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SUMMARY

The now classical enhanced strain technique, employed with success for more than 10 years in solid,
both 2D and 3D and shell �nite elements, is here explored in a versatile 3D low-order element which
is identi�ed as HIS. The quest for accurate results in a wide range of problems, from solid analysis
including near-incompressibility to the analysis of locking-prone beam and shell bending problems leads
to a general 3D element. This element, put here to test in various contexts, is found to be suitable in
the analysis of both linear problems and general non-linear problems including �nite strain plasticity.
The formulation is based on the enrichment of the deformation gradient and approximations to the
shape function material derivatives. Both the equilibrium equations and their variation are completely
exposed and deduced, from which internal forces and consistent tangent sti�ness follow. A stabilizing
term is included, in a simple and natural form. Two sets of examples are detailed: the accuracy tests
in the linear elastic regime and several �nite strain tests. Some examples involve �nite strain plasticity.
In both sets the element behaves very well, as is illustrated in numerous examples. Copyright ? 2003
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The analysis of general solid mechanics problems from linear elastic beam bending to �nite
strain elasto-plastic problems can be accomplished with the use of solid 3D elements and,
in particular, hexahedral elements. Objections to such a one-size �ts all approach are related
both to the cost of the analysis and its accuracy. In most commercial �nite element codes,
problems with beams or shells are analysed with special-purpose elements. In terms of cost of

∗Correspondence to: P. M. A. Areias, Instituto de Engenharia Mecânica (IDMEC), Faculdade de Engenharia da
Universidade do Porto, Rua Dr. Roberto Frias s=n, 4200-465 Porto, Portugal.

†E-mail: simplas2002@netscape.net

Contract=grant sponsor: Minist�erio de Ciência e da Tecnologia, FCT; contract=grant number: PRAXIS XXI=BD=
18538=98

Received 9 September 2002
Revised 12 February 2003

Copyright ? 2003 John Wiley & Sons, Ltd. Accepted 14 March 2003



1638 P. M. A. AREIAS ET AL.

the analysis, it is clear that a beam element results in faster analyses than a general purpose
3D element. For the solution of shell problems with shell elements, the comparison is not so
conclusive. In terms of versatility, the so-called solid-shell elements [1–7] which only adopt
displacement variables at the nodes and do not preclude the use of general 3D constitutive
models, can be e�ective in modelling shell intersections and allow a natural coupling with 3D
elements. However, for problems containing thick geometries such as bulk forming problems,
solid elements should be used.
The inspection of the accuracy of solid elements in the analysis of shell structures was

carried out in References [8–15] with interesting conclusions for su�ciently re�ned meshes.
This paper presents a new stabilized enhanced strain 3D element which contains 18 internal

variables and presents a very good accuracy in many well-known tests.
In terms of background contributions, enhanced strain elements have been established as

a generalization of the so-called incompatible modes element [16] in Reference [17]. Other
works have followed, such as the one in Reference [18] where the extension to �nite strain
plasticity was exposed and the 3D case was presented. Further work with the 3D case con-
tinued [19], to ensure the absence of volumetric locking. Further re�nements of this classical
formulation were carried out in Reference [20].
In classical enhanced strain elements hourglass instabilities occur in the �nite strain regime

when high levels of compression or tension are involved, a fact identi�ed in Reference [21].
With the purpose of removing this defect, in References [11, 19] a modi�ed quadrature was
proposed and in Reference [20] a stabilizing term and modi�ed quadrature were adopted.
More recently, in Reference [22], a penalty stabilizing term related to the original �rst
Piola–Kirchho� stress tensor was introduced by C�esar de S�a et al.
Other stabilization approaches were used in References [23, 24] in the context of the

enhanced strain technique. Some noticeable enhanced strain contributions are the ones of
Reference [8] where elements were tested with up to 30 internal variables and of [11] where
18 internal variables were adopted.
The enhanced strain technique is far from being the unique methodology to improve the

accuracy of low-order elements. The reduced=average integration technique with various sta-
bilization approaches [9, 14, 25–30] is a cost-e�ective technique to improve elements’ perfor-
mance. Classical mixed formulations (assumed strains and=or stresses with internal variables)
frequently result in high-accuracy solid elements (see References [1, 7, 12, 13, 31–35]) but
few non-linear examples have been presented using these techniques. Moreover, the notion of
‘selective scaling’ is introduced in some exceptionally good performing elements [1] which
somehow lacks generality. The so-called assumed strain formulation (some strain compo-
nents are re-interpolated) which was introduced for plate and shell analysis by Bathe and
co-workers (see the comprehensive expositions in References [36, 37]) was also introduced
into a hexahedral element in Reference [38], but in a shell analysis context.
To overcome the volumetric locking, some well-known solutions consist in adopting an in-

dependent pressure �eld and=or dilatation �eld. The family of u−p (displacement–pressure),
�B, mean-dilatation, selective-reduced integration, and related strategies is well-known and has
several variations (see References [37, 39–47]). These strategies are well adapted to non-
linear analysis and o�er good results if bending is not involved. As a consequence, mixed
u−p strategies coupled with enhanced strain techniques have been proposed to overcome the
de�cient results in bending of classical u − p elements (see References [22, 48, 49]) which
are very cost-e�ective because fewer enhanced strain variables can be used. The adoption of
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both assumed stress and enhanced strains was also proposed in Reference [50] with reason-
able results. The use of reduced=average integration with enhanced strains was proposed in
References [10, 15, 24] with success regarding the e�ciency aspects.
A combination developed toward the analysis of strain softening problems was presented

recently [51, 52] and consists in the coupling of enhanced strain technique with an implicit
gradient model.
Rather than inspecting a complex combination, the purpose of this work is to apply a

classical enhanced strain technique, without any other tool to increase the performance of
the element or reduce its cost. Additionally, the integration strategy is a standard Gauss
quadrature with 8 points. Despite this simplicity, the results are very good in most situations
and non-linear problems are dealt with success. The formulation contains a penalty stabilizing
term which was established variationally (see Reference [22]). The element consists of an
extension of the one proposed in References [51, 52] where 9 internal variables instead of
18 were adopted and is identi�ed as Hexahedral for near-Incompressibility and Shear (HIS).
Some properties of the proposed element are:

• No special treatment or directional enhancement is adopted in the analysis of beams
plates and shells. The same element can be used in both bulk forming, solid analysis,
sheet metal forming and classical beam and plate linear analysis. Some solid-shell and
3D-shell (see Reference [38]) clearly identify the thickness direction and are unable to
perform bulk solid analysis. On the other hand, some shell elements impose a plane
stress condition to the material representation.

• There is no restriction concerning the constitutive law adopted (for instance �B and u−p
elements contain a �lter of the constitutive pressure, see Reference [22]).

• The formulation for general non-linear problems is fully detailed, exact linearization
is performed and very good Newton–Raphson convergence properties are obtained, as
shown in the examples.

