
Available online at www.sciencedirect.com

Finite Elements in Analysis and Design 39 (2003) 1191–1235
www.elsevier.com/locate/ nel

A gradient model for  nite strain elastoplasticity
coupled with damage

P.M.A. Areias, J.M.A. C*esar de S*a, C.A. Concei,cão Ant*onio∗

Instituto de Engenharia Mecânica (IDMEC), Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto
Frias s/n 4200-465 Porto, Portugal

Received 30 May 2001; accepted 7 January 2002

Abstract

This paper describes the formulation of an implicit gradient damage model for  nite strain elastoplasticity
problems including strain softening. The strain softening behavior is modeled through a variant of Lemaitre’s
damage evolution law. The resulting constitutive equations are intimately coupled with the  nite element
formulation, in contrast with standard local material models. A 3D  nite element including enhanced strains
is used with this material model and coupling peculiarities are fully described. The proposed formulation
results in an element which possesses spatial position variables, nonlocal damage variables and also enhanced
strain variables. Emphasis is put on the exact consistent linearization of the arising discretized equations.
A numerical set of examples comparing the results of local and the gradient formulations relative to the

mesh size in8uence is presented and some examples comparing results from other authors are also presented,
illustrating the capabilities of the present proposal.
? 2002 Elsevier B.V. All rights reserved.

1. Introduction

A standard implementation of constitutive equations which include strain softening behavior results,
in general, unsatisfactory (see the analysis carried out in Ref. [1]). The reason for this is the observed
dependency of the obtained results with mesh size and orientation, specially in the neighborhood of
localized strain area [2,3]. This dependency can be explained by the change of type of the equilibrium
equations [4,3]. A variety of discrete approaches has been applied as a remedy to attenuate this fact.
For ductile fracture analyses, cohesive elements can be adopted as recently shown in Ref. [5]. The
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straightforward use of cohesive elements is, however limited to the cases where the fracture path is
known.
For more general situations, a nonlocal or a gradient model can be adopted. Most of the work

done concerning these models is, however, restricted to small strain situations. If this can be accepted
in some materials and applications, the common ductile metal behavior presents  nite plastic strains
before and during the occurrence of instability and necking.
For  nite strain situations, the work of Steinmann for hyper-elastic materials [6] and the work of

Geers et al. for large strain plasticity [7,8] are relevant exceptions. Both these works, although in
diIerent contexts, use an implicit gradient model (see also Ref. [9] for a small strain brittle case
and [10] for the small strain elastoplastic case).
The gradient models can be related to nonlocal models [11,12] which are known to be eIective

in attenuating the in8uence of mesh upon the results (Refs. [6,7] show the direct relation between
the two approaches, including some needed simpli cations).
Generally, gradient models are of simpler computer implementation than classic nonlocal models

in the  nite element context and also include the length scale information through a length scale
parameter.
In the present work the adopted nonlocal variable is the damage scalar variable, and use is made

of a version of the Lemaitre’s damage model (described in Refs. [13,14]). The material length scale
is controlled by a single parameter corresponding to the scale where strain localization occurs.
The  nite element implementation of the proposed gradient constitutive law is carried out through

a mixed enhanced formulation, resulting in the following set of nodal variables:

• nodal displacements;
• nodal damage variables;

and also internal (local) variables resulting from the adopted particular  nite element technique:

• enhanced strain variables.

The proposed enhanced strain formulation is detailed for the fully three-dimensional case and consists
of an evolution of the variationally consistent mixed plane-strain formulation proposed in Ref. [15].

2. General formulation

The extension of well established small-strain developments to include large strains, in particular
large plastic strains, can be carried out through a variety of methodologies (see Refs. [16–24]). A
comprehensive exposition of the classical ones is given in Ref. [25].
In this paper the authors are concerned with isotropic situations and with metal plasticity involving

moderate elastic strains.
A  nite elastoplasticity formulation based upon some key-features of the theory developed by

Miehe [19,20] is adopted, but is here specialized for the damage coupling equations and with the
inclusion of an implicit gradient formulation.
Recent developments [20,16] are supported by a decomposition that circumvents the explicit use

of multiplicative decomposition of the deformation gradient and the so called stress-free intermediate
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con guration, concepts that were exploited in other approaches [24,26,17]. For the isotropic case,
the developments of Miehe [19,20,27] result in a formulation closely related to one of Simo [24]
and both contrast with the relations derived by Brunig [16] where the material setting was chosen.
The following exposition, although reasonably standard for elastoplastic problems, has not, in the

authors’ knowledge, been applied for the developments involving gradient damage and elastoplastic
coupling. The fundamental concepts are  rst outlined.
Let the tensors g and G denote the covariant metric tensors de ned on the spatial and mate-

rial con gurations, respectively. Although the actual computer implementation is here carried out in
orthonormal axes (which imply that, when represented in those axes, the metric tensors possess iden-
tity scalar component matrices), there are some nomenclature details revealed due to the introduction
of these metric tensors [20,16,6].
The following set of internal variables, de ned in the material setting, is presented:

• Right Cauchy–Green tensor, which can be introduced as the pull-back of the spatial metric tensor:
C = FTF = ’∗(g), whose work conjugate  eld is the second Piola–KirchhoI stress tensor, with
the notation S .

• Covariant plastic metric (on the material setting): CP which possesses the initial condition CP
0 =G .

A comprehensive account of the pull-back and push-forward nomenclature is given in the book of
Bonet and Wood [28].
The inclusion of the covariant plastic metric tensor is decisive to the description of the plastic

evolution through the 8ow law. The tensor CP is a symmetric, positive de nite tensor [19], which
restricts the 8ow law to be six dimensional as in the small strain case (without the consideration of
the constitutive isotropy).
The deformation gradient, previously denoted as F , is a two point tensor (mixed Eulerian–

Lagrangian), which may be decomposed according to the following notation (see also [29]):

F =
@’a

@X A ea ⊗ EA = Fa
:Aea ⊗ EA; (1)

where the function x= ’(X) is the deformation map.
The vectors EA and ea in (1) form vector bases of the material con guration and spatial con gu-

ration, respectively. The dual vectors, EA and ea are de ned according to the relations EA ·EB = �A
B

and ea · eb = �a
b.

A fundamental concept used by some authors [19,16] is the so-called mixed variant elastic strain
measure which can be presented as the following tensor product:

C e = CCp−1: (2)

It is clear that C itself is a mixed variant contravariant–covariant tensor (see Ref. [29]).
The decomposition (2) circumvents the otherwise necessary concept of rotation related to the

stress-free intermediate local con guration (adopted in Refs. [26,24,30]).
A spatial tensor which can be de ned through the (material) covariant plastic metric is the so-called

elastic left Cauchy–Green tensor, which may be written according to

be = FCp−1FT: (3)
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This de nition (3) is particularly convenient when writing the plastic 8ow law in the spatial
con guration, as it will become apparent. It is important to state that relation (3) represents a
de nition, and it is not a consequence of the elastic deformation gradient (which is not de ned
in the present work), as it is the case with formulations based upon the stress-free intermediate
con guration.
A locally de ned stored energy isotropic function is now introduced, and it is assumed to depend

on the right Cauchy–Green strain tensor, the covariant plastic metric, a scalar internal variable related
to the plastic irreversibility and hardening identi ed by the letter A, and a scalar damage variable
identi ed by the letter D:

 (C ;Cp; A; D): (4)

Expression (4) implies that the degradation due to damage is an isotropic eIect and also that the
internal irreversibility is also an isotropic eIect, and therefore kinematic hardening is precluded.
In terms of damage, it has been concluded (in Ref. [14]) that this type of model is suitable for

proportional loading situations.
The time derivative of the stored energy function (4) takes the following form:

 ̇ = @C : Ċ + @Cp : Ċp + @A Ȧ+ @D Ḋ: (5)

The evolution laws for the proposed thermodynamic variables are derived to satisfy ab initio the
second law of thermodynamics, which is here presented in the local form of the Clausius–Planck
inequality, ignoring thermal eIects:

Dint = 1
2 S : Ċ −  ̇ ¿ 0; (6)

where the equality case corresponds to a conservative or reversible process.
Inserting Eq. (5) into the inequality (6), it is possible to rewrite (6) according to the following

notation:

