multi-master replication (where one can write in different
replicated databases), in the LCG 3D project data at tier-1 is considered to be read-only so
that the complex deployment of multi-master replication is avoided.

Several Oracle Streams testing activities are under way within the LCG 3D project,
namely, Oracle database replication tests from Tier-0 at CERN to all other Tier-1 grid sites,
online-offline replication (replication from the experiment pit to the computer center at
CERN), Oracle Streams monitoring framework, etc.

These testing activities presented different results that we can generally sum up:
- Oracle Streams is not a easy product to deploy and maintain; database experts are

needed in both replication points and Oracle Streams experts are needed to install and
maintain the setups;

- Oracle Streams replication processes are effective but comparatively slow; database
replication times are very slow if compared to client access times;

- Although being a commercial product, Oracle Stream is not a mature product,
specially if we consider the large scale of the problem;

- Oracle Streams solution benefits from the support Oracle Corporation gives to the
LCG 3D project in terms of research staff (expertise);

6.2 Contributions 113

- Having an Oracle Database deployed at each tier-1 site, although being a rather big
deployment effort, represents a considerable boost in the system global performance, as
around 10 Oracle databases will be servicing the same data;

- Oracle Streams is a reliable solution for database replication.

Comparison
As seen before, in HEP applications most data is read-only and the access patterns are

repetitive. This is a base fact for the selection of database replication techniques as it defines
that multi-master replication techniques are not needed and read-only replication techniques
should be selected.

The two alternatives presented here, Oracle Streams and FroNtier/Squid, are not directly
comparable as its working concepts are completely different. The LCG 3D project is working
on both by deploying both Oracle databases and Squid servers in all Tier-1s. The basic
objective of the project is to deploy and validate both database distribution technologies. As
seen in previous sections, the two technologies have different advantages and disadvantages
that should help decision makers decide what database distribution technology best fits their
needs.

Oracle Streams, the heavy-weight commercial solution for database replication is, at a
bottom line, a reliable solution. Nevertheless, it needs Oracle databases and Oracle Streams
itself deployed and maintained. Although, Oracle Database services are already setup in some
sites and the maintenance of these databases are almost not a trouble; other sites, have no
Oracle databases and this solution implies new hires. By the other hand, Streams experts are a
rare resource that will have to be centralized at CERN offering support to all grid sites.

Frontier, on its side, has still to prove its reliability and performance. Despite being very
attractive as a light-weight solution for database distribution (no need for Oracle databases at
Tier-1s or higher), cache consistency issues and lack of real scenario performance proofs
(including integration with the complete software stacks) are still setting stakeholders aside.

6.2 Contributions

The major contributions of this work to the related research areas were:
- Synthesis of the state of art on grid technologies (see chapter Chapter 2 -);
- Detailed description of FroNtier and a brief description of existing database

distribution techniques, including Oracle Streams (see chapter Chapter 3 -);
- Application of Jain’s [70] methodology to a very practical case of performance testing

of a distributed software package (see chapter Chapter 4 -);
- Detailed survey on existing Linux monitoring tools (see section 4.10.2);
- Development of a Linux based performance test framework (re-used for Oracle

Database performance testing at CERN) (see section 4.10);
- Systematic FroNtier performance testing and detailed analysis.

114 Chapter 6 - Conclusions

6.3 Future Work

In this section we list some directions for future work:
- Test cases extension:

o Execute the same test cases from a tier-1 site with squid servers at tier-1;
o Execute the same test cases against several FroNtier servers to test the

scalability of the system;
o Use other workloads or software using CORAL, like CMS software;
o Execute the same test cases with real data, when available;
o Execute the same test cases against an Oracle database with a disabled cache,

this would allow to measure the impact of the database cache on the obtained
results;

o Execute the same test cases against the production setup to test the real
available capacity;

o Execute the same test cases on the grid. Grid job synchronization problems
would have to be handled;

- Statistical analysis of the test results obtained would show much more precise values
and a statistical model describing the data taken in the experiments would allow the
estimation of the contribution of each factor to the performance, the isolation of
measurement errors, the estimation of confidence intervals for model parameters, etc;

- Extension of the test framework: automation of the statistical analysis and regression
modeling, support for different clients, etc;

- Develop and test a cache invalidation prototype (see section 3.2.2.3); compare
FroNtier with this cache invalidation mechanism with the results obtained on this work.