• A hourglass control term is incorporated variationally (see References [51, 22])

2. FINITE ELEMENT FORMULATION

The proposed �nite element is based on the classical enhanced strain technique, with a par-
ticular selection of the enhanced strain shape functions and a derivation of the enhanced
deformation gradient which ensures the Patch test satisfaction.
The static equilibrium condition of a given body B follows for a conservative system. The

extension to plasticity is carried out through the introduction of a scalar internal variable,
which is the plastic multiplier, but the internal forces and consistent tangent sti�ness matrix
retain the form presented for the conservative system (see References [51, 52] for further
details).
An advantage of this approach is that it is guaranteed that the discretized system is conser-

vative if the material behaviour of the body is elastic and the external loads are conservative.
Let �0 denote the volume integration domain corresponding to the non-deformed con�g-

uration of the body B, x the spatial position of an arbitrary point belonging to B and A a
certain second-order tensor. Additionally, X denotes the material position of an arbitrary point
belonging to B.
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A total potential � based on two �elds, x and A, can be written as the sum of the
potential elastic energy, �int (internal energy) and the conservative external force potential,
�ext (external energy):

�(x;A)=
∫
�0


W (∇0x+A) +

�p︷ ︸︸ ︷
r
2
A :A


 dv0

︸ ︷︷ ︸
�int

+�ext(x) (1)

The external force potential �ext is a function of the spatial position vector exclusively.
The notation W in (1) represents the strain energy function [47]. The tensor ∇0x=@x=@X
is the continuum deformation gradient and dv0 = d X1 d X2 d X3 where Xk represent the scalar
components of X.
An important term in de�nition (1) is identi�ed as �p which, for r �→∞ imposes the

nullity of A and hence the correspondence between de�nition (1) and the standard continuum
potential (see References [45, 47, 53]). The determination of the parameter r is only adopted in
severe compression problems and it the minimum value with which hourglass does not occur.
This determination is a drawback of most stabilization techniques for enhanced strain elements
(see References [20, 22]), of some stabilization techniques for reduced integration elements
(see References [25, 26, 28, 29]) and also of most stabilization techniques for the mixed u−p
formulations (References [43, 46] present some stabilization of u−p low-order elements). In
Reference [22] a connection between the penalty parameter r and the �rst Piola–Kirchho�
stress tensor that acts as Lagrange multiplier in the original enhanced strain formulation [49]
was established.
Form (1) of the total potential � is a particular case of a four-�eld potential presented

recently [22].
If the body B is discretized using NEL hexahedral elements, then the total potential � in (1)

is approximated, due to discretization, as a sum of each element’s contribution: �∼=∑NEL
e=1 �

e

where �e=�eint + �
e
ext. The internal energy corresponding to a certain element, e, with a

Reference integration domain V0 is written as

�eint =
∫
V0

[
W (∇0x+A) +

r
2
A :A

]
dV0 (2)

According to the procedure for the enrichment of the discretized deformation gradient (here
denoted as F), the following notation is used [22]:

F=∇0x+A (3)

where ∇0x represents the material gradient of the spatial position vector and A is the already
introduced term which is a function of the element’s internal variables. In terms of scalar
components, Equation (3) can be written as

Fij=
@xi
@Xj

+ Aij (4)

where i=1; 2; 3 and j=1; 2; 3.
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If the nodal shape functions of the 8 node hexahedral are introduced

Nk =0:125(1 + �1k�1)(1 + �2k�2)(1 + �3k�3) (5)

where �l represents the l-th local co-ordinate and �kl represents the value of the l-th local
co-ordinate at the k-th node, we now have

Fij=
@Nk
@Xj

xki + Aij (6)

In decomposition (6) xki represent the spatial global co-ordinates of each node k (similarly,
Xki represent the material global co-ordinates of each node k).
If use is made of the Jacobian matrix which relates the material global co-ordinates with

the local co-ordinates, whose scalar components are

Jij=
@Xi
@�j

=
@Nk
@�j

Xki (7)

Equation (6) is re-written as

Fij=
@Nk
@�r

J−1rj xki + Aij (8)

In Reference [19], an approximate derivative of the hourglass part of the shape functions
Nk was carried out, instead of the conventional Equation (8). The argument is that with
the particular approximation, the element remains ‘...locking free for distorted con�gurations
(with non-constant Jacobian) in the incompressible limit’ [19]. However, the approximation in
Reference [19] causes the element to fail the Patch test (see Reference [15] for an alternative
that guarantees the satisfaction of the Patch test).
To ensure the satisfaction of the Patch test, material averages are used. These conclusions

have been numerically veri�ed using the Patch test.
In this work, the following approximation is adopted:

@Nk
@Xj

∼=
(
@Nk
@Xj

)
+ �ks

�j
j
@Hs
@�p

�J
−1
pj with s=1; : : : ; 4 (9)

where (
@Nk
@Xj

)
=
1
V0

∫
V0

@Nk
@Xj

dV0 (10)

j=det[J] (11)

�j=
1
V0

∫
V0
j dV0 (12)

�J
−1
pj =

1
V0

∫
V0
J−1pj dV0 (13)

H1 = �1�2; H2 = �1�3

H3 = �2�3; H4 = �1�2�3 (14)
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and �ks with s=1; : : : ; 3 are the well-known stabilization vectors; see Reference [15, Equation
(11)] or Reference [19, Equation (2.13a)] for a complete description.
A key development concerns the scalar components Aij. If, in local co-ordinates, the term

A is known through its mixed-variant scalar components Ãqt , then it follows that

Ars=
@xr
@Xp

JpqÃqtJ−1ts (15)

However, to ensure that the following condition (see References [17–19, 22]) is satis�ed∫
V0
A dV0 = 0 (16)

for a given selection of the scalar components Ãpq, the terms Jpq, J−1ts and @xr=@Xp must be
independent of the local co-ordinates �l.
Therefore, material averages of these quantities are used:

Ars=
�j
j
�Frp �Jpq Ãqt �J

−1
ts (17)

where

�Frp=
1
V0

∫
V0

@xr
@Xp

dV0 (18)

and

�Jpq=
1
V0

∫
V0
Jpq dV0 (19)

Having established relation (17) it is important to ensure that the condition
∫ 1
−1

∫ 1
−1

∫ 1
−1 Ãqt

d�1 d�2 d�3 = 0 is satis�ed, so that the Patch test is satis�ed (see References [17–19]).
The particular form for Ãqt can be presented as

Ãqt = Ẽqtz�z (20)

where �z are the enhanced strain variables, which represent variables internal to the element.
The term Ẽqtz in Equation (20) can be written according to Table I, where

Mk =
@
@�k

[(1− �21)(1− �22)(1− �23)] (21)

represent the local co-ordinate derivatives of the 3D bubble function. Motivations to use this
function are discussed in Reference [22].
A 3D element based on this function was published recently [51]. The �rst 9 shape functions

in Table I are a simple extension of the ones proposed for the 2D case in a recent publication
[22] and applied for the �rst time in a 3D case in Reference [51]. These are related to the
bending modes of the hexahedral. The remaining 9 are related to the torsion modes and only
make sense in the present 3D case.
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Table I. Table of enhanced strain shape functions in terms of scalar
components of Ẽqtz .