Dint =
(
1
2S − @C 

)
: Ċ − @A Ȧ− @Cp : Ċp − @D Ḋ¿ 0: (7)

Furthermore, the following constitutive relation is assumed for the second Piola–KirchhoI stress
tensor S:

S = 2@C (8)

which is specially convenient, as it implies that, if the relations Ȧ = Ḋ = 0 and also Ċp = 0 are
satis ed, then the process is conservative, because Dint = 0 for an arbitrary Ċ . As the term Ċ is
a direct consequence of the deformation history, in the case of absence of evolution for A and D,
then (8) ensures that the process is conservative for any deformation history.
The conjugate variables (also usually denominated thermodynamic forces [19]) of the proposed

thermodynamic variables A, D and Cp are denoted B, which is the internal force, Y , which is
designated the strain energy release rate and Sp which is designated the plastic force, respectively.
Concisely, these thermodynamic forces are given by

S = 2@C ; (9a)

Sp = @Cp ; (9b)
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B= @A ; (9c)

Y =−@D : (9d)

The function Dint in (7) may be interpreted as an inner product [19].
Other authors use a distinct sign convention for de nitions (9), but this fact should not cause

apprehension at this point, as the actual relations depend exclusively on the particular form adopted
for the stored energy function,  , as it will become apparent.
Using relations (9), the local form of the Clausius–Planck inequality (7), without the contribution

of the thermal eIects, takes the following aspect:

Dint =−Sp: Ċp − BȦ+ Y Ḋ¿ 0: (10)

Before a full characterization of the remaining constitutive equations, a yield function is introduced.
The yield function is assumed to depend upon the plastic force Sp, the internal force B, the damage
variable D and the covariant plastic metric Cp, in agreement with the following expression:

�(Sp; B; D;Cp): (11)

With the yield function presented according to (11), it is possible to establish an “elastic domain”,
identi ed by E, as the next set of ordered pairs (Sp; B):

E = {(Sp; B)∈R6 × R |�(Sp; B; D;Cp)6 0}: (12)

For the associative case [20,24], the yield function is simultaneously a dissipative potential, and
the evolution equations for the thermodynamic variables are frequently derived making use of the
principle of maximum plastic dissipation (see also Ref. [18] for an account on the derivation of
8ow laws). The 8ow law in the present paper is nonassociative, and therefore an additional scalar
function must be introduced, usually denominated potential of dissipation which is an isotropic and
convex function of its arguments:

F(Sp; B; Y;Cp; D; A): (13)

Having de ned the potential of dissipation (13), the evolution laws for the internal variables are
subsequently postulated as follows:

Ċp = �̇@SpF; (14a)

Ȧ=−�̇@BF; (14b)

Ḋ = �̇@YF; (14c)

where �̇ in (14) is the plastic parameter. For associative evolution laws the term �̇ is commonly de-
nominated plastic multiplier as, in that case, it corresponds to a Lagrange multiplier [19,25,18]. With
some abuse of notation, �̇ may be also denominated plastic multiplier in the present nonassociative
situation.
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Making use of the de nition of the plastic force in Eq. (9b), it is possible to calculated it as

Sp = 1
2C

p−1CS : (15)

The yield function (11) and the potential of dissipation (13) are taken as functions of the
mixed-variant stress [19] CS and adopt the following forms:

�(CS ; B; D) (16a)

and

F(CS ; B; Y; D; A); (16b)

respectively.
The motivation for the use of the mixed-variant stress CS in relations (16) is related to the derived

form (15) and the purpose of avoiding the dependence of the yield function and the potential of
dissipation upon the covariant plastic metric.
After some algebraic operations, the 8ow law presented in (14a) can be restated in agreement

with the following form:

Ċp = 2�̇Cp @F
@CS

= 2�̇C e−1 @F
@S

: (17)

Inverting the previous form of the 8ow law (17), the following equation emerges:

Ċp−1 =−2�̇Cp @F
@S

Cp−1 (18)

which is rigorously the same 8ow law derived by Simo [26,24] in the context of the multiplicative
decomposition concept.
Eq. (18) can be written in the spatial setting as

FĊp−1FT =−2�̇F−T @F
@S

C eF−1 =−2�̇F−T @F
@S

F−1F−TC eFT: (19)

Therefore, making use of de nition (3) and introducing the KirchhoI stress tensor as the push-
forward of the second Piola–KirchhoI stress tensor,

� = FSFT (20)

it is possible to write the following relation:

FĊp−1FT =−2�̇ @F
@�

be (21)

in which was made of the relation @F=@S = FT(@F=@�)F .
If the Lie derivative of be relative to the spatial velocity is introduced [24,19,25], such as Lvbe=

F@t(F−TbeF−1)FT, the 8ow law in the spatial setting takes the same format as in Simo [24] or
Ibrahimbegovic and Gharzeddine [17] within the framework of the multiplicative decomposition of
the deformation gradient:

Lvbe =−2�̇ @F
@�

be: (22)
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The purpose of this short exposition was to clarify and detail the steps that lead to (22), which
may seem an odd equation when compared with the small-strain plastic 8ow law (exposed, for
example in Ref. [18]). Additionally, the presence of the damage variable and its conjugate appears
as a simple extension of the coupled small strain case discussed in classical Refs. [13,14].
The second Piola–KirchhoI stress tensor S introduced in Eq. (8), can also be evaluated using

derivatives relative to C e or Cp; instead of C :

S = 2C e−1@Cp = 2C−1Cp@Cp : (23)

A similar relation for the KirchhoI stress tensor can be derived in the spatial setting through
relation (23) and Eq. (20) which relates the material and spatial stress tensors.
After some algebraic operations, it is possible to obtain the following constitutive law for the

KirchhoI stress tensor:

� = 2@be be: (24)

Eq. (24) is worthy of the following observation: if the tensor 1 Cp, which describes the plastic
deformation state, is known in a particular point (and therefore be is also known at that point
through the deformation gradient (3)), the KirchhoI stress tensor is determined by Eq. (24). As
a consequence, the use of the so-called incremental objective algorithms (see, for instance, the
Ref. [31]) is not required, as the stress tensor is obtained directly by relation (24).
Additionally, the stored energy function can then take the following decomposed form (in the

spatial setting):

 (be; A; D) = (1− D) e(be) +  p(A); (25)

where  e is a function of the elastic left Cauchy–Green tensor exclusively, and  p is the part related
to the plastic hardening governed by the internal variable A. This decomposed form is useful in the
extension of the small strain concepts of damage mechanics (see Refs. [14,32]) to the  nite strain
range.
The potential of dissipation is also assumed to be decomposable as a sum of the yield function

and a damage-related potential of dissipation, FD, in agreement with previous notations:

F(�; B; Y; D; A) = �(�; B; D) +FD(Y; D; A): (26)

The particular form (26) allows the partial decoupling between the damage eIects and the irre-
versibility eIects due to plastic evolution. The coupling that remains is due to the presence of the
damage variable, D in the two terms of Eq. (26).
Making use of the decomposed forms of the stored energy function (25) and the potential of

dissipation in form (26), the set of constitutive equations in the spatial setting is brie8y summarized
in Table 1. This type of convenient decompositions (25) and (26) has been adopted both in the
small strain case [13,14] and  nite strain case [33,34].

