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ABSTRACT 
 

Hepatitis B virus (HBV), a double-stranded DNA virus, is a major cause of acute and 

chronic hepatitis in humans. HBV infection itself is non-cytopathic, and it is the immune 

response to the viral antigens that causes hepatic pathology.  

This work seeks to address the molecular and cellular mechanisms involved in the 

early immune recognition and subsequent acute immune response to HBV-infected cells, 

using a transgenic mouse model of primary HBV infection. It was previously established that 

the acute liver injury observed in these mice is mediated by non-classical, type II NKT cells, 

which are CD1d-restricted, but non-reactive to α-galactosylceramide (α-GalCer). We now 

have uncovered a molecular mechanism by which these non-classical NKT cells become 

activated in response to HBV-positive livers. Our studies demonstrated that surface 

expression of NKG2D and one of its ligands (Retinoic acid early inducible-1 or RAE-1) are 

modulated in a HBV-dependent manner. Furthermore, blockade of a NKG2D–ligand 

interaction completely prevented the HBV- and CD1d-dependent, non-classical NKT cell-

mediated acute hepatitis and liver injury. A conclusion of these studies is that NKG2D, CD1d 

and HBV are required for non-classical, type II NKT cell activation and the initiation of acute 

hepatitis in our model. Thus, these studies have major implications for understanding 

activation of NKT cells and identifies a potential new therapeutic target in treating hepatitis B 

viral infection. 

In mouse NK cells, NKG2D associates with DAP10 and DAP12 adapter molecules, 

but it is still unclear in NKT cells which adapter(s) are required for NKG2D signaling. Thus, 

we investigated which NKG2D adapter molecule(s) are involved in propagation of NKG2D 

signals at the time of acute hepatitis in our model of primary HBV infection. To address this 

question, we performed experiments using Dap10-/- and Dap12-/- mice. A conclusion of these 

studies is that ablation of the Dap12 gene from the effector cells results in impaired acute 

hepatitis, suggesting that NKG2D requires DAP12 for signaling in NKT cells. However, in 

the absence of the Dap10 gene a more severe acute hepatitis was observed.  

 Finally, we investigated whether other intra-hepatic innate immune cells might be 

involved in HBV recognition, potentially generating signals that could contribute to the 

hepatic immunological environment in which immune responses are primed. Our results 

demonstrated a mild hepatic necrosis in the HBV-Tg Rag-1-/- mice pre-adoptive transfer, and 

production of the cytokines IFNγ and IL-4. In addition, we demonstrated that the mild hepatic 

necrosis is IFNγ and NK cell-independent. Furthermore, our data indicate that the baseline 
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amount of IFNγ as well as the NK cell frequency within the livers of HBV-Tg Rag-1-/- 

recipient mice did not affect the non-classical type II NKT cell-mediated acute hepatitis. 

Understanding the mechanism responsible for the mild hepatic necrosis observed in HBV-

transgenic mice that lack B and T lymphocytes should give insight into the role of innate 

immunity in HBV immunopathogenesis. 
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RESUMO 
 

O vírus da hepatite B (VHB) é um vírus de ADN de cadeia dupla e uma importante 

causa de hepatite aguda e crónica no ser humano. O VHB, em si mesmo, não é citopático, 

sendo a resposta imunitária aos antigénios virais a causa da patologia hepática. 

Este trabalho tem como objectivo o estudo dos mecanismos moleculares e celulares 

envolvidos no reconhecimento inicial do vírus pelo sistema imunitário e na subsequente 

resposta imunitária aguda contra as células infectadas pelo VHB, através da utilização de 

um modelo de ratinho transgénico que mimetiza a infecção primária humana pelo VHB. 

Estudos anteriores demonstraram que a patologia hepática observada nestes animais 

transgénicos é mediada por um grupo de células NKT, de tipo II, não clássicas, as quais 

são restrictas à molécula CD1d, mas não reactivas à α-galactosylceramide (α-GalCer). Este 

trabalho identifica o mecanismo molecular pelo qual estas células NKT, não clássicas, são 

activadas em resposta à infecção pelo VHB. Os nossos estudos demonstraram que a 

expressão à superfície do receptor NKG2D e de um dos seus ligandos (Retinoic acid early 

inducible-1 ou RAE-1) se encontram modulados de uma forma dependente da presença do 

VHB. Assim, o bloqueio da interacção entre NKG2D e o seu ligando previne totalmente a 

hepatite aguda neste modelo. Em conclusão, os nossos resultados mostram que é 

necessária a presença de NKG2D, CD1d e VHB para a activação das células NKT, não 

clássicas, e para a iniciação da hepatite aguda no nosso modelo. Estes resultados 

apresentam grandes implicações no estudo da activação das células NKT assim como 

identificam um novo potencial alvo terapêutico no tratamento da hepatite B. 

O receptor NKG2D, nas células NK do ratinho, associasse com ambas as moléculas 

adaptadoras DAP10 e DAP12. Porém, ainda não se conhece quais a(s) molécula(s) que se 

associam com o NKG2D nas células NKT. Assim, propusemo-nos investigar quais são as 

moléculas necessárias à transdução do sinal via NKG2D aquando da hepatite aguda no 

nosso modelo. De forma a responder a esta questão realizámos experiências usando 

ratinhos “knock-out” para o gene Dap10 ou para o gene Dap12. Em conclusão, estes 

estudos mostram que a hepatite aguda  é prevenida quando as células efectoras não 

possuem o gene Dap12, o que sugere que o receptor NKG2D necessita da molécula 

DAP12 para a transdução do sinal nas células NKT. No entanto, na ausência do gene 

Dap10 observasse uma hepatite aguda mais grave. 

Por último, investigámos se outras células intra-hepáticas do sistema imunitário 

inato poderão estar envolvidas no reconhecimento do VHB, gerando sinais que poderão 
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contribuir para o ambiente imunológico hepático basal onde as respostas imunitárias são 

induzidas. Os nossos resultados indicam que os ratinhos transgénicos para o VHB, mesmo 

antes de receberem a transferência de células, apresentam uma necrose hepática 

moderada bem como secreção das citoquinas IFNγ e IL-4. Porém, a necrose hepática 

observada nestes animais é independente da presença de IFNγ e de células NK. Os nossos 

resultados também mostram que a quantidade de IFNγ assim como a frequência de células 

NK nos fígados dos ratinhos transgénicos para o VHB Rag-1-/- não afecta a hepatite aguda 

resultante da activação das células NKT de tipo II, não clássicas. A compreensão do 

mecanismo responsável pela necrose hepática moderada presente nos ratinhos 

transgénicos para o VHB, na ausência de linfócitos B e T, deverá ajudar a decifrar a função 

do sistema imunitário inato na patologia causada pelo VHB. 



 xv 

RÉSUMÉ 
 

Le virus de l’hépatite B (VHB), un virus à ADN double brin, est une cause majeure 

d’hépatite aigue et chronique chez l’humain. L’infection par VHB n’est pas cytopathique en 

soi, et c’est la réponse immunitaire aux antigènes viraux qui cause la pathologie hépatique.  

Ce travail cherche à adresser les mécanismes moléculaires et cellulaires de la 

reconnaissance immunitaire primaire puis de la réponse immunitaire aigue aux cellules 

infectées par VHB, en utilisant un modèle de souris transgénique qui mime une infection 

VHB (VHB-Tg). Il a été préalablement démontré que la lésion hépatique aigue observée 

dans ces souris dépend des cellules NKT de type II non classiques, qui sont restreintes à 

CD1d, mais non réactives à α-galectosylceramide (α-GalCer). Nous révélons un mécanisme 

moléculaire par lequel ces cellules NKT non classiques sont activées en réponse à une 

infection hépatique par VHB. Nos études démontrent que l’expression en surface de 

NKG2D et d’un de ses ligands (Retinoic acid early inducible-1 ou RAE-1) est modulée d’une 

manière qui dépend de VHB. Aussi, le blocage de l’interaction entre NKG2D et son ligand 

prévient entièrement l’hépatite aigue et la lésion hépatique dépendante de VHB et CD1d. En 

conclusion, nous démontrons que NKG2D, CD1d et VHB sont nécessaires pour l’activation 

des cellules NKT classiques de type II et pour l’initiation de l’hépatite aigue dans notre 

modèle. Ces résultats ont donc des implications majeures dans l’étude de l’activation des 

cellules NKT, et identifient une nouvelle cible potentielle dans le traitement de l’infection 

virale de l’hépatite B. 

 Dans les cellules NK de souris, NKG2D s’associe aux molécules adaptatrices 

DAP10 et DAP12, mais la molécule adaptatrice s’associant a NKG2D dans les cellules NKT 

reste incertaine. Nous avons donc examiné quelles molécules adaptatrices sont importantes 

pour propager les signaux reçus par NKG2D lors de l’hépatite aigue dans notre modèle 

d’infection primaire par VHB. Pour adresser ce sujet, nous avons utilisé un souris knock-out 

pour Dap10 et Dap12. En conclusion, l’absence de Dap12 dans les cellules effectrices 

résulte en une hépatite moins aigue, suggérant que NKG2D nécessite la molécule 

adaptatrice DAP12 pour sa signalisation dans les cellules NKT. Cependant, l’absence de 

Dap10  résulte en une hépatite plus aigue.  

Enfin, nous avons étudié la possibilité que d’autres cellules immunitaires innées 

pourraient être impliquées dans la reconnaissance de VHB, potentiellement en créant des 

signaux qui pourraient contribuer a l’environnement hépatique dans lequel les réponses 

immunitaires sont induites. Nos résultats démontrent une nécrose hépatique bénigne chez 
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les souris VHB-Tg Rag-1-/- préalablement au transfert adoptif et une production des 

cytokines IFNγ et IL-4. Nous avons également démontré que la nécrose hépatique bénigne 

est indépendante des cellules NK et de INFγ. Aussi, nos résultats démontrent que la 

quantité basale de IFNγ ainsi que la fréquence des cellules NK dans les foies des souris 

VHB-Tg Rag-1-/- récipientes n’affectent pas l’hépatite aigue résultant des cellules NKT non 

classiques de type II. Comprendre le mécanisme responsable de la nécrose hépatique 

bénigne présente dans les souris VHB-Tg en l’absence des lymphocytes B et T serait 

important pour déchiffrer le rôle de la réponse immunitaire innée dans la pathologie de VHB. 
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Hepatitis B virus (HBV), discovered in 1965, is a major cause of human liver disease 

worldwide. More than 2 billion people have been infected with HBV, a virus one hundred 

times more contagious than human immunodeficiency virus (HIV) and ten times more 

contagious than hepatitis C virus (HCV). Although a highly effective vaccine against HBV 

infection has been available for more than 20 years (since 1982), universal vaccination still 

remains a goal rather than an accomplishment. According to the World Health Organization 

(WHO) 400 million individuals are chronically infected worldwide, and 10 to 30 million people 

will become infected each year. An estimated 1 million people die annually from HBV-

associated diseases, such as active chronic hepatitis, cirrhosis and hepatocellular 

carcinoma.  

Although there has been significant progress in understanding HBV pathogenesis, 

several important questions remain to be answered. These include the receptor(s) required 

for HBV entry in human hepatocytes and the role of the innate immune system in controlling 

HBV infection. A large body of evidence indicates that the outcome of HBV infection and the 

pathogenesis of the attendant liver diseases are determined by immune-mediated host-virus 

interactions. While a great deal is known about the effector limb of the CD8+ cytotoxic T cell 

responses, the factors that determine whether a given individual will mount an effective 

immune response to HBV are poorly understood, representing a great challenge in the HBV 

field.  

The work presented in this thesis is aimed at understanding the molecular and 

cellular mechanism(s) of early immune recognition of HBV-expressing hepatocytes in a 

mouse model of primary human HBV infection. 

 

 

Hepatitis B virus 

  

Evidence for a second form of hepatitis, transmitted from blood and body fluids, 

began appearing in the 19th and early 20th centuries. Widespread acceptance did not occur 

until the 1940s, based on investigations of outbreaks of hepatitis following vaccination for 

measles, mumps, and yellow fever. However, HBV was only discovered in 1965 when 

Baruch Blumberg described the Australian antigen (later known to be Hepatitis B surface 

antigen, HBsAg) in the blood of Australian aboriginal people (1), a discovery for which Dr. 

Blumberg received the Nobel Prize in Physiology and Medicine in 1976 (2). In parallel with 
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work from Blumberg’s laboratory, Prince et al were using a direct approach to search for a 

viral cause of serum hepatitis. Their idea was to use antiserum from patients with acute 

hepatitis to detect virus in the liver via immunofluorescence microscopy of liver tissue 

sections. Using this technical approach, Prince successfully identified a serum protein 

(designated as SH) in patients with post-transfusion hepatitis (3), which later on was shown 

to be identical to the Australian antigen. The discovery of this antigen had an important 

practical benefit because it allowed the detection of contaminated blood, resulting in an 

approximately two-fold decline in the incidence of post-transfusion hepatitis. Unlike the feco-

oral transmission of the first form of hepatitis (hepatitis A), HBV is spread by sexual contact 

with an infected host or from parenteral exposure to virus-containing blood or blood 

products. In 1970, D.S. Dane and others discovered the virus particle by electron 

microscopy (4). In the early 1980s the genome of the virus was sequenced (5), and in 1982, 

an effective recombinant HBV vaccine was developed and made available. 

HBV is the prototype member of the family Hepadnaviridae and consists of 

enveloped, 3.2 Kb partially double stranded deoxyribonucleic acid (DNA) virus that 

specifically targets hepatocytes for viral replication. This family contains two genera, the 

orthohepadnaviruses, which infect mammals, and the avihepdnaviruses, which infect birds 

(6).  

Chronic active hepatitis and hepatoma were frequently observed in captive 

woodchucks during necropsy. These findings led veterinarians to search for HBV-like 

particles in serum from these animals. This investigation resulted in the identification of the 

first non-human hepadnaviruses, namely the woodchuck hepatitis virus (WHV). This virus 

genome shares about 60% nucleotide sequence similarity with its human counterpart and is 

morphologically indistinguishable from HBV (6). Other similar viruses include the ground 

squirrel hepatitis virus (GSHV) and duck hepatitis B virus (DHBV), which have been 

recovered from ground squirrels and ducks, respectively. Despite important distinctions, the 

similarities between all of these viruses outnumber their differences, since they share 

several common properties, such as (a) enveloped virions of 3 to 3.3 kb partially double 

stranded DNA; (b) virion-associated polymerases with ability to repair the gap in the virion 

DNA template; (c) a narrow host range; and (d) persistent infections exhibiting marked 

hepatotropism (6). Less well-characterized viruses have been isolated from arctic ground 

squirrels, wild herons, varieties of wild and domestic geese, marsupials, and orangutans (6). 

It is widely accepted that hepatocytes are the primary site of HBV infection. However, 

the mechanisms by which HBV enter hepatocytes or other susceptible cells are still largely 
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unknown, mostly because of the lack of infectible cell culture systems. Nevertheless, several 

studies suggested that the initial step of HBV infection may involve interaction of the 

envelope polypeptides of HBV with a variety of molecules (6). These include endonexin II 

(7), IL-6 (8), annexin V (9) and apolipoprotein H (10). 

Following virion entry into hepatocytes, the HBV nucleocapsid is released into the 

cytoplasm and the HBV DNA is transported into the nucleus (Fig. 1.1). There, the relaxed 

circular viral DNA genome is repaired by cellular polymerases into the covalently closed 

circular (ccc) DNA, which represents the viral transcriptional template (11) of four viral 

ribonucleic acids (RNAs). These are then exported to the cytoplasm and used as 

messenger RNAs (mRNAs) for translation of the HBV proteins (Fig. 1.1). The longest, pre-

genomic, RNA is translated to produce the viral core and polymerase proteins, which occurs 

in nucleocapsids in the cytoplasm of the hepatocyte. Specifically, viral replication occurs 

within these capsids by reverse transcription of the pre-genomic RNA to produce a single-

strand DNA copy that serves as the template for second-strand DNA synthesis, producing a 

circular double-stranded DNA genome (Fig. 1.1). Viral capsids containing double-stranded 

DNA traffic either back to the nucleus to amplify the viral cccDNA genome or to the 

endoplasmic reticulum (ER), where they engage the viral envelope proteins (small - S, 

medium - M and large - L) and exit the cell as virions that can infect other cells (12), after 

passing through the Golgi complex (Fig. 1.1). In addition to the 42 to 47nm virions, HBV-

infected patients contain in circulation 20nm spheres that consist of HBsAg and host-derived 

lipids. Notably, these spheres outnumber the virions by a factor of 104 to 106 (13). 

With the availability of polymerase chain reaction (PCR)-based assays, eight 

genotypes, A to H, have been identified. Different genotypes tend to have distinct 

geographical distributions and possibly distinct clinical manifestations and outcomes (14). 
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The liver as an immunological organ 

  

The liver is the largest solid organ, both in rodents and humans, and its structural 

organization has profound implications for its immune function (15). It has a dual blood 

supply in which venous blood from the intestinal tract enters via the portal (presinusoidal) 

venules, and arterial blood enters via the hepatic arterioles. These two blood supplies 

converge at the sinusoids, which drain the blood into the central (postsinusoidal) venules 

(16) (Fig. 1.2). Interestingly, this unique sinusoidal structure of the liver seems to allow a 

more efficient access of immune cell populations to HBV-infected hepatocytes. By contrast, 

the microvascular anatomical barriers present in other tissues (e.g. brain, kidney, testis, 

pancreas, gastrointestinal (GI) tract) seem to make the HBV extra-hepatic reservoirs of more 

difficult access to the immune system, and thereby contribute to viral persistence.  

Figure 1.1. Schematic representation of the replication cycle of hepatitis B virus. Adapted from Fung, SK and 

Lok, ASF, Nature Clinical Practice Gastroenterology& Hepatology (2004) 1, 90-97. 
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For many years, hepatic research was performed using mainly histological analysis. 

This methodology identified liver-specific cell populations such as Kuppfer cells (resident 

macrophages within the liver) and stellate cells (Fig. 1.2), but did not suggest the presence 

of many other intra-hepatic immune cells (17). However, when the liver is digested, a very 

distinct scenario appears (18). The nonparenchymal cells comprise one-third of the total 

number of cells within the liver whereas the hepatocyte population comprises the two other 

thirds and approximately four fifths of the total organ volume (19). The intra-hepatic 

nonparenchymal cell populations are diverse, being around 50% liver sinusoidal endothelial 

cells (LSECs), 20% Kuppfer cells, 5% biliary cells, 25% intra-hepatic immune cells, and 

stellate cells accounting for less than 1% (Fig. 1.2).  

Every minute, around 30% of the total blood passes through the liver (20). Thus, in 

24 hours, approximately 100 million peripheral blood lymphocytes recirculated through this 

organ (21). The liver sinusoids are composed of a fenestrated monolayer of LSECs, and 

each lymphocyte (∼7-12µm) that passes through the sinusoids (∼6-15µm) is in direct contact 

with these endothelial cells (Figure 1.2) (15). Therefore, any increase in systemic venous 

blood pressure results in stasis, prolongs the interaction between lymphocytes and antigen 

presenting cells (APCs) and contributes to lymphocyte extravasation (15). The space of 

Disse, or the perisinusoidal space, contains stellate cells that are star-shaped cells in the 

liver and which mediate intra-hepatic non-immunological as well as immunological functions 

(22). In addition to its pivotal role in the metabolism of vitamin A and in the storage of 80% of 

total body retinol, upon activation, stellate cells differentiate to myofibroblasts for production 

of extracellular matrix and can contribute to liver fibrosis (22). The microvilli of hepatocytes 

can extend into the space of Disse, allowing components from the sinusoids to be taken up 

by hepatocytes (15).  
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Approximately 25% of the liver nonparenchymal cells are immune cells. The absolute 

number of lymphocytes in the liver is 10 to 20 million cells per gram of tissue (23), which is 

remarkable for a non-lymphoid organ (18). Natural Killer (NK) and Natural Killer T (NKT) cell 

populations are abundantly present in a healthy liver, accounting for approximately half of 

the resident intra-hepatic immune cells. Thus, they are likely to be important in immune 

responses to hepatotropic pathogens, such as HBV. Moreover, other immune players are 

found within the liver such as granulocytes, macrophages, dendritic cells (DCs), αβ T 

lymphocytes, γδ T lymphocytes and B cells (Table 1.1). Notably, CD8+ T lymphocytes 

predominate in the liver when compared with CD4+ T lymphocytes, being the hepatic 

CD4/CD8 ratio the opposite of that in the lymph nodes (18). 

 

 

 

  

 

 

 

 

Figure 1.2. Anatomy of a healthy liver and its immune cells. SC – stellate cell; KC – Kuppfer cell; DC – 

dendritic cell. Adapted from Racanelli V. and Rehermann B. in Hepatology (2006) 43:S54-S62.  
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Cell type Function 
Granulocytes 

(neutrophils, eosinophils and basophils) 
Quickly recruited to the site of certain viral infections. 
Produce significant amount of the antiviral molecule 
TNFα.  

NK cells Key cells of the immune system in antiviral defense 
and tumor immunosurveillance. These cells can 
produce large amounts of IFNγ upon activation. 

Dendritic cells Specialized APCs. Upon encounter with potentially 
pathogenic antigen, DCs traffic to draining lymph 
nodes to prime and activate αβ T cells. 

NKT cells Rapidly activated. Produce large amounts of IFNγ, IL-
4 and TNFα. 

αβ T lymphocytes Highly polyclonal αβ TCR and can be CD4+ or CD8+. 
CD8+ T cells differentiate into cytotoxic cells; CD4+ T 
cells can differentiate into Th1 (IFNγ) or Th2 (IL-4, IL-
5, IL-10, IL-13). 

γδ T lymphocytes γδ TCR of limited diversity. Function not well defined 
within the liver. 

B lymphocytes Not much is known about their function within the 
liver. Antiviral antibodies contribute to viral clearance 
by blocking virus entry into susceptible cells and by 
removing infectious virions from the circulation. 

 

 

 

 

 

The liver also performs crucial metabolic functions. It receives oxygenated blood 

from the hepatic artery and blood enriched in nutrients from the gut via the portal vein. In 

addition, the blood that enters the liver from the intestines is rich in commensal gut bacterial 

products and food-derived antigens. Thus, the constitutive presence of non-self and 

microbial components within the liver provides a unique environment in this organ which is 

thought to favor tolerogenic immune responses (24). This hepatic tolerogenic predisposition 

is believed to protect the organ from constant inflammation and consequent damage. Early 

in the history of experimental transplantation, it was found that allogeneic liver transplants 

are accepted and maintained by the recipient without immunosupression (25). In humans, 

liver transplants require less immunosuppressive therapy and experience less severe T cell-

mediated rejection episodes than other vascular organ grafts (26), despite histocompatibility 

leukocyte antigen (HLA) disparities between donor and recipient cells. Direct injection of 

antigen or allogeneic cells into the portal vein results in tolerance (27, 28). And, oral 

tolerance (when antigen is administered via the GI tract) does not develop if the blood flow 

Table 1.1. Summary of the intra-hepatic immune cell types and its function. Adapted from Mehal, WZ et al, 

Gastroenterology (2001) 120: 250-260.  