Acronyms

ACL Access Control List
AFS Andrew File System
ALICE A Large Ion Collider Experiment (LHC experiment)
ARDA A Realisation of Distributed Analysis for LHC
ATLAS A Toroidal LHC ApparatuS (LHC experiment)
CA Certificate Authority
CASTOR CERN Advanced STORage Manager
CE Computing Element: a Grid-enabled computing resource
CERN European Organization for Nuclear Research
CMS Compact Muon Solenoid (LHC experiment)
CPU Central Processing Unit
DAQ Data AcQuisition System
dCache Hierachical storage manager (DESY, FNAL)
DGAS DataGrid Accounting System
DPM Disk Pool Manager
EDG European Data Grid Project
EGEE Enabling Grids for E-sciencE
ELFms Extremely Large Fabric management system
FiReMan File and Replica Catalogue
FTS File Transfer Service
GB Gigabyte
gLite Lightweight middleware for Grid computing
Glue Grid Laboratory Uniform Environment
GridFTP Grid Service for File Transfer
GSI Grid Security Infrastructure
HEP High Energy Physics
HLT High-Level Trigger
HPSS High Performance Storage System
HTTP HyperText Transfer Protocol
ICMP Internet Control Message Protocol
I/O Input/Output
IP Internet Protocol
LCG Worldwide LHC Computing Grid
LCG3D LCG Distributed Deployment of Databases
LDAP Lightweight Directory Access Protocol
LEAF LHC-Era Automated Fabric
LEMON LHC Era Monitoring
LCR Logical Change Records
LFC LCG File Catalogue
LFN Logical File Name
LHC Large Hadron Collider

LHCb Large Hadron Collider beauty (LHC experiment)
LRMS Local Resource Management System
LSF Load Sharing Facility
MB Megabyte
MIB Management Information Base
MSS Mass Storage System
MTU Maximum Transmission Unit
PB Petabyte (10^15 bytes)
PKI Public Key Infrastructure
POSIX Portable Operating System Interface
RAID Redundant Array of Independent Disks
CORAL COmmon Relational Access Layer
RDBMS Relational Database Management System
RFIO Remote File I/O
R-GMA Relational Grid Monitoring Architecture
RLS Replica Location Service
SE Storage Element
SNMP Simple Network Management Protocol
SQL Structured Query Language
SQLite SQL database engine
SRM Storage Resource Manager
TB Terabytes
TCP Transmission Control Protocol
UDP User Datagram Protocol
VDT Virtual Data Toolkit
VO Virtual Organization
VOMS Virtual Organization Management System
WMS Workload Management System
XML eXtensible Markup Language

References

[1] European Organization for Nuclear Research (CERN), http://www.cern.ch
[2] The Large Hadron Collider (LHC), http://www.cern.ch/lhc
[3] The LHC Computing grid (LCG) project, http://www.cern.ch/lcg
[4] J. Knobloch et al, LHC Computing Grid Technical Design Report, CERN-TDR-01

(http://lcg.web.cern.ch/LCG/tdr/), CERN, June 2005
[5] The Distributed Deployment of Databases for LCG (LCG3D) project,

http://lcg3d.cern.ch/
[6] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable

virtual organizations. Lecture Notes in Computer Science, 2150, 2001
[7] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration, 2002
[8] I. Bird et al, LCG Baseline Services Group Report, June 2005
[9] EGEE Web Page, http://www.eu-egee.org/
[10] Open Science Grid (OSG) Web Page, http://www.opensciencegrid.org/
[11] Nordic Data Grid Facility (NDGF), http://www.ndgf.org/
[12] LCG-2 User Guide, https://edms.cern.ch/file/454439//LCG-2-UserGuide.html
[13] gLite Web Page, http://glite.web.cern.ch/glite/
[14] Laure E. et al, EGEE Middleware Architecture, 2005
[15] Burke S., Campana S., Peris A., et al, gLite 3.0 User Guide, Manual Series, 2006
[16] Globus Alliance, http://www.globus.org/
[17] Globus Toolkit Version 4: Software for Service-Oriented Systems. I. Foster. IFIP

International Conference on Network and Parallel Computing, Springer-Verlag
LNCS 3779, pp 2-13, 2005