1 Or, in more accurate terms, the tensor representation Cp, as a tensor is a multilinear functional (see [29]).
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Table 1
Set of evolution laws for the thermodynamic variables and de nition of conjugate variables

Plastic 8ow law �→ Lvbe =−2�̇ @�
@�
be

Damage evolution law �→ Ḋ = �̇
@FD

@Y

Internal variable evolution law �→ Ȧ=−�̇
@�
@B

Loading/unloading conditions �→ �̇¿ 0; �6 0; �̇�= 0
KirchhoI stress �→ � = 2(1− D)@be  ebe

Strain energy release rate �→ Y =−@D =  e

Internal force �→ B = @A p

Assuming orthogonal axes, the elastic left Cauchy–Green tensor (3), may be spectrally decomposed
according to the expression:

be = �2knk ⊗ nk summation implied; (27)

where nk represent the (unitary) principal directions and �2k represent the principal values of be.
The particular form (27) is possible as the tensor be is symmetric and positive-de nite.
The elastic part of the stored energy isotropic function,  e, is assumed to depend upon the tensor

be according to the following relation:

 e =  e(�1; �2; �3); (28)

where �k denote the elastic principal strains, which can be written as

�k = ln[�k]; (29)

where the terms �k are the positive square roots of �2k .
The elastic principal strains in (29) are components of the elastic spatial Hencky strain tensor.
Making use of the relation ni · beni = �2i , the KirchhoI stress tensor may be written as well in

principal directions:

� = �knk ⊗ nk = �
@ e

@�k
nk ⊗ nk (30)

with � = 1− D.
With the KirchhoI stress tensor spectrally decomposed in agreement with Eq. (30), the spatial

elasticity tensor for the Truesdell rate, which is here denoted as CT , can be calculated as (see also
Refs. [28,27]):

CT =
3∑

i=1

3∑
j=1

@�i
@�j
ni ⊗ nj ⊗ ni ⊗ nj − 2

3∑
i=1

�ini ⊗ ni ⊗ ni ⊗ ni (31)

+
3∑

i=1

3∑
j �=i=1

rijni ⊗ nj ⊗ (ni ⊗ nj + nj ⊗ ni); (32)
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where

rij =




�2j �i−�2i �j
�2i −�2j

: �i 
= �j;

1
2 (

@�j
@�j

− @�i
@�i

− 2�j) : �i = �j:
(33)

The only terms in Eq. (32) that depend on the particular constitutive law adopted is the term
@�i=@�j, and, in the second branch of (33), the terms @�j=@�j and @�i=@�i. The coeTcient matrix of
@�i=@�j is here denoted C �.
The isotropic yield function may be written as a function of the principal KirchhoI stresses (see

 rst term of de nition (26)):

�= �(�1; �2; �3; B; D) (34)

and the 8ow law in the spatial con guration (22) takes the following form:

Lvbe =−2�̇
3∑

i=1

@�
@�i

�2i ni ⊗ ni : (35)

Furthermore, the principal stresses �i can be grouped in an one-dimensional array as


 =




�1

�2

�3


 : (36)

In an analogous form, the principal elastic strains can also be grouped in an one-dimensional array
as

” =




�1

�2

�3


 : (37)

The notation 
 and ” is intentional and re8ects the existence of an analogy with the small strain
case in principal directions, a fact exploited by Simo [24].

3. Constitutive equations for elastoplasticity including isotropic damage

Having exposed the participating variables and functions, a further step is needed toward the
complete description of the material model. The speci c functions are subsequently presented, both
for a local and a new gradient approach, which can be considered particular cases of the exposure
in Section 2.
A summary of the relevant features in the damage–deformation coupling is next brie8y presented.
In the plastic deformation of metals, the ductile damage process occurs simultaneously with large

plastic deformations, and the kinetic law of damage should re8ect the evolution of the ductile damage
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process: nucleation, growth and coalescence of micro-voids, as fully discussed in Refs. [14,35,36]
(in the nucleation phase it is assumed that there is a null damage evolution).
In short, the nucleation process is due to the presence of inclusions and second phase particles

and occurs when there is an interface decohesion or when particles crack. Following this phase, the
growth of the nucleated voids is controlled by plastic strain and hydrostatic pressure, and the  nal
coalescence process is due to plastic localization as the voids get larger and interact between each
other (see a detailed description in Ref. [35]). As the nucleation of (micro)voids is known to have
no eIect on the mechanical properties, the threshold for damage evolution should re8ect this fact
[14]. This threshold is related to the start of the necking phenomenon in the uniaxial tension test.
The ductile damage evolution is assumed to occur when the internal variable A, related to the

plastic deformation (irreversibility), exceeds a certain threshold value, denoted here as AD. In fact,
this threshold can depend upon the loading, the fatigue limit and the ultimate stress [14]. Notwith-
standing, in this work, for simplicity reasons, it is assumed that the threshold for damage evolution
is a material property, which can be extracted from the uniaxial tension test.
The particular form for the damage part of the potential of dissipation introduced in Eq. (26) is

the same proposed by Lemaitre [13,14] with an exponent of 2:

FD =
Y 2

2S0(1− D)
H (A− AD); (38)

where H (x) denotes the Heaviside function of a generic real argument x, and S0 is a material
property representing the energy strength of damage, which is tabulated for some materials in
Ref. [14].
The damage evolution law follows in a straightforward manner (see Eq. (14c)):

Ḋ = �̇H (A− AD)
Y

S0�
: (39)

A extension of (39) is included to impose the critical damage value: if D¿Dc then D = Du,
where Dc represents the critical damage and Du is the residual damage value, with a value close
to 1.
The yield function for the von-Mises case coupled with damage can be expressed as

�=

√
3
2
‖s‖
�

− B(A); (40)

where the internal force B is a known function of the internal variable A and s is the deviatoric part
of the stress vector in principal directions, 
, de ned in (36).
According to the introduced notation, the norm ‖s‖ in (40) can be calculated as ‖s‖ = √

s · s
where

s = 
 − 1
3 (�1 + �2 + �3)



1

1

1


 :

The pressure  eld (using the small strain analogy) can be calculated 2 as 1
3(�1 + �2 + �3).

2 In fact this is an approximation, as KirchhoI stresses are adopted, not Cauchy stresses.
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As a direct consequence of form (40), it is possible to recognize the following equality:

�̇= Ȧ: (41)

The spatial 8ow law in principal directions (35) may be further detailed with the help of (40)
and the application of the chain rule:

Lvbe =−
3∑

i=1

2�̇
@�
@‖s‖ �2i vini ⊗ ni ; (42)

where the vector C whose scalar components are vi in (42), is de ned according to

C= @‖s‖
@s

=
s
‖s‖ (43)

and it is denominated 1ow vector.
Additionally, @�=@‖s‖= (1=�)

√
3=2 and therefore:

Lvbe =−
3∑

i=1

2�̇

√
3
2
�2i

vi
�
ni ⊗ ni: (44)

If the eIective plastic strain rate is introduced as

�̇p =
�̇
�

(45)

then Eq. (44) can be re-written in a more standard way (for the small strain case, consult Ref. [14]
where extensive use was made of the e3ective plastic strain rate):

Lvbe =−
3∑

i=1

2�̇p

√
3
2
�2i vini ⊗ ni: (46)

It remains to detail the particular forms for the scalar functions  e and  p, which are part of the
stored energy function as assumed in relation (25). The form adopted in principal directions for
the elastic stored energy function is (see Ref. [24] for a similar case, but without the presence of
the damage variable):

 e =
9&
2

' 2 +
3
2
((e21 + e22 + e23); (47)

where '=1
3(�1+�2+�3) denotes the dilatation  eld and ei=�i−' denote the distortional components of

the principal elastic strains. The symbols ( and & represent the shear modulus and the bulk modulus,
respectively.
The particular form (47), besides its analytical convenience, is particularly suitable for representing

metal plasticity, as noted by Brunig [16] and Simo [24].
The principal stresses, as presented in Eq. (36) can therefore be written according to the following

relations:

�i = �(2(ei + 3&'): (48)

The compact elastic law (48) is possible due to the representation in principal axes.
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The analytical expression for the function  p, which allows the identi cation of the internal force,
B, takes the following form, corresponding to a saturation model, as proposed in Refs. [24,30,21]:

 p = )Y�+ ()∞ − )Y )
(
�+

1
�
e−��

)
+

1
2
H�2; (49)

where )Y , )∞, � and H are material properties, which may be approximately evaluated through a
uniaxial tension test (a least square methodology can be adopted in the evaluation of these material
properties). An important aspect in relation (49) is that the term � is used and not �p so that � must
be adopted in the  nal set of coupled equations, as it will become clear.
The functional dependence of the internal force, B in terms of the internal variable �=A follows

directly from Eq. (49) and relation (9c):

B= )Y + ()∞ − )Y )(1− e−��) + H�: (50)

An important and useful concept in the damage mechanics literature is the one related to the
e3ective stresses [13,14], in opposition to the homogenized stresses, which were represented (in
principal directions) by the array 
 in Eq. (51). Using a one-dimensional analogy, the e3ective
stresses in a given cross section may be understood as the stresses present in the remaining resisting
deformed area, here denoted as S, whereas the homogenized stresses can be thought as the average
stresses in the total deformed area, S=� (this physical interpretation is introduced in Ref. [13]).
As a convenience, the eIective stresses are here distinguished with a tilde,