________________________________________________________________INTRODUCTION 
 

 10 

from the intestine bypasses the liver (29). Thus, a key feature of the liver as an 

immunological organ is its ability to remain tolerant to certain antigens while retaining the 

capacity to repel pathogens effectively. However, acute inflammatory reactions can occur in 

response to certain harmful stimuli, leading to hepatic necrosis (hepatitis) and subsequent 

regeneration, or to hepatic fibrosis if the stimuli are sustained. Both in rodents and humans, 

liver injury is generally measured by the level of serum alanine-aminotransferase (ALT), 

which is an enzyme that is released into the bloodstream during hepatocyte necrosis. 

Actually, there are situations in which hepatic infections result in a robust immune response, 

clearance of the pathogen and functional memory. This is observed in almost all hepatitis A 

infections and to a variable extent in patients infected with HBV and HCV. It has been 

suggested that activated CD8+ T cells within the liver are predisposed to undergo apoptosis, 

and that CD4+ T lymphocytes, upon interaction with LSECs and many intra-hepatic DCs, are 

skewed into cells with regulatory functions (24). However, how this default state of hepatic 

tolerance might be interrupted to allow T cell activation and effector responses to occur 

remains to be understood. Interestingly, chronic hepatitis B infection illustrates both 

tolerance and immunity within the liver. In general, chronic HBV infection is characterized by 

a period of immune tolerance (elevated HBV-DNA and low ALT values), followed by immune 

clearance (elevated ALTs and decreased of HBV-DNA), which usually leads to immune 

control (low HBV-DNA and low ALTs). However, for reasons that are not yet known, the 

intra-hepatic immune system against HBV-infected cells is reactivated in one third of these 

patients. Understanding the dynamic interplay between immune control and immune 

activation against HBV-infected cells may provide insight into tolerance versus immunity 

within the liver. 

Despite the tremendous progress towards understanding how extra-hepatic immune 

responses are initiated and regulated, much of this knowledge has not been yet effectively 

translated into a better understanding of human liver diseases. General mechanisms of 

immune regulation should be considered in the context of very unique populations of 

lymphocytes and APCs that are enriched in the liver. Advances in unraveling the functioning 

of the intra-hepatic immune system in tolerance and in immune activation in the mouse may 

be very relevant for the development of treatments of liver diseases in humans. 
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Hepatitis B as an immunological disease 

 

HBV infection and replication are not cytopathic to hepatocytes; rather it is the 

immune response to the viral antigens that causes the hepatic necrosis and liver damage. 

Very early events in immune activation and reactivation are essential in determining whether 

this disease process is set in motion, since continued immune tolerance to HBV antigens 

avoids hepatitis. One mechanism whereby infected cells can limit the initial viral spread is 

the induction of apoptosis. The evidence that HBV can induce apoptosis is contradictory, as 

both pro- and anti-apoptotic effects have been detected in cultured cells and transgenic 

mouse models expressing different viral products (30). Importantly, during the early phase of 

HBV infection in chimpanzees (before virus-specific T cells enter the liver), there is an 

absence of histological or biochemical evidence for hepatocyte damage (31, 32). 

Furthermore, when cellular immune responses are deficient or pharmacologically 

suppressed, HBV can replicate at high levels in the livers of either patients or HBV-

transgenic mice, without inducing any detectable pathological consequences (11, 33). 

Collectively, these results indicate that HBV replicate non-cytopathically within the primary 

hepatocyte in vivo and suggest that hepatocyte damage during viral hepatitis is an immune-

mediated event. 

Primary HBV infection is asymptomatic in most adult individuals, but may result in 

varying degrees of acute liver injury (acute hepatitis). Approximately 95% of acutely HBV-

infected adult population clear the virus intra-hepatically and from the bloodstream and 

recover completely from the infection without long-term sequelae. Therefore, only up to 5% 

of the HBV-infected adults develop chronic hepatitis B of varying severity. In contrast, over 

90% of the newborn population vertically exposed to HBV will develop chronic hepatitis B. 

For example, ten percent of the entire Chinese population and its diaspora, which comprises 

approximately 130 million people, are chronically infected with HBV. Although approximately 

two thirds of this latter population can remain immunotolerant (especially in terms of cellular 

immunity) and never develop chronic hepatitis, around one third of the chronically infected 

patients will break HBV-specific immune tolerance and develop active, and often 

progressive hepatitis with life-threatening consequences, such as cirrhosis and 

hepatocellular carcinoma. Symptoms of chronic liver disease are insidious and often 

overlooked because the liver has a remarkable regeneration capacity, which masks 

progressive scarring despite decades of injury. Notably, the asymptomatic carriers are the 
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major global epidemiologic reservoir of HBV, and it is mainly they who spread HBV to 

susceptible hosts.  

Virus-specific CD8+ cytotoxic T lymphocytes (CTLs) and CD4+ T-helper (Th) cells 

play key effector and regulatory roles, respectively, in antiviral immunity. These T cells 

participate in viral pathogenesis either directly, by killing infected cells, or indirectly, by 

producing soluble factors such as cytokines and chemokines. In this way, they contribute to 

the inflammatory process and/or inhibit viral replication. Although APCs that have 

internalized viral antigens secreted by other cells can efficiently prime Th cells, activation of 

CTLs usually requires the processing of viral proteins that are either endogenously 

produced or phagocytosed by professional APCs (34). Acute HBV infection is characterized 

by a polyclonal HBV-specific CD8+ T cell response. There are CTLs responding to most 

HBV proteins, leading to increased recognition of the target epitope and reduced viral 

“escape” via mutation (35). Depletion of CD8+ T cells following acute HBV infection of 

chimpanzees led to persistence of HBV infection and showed the importance of both 

cytolytic and non-cytolytic activity of this population of lymphocytes. In human HBV infection, 

not all individuals who recover from acute HBV infection show hepatocyte necrosis or 

clinical symptoms, suggesting that non-cytolytic mechanisms, such as those induced by 

cytokines like interferon-gamma (IFNγ) and tumor necrosis factor-alpha (TNFα) are used to 

clear acute HBV infection (36). The importance of these cytokines was confirmed in HBV-

transgenic mouse models, where administration of anti-IFNγ and anti-TNFα antibodies 

blocked the ability of CD8+ T cells to clear HBV RNA intermediates and nucleocapsid protein 

(Hepatitis B core antigen - HBcAg) (37). Although IFNγ is mainly produced by HBV-specific 

CD8+ T cells, it can also be produced by NK, NKT cells and HBV-specific Th1 CD4+ cells 

(38). Thus, despite mature CD8+ T lymphocytes play a major role in HBV clearance, 

coordinated effect of cytokines and activation of different immune cell players appears to be 

necessary to achieve viral control and clearance. This is consistent with the kinetics of viral 

replication and lymphocyte recruitment and proliferation observed in chimpanzees following 

acute HBV infection (39). 

It is very well established that Th cells can be divided in two subsets, Th1 and Th2 

cells, based on the profile of cytokine production. Th1 cells secrete interleukin-2 (IL-2), 

TNFα and IFNγ and are involved in antiviral functions and in the regulation of cellular 

immune responses. Th2 cells produce IL-4, IL-5, IL-10 and IL-13, which are known to 

promote humoral immune responses (40). A direct, cytokine-dependent antiviral role of Th1 

cells has been shown in HBV- transgenic mice, when transfer of HBV-specific Th1 cells into 
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these immunologically tolerant mice induced cytokine release and suppression of viral 

replication in the liver. During an acute infection, HBV-specific CD4+ T cells can be detected 

at the time of elevated HBV DNA concentration (before the peak of liver damage) and 

persist long after recovery from HBV infection (41). CD4+ T cell proliferation or/and antiviral 

cytokine production are more commonly detected to the core than to any other HBV protein 

(41-43), such as HBV-envelope or HBV-polymerase (43, 44).  

In a typical acute HBV infection, HBV DNA is detectable in circulation within a month 

of infection, but remains at a relatively low level of 102 to 104 genome equivalents per mL for 

a period of four to six weeks before the HBV DNA and the secreted HBV e antigen (HBeAg) 

and HBsAg peaks (6). Approximately ten to fifteen weeks after infection, serum ALT levels 

start to rise, which is indicative of T-cell mediated liver injury. Interestingly, HBV DNA in the 

serum and in the liver can be cleared before the ALT peak, as shown in experimentally 

infected chimpanzees (31). As mentioned previously, approximately 90% of acutely infected 

adults resolve all clinical symptoms, develop HBeAg- and HBsAg-specific antibodies, clear 

free HBeAg and HBsAg from the circulation and maintain lifelong protective immunity. 

Despite complete clinical recovery, trace amounts of HBV DNA persist and are controlled by 

humoral and cellular immune responses (13). In patients who have recovered from acute 

HBV infection, activated Th2 cells induce B-cell production of anti-HBs, anti-HBc and anti-

HBe antibodies (HBsAb, HBcAb, HBeAb). HBcAg-specific immunoglobulin (Ig) M is an early 

marker of infection, whereas antibodies specific for HBeAg and HBsAg are detected later 

and indicate a favorable outcome of infection (13). Anti-HBsAb are synthesized early in 

infection but are undetectable because they are complexed with an excess of envelope 

antigens produced during viral replication (45). HBsAb is then detected later in HBV-infected 

patients as well as in vaccinated individuals. HBsAb is used in the latter group as a marker 

to evaluate immunity to the virus. In general, HBcAg-specific IgG and HBsAg-specific 

antibodies persist for life after clinical recovery.  

Regulatory T cells compose a distinct T lymphocyte population. These cells are 

described phenotypically as CD4+CD25hiFoxP3+, and functionally as immunological 

suppressors against self (46) and foreign antigens (47) through suppressive cytokines or 

direct cell-cell contact.  Not much is known about the role of regulatory T cells in the liver or 

during HBV infection, but recent data from three independent groups suggested that 

CD4+CD25+ T regulatory cells were linked to the chronicity of the disease in patients with 

chronic hepatitis B (48-50). In chronic severe hepatitis B patients, the frequencies of 

CD4+CD25+ T regulatory cells in both peripheral blood mononuclear cells (PBMC) and intra-
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hepatic infiltrating lymphocytes were significantly increased and there was a dramatic 

increase of FoxP3+-cells in the liver compared with healthy controls. In acute hepatitis B 

patients, the frequency of circulating CD4+CD25+ T regulatory cells was initially low, 

increased in number during the convalescence phase and returned to normal levels upon 

resolution (50). Nevertheless, a detailed analysis of the intra-hepatic numbers and function 

of these cells in healthy and HBV-infected livers awaits to be experimentally addressed. 

A complex interaction exists between HBV and the host in the initial clearance of 

HBV, the long-term persistence of HBV and the pathogenesis of HBV liver disease. Thus, 

understanding the pathogenesis of HBV infection mandates uncovering the immune 

responses underlying these processes. A great deal is known about the adaptive immune 

response to HBV-infected cells, both cellular and humoral components, but the role of innate 

immunity against HBV requires further investigation. However, the study of HBV 

immunopathogenesis has been problematic because natural hepadnaviral infections occur 

only in outbreed species whose immune systems are difficult to experimentally manipulate. 

In addition, conventional experimental systems for the study of HBV immunopathogenesis 

are not available because HBV is not infectious, even for human cells, in vitro. 

   

 

Overview of the models used to study HBV immunopathogenesis 

 

Cell culture systems 

Numerous strategies have been used to develop cell culture systems for HBV 

propagation. The majority of these advances were driven by the goal to develop and 

evaluate potential antiviral agents for activity against HBV. Some examples are the stably 

transfected line of HepG2 cells, 2.2.15 cells (51, 52), the HepAD38 cell line (in which 

replication of HBV can be regulated with tetracycline) (53, 54), and the HepAD79 cell line 

(which was developed to determine the relative susceptibility of viruses with mutations in the 

YMDD motif in cell culture) (53). 

However, despite many attempts to develop an HBV-cell culture system, a 

successful in vitro system to address immunological questions has not been generated. 
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HBV natural hosts as animal models 

As mentioned previously, natural hosts for the duck (DHBV), woodchuck (WHV), and 

ground squirrel (GSHV) are considered hepadnaviral homologues of HBV. Nevertheless, 

DHBV, WHV and GSHV are genetically divergent from HBV, with WHV being the most 

closely related (55).   

These three animals are outbred species whose immune systems are difficult to 

experimentally manipulate due to the lack of reagents able to characterize their immune 

responses against these viral antigens. Therefore, although these animals have contributed 

to our understanding of the natural history and pathogenic potential of these viruses, they do 

not allow definitive analysis of the role played by the immune system in viral clearance, 

disease pathogenesis and hepatocarcinogenesis (45, 56, 57). In fact, these animal models 

of HBV natural infection have been predominantly used by virologists rather than 

immunologists. 

 

Mouse models of HBV infection 

 

HBV-transgenic mouse models 

A reproducible tissue culture model of HBV infection does not exist, nor is HBV 

infectious for immunologically well-defined laboratory animals, such as mice. Therefore, in 

the late 80’s with the arrival of embryo microinjection technology, several laboratories, using 

DNA constructs encoding HBV-derived regulatory sequences, generated transgenic mice 

that preferentially express all of the viral gene products, and even replicate the virus, within 

the hepatocyte (58-65). Experiments using these mice showed that HBV can replicate 

efficiently within mouse hepatocytes. This finding suggested that once the viral transgene is 

integrated into the host genome there are probably no species-specific constraints to viral 

replication. One of the earliest studies with HBV transgenic mice involved strains that 

produced the three viral envelope proteins, S being the most abundant and L the least, 

which reflects in part the relatively weak PreS promoter in comparison to the S promoter 

(66). However, a strong promoter (albumin promoter) was used to direct synthesis of the 

PreS mRNA in a few strains of transgenic mice generated by Chisari and colleagues, one of 

which will be discussed in this dissertation. As a result of the use of such artificial promoter 

HBsAg is accumulated in the ER. In addition, the hepatocytes derived from this strain of 

mice are more susceptible to the effects of IFNγ. This is reflected in higher ALT levels seen 

after disease induction when compared to mice that express the entire viral genome under 
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the control of the viral promoters. These mice recapitulate, to some extent, a rare clinical 

event designated as fibrosing cholestatic hepatitis (FCH), which is characterized by an 

exaggerated accumulation of HBV large envelope protein in human hepatocytes that leads 

to fulminant hepatitis due to the exacerbated immune response to HBV-infected 

hepatocytes. 

Based on observations of infected patients, it was generally assumed that a major 

histocompatibility complex (MHC)-restricted cytolytic immune response to virally encoded 

antigens expressed at the surface of the hepatocytes plays an important role in viral 

clearance and in the pathogenesis of HBV-induced liver disease. Using HBV-transgenic 

mice, Chisari and colleagues sought to examine this assumption. For this purpose, non-

transgenic mice were immunized with a vaccinia virus expressing HBV envelope proteins 

(Vacc-HBs). Splenocytes isolated from these immunized mice were cultured to produce CTL 

lines that were cloned and characterized in vitro. MHC-class I-restricted CD8+ CTL that 

recognized HBsAg-positive target cells and secreted IFNγ and TNFα were injected 

intravenously into syngeneic HBV-transgenic recipient mice whose hepatocytes express 

HBsAg. The pathogenic and anti-viral consequences of CTL activation in the liver were 

monitored. Interestingly, HBV-transgenic mice that express the complete viral genome 

reveled relatively little liver injury after CTL adoptive transfer. These data suggested that 

hepatocellular HBV gene expression was greatly suppressed by non-cytolytic signals, most 

likely cytokines, delivered by the HBsAg-specific CTLs (67). 

Collectively, Chisari and colleagues have contributed significantly over the past two 

decades in characterizing the role of strong and polyclonal CTL responses to HBV-

expressing cells in HBV clearance and/or in the context of chronic hepatitis B infection, 

using HBV-transgenic mice as well as HBV-infected chimpanzees. 

 

HBV hydrodynamic tail vein injection model  

HBV-transgenic mice are immunologically tolerant to the virus and it is necessary to 

adoptively transfer T lymphocytes previously primed to a maximum response to HBV 

antigens for hepatitis to occur, thereby compromising the greatest potential strength of a 

mouse model of HBV infection. Therefore, a new mouse model was developed in an attempt 

to alleviate these experimental constraints. Hydrodynamic tail vein injection of a head-to-tail 

dimer of adw HBV genome (pHBVadwHTD) into immunocompetent mice generated HBsAg 

and HBeAg expression in both serum and hepatocytes followed by seroconversion. This 

way, a transient liver-targeted transgenic mouse was generated (66, 68). This technique 
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requires tail vein injection into 6 to 9 weeks old wild type mice of a volume of saline 

equivalent to approximately 8% of the body mass of the mouse within 5-7 seconds. Thus, 

this method causes an acute circulatory volume overload, resulting in a mortality rate of 20-

30%. One day after injection a sharp rise in serum ALTs is detected and return to baseline 

levels by day 7 after transfection. In addition to the previous limitations, this method only 

allows HBV transfection of 5 to 10% hepatocytes in vivo (68). 

 

Other HBV mouse models 

Other mouse models have also been developed in an attempt to study HBV. It was 

demonstrated that long-term engraftment of primary human hepatocytes transplanted in a 

matrix under the kidney capsule of mice was achieved with administration of an agonistic 

antibody against c-Met. These mice were susceptible to HBV infection and able to support 

complete viral life cycles. In addition, super-infection of the HBV-infected mice with HDV was 

shown. These findings described a new xenotransplant model that seemed to allow the 

study of multiple aspects of human hepatitis viral infections. Despite this model (69) being 

extremely appealing, its dependence on human hepatocytes (which are not easily available) 

limits follow-up studies. 

 

Primate model of HBV infection 

Higher primates are susceptible to HBV, and the chimpanzee, in particular, has been 

used to study virus transmission, the host response and vaccination. Chimpanzees can be 

infected at a specific time with defined inocula and studied in the early phase as well as 

throughout the course of infection, by performing sequential liver biopsies and blood 

analysis. The chimpanzee model contributed to the understanding of viral hepatitis B as a 

transmissible disease, to the assessment of the neutralization capacity of different HBV-

specific antibodies, and to the characterization of antibody production and T-cell mediated 

immune responses (31). 

Despite being the only animal that is naturally infected by HBV other than humans, 

chimpanzees seem to have a milder clinical course of hepatitis and a weaker and more 

restricted humoral immune response as compared to humans. It is possible to argue, 

however, that the human studies have a selection bias, since asymptomatic patients do not 

seek medical attention while all of the experimentally infected chimpanzees are narrowly 

studied. Nevertheless, vertical transmission, which is the main route of HBV transmission in 

humans, is not common in chimpanzees (13). 
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On the other hand, experiments in primates are limited owing to high costs and 

limited availability of chimpanzees for research, as many studies are restricted to two to 

three primates (13). In addition, ethical considerations are also an issue which limit 

biomedical research in primates. 

 

Thus, understanding the immune response to HBV is still incomplete, largely due to 

the narrow host restriction of this pathogen and the limitations of existing experimental 

models. 

 

 

Disease model: transgenic mouse model of primary hepatitis B virus infection  

 

Being aware of the limitations in the study of potential innate immune responses to 

human HBV and its implications, our laboratory recently established a new transgenic 

mouse model of primary HBV infection. This in vivo system allows, for the first time, the 

study of mechanisms underlying both major arms of immune responses to HBV, namely the 

innate and the adaptive immune systems. To generate this new mouse model of primary 

HBV infection (Fig. 1.3A), we took advantage of HBV-transgenic mice originally generated 

by Chisari and colleagues. Two strains of mice were used; animals that express the small, 

middle, and large envelope proteins of HBV as transgenes in the liver under the constitutive 

transcriptional control of the mouse albumin promoter (hereafter designated HBV-Env+) (70), 

and mice that express a terminally redundant HBV DNA construct as a transgene, resulting 

in intra-hepatic HBV replication and release of infectious progeny virions (hereafter 

designated HBV-Replication+). These latter mice have high level of viral replication in their 

hepatocytes. The replication level is comparable to that observed in the infected livers of 

patients with chronic persistent HBV hepatitis, but with no evidence of cytopathology (64). 

The system developed in our laboratory introduced two major modifications to Chisari’s 

adoptive transfer model. First, the resident adaptive immune system of both HBV-transgenic 

mice was ablated by crossing to mice deficient in recombinase activating gene-1 (Rag-1). 

Second, the immune system was reconstituted by the adoptive transfer of naïve, un-

immunized splenocytes isolated from syngeneic, wild-type mice.  This method allowed a 

liver full of HBV-expressing hepatocytes to be exposed for the first time to a healthy, un-

tolerized, naïve immune system – mimicking an acute HBV infection (Fig. 1.3). Therefore, 

bias introduced by immunization of the wild-type donor mice or by selection for particular 
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immune effector subpopulations is completely avoided in this model. This system results in 

a biphasic illness, with a rapid acute hepatitis, which will be the focus of this dissertation, 

followed by a smoldering chronic hepatitis (Fig. 1.3B) (71).  

To ensure that acute pathology observed in this model is HBV-dependent, we used 

immunodeficient Rag-1-/- mice that express an OVA-transgene under the control of the same 

albumin promoter. As expected, these mice lacked a rise in ALT and an intra-hepatic 

cytokine production (Vilarinho & Baron, unpublished data). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3.  (A) Transgenic mouse model of primary hepatitis B virus infection. (B) Hepatic injury as measured by 

serum ALTs from HBV-Env+ Rag-1-/- (orange line) and Rag-1-/- (blue line) after adoptive transfer of syngeneic 

naïve wild type splenocytes, adapted from Baron et al., Immunity (2002) vol.16, 583-594. 
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Since this experimental system resembles primary human HBV infection, it is 

possible to explore aspects of pathogenesis not directly addressed by the previously 

discussed models. In particular, the innate immune response(s) to HBV and its potential 

implication in chronic hepatitis can be studied. In addition, it would be possible to dissect 

apart the possible contributions of the individual components of the innate immune system 

in response to HBV.  

Using this mouse model of primary HBV infection, Baron et al have demonstrated a 

role for the innate immune system (71). The cells causing hepatitis in this model are 

prevalent in the liver, as 100-fold fewer intra-hepatic lymphocytes are still sufficient to induce 

disease. A combination of sorting and depletion experiments demonstrated that a population 

of CD1d-restricted NKT cells specifically mediate the acute liver injury observed post-

transfer (71). They further showed that the NKT cell population does not express the 

invariant Vα14 T cell receptor (TCR). Adoptive transfer of naïve splenocytes from Vα14 TCR 

transgenic mice were unable to cause acute hepatitis, and adoptive transfer of naïve wild 

type splenocytes into HBV-transgenic Rag-1-/- CD1d-/- mice also did not induce acute 

hepatitis. Data using this model suggest that the presence of HBV leads to alterations in the 

MHC class I-like molecule, CD1d, and subsequently affects activation of NKT cells and 

hepatitis (71).  The NKT cell-mediated, CD1d-dependent, acute hepatitis described in this 

model of primary HBV infection was confirmed in both HBV-transgenic mouse strains 

mentioned above, namely HBV-Env+ and HBV-Replication+ (71). 