Ẽqt1 =M1�qt�t1 Ẽqt2 =M2�qt�t2 Ẽqt3 =M3�qt�t3
Ẽqt4 =M2�q1�t2 Ẽqt5 =M1�q2�t1 Ẽqt6 =M3�q1�t3
Ẽqt7 =M1�q3�t1 Ẽqt8 =M3�q2�t3 Ẽqt9 =M2�q3�t2
Ẽqt10 =M2M3�qt�t1 Ẽqt11 =M1M3�qt�t2 Ẽqt12 =M1M2�qt�t3
Ẽqt13 =M3M2�q1�t2 Ẽqt14 =M3M1�q2�t1 Ẽqt15 =M2M3�q1�t3
Ẽqt16 =M2M1�q3�t1 Ẽqt17 =M1M3�q2�t3 Ẽqt18 =M1M2�q3�t2

With the purpose of calculating the element’s internal forces and consistent tangent sti�ness
matrix, the following notations are introduced

	Aij = �JirÃrs �J
−1
sj (22)

Fij = �Fiu 	Auj
�j
j
+
@xi
@Xj

(23)

	Ekij = �JirẼkrs �J
−1
sj (24)

Ekij = �Fiu 	Ekuj
�j
j

(25)

The spatial velocity gradient, which is identi�ed as L, is represented by its scalar compo-
nents according to

Lij= ḞirF−1
rj ⇔ Lij=

[
@Nk
@Xr

F−1
rj +

�j
j

(
@Nk
@Xu

)
	FurF−1

rj

]
︸ ︷︷ ︸

N̂kj

ẋki +
�j
j
�Fiu 	EkurF−1

rj︸ ︷︷ ︸
Ĝkij

�̇k (26)

where the notation ẋki represents the time derivatives of the nodal spatial position and the
terms �̇k identify the time derivative of the enhanced strain variable with index k.
Equation (26) provides a de�nition of the terms N̂kj and Ĝkij, which relate the spatial veloc-

ity gradient with the nodal spatial co-ordinates and the enhanced strain variables, respectively.
If the equilibrium condition at the element level is established using the stationarity of �e,

��e=0, and then

��e=0 ⇔
∫
V0
�ijN̂kj�xki dV0 +

∫
V0
�ijĜkij��k dV0 +

∫
V0
rAij�Aij dV0 + �x�eext=0 (27)

with �ij being the Kirchho� stress tensor scalar components, related with the Cauchy stress
tensor components, �ij by �ij= �ij= det[F]. The relation between W (F) and � is �= @FWFT.
From (27) the element’s internal forces and external forces are calculated (for a standard

calculation of external forces see Reference [37]). A note regarding Equation (27) is that the
contribution ��eext is exclusively due to the change in the spatial nodal co-ordinates.
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The calculation of the consistent tangent sti�ness, which is a necessity of the Newton–
Raphson method, is based on the second variation of �e : d��e. Here use is made of the
consistent modulus, CT , relative to the Truesdell rate of the Kirchho� stress �̇Tr, is

�̇Tr =CT :D (28)

where D= 1
2(L+L

T) represents the rate of deformation tensor (see also References [47, 53]).
The Truesdell rate of the Kirchho� stress is related to the time derivative of the Kirchho�

stress tensor, �̇ (see also Reference [22]):

�̇Tr = �̇− L�− �LT (29)

Using this notion, the second variation of �eint is calculated

d��eint =
∫
V0
CTijrsN̂kjN̂ ls dxlr�xki dV0 +

∫
V0
CTijrsĜmrsĜnij d�m��n dV0

+
∫
V0
(r dAij�Aij + rAij d�Aij)V0

+
∫
V0
(N̂ lj dxli + Ĝmij d�m)(N̂ks�xki + Ĝnis��n)�js dV0 (30)

where i; j; r; s indicate degrees of freedom, k; l indicate nodes and m; n indicate enhanced strain
variables.
The implementation of element HIS is straightforward, and follows directly from Equa-

tion (27) for the forces and from Equation (30) for the consistent tangent sti�ness.

3. NUMERICAL EXAMPLES

The following examples illustrate the application of the derivations carried out in Section
2 in both linear and non-linear situations. The purpose is to validate the present element
formulation in a wide range of situations.
Firstly, some variants of the Patch test are satis�ed. After that, several linear elastic tests

are performed. Finally, various classical problems with geometric non-linearities and material
non-linearities are presented.
The elasto-plastic model adopted in several problems has been described in References

[51, 52] and is a variant of the one adopted in other sources [49, 54, 55]. For the purely
elastic analysis, the Hencky hyperelastic model is adopted, with exception of the silicone
rubber tension test where the Yeoh hyperelastic model is employed (see Reference [47]).
A standard Newton–Raphson method with bisection line-search is used in most non-linear

computations, and, in problems involving instabilities, the arc-length method discussed in
Reference [56] is employed, with a linearized treatment if no real roots are obtained.
All the computations were carried out in code SIMPLAS, a Fortran 90 code developed by

the �rst author of this work.
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Figure 1. The Patch test for solids, according to Reference [57].

Note that in all the examples except the last one, there was no need of using the stabilization
term.
Therefore r=0 in problems from 3.1 to 3.3.9 and r=1:5E=2(1 + �) in problem 3.3.10.

3.1. Patch test

The Patch test for solids suggested in Reference [57] is here explored. The purpose of this test
is to verify the correctness of the computer implementation of the element. Displacements are
applied at the exterior nodes to induce zero stresses in rigid body motion (Case A), constant
stresses (Case B) and linear varying displacements (Case C). Figure 1 shows a unit cube
containing 7 hexahedral distorted elements. The elasticity modulus considered E is 1× 106
consistent units and the Poisson coe�cient � is 0.25.
For Figure 1, the Case A is materialized by a rigid body rotation �z=45◦ along the axis

de�ned by nodes 9–13 through the imposition of a displacement v=1=
√
2 at nodes 10–14

and also by a rigid body translation through the movement of face 10–11–14–15, through a
displacement value u=1.
These two rigid body motions of Case A involve large displacements, and are su�cient for

checking if stress values near zero are obtained.
Case B consists in imposing a pure shear through the application of shear forces at the

nodes of face 10–11–14–15, with fy=1× 102 and pure tension through the application of
normal forces at face 10–11–14–15, with fx=1× 102.
Finally, case C is tested imposing the following displacement �eld at the exterior nodes

only (9; : : : ; 16):

u=5× 10−4(2x + y + z)
v=5× 10−4(x + 2y + z)
w=5× 10−4(x + y + 2z)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 58:1637–1682
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Table II. Patch test, Case A: Large amplitude rigid body motion
(rotation and translation).