̃ =


�
: (51)

According to this notation, the deviatoric eIective KirchhoI stress can be denoted as s̃ and the
eIective pressure can be denoted p̃. It is noticeable that relation (51) is written in principal directions.
Using this concept, the elastic stored energy function  e, which also represents the strain energy

release rate, as shown in Table 1, can be re-written as

 e = Y =
‖s̃‖2
4(

+
p̃2

2&
: (52)

A small strain 1D representation of the damage evolution law and the homogenized stress as a
function of the total strain including the identi cation of some representative points is presented in
Fig. 1.
The curves represented in Fig. 1 are presented for the case of absence of hardening, and for the

following values: E = 70× 109; )Y = 200× 106, S0 = 1× 106, �D = 0:2, Dc = 0:8, Du = 0:99 and, of
course, �pD = �D. No hardening has been included.
Although several authors have numerically implemented the set of equations discussed so far,

within the so-called local approach (as opposed to nonlocal approaches), both in small strain
[32,37,38] and  nite strain [33,34] situations, this type of approach conveys a diTculty: For softening
materials, the straightforward  nite element implementation of the formulation discussed so far leads
to results that are not independent of the adopted mesh. This dependency of the mesh manifests
itself both relatively to the mesh size and to the mesh orientation. As localization of deformations
occurs in very small areas, which are usually much smaller than the typical element size, this mesh
size imposes the size of the numerically obtained localization areas. Also, the mesh direction has
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Fig. 1. The representation of the uniaxial behavior of damage evolution and homogenized stress.

an in8uence on the direction of the localized zones [39]. The reason for this is the local change
on the type of the equilibrium equations which allow the discontinuity of strain. Further discussion
of diagnostic and remedies for this behavior have been addressed in Refs. [9,2,10,40,12,8,1,41], for
example.
Typical approaches to attenuate the mesh dependency behavior are: purely nonlocal models

[11,41,12], explicit gradient models [4,42], implicit gradient models [1,8,7,2], arti cial rate depen-
dency, embedded discontinuity models [43], micro polar continua [44], and others (see [44,1] for
more details). The procedure adopted in this paper is an implicit gradient method, which allows an
implementation in a pre-existent  nite element code (a Fortran 90 code created by the  rst author
and called SIMPLAS).
Although numerous (see the references above) works have been published describing successful

formulations of gradient plasticity and damage for small strain problems, few authors have addressed
the  nite strain situation.
Geers et al. [7,8] describe a large strain gradient-enhanced plasticity theory, where the nonlocal

variable is the eIective plastic strain and Steinmann [6] adopted a gradient formulation for elastic
problems including damage.
An implicit gradient formulation is here applied to the derivations discussed in Section 2, but

using a nonlocal damage variable. Although an important point in the  nite strain implementations
of gradient models is whether a material or spatial (or mixed [6]) average should be carried out
(see the discussions in Refs. [6,7]), a material nonlocality is adopted in this paper, as it is favored
by Steinmann [6] for elastic problems, both from the implementation and the results viewpoints.
The damage evolution law, as it was presented in Eq. (39), can now be considered valid for the

local variable D, and the nonlocal damage variable is now presented as VD:
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The eIective stress and the homogenized stress in principal directions (51), for the gradient model,
can be related according to


 = (1− VD)
̃; (53)

where use was made of the newly introduced nonlocal damage variable, VD. Therefore, the equilibrium
equations are written using a nonconstitutive damage variable, VD. This variable is implicitly 3 related
to the constitutive damage variable, D.
In an analogous form, the 8ow law for the gradient model can be written modifying (55) as

follows:

Lvbe =−
3∑

i=1

2�̇

√
3
2
�2i

vi
V�
ni ⊗ ni ; (54)

where V� = 1− VD.
The relation between the local damage  eld D, and the nonlocal damage  eld VD can be written

as (see also Ref. [6]):

VD − c0∇2
0
VD: I = D; (55)

where c0 is an area parameter also called gradient parameter and ∇2
0
VD is the material Hessian of

the nonlocal damage, ∇2
0
VD : I represents the material Laplacian.

The c0 parameter in (55) can be calculated as the square of a length scale l0 as c0 = l20.
The diIerential equation for VD in (55) can be derived from a truly nonlocal integral form, as

exposed in Ref. [6] for the stored energy case.
Eq. (55) has an analogous form to the one adopted in Ref. [7] for the plastic multiplier in the

 nite strain case and in Ref. [9] for the small strain case. Eq. (55) is a modi ed Helmholtz equation
[2]. Another important aspect for the solution of this diIerential equation is the boundary conditions
for VD and ∇0 VD. Although this aspect is not fully clari ed and deserves much further study, we
here follow the standard procedure of adopting homogeneous boundary condition for ∇0 VD in the
boundary normal (in agreement with Refs. [6,9,2]) and VD is left an unknown in the boundaries.
An integration of (55) for VD is possible for unidimensional problems and known D. A study of

the in8uence of c0 in the relation between the two  elds VD and D is carried out for a known D:
For constant D; the relation between VD and D can be expressed as (if x is the only participating
coordinate):

VD = 1
2(c1 + c2 − D)ex=

√
c0 + 1

2(c1 − c2 − D)e−x=
√

c0 + D; (56)

where c1 and c2 are integration constants. It is clear that the important parameter in the relation
between VD and D as given by solution (56) is the square root of the area parameter, i.e. the length
scale parameter l0 =

√
c0.

For the analytical study a uniaxial specimen with in nite length is analysed, with D null except
in a zone of length 2, the interval x∈ [− 1; 1] where D is assumed to be unitary.

3 Hence the denomination implicit gradient model.
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Fig. 2. The analytical solution for VD, as a function the x-coordinate.

The analytical solution for this case, assuming that limx→∞ VD = 0 and limx→−∞ VD = 0, and
continuity of type C1 everywhere, can be expressed as

VD =




− 1
2 [e

−(1=
√

c0) − e(1=
√

c0)]e−(|x|=√c0) for |x|¿ 1;

− 1
2e(1=

√
c0)
[e(x=

√
c0) + e

−
(

x√
c0

)
] + 1 for |x|6 1:

(57)

The graph of VD as function of x, corresponding to several values of c0, along with the graph of
D as a function of x is represented in Fig. 2.
Fig. 2 shows the eIect that appears in more general situations. For a simple distribution of

damage as a uniform unitary local damage distribution in the interval x∈ [ − 1; 1] the gradient
damage distribution is not uniform and is continuous. It can be thought that if a high value of the
local damage variable is concentrated near a narrow zone (here the specimen has in nite length) the
smoothing eIect is a direct function of the c0 value and for high values of c0 the size of the zone
where the local damage concentrates is not important for the obtained nonlocal damage distribution.

4. Numerical integration of the constitutive equations

The local damage evolution equation (39) does not have, in the general case, a closed form
solution. This damage evolution equation my be rewritten, for the plastic case (� = 0), under the
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following form:

Ḋ = G(�̇; D; s̃; p̃): (58)

This equation must be numerically integrated to be used in a  nite element code. In this paper
a standard unconditionally stable backward-Euler integration rule is employed. The integration is
carried out in the interval [tn; tn+1] where the variable t represents the pseudo-time, as in this paper
the constitutive equations are assumed to be time independent. The application of the backward-Euler
integration rule to (58) leads to the relation:

Dn+1 − Dn − Gn+1(W�; Dn+1; s̃n+1; p̃n+1) = 0: (59)

This integration must be carried out to obtain the local damage both in local and the gradient
approaches. The 8ow law (44), which is also a rate equation, can be integrated making use of a
few considerations (see also Refs. [19,24]).
If there is no plastic evolution, i.e. Ċp = 0, it is possible to write the following relations, making

use of de nition (3) of be:

be;TRn+1 = Fn+1Cp−1
n FT

n+1 = Fn+1F−1
n benF

−T
n FT

n+1; (60)

where the superscript TR indicates that (60) is an elastic trial for ben+1.
Using this elastic estimate, the elastic principal strain vector may be calculated using de nition

(29) for its scalar components, �TRi = ln[�TR
i ].