Although the severity of hepatitis observed in the two lines of HBV-transgenic mice is 

different (due to an increase in hepatocyte sensitivity to cytotoxic effects of IFNγ in the HBV-

Env+ mice), histological analyses confirm that both lines of transgenic mice develop 

significant and reproducible hepatitis with a similar disease pattern (71). Specifically, a 

biphasic ALT rise that is seen in the HBV-Env+ Rag-1-/- mice is also observed in the HBV-

Replication+ mice, but as expected the ALT rise is significantly more modest than the one 

seen in the HBV-Env+ mice — typically, serum transaminases were elevated no more than 

2-fold above background. Like most cases of acute viral hepatitis in humans, the disease in 

the HBV-Replication+ mice is transient, relatively mild and non-fatal. On the other hand, the 

severe hepatitis seen in the HBV-Env+ mice resemble features of human HBV-induced 

fulminant hepatitis, such as FCH (72, 73), described previously. 

This model allowed the discovery of a role for NKT cells and a “bridge” between the 

innate and the adaptive immune system in response to infection by a human viral pathogen. 

This system contributes not only to the study of pathogenesis of HBV infection but also 
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enhances our understanding of NKT cell biology. The focus of this thesis will be to use this 

transgenic mouse model of primary human HBV infection to address the molecular and 

cellular mechanisms involved in the early immune recognition and subsequent immune 

response to HBV-expressing cells.  

 

 

Natural Killer T cells and their function 

 

NKT cells are unusually abundant in the liver, where they constitute one third of all 

resident lymphocytes under baseline conditions. Thus, they may have a “special” role in the 

control of hepatic infections since they do not need to be recruited into that organ. In 

contrast, NKT cells represent 0.5% or 0.1% of total cells, in the spleen or lymph nodes, 

respectively (74). 

Research carried out in many laboratories over the past 20 years led to the discovery 

and definition of NKT cells as a distinct cell population (75-85). The term “NKT cells” was 

first published in 1995 by the Taniguchi group (86) and defined as a subset of mouse T cells 

that express NK1.1 (Nkrp1c or CD161c), a marker of the NK cell lineage, in addition to 

markers of the T cell lineage. However, a number of cellular subpopulations, with different 

properties and functions, is comprised within this definition (87). In fact, this simplistic 

classification of NKT cells has been complicated by the fact that most commonly used 

mouse strains, with the exception of C57BL/6, do not express the NK1.1 marker, and 

expression of NK1.1 and its human homologue (CD161) is not limited to the so-called NKT 

cells (88). 

Further evidence for the unique characteristics of NKT cells came from data showing 

that their development is independent of MHC class II expression but requires β2-

microglobulin (although mouse NKT cells do not express CD8) (89-91). More importantly, 

Bendelac et al showed that NKT cells are reactive to CD1d, which is a MHC class I-like 

molecule (92). At the same time, it was established that a large majority of the NKT cell 

population expresses an invariant TCRα chain: Vα14- Jα281 (currently known as Vα14- 

Jα18) in mice and Vα24- JαQ (currently known as Vα24- Jα18) in humans. Therefore, the 

best characterized and the most predominant NKT cell subset is designated as type I, 

classical or invariant NKT cells. This subset is generally defined by exhibiting the following 

characteristics: expression of a canonical Vα14 receptor which is conserved in mice and 

humans and pairs with a limited number of Vβ chains (Vβ8, 7, 2) (74), and by the recognition 
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of the glycosphingolipid α-galactosylceramide (α-GalCer) in the context of CD1d (93). 

Mouse type I NKT cells are the group of lymphocytes that can be detected by flow cytometry 

using tetramers of CD1d loaded with α-GalCer. These cells do not express CD8 and are 

either CD4+ or double negative (Table 1.2). In humans, however, type I NKT cells can be 

CD8+. This invariant subpopulation accounts for approximately 70% of all NKT cells in the 

body, but they are less abundant in humans than in mice (94). The correlation between 

invariant expression of Vα14 and reactivity with α−GalCer-CD1d is very strong (93, 95), 

although there are some exceptions (96, 97). More recently, a particular subset of invariant 

type I NKT cells was identified in the lung that do not express the NK1.1 marker on their 

surface and secrete high amounts of IL-17 and low levels of IFNγ and IL-4 upon synthetic 

(α−GalCer) as well as natural (lipopolysaccharides or glycolipids derived from 

Sphingomonas wittichii and Borrelia burgdorferi) ligand stimulation (98).  

Two other subsets of NKT cells, type II and type III NKT cells, have been identified 

and designated as non-classical NKT cells because they fail to recognize CD1d tetramers 

loaded with α-GalCer (99), since they do not express the semi-invariant Vα14- Jα18 in mice 

and the Vα24- Jα18 in humans. Whereas type II NKT cells do not recognize α-GalCer in the 

context of CD1d, but require CD1d for activation, type III NKT cells do not recognize CD1d 

in any circumstance (Table 1.2).  

Since the NKT cell field is relatively new and in permanent expansion, it may be 

possible that other subsets remain to be identified. For instance, it seems that type II NKT 

cells can be divided into two populations: CD1d-sulfatide tetramer positive and CD1d-

sulfatide tetramer negative. In addition, some of the type II NKT cells are auto-reactive, as 

they recognize the endogenous myelin-derived glycolipid sulfatide and help protect mice 

against the development of experimental autoimmune encephalitis (100). 
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 Type I NKT (classical 

or invariant NKT 
cells) 

Type II NKT 
(non-classical or 

non-invariant 
NKT cells) 

Type III NKT (CD1d-
independent NK1.1+T 

cells or NKT-like 
cells) 

CD1d-restricted + + - 
Self-reactive + or - + or - - 

α-GalCer reactive + - - 
Sulfatide reactive - + or - - 

TCR α-chain Invariant: 
Vα14- Jα18 (mice) 

Vα24- Jα18 (humans) 

Diverse  
(some Vα3 in 

mice) 

Diverse 

TCR β-chain Vβ8.2, 7, 2 (mice)  
Vβ11 (humans) 

Diverse  
(but some Vβ8.2 

in mice) 

Diverse 

NK1.1 (CD161) + (resting mature) 
low (immature or 

activated) 
- (IL-17-producing 

NKT) 

+ (resting mature) 
low (immature or 

activated) 

+ 

Subsets CD4+ and DN (mice) 
CD4+, CD8+ and DN 

(humans) 

CD4+ and DN 
(mice) 

CD4+, CD8+ and DN 

IFNγ secretion + + + 
IL-4 secretion + + - 

IL-17 secretion      - (majority) 
     + (NK1.1-) 

- - 

 
 

 

 

 

NKT cells recognize lipids and glycolipids, rather than peptides, in the context of the 

non-polymorphic MHC-like class I molecule, CD1d (101). Interestingly, human and mouse 

NKT cells have functional and phenotypic homologies to the extent that mouse CD1d-

restricted NKT cells recognize human CD1d and vice-versa (102). NKT cells have a surface 

phenotype reminiscent of memory cells, and have been shown to rapidly produce large 

amounts of cytokines, such as IFNγ and IL-4, upon activation. Because of their rapid 

response to activation, NKT cells have been suggested to play a role in several different 

immunological situations, such as clearance of pathogens, progression or suppression of 

autoimmune diseases, clearance of tumors and maintenance of immune tolerance (103). 

The action of NKT cells in many disease models depends on the production of either IL-4 or 

Table 1.2. Classification of different subsets of NKT cells. Adapted from Godfrey, DI et al, Nat. Rev. Immunol.     

(2004) 4: 231-237. 
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IFNγ alone. This is quite intriguing given that activation of these cells usually leads to the 

production of both cytokines together. Studies of NKT cells and their effects on disease 

usually examine the consequences in the absence of NKT cells, the effects of activating 

NKT cells on the progression of the disease, or both. Thus, the broad spectrum of their 

activities is a striking factor that suggests that functionally different subsets of NKT cells 

might exist. Most of the studies conducted to date on NKT cells have focused on 

investigating the biological functions of type I rather than type II NKT cells. Only recently, it 

has been demonstrated that type II NKT cells have critical functions in regulating tumor 

surveillance, diabetes, and intestinal inflammation (104-106).  

Furthermore, NKT cells despite being potent producers of IFNγ, IL-4 and TNFα, do 

not seem to exert natural cytotoxicity as key effector mechanism. However, these cells can 

express perforin and FASL, as well as other receptors, such as NKG2D, that mediate 

cytotoxicity. 

NKT cells have attracted a great deal of attention due to their potential to link the 

innate and adaptive immune systems. Characteristically, they respond very quickly to stimuli 

and are then able to activate a number of effector cells. Thus, NKT cells are likely important 

players in the early control of viral infections if they become activated in the infected tissue.  

 

 

Natural Killer cells and their function 

 

NK cells, recognized for their ability to provide first line of defense against viral 

pathogens, account for approximately 5 to 10% of the total lymphocyte population, being 

predominantly found in the blood, spleen and liver. NK cells were first defined as a “null cell” 

since they do not express a TCR or a B cell receptor (BCR) on their surface. However, today 

they are considered highly sophisticated lymphoid effector cells whose activity is extremely 

well controlled by a balance between activating and inhibitory receptors, many of which 

recognize the amount of MHC class I or MHC class I-like molecules (107). NK cells are a 

heterogeneous population in terms of its receptor repertoire. Different NK cell subsets 

express different combination of receptors (activating and inhibitory) (108). 

According to the “missing-self” hypothesis (109), NK cells were proposed to provide 

immune surveillance for cells that had down-regulated MHC class I, which frequently occurs 

in transformed or viral-infected cells. Until recently, it was thought that NK cells attack any 

cell lacking MHC molecules, with the exception of erythrocytes, because the potential target 
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cell cannot engage an inhibitory NK cell receptor for MHC class I (110). Nowadays, a 

contemporary modification of the “missing-self” hypothesis might state that “NK cells patrol 

for abnormal cells that lack MHC class I or overexpress ligands for activating NK cell 

receptors” (107). This way, if a cell does not express MHC class I molecules but they also 

do not express activating ligands, NK cells have no response towards that cell. This 

situation results in the same outcome as when a target cell expresses MHC class I molecule 

and no activating ligands. When a target cell expresses activating ligands and does not 

express MHC class I molecules on their surface, NK cells attack the target cell. A more 

complex situation arises when a target cell expresses both MHC class I molecules and 

activating ligands. In this case, the outcome is determined by the balance of activating and 

inhibitory signals. In certain situations, NK cells can be activated simply by exposure to 

cytokines present in the surrounding environment without requiring engagement of their 

activating receptors (111). Additionally, because NK cells express the activating Fcγ 

receptor CD16 they have the ability to attack virus-infected cells that are coated with IgG 

(111). 

Regulated by activating and inhibitory signals, NK cells are effector cells against 

pathogens and damaged cells while simultaneously “screening” and sparing cells 

expressing self-MHC class I. Mature NK cells express granzymes and perforin, and their 

lytic response can be triggered within minutes, without requiring transcription, translation, or 

cell proliferation. In addition, the NK cell receptors are invariant and constitutively present on 

a large proportion of cells within the population, which make these cells a key component of 

early immune defense (107). However, NK cells still require type I IFNs (IFNα and IFNβ), 

predominantly produced by DCs, and/or pro-inflammatory cytokines (IL-15, IL-12 and IL-18) 

to become activated and totally functional as effector cells. Type I IFNs induce IL-15 

production, which increase NK cytotoxicity and cytokine production (111). Activated NK cells 

produce IFNγ that can promote DC maturation as well as the effector function of other 

immune cells, such as macrophages, granulocytes and other lymphocytes at the site of 

infection (111). NK cells also secrete TNFα, which can recruit neutrophils and monocytes to 

the site of infection, and GM-CSF, which activates macrophages. Thus, production of IFNγ 

and, perhaps, TNFα by activated NK cells is critical for the control of several viral infections 

(112). Indeed, a large variety of DNA viruses, such as mouse cytomegalovirus (MCMV) 

(113, 114), human cytomegalovirus (HCMV) (115), herpes simplex virus (HSV) (116), and 

adenovirus (117) as well as RNA viruses, e.g. influenza (118), vaccinia virus, ectromelia 

virus and coxsackievirus, are sensitive to the cytokine-dependent antiviral activity of NK 
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cells. NK cells display at least two effector functions that can contribute to contain and 

control viral spread during the initial hours and days of the infection. First, they can directly 

kill infected cells; second, they are a rich source of inflammatory cytokines with antiviral 

activity, in particular IFNγ (119).  

Notably, in humans, the inflamed liver in chronic HBV infection is characterized by a 

few HBV-specific CD8+ T cells among a large infiltrate of NK cells (CD3-CD56+). 

Furthermore, it was recently demonstrated that these NK cells express the pro-apoptotic 

ligand TRAIL and can mediate liver injury through engagement of a TRAIL death-inducing 

receptor on hepatocytes. It is thought that this pathway was turned on by cytokines (IFNα 

and IL-8), produced during active HBV infection (120). An early rise in circulating NK cells 

has also been documented in the incubation phase of HBV infection in humans (36). 

 

 

NKG2D receptor 

 

Initially discovered as a NK cell receptor, NKG2D is a type II transmembrane-

anchored glycoprotein expressed as a disulfide-linked homodimer on the surface of virtually 

all human and mouse NK cells, two thirds of NKT cells, a subset of activated γδ T cells, as 

well as human CD8+ T cells and activated mouse CD8+ T cells. Since two thirds of mouse 

resident intra-hepatic immune cells are NK, NKT and CD8+ T cells, NKG2D-expressing 

lymphocytes are particularly enriched in the liver. Despite its name, NKG2D does not belong 

to the same family of the other NKG2 receptors. NKG2D has different functions and it 

recognizes a distinct set of ligands. The human NKG2D receptor gene was first identified in 

1991 (121), and since then its orthologues have been described in mice (122), rats (123) 

and chimpanzees (124), among other species. NKG2D is encoded by a single monomorphic 

gene (121, 124, 125), which is in the NK cell gene complex on human chromosome 

12p12.3-p.13.2 and on mouse chromosome 6. Surface expression of NKG2D can be up or 

down regulated by the presence of certain cytokines. Several independent studies have 

shown that expression of NKG2D can be increased on human and mouse CD8+ T 

lymphocytes by IL-2 stimulation (126-128) and on mouse CD8+ T and NK cells by culture 

with IL-15 or TNFα (129, 130). It has also been demonstrated that the presence of TGFβ  

significantly down-regulates NKG2D surface expression both on NK and T cells (131, 132). 

Additionally, NKG2D is internalized after engagement with its ligands (107, 133). In fact, 
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chronic exposure to cell surface bound NKG2D ligands is able to promote NKG2D 

downregulation and a reduction in NKG2D-mediated cytotoxicity (134, 135). 

In mice, two isoforms of NKG2D generated by alternative RNA splicing have been 

described: the long form (NKG2D-L) and the short form (NKG2D-S) (Figure 1.3). These 

NKG2D proteins differ in the presence (NKG2D-L) or absence (NKG2D-S) of 13 amino acids 

at the N terminus in the cytoplasmic domain (136).  

NKG2D contains an extracellular C-type lectin domain that binds to ligands and a 

relatively short intracellular tail with no known signaling ability. Thus, in order to propagate 

signals through NKG2D, this receptor requires coupling to a transmembrane adapter protein 

for which a charged Arg or Lys in the transmembrane region is critical. The adapter 

molecules associated with NKG2D are different in humans and mice (Fig. 1.4). In mice, 

NKG2D pairs with two distinct signaling adapter proteins, namely DAP10 and 

DAP12/KARAP. Specifically, NKG2D-L exclusively associates with the DAP10 adapter 

protein, whereas NKG2D-S has been shown to pair with either DAP12 or DAP10 (136, 137). 

In contrast, humans only express the long form of NKG2D protein, which exclusively pairs 

with DAP10 for signaling. In resting mouse NK cells, mouse T cells and human NK and T 

cells, the isoform NKG2D-L forms a multi-subunit complex with the transmembrane adapter 

protein DAP10 (Figure 1.4). DAP10 has an YxxM motif in its cytoplasmic tail, which upon 

phosphorylation binds to the p85 subunit of phosphatidylinositol (PI)-3 kinase and initiates a 

signaling cascade that results in Akt phosphorylation, similar to the pathway used by the co-

stimulatory molecules CD28 and ICOS (138). In activated mouse NK cells, the short isoform 

of NKG2D can also associate with the DAP12 adapter protein (Fig. 1.4). DAP12 has 

immunoreceptor tyrosine-based activation motifs (ITAMs) in its cytoplasmic domain. 

Phosphorylation of the ITAMs of DAP12 leads to recruitment and activation of Syk and/or 

ZAP70 tyrosine kinases (139). This difference in signaling capacity between DAP10 and 

DAP12 adapter molecules has been proposed to correlate with an ability of NKG2D to 

function as a primary stimulatory molecule in mouse cells, or as a co-stimulatory molecule in 

mouse and human cells (107). Surface expression of NKG2D on resting cells requires its 

co-association with DAP10, both in mice and humans, since NKG2D is retained in the 

cytoplasm and partially degraded in the absence of DAP10 (138, 140). 

Signaling mediated through DAP12, in association with a variety of other receptors 

expressed in different cell types (NK and myeloid cells), has been described to mediate 

activating effector responses (141). Surprisingly, more recent data suggests that DAP12 can 

also mediate inhibitory responses (142-144). Thus, it appears that DAP12 is an adapter 
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protein with dual functionality (145). However, more experiments need to be performed to 

better understand the regulation of activation versus inhibition mediated by the same 

adapter molecule DAP12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Until recently, NKG2D was the only receptor described to associate with DAP10. 

However, it was known for quite some time that DAP10 expression does not overlap 

completely with NKG2D expression, suggesting that other receptors might associate with 

this adapter. Coudert et al demonstrated that Ly49D and Ly49H associate with the DAP10 

adapter, in addition to DAP12 (146). 

Figure 1.4. NKG2D expression and respective transmembrane adapter association in mouse (top row) and 

human (bottom row) NK cells and CTLs, both in resting (left columns) and activated (right columns) status. 

Adapted from Upshaw J.L. & Leibson P.J., Seminars in Immunology (2006) 18 (3):167-75. 
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As discussed above, mouse NK cell activating receptors can associate with more 

than one adapter. Likewise, each signaling adapter can pair with multiple receptors, existing 

some redundancy in terms of NK cell receptors and adapters functions.  

In summary, NKG2D+ lymphocytes can be unaffected, co-stimulated or fully 

activated by NKG2D-ligand interactions, since NKG2D-mediated responses can be 

modulated by the cytokine milieu and/or by the NKG2D ligand expressed (147). 

 

 

NKG2D ligands 

 

The human and mouse NKG2D receptor recognizes cell surface glycoproteins 

structurally related to MHC class I molecules (148-150) (Fig. 1.5). However, they do not 

associate with β2-microglobulin (148) and they do not present antigen peptides to T cells 

(149-152). Human ligands are the MHC class I-related chain A and B, MICA and MICB, and 

the UL-16-binding proteins (ULBP, also called RAET1), ULBP1, ULBP2, ULBP3 and ULBP4 

(Fig. 1.5). MICA and MICB, which have more than 100 different alleles are encoded by 

genes within the human MHC (153), whereas all the other known mouse and human 

NKG2D ligands are not encoded by genes in the MHC complex. The mouse NKG2D ligands 

described so far are the five members of the retinoic acid early inducible-1, RAE-1 family 

(Rae-1α, β, γ, δ, ε), three minor histocompatibility antigen called H-60 (or H-60a) (154, 155), 

H60b and H60c (156), and the murine UL16-binding protein-like transcript-1 (MULT-1) 

glycoprotein (157) (Fig. 1.5).  

Although MULT1 mRNA (but not protein) was detected ubiquitously (157), other 

NKG2D ligands are mostly silent in normal, healthy adult tissues. In mice, RAE-1 genes, 

which are abundantly expressed during embryonic development but silent in adult mice, 

were initially discovered and named because they were induced in the F9 embryonic 

carcinoma cell line after retinoic acid treatment (158, 159). RAE-1 glycoproteins were found 

to bind to NKG2D (154). It was also discovered that the tumor cell line RMA (that expresses 

MHC class I-proteins) also expresses RAE-1γ and δ, which allowed rejection of these 

tumors in vivo, indicating that the RAE-1-NKG2D interaction could override MHC class I 

inhibition, and demonstrating the importance (dominance) of the NKG2D receptor in 

activating NK cell effector functions (160, 161). It is now well established that the NKG2D 

ligands are, in general, “stress-inducible” molecules. Interestingly, however, RAE-1 is 

transcribed preferentially in the liver of healthy, adult mice (http://source.stanford.edu/cgi-
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bin/source/sourceSearch), and undetectable in most other tissues. Cell surface expression 

of MICA and MICB, which are under the control of a heat shock promoter, can be induced 

by cellular stress, including heat shock, transformation and viral or bacterial infections (162-

165). In addition, it has been shown that the RAE-1 and ULBP genes can be induced upon 

DNA damage (166). 

 

 

 

 

 

 

 

 

The RAE-1 proteins are highly related (>85%), whereas the H60 and MULT1 

proteins show less than 25% homology to each other or with RAE-1 proteins (107). The five 

RAE-1 proteins are also differentially expressed in different mouse strains. For instance, 

RAE-1 α, β and γ are expressed in BALB/C mice, whereas RAE-1δ and ε are expressed in 

C57BL/6 and B10D2 mice. The human counterparts of the mouse RAE-1 genes are the 

ULBP genes. A comparison of the ULBP and MIC proteins indicates that they share less 

than 20% homology with each other or with any of the mouse ligands (107). Thus, it is 

remarkable that all these proteins, with low homology, bind with relatively high affinity to 

NKG2D. Interestingly, structural analyses of NKG2D-ULBP3, NKG2D-MICA, and NKG2D-

RAE-1β complexes demonstrates that the receptor and ligand interfaces are similar, despite 

their use of totally different residues for binding (149-151). 

Figure 1.5. Mouse and human NKG2D ligands. H60a mouse ligands is exclusively expressed in BALB/C 

mice and not in C56BL/6 animals. Adapted from Ogasawara K. & Lanier L.L., J. Clin. Immunol. (2005) 

25:6, 534-540. 
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Taking all these findings together, it remains intriguing why there are so many human 

and mouse genes encoding ligands for a single invariant receptor such as NKG2D. One  

possibility is that the diverse expression patterns of different ligands might be specialized to 

respond to distinct indications of cellular distress (167). 