Stress component Max. value Min. value Theory

Rotation, �z =45◦

�11 9:96× 10−10 −1:13× 10−9 0
�22 1:09× 10−9 −8:17× 10−10 0
�33 5:82× 10−10 −7:22× 10−10 0
�12 4:17× 10−10 −5:25× 10−10 0
�13 1:23× 10−10 −1:90× 10−10 0
�23 2:01× 10−10 −2:25× 10−10 0

Translation, u=1
�11 1:07× 10−9 −8:46× 10−10 0
�22 9:45× 10−10 −7:09× 10−10 0
�33 1:00× 10−9 −1:14× 10−9 0
�12 2:26× 10−10 −2:21× 10−10 0
�13 4:37× 10−10 −3:76× 10−10 0
�23 1:91× 10−10 −2:74× 10−10 0

Table III. Patch test, Case B: Shear and tension.

Stress component Max. value Min. value Theory

Shear, �12 = 400
�11 0 0 0
�22 0 0 0
�33 0 0 0
�12 400 400 400
�13 0 0 0
�23 0 0 0

Tension, �11 = 400
�11 400 400 400
�22 0 0 0
�33 0 0 0
�12 0 0 0
�13 0 0 0
�23 0 0 0

For Case A, the residual stresses exposed in Table II are extremely small relative to the
elasticity modulus and can be considered zero. For Case B, the values in Table III are exact
both for shear and tension situations.
For Case C, whose results are presented in Table IV, the analytical values are reproduced

exactly, a condition established in Reference [57] and known to ensure convergence of results
as mesh is re�ned (see also the explanatory considerations in Chapter 9 of Reference [58]).
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Table IV. Patch test, Case C.

Analytical Numerical
Node u v w u v w

1 5:16× 10−4 5:63× 10−4 4:87× 10−4 5:16× 10−4 5:63× 10−4 4:87× 10−4
2 1:11× 10−3 8:45× 10−4 8:45× 10−4 1:11× 10−3 8:45× 10−4 8:45× 10−4
3 1:31× 10−3 1:21× 10−3 1:01× 10−3 1:31× 10−3 1:21× 10−3 1:01× 10−3
4 7:63× 10−4 1:00× 10−3 7:42× 10−4 7:63× 10−4 1:00× 10−3 7:42× 10−4
5 7:35× 10−4 6:68× 10−4 8:96× 10−4 7:35× 10−4 6:68× 10−4 8:96× 10−4
6 1:17× 10−3 9:85× 10−4 1:17× 10−3 1:17× 10−3 9:85× 10−4 1:17× 10−3
7 1:46× 10−3 1:41× 10−3 1:38× 10−3 1:46× 10−3 1:41× 10−3 1:38× 10−3
8 8:88× 10−4 1:18× 10−3 1:16× 10−3 8:88× 10−4 1:18× 10−3 1:16× 10−3

Figure 2. Linear elastic case: set of beams analysed. Beam I is a curved beam, beams
II and III are distorted cantilever beams.

3.2. Linear problems

The usefulness of the following tests lie in the inspection of the accuracy of the proposed
element in the linear case. The suitability of the new 3D element in situations that are typically
analysed with beam, plate and shell elements is veri�ed. Some well-known solutions, from
numerical and analytical sources are used in the comparisons. A near-incompressible problem
with mesh distortion, which is known to be a di�cult problem for low-order 3D elements is
also presented.

3.2.1. Beam problems. Figure 2 shows the geometry, boundary conditions and elastic material
properties for the tested beams.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 58:1637–1682
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Table V. Beam I: convergence of normalized results.

Mesh HIS Reference [9]

5× 1× 1 0.8418 0.787
10× 2× 2 0.9955 0.998
20× 4× 4 1.012 1.023

Table VI. Beam II: Normalized results.

Case HIS QM=E12 [10] QSN=E9 [10]

A 0.924 0.901828 0.892957
B 0.882 0.851621 0.846237

Table VII. Beam III: Normalized results.

Case HIS QM=E12 [10] QSN/E9 [10] Pian 1984 [31]

A 0.9583 0.9299 0.9953 0.9618
B 0.9535 0.9237 0.9903 0.9570

The curved beam (beam I) was tested in Reference [47] and a target solution for the
displacement under load of v=3:14159 is adopted. The normalized displacement under load
is presented in Table V where the results taken from Reference [9] are the ones of the element
NUHEXIN-4. Although the element from the above reference presents slightly more accuracy
for the 10× 2× 2 mesh, it tends to be too soft when �ner meshes are used (in a lesser extent
the same occurs with element HIS).
Beam II is presented in Reference [10] where the element QSN=E9 was introduced. The

same reference analyses the element QM=E12 proposed in Reference [19] in the present
problem. For case A in Figure 2 the solution for the transverse displacement is v=100, and
for case B the solution is v=102:6. The point indicated with a small circle in Figure 2 is
monitored. The results are presented in Table VI. It is clear that, for this test, the proposed
HIS element is the most accurate.
Beam III is a well-known test (see References [10, 31]) with the solution values being the

same as those presented for beam II. Table VII shows the normalized results. In Reference [31]
a 2D element was used.
Although in this case (in contrast with the case of beam II) QSN=E9 gives more accurate

results than HIS, the results for HIS element are very close to the ones obtained using a 2D
hybrid formulation (see Reference [31]).

3.2.2. Plate problems. Figures 3 and 4 show the geometries and boundary conditions for
various problems of plate bending. Plate I is a clamped circular plate subject to a point load,
plate II is a clamped square plate subject to point load, plate III is a simply supported square
plate subject to point load and plate IV is a simply supported 30◦ skew plate subject to
uniform pressure. Two plates discretized with distorted meshes are shown in Figure 4.
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Figure 3. Linear elastic case: set of non-distorted plates analysed.

Figure 4. Linear elastic case: set of distorted square plates analysed.
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Figure 5. Plate I: convergence of normalized displacement as a function of the number of elements in
each side, results from References [9, 14] are presented.

A normalization of results with Kirchho� plate theory (see Reference [59]) is carried
out in all the plates, except in plate IV, where a di�erent target value is adopted (see
Reference [8]).
The solution of the circular plate problem is specially important, since the clamped bound-

ary is grossly represented by straight-edged elements. The best results obtained with reduced
integration hexahedral elements (see References [9, 14]) are presented for comparison in
Figure 5. For Reference [9], the best results were obtained with their NUHEXIN-4 element,
and these are presented here for comparison. Table VIII shows the results and it is being no-
ticeable that with the present HIS formulation, there is no need for adopting several elements
along the thickness, as is the case with References [9, 14].
It is clear from Figure 5 and Table VIII that element HIS presents very accurate and fast

convergent results, clearly outperforming the elements from References [9, 14].
The results for the clamped square plate (plate II) obtained with the present element and the

results from References [8, 12] are all presented in Figure 6. The results from Reference [8]
correspond to their 3D.EAS-30 element, which contains 30 internal variables. Although the
clamped plate in Reference [12] presents distinct dimensions, the aspect ratio length=thickness
L=t=100 is the same and therefore, as the Poisson coe�cient � is also 0.3, the comparison is
valid. It is noticeable that the mixed element employed in Reference [12] presents apparently
fast converging results, but in fact it converges to a higher value than the theoretical solution.
From the observation of Figure 6 and Table IX, it is clear that the best overall results are

obtained with the present element.
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Table VIII. Plate I: normalized displacement as a function of the number
of elements in each side.