[18] Virtual Data Toolkit (VDT), http://vdt.cs.wisc.edu/
[19] The Open Grid Services Architecture, Version 1.5,

http://www.ggf.org/documents/GFD.80.pdf
[20] Open Grid Forum Web Site, http://www.ogf.org/
[21] Open Grid Services Infrastructure, http://www.ggf.org/documents/GFD.15.pdf
[22] Job Submission Description Language (JSDL),

http://www.gridforum.org/documents/GFD.56.pdf
[23] gLite Workload Management Service User’s Guide,

https://edms.cern.ch/document/572489/1
[24] W. Allcock et al. GridFTP Protocol Specification. Global Grid Forum

Recommendation GFD.20, March 2003.
[25] LCG Disk Pool Manager (DPM) administrator's guide,

https://uimon.cern.ch/twiki/bin/view/LCG/DpmAdminGuide
[26] CERN Advanced Storage Manager (CASTOR), http://castor.web.cern.ch/castor/
[27] dCache, the commodity cache, 12th NASA Goddard and 21st IEEE Conference

on Mass Storage Systems and Technologies, Spring 2004, Washington DC, USA
[28] High Performance Storage System (HPSS) Web Page, http://www.hpss-

collaboration.org/

[29] The IBM Tivoli Framework Web Page, http://www-306.ibm.com/software/tivoli/
[30] EGEE gLite User’s Guide, GLITE I/O, https://edms.cern.ch/file/570771/1.1/
[31] The gLite File Transfer System (FTS),

https://twiki.cern.ch/twiki/bin/view/EGEE/FTS
[32] The File and Replica Manager (FiReMan) catalog user’s guide,

https://edms.cern.ch/file/570780
[33] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Kónya, M. Mambelli, J. M. Schopf,

M. Viljoen, and A. Wilson, GLUE Schema Specification - Version 1.2, 2005
[34] The Relational Grid Monitoring Architecture (R-GMA), http://www.r-gma.org/
[35] The gLite Service Discovery User Guide, http://edms.cern.ch/document/578147
[36] R. Byrom et al., APEL: An implementation of Grid accounting using R-GMA, UK

e-Science All Hands Conference, Nottingham, September 2005
[37] The gLite Accounting System (DGAS), http://www.cern.ch/glite/dgas/
[38] gLite Logging and Bookkeeping Service User’s Guide,

http://glite.web.cern.ch/glite/lb
[39] The gLite Job Provenance Service User Guide, http://egee.cesnet.cz/en/JRA1/JP-

users-guide.pdf
[40] V. Welch et al, Security for Grid Services, Proceedings of the 12th IEEE

International Symposium on High Performance Distributed Computing, 2003
[41] R. Housley, T. Polk, W. Ford and D. Solo, Internet X509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) Profile, RFC3280 (2002)
[42] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A Community

Authorization Service for Group Collaboration. In Proceedings of the IEEE 3rd
International Workshop on Policies for Distributed Systems and Networks, 2002

[43] S. Farrel and R. Housley, An Internet Attribute Certificate Profile for Authorization,
RFC3281, 2002

[44] R. Alfieri et al, VOMS, an Authorization System for Virtual Organizations. In Grid
Computing, First European Across Grids Conference, 2004

[45] R. Alfieri et al, Managing Dynamic User Communities in a Grid of Autonomous
Resources. CHEP03, California, USA, March 2003

[46] G. Carcassi et al., A Scalable Grid User Management System for Large Virtual
Organization, proceedings of CHEP04, Interlaken, Switzerland, 2004

[47] S. Tuecke, V. Welch, D. Engert, L. Pearlman and M. Thompson, Internet X509
Public Key Infrastructure Proxy Certificate Profile, RFC3820, 2004

[48] J. Novotny, S. Tuecke, V. Welch, An Online Credential Repository for the Grid:
MyProxy. Proceedings of the Tenth International Symposium on High Performance
Distributed Computing (HPDC-10), IEEE Press, August, 2001

[49] Grid Operations Center, http://goc.grid-support.ac.uk/gridsite/gocmain/
[50] ELFms, Extremely Large Fabric management system,

http://elfms.web.cern.ch/elfms/
[51] quattor, system administration toolsuite, http://www.quattor.org/
[52] LEMON — LHC Era Monitoring, http://lemon.web.cern.ch/lemon/
[53] LHC-Era Automated Fabric (LEAF), http://leaf.web.cern.ch/leaf/
[54] Oracle Database, http://www.oracle.com/technology/products/database/
[55] Oracle Materialized Views & Query Rewrite, May 2005, http://www.oracle.com