After the introduction of the so-called exponential approximation (see Refs. [24,19] for a compre-
hensive exposition of the von-Mises case without damage), the  nal elastic principal strain vector
can be calculated once the variation in the plastic multiplier, W� is known:

”n+1 = ”TRn+1 −W�

√
3
2

1
�n+1

Cn+1 for the local model; (61a)

”n+1 = ”TRn+1 −W�

√
3
2

1
V�n+1

Cn+1 for the gradient model: (61b)

The term Cn+1 in (61) represents the 8ow vector (see Eq. (43)),

Cn+1 =
sn+1
‖sn+1‖ =

s̃n+1
‖s̃n+1‖ : (62)

The application of the elastic constitutive law in principal directions, (48), results in the following
equations for the 8ow law in terms of principal deviatoric stresses:

s̃n+1 = s̃TRn+1 − 2(
W0
�n+1

Cn+1 for the local model; (63)

s̃n+1 = s̃TRn+1 − 2(
W0
V�n+1

Cn+1 for the gradient model (64)

with W0=
√
3=2W�. The term s̃TRn+1 is the trial deviatoric stress.
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Using relation (61), the vector Cn+1 can be written as

Cn+1 =
s̃TRn+1
‖s̃TRn+1‖

(65)

which is the key property for the application of the so-called radial return algorithm (described for
a much simpli ed case in Ref. [25]).
Finally, the integrated yield condition, for �n+1 = 0 can be presented as

‖s̃TRn+1‖ − 2(
W0
�n+1

−
√

2
3
Bn+1 = 0 for the local model; (66a)

‖s̃TRn+1‖ − 2(
W0
V�n+1

−
√

2
3
Bn+1 = 0 for the gradient model; (66b)

where Bn+1 = B(�n+1):

Assuming that ‖s̃TRn+1‖−
√

2
3Bn+1 
= 0, 4 the term �n+1 in (66a) can be evaluated as in the following

relation:

�n+1 =
2(W0

‖s̃TRn+1‖ −
√

2
3 Bn+1

(67)

which means that, for the local model, the current value of the damage variable Dn+1 = 1 − �n+1

can be directly determined by the current value of the plastic multiplier increment.
Therefore, it is suTcient to solve the nonlinear equation:

r = 1− 2(W0

‖s̃TRn+1‖ −
√

2
3 Bn+1

− Dn − Gn+1 = 0 (68a)

for the local model, or

r = 1− 2(W0

‖s̃TRn+1‖ −
√

2
3 Bn+1

− VDn+1 = 0 (68b)

for the gradient model.
The only unknown in problem (68) is the plastic multiplier increment, W�; or alternatively W0.
It is important to note that, for the gradient model, after W0 is known through the solution of

Eq. (66b), the local damage, Dn+1 can be determined by solving Eq. (59) for Dn+1.
The Newton method with line-search is used to solve (66a). To apply the Newton method to this

equation, the derivative of r (presented in Eqs. 68) is needed:

@r
@W0

=
(
1− @Gn+1

@Dn+1

)
@Dn+1

@W0
− @Gn+1

@W0
(69a)

4 This condition is always veri ed in the current implementation, because if the yield condition is satis ed with the
trial deviatoric stress, there is no need for plastic multiplier correction, and hence for variation in the local damage value.
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Table 2
Algorithm for the calculation of W0

@r
@W0

�W0∗ =−r

�W0= p�W0∗

W0=W0+ �W0

� = � +
√

2
3�W0

Dn+1 = 1− �n+1(W0) for the local model only

for the local model, and
@r
@W0

=
@Dn+1

@W0
(69b)

for the gradient model.
The local damage derivative in (69) can be calculated as

@Dn+1

@W0
=− 2(

‖s̃TRn+1‖ −
√

2
3 Bn+1

− 2(W0 23B
′
n+1

(‖s̃TRn+1‖ −
√

2
3 Bn+1)2

; (70)

where B′
n+1 = @B=@�n+1 is the derivative of the hardening function (see (50)).

The Newton method with line-search is synthesized in Table 2.
The term p in Table 2 is the step length, obtained through a linear line-search algorithm as

exposed for example in Ref. [45]. This implementation is extremely straightforward and eTcient, as
it avoids the solution of an equation system as required in Refs. [46,47,32].
It is important to notice that, after the value of W0 is known for the gradient model, a further

step is needed to calculate the local damage variable, Dn+1. This is carried out solving Eq. (59) for
Dn+1:

r2 = Dn+1 − Dn − Gn+1 = 0 (71)

using the Newton method.

5. Linearization and the consistent modulus

To carry out the global solution, in terms of nodal variables, through the Newton method, it is
indispensable to consistently linearize the homogenized stress. The  nite strain modulus is given by
Eq. (32), and it is necessary to evaluate the term @�i=@�j to obtain the  nite strain modulus. This
term, which is denoted as C � for the local model and C V� for the gradient model, can be referred to
as the small strain consistent modulus (in principal directions). The task can be carried out taking
the  rst variation of the homogenized stress vector,

d
n+1 =



d�1
d�2
d�3


 (72)
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which can be expanded as

d
n+1 = (1− Dn+1) ds̃TRn+1 − dDn+1(s̃TRn+1 + I p̃n+1)− 2( dW0Cn+1

− 2(W0 dCn+1 + (1− Dn+1)I dp̃n+1

=C �
n+1 d”n+1 (73a)

for the local model, and

d
n+1 = (1− VDn+1) ds̃TRn+1 − d VDn+1(s̃TRn+1 + I p̃n+1)− 2( dW0Cn+1

− 2(W0 dCn+1 + (1− VDn+1)I dp̃n+1

=C V�
n+1 d”n+1 + C

VD d VDn+1 (73b)

for the gradient model.
In order to evaluate expressions (73a), (73b), it is necessary to relate the terms ds̃TRn+1, dDn+1,

dW0, dCn+1 and dp̃n+1 with the term d”n+1, and also, for the gradient model, to calculate C VD.

5.1. Consistent modulus for the local model

As many of the calculations required for the gradient model are common to the local model, the
calculation details for the last one are described in detail.
The variation of the damage variable, dDn+1, can be related to the variation of the plastic multiplier,

dW0 and to the variation of the trial deviatoric stress, ds̃TRn+1, using the integrated damage evolution
law (59):

dDn+1 =

√
2
3 (@G=@�n+1) dW0+ (@G=@‖s̃TRn+1‖)Cn+1 · ds̃TRn+1 + (@G=@p̃n+1) dp̃n+1

1− @G=@Dn+1

⇔ dDn+1 = a1 dW0+ a2 · ds̃TRn+1 + a3 dp̃n+1; (74)

where

a1 =
(
1− @G

@Dn+1

)−1
√

2
3

@G
@�n+1

;

a2 =
(
1− @G

@Dn+1

)−1 @G
@‖s̃TRn+1‖

Cn+1;

a3 =
(
1− @G

@Dn+1

)−1 @G
@p̃n+1

:

The variation of the trial deviatoric stress may be written as

ds̃TRn+1 = 2( dee;TRn+1 ; (75)
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where ee;TRn+1 is the distortional elastic trial deformation given by

ee;TRn+1 = ”
TR
n+1 −

1
3
I (�TR1; n+1 + �TR2; n+1 + �TR3; n+1):

The variation of the eIective pressure, p̃n+1 can simply be stated as

dp̃n+1 = &I · d”n+1: (76)

The variation of the distortional elastic trial deformation can be written as

dee;TRn+1 =
[
I4 − 1

3
I ⊗ I

]
· d”TRn+1;

where I4 represents the fourth order identity tensor.
It is worthwhile to note that, in principal directions, I can be written as a vector:

I =



1

1

1


 (77)

and I4 as a matrix:

I4 =



1 0 0

0 1 0

0 0 1


 : (78)

Taking the variation of the integrated yield condition (66), and using the last relations and relations
(74) and (75) it is possible, after some algebraic manipulations, to write the following equation:

dW0=

(
2(Cn+1 − (4(2W0=�2

n+1)a2 − (2(W0a3&=�2
n+1)I

(2(=�n+1) + 2
3&

′ + (2(W0=�2
n+1)a1

)
· d”TRn+1

= a4 · d”TRn+1: (79)