Elements=side HIS Liu et al. [9] Liu et al. [14]

2 0.315 ∗ ∗
4 0.818 ∗ ∗
6 0.945 ∗ ∗
8 0.979 ∗ ∗
10 0.989 0.811, 2 thick. elem. 0.826, 2 thick. elem.
14 ∗ ∗ 0.943, 2 thick. elem.
18 ∗ ∗ 1.008, 2 thick. elem.
20 0.998 0.927, 4 thick. elem. ∗
40 1.001 1.000, 4 thick. elem. ∗
∗= non-available data.
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Figure 6. Plate II: convergence of normalized displacement as a
function of the number of elements on each side.

Table IX. Plate II: convergence of normalized displacement.

Elements=side HIS Andel�nger [8]

2 0.933 0.888
4 0.992 0.976
8 1.003 ∗
16 1.006 ∗
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Figure 7. Plate III: convergence of normalized displacement as a
function of the number of elements on each side.

Table X. Plate III: convergence of normalized displacement.

Liu et al., Liu et al.,
Elements=side HIS NUHEX-4 [9] NUHEXIN-4 [9] Liu et al. [14] Sze et al. [7]

2 1.063 ∗ ∗ ∗ ∗
4 1.016 0.943 1.151, 1.162, 1.007

2 thick. 2 thick.
elem. elem.

8 1.011 0.985 1.034, 1.045, ∗
4 thick. 4 thick.
elem. elem.

16 1.015 0.987 1.036, 1.052, ∗
4 thick. 4 thick.
elem. elem.

32 1.028 ∗ ∗ ∗ ∗

The results for the simply supported square plate, denoted as plate III, are compared with
the results from References [9, 14] and [7]. The plate in Reference [7] has di�erent dimensions,
but the same aspect ratio L=t=50, so this comparison is legitimate.
Figure 7 shows the comparison, and Table X shows the excellent performance of the HIS

element, with a single value for the displacement as provided by Reference [7] being clearly
insu�cient to question the superiority of the present element in this example.
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Figure 8. Plate IV: displacement at the centre of the skew plate as a function of the number of elements
in each side, comparison with References [8, 33, 36].

Table XI. Plate IV: displacement at the centre of the skew plate.

Bathe and Andel�nger and
Elements=side HIS Dvorkin [36] Ramm [8] Sze et al. [33]

4 4.584 3.916 4.212 4.571
8 4.488 3.880 4.224 4.504
16 4.432 4.157 4.374 4.392
20 4.468 ∗ ∗ ∗
24 4.498 ∗ ∗ 4.459
32 4.540 4.388 4.483 4.500
64 4.609 ∗ 4.587 ∗

For the skew plate, the target displacement at the centre of the plate with a value of 4.64 is
to be expected, as stated in Reference [8]. Comparison with References [8, 33, 36] is carried
out. The values of Reference [8] are the ones of shell element EAS7-ANS. Figure 8 shows
the convergence of the results in a graphical form, and Table XI shows the same results but
in tabular form. From the observation of the �gure and the table, it is clear that HIS element
presents the most accurate results, much better than well-known shell formulations, such as
Bathe’s MITC4 element [36].
Finally, to study the plate mesh distortion e�ect, the results for the plates represented in

Figure 4 are shown in Figure 9, along with the results from Reference [60].
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Figure 9. The e�ect of mesh distortion in plate bending (see Figure 4). In the �rst plate, a node is
displaced toward the point load, and in the second plate, a rotation of a central element is imposed.

The results of Reference [60] are presented for comparison.
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Despite the large errors involved, Figure 9 clearly shows the superiority of HIS element in
this example.

3.2.3. Shell problems. The analysis of the 5 shell problems illustrated in Figure 10 follows.
Shell I consists on a pinched cylinder and has been analysed, among others, in References

[4, 10, 12, 14, 50, 61], whose results are here reproduced. A reference value of 1:82488× 10−5
[50] consistent units is adopted as a target value for the pinched displacement under load.
The shell II consists of closed hemisphere with point loads, and a target value of 0.0924

[14] is used for the radial displacement under the loads. Results from References [9, 14, 15, 62]
are used for comparison purposes.
Shell III is a variant of shell II, with a 18◦ opening. A target value of 0.094 is adopted

(see Reference [50]) for the radial displacement under the loads and the results used for
comparison are those of References [12, 50].
Shell IV consists of a ‘partly clamped hyperbolic paraboloid’ [63] and was proposed in

Reference [63] as a bending-dominated test for shell elements. Two values of thickness are
tested: 0.01 and 0:001 m. For the �rst case, the total strain energy target has a value of
En=1:679× 10−3 Nm, and for the second case, the target value is En=1:1013× 10−2 Nm.
These values were suggested, with numerical grounds, in Reference [63].
Finally, shell V is the so-called Scordelis roof [57] and consists of a shallow cylindrical

shell supported by rigid diaphragms and subject to self-weight. The monitored node is iden-
ti�ed with a circle in Figure 10 and has a target vertical displacement of 0.3086 consistent
units [57]. Results from References [1, 8, 9, 13, 14, 33] are employed in the comparison. It
is specially important to note that the values presented here from References [9, 14] have
been re-normalized, as other target values were proposed (the value 0.3008 is quoted in
Reference [8], and 0.3024 is adopted in References [9, 14]) for the displacement at the
mid-side.
The normalized results obtained with HIS element for the shells I–III and V are summarized

in Table XII.
Figure 11 shows the convergence of the pinched node normalized displacement for shell I.

Excellent behaviour of element HIS is observed. For sparse meshes, only the MITC4 shell
element [61] presents better results.
For shell II, Figure 12 illustrates the good results of HIS element. The shell element of

Reference [62] presents better results with sparse meshes.
The convergence curves for shell III are exposed in Figure 13, where it can be seen

that element HIS is superior in terms of displacement convergence, when compared with the
references.
In shell IV, the analysed value is the total strain energy. A comparison with the classical

MITC4 shell element is carried out, using the values obtained in Reference [63]. Figure 14
presents the convergence curves for two values of shell thickness: 0.01 and 0:001 m.
The observation of Figure 14 leads to some interesting conclusions: for sparse meshes, less

than 16 elements on each side for a thickness of 0:01 m and less than 32 elements on each
side for a thickness of 0:001m, element HIS presents a higher level of error when compared
with MITC4. However, for �ner meshes, the HIS element is much more accurate than MITC4
shell element. This fact is important, as this is a test to the accuracy of shell elements.
Finally, we describe the results for shell V, where the vertical displacement at the mid-side

of the free edge is monitored. The convergence of HIS element compares very favourably
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Figure 10. The geometry, mesh and boundary conditions for various shell problems: shell I consists on
1=8 of a pinched cylinder with diaphragm ends, shell II consists on 1=4 of a closed hemisphere, shell
III consists on 1=4 of a open hemisphere, shell IV consists on 1=2 of a clamped hyperbolic paraboloid

and shell V consists on 1=4 of a shallow cylindrical shell with rigid diaphragm support.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 58:1637–1682



ENHANCED STRAIN HEXAHEDRAL ELEMENT 1657

Table XII. The normalized displacements, obtained with element
HIS, for shells I–III and V.