 

 

NKG2D related immune diseases 

   

The NKG2D receptor has been shown in both mice and humans to play a role in the 

recognition of viral infections, tumors, transplanted cells and organs, as well as in 

autoimmune disorders. 

In mice and humans, the role of NKG2D in immune responses against CMV is 

perhaps the best example known of the importance of this activating receptor in antiviral 

immunity. Notably, MCMV has evolved by devoting considerable resources to block the 

expression of NKG2D ligands on the cell surface of infected cells. Specifically, m152 inhibits 

expression of RAE-1 (168), m155 and m138 down-regulate H60 (169, 170), while MULT1 is 

targeted by m145 and m138 (170, 171). In MCMV-infected cells, genes that encode NKG2D 

ligands are transcribed, but viral proteins interact with and cause degradation of NKG2D 

ligand proteins, thus inhibiting detection by NKG2D, in this case on NK cells (111). Like 

MCMV, HCMV has developed strategies to evade NKG2D, by evolving unique genes that 

prevent expression of the human NKG2D ligands, such as MICA (172), MICB and ULBPs 

(173, 174). Notably, the importance of the NKG2D activating pathway is highlighted by the 

down-regulation of its ligands by diverse viruses, such as the HCMV (172, 175) and MCMV 

(170, 171, 176), zoonotic orthopoxviruses (177), HIV (178) and Kaposi’s sarcoma-

associated herpesvirus (KSHV) (179). On the other hand, MICB has been detected on 

human macrophages infected with influenza A or Sendai virus, by a mechanism which is 

partially dependent on virus-induced IFNα production (180). 

In mouse hepatitis virus (MHV) infection, Dandekar et al have shown evidence that 

the pathology of the central nervous system caused by MHV infection is partially due to a 

NKG2D-dependent mechanism mediated by γδ T cells (181). Moreover, Walsh et al recently 

suggested differential roles for NKG2D signaling in innate host defense against coronavirus-

induced neurological and liver disease. Specifically, they demonstrated that NKG2D 

neutralization in vivo increased viral titers, exclusively in the liver, suggesting a protective 

role for NKG2D signaling in this organ (182). 
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Recent studies on ectromelia virus, an Orthopoxvirus that causes mousepox and is 

the mouse equivalent of human smallpox, demonstrated that this virus leads to up-

regulation of RAE-1. Following this viral infection, NK cells proliferate and up-regulate 

NKG2D on their surface, contributing to the prevention of mousepox dissemination (183). 

Furthermore, blocking NKG2D function during infection leads to uncontrolled early virus 

dissemination and impaired cytotoxicity (183).  

Before we began our studies, very little was known about the role of NKG2D and its 

ligands during HBV infection. Carrington and colleagues (184) hypothesized that MICA 

heterogeneity would affect recovery from HBV infection since the human NKG2D ligand, 

MICA, is highly polymorphic and its various allotypes bind to NKG2D with different affinities 

(185). However, their data suggested that differential distribution of MICA does not 

significantly affect HBV infection outcome. 

 Tumors, in general, are poorly immunogenic since they develop from self-cells. 

However, NKG2D ligands are frequently expressed on a substantial number of human and 

mouse tumors. A role for NKG2D in surveillance against primary tumorigenesis was 

described when mice exposed to chemical carcinogens developed fibrosarcomas at a 

higher incidence post-treatment with an anti-NKG2D monoclonal antibody (186), and when 

RAE-1 was constitutively overexpressed as a transgene in the carcinogen-treated mice 

(134). A positive association has been demonstrated between human tumor immunotherapy 

and the development of antibodies targeting secreted MICA (187). 

 Despite its host protection against infectious diseases and tumors, NK cells can 

reject bone marrow grafts. Interestingly, it was shown that mouse NK cells are able to reject 

syngeneic C57BL/6 bone marrow cells when these otherwise normal bone marrow cells 

expressed sufficient amounts of a NKG2D ligand (188). Moreover, in humans, it has been 

recently suggested that antibodies generated against MICA have prognostic value in renal 

graft rejection (189). 

NKG2D-mediated responses are beneficial in the majority of immune responses 

against tumors and pathogens. However, there has been some evidence that this pathway 

can cause aberrant activation of the immune system leading to autoimmunity. In human 

patients with rheumatoid arthritis, MICA was detected on synoviocytes in joints 

accompanied by the presence of an unusual subset of CD4+ T cells that do not express 

CD28 but do express NKG2D on their surface (190). Although an abundance of soluble 

MICA is also found in these patients, they do not down-modulate NKG2D, probably due to 

the activity of the pro-inflammatory cytokines, TNFα and IL-15. The inflammation associated 
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with celiac disease (a gluten-induced intestinal inflammatory disorder) also results in 

elevated levels of the pro-inflammatory cytokine IL-15, which in turn induces NKG2D 

expression on intra-epithelial lymphocytes (IELs) (191). Moreover, MICA, constitutively 

expressed at low levels on epithelial cells, was also shown to be significantly increased in 

celiac patients. Several independent studies support that NKG2D/MICA interaction triggers 

activation and costimulation of IELs, leading to an innate-like cytotoxicity toward epithelial 

targets, which corresponds to one of the major complications of celiac disease (192-194). In 

mice, RAE-1 was detected on the surface of pancreatic islet cells in NOD mice, and 

treatment with a neutralizing, non-depleting anti-NKG2D mAb, seemed to prevent diabetes 

(195). 

 

 

Natural Killer T cells and hepatitis  

 

Although it was known for quite some time that NKT cells are enriched in the liver, 

their role in HBV infection has not been thoroughly addressed. Chisari and collaborators 

demonstrated that classical NKT cells, when activated by the injection of α-GalCer into 

HBV-transgenic mice contributed to inhibition of viral replication, through the production of 

IFNγ (196). The same group also showed that IL-18 produced by activated APCs rapidly, 

reversibly, and noncytopathically inhibited HBV replication (197). They further demonstrated 

that the antiviral effect of IL-18 was mediated by its ability to activate resident intra-hepatic 

NK and NKT cells to produce IFNγ and also by its ability to induce IFNα/β production in the 

liver (197). 

Baron et al were the first group to demonstrate in vivo that NKT cells are activated by 

a naturally occurring hepatotropic virus, namely HBV, and can play a role in liver injury 

mediated by such pathogen. Furthermore, this study narrowed the NKT cell population to a 

non-classical NKT cell subset, known as CD1d-restricted type II NKT cells. 

The liver injury seen in the autoimmune hepatitis model of concanavalin (ConA)-

induced hepatitis, extensively used by immunologists, has also been described to be NKT 

cell-mediated (198). Using this model, Swain and colleagues demonstrated that CCR5 

deficiency promotes development of acute fulminant liver failure in ConA-injected mice by 

preventing activated CD1d-restricted NKT cells (but not conventional T cells) from dying by 

activation-induced apoptosis (199). Further evidence supported that fulminant liver failure in 

CCR5-deficient mice was correlated with increased IL-4 production, but not IFNγ. Intra-
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hepatic CCR5-deficient NKT cells secreted significantly higher amounts of IL-4 as compared 

to wild-type NKT cells (199). 

In humans, where immunological studies are significantly more demanding and 

restricted, an intra-hepatic enrichment of classical NKT cells was found in biopsies from 

patients with chronic HBV and HCV hepatitis (200). These classical NKT cells exhibit a 

modification in their effector potential, consisting in the capacity to produce IL-4 and IL-13 in 

addition to IFNγ, which characterizes the cirrhotic state. Since these functional changes in 

classical NKT cells are present in both chronic HBV and HCV infections, it suggests that 

these cells respond to factors which are not viral specific but perhaps that are released 

during hepatocyte necrosis. In the same study, it was also demonstrated that CD1d is 

strongly expressed in cirrhotic liver, mainly by APCs infiltrating the liver parenchyma and on 

cells juxtaposed to hepatic stellate cells (200). 
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Objectives 

 

 
The work presented in this thesis is aimed at understanding the molecular and 

cellular mechanism(s) of early immune recognition of HBV-expressing hepatocytes in a 

mouse model of primary human HBV infection.  

 

 

The results of this dissertation are divided in two main parts. 

  

  

The first part, composed by chapters II and III, focuses on: 

  

I. the study of the molecular mechanism of non-classical NKT cell activation in this 

transgenic mouse model of primary hepatitis B virus infection after adoptive transfer 

of syngeneic naïve wild-type splenocytes. 

 

  

The second part, comprised by chapter IV, investigates: 

 

II. other intra-hepatic innate immune cells, in particular NK cells, that might be 

involved in HBV recognition, potentially generating signals that could contribute to 

the hepatic immunological environment in which immune responses are primed. 
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CHAPTER II 

 

Blockade of NKG2D on NKT cells prevents hepatitis and 

the acute immune response to hepatitis B virus 
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 Chapter II of this dissertation is based on material published in Proceedings of the 

National Academy of Sciences U.S.A. (2007), 104:46, 18187-18192, entitled “Blockade of 

NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B 

virus”. Kouetsu Ogasawara, Stephen Nishimura, Lewis L. Lanier and Jody L. Baron are the 

co-authors of this work, listed in the same order as appears in the published paper. 
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INTRODUCTION 

 

 The transgenic mouse model of primary human HBV infection developed by our 

laboratory (described in chapter I) allows uniquely the study of innate and adaptive immune 

responses to HBV. It was previously demonstrated that the acute liver injury observed in 

these mice is mediated by non-classical type II NKT cells, which do not recognize the 

classic NKT cell ligand, α-GalCer–CD1d and do not express the canonical TCR Vα14 (71). 

However, activation of these cells in this model is dependent on the expression of CD1d and 

HBV (71). 

Innate immune effector cells mediate the acute hepatitis in our model, although the 

mechanism of activation of these cells in response to the presence of HBV in the liver is not 

known.  Our previous data suggested that the presence of HBV leads to alterations in the 

class I-like molecule CD1d, and subsequently to the activation of non-classical NKT cells 

and hepatitis (71). NKT and NK cells share many of the same activating and inhibitory 

receptors. One such receptor is NKG2D, a type II transmembrane-anchored glycoprotein, 

which has been shown to be an activating or co-stimulatory receptor expressed on the 

surface of all NK cells, activated CD8+ T lymphocytes, and most γ/δ T cells, both in mice and 

humans (136, 138, 201). Although NKG2D is known to also be expressed on the surface of 

NKT cells (167, 202), a role for NKG2D in NKT cell activation has not yet been 

demonstrated. NKG2D binds to a family of ligands with structural homology to MHC class I 

molecules. In mice, NKG2D ligands include the RAE-1 family of proteins (RAE-1α, β, γ, δ, ε), 

H60, and MULT1 (154, 155, 157). 

In this study, we addressed the question of whether NKG2D and its ligands play a 

role in the non-classical NKT cell-mediated immune response to HBV and the subsequent 

acute hepatitis that ensues. Our results demonstrate that NKG2D is modulated on NK and 

NKT cells at the time of acute hepatitis; and the presence of HBV in the livers of our 

transgenic mice can lead to an increase in RAE-1 surface expression on hepatocytes. 

Furthermore, blockade of an NKG2D–ligand interaction completely prevents the HBV-

specific and CD1d-dependent, non-classical NKT cell-mediated acute hepatitis and liver 

injury.
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RESULTS  
 

NKG2D expression is modulated on intra-hepatic immune cells from HBV-Env+Rag-1-/- 

mice with acute hepatitis 
Our previous studies have demonstrated that activation of non-classical NKT cells is 

necessary for the acute hepatitis to develop and that NK cells or conventional T cells alone 

cannot initiate the acute hepatitis (71). NK1.1+ cells from the livers of HBV-Env+ Rag-1-/- and 

Rag-1-/- mice before adoptive transfer of syngeneic naïve splenocytes expressed equivalent 

amounts of NKG2D on their surface (Fig. 2.1A).  However, when we analyzed the 

expression of NKG2D on liver lymphoid cells during the acute immune response and 

hepatitis seen in the livers of HBV-expressing mice with reconstituted immunity (Fig. 2.1B), 

we found that NK1.1+ cells from HBV-Env+ Rag-1-/- mice (which include both resident and 

donor NK cells and donor NKT cells) expressed higher levels of NKG2D than the same 

population eluted from Rag-1-/- mice that also had reconstituted immunity (Fig. 2.1C).  

We next analyzed the surface expression of NKG2D on the NKT and NK populations 

in the liver at the peak of acute hepatitis.  We found that NK cells eluted from the livers of 

HBV-Env+ Rag-1-/- mice with acute hepatitis expressed high levels of NKG2D (Fig. 2.1D), 

but the majority of activated NKT cells expressed very low levels of NKG2D on their cell 

surface (Fig. 2.1D).  Because the majority of NKT cells in the spleen (the cells adoptively 

transferred) and liver of wild-type mice expressed high levels of NKG2D  (Fig. 2.1E), this 

result suggests that NKT cells eluted from the livers of the HBV-Env+ Rag-1-/- mice have 

down-regulated the surface expression of NKG2D. This is consistent with the fact that 

NKG2D is known to be internalized after interaction with its ligands (71, 107, 133). Taken 

together, these results suggest that NKG2D expression is up-regulated on the NK cells, and 

down-regulated on the NKT cells, during acute hepatitis. 
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Figure 2.1. Modulation of the NKG2D receptor during acute hepatitis. NKG2D expression on the surface of 

NK1.1+ cells (forward light scatter (FSC) x side light scatter (SSC) lymphocyte gate plus NK1.1 gate) from HBV-

Env+ Rag-1-/- (——) and Rag-1-/- (-----) before (panel A) and 3 days after (panel C) adoptive transfer of 1x108 

splenocytes. Tinted histograms depict staining using an isotype-matched control rat IgG1.  Hepatic necrosis in 

these animals was assessed by the measurement of ALT in the sera of RAG-/- () or HBV-Env+ Rag-1-/- mice (). 

ALT values are shown as mean ± SEM (panel B). Surface expression of NKG2D on intra-hepatic NKT (——) and 

NK cells (-----) from HBV-Env+ Rag-1-/- mice 3 days after adoptive transfer (panel D). The left dot plot depicts the 

isotype-matched control Ig staining of TCR on NKT cells. Surface expression of NKG2D on NKT cells (——) and 

NK cells (-----) from the spleen and liver of wild-type mice (panel E). The percentages (64% and 57%) refer to 

NKG2D+ NKT cells in the spleen and liver, respectively. The tinted histograms depict staining using an isotype-

matched control rat IgG1 both on NK and NKT cells. All experiments were repeated at least three times, and 

representative data are shown. 
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Constitutive surface expression of RAE-1 on hepatocytes is elevated specifically on 

HBV-Env+ hepatocytes 

In light of these data, we examined the expression of NKG2D ligands on wild-type 

non-transgenic hepatocytes and on HBV-Env+ hepatocytes.  In the genetic background of 

the HBV-transgenic mice (B10.D2 and C57BL/6), the NKG2D ligands expressed are RAE-

1δ, RAE-1ε, and MULT1 (107). Although RAE-1 is not expressed in most tissues isolated 

from healthy, adult mice, RAE-1 is transcribed preferentially in the liver of healthy, adult 

mice (http://source.stanford.edu/cgi-bin/source/sourceSearch). We examined the expression 

of these NKG2D ligand proteins on primary hepatocytes and intra-hepatic immune cells of 

HBV-Env+ Rag-1-/- and wild-type non-transgenic Rag-1-/- mice before adoptive transfer. We 

found constitutive low-level surface expression of RAE-1 on hepatocytes from Rag-1-/- mice, 

which was increased specifically on the surface of HBV-Env+ hepatocytes (Fig. 2.2A). This 

constitutive expression of RAE-1 on hepatocytes, and increased expression in the HBV-

Env+ transgenic mice, was also found in wild-type mice that were not crossed to Rag-1-/- 

mice (data not shown).  We did not find expression of RAE-1 on splenocytes or on intra-

hepatic immune cells from HBV-Env+ Rag-1-/- mice, Rag-1-/- mice, or wild-type mice (Fig. 

2.2B, and data not shown). The constitutive surface expression of RAE-1 on hepatocytes is 

an interesting finding since the expression of RAE-1 family members is strictly regulated in 

normal cells, and little expression is found on healthy adult tissue (107). Increased RAE-1 

expression on hepatocytes from HBV-Env+ Rag-1-/- mice demonstrates that RAE-1 can be 

modulated on hepatocytes in a HBV-specific manner. We did not detect MULT1 expression, 

or a change in either MHC class I or CD1d expression, on primary hepatocytes derived from 

either HBV-Env+ Rag-1-/- or Rag-1-/- mice (Fig. 2.2C) or on intra-hepatic immune cells (data 

not shown).   

Constitutive expression of RAE-1 on primary hepatocytes from RAG-/- mice was 

confirmed by quantitative PCR of reverse transcribed RAE-1 mRNA normalized to the 

expression of Hprt transcripts (Fig. 2.2B). Increased RAE-1 expression on hepatocytes from 

HBV-Env+ Rag-1-/- mice, as compared to Rag-1-/- mice, was also confirmed by quantitative 

RT-PCR.  There was an almost 7-fold increase in RAE-1 mRNA from HBV-Env+ Rag-1-/- 

hepatocytes, as compared to Rag-1-/- hepatocytes (Fig. 2.2B).  
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Blocking of an NKG2D-ligand interaction in vivo prevents the acute immune response 

to human hepatitis B virus  

In view of the fact that NKG2D and one of its ligands are modulated during the acute 

immune response to HBV, we studied the effects of blocking this interaction on the onset of 

the acute hepatitis by using an anti-mouse NKG2D monoclonal antibody (CX5), which 

efficiently blocks the binding of NKG2D to its ligands and does not deplete NKG2D-bearing 

cells in vivo (195). HBV-Env+ Rag-1-/- recipient mice were treated with 200 µg of anti-NKG2D 

mAb (CX5) or control rat IgG the day before and 4 days after adoptive transfer of syngeneic 

Figure 2.2. Constitutive surface expression of the NKG2D ligand RAE-1 on hepatocytes is up-

regulated specifically on HBV-Env-expressing hepatocytes, before adoptive transfer of syngeneic 
naïve splenocytes. Surface expression of RAE-1 (panel A), MULT1, CD1d, and H-2Kd (panel C) on 

hepatocytes from HBV-Env+ Rag-1-/- (——) and Rag-1-/- mice (-----). Tinted histograms depict staining using 

the appropriate isotype-matched control Ig. (B) RAE-1 mRNA expression in hepatocytes from HBV-Env+ 

Rag-1-/- () and Rag-1-/- () mice and from intra-hepatic (IH) immune cells and splenocytes from Rag-1-/-mice 

(�) in comparison with HPRT expression. All data are representative of at least three independent 

experiments. 
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naive splenocytes. Blocking the NKG2D receptor completely prevented acute liver injury in 

all HBV-Env+ Rag-1-/- mice, whereas the control antibody had no effect as all mice showed 

signs of massive acute hepatitis, as revealed by the elevated serum ALT values at days 3 

and 4 after adoptive transfer (Fig. 2.3A). Histological analyses of liver sections also showed 

that mice treated with control IgG developed a severe hepatitis, pathologically characterized 

by parenchymal inflammation, hepatocellular damage, and portal inflammation and necrotic 

hepatocytes at day 4 after adoptive transfer (Fig. 2.3B). These histological abnormalities 

were absent at the same time point in all of the mice treated with anti-NKG2D mAb (Fig. 

2.3B).  These results demonstrate a fundamental role played by NKG2D in the acute 

immune response to HBV-expressing hepatocytes, and the consequent development of 

hepatitis and hepatic necrosis. 
HBV-Env+ Rag-1-/- mice have an HBV-dependent increase in the frequency of IFN-γ 

and IL-4-producing cells in their livers 3 days after adoptive transfer (71).  Because NKT 

cells mediate this cytokine burst detected at the time of acute hepatitis, we investigated the 

cytokine profile of lymphoid cells in anti-NKG2D or control IgG-treated HBV-Env+ Rag-1-/- 

mice. We quantified the number of IFN-γ and IL-4-producing intra-hepatic immune cells by 

Elispot at day 3 and 4 after adoptive transfer of syngeneic wild-type splenocytes. Three days 

after the adoptive transfer, the number of IFN-γ and IL-4-producing cells increased by 8- and 

7-fold, respectively, in mice that received control IgG (and developed hepatitis) as compared 

to NKG2D-blocked mice (Fig. 2.3C). A similar difference was observed on day 4 after 

adoptive transfer.  These data demonstrate that blocking of NKG2D also severely impaired 

the production of cytokines by intra-hepatic immune cells in mice expressing HBV antigens.  

Flow cytometric analysis of the intra-hepatic immune cells derived from the anti-NKG2D or 

control IgG-treated HBV-Env+ Rag-1-/- mice revealed that the absolute number of NK cells 

eluted from both groups of mice was similar, whereas the absolute number of NKT cells was 

reduced by 2- and 3-fold in mice that received the anti-NKG2D treatment and did not 

develop hepatitis (Table 2.1). This specific reduction in the number of NKT cells, but not NK 

cells, in the livers of the anti-NKG2D treated mice suggests that the antibody is specifically 

affecting the NKT cells. 
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NKG2D receptor expression on NKT cells is required for efficient disease induction 

 

 

 

 

 

Figure 2.3. Blocking NKG2D in vivo prevents the liver injury caused by the acute immune response 

to hepatitis B virus (HBV). (A) Serum ALT levels of HBV-Env+ Rag-1-/- mice treated with anti-NKG2D 

mAb () or rat IgG (). The ALT values as mean ± SEM are shown. Student’s t test analyses: *p<0.02 

**p<0.01. Hematoxylin and eosin stained section (20x) of portal triads (panel B, upper pictures) and hepatic 

lobular parenchyma (panel B, bottom pictures) from HBV-Env+ Rag-1-/- mice treated with anti-NKG2D mAb 

(left pictures) or rat IgG (right pictures), 4 days after the adoptive transfer of 1x108 splenocytes. Arrows 

point to necrotic hepatocytes and asterisks indicate inflammatory infiltrate. Elispot analyses of IFN-g and 

IL4-producing intra-hepatic immune cells (panel C) from HBV-Env+ Rag-1-/- mice treated with control rat 

IgG () or anti-NKG2D mAb () at days 3 and 4 after adoptive transfer. Representative data are shown as 

mean ± SD. Student’s t test analyses: *p<0.005 **p<0.02. All data are representative of at least three 

independent experiments. 
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Experiment #1 

 

Experimental 

group a) 

Total # cells % IH NK 

cells 

Total # IH 

NK cells 

% IH NKT 

cells 

Total # IH 

NKT cells 

 

RatIgG 

 

 

3.35x106 

 

17.5 

 

5.87x105 

 

9.17 

 

3.07x105 

 

 

Anti-NKG2D 

 

 

2.03x106 

 

28.7 

 

5.83x105 

 

5.42 

 

1.1x105 

 

Experiment #2 

 

 

RatIgG 

 

 

11.25x106 

 

27.0 

 

3x106 

 

9.33 

 

1.05x106 

 

Anti-NKG2D 

 

 

13x106 

 

31.15 

 

4.05x106 

 

5.22 

 

6.78x105 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1. Effects of blocking of NKG2D on the number of intra-hepatic immune cells during acute 
hepatitis.  

a) Representative data of two independent experiments are shown.  The total number of intra-hepatic (IH) 

immune cells corresponds to a pool of 3 livers in experiment #1 and of 4 livers in experiment #2. 