The  rst variation of the damage variable can therefore be written as

dDn+1 = (a1a4 + 2(a2 + a3&I) · d”TRn+1 = a5 · d”TRn+1: (80)

The variation of the 8ow vector (unitary vector), dCn+1, is simply written as

dCn+1 =
1

‖s̃TRn+1‖
[I4 − Cn+1 ⊗ Cn+1] · ds̃TRn+1

=
2(

‖s̃TRn+1‖
(
I4 − 1

3
I ⊗ I − Cn+1 ⊗ Cn+1

)
· d”TRn+1

= a6 · d”TRn+1: (81)
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It remains to relate the variation of the trial elastic strain, d”TRn+1, with the variation of the total
strain, d”n+1. This can be readily carried out noting the additive elastoplastic split (in principal
directions), which can be stated according to the following equality:

”n+1 = ”TRn+1 + ”
p
n ; (82)

where ”pn represents the last converged plastic strain, whose variation is null.
Using (73a), (73b), the local small strain consistent tangent modulus in principal directions can

be  nally written as

C � =2(�n+1

(
I4 − 1

3
I ⊗ I

)
− s̃TRn+1 ⊗ a5

− 2(Cn+1 ⊗ a4 − 2(W0a6 − I ⊗ a5p̃n+1 + &�n+1I ⊗ I : (83)

The matrix represented in Eq. (83) is generally unsymmetrical, resulting in an unsymmetrical  nite
strain modulus. This is a consequence of the nonassociative 8ow law.

5.2. Consistent modulus for the gradient model

The derivation of the small strain consistent modulus for the gradient model is relatively straight-
forward. For the term C V�, it is possible to write:

C V� = V�n+1

[
2(b1I4 +

(
& − 2

3
(b1

)
I ⊗ I − 2(b2Cn+1 ⊗ Cn+1

]
; (84)

where

b1 = 1− 2
(W0
‖s̃TRn+1‖

(85)

and

b2 = b1 − 1 +
1

1 + B′
n+1=3(

: (86)

Finally, the term C VD can be calculated as

C VD =−s̃TRn+1 + I p̃n+1: (87)

Another relevant term is the one resulting from the variation of the local damage evaluated with
the gradient model. This term can be written according to the following notation:

CD =
(
((@G=@W0)

(= V� + B′=3
+ 2(

@G
@‖s̃TRn+1‖

)
Cn+1 +

@G
@p̃n+1

&I (88)

such that dDn+1 = CD · d”n+1 is valid for the gradient model.
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6. Finite element discretization

Due to the presence of the nonlocal  eld (i.e. VD), related to the local  eld through the diIerential
equation (55), a mixed  nite element formulation must be used. Certain authors [6,48] adopt a
quadratic interpolation for the displacement  eld and a linear interpolation for the nonlocal variables.
With a distinct approach, de Borst in the Ref. [4] adopted a higher order of interpolation in terms
of nonlocal variables due to continuity requirements.
The  nite element technology presented in this paper consists of an extension of previous works

dealing with enhanced strain formulations [49,15,50]. In the present context an additional feature
is needed to include the nonlocal  eld de ned through diIerential Eq. (55). The formulation of a
3-dimensional hexahedric element with 8 nodes and 9 enhanced strain variables is presented, where
the order of interpolation for the nonlocal variables is the same as the order of interpolation in terms
of the displacement vector or the position vector.
The enhanced strain concept may be described as being an enrichment of the discretized defor-

mation gradient, F , through an additional term A, in agreement with the following notation:

F =∇0x+ A: (89)

In the present 3D implementation the term A is a function of 9 internal enhanced strain variables,
whereas in 2D [15], the typical number of enhanced strain variables may be 2 or 4.
The equilibrium equation in the integral form, including the enhanced strain term, can be written

as (see also Ref. [15]):∫
V0

� : (∇�x+ �a) dV0 = �We; (90)

where �We represents the virtual work of external forces and the symbol ∇ represents the spatial
gradient, in contrast with the material gradient, which is denoted as ∇0. Note that the integra-
tion domain is the material volume, V0. The term �a in (90) is a short form for the product
�AF−1.
The integral form of the diIerential equation (55), with homogeneous boundary condition for ∇0 VD

in the boundary’s normal (see also the Ref. [6] for an analogous approach), can be written as∫
V0

−c0∇0 VD · ∇0� VD dV0 +
∫
V0

(D − VD)� VD dV0 = 0: (91)

The discretization of the spatial position vector, x, and its scalar components, xi, takes the usual
form (see for instance [51]):

x= Nkxk (92)

and

xi = Nkxki; (93)

where the terms Nk represent the standard shape functions for the 8-noded hexahedric element and
xki are the nodal spatial position variables.
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The scalar components of the gradient ∇�x are calculated resorting to the nodal spatial position
variations, �xki:

∇�xij = Nkj�xki (94)

with Nkj = @Nk=@xj.
The term A in Eq. (89) is discretized according to the following relation for its scalar components:

Aij =M0kj�ki; (95)

where �ki with i; k = 1; 2; 3 are the internal enhanced strain variables.
The functional form of the term M0kj, introduced in Eq. (95), is de ned according to

M0kj = Ek

(
@5k

@Xj

)∣∣∣∣
0

no summation on k (96)

whose terms 5k denote the local coordinates and the terms Ek with k=1; 2; 3 represent the following
functions:

E1 =−251(1− 522)(1− 523);

E2 =−252(1− 521)(1− 523);

E3 =−253(1− 521)(1− 522): (97)

These functions agree with previous developments in 2D (see Refs. [50,15]) and allow the satis-
faction of the relation M0kj = 0 in the element’s boundary.
The term @5k=@Xj in (96) is evaluated at the element’s point identi ed by the coordinates 5k =0.
Using these last de nitions, the scalar components of the term �a in (90) can therefore be evaluated

as

�aij =Mkj��ki; (98)

where Mkj =M0klF−1
lj .

The nonlocal damage is discretized using the same shape functions of the position vector in
relation (92):

VD = Nk VDk (99)

whose terms VDk are the nodal variables for the nonlocal damage.
The order of the nodal and internal variables in the hexahedric element is shown in Fig. 3.
As a consequence of discretization (99), the scalar components of the material gradient of the

nonlocal damage can be calculated as

∇0 VDi = N0ki VDk (100)

with N0ki being de ned (please note the use of orthogonal coordinates for F) as

N0ki = NklFli: (101)
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Fig. 3. Variables of the nonlocal hexahedric element.

Now the discretized equilibrium equation can be presented according to∫
V0

�ij(Nkj�xki +Mkj��ki) dV0 = �We (102)

and the discretized nonlocal damage equation can be written as∫
V0

(−c0N0li VDlN0ki� VDk + DNk� VDk − NlNk VDl� VDk) dV0 = 0: (103)

These Eqs. (102) and (103) can be used in a straightforward manner to calculate the internal
force vectors:

fx
ki =

∫
V0

Nkj�ji dV0; k = 1; : : : ; 8; (104a)

f�
ki =

∫
V0

Mkj�ji dV0; k = 1; : : : ; 3; (104b)

f VD
k =

∫
V0

(−c0N0liN0ki VDl + DNk − NlNk VDl) dV0; k = 1; : : : ; 8; (104c)

where the superscripts indicate the assembling variable.
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Both the internal forces in Eqs. (104a) and (104c) span the same nodes but the last one only
aIects the 4th nodal degree of freedom, as shown in Fig. 3 whereas the internal force in (104b)
aIects the  rst 3 nodal degrees of freedom.
Finally, with the purpose of calculating the stiIness matrix, the  rst variation of Eqs. (102) and

(103) relative to the variables xki, �ki and VDk results in the following set of terms for each element’s
stiIness matrix:

Kxx
knlm =

∫
V0

(�nm�ijNkiNlj + NkiNljCTnimj) dV0; (105a)

Kx�
knlm =

∫
V0

(�nm�ijNkiMlj + NkiMljCTnimj) dV0; (105b)

K�x
knlm =

∫
V0

(�nm�ijMkiNlj +MkiNljCTnimj) dV0; (105c)

K��
knlm =

∫
V0

(�nm�ijMkiMlj +MkiMljCTnimj) dV0; (105d)