Elements=side Shell I Shell II Shell III Shell V

2 ∗ ∗ ∗ 1.359
4 ∗ 0.029 0.044 1.029
5 0.196 ∗ ∗ 1.017
6 0.298 ∗ 0.361 1.009
7 ∗ ∗ ∗ 1.004
8 0.505 0.583 0.756 1.001
9 0.606 ∗ ∗ 0.998
10 0.692 ∗ ∗ 0.998
16 0.926 0.978 0.991 0.992
17 0.940 ∗ ∗ ∗
20 0.966 ∗ ∗ ∗
30 0.996 ∗ ∗ ∗
32 0.999 0.999 0.999 0.991
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Figure 11. Shell I: convergence of normalized displacement,
compared with References [4, 10, 12, 14, 50, 61].

relative to the other references, as it can be observed in Figure 15. The element of Refer-
ence [9] is NUHEX-4, which in this case is superior to NUHEXIN-4, and in the case of
Reference [8], the retained element is the shell element EAS7-ANS.
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Figure 12. Shell II: convergence of normalized displacement, compared with References [9, 14, 15, 62].
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Figure 13. Shell III: convergence of normalized displacement, compared with References [12, 50].
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Figure 14. Shell IV: convergence of the total strain energy error with the number of elements in each
side. Comparison with the results obtained with the MITC4 shell element [63].
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Figure 15. Shell V: convergence of normalized displacement,
compared with References [1, 8, 9, 13, 14, 33].

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 58:1637–1682



1660 P. M. A. AREIAS ET AL.

Figure 16. Near-incompressible block: geometry, boundary conditions and the two tested meshes.

3.2.4. Near-incompressible block. This example consists of regular block with a height of 50
and a side of 100 (see References [8, 10]). The elastic properties of the block are E=210 000
and �=0:4999. The block is loaded in its centre by a uniform distributed load acting on a
square area of 20× 20. Only one-fourth of the block is actually meshed. Two types of mesh
are tested: a regular one and a distorted one. These two meshes both with 5× 5× 5 elements,
along with boundary conditions are presented in Figure 16. The vertical displacement at the
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Table XIII. Near-incompressible regular block, dis-
placement at the centre of the block for the distorted

and non-distorted meshes.

Displacement, Displacement,
Element non-distorted mesh distorted mesh

HIS 0.01921 0.01920
QM1=E12 [10] 0.01892 0.01840
QS=E9 [10] 0.01910 0.01887
QSN=E9 [10] 0.01910 0.01885
3D.EAS-30 [8] 0.01905 0.01852

central point of the block is presented in Table XIII where the results from References [8, 10]
are also presented. The proposed element gives practically the same answer with both meshes.
Other formulations give sti�er results and su�er from mesh sensitivity. The elements QS=E9
and QSN=E9 are described in Reference [10] and the element QM1=E12 is the element �rst
proposed in Reference [19]. The last element in Table XIII is proposed in Reference [1] and
contains 30 internal variables.

3.3. Non-linear problems

3.3.1. Pure bending of a cantilever beam. This classical geometrically non-linear solid me-
chanics problem (described in Reference [64]) consists of an elastic cantilever beam subject
to a bending moment at one end and clamped at the opposite end. The moment intensity is
gradually increased until the beam middle surface forms a perfect cylinder. This problem has
been solved numerically in several papers. Recently, in References [65, 66] a simulation of
this test was carried out in the context of validating procedures for �nite rotation of shell
elements. The present HIS solid model has no di�culty in dealing with this problem, as long
as a deformation-dependent loading is introduced to apply the moment. The geometry and
boundary conditions exposed in References [65, 66] are here reproduced.
For the application of the end moment, M , the following formula is employed:

M =
2EI	n
L

(31)

where E represents the elasticity modulus, I represents the second-order moment of the cross-
section relative to the bending moment direction and L represents the beam length. The integer
n represents the number of turns of the beam (which is 1 in the present case). The Pois-
son coe�cient is �=0 and the elasticity modulus has a value of E=1:2× 107 consistent
units.
Figure 17 presents the 25 element mesh and the boundary conditions in the non-deformed

case for �=0, and also the �nal deformed mesh, for �=2	. In Reference [65] the same
problem was analysed with a 25× 2 shell element mesh.
From the observation of Figure 17 it is possible to conclude that the deformed mesh is

representing a nearly perfect circular ring. This remarkable accuracy is accomplished without
the use of rotation variables and inherent update complexities (see Reference [65] for an
account of such procedures).
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Figure 17. The non-deformed cantilever beam mesh, and the deformed mesh for a moment of 628
consistent units, corresponding to a rotation of 2	 radians.

3.3.2. Thin plate ring. This problem was �rst considered by Basar and Ding [67] to test
formulations for �nite shell rotations. Several other authors have also studied this problem
[60, 68–70]. The test consists in the pulling of a thin circular ring containing a radial cut.
The pulling is carried out resorting to a distributed load with �xed direction, applied on a
edge. The opposite edge is clamped.
The ring is considered elastic with an elasticity modulus of E=2:1× 1010 and a Poisson

coe�cient of �=0. The geometry, mesh, and boundary conditions are represented in Figure 18.
The mesh contains 6× 30× 1 elements in agreement with Reference [70], where three types
of shell elements (hybrid strain, hybrid stress and enhanced strain) were tested with similar
results for this mesh.
For comparison purposes, Reference [70] is adopted. Figure 19 shows the load–displacement

curves. Excellent agreement is obtained between Reference [70] results and the present paper
ones.

3.3.3. Hinged cylindrical shell under a central point load. This test has been considered by
Sabir and Lock [71] and latter by Ramm [56], and it is a popular test (a non-exhaustive
list of other references where this test has been presented and studied is [3, 66, 72–76]. The
test is useful to verify both the non-linear �nite element formulation and the path following
algorithms.
It consists of a pinched shallow cylinder with hinged longitudinal edges and free curved

edges, as depicted in Figure 20. Owing to symmetry, only one-fourth of the model is actually
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Figure 18. Thin plate ring: geometry, boundary conditions and deformed mesh for a load q=2000.

meshed. A thickness of 6:35 mm is known to induce both snap-through and snap-back be-
haviour, as detailed in Reference [72]. In this paper, a standard spherical arc-length procedure
is adopted which is analogous to the one described in Reference [56]. In terms of compari-
son of results, two references are used: the Abaqus examples manual [74] where the reduced
integration shell element S4R was used with a 6× 6 mesh and the Reference [56] where a
2× 2 mesh of bi-cubic 16 noded elements was employed. The vertical displacement of points
A and B identi�ed in Figure 20 is monitored.
In this paper a 6× 6× 2 mesh is used. There is a need of employing 2 elements along the

thickness to ensure symmetry in the hinged boundary relative to the mesh, which was found
to be a crucial aspect in terms of accuracy.
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Figure 19. Thin plate ring: load–displacement curves, for points A and B, identi�ed in
Figure 18, comparison with Reference [70].