Note: The total number of cells eluted from the livers of an HBV-Env+ Rag-1-/- 3 days after adoptive transfer is 

variable. However, in both experiments the total number of IH NK cells is consistently similar between both 

experimental groups whereas the total number of IH NKT cells is consistently reduced by 2 to 3 fold in the mice 

that received the anti-NKG2D mAb treatment. 
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NKG2D is expressed on approximately 60% of NKT cells in the spleen (Fig. 2.1E).  

To determine whether donor NKT cells expressing NKG2D are responsible for the induction 

of acute hepatitis after transfer into HBV-Env+ Rag-1-/- mice, splenocytes from wild-type mice 

were depleted of NKG2D+ lymphocytes by flow cytometric cell sorting. NKG2D-depleted 

splenocytes were adoptively transferred into HBV-Env+ Rag-1-/- recipients. In this way, the 

transferred donor NKT cells would not express surface NKG2D, but resident NK cells in the 

recipient mice would still express NKG2D. HBV-Env+ Rag-1-/- mice received NKG2D-

depleted splenocytes or appropriate controls for the total number of splenocytes, or total 

number of NK and NKT cells transferred. The HBV-Env+ Rag-1-/- recipient mice received one 

of three different populations of donor splenocytes:  50 million NKG2D-depleted splenocytes 

(which included 1.25 x 105 NKG2D- NKT cells, and no NK cells); 50 million unsorted 

splenocytes (which included 2.5 x 105 unsorted NKT cells and 1.25 x 106 NK cells); or 33 

million NK cell-depleted splenocytes (which included 1.25 x 105 unsorted NKT cells, and no 

NK cells).  In this latter group, the NK cells were depleted from the donor mice by injection of 

anti-asialoGM1 antisera, which is known to deplete NK cells, but not NKT cells (203). 

Depletion of NKG2D+ NKT cells, but not depletion of NKG2D-bearing NK cells, from 

donor splenocytes significantly diminished the acute liver injury and cytokine burst seen in 

the HBV-Env+ Rag-1-/- mice as compared to either control group (Fig. 2.4A and B). Thus, 

NKG2D receptor expression on NKT cells and not on NK cells is required for efficient 

disease induction. The finding that depletion of NKG2D-bearing cells did not completely 

eliminate all disease in all recipient mice could be accounted for the limitations of cell 

sorting, and expression of NKG2D on initially NKG2D– NKT cells after adoptive transfer 

(data not shown).   

To control for the possibility that NKG2D expression on other cells types, e.g. CD8+T 

cells, CD4+ T cells or γδ T cells, contribute to the induction of hepatitis, we selectively 

depleted only NKG2D+ NKT cells from donor splenocytes, and transferred these sorted cells 

(which included all other cell types potentially expressing NKG2D) into HBV-Env+ Rag-1-/- 

mice.  As a control, unsorted splenocytes stained with the antibodies used for NKG2D NKT 

cells depletion were also transferred into HBV-Env+ Rag-1-/- mice.  Depletion of NKG2D+ 

NKT cells from donor splenocytes completely prevented induction of acute hepatitis in the 

HBV-Env+ Rag-1-/- mice (Fig. 2.5). By contrast, mice receiving an equivalent number of the 

stained, but unsorted splenocytes developed hepatitis (Fig. 2.5). 
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Figure 2.4. NKG2D+ NKT cells are required for efficient disease induction and cytokine 

production during the acute immune response to HBV. (A) Hepatic injury as assessed by the 

measurement of ALT in the sera of HBV-Env+ Rag-1-/- mice at day 4 after adoptive transfer of 50x106 

NKG2D-depleted splenocytes (which included 1.25x105 NKG2D- NKT cells, and no NK cells) () was 

compared with hepatic injury in HBV-Env+ Rag-1-/- mice that received the same total number of 

unsorted wild-type splenocytes (50x106, which included 2.5x105 unsorted NKT cells, and 1.25x106 NK) 

()  (Mann-Whitney test analyses: p<0.02); or that received the same total number of unsorted NKT 

cells and NK cells (33x106, which included 2.5x105 unsorted NKT cells, and no NK cells) (). (Mann-

Whitney test analyses: p<0.03). The NKG2D-depleted splenocytes were isolated by staining 

splenocytes with anti-NKG2D mAb and purifying by flow cytometry the NKG2D-negative fraction 

(purity >98%). The NK cell-depleted splenocytes were prepared by injecting donor mice with anti-

asialo GM1 antisera two day before cell harvest, a procedure that depleted NK cells, but not NKT 

cells.   (B) Elispot analyses of IFN-γ producing intra-hepatic immune cells from HBV-Env+ Rag-1-/- mice 

depicted in panel A. 50x106 NKG2D-depleted splenocytes (), 50x106 unsorted wild-type splenocytes 

(), or 33x106 NK cell-depleted splenocytes (�). Representative data are shown as mean ± SD. 

Student’s t test analyses: *p<0.001.  
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NKG2D blockade prevents acute hepatitis and the cytokine burst seen in HBV-

Replication+ Rag-1-/- transgenic mice 

 In order to assess the relevance of our observations to responses to authentic human 

HBV infection, we characterized the role of NKG2D in the acute immune response 

developed in HBV-Replication+ Rag-1-/- mice, which display intra-hepatic HBV replication 

and produce infectious virions (64). Reminiscent of the usual initial presentation of human 

HBV infection, these mice develop a mild, sub-clinical hepatitis after adoptive transfer of 

naïve splenocytes. Analogous to our observations in the HBV-Env+ Rag-1-/- mice, this 

hepatitis is mediated by non-classical NKT cells in an HBV-specific and CD1d-dependent 

manner, leading to cytokine production (71) (and Baron lab, unpublished data). Although the 

severity of hepatitis seen in the two lines of HBV-transgenic mice is different, owing to an 

increase in hepatocyte sensitivity to cytotoxic effects of IFN-γ in the HBV-Env+ mice (204), a 

similar disease pattern is seen in both lines of HBV-transgenic mice.  Specifically, a biphasic 

ALT rise that is seen in the HBV-Env+ Rag-1-/- mice is also observed in the HBV-Replication+ 

Rag-1-/- mice, but as expected, the ALT rise is much more modest than that seen in the 

Figure 2.5. Depletion of NKG2D+ NKT cells from donor splenocytes prevents the acute immune 

response to HBV. Hepatic injury as assessed by the measurement of ALT in the sera of HBV-Env+ Rag-1-/- 

mice at day 4 after adoptive transfer of 50 x 106 NKG2D+ NKT cell-depleted splenocytes () was compared 

with hepatic injury in HBV-Env+ Rag-1-/- mice that received the same total number of unsorted, stained, wild-

type splenocytes ()(Mann-Whitney test analyses: p<0.0102). 
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HBV-Env+ mice — typically, serum transaminases were elevated no more than 2-fold above 

background, which is a clinically significant finding in human HBV disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Blocking an NKG2D-ligand interaction in HBV-Replication+ Rag-1-/- mice prevents liver 

injury and cytokine production mediated by the acute immune response to HBV. (A) Serum ALT levels 

of HBV-Replication+ Rag-1-/- mice treated with anti-NKG2D mAb () or rat IgG () at 2, 3, and 4 days after 

adoptive transfer of 1x108syngeneic splenocytes are shown as mean ± SEM. (B) NKG2D surface expression 

on intra-hepatic NK1.1+ cells from HBV-Replication+ Rag-1-/- mice (——) as compared to Rag-1-/- mice (-----) 

at day 3 after the adoptive transfer of syngeneic naïve splenocytes. Tinted histogram depicts staining using 

the appropriate isotype-matched control Ig (rat IgG1).(C) Surface expression of NKG2D on intra-hepatic NKT 

(——) and NK cells (-----) from HBV-Replication+ Rag-1-/- mice 3 days after adoptive transfer. The left dot plot 

depicts the isotype-matched control Ig staining of TCR on NKT cells. Elispot analyses of IFNγ (D) and IL-4-

producing (E) intra-hepatic immune cells from HBV-Replication+ Rag-1-/- mice treated with rat IgG () or anti-

NKG2D mAb (�) at day 3 after adoptive transfer. Representative data are shown as mean ± SD. Student’s t 

test analyses: *p<0.001. All data are representative of at least two independent experiments. 
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HBV-Replication+ Rag-1-/- mice were treated the day before the adoptive transfer of 

syngeneic naïve splenocytes with 200 µg of anti-NKG2D or control IgG and the serum ALT 

levels were monitored. We found that the modest rise in the serum ALT in the HBV-

Replication+ Rag-1-/- mice treated with control IgG was not evident in mice treated with anti-

NKG2D (Fig. 2.6A). Together with this modest rise of ALTs, we observed that 3 days after 

the adoptive transfer, the number of IFNγ and IL-4-producing cells increased by 3- and 6-

fold, respectively, in mice that received control IgG as compared to NKG2D-blocked mice 

(Fig. 2.6D and E). In order to evaluate the role of NKG2D in acute hepatitis developed in 

HBV-Replication+ mice, we examined the expression of NKG2D on NK1.1+ cells from HBV-

Replication+ Rag-1-/- mice 3 days after adoptive transfer. Just as we observed in the HBV-

Env+ Rag-1-/- mice, NK cells from the livers of HBV-Replication+ Rag-1-/- mice had increased 

expression of NKG2D during acute hepatitis, as compared to Rag-1-/- mice; and the NKT 

cells had down-regulated NKG2D (Fig. 2.6B and C). 

 

 
 

 

 

 

 

 
 
 

Figure 2.7. Taqman analyses of liver biopsies from HBV-Replication+ and HBV-Env+ Rag-1-/- mice 

during acute hepatitis. IL-4 () ,IFN-γ (�), and TCR ()  mRNA expression in liver biopsies of HBV-

Replication+ and HBV-Env+ Rag-1-/- mice 3 days after adoptive transfer of syngeneic naïve splenocytes 

in comparison to Hprt expression. Positive controls were intra-hepatic immune cells eluted from wild-type 

mice 12 h after i.v. injection of 10 mg/Kg of ConA. All data are representative of at least two independent 

experiments.  
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DISCUSSION 

 

Collectively, our findings clearly establish a role for NKG2D in the HBV-specific, 

CD1d-restricted non-classical NKT cell-mediated acute hepatitis and cytokine production 

seen in both the HBV-Env+ Rag-1-/- and HBV-Replication+ Rag-1-/- mice. These results 

demonstrate, for the first time, a role for a NKG2D-ligand interaction in NKT cell activation.  

NKG2D is expressed on several cell types in the liver. However, NKG2D-bearing NK cells 

alone, or splenocytes depleted only of NKG2D+ NKT cells do not induce acute hepatitis in 

the HBV-Env+ Rag-1-/- and HBV-Replication+ Rag-1-/- mice (71).  

A direct effect of NKG2D blockade on NKT cell activation in our studies is suggested 

by several lines of evidence. First, anti-NKG2D mAb treatment efficiently prevented 

production of IL-4, which is expressed by the HBV-activated NKT cells but not NK cells.  

Second, anti-NKG2D mAb treatment decreased the number of NKT cells, but not the 

number of NK cells, in the livers of mice with hepatitis. Finally, NKG2D receptor expression 

on NKT cells, and not on other cells types, is required for efficient disease induction in our 

transgenic mouse model of primary HBV infection. 

For these reasons, we propose a model in which non-classical NKT cells are first 

activated in a HBV-specific, CD1d-restricted and NKG2D-dependent manner, leading to the 

production of cytokines, which in turn activate other intra-hepatic immune cells. NKG2D 

ligand interaction can function to directly activate cells or function as a co-stimulatory 

molecule (136, 138, 201). That the activation of non-classical NKT cells in our mouse model 

of HBV infection requires expression of HBV and CD1d, in addition to an NKG2D-ligand 

interaction, suggests that non-classical NKT cell activation requires a CD1d-dependent 

signal through its T cell receptor, and that NKG2D may function as a co-stimulatory 

molecule. Further studies will be required to address whether NKG2D is also important in 

the subsequent NK cell activation. While our studies were under review, Chen et al also 

reported the ability of NKG2D blockade to prevent hepatitis in HBV-transgenic mice; 

however, in these experiments induction of the disease required the injection of the mitogen 

Con A, which polyclonally activates all T cells and possibly other cell types such as NK cells 

in the host (205). 

We detected the NKG2D ligand, RAE-1, on the surface of all hepatocytes in normal, 

wild-type as well as HBV transgenic mice.  This constitutive expression of RAE-1 was 

increased on hepatocytes from the HBV-Env+ Rag-1-/- mice.  Unlike the HBV-Env+ Rag-1-/- 
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mice, we could not detect an increase in the amount of RAE-1 on hepatocytes from the 

HBV-Replication+ Rag-1-/- mice when compared with non-transgenic hepatocytes (data not 

shown). NKG2D is nonetheless necessary for the non-classical NKT cell activation and 

onset of hepatitis in both the HBV-Env+ Rag-1-/- mice and HBV-Replication+ Rag-1-/- mice 

because disease was completely prevented and cytokine production was greatly diminished 

by anti-NKG2D blockade. Therefore, we hypothesize that the constitutive, basal levels of 

RAE-1 on the hepatocytes are sufficient to trigger the HBV-specific, CD1d-restricted, 

NKG2D-dependent, non-classical NKT cell-mediated hepatitis. This constitutive surface 

expression of RAE-1 on hepatocytes is also an interesting finding, since the expression of 

RAE-1 family members is strictly regulated in normal cells, and little expression is found on 

healthy adult tissue.  

Because the HBV-Env+ Rag-1-/- mice have increased expression of one of the three 

isoforms of HBV envelope protein (large or L protein) that is retained in the endoplasmic 

reticulum, these mice display increased sensitivity to the cytotoxic effects of IFN-γ 

(204).  The up-regulation of RAE-1 in the liver of these mice may be a direct or indirect 

consequence of increased large envelope expression. Increased expression and 

accumulation of envelope proteins is also one of the pathophysiologic consequences of 

HBV infection in humans (206). 

Our present findings reveal a mechanism by which human HBV activates the innate 

immune system, and sets up the cytokine milieu in which the subsequent adaptive immune 

response develops. The question of whether HBV alerts the innate immune system, and 

what role the innate immune system plays in HBV pathogenesis is controversial.  Studies of 

acute HBV infection in primates and humans reveal an initial quiescent phase of about 4-7 

weeks before HBV starts to replicate vigorously, reaching levels of 109 to 1010 copies/mL 

(31, 207, 208). Activation of components of the innate immune system are likely to play a 

central role in control of this initial HBV burst because HBV-DNA quantity decreases by 

almost 90% well in advance of the appearance of an antigen-specific CD8+ T cell response 

and hepatopathology (36, 207-210). However, identification of the individual components of 

the innate immune system responsible for this rapid down-regulation of viral replication, and 

the mechanism of activation, has been elusive. NK cells have been implicated in this 

process, since there is an increase in the number of peripheral NK cells before the peak of 

viral replication (210).  However, Northern blot and gene expression analysis of total liver 

RNA derived from core liver biopsies during this period have failed to reveal evidence of 
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activation of innate immune effector pathways, leading to the hypothesis that HBV does not 

alert the innate immune system (120, 211). 

Our current data demonstrating that non-classical NKT cells are activated to produce 

cytokines in an HBV-specific, CD1d-restricted, and NKG2D-dependent manner is consistent 

with a role for these cells in the initial response to HBV.  The finding that activation of these 

non-classical NKT cells leads to a cytokine burst in the absence of overt hepatocellular 

injury in the HBV-Replication+ mice is consistent with the usual initial sub-clinical 

presentation of HBV infection. Using real-time PCR analysis on whole liver biopsies, we, like 

others, cannot detect an innate immune response (the presence of TCR, IL-4, or IFN-γ 

transcripts) in the HBV-transgenic Rag-1-/- mice three days after adoptive transfer of 

syngeneic splenocytes (Fig. 2.7). In contrast, we clearly demonstrate the presence of NKT 

cells (using flow cytometry) and the production of IL-4 and IFN-γ (using ELispot assays) in 

the eluted lymphocytes from the same livers used in the real-time PCR experiments, as 

depicted in Fig. 2.1, 2.3, and 2.5 (data not shown). Thus, our data suggests that innate 

immune responses to HBV infection exist, and likely have been previously unappreciated 

because NKT cells only represent a small fraction of the total cell mass of the liver, thus any 

NKT cell transcripts are diluted by the overwhelming abundance of hepatocyte RNA.     

These mouse models of HBV infection lay the foundation for directed studies 

analyzing the role of NKT cells, NK cells, NKG2D, and its ligands in human HBV infection.  

In addition, since the activation of innate effector cells has also been implicated in hepatic 

flares in chronic HBV infection (120), our models offer the opportunity to examine the role of 

NKG2D and its ligands in chronic HBV infection, and suggest possible new strategies for 

therapeutic intervention in this disease. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

CHAPTER III 

 

The role of DAP10 and DAP12 in NKG2D-mediated NKT  

cell activation 
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INTRODUCTION 

 

Mice express two different isoforms for NKG2D generated by alternative splicing. A 

long form (NKG2D-L), which associates only with DAP10; and a short form (NKG2D-S) that 

pairs with both DAP10 and DAP12 (136). The pairing of NKG2D with either DAP10 and 

DAP12 adapter proteins is an unique feature for mouse NKG2D, as there is no evidence for 

the short form of human NKG2D. NKG2D-S expression is very low on resting mouse NK 

cells but it is increased upon activation both in vivo and in vitro. In mice, NKG2D surface 

expression on resting NK cells and activated CD8+ T cells (through TCR stimulation) only 

requires association with DAP10, whereas NKG2D expression on activated mouse NK cells 

requires both adapters, DAP10 and DAP12 (136). Although a great deal is known about 

DAP10 and DAP12 function in NKG2D signaling both on NK and CD8+ T cells (107, 167), 

the role of these adapters in NKG2D signal transduction in NKT cells still remains to be 

determined.  

In chapter II, we showed that the acute immune response observed in our mouse 

model of primary HBV infection is NKG2D+ non-classical NKT cell-mediated. This finding 

raises an interesting experimental opportunity to dissect the contribution of both DAP10 

and/or DAP12 adapters in NKT cell activation via NKG2D. 

In this study we demonstrated, for the first time, that NKG2D+ NKT cells express 

higher levels of DAP12 mRNA and similar amounts of DAP10 mRNA as compared to 

NKG2D- NKT cells. Furthermore, adoptive transfer of Dap12-/- splenocytes into HBV-

Replication+ Rag-1-/- recipient mice resulted in impaired acute hepatitis when compared to 

HBV-Replication+ Rag-1-/- animals that received wild type splenocytes. However, adoptive 

transfer of Dap10-/- splenocytes into HBV-Replication+ Rag-1-/- recipient mice led to a more 

severe acute hepatitis as measured by intra-hepatic IFNγ and IL-4 production three days 

post-transfer. These opposite outcomes led us to hypothesize that perhaps a balance 

between the signal transduction mediated by DAP10 and DAP12 determines the severity of 

the inflammatory response. 
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RESULTS  

 

NKG2D+ NKT cells express higher levels of DAP12 mRNA than NKG2D- NKT cells  

The role of DAP10 and DAP12 adapter molecules in NKG2D signal transduction has 

been well studied in mouse NK cells (136). Here, we sought to determine the role of these 

two adapters in NKG2D signaling in mouse NKT cells. NKG2D is expressed on 

approximately 60% of all NKT cells (Fig. 2.1E). First, we analyzed the gene expression of 

Dap10, Dap12, NKG2D-S and NKG2D-L in sorted NKG2D+ and NKG2D- NKT cell subsets 

and in NK cells by RT-PCR. We found that NKG2D+ and NKG2D- NKT cell populations 

express similar amounts of Dap10 mRNA and about 2-fold less than NK cells (Fig.3.1A). 

Dap12 mRNA expression in NKG2D+ NKT cells was approximately 3-fold more than in 

NKG2D- NKT cells, but 50-fold less than in NK cells (Fig.3.1B). Nevertheless, the amount of 

Dap12 mRNA on NKG2D+ NKT cells (1.13 R.U.) is abundant and thus highly significant 

(Fig.3.1B).  

 

 

 
 

 

 

 

Figure 3.1. Expression analysis of NKG2D isoforms, DAP10 and DAP12 in mouse NK and NKT cells. 

DAP10 (A), DAP12 (B), NKG2D-L (C), NKG2D-S (D) mRNA expression in FACS sorted intra-hepatic 

NKG2D+ NKT cells (), NKG2D- NKT cells (�) and NK cells () isolated from wild type C57/BL6 mice. Data 

are representative of two independent experiments. 
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As expected, the long isoform of NKG2D is abundantly expressed in resting NKG2D+ 

NKT cells and NK cells, whereas the short isoform is expressed at a much lower magnitude 

(Fig.3.1C and D). 

 

Surface NKG2D expression on Dap10-/- and Dap12-/- NKT cells 

We further analyzed the NKG2D surface expression on NKT cells isolated from livers 

of Dap10-/- and Dap12-/- mice. As described in the literature (137), we found that resting 

Dap10-/- NKT cells barely express NKG2D on their surface (Fig.3.2A), whereas resting 

Dap12-/- NKT cells show the same bimodal pattern of NKG2D expression as wild type NKT 

cells (Fig.3.2B and 2.1E). However, DAP10 deficiency did not influence the basal 

expression of NKG2D genes at the mRNA level, as assessed by Taqman analysis of 

lymphoid tissues isolated from naïve mice (212). 

 

 

 

 

 

 

 

 

NKG2D expression is increased on wild type NKT cells 20 hours after ConA 

stimulation in vivo, and Dap10-/- NKT cells show NKG2D surface expression (Ogasawara K 

& Lanier LL, unpublished data) under the same stimuli. In contrast, NKG2D surface 

expression on Dap12-/- NKT cells seems unaffected 20 hours after ConA injection in vivo 

(Ogasawara K & Lanier LL, unpublished data), suggesting that DAP12 is important for 

NKG2D induction in NKT cells in ConA-hepatitis. 