Kx VD
knl =

∫
V0

NlNkjC
VD
nj dV0; (105e)

K� VD
knl =

∫
V0

NlMkjC
VD
nj dV0; (105f)

K VD VD
kl =−

∫
V0

(c0N0kiN0li + NkNl) dV0; (105g)

K VDx
lkn =

∫
V0

NlNkjC
VD
nj dV0; (105h)

K VD�
lkn =

∫
V0

NlMkjC
VD
nj dV0: (105i)

It is important to note that the  nite element stiIness matrix emerging from (105) is unsymmet-
rical and therefore an unsymmetrical equation solver must be used. This is not a consequence of
the gradient model, but rather a consequence of the adopted nonassociative 8ow law, where the
dissipation potential is decomposed according to Eq. (26).
It is noticeable that the terms in (105) are written in the original 6-dimensional stress space, and

therefore a transformation is used from the principal space to the original 6-dimensional space.
The numerical implementation of the internal force vector (104) and the stiIness matrix (105),

using the previous notation, is relatively straightforward.
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7. Numerical examples

Two purposes are aimed with the following examples: illustrating the accuracy of the  nite element
formulation in solving some known problems and showing that the proposed gradient approach is
eIective in attenuating or removing the mesh dependency in problems involving strain softening.

7.1. A uniaxial test with central imperfection

This test consists on the stretching of a 3D square bar with a central material imperfection. The pur-
pose of this test is to inspect, in a simple geometry, the capability of removing the
mesh dependency without geometry complexities. The test is inspired in the ones carried out in
Refs. [52,40] in which a similar test was carried out in a diIerent constitutive context. In Ref. [40]
a small strain elastic brittle behavior setting was analysed and in Ref. [52] a small strain elasto-
plastic behavior was analysed but with a distinct damage model. Another recent reference with the
same test but with a diIerent damage evolution model is [41]. Here a 3D variant is tested. The
geometry and boundary conditions are presented in Fig. 4. The presence of the imperfection forces
a nonhomogeneous damage  eld which, if a local model is adopted, is cause of mesh-dependent
response.
The material properties relative to this test are presented in Table 3, where consistent units are

adopted.
The gradient model has some lower values for the energy strength of damage due to the fact

that the same softening behavior is aimed. The properties related to the gradient model, c0 and the
softening measure, S0 should be calibrated simultaneously for problems where the damage  eld is
not uniform.
The tested meshes contain 22, 44, 66 and 88 elements and within each mesh, each element has

exactly the same dimensions.

Fig. 4. The geometry and boundary conditions for the uniaxial test with central imperfection.
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Table 3
The material properties for the uniaxial test with central imperfection

Property Symbol Value

Bulk modulus & 166 666:7
Shear modulus ( 76 923:07
Yield stress )Y 400
Yield stress-weak zone )YE 360
Energy strength of damage (local model) S0 0:4
Energy strength of damage (local model, weak zone) S0E 0:38
Energy strength of damage (gradient model) S0G 0:2
Energy strength of damage (gradient model, weak zone) S0EG 0:18
Square of the characteristic length c0 80
Critical damage Dc 0:8
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Fig. 5. The longitudinal damage distribution near the weak zone (represented in Fig. 4).

The longitudinal distribution of the damage variable near the weak zone can be observed in
Fig. 5.
From the inspection of Fig. 5, it is clear that the local model presents a very mesh-dependent

damage distribution along the y-axis (at least in the weak zone) and that the gradient model elim-
inates that dependency. A peculiar aspect to note is that there is a near-coincidence of the damage
distribution curves (only at the central part of the weak zone) for the meshes containing 66 and 88
elements, however, these curves are related to diIerent analysis phases (see Fig. 5).
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Fig. 6. The reaction curves related to the various meshes, for the local and gradient models.

In terms of reaction curves, the Fig. 6 shows a common behavior (see also Refs. [52,40]). The
reaction values obtained when the local model is used are mesh dependent, and the results obtained
with the gradient model are almost mesh independent.
The in8uence of the material parameter S0, for a 44-element mesh using the gradient model, in

the damage distribution near the weak zone, is presented in Fig. 7.
The in8uence of the same material parameter in the reaction curves, is shown in Fig. 8. The

bumpy behavior of the reaction curves is due to the sudden evolution from Dc to Du in the local
damage evolution law (see Fig. 1), which is attained earlier as S0 decreases.
In terms of in8uence of the parameter c0 which controls the spreading of the damage vari-

able near the weak zone, the damage distribution and the reaction curves are presented in Figs. 9
and 10, respectively. Clearly, the in8uence of the parameter c0 is very important in terms of damage
distribution and relatively unimportant in terms of reaction curves (for the values of S0 given in
Table 3).
The eIect of smoothing of the damage  eld is visible in Fig. 9 where for higher values of c0 the

weak zone presents lower damage values and its immediate neighborhood presents higher values of
the damage variable.
The determination of the area scale parameter, c0 introduced in Eq. (55) can be carried out by

measuring the relative displacement of the points inside the weak zone. The center of the bar presents
a longitudinal displacement of 1. However, the planes that separate the weak zone from the rest of
the bar have a relative displacement which is dependent on c0 and S0. The value of the material
property S0 can be determined testing a homogeneous bar, so that the damage  eld is uniform (and
hence the gradient model is equivalent to the local model).
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Fig. 7. The in8uence of the parameter S0 in the damage distribution near the weak zone.
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Fig. 8. The in8uence of the parameter S0 in the reaction curves obtained.

As soon as the value of S0 is known through the use of a uniform specimen, a specimen with
a weak zone is tested and the relative displacement of the planes that separate the weak zone
from the rest of the specimen is measured. This specimen with the weak zone can be reproduced
experimentally by the introduction of a thinner cross section in the center.
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Fig. 9. The in8uence of the parameter c0 in the damage distribution near the weak zone.
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Fig. 10. The in8uence of the parameter c0 in the reaction curves obtained.

The present example provides an opportunity to exploit this procedure. Fig. 11 represents, for two
mesh densities (44 and 88 elements) the evolution of the described relative displacement with c0
for a given value of S0 = 0:2 in the nonweak zone.
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Fig. 11. The relation between the relative displacement of the weak zone and the value of c0.

7.2. Cylindrical shell composed of two materials

This example was proposed in Ref. [53] where the Rousselier damage constitutive law was used
(see also Ref. [54]). In that reference, this analysis was carried out using a shell  nite element
technology and a local model was adopted.
The problem consists of a cylindrical shell with a “geometry intersection” [53] and made of two

distinct materials. The shell is loaded by the introduction of a line of imposed displacements. The
actual geometry and dimensions can be consulted in the above reference. The mesh and boundary
conditions can be viewed in Fig. 12 where the two distinct materials are painted in diIerent colors.
Only one-eighth of the actual geometry is meshed, due to existence of 3 planes of symmetry.
The material properties are exposed in Table 4 where consistent units are adopted. The represented

mesh contains 864 3D elements, corresponding to the two layer shell mesh presented in Ref. [53].
Another mesh, containing 1296 3D elements is also tested, with the goal of inspecting the mesh size
dependency. The deformed mesh for the sparse case is presented in Fig. 13. The damage contour
plot for the sparse case and containing, for ease of visualization, only the interval [0:05; 0:1421] is
represented in Fig. 14.
One important aspect of the proposed analysis is that the material 1 is treated with the local

model and the material 2 is treated with the gradient model. This choice is made because the
damage concentrates in two main areas which are both composed of material 2.
The reaction forces obtained for the proposed mixed (local-gradient) analysis, for a completely

local analysis and for the undamaged case, are presented in Fig. 15 and compared with the results
obtained in Ref. [53].
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Fig. 12. The sparse mesh and boundary conditions for the cylindrical shell composed of two materials.

Table 4
The material properties for the problem represented in Fig. 12

Property Symbol Material 1 local Material 2 local Material 2 grad.

Bulk modulus & 175 175 175
Shear modulus ( 80.77 80.77 80.77
Hardening law B 0:8 + 3:5� 0:2 + 0:1� 0:2 + 0:1�
Energy strength of damage S0 2× 10−3 1× 10−4 1× 10−4

Square of the characteristic length c0 ∗ ∗ 0.6
Critical damage Dc 0.8 0:8 0.8

Fig. 13. Deformed mesh for the cylindrical shell composed of two materials: mixed model.
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Fig. 14. Damage distribution contour plot for the cylindrical shell composed of two materials: mixed model.
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Fig. 15. Cylindrical shell: reaction forces for the proposed formulations and the results from Ref. [53].