The adopted material is considered elastic with an elasticity modulus E=3:103× 103N=mm2
and the Poisson coe�cient �=0:3.
The load–de
ection curves for points A and B are depicted in Figure 21 and excellent

agreement with both the low-order S4R element and the high-order 16 node element is
observed.

3.3.4. Pinched cylinder with free edges. This example has been described and studied by
various other authors [60, 70, 73, 77] and constitutes a di�cult test for �nite element formu-
lations, combining bending and membrane e�ects. The example consists of a cylinder shell
with open ends which is pulled in two diametrically opposite points through the application
of point forces. The geometry, mesh and boundary conditions for one-eighth of the model are
presented in Figure 22. Points A, B and C in Figure 22 are monitored in terms of absolute
radial displacement. The material is considered elastic, with elasticity modulus E=10:5× 106
consistent units and Poisson coe�cient �=0:3125, in agreement with the above references.
A mesh with 16 elements along the circumferential direction, 8 elements along the longitu-
dinal direction and 2 elements along the thickness is adopted. This mesh has been used in
Reference [77] within exactly same context.
In Reference [77], the analysis was carried out in 140 steps. The present analysis takes

only 50 steps with a much higher load (200 instead of 38 consistent units). The absolute
radial displacement for points A–C is compared with the values obtained in Reference [77].
Figure 23 shows this comparison. Very good agreement is obtained for the branches A and B.
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Figure 20. Hinged cylindrical shell: geometry, mesh and boundary conditions for one-fourth of the shell.

Branch C is slightly di�erent. It is, however, important to note that Reference [78] presents
a branch C similar to the one obtained in the present paper.

3.3.5. Open hemisphere loaded by pinching forces. This example is a non-linear counter-
part of the linear elastic open hemisphere example illustrated in Figure 10. The shell su�ers
large displacements but strains and rotations are relatively small (see Reference [65]). The
test is very popular and has been studied in References [4, 5, 60, 65, 69, 70, 73, 77, 79–81]. The
Figure 24 shows the non-deformed mesh and a deformed mesh of the total hemisphere model.
The nodes A and B identi�ed in the �gure are monitored in terms of absolute radial displace-
ment. The material is considered elastic with an elasticity modulus E=6:825× 107 and a
Poisson coe�cient of �=0:3. The radius is 10 consistent units and the thickness value is
0.04. Only one-fourth of the model is actually meshed with two types of meshes: 16× 16× 1
elements and 24× 24× 1 elements. Most authors use a 16× 16× 1 mesh, but Reference [69]
shows results for 24× 24× 1 mesh. The Reference [4] also proposes a �ner 32× 32× 1
mesh.
A comparison, in terms of load-displacement curves, between the present formulation and

the ones of References [65, 69, 70] is presented in Figure 25. Very good agreement is observed
for the 24× 24× 1 element mesh are obtained between the present formulation and both of
the above references. It is clear that a much higher level of load can be achieved by the HIS
formulation.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 58:1637–1682



1666 P. M. A. AREIAS ET AL.

-400

-200

0

200

400

600

800

0 5 10 15 20 25 30

Lo
ad

, N

Displacement, mm

key:
His, point A

Abaqus S4R (shell), point A
Ramm 1982 (shell), point A

His, point B
Abaqus S4R (shell), point B
Ramm 1982 (shell), point B

Figure 21. Hinged cylindrical shell: load–de
ection curve for points
A and B, comparison with References [74, 56].

3.3.6. Pinched cylinder with end diaphragms. This test was considered, with a distinct
geometry, by Simo and Kennedy [82]. The test is a geometrical and material non-linear
version of the linear pinched cylinder test which can be observed in Figure 10. It in-
volves very large displacement and strains, and is di�cult for certain �nite element for-
mulations to achieve Newton–Raphson convergence at the last stages of the analysis, as
mesh deformation is present. Several other authors have studied this test (see References
[38, 70, 83, 84]). The geometry is the one previously identi�ed for the linear case, with
a total length of 600, a radius of 300 and a thickness of 3 consistent units. Other au-
thors have presented distinct dimensions [70]. The elasticity modulus E=3000 consistent
units and the Poisson coe�cient �=0:3. The hardening law is presented in Equation (32)
where �y represents the yield stress and 
p represents the accumulated e�ective plastic strain.
Other references, like [83], propose distinct hardening laws. The hardening law agrees with
References [38, 84].

�y=24:3 + 300
p (32)

The adopted mesh contains only 16× 16× 1 elements and it has been used in
Reference [84]. A much more re�ned mesh is presented in Reference [84], with 32× 32× 1
elements. A total pinched displacement of 300 consistent units is applied in the present analy-
sis, in contrast with the values 250 in Reference [38] and 280 in Reference [84]. This imposed
displacement is coincident with the initial radius, which undoubtedly induces a severe case of
mesh deformation. Two types of end diaphragms are tested, corresponding to a ‘hard support’
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Figure 22. Pinched cylinder with free edges: geometry, mesh and boundary conditions for one
eighth of the model, and �nal deformed mesh.
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Figure 23. Pinched cylinder with free edges: comparison of load–
displacement curves with Reference [77].

and ‘soft support’, where in the second case, rotation of the diaphragm is allowed (see
Reference [38] for further details). In the present work, the hard support is identi�ed as
case A and the soft support is identi�ed as case B.
The non-deformed mesh, and the �nal deformed meshes for cases A and B are all shown

in Figure 26.
The load–displacement curves for both cases are compared with the results obtained in

Reference [84] and with the 5-parameter shell element of Reference [84] where only case
A was tested. Figure 27 presents the results. Very good agreement in the results is veri�ed
between the present formulation and both shell elements, with HIS element presenting a
slightly more soft behaviour in the membrane dominated part of the curve (which corresponds
to higher displacements). Note that the snap-through situation at the middle of the analysis for
case B, veri�ed both in Reference [83] and in Reference [84] is also perfectly well represented
by the HIS element.