Figure 3.2. NKG2D surface expression on Dap10-/- and Dap12-/- NKT cells. Surface expression of 

NKG2D on Dap10-/- NKT cells (A) and Dap12-/- NKT cells (B). The tinted histograms depict staining 

using an isotype-matched control rat IgG1. Data are representative of at least three independent 

experiments. 
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Adoptive transfer of Dap10-/- or Dap12-/- splenocytes into HBV-Replication+ Rag-1-/-

recipient mice results in opposite disease outcome 

Blocking NKG2D receptor function completely prevented acute liver injury in all HBV-

Replication+ Rag-1-/- mice, whereas the control antibody had no effect on disease 

prevention. Thus, we examined the disease outcome in HBV-Replication+ Rag-1-/- recipient 

mice three days after the adoptive transfer of either Dap10-/- or Dap12-/- splenocytes. 

Interestingly, our results showed that the adoptive transfer of Dap10-/- splenocytes led to an 

increased intra-hepatic cytokine burst three days after adoptive transfer as compared to 

HBV-transgenic mice that received wild type immune cells (Fig.3.3A and B).  

 

  

 
 

 

 

 

 

 

Figure 3.3. Intra-hepatic cytokine production three days after adoptive transfer of Dap10-/- or Dap12-/- 

NKT cells into HBV-Replication+ Rag-1-/- recipient mice. Elispot analyses of IFNγ (A) and IL-4-producing 

(B) intra-hepatic immune cells from HBV-Replication+ Rag-1-/- mice three days after adoptive transfer of 

Dap10-/- (�), Dap12-/- ()  or wild type splenocytes ().Representative data are shown as mean ± SD. All data 

are representative of at least two independent experiments. 
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In contrast, adoptive transfer of Dap12-/- splenocytes resulted in impaired acute 

immune response as measured by decreased levels of intra-hepatic cytokines at the same 

time point (Fig.3.3A and B) in comparison to the same control group. These latter findings 

are in agreement with results presented in chapter II that demonstrate a decrease in disease 

in animals which received anti-NKG2D blocking antibody. 

 

 

DISCUSSION 

 

As shown in chapter II, NKG2D receptor expression on NKT cells, and not on other 

cell types, is required for efficient disease induction in our transgenic mouse model of 

primary HBV infection. Adoptive transfer of NKG2D-bearing NK cells alone, or NKG2D+ NKT 

cell-depleted splenocytes do not induce acute hepatitis in the HBV-transgenic Rag-1-/- 

recipient mice (71, 213). NK cell receptors, such as NKG2D, can associate with more than 

one adapter. Likewise, each adapter molecule can pair with multiple receptors (145). Thus, 

NK cell receptors and adapters exhibit some functional redundancy. Nevertheless, here, we 
sought to investigate which NKG2D adapter molecule(s), DAP10 and/or DAP12, are 

involved in NKG2D signal transduction at the time of acute hepatitis in our model of primary 

HBV infection. Our data demonstrated that intra-hepatic wild type NKT cells that express 

NKG2D on their surface express three times more DAP12 mRNA than NKG2D- NKT cells. 

Moreover, adoptive transfer of DAP12-/- donor splenocytes resulted in impaired liver injury in 

the HBV- Replication+ Rag-1-/-mice, suggesting that NKG2D may require DAP12 for signal 

transduction. 

On the other hand, both intra-hepatic NKG2D+ and NKG2D- NKT cell populations 

express DAP10 mRNA abundantly and in identical amounts. In fact, this is an example 

where the mRNA expression patterns of NKG2D and DAP10 do not completely overlap 

reinforcing the possibility that DAP10 associates with other receptors than NKG2D. 

Recently, Coudert et al demonstrated that Ly49D and Ly49H can also associate with DAP10 

adapter, even if to a lesser extent than to DAP12 (146). Surprisingly, adoptive transfer of 

Dap10-/- donor splenocytes into HBV-Replication+ Rag-1-/- recipient mice led to a more 

severe acute liver injury as measured by intra-hepatic cytokine burst when compared with 

HBV-transgenic mice that received wild type syngeneic splenocytes. This result is consistent 

with data from Philips and colleagues (214) that showed that activated Dap10-/- NKT cells 

produce significantly higher levels of cytokines, including IFNγ, as compared to wild type 
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NKT cells. They further demonstrated that Dap10-/- NKT cells had a significant increase in 

turnover proliferation rate compared with wild type NKT cells, which led the authors to 

suggest that they might be constitutively hyperactive (214). This study also showed that 

although IL-2 activated Dap10-/- NKT cells killed less efficiently NKG2D ligand expressing 

YAC-1 tumor cells when compared with wild type NKT cells, anti-NKG2D mAb partially 

inhibited the killing in both cases. The authors suggested that activated Dap10-/- NKT cells 

express a partially functional NKG2D receptor (214).  

In light of our results, it is possible that DAP10 and DAP12 adapters work as 

inhibitory and activating molecules, respectively, regulating the signal transduction threshold 

of the activating receptor NKG2D. For instance, in the absence of DAP10 (which 

hypothetically might dampen NKG2D signaling), the NKT cell is constantly activated and 

secreting elevated amounts of cytokines (Fig. 3.4A). Consistent with this is the fact that 

NKG2D engagement with its ligands leads to receptor internalization (110, 133), and 

NKG2D seems not to be expressed on the surface of Dap10-/- NKT cells (137). On the other 

hand, in the absence of the “positive” adapter DAP12, NKT cells produce significantly less 

cytokines upon stimulation through the NKG2D receptor (Fig. 3.4B). We speculate that this 

latter hypothetical model (Fig. 3.4A and B) could explain the divergent disease outcomes 

detected by the adoptive transfer of Dap12-/- or Dap10-/- splenocytes, in the specific liver 

immunological environment of the acute immune response observed in our transgenic 

mouse model of primary HBV infection. Consistent with this model were the recent findings 

of Medzhitov and colleagues using a new transgenic mouse that overexpresses a DAP10-

ubiquitin fusion protein. In these mice, DAP10 and its associated proteins are dominantly 

targeted to lysossomal degradation in NK cells, including NKG2D (215). This way, any 

potentially compensatory association of NKG2D with DAP12 is thought to be abrogated and 

results in impaired NKG2D-mediated IFNγ production and cytotoxicity (215). It would be 

interesting to know if NKG2D function is similarly affected on NKT cells. 

Nevertheless, we cannot exclude the possibility that Dap10-/- NKT cells are 

constitutively hyperactive in a NKG2D-independent manner. In fact, preliminary experiment 

of blocking NKG2D function in vivo in HBV-Replication+Rag-1-/- mice, which received Dap10-

/- splenocytes, suggested no effect in the robust cytokine burst detected at time of acute 

hepatitis. However, since NKG2D is nearly absent from the surface of NKT cells it is 

possible that this approach did not directly test if the hyperresponsiveness of Dap10-/- NKT 

cells is NKG2D dependent. Although NKG2D-/- mice are not currently available, a definitive 

experiment would be to cross these hypothetical knockout mice with DAP10-/- animals and 
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then adoptively transfer DAP10 NKG2D DKO splenocytes into HBV-Replication+Rag-1-/- 

recipient mice. This way, it would be possible to determine if the hyperactive status of 

DAP10-/- NKT cells is NKG2D dependent or independent.  

 Collectively, our findings contribute to the knowledge of the interplay between DAP10 

and DAP12 signaling in NKT cell activation/co-stimulation via NKG2D, in a very well defined 

in vivo system of NKG2D+ NKT cell-mediated CD1d-dependent acute immune response 

against HBV-expressing cells. 

  

 

 

 

 
 
 
 
 
 
 
 
 

Figure 3.4. Hypothetical model for the role of DAP10 (A) and DAP12 (B) in NKG2D signal transduction in 

activated NKG2D+ NKT cells at the time of acute hepatitis in our transgenic mouse model of primary 

HBV infection. Note: Despite Dap10-/- NKT cells express very low amounts of NKG2D on their surface, its 

expression might be detectable upon activation. 
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CHAPTER IV 

 

Mild hepatic necrosis detected in HBV-transgenic Rag-1-/- 

mice is IFNγ  and NK cell-independent 
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INTRODUCTION 

 

HBV itself is non-cytopathic (6) and it is the immune response against the HBV-

expressing cells that causes the hepatic necrosis and liver damage (45).  

It is well established that HBV immunopathogenesis is mainly caused by the 

adaptive immune system, in particular by a strong CTL response (13, 45, 216). On the other 

hand, the role of the innate immune system during this infection has not been thoroughly 

addressed over the past decades and remains unappreciated (211). The study of the innate 

immune response in the control of early HBV replication should not be dismissed, since 

most of the HBV DNA can be cleared from the serum and the livers of experimentally 

infected chimpanzees before an adaptive immune response is detected within the liver (31). 

In addition, it was reported that the inflamed livers of chronic HBV-infected patients showed 

a few HBV-specific CD8+ T cells among a high proportion of activated NK cells (CD3-CD56+) 

(120). 

In this chapter, we investigated whether other intra-hepatic innate immune cells 

might be involved in HBV recognition, potentially generating signals that could contribute to 

the non-classical NKT cell-mediated acute hepatitis observed in our HBV-Transgenic (HBV-

Tg) Rag-1-/- mice three to four days post-transfer. Our results demonstrated a mild hepatic 

necrosis in the HBV-Tg Rag-1-/- mice pre-adoptive transfer, which is IFNγ and NK-cell-

independent. Furthermore, our data indicate that the basal amount of IFNγ and the NK cell 

frequency in the livers of HBV-Tg Rag-1-/- recipient mice do not affect the non-classical type 

II NKT cell-mediated acute hepatitis. 
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RESULTS 

 

HBV-Transgenic Rag-1-/- mice show mild hepatic necrosis even before adoptive 

transfer of syngeneic naïve wild-type splenocytes 

By compiling dozens of baseline values of serum ALT from HBV-Tg and non-Tg 

Rag-1-/- mice before adoptive transfer of naïve splenocytes, it became evident that the HBV-

Tg Rag-1-/- mice have significantly higher serum ALTs than the non-Tg Rag-1-/- (Fig. 4.1). In 

fact, both lines of HBV-Tg mice, HBV-Env+ and HBV-Replication+, regardless of CD1d 

expression, showed significantly higher baseline ALT values as compared to non-Tg mice or 

to OVA-Tg mice (Fig.4.1). This latter group of transgenic mice was used as a control since 

these animals express ovalbumin (OVA) under the control of the albumin promoter. The mild 

rise of ALTs was also detected in HBV-Tg Rag-1+/+ mice (data not shown).  

 

 

 

 
 

 

 

 

 

 

Figure 4.1. HBV-Tg mice show mild hepatic necrosis even before the NKT cell-mediated early 

immune activation. Baseline liver injury in HBV-Tg Rag-1-/- and HBV-Tg Rag-1-/- CD1d-/- mice in 

comparison to non-Tg or OVA-Tg Rag-1-/- animals were measured by sera ALT values, before adoptive 

transfer of syngeneic naïve wild type splenocytes. Data are pooled from two independent experiments. 
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IFNγ  and IL-4 production is mildly increased in the livers of HBV-Transgenic Rag-1-/- 

mice before adoptive transfer of syngeneic naïve wild type splenocytes 

In light of the previous data, we examined the frequency of IFNγ and IL-4-producing 

cells in the livers of HBV-Tg Rag-1-/- mice in comparison to non-Tg or OVA-Tg Rag-1-/- 

animals before adoptive transfer. We consistently found a 2 to 3 fold increase in intra-

hepatic production of IL-4 and IFNγ in HBV-Tg Rag-1-/- mice compared to either non-Tg or 

OVA-Tg animals (Fig. 4.2A and B).  

Since it is well established that HBV itself is non-cytopathic, we hypothesized that the 

mild hepatocyte necrosis and cytokine production (IFNγ and IL-4) detected in HBV-Tg mice 

is innate immune-cell dependent. Therefore, we sought to determine which innate immune 

cell population(s) could recognize or sense HBV-expressing cells. 

 

 

 

 

 

Figure 4.2. Baseline cytokine production by intra-hepatic immune cells derived from HBV-Tg Rag-1-/- 

mice. Elispot analyses of IFNγ (A) and IL-4-producing (B) intra-hepatic immune cells eluted from HBV-Tg 

Rag-1-/- mice before adoptive transfer of syngeneic naïve wild type splenocytes.  
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NK cells are key IFNγ -producing cells in the livers of HBV-Transgenic Rag-1-/- mice 

before adoptive transfer of syngeneic naïve wild-type splenocytes 

In order to address which cell subset(s) are producing IFNγ and IL-4 in the livers of 

HBV-Tg Rag-1-/- mice, we first performed FACS cell sorting analysis of three distinct 

populations based on their size (FSC) and granularity (SSC), by grouping the cells into a 

lymphocyte gate, a SSC high gate and a FSC high gate (Fig. 4.3A). This method avoided 

direct cell staining with antibodies, which might potentially interfere with the level of 

activation and cytokine production of these cells. The sorted populations were immediately 

plated in ELIspot plates previously coated with anti-IFNγ or anti- IL-4 mouse antibody. Two 

independent sorting experiments demonstrated an increase in IFNγ production by intra-

hepatic immune cells from the lymphocyte gate derived from HBV-Tg mice, independent of 

CD1d expression (Fig. 4.3B). No statistical difference was found in IFNγ production by either 

SSC high or FSC high cell sorted populations between HBV-Tg and non-Tg mice (Fig. 

4.3C). On the other hand, we were unable to detect IL-4 secretion from any of the intra-

hepatic immune cell subsets after sorting (data not shown). This result could have two 

possible interpretations: either the number of IL-4-producing cells in each sorted population 

is below the ELIspot detection limit or the manipulation of the IL-4-producing cells during 

sorting affected its production. 

Since these animals have neither B nor T lymphocytes, the designated lymphocyte 

gate should be enriched in NK cells. Thus, we further examined whether intra-hepatic NK 

cells might be involved in HBV sensing or recognition. For that purpose, we injected 

intravenously 100µg of anti-NK1.1 depleting antibody (clone PK136) one or three times, 

resulting in total ablation of NK cells in HBV-Env+ Rag-1-/- mice for a period of four or twelve 

days, respectively (Fig. 4.4A and B). We found that depletion of NK cells diminished the 

intra-hepatic IFNγ production by two-fold, independent of the length of antibody treatment, 

and IL-4 production was only significantly reduced in mice treated with anti-NK1.1 depleting 

antibody (clone PK136) for a period of twelve days (Fig. 4.4B). However, there was no 

statistical difference in the baseline serum ALTs (data not shown). 
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Figure 4.3. Baseline cytokine production of FACS cell sorted intra-hepatic immune cell 

populations derived from HBV-Tg Rag-1-/- mice. (A) FACS plot depicts the sorted three intra-

hepatic immune cell populations, separated by size (FSC) and granularity (SSC). (B) The intra-hepatic 

immune cells sorted from the lymphocyte gate were plated in elispot plates coated with IFNγ. (C) 

Elispot analysis of IFNγ-producing intra-hepatic immune cells from the SSC high and FSC high sorted 

populations. Data are representative of two independent experiments. 
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Figure 4.4. Depletion of NK cells from HBV-Env+ Rag-1-/- mice significantly decreases the intra-hepatic 

IFNγ production but has no effect on the baseline mild hepatic necrosis. Elispot analyses of IFNγ and IL-4-

producing intra-hepatic immune cells derived from HBV-Env+ Rag-/- mice after one (A) or three (B) i.v. injections 

of 100µg of anti-NK1.1 depleting antibody (clone PK136) as compared to the ratIgG treated mice. Baseline liver 

injury in HBV-Env+ Rag-1-/- IL-2Rβ-/- mice in comparison to non-Tg Rag-1-/- IL-2Rβ-/- (C) and in HBV-Replication+ 

Rag-1-/- IFNγ-/- mice in comparison to non-Tg Rag-1-/- IFNγ-/- (D) were measured by serum ALT values, before 

adoptive transfer of syngeneic naïve wild type splenocytes. 
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To further explore whether NK cells participate in the innate immune response to 

HBV-expressing hepatocytes, we generated HBV-Env+ and HBV-Replication+ Rag-1-/-IL-

2Rβ-/- mice, which show a dramatic reduction in NK cell numbers (217) in addition to the 

absence of B and T lymphocytes. We found very low baseline levels of IFNγ and IL-4 in their 

livers (Fig. 4.4B and data not shown), suggesting that besides direct production of IFNγ, 

resident intra-hepatic NK cells should be indirectly involved in inducing IFNγ and IL-4 

production from other liver cell types. However, this significant reduction in cytokine 

production did not correlate with a decrease in circulating ALTs, consistent with data from 

the NK1.1 depletion studies. In fact, HBV-Env+ Rag-1-/-IL-2Rβ-/- mice showed a similar mild 

hepatic necrosis detected in all other HBV-Tg animals (Fig. 4.4C), indicating that the mild 

basal hepatocyte necrosis is not NK cell-mediated. Moreover, HBV-Replication+ Rag-1-/-

IFNγ-/- mice also showed a mild rise of baseline serum ALTs when compared to non-Tg Rag-

1-/-IFNγ-/- mice (Fig. 4.4D), suggesting that the hepatocyte necrosis is also IFNγ-independent. 

We also detected an increase in IFNγ secretion in both SSC high and FSC high 

populations in an HBV-dependent manner. However, due to its high variability in IFNγ 

secretion between mice, the difference was not statistically significant (Fig. 4.3C). 

Furthermore, we detected no difference in the levels of intra-hepatic IFNγ production or 

baseline serum ALTs between HBV-Env+ Rag-1-/- mice depleted of Gr-1high cells for 24 and 

48 hours and control animals (ratIgG treated) for the same period of time (data not shown). 

 

 

Resident NK cells do not affect the subsequent acute hepatitis seen in HBV-

Transgenic Rag-1-/- mice three to four days after adoptive transfer of syngeneic naïve 

wild-type splenocytes  

We next addressed the question of whether the resident NK cells play a role in the 

non-classical NKT cell-mediated acute hepatitis observed in HBV-Tg animals three days 

after adoptive transfer, using HBV-Replication+ Rag-1-/-IL-2Rβ-/- mice. Reminiscent of the 

clinical presentation of true human HBV infection, HBV-Replication+ mice develop a mild, 

sub-clinical hepatitis, characterized by a discrete rise of ALTs but accompanied with a 

significant intra-hepatic cytokine burst (71). To test this hypothesis, HBV-Replication+ Rag-1-

/-IL-2Rβ-/- mice received an adoptive transfer of syngeneic naïve wild type splenocytes. 

Unexpectedly, we detected a significantly stronger acute cytokine burst, HBV-independent, 

in the mice lacking B, T and NK cells as compared to HBV-Replication+ Rag-1-/- mice (Fig. 
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4.5). It is possible that donor NK cells aberrantly expanded while repopulating the HBV-

Replication+ Rag-1-/-IL-2Rβ-/- recipient mice, thus explaining the increase in cytokine 

production. Due to this limitation, we decided to address the question of whether NK cells 

are involved in the activation of non-classical NKT cells using HBV-Env+ Rag-1-/- mice, in 

B10.D2 background. These mice are characterized by a more severe liver injury four days 

after adoptive transfer of syngeneic naïve wild type splenocytes (71). NK cells were 

depleted by intravenous administration of anti-asialo GM1 (polyclonal antibody) from both 

donor and recipient mice one day before adoptive transfer. As a control group, untreated 

HBV-Env+ Rag-1-/- recipient mice received wild type splenocytes. Four days after adoptive 

transfer, serum ALTs and the intra-hepatic cytokine production were evaluated. There was 

no statistical difference between the acute immune response to HBV-expressing cells in 

HBV-Env+ mice with or without NK cells as measured by the rise of serum ALTs and the 

intra-hepatic cytokine burst four days post-transfer (Fig. 4.6A and B). 

 

 

 
 

 

 Figure 4.5. Ablation of resident intra-hepatic NK cells have no effect in the subsequent acute immune 

response seen in HBV-Replication+ Rag-1-/- mice three days after adoptive transfer of syngeneic naïve 
wild type splenocytes. Elispot analyses of IFNγ and IL-4-producing intra-hepatic immune cells derived from 

HBV-Replication+ Rag-1-/- (), HBV-Replication+ Rag-1-/- IL-2Rβ-/- (�) and non-Tg Rag-1-/- IL-2Rβ-/- ()  three 

days after adoptive transfer of wild type splenocytes. or wild type splenocytes.  
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Figure 4.6. Ablation of NK cells have no effect in the subsequent acute immune response seen in HBV-
Env+ Rag-1-/- mice four days after adoptive tranfer of syngeneic naïve wild type splenocytes. (A) Hepatic 

injury as assessed by the measurement of ALT in the sera of HBV-Env+ Rag-1-/- mice and elispot analyses (B) 

of IFNγ and IL-4-producing intra-hepatic immune cells isolated from HBV-Env+ Rag-1-/- mice at day four after 

adoptive transfer. HBV-Env+ Rag-1-/- recipient mice were either pre-treated with anti-asialo GM1 polyclonal 

antibody and received NK cell-depleted donor splenocytes () or were untreated and received wild type 

splenocytes (), Data are representative of two independent experiments. 
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DISCUSSION 

 

Our data demonstrated that two distinct lines of HBV-Tg mice showed a basal mild 

hepatic necrosis as measured by serum levels of ALTs. These results strongly suggest that 

HBV is recognized by the innate immune system present in Rag-1-/- mice, since HBV itself is 

thought to be non-cytopathic (6). This is a surprising finding because it is widely accepted 

that HBV-Tg mice have a tolerant immune system, incapable of recognizing HBV antigens 

(45). In addition to this mild increase of serum ALTs, HBV-Tg mice also showed increased 

levels of baseline intra-hepatic IFNγ and IL-4-producing cells, before adoptive transfer. We 

further investigated which cell subsets were producing IFNγ in an HBV-dependent manner 

and whether a particular innate immune cell population could sense HBV antigens. NK cells 

were our main candidate as they are widely known to play a role in antiviral defense (218, 

219), and they are main producers of IFNγ. Moreover, all NK cells express the activating 

receptor, NKG2D (167), whose corresponding ligand, RAE-1, is constitutively expressed in 

the liver (and not in other healthy organs) (http://source.stanford.edu/cgi-

bin/source/sourceSearch), and up-regulated in HBV-expressing hepatocytes (chapter II). 