[56] Oracle Database Transportable Tablespace,
http://www.oracle.com/technology/deploy/availability/htdocs/xtts.htm

[57] The SQLite RDBMS, http://www.sqlite.org/
[58] The MySQL RDBMS, http://www.mysql.com/
[59] Oracle Streams,

http://www.oracle.com/technology/products/dataint/htdocs/streams_fo.html
[60] Lueking, L. et al, FroNtier: High Performance Database Access Using Standard

Web Components in a Scalable Multi-tier Architecture, CHEP 04, 2004
[61] Squid web proxy cache, http://www.squid-cache.org/
[62] Duellmann D. et al, LCG 3D project status and production plans, CHEP 06, 2006
[63] Java Servlet Technology, http://java.sun.com/products/servlet/
[64] The Apache Tomcat servlet container, http://tomcat.apache.org/
[65] The Extensible Markup Language (XML), http://www.w3.org/XML/
[66] COmmon Relational Abstraction Layer, http://pool.cern.ch/coral/
[67] I. Papadopoulos et al, CORAL relational database access software, CHEP 06, 2006
[68] FroNtier Plug- in to CORAL,

http://pool.cern.ch/coral/currentReleaseDoc/FroNtierAccess/
[69] Oracle Real Application Clusters,

http://www.oracle.com/technology/products/database/clustering/
[70] Jain R., The art of computer systems performance analysis, Wiley, 1991
[71] Ezolt, P., Optimizing Linux Performance: A Hands-on Guide to Linux Performance

Tools, Prentice Hall PTR, 2005
[72] Johnson S., Huizenga G., Pulavarty B., Performance Tuning for Linux Servers, IBM

Press, 2005
[73] Uptime man page, http://www.linuxmanpages.com/
[74] N. J. Gunther, The Practical Performance Analyst, Authors Choice Press, ISBN: 0-

59-512674-X, 2000
[75] Mpstat man page, http://www.linuxmanpages.com/
[76] Vmstat man page, http://www.linuxmanpages.com/
[77] Ps man page, http://www.linuxmanpages.com/
[78] Iostat man page, http://www.linuxmanpages.com/
[79] df man page, http://www.linuxmanpages.com/
[80] Tanenbaum, Andrew. Computer Networks, Third Edition. Prentice Hall, 1996
[81] netstat man page, http://www.linuxmanpages.com/
[82] Strace page, http://sourceforge.net/projects/strace

Appendix I – Test Web Report

This appendix presents an example of a web report generated by the test framework
developed in this work. As seen in section 4.10.1, this web report contains detailed
information about the test case it refers to and detailed monitoring plots of the servers
involved in the test case.

The first section shows the details of the experiment:

Here we can see the test directory and name (athena17boxes_method_Squid_rep-1), the

list of client nodes, the names of the servers, the number of test clients (17 nodes running 3
clients each), and the browsable configuration files: the Query List file contains the clients’
workload script (the list of queries all clients should execute); the Test Configuration file is
client configuration script and contains the test parameters; and the Client Execution Script
contains some more client specific test parameters.

After the setup section, the test execution time is printed for reference:

The results section contains the data gathered during the test execution:

The results section shows the following information:
- individual client results with execution time, number of queries, error reports,

individual throughput, etc.;
- instant aggregated throughput (plot with the aggregated throughput every 2 minutes of

the experiment);
- aggregated throughput per number of clients (plot with aggregated throughput for each

ramp up stage with different number of clients);
- table with aggregated throughput values per number of clients.

The monitoring section (see below) contains monitoring information (collected from
LEMON) about all the client nodes and servers, for example, the network and the CPU
utilization. The next plots show the network utilization (write and read) and the CPU data
(idle CPU% and load average) of a Frontier server machine (lxb5556) on a given test
execution.

	Capa
	Resumo
	Abstract
	Table of contents
	Table of figures
	1. Introduction
	2. Grid computing
	3. Database distribution techniques
	4. Performance analysis methodology
	5. Performance analysis of FroNtier
	6. Conclusions
	Acronyms
	References
	Appendix I – Test web report