3.3.7. Square plate under pressure. This test consists in the analysis of a simply supported
square plate with elasto-plastic behaviour. The plate is subjected to a deformation-dependent
uniform pressure. It has been studied in References [2, 6, 62, 84, 85] and combines the bending
e�orts at the �rst stages of the analysis and membrane e�orts at the latter stages. The plate
has dimensions 508× 508× 2:54. The elasticity modulus E has a value of 6:9× 104 consis-
tent units and the Poisson coe�cient � has a value of 0.3. No hardening is present and the
yield stress �y has a value of 248 consistent units. One-fourth of the geometry is discretized
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Figure 24. The non-deformed and a deformed con�guration of the
open hemisphere loaded by pinching forces.

with 24× 24× 1 elements, which agrees with Reference [62]. This corresponds to the use of
2 integration points in the thickness direction. For comparison, Reference [6] uses a mesh
of 32× 32× 1 solid-shell elements with 6 integration points in the thickness direction. In
contrast with these meshes, Reference [84] adopts a non-uniform mesh, re�ned in the plate
corners.
The non-deformed mesh and the deformed mesh for a pressure value of p=4:33 consis-

tent units are displayed in Figure 28. It is clear from this �gure that, at this high value
of pressure, wrinkles start to form at the mid-sides of the plate. This e�ect has never,
in the authors knowledge, been noticed in other references, as the pressure never reached
this high value. Both the corners, the wrinkles and the top of the deformed plate are fully
plasti�ed.
In terms of pressure–displacement curves, a comparison is carried out with the values

obtained in References [62, 84]. The node at the plate’s centre is monitored. The values of
Reference [84] correspond to the 6-parameter model. Figure 29 presents the various curves.
Very close agreement between the present analysis and the one in Reference [62] is observed.
It is also clear that Reference [84] presents sti�er results.
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Figure 25. Open hemisphere: comparison of load–displacement curves with References [65, 69, 70].

3.3.8. Elasto-plastic tension test. This test has been considered by Simo and co-workers in
Reference [18] in the context of validation of algorithms for �nite strain plasticity and, with
a distinct mesh disposition, in Reference [18], in the context of testing enhanced strain �nite
elements.
The problem consists in the pulling of a bar up to a displacement of 7 consistent units.

One-eighth of the bar is represented in Figure 30 along with the �nal distribution of the
e�ective plastic strain. The material considered is elasto-plastic with the following hardening
rule:

�y=0:45 + 0:12924
p + (0:715− 0:45)(1− e−16:93
p) (33)

The elasticity modulus E value is 206.9 consistent units and the Poisson coe�cient � value
is 0.29.
It is clear from the observation of Figure 30 that an imperfection in the radius is introduced

(see also References [18, 54]) to ensure that necking occurs. A mesh of 960 elements is
adopted, disposed according to the Figure 30.
The tension force is monitored and compared with the results obtained with a 9 internal

variable element from Reference [18]. In Figure 31 it is visible that the standard 9 inter-
nal variable element does not present a locking-free behaviour, as veri�ed, for example, in
Reference [19] where a 12 internal variable node was proposed.
Figure 31 also shows the excellent Newton–Raphson convergence behaviour, as the line

segments in the curve relative to the proposed element represent time-step increments.
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Figure 26. Pinched cylinder: non-deformed mesh and deformed meshes for cases A and B.
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Figure 27. Pinched cylinder: comparison of the load–displacement evolution with References [38, 84].

3.3.9. Silicone rubber tension test—comparison with experimental results. This example
consists of the analysis of a normalized tension test, which is validated experimentally, of
a silicone rubber specimen. The considered material is an incompressible Yeoh model (see
Reference [47]), whose deviatoric strain energy function is given by

W = c1( �I 1 − 3) + c2( �I 1 − 3)2 + c3( �I 1 − 3)3 (34)

where the material property values are c1 = 0:2528327 MPa, c2 = 0:1139638 MPa and c3 =
−0:01061744MPa. The term �I 1 in (34) is the second deviatoric invariant. The non-deformed
and deformed meshes for the specimen are presented in Figure 32.
The stress–strain curve for the experimental (the experiment was carried out by Prof.

Ant�onio Torres Marques at INEGI, laboratories, Portugal), theoretical and numerical cases
is represented in Figure 33.

3.3.10. Indentation of a near-incompressible block—the need for hourglass stabilization.
This last example is the only one where the stabilizing parameter takes a value distinct from
0. This problem has been dealt in the 2D case in Reference [22], where hourglass was detected
both in near-incompressible elastic and elasto-plastic situations. The near-incompressible sit-
uation is here reproduced for the 3D case. The test consists in the partial (20%) indentation
of a block with dimensions 2× 1× 1. A regular mesh of 10× 10× 2 elements is adopted.
Figure 34 shows the geometry and boundary conditions for the block. Figure 35 illustrates
the occurrence of hourglass.
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Figure 28. Square plate under pressure: non-deformed and deformed mesh (p=4:33), where the birth
of wrinkles at the mid-sides of the plate is visible.

For the non-stabilized case, the analysis stops at an indentation of 0.02414, due to the pres-
ence of instabilities. These instabilities are a well-known defect of enhanced strain elements
(see References [19, 20, 22, 86]).
The hourglass patterns visible in Figure 35 for the non-stabilized case can be completely

eliminated with the use of the stabilizing term. If a value of r=1:5E=(1 + �) is used for the
penalty parameter, then the analysis is carried out until the end and without any apparent
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Figure 29. Square plate under pressure: pressure–displacement
curves. Comparison with References [62, 84].

hourglass patterns. Owing to the premature abortion of the unstable case, reactions for a
low order mixed u − p element, implemented by the �rst author of this paper, are used
for comparison with the stabilized case. Figure 36 presents the reaction curves for the HIS
element and the u− p element.

4. CONCLUSIONS

The proposed low-order HIS solid element, which is a general-purpose element, can be ap-
plied, without modi�cations, to various solid mechanics problems, from beam, plate and shell
analysis to bulk forming and �nite strain elasto-plastic analysis. Even complex implicit gra-
dient models for modelling strain softening behaviour have been implemented with success
with a variant of the present element (see Reference [51]).
In terms of linear elastic accuracy, if mesh is regular, the element behaviour is very good

as the tests performed in this paper illustrate. There are 3D mixed or hybrid elements (see
References [7, 12, 13, 35]) which present higher degree of accuracy in certain linear elastic
problems, but at the cost of lack of generality in the range of possible applications.
For non-linear analysis, the element has a good behaviour, with results extremely close to

the best shell elements in a number of shell problems and also presents very accurate results
in 3D solid analysis. The Newton–Raphson convergence characteristics were excellent and
in the non-linear problems presented, the analysis could be easily extended to much higher
values of loading, as it became clear.
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Figure 30. The geometry and boundary conditions of the tension bar and the �nal deformed mesh
with e�ective plastic strain contour plot.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 58:1637–1682



1676 P. M. A. AREIAS ET AL.

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8

Lo
ng

itu
di

na
l r

ea
ct

io
n

Imposed longitudinal displacement

key:
His

Simo 1992

Figure 31. Load–displacement evolution for the tension test.
Comparison with the results from Reference [18].

Figure 32. The deformed and non-deformed meshes for the silicone specimen. The longi-
tudinal stress �L contour plot is given over the deformed mesh. The red zones correspond

to �L=8:09 and the blue zones to �L=0:45.

Further work with this formulation is being carried out, with the goal of reducing the number
of internal variables. In addition, improvements are needed to attenuate mesh sensitivity of
enhanced strain elements.
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Figure 34. Indentation of a block: geometry and boundary conditions.
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Figure 35. Indentation of a block: scaled (10×) deformed mesh for r=0 and deformed mesh
for the stabilized case (r=1:5E=2(1 + �))).
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