Although resident intra-hepatic NK cells produce significant amounts of IFNγ in an 

HBV-dependent manner before adoptive transfer, our data demonstrated that the mild 

hepatic necrosis detected in HBV-Tg mice as measured by a two-fold rise of baseline ALTs 

is neither dependent on the presence of NK cells nor on the levels of intra-hepatic IFNγ. To 

test a potential involvement of resident intra-hepatic NK cells in HBV recognition, we 

generated HBV-Tg Rag-1-/-IL-2Rβ-/- mice. These animals showed a dramatic reduction in 

total NK cell numbers in addition to the absence of B and T lymphocytes (217). Therefore, 

the immune cells present in these animals are restricted to granulocytes, macrophages and 

dendritic cells among other cells. Initially this model seemed an elegant system to 

investigate the role of NK cells before and after adoptive transfer as well as their interaction 

with other cell types. However, an increased intra-hepatic cytokine burst, non-HBV-specific, 

observed in these mice, during acute hepatitis, turned out to be a potential limitation on 

using these animals to study the immunopathogenesis of a hepatotropic infectious agent, 

such as HBV. Nevertheless, experiments using depleting antibodies strongly suggested that 

resident intra-hepatic NK cells do not significantly contribute to the non-classical NKT cell-

mediated acute immune response to HBV-expressing cells in our mouse model of primary 

HBV infection. 
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Collectively, our findings demonstrated that HBV-Tg mice show a mild hepatic 

necrosis that is IFNγ, NK cell and Gr-1high cell-independent. This HBV-specific mild rise of 

baseline serum ALTs might be either immune or non-immune mediated. If immune-

mediated, the innate immune sensing machinery of the HBV-expressing cells might 

recognize viral particles and trigger an innate immune response; or innate immune cells 

other than NK and Gr-1high cells might recognize HBV antigens. On the other hand, we 

cannot fully exclude the possibility that hepatocyte necrosis detected in these mice is non-

immune mediated and HBV itself could be mildly cytopathic under certain specific 

conditions. Despite the body of evidence in support of HBV as a non-cytopathic virus (45), a 

more recent study in mice suggested that HBV may be directly cytopathic in conditions of 

severe immune suppression (220). These authors further correlated this observation in mice 

with human data that described suppression of the immune system, by immunosuppressive 

agents or progressive immune failure, in the context of acquired immune deficiencies, may 

lead to reactivation of seemingly recovered or “silent” HBV infections (221).  

In summary, our finding that HBV-Tg mice showed mild hepatic necrosis, as 

detected by a mild rise of baseline serum ALTs, highlights the potential role of the innate 

immune system during HBV infection. Understanding the role of innate effector cells during 

immune activation both in acute phase as well as in hepatic flares would help to further 

elucidate our understanding of disease pathogenesis. Future experiments are needed to 

address the origin of this mild but consistent hepatic necrosis seen exclusively in the HBV-

Tg mice. 
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Since the experimental results presented here have been previously discussed in 

chapters II, III and IV, the discussion that follows aims to bring all the data together, 

highlighting what is new, what remains to be answered, and what challenges arose from this 

study in the understanding of HBV immunopathogenesis and NKT cell biology. In this 

chapter, I will guide you through the unappreciated innate and “innate-like” immune 

responses to HBV, with particular emphasis on the potential role of intra-hepatic NKT cells, 

the NKG2D receptor and its ligands during this hepatotropic infection. I will critically analyze 

the current available HBV models, focusing on the advantages and limitations of our 

transgenic mouse model of primary human HBV infection; and I will then briefly discuss the 

potential implications of this work in HBV-related diseases.  

  

 

Innate and “innate-like” immune responses to HBV-expressing cells 

 

Human HBV immunopathogenesis is generally attributed to a strong polyclonal CTL 

response weeks after inoculation. In fact, by the time symptomatic HBV-infected patients 

seek medical attention and samples (blood and/or liver biopsies) are collected, they usually 

show a large intra-hepatic infiltrate of CD8+ T lymphocytes. Therefore, during the past 

decades, many groups have focused their efforts on characterizing in detail these HBV-

specific CD8+ T lymphocyte-mediated immune responses. Important contributions have also 

been made in characterizing the humoral immune responses to the diverse HBV antigens. 

These investigations had a significant impact on identifying HBV-specific antigens and 

antibodies, which have currently been used either as diagnostic or follow-up analytical 

markers of HBV infection. On the other hand, the role of the innate immune system against 

HBV-expressing cells has not been thoroughly addressed over the past years. Thus, my 

graduate work presented in this dissertation aimed at contributing to the knowledge of the 

cellular and molecular mechanisms involved in the early immune recognition of HBV-

expressing cells.  

Although a great deal has been uncovered about the role and characteristics of the 

adaptive immune responses to HBV-infected cells, the factors that determine whether a 

given individual will mount an effective CD8+ cytotoxic T cell response and antibody 

production to HBV are still poorly understood. Understanding this process represents a 

great current challenge in the HBV field. 

Microarray analysis of multiple liver biopsies of experimentally infected chimpanzees 
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revealed striking differences in intra-hepatic gene expression in the early immune responses 

to HBV and HCV (including genes involved in a type I IFN response) (222-224). Early after 

inoculation, HCV induces vigorous intra-hepatic type I IFN responses, which can be 

detected by gene expression, while HBV does not induce any detectable changes in the 

expression of genes involved in type I IFN response in the first weeks of infection (210, 

211). Based exclusively on these studies, the authors suggested that HBV behaves as a 

“stealth” virus that efficiently establishes itself without inducing an innate immune response 

in the cell it infects (211).  

Using our transgenic mouse model of primary HBV infection we were able to study in 

detail the contribution of resident and donor innate immune cells in disease induction. We 

found that HBV-transgenic mice show a mild hepatocyte necrosis, as measured by serum 

ALTs, of yet unclear origin (chapter IV). This result suggests a HBV-specific immune-

mediated response in the absence of an adaptive immune system. Despite this mild 

hepatocyte necrosis exclusively detected in HBV-transgenic mice being NK cell and IFNγ-

independent, the resident NK cells from these mice secrete significant amounts of IFNγ in an 

HBV-specific manner (chapter IV). In addition, our current data demonstrated that a subset 

of non-classical type II NKT cells are activated in an HBV-specific, CD1d-restricted (71) and 

NKG2D-dependent manner (chapter II) as measured by IFNγ and IL-4 production, revealing 

a mechanism by which the human pathogen HBV activates the intra-hepatic innate immune 

system (Fig. 5.1). It has been well established that NKT cells function as antigen-responsive 

T cells. And evidence that these cells are an integral part of innate immunity is constantly 

growing. In fact, it seems that NKT cells occupy a unique niche as effector cells that behave 

as a bridge between innate and adaptive immune functions (225). 

We performed RT-PCR analysis on whole liver biopsies from HBV-transgenic mice 

at the time of acute hepatitis. In concordance with data from genomic wide analysis on liver 

biopsies from experimentally HBV-infected chimpanzees mentioned above, significant 

amounts of TCR, IFNγ or IL-4 mRNA expression were not detected (chapter II). This 

experiment indicates that intra-hepatic immune cellular component depicts an extremely 

small fraction of a whole liver biopsy, which is mainly constituted by parenchymal cells 

(hepatocytes). Thus, due to the difficulty of analyzing intra-hepatic immune cells in biopsies 

from humans and chimpanzees in general, and during early immune responses in particular, 

the role of innate immune system have been previously unappreciated. This way, our 

studies not only reveal a mechanism by which human HBV activates the intra-hepatic innate 

immune cells, but also provides a possible explanation to why the role of the innate 
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immunity in HBV immunopathogenesis has been unappreciated.  

Since it is not possible to accurately control the time of HBV inoculation in humans to 

then study the early immune response to the virus-infected cells, some studies have been 

performed on chronic HBV-infected patients who develop recurrent, spontaneous “hepatic 

flares”. These “flares” are characterized by large, unexplained and uncontrolled fluctuations 

in liver inflammation accompanied by a propensity to progress to severe liver fibrosis. 

Therefore, “hepatic flares” provide an experimental opportunity to study in humans the 

mechanisms involved in the transition between immune tolerance and immune activation. 

Although immune-mediated liver injury in HBV-infected patients has conventionally been 

attributed to cytolytic killing of infected hepatocytes by virus-specific CD8+ T lymphocytes, 

the presence of activated HBV-specific CD8+ T cells in patients controlling HBV infection is 

not pathognomonic of liver inflammation (226). Moreover, in this same study, a large, non-

antigen-specific lymphocytic infiltrate in the livers of patients with HBV-related chronic liver 

disease was described (226). Another independent investigation has further demonstrated 

that a large proportion of this non-antigen-specific lymphocytic infiltrate is NK cells (120). 

These cells express the pro-apoptotic ligand TRAIL and can mediate liver damage through 

engagement of a TRAIL death-inducing receptor on hepatocytes (120). In transgenic mouse 

models of HBV infection, reduction of recruitment and activation of this non-specific 

inflammatory infiltrate significantly diminished the severity of liver injury (227, 228). An early 

rise in circulating NK cells has also been documented in the incubation phase of HBV 

infection in humans (36). 

Understanding the innate immune responses may also have insight into 

understanding disease outcome (resolution versus chronic hepatitis), since the quality of 

early immune activation might be a major player in shaping the subsequent adaptive 

immune response. On the other hand, two independent human studies (48, 49) reported 

that the frequency of regulatory T cells (CD4+CD25+CD45RO+, foxp3 mRNA +) and the 

ability of these cells to suppress HBV-specific T cell proliferation and secrete IFNγ was 

variable among HBV-infected patients. The data suggests that circulating suppressor T 

regulatory cells, due to their anti-inflammatory ability, might promote inadequate HBV-

specific immune responses leading to persistent infection. Thus, the quality of the early 

immune response to HBV-expressing cells and the balance between CTLs and regulatory T 

cell suppression are two possible mechanisms that independently or in cooperation might 

dictate disease outcome. 
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HBV immunopathogenesis: lessons in NKT cell biology  

 

NKT cells recognize highly conserved lipid antigens and respond rapidly to 

stimulation. These features have led them to be described for many years as a bridge 

between innate and adaptive immunity. There is evidence that NKT cells can amplify the 

innate immune response to many different microbes (225). The studies presented in this 

dissertation provide mechanistic evidence of how NKT cells have an important function in 

the initiation of pro-inflammatory responses to HBV-expressing cells, thus leading to 

potential implications in HBV clearance. It is not surprising that one of the most abundant 

cell population in the liver is involved in the first line of defense against a hepatotropic 

pathogen such as HBV. However, the NKT cell frequency in human livers is considerably 

lower when compared to mice. Thus, there is a debate on how realistic it is to translate 

advances in NKT cell biology from mice to humans. It is still not known whether there is only 

a NKT cell number difference between livers from mice and humans or whether these cells 

are also functionally different. Nevertheless, the difficulty to experimentally address these 

questions in humans is understandably high. 

Figure 5.1. Schematic representation of the proposed model of non-classical type II NKT cell activation 

in our transgenic mouse model of primary human HBV infection, three days after adoptive transfer of 

syngeneic naïve wild type splenocytes. 
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The diversity of clinical symptoms and disease manifestations associated to HBV 

infection strongly suggests that disease outcome is determined by the quality and vigor of 

the antiviral immune response produced by each infected individual. All arms of the immune 

response must cooperate to terminate this viral infection. Individual differences in the 

efficiency of viral antigen processing by hepatocytes and professional APCs as well as the 

responsiveness by B and T lymphocytes play an important role. These individual differences 

might be modulated by the level of antigen recognition and by the amount of IFNγ present in 

the liver at the time of T cell migration. The rapid mobilization and activation of non-classical 

NKT cells are compatible with studies of acute HBV infection in primates, which show a 

rapid drop in viral replication (HBV-DNA quantity decreases by almost 90%) in the presence 

of IFNγ production before the peak of an antigen-specific CD8+ T cell response and liver 

damage (31, 32, 36). Based on our data, we propose that early and robust activation of 

resident NKT cells might contribute to a more effective immune response to HBV-infected 

cells accompanied with a decreased risk for chronicity.  

The liver injury seen in the autoimmune hepatitis model of ConA-induced hepatitis, 

extensively used by immunologists, has also been described to be type I NKT cell and IL-4-

mediated (198). Using this model, it was shown that activation of sulfatide-reactive type II 

NKT cells and plasmacytoid DCs caused IL-12 and MIP-2-dependent recruitment of type I 

NKT cells to the mouse livers. In this circumstance where type II NKT cells are first activated 

artificially, the type I NKT cells recruited to the livers were anergic and ConA-induced 

hepatitis was prevented by blocking the cytokine burst and neutrophil recruitment that follow 

ConA injection. This was one of the first studies that investigated the interactions between 

distinct NKT cell subsets as well as the subsequent immune consequences. Their data 

suggested that invariant type I NKT cells have a pathogenic role whereas the sulfatide-

restricted type II NKT cells showed a protective role in liver injury induced by ConA 

administration (229).  

In contrast, in our transgenic mouse model of primary human HBV infection, type II 

NKT cells are pathogenic, whereas type I NKT cells are not required for disease induction 

(71). Type II NKT cells were also found to play a proinflammatory role in the induction of 

human ulcerative colitis through their production of IL-13 (106) and to be enriched in livers of 

patients with chronic hepatitis C infection (230).  

Moreover, type I and type II NKT cells have been described to play distinct and 

possibly opposite roles during infection with different parasites. In Trypanosoma cruzi 

infection, Jα18-/- mice (which are only deficient in type I NKT cells) showed much greater 
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morbidity and mortality than CD1d-/- animals (deficient in both type I and II NKT cells). This 

finding led the authors to suggest that during Trypanosoma cruzi infection, type II NKT cells 

were pro-inflammatory whereas type I NKT cells might counteract the effect of type II NKT 

cells when both types were present (231). In acute mouse schistosomiasis, these two types 

of NKT cells seem to have opposite effects on subsequent development of Th1/Th2 (232).  

Type II NKT cells are a heterogeneous population of cells with or without surface 

expression of NK1.1 (233, 234) and which may or may not recognize sulfatide (100). Thus, it 

is possible that those type II NKT cells mediating proinflammatory responses might be a 

distinct subset from the type II NKT cells that mediate immunossupressive responses, 

contributing to tolerance (235). Additional experiments have to be performed to better 

address this possibility. 

As I see in medical practice (bedside) a link to bench-orientated questions, I found in 

the study of mouse models of human diseases a link to fundamental biology. In fact, the 

work presented here is an example of how studying early immune responses to HBV-

expressing cells in a transgenic mouse model provided the first evidence that NKT cells can 

be activated in vivo via its activating receptor NKG2D (chapter II). This finding automatically 

opened an experimental opportunity to investigate the role of both NKG2D adapter 

molecules, DAP10 and DAP12, in NKG2D signal transduction in this in vivo system (chapter 

III). It is well established that, in mice, NKG2D pairs with both adapters while, in humans, 

NKG2D associates only with DAP10. Additionally, in mice, it is also known that NKG2D 

signaling on NK cells requires both adapters, whereas on activated CD8+ T cells only require 

DAP10. Since NKT cells share many phenotypic markers and functions with either NK cells 

or T lymphocytes, we sought to determine the function of each adapter molecule upon NKT 

cell activation through NKG2D under the specific conditions of our in vivo model of primary 

HBV infection. We found opposite results in cytokine production when DAP10 or DAP12 

deficient cells were transferred. Adoptive transfer of Dap12-/- donor splenocytes resulted in 

impaired liver injury in the HBV-Replication+Rag-1-/- mice. These results suggest that DAP12 

is required for signal transduction via NKG2D on NKT cells at the time of acute hepatitis in 

our model (chapter III). In contrast, adoptive transfer of Dap10-/- donor splenocytes into 

HBV-Replication+Rag-1-/- recipient mice led to a more severe acute liver injury as compared 

to the HBV-transgenic mice, which received wild type syngenic splenocytes (chapter III). 

Although not much is known about the role of DAP10 in NKT cells, a recent study (214) 

reported that activated Dap10-/- NKT cells produce significantly higher levels of cytokines, 

including IFNγ, as compared to wild type NKT cells. They further demonstrated that the 
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turnover proliferation rate was significantly increased in Dap10-/- NKT cells when compared 

to wild type NKT cells, leading them to suggest that Dap10-/- NKT cells might be 

constitutively hyperactive (214).  

The opposite outcome found with the adoptive transfer of Dap12-/- or Dap10-/- 

splenocytes in a NKT cell-mediated NKG2D-dependent experimental mouse model, brings 

up the idea of a balance of signals, which is usual in the NK field. Reminiscent of the 

balance between activating and inhibitory signals on NK cells, which dictate either cell 

activation or inhibition, we propose that the balance between DAP10 and DAP12 might set 

the threshold of signal propagation through NKG2D. For instance, DAP10 might be 

important in dampening the signal transduction in NKT cell activation via NKG2D. Therefore, 

the cell is more activated when DAP10 is absent. In contrast, DAP12 may function as a 

“positive” adapter and the loss of DAP12 causes NKT cells to produce significantly less 

cytokines upon stimulation through the NKG2D receptor (chapter III). Although more 

experiments are required to test our hypothetical model, these findings enhance our 

understanding about the role of DAP10 and DAP12, and perhaps their interplay, following 

NKT cell activation/co-stimulation via NKG2D in a very well-defined in vivo system of 

NKG2D+ NKT cell-mediated acute immune response to HBV-expressing cells (Fig. 5.2). 
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Figure 5.2. Schematic representation of the role of DAP10 and DAP12 adapter molecules in donor splenocytes 

transferred into HBV-transgenic Rag-1-/- mice. Note: Despite Dap10-/- NKT cells express very low amounts of 

NKG2D on their surface, its expression might be detectable upon activation. 
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Transgenic mouse model of primary human HBV infection  

 

Ultimately, our goal is to mimic the immunological events that would normally occur 

during primary human HBV infection. Our transgenic mouse model allows manipulation of 

the immune system that is exposed to the virus, and identification of the cells and cytokines 

contributing to chronic hepatitis or disease resolution. This is a unique model to begin to 

address early events in immune activation to HBV and the spontaneous immune response 

and hepatitis that ensues. Mechanisms identified in these mouse models of primary HBV 

infection are the foundation for our current studies in the various clinical presentations of 

human HBV disease. For example, modest rises in ALT (1.5 to 2 fold increases above 

baseline) precede reactivation of hepatitis in chronic human HBV infection, known as 

“hepatic flares”. Thus, a question that arises is whether the increase in ALT that anticipate 

the “hepatic flares” reflects early immune activation of NKT and/or NK cells, and whether this 

activation is NKG2D-dependent. It is also known that preceding “hepatic flares”, patients 

usually experience an increase in HBV replication as detected by an increase in viral titers. 

It is possible that increased viral replication leads to large envelope protein retention in the 

ER. We hypothesize that accumulation of large envelope protein in hepatocytes might be 

involved in RAE-1 up-regulation, with NKT cell activation and consequent hepatic necrosis. 

In addition, this mechanism might also be involved in rare forms of fulminant hepatitis, since 

they are characterized by “ground glass” hepatocytes, which represents accumulation of 

large envelope protein within the hepatocytes. 

The up-regulation of the stress-inducible molecule, RAE-1 (a distant homolog of 

MHC class I) on HBV-positive hepatocytes may be a mechanism by which the infected cell 

can present an activation signal alerting the immune system that an infection has occurred 

and mobilize an immediate immune response. Additionally, it is well established in our 

transgenic mouse model of primary HBV infection that hepatocytes and/or APCs also 

require CD1d on their surface to activate NKT cells (71). Therefore, a very important 

question remains unanswered: What is the nature of the molecule(s) being presented by 

CD1d and recognized by NKT cells in HBV-positive livers? The processing and presentation 

of lipid antigens by APCs is important for defense against infection, tumor 

immunosurveillance, and autoimmunity (236). 

CD1 is a family of cell surface glycoproteins and is responsible for the binding and 

presentation of lipid antigens (237). In humans, five CD1 proteins have been identified and 

are divided in two groups, based on sequence identities in the α1 and α2 domains. Group 1 
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includes CD1a, CD1b, CD1c and CD1e and group 2 consists of CD1d (238-241). However, 

mice only contain CD1d orthologs. It is commonly believed that a chromosomal break event 

is the reason for the absence of group 1 CD1 from rodents (242-244). In contrast to MHC 

class I and II genes, polymorphisms of CD1 genes are extremely limited (245). The reasons 

for the lack of polymorphism of CD1 alleles are a matter of speculation. One possibility is 

that the opportunity of variation in the structure of lipids of microbial species may be 

considerably less than the potential for variation in the sequence of microbial antigenic 

peptides (236). Lipids are synthesized by multiple enzymatic steps, and the modifications 

that microorganisms might make are limited by the structural constraints needed for lipid 

organization in microbial membranes and cell walls (236). Thus, little polymorphism of CD1 

grooves might be needed to accommodate lipid antigens binding (236). CD1d, known to 

present α-GalCer (a glycosphingolipid first discovered in marine sponge extracts), is 

recognized by the Vα14 invariant TCR on type I NKT cells (93), and leads to potent 

activation. In our model of hepatitis B infection, where type II NKT cells are activated 

through CD1d recognition, three possibilities should be considered. First, type II NKT cells 

could recognize a yet unidentified viral component in the context of CD1d. The candidates 

would include the myristate moiety of the large envelope protein or hydrophobic peptides 

from the HBV envelope protein. Second, CD1d might be presenting endogenous 

hydrophobic ligands (e.g., host lipids or glycolipids), which could be enhanced by HBV gene 

expression. Third, it is possible that HBV-specificity is given by RAE-1 up-regulation and not 

by what CD1d is presenting.  

In summary, we propose a model in which non-classical type II NKT cells are first 

activated in a HBV-specific, CD1d-restricted and NKG2D-dependent manner within the liver, 

leading to IFNγ and IL-4 production (Fig. 5.1). Since activation of non-classical type II NKT 

cells requires HBV, CD1d and NKG2D, it is likely that NKT cells receive a CD1d – TCR 

interaction and NKG2D may function as a co-stimulatory molecule (Fig. 5.1). Signal one 

from CD1d-TCR interaction and signal two (co-stimulatory) from NKG2D, similarly to the 

requirements for activation of other T cell subsets (137). 
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Limitations of our transgenic mouse model of primary human HBV infection  

 

Several criticisms have been raised concerning our transgenic mouse model of 

primary HBV infection. Most of them are inherent to any mouse model of a human 

pathogen. Specifically, since we cannot infect mice with human HBV, we cannot study viral 

clearance in this model. In a natural infection, the virus must recognize, bind and enter its 

target cells, and migrate to the appropriate cellular compartment, where its genome is 

transcribed, translated, and replicated to allow the assembly and export of new virions. The 

infection can then spread to additional susceptible cells and hosts. The hepatocytes of our 

transgenic mice are already expressing HBV antigens at the time of the adoptive transfer of 

syngeneic splenocytes, which account for the fact that HBV-Env+ mice show a rise of ALTs 

as early as three to four days post-adoptive transfer of wild type splenocytes. This kinetics of 

disease progression are quicker as compared to studies of acute HBV infection in primates 

and humans, where there is an initial quiescent phase of four to seven weeks before HBV 

starts to replicate vigorously, leading to an ALT rise (31, 207, 246). It is also known that, in 

general, the mouse cellular metabolism is more accelerated than in humans, which might 

also account for the different kinetics and magnitude of ALT release.  

Another implicit limitation of studying a human pathogen in a mouse model is that the 

co-evolution of the pathogen, in this case the HBV, together with its host(s) is neglected. 

Therefore, this limitation is not exclusively applicable to our model, but affects all HBV-

transgenic mouse models, which, nevertheless contributed significantly for a better 

understanding of CTL responses in HBV infection. Thus, this limitation should not demote us 

to design improved mouse models for the study of HBV immunopathogenesis. 

 Significant variations in phenotype related to differences in genetic background 

constitute another general criticism of mouse models of human diseases. Therefore, rushed 

conclusions based on limited data or from observations made from mutations introduced 

into a single (pure or mixed) genetic background should be avoided because they can be 

misleading and slow the search for new findings (247). Thus, I would like to highlight the fact 

that the results presented here are reproducible in two independent lines of HBV-transgenic 

mice and in two close but distinct backgrounds, namely C57BL/6 (HBV-Replication+ 

background) and B10.D2 (HBV-Env+ background). 

Despite the limitations described above, our transgenic mouse model of primary HBV 

infection should be seen as a valuable tool to identify novel candidate mechanisms and to 
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test their relevance in human disease. Our last discovery, uncovering a role for NKG2D and 

its ligand, RAE-1, in the acute immune response to HBV-expressing cells is one example. 

 

 

HBV treatment and therapies: new insight 

 

Hepatitis B is a preventable disease. The three possible but distinct read-outs of 

HBV control are inflammatory (ALT, biopsy), virologic (HBV DNA), and immunological 

(seroconversion: HBeAg to HBeAb and HBsAg to HBsAb). Current therapeutics to HBV 

consists of IFNα in combination with anti-viral drugs, such as lamivudine, adefovir, entecavir 

and telbivudine. Significant disadvantages exist among available therapeutics that include 

limited efficiency and promotion of drug-resistant viral strains. All these therapeutic 

approaches aim to eradicate the virus both indirectly by IFNα  administration and directly 

with reverse transcriptase inhibitors (lamivudine and adefovir) or other anti-viral agents 

(entecavir and telbivudine). A combined effect of viral suppression and HBV-specific 

immune reconstitution is needed for effective long-term clearance of infection. Current 

therapeutics are effective in suppressing HBV viral replication but in most cases fail to clear 

the virus. The specific interaction between viral components and elements of the immune 

system may provide important clues to understand the mechanism of persistent infection 

and the basis of the “switch” from immune tolerance to immune activation phase in chronic 

HBV infections. Moreover, it is thought that the interaction between HBV and both the innate 

and adaptive immune responses determines the final outcome of the HBV infection. A better 

understanding of these events may potentially lead to novel therapeutics in the future (35). 

Since HBV itself is non-cytopathic and liver injury is immune-mediated, new 

strategies for therapeutic intervention in this disease might aim at controlling the 

inflammatory/immunologic responses to HBV-infected cells in addition to targeting viral 

control and clearance. Our studies suggest that anti-NKG2D monoclonal antibody therapy 

might be a potential tool to control early immune responses to HBV-expressing cells, and 

prevent hepatocyte necrosis and liver damage. Early immune responses are thought to be 

important in clearing the infection, however it is known that immune re-activation during 

chronic hepatitis B infection leads to severe inflammation and liver fibrosis. Thus, in these 

latter situations controlling immune re-activation in addition to viral control may be beneficial 

for the host since immune-mediated hepatic damage might be reduced at the same time as 

viral replication which triggers the immune system is also controlled.  
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Fulminant hepatitis, which represents less than 1% of all hepatitis B infections, is a 

good example where the immune response of the host is responsible for the severe hepatic 

necrosis (hepatitis) with acute liver failure. In these cases, control of the immune-mediated 

response is instrumental in preventing hepatic failure and death. Thus, anti-NKG2D 

monoclonal antibody therapy could have an impact in these rare cases of fulminant 

hepatitis.  

 

 

NKG2D and other immune-mediated liver diseases 

 

There are several other causes of immune-mediated liver injury besides hepatotropic 

viral infections, such as autoimmune hepatitis, non-alcoholic steatohepatitis (NASH), drug-

induced hepatitis, among others. Interestingly, recent work has suggested that inhibition of 

the innate immune system may attenuate liver injury from acetaminophen (APAP) toxicity in 

a mouse model without directly modifying the metabolism of the drug (248). Moreover, the 

observation that APAP-induced liver injury is NK and NKT cell-mediated led us to 

hypothesize that it could also be NKG2D-dependent. Overdose by APAP is the leading 

cause of acute liver failure in adults in the United States of America and Europe. However, 

anti-NKG2D monoclonal antibody treatment did not prevent acute liver injury induced by 

APAP overdose in mice (appendix 1), suggesting that the NKG2D-ligand system does not 

play a fundamental role in this acute liver disease. 

  
 

Final considerations 

 

 “Human and mouse immunologists” are involved in a permanent debate about the 

best strategy for studying immunological mechanisms. While “human immunologists” 

generally question the relevance that findings in mouse models may have to human biology, 

“mouse immunologists” argue that studies in human systems are very limited and rarely 

extend beyond being descriptive. In fact, due to the relatively limited amount of human liver 

tissue available for research, especially at confidently definable disease stages, it seems 

that the “cross-talk” between mouse and human models will build the most coherent map of 

understanding. This may be particularly pertinent in mechanistic studies of liver immune 

regulation: tolerance versus activation. In fact, one important avenue towards understanding 
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HBV immunopathogenesis is to model hepatitis pathogenesis in mice, and unravel the role 

of the innate immune cell populations in the early immune recognition of HBV or/and in 

mastering a robust and effective adaptive immune response to HBV. It is very well 

established that CD8+ T lymphocytes are the main actors in HBV infection, but it is essential 

to understand whether there are other (innate) cell populations that are primarily activated 

and orchestrate the adaptive immune system, resulting in different HBV infection outcomes. 

The long-term goal of all my studies is to develop a more comprehensive 

understanding of the role of innate immunity and its interplay with adaptive immunity, in HBV 

clearance and virus-induced liver damage. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: While this thesis was being finalized Raulet and colleagues published their findings 

using NKG2D-/- mice in which NKG2D seems to be required for surveillance of primary 

tumors. In these mice, NK cells are defective in NKG2D function, but NK cell development is 

unaffected (Guerra et al., NKG2D-Deficient Mice Are Defective in Tumor Immunosurvaillance in 

Models of Spontaneous Malignancy, Immunity (2008), doi:10.1016/j.immuni.2008.02.016). The 

availability of these mice provides the opportunity to better understand the role of NKG2D on 

NKT cells, in general, and in HBV immunopathogenesis, in particular. Potential experiments 

using these mice are suggested in this dissertation.
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Our findings raise provocative mechanistic questions and provide an experimental 

system in which they can be addressed. Three major lines of investigation arose from this 

work and are mentioned below.  

 

RAE-1 regulation within the liver 

 

The constitutive expression of RAE-1 on healthy hepatocytes and its up-regulation 

on HBV-expressing hepatocytes (chapter II) requires further investigation to determine 

which mechanism(s) are involved in RAE-1 expression. These findings raise two interesting 

questions. First is to understand why the constitutive expression of the NKG2D ligand, RAE-

1, is exclusively in the liver and not in any other organs. Second is to identify the viral 

component responsible for RAE-1 up-regulation on hepatocytes and to assess its molecular 

mechanism. It is possible that the constitutive expression of this “stress-inducible molecule” 

in the liver, might be due to the permanent bath of antigens that come directly from the gut 

via the portal vein, in which the liver sits. Specifically, we have preliminary data that 

suggests that liver biopsies from germ-free mice as well as Myd88-/- mice have lower levels 

of RAE-1 mRNA expression than whole liver tissue from wild type mice with conventional 

gut flora. However, more experiments are required to confirm these results and to identify 

what compound is recognized by which pattern recognition receptor that might be involved 

in the mechanism of the up-regulation of RAE-1. On the other hand, we hypothesize that 

RAE-1 up-regulation on hepatocytes occurs in a HBV-specific manner and might be ER 

stress-related, since accumulation of large envelope proteins in the ER is thought to cause 

ER stress in those cells (204). However, preliminary data remains inconclusive and more 

analyses need to be performed to prove or disprove co-localization of large envelope 

proteins accumulation, overexpression of ER stress markers and RAE-1 up-regulation, in 

certain areas of HBV-positive livers. A potential interplay between CD1d and RAE-1 

expression should also be explored both in vivo and in vitro. In the same sequence of ideas, 

it would be pertinent to identify what hydrophobic molecule, if any, is CD1d presenting to 

type II NKT cells during HBV infection. Since the myristate moiety of the large envelope 

protein is our first candidate as to what CD1d is presenting to NKT cell in our model, the first 

approach would be to introduce a point mutation in that region and analyze how it affects 

NKT cell activation either in vitro or in vivo, by hydrodynamic tail vein injection or by 

generating transgenic mice. 
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DAP10 and DAP12 in NKT cell activation 

 

Our transgenic mouse model of primary human HBV infection can also be used as 

an experimental system to investigate in vivo the role of DAP10 and DAP12 adapter 

molecules on NKT cell activation via NKG2D receptor. We are currently in the process of 

investigating how these two adapters interact and signal in the specific conditions of our 

model. Despite the fact that NKG2D-/- mice are not currently available, a definitive 

experiment would be to cross these hypothetical knockout mice with Dap10-/- animals and 

then adoptively transfer Dap10 NKG2D DKO splenocytes into HBV-Replication+Rag-1-/- 

recipient mice. This way, it would be possible to determine if the hyperactive status of 

Dap10-/- NKT cells is NKG2D dependent or independent.  

 

 

Human studies 

 

As a result of our findings described in chapter II of this dissertation, a patent is being 

issued on the use of an anti-NKG2D monoclonal antibody to treat HBV-related hepatitis. We 

are now set to extend our studies into human hepatitis B in collaboration with our 

hepatologist colleagues at UCSF and at California Pacific Medical Center, San Francisco. 

Since patients with acute HBV infection are normally asymptomatic and rarely seek medical 

attention, the goal of the human studies is to investigate whether the NKG2D-ligand system 

plays a role in immune reactivation in chronic HBV-positive patients. It is our plan to collect 

blood samples and liver biopsies from chronic HBV-infected patients, before, during and 

after “hepatic flares”. Initially, we will assess NKG2D ligand expression on hepatocytes and 

NKG2D modulation both on NK and NKT cells, isolated from peripheral blood and from liver 

tissue. Despite sample limitations, it would also be interesting to investigate the role of 

NKG2D receptor and its ligands in fulminant forms of human HBV infection, which is a rare 

although life-threatening medical condition. 

These human studies aim to achieve not only a better mechanistic understanding of 

immune activation against HBV-infected cells, but also to identify a possible new strategy for 

therapeutic intervention in this disease. 
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Mice and Disease Model 

HBV-Env+ transgenic mice: lineage 107-5D [official designation Tg (Alb-1.HBV) 

Bri66; inbred B10.D2, H-2d] (70)  and HBV-Replication+ mice: lineage 1.3.46 [official 

designation Tg (HBV 1.3 genome) chi46; inbred C57BL/6, H-2b] (64) were crossed to Rag-1-

/- (249) animals (8-10 week-old). In experiments depicted in chapters II and III, these mice 

were intravenously injected with donor splenocytes from 6-10 week-old wild-type B10.D2 or 

C57BL/6 male mice (purchased from Jackson Laboratory, Bar Harbor, ME), respectively. 

The HBV-Replication+ mice contain a terminally redundant HBV DNA construct (64). These 

mice have high level viral replication in their hepatocytes and in the proximal convoluted 

tubules of their kidneys. The replication level seen in these mice is comparable to that 

observed in the infected livers of patients with chronic persistent HBV hepatitis, but the mice 

show no evidence of cytopathology (64). HBV-Replication+ Rag-1-/- mice were crossed to IL-

2Rβ-/- (217) and IFNγ-/- (250) animals, and HBV-Env+ transgenic mice were also crossed to 

IL-2Rβ-/- animals. Dap10-/- (214) and Dap12-/- (251) mice backcrossed twelve generations to 

C57BL/6 were used. Mice were bled by tail vein at the described intervals and sera were 

collected. Other mice were sacrificed at the indicated time points, and livers were perfused 

or collected for histology. All mice were kept in a pathogen-free facility at UCSF. 

 

 

Alanine-aminotransferase (ALT) 

Over 100µL of blood per mouse was collected at the indicated time points into an 

eppendorf containing 10µL of 50mM EDTA. Blood samples were centrifuged and at least 

50µL of sera were collected. Serum alanine aminotransferase (ALT) was measured by the 

standard photometric method using a COBAS MIRA plus auto-analyzer. Internal controls 

were used in all runs. 

 

 

Isolation of intra-hepatic immune cells 

Mice were anesthetized with 2.5% of isoflurane in 1.5L of oxygen (O2), and livers 

were perfused via the thoracic portion of the inferior vein cava with digestion media (RPMI-

1640 medium containing 0.2 mg/mL collagenase, 0.02 mg/mL DNAse, and 5% FCS at 

37ºC) for 5 min at 5.5mL/min, and portal vein was cut. After perfusion, the livers were 

homogenized by forcing them through a 70µm cell strainer. The cell preparation was then 

centrifuged at 30xg for 3 minutes to remove hepatocytes. The supernatants were 
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centrifuged at 650xg for 10 minutes in order to spin down the lymphocytes. The pellets were 

resuspended in a 60%/40% percoll gradient and centrifuge at 2500 RPM for 20 min with no 

brake in order to enrich for intra-hepatic immune cells, which were collected from the 

interface. These immune cells were then washed in RPMI with 5% FCS for 10 minutes at 

1800 RPM. 

 

 

Isolation of hepatocytes 

Mice were anesthetized with 2.5% of isoflurane in 1.5L of O2, and livers were 

perfused via the thoracic portion of the inferior vein cava with a commercial liver perfusion 

medium (GIBCO) for 5 min at 5.5mL/min, followed by perfusion with a digestion media 

(DMEM Low Glucose 50% / F-12 50% mixture and 0.12-0.2mg/mL collagenase at 37ºC) for 

8 min at 5.5mL/min. Livers were cut into small pieces and filtered through a 70 µm nylon cell 

strainer.  Filtered cells were centrifuge at 30xg for 3 minutes, and viable cells counted by 

using trypan blue dye exclusion. 

 

 

Immunofluorescent staining and flow cytometry 

Fc-block (2.4G2 anti-CD16+32 mAb) and fluorochrome-conjugated antibodies 

against TCRβ (H57), NK1.1 (PK136), CD1d (1B1), H-2Kd (SF1-1.1), or the appropriate 

isotype-matched control Ig were purchased from BD. PE-labeled anti-NKG2D (CX5) 

antibody (rat IgG1 isotype) was purchased from eBioscience. Purified antibodies against 

RAE-1 (pan-RAE-1), which recognizes all known RAE-1 proteins (rat IgG2a isotype), and 

MULT1 were developed in collaboration with Dr. J. P. Houchins and are commercially 

available from R&D Systems, Minneapolis, MN (168).  

 For all stainings, approximately 1 x 106 cells were incubated with saturating amounts 

of antibody (previously titrated) on ice for at least 20 minutes. 

DAPI was purchased from Roche. Viable cells were analyzed on a LSR II (BD) using 

FlowJo software. 

 

 

Cell sorting 

In chapter II, splenocytes were stained with anti-NKG2D mAb CX5 and the negative 

lymphocytes isolated. In some experiments, splenocytes were co-stained with anti-NKG2D 
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(CX5), anti-TCRβ (H57) and anti-NK1.1 (PK136). Cells expressing all three cell surface 

markers (NKG2D+ NKT cells) were depleted. All flow cytometry sorting experiments showed 

>98% purity by using a FACS Aria cell sorter (BD). 

In chapter III, intra-hepatic immune cells were co-stained with anti-NKG2D (CX5), 

anti-TCRβ (H57) and anti-NK1.1 (PK136).  Cells expressing all three cell surface markers, 

NKG2D+ NKT cells, as well as cells co-expressing TCRβ and NK1.1 but not NKG2D, 

NKG2D- NKT cells, were sorted. All flow cytometry sorting experiments showed >98% purity 

by using a FACS Aria cell sorter (BD). 

 In chapter IV, intra-hepatic immune cells were sorted by size and granularity. All flow 

cytometry sorting experiments showed >98% purity by using a FACS MoFlo cell sorter 

(Dako Cytomation). 

 

 

TaqMan quantitative RT-PCR 

Quantitative (real-time) RT-PCR was performed on cDNA generated from HBV-

positive and negative hepatocytes, intra-hepatic immune cells and sorted intra-hepatic 

NKG2D+ NKT cells, NKG2D- NKT cells and NK cells, by using an ABI 7300 according to the 

manufacture’s instructions. Specific primers and probes were used for Hprt (133), pan-RAE-

1 (195), IFNγ (Primers: sense, ATGCATTCATGAGTATTGCCAAGT; anti-sense, 

GCTGGATTCCGGCACAG; Probe:  FAM-CACAGGTCCAGCGCCAAGCATTC-TAM), TCRβ 

(Primers: sense, CACCCAAACCTGTCACACAGA; anti-sense, 

CATAGAGGATGGTTGCAGACAGAA;Probe:AGACTGTGGAATCACTTCAGCATCCTATCA

TCAG); IL-4 (Primers: sense, TCAACCCCCAGCTAGTTGTC; anti-sense, 

CGAGCTCACTCTCTGTGGTG, sybr green); Dap10 (Primers: sense, 

GCGGTCATGTCACTCCTAATTG; anti-sense, ACCATCTTCTTGGGCAGGC; Probe from 

ABI, cat#185012327-6), Dap12 (Primers: sense, TGGTCTCCCGAGGTCAAGG; anti-sense, 

GCGACTCAGTCTCAGCAATGTG; Probe from ABI, cat#185085152-4), NKG2D-Long 

(Primers: sense, CGGAAGTGGTGTCACATATCTTTAA; anti-

sense,CCATGGCTACCTCAGATTTACAGA;Probe:CTCAGCATTCAGGAAGCAGAGGCAG

ATT) and NKG2D-Short (Primers: sense, TGCACCCTCCACCAAATGAT; anti-sense, 

GTTCCTTGGCCCCACAGG; Probe: AGCTAAACACATTGTGTTCCCATAAAACA). Total 

RNA (isolated using Quiagen RNeasy kit) was DNase I-treated and cDNA was synthesized 

(using iScript kit, BIORAD). The cycling conditions for real-time PCR were: 2 min at 50°C, 
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10 min at 95°C, followed by 40 cycles of 95°C for 15 s and 1 min at 60°C. All samples were 

normalized to the signal generated from the housekeeping gene mouse Hprt. 

 

 

In vivo antibody treatment 

A neutralizing, non-depleting rat anti-mouse NKG2D mAb, clone CX5 (rat IgG1), 

generated as described (133), recognizes the NKG2D extracellular domain and blocks the 

binding of NKG2D to its ligands. We injected i.p. 200µg of CX5 or control rat IgG (Sigma) 

per recipient mouse the day before and four days after the adoptive transfer of syngeneic 

naïve splenocytes.   

To deplete NK cells from donor splenocytes and/or from HBV-transgenic recipient 

mice, a depleting rabbit anti-mouse/rat asialo GM1 polyclonal antibody (purchased from 

Cedarlane Laboratories) was used. These antisera depleted NK cells, but not NKT cells 

(21). We injected i.v. 100 µg of antibody per wild-type B10.D2 donor mouse one day before 

they were sacrificed. Depletion of NK cells (<0.1%) was verified by flow cytometry before the 

adoptive transfer was performed.  

In the experiments performed before adoptive transfer depicted in chapter IV, anti-

NK1.1 mAb, clone PK136, was used to deplete NK cells. Depletion of NK cells (<0.1%) was 

always verified by flow cytometry. 

In experiments mentioned in chapter IV, anti-Gr1 monoclonal antibody, clone 

RB68C5, was injected intravenously, every 24 hours, to deplete neutrophils (maximum of 2 

injections per mouse). Depletion of CD11b+ Gr-1high cells from peripheral blood (<1%) and 

intra-hepatically (<3%) was assessed by flow cytometry. 

 

 

Acetaminophen induced liver injury 

C57BL/6 mice were matched by age (8-10 weeks of age) and gender (males), and 

fasted overnight prior to the administration of 400mg/Kg of acetaminophen intra-peritoneally. 

Mice were bled at 8, 24 and 48 hours after injection and sera were isolated and used to 

measure the ALT values in circulation.  
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ELISpot Assay 

Intra-hepatic immune cells were eluted from HBV-transgenic mice, and at day 0, 3 

and/or day 4 after adoptive transfer of syngeneic naive wild type splenocytes. Cells were 

counted and immediately plated in an anti-cytokine mAb coated 96-well microplate (BD, 

ELISpot mouse IFNγ and IL-4 kits).  Eight serial 2- or 3-fold dilutions were done in duplicate, 

per condition. Spots were counted automatically by using an AID ELISpot Reader. 

  

Histology 

Liver was fixed, embedded in paraffin, and stained with hematoxylin and eosin. Liver 

sections were scored by an unbiased pathologist, according to the histopathologic standard 

scale for assessing viral hepatitis (252). 

 

 

Statistical analysis  

For all experiments, with the exception of studies depicted in figures 2.4 and 2.5, the 

Student’s two-tailed T-test was used to test the difference between arithmetic mean values 

of each group (control versus experimental). Mann-Whitney two-tailed test was applied on 

experiments depicted in figures 2.4 and 2.5. 
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Appendix 1. C57BL/6 mice were treated with 200µg anti-NKG2D monoclonal 

antibody (CX5) or its isotype control (ratIgG1) the day before of acetaminophen (400mg/Kg) 

intra-peritoneal administration. Experimental and control groups were bled at 8, 24 and 48 

hours after injection in order to evaluate hepatocyte necrosis as measured by serum ALTs.  

The chart above depicts one of three independent experiments and demonstrates no 

protective effect of anti-NKG2D monoclonal antibody treatment in acute liver injury caused 

by acetaminophen overdose. Mice were matched by age (8-10 weeks of age) and gender 

(males), and fasted overnight prior to acetaminophen dosing. 
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EPILOGUE 
 

 

As I am finishing the writing of this dissertation, I realize that it has been a much 

more challenging task than I first expected, mainly due to all the scientific questions that still 

remain unanswered, the ones I was not able to answer even if I really propose myself to, 

and the numerous questions that arose during this project, directly or indirectly from our 

results. This is due not only to the fact that one result leads to more hypothesis and 

therefore experiments, but also because as we broad our scientific knowledge more 

questions we tend to ask and more questions we would like to be addressed. As we expand 

our knowledge we better understand what we know, what we do not know and what we 

really would like to pursue and be the first one to know. 

I finish this thesis with enormous enthusiasm to continue to contribute to the 

advances towards a better understanding of liver immunology, both in health and disease. In 

fact, the immunology within the liver is yet poorly understood and this work is only a little 

step further in the beginning of a long journey, in which I envision myself for life. 
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