The proposed analysis attenuates the mesh dependency that is observed if the local model is used,
as it can be inspected from Fig. 15. The results obtained with the sparse mesh are very close to the
ones obtained in Ref. [53] where a shell element formulation was used.
The use of the local model not only results in a much distinct behavior between the sparse and

the re ned mesh, but also gives rise to a premature halt in the program when the re ned mesh is
used (see Fig. 15). This is circumvented by the use of the mixed model.
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Fig. 16. Geometry and boundary conditions for the CT specimen, according to Ref. [55].

An important conclusion noticed in Ref. [53] is that, due to the damage concentration the  rst
macroscopic crack (macro-crack in the notation of reference [53]) will appear in the neighborhood
of the shell intersection.
For this example the mesh dependency due to strain softening is removed, as it can be seen from

the reaction forces in Fig. 15.

7.3. Numerical test of a CT specimen

This test allows the inspection of the capability of the proposed model in a numerical test for
which results have been published recently (see Ref. [55]). The test consists on the application of a
imposed opening displacement to an idealized CT specimen. The geometry and boundary conditions
for this test are presented in Fig. 16. Only one-quarter of the specimen is actually modeled, due to
existence of symmetry planes. The vertical displacement, v is applied on the zone identi ed by u=0
in Fig. 16.
The adopted material properties are presented in Table 5. It is important to note that, in Ref. [55]

the Rousselier damage constitutive model was adopted (see also [54]). Another diIerence to note
is that in the present paper, a smaller value of the characteristic length, l0 = 0:6325 mm instead of
l0 = 1 mm in Ref. [55] is used. This is because, for this value, the present model already shows
mesh independence.
Two meshes are used: one containing 1655 elements and other containing 512 elements. The

damage distribution over the re ned deformed mesh is presented in Fig. 17, where only one-quarter
of the specimen is actually represented.
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Table 5
Material properties relative to the CT specimen

Property Symbol Value

Bulk modulus & 116 666:66 N=mm2

Shear modulus ( 87 500 N=mm2

Hardening law B 1103:7(� + 0:0021904)0:1428

Damage threshold �D 0.0
Energy strength of damage, local model S0 2:4 N=mm2

Energy strength of damage, gradient model S0G 0:6 N=mm2

Square of the characteristic length c0 0:4 mm2

Critical damage Dc 0.7

Fig. 17. Damage distribution over the deformed mesh for the gradient model and the re ned mesh (only one-quarter of
the model is represented and the interior crack tip is invisible).

The zone with the highest damage values is not the crack tip itself, but rather an interior zone
at a certain distance of the crack tip. This fact has already been veri ed by other authors (see
Ref. [56]). To observe the concerned zone, a representation of the damage variable near the interior
crack tip zone is shown, with the damage interval [0:45; 0:6146] in Fig. 18.
The reaction forces obtained in the line of displacement application (see Fig. 16) are presented

in Fig. 19.
The reaction forces obtained with the local model are clearly mesh dependent, as can be observed

in Fig. 19. The reactions obtained using the gradient model are independent of the mesh adopted.
For comparison purposes, the reactions published in Ref. [55] are presented. It is noticeable that
although the results in Ref. [55] are also mesh independent for the nonlocal model proposed in that



1226 P.M.A. Areias et al. / Finite Elements in Analysis and Design 39 (2003) 1191–1235

Fig. 18. Damage distribution near the interior crack tip, in the interval [0:45; 0:6146].
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Fig. 19. Reaction forces obtained using the proposed model and the results obtained in Ref. [55].

reference, no clear softening behavior is shown, as it is visible in Fig. 19. The diIerence observed
in Fig. 19 between the results from Ref. [55] and the ones from the present analysis in the  rst part
of the graph can be related to the enhanced-strain formulation adopted, as a standard  nite element
formulation was used in Ref. [55].
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Fig. 20. Damage evolution at the center of the specimen, for two mesh densities and two damage models.

As for the damage variable at the center of the specimen, Fig. 20 shows the eIect of the proposed
gradient approach. Once again, the gradient model gives nearly mesh-independent results.

7.4. Stretching of a perforated plate

This example consists in the stretching of a rectangular plate which contains a central circular
hole. It is documented in Ref. [57], where a local approach based on Lemaitre’s damage law was
adopted. The geometry and boundary conditions are presented in Fig. 21.
The material properties for this example are listed in Table 6 where consistent units are adopted.
The use of distinct values for the energy strength of damage properties is related to the diIerence

between the two models and the need for obtaining a combination of the two properties S0 and c0
which actually reproduces the local model result for a given  xed mesh.
Only one-fourth of the plate is actually modeled, as symmetry conditions are exploited. A unitary

thickness is used. A total displacement value of U2 = 6:3 is imposed on the top part of the plate
(see Fig. 21). In Ref. [57], a maximum displacement value of U2 =2:65 was imposed. Two mapped
meshes are used: one with 288 elements and another one with 450 elements. The total top edge
reaction is monitored and compared with the values obtained in Ref. [57] where 2D triangular plane
stress elements were used.
The damage contour plot over the deformed mesh is represented for the gradient model using the

re ned mesh in Fig. 22 for an imposed displacement value of U2 = 2:65. The damage initiates near
the inner side of the thinner part of the plate and propagates outward, as veri ed in Ref. [57].
For the local model, the damage contour plot is represented in Fig. 23.
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Fig. 21. The geometry and boundary conditions of the perforated plate.

Table 6
Material properties of the perforated plate

Property Symbol Value

Bulk modulus & 23.33
Shear modulus ( 35
Hardening law B 0:243 + 0:2�
Damage threshold �D 0
Energy strength of damage, local model S0 4:5× 10−3

Energy strength of damage, gradient model S0G 3:5× 10−3

Square of the characteristic length c0 0.8
Critical damage Dc 0.7

It is clear from the observation of the Figs. 22 and 23 that the local model presents a value close
to one in the strained zone and almost all the rest of the plate is undamaged. On the contrary, the
gradient model forces a spreading of the damaged zone.
In terms of reaction forces, Fig. 24 shows the results obtained with the gradient model and the

local model, along with the results presented in Ref. [57].
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Fig. 22. The damage contour plot over the deformed mesh for the gradient model (U2 = 2:65).

Fig. 23. The damage contour plot over the deformed mesh for the local model (U2 = 0:8254).

The reaction force curves obtained using the gradient model are roughly similar to the one pre-
sented in Ref. [57]. A discussion of this problem, with some rather diIerently shaped curves for the
reaction forces is exposed on Ref. [53].
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Fig. 24. Reaction forces for the perforated plate.

Table 7
Material properties for the circular bar specimen adopted in the tension test

Property Symbol Value

Bulk modulus & 164.21
Shear modulus ( 80.1938
Hardening law B 0:45 + 0:12924� + 0:265(1− e−16:93�)
Energy strength of damage (local) S0 2:4× 10−3

Energy strength of damage (gradient) S0G 2× 10−3

Damage threshold �D 0.44
Square of the characteristic length c0 0.3
Critical damage Dc 0.7

7.5. Necking of a circular bar

This example is an extension of the simulation carried out in Ref. [24] in the context of  nite
strain plasticity and in Ref. [34] for the 2D axisymmetric situation incorporating (where a simpli ed
version of Lemaitre’s damage model was tested). It consists on a circular bar subject to a uniform
longitudinal displacement (a tension test). The information which can be extracted from this test is
the necking displacement and the reaction forces, as measures of softening.
The material properties for this example are presented in Table 7.
As in Ref. [24], the bar has a linearly varying radius from R0 = 6:413 at the end grips to Rsym =

6:297566 at the transversal symmetry plane. This varying radius induces a geometric imperfection
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Fig. 25. EIective plastic strain and damage contour plot over the deformed mesh for an imposed longitudinal displacement
of 7: gradient model, re ned mesh.

and therefore necking. The total length of the specimen is L= 53:334. The bar is simply supported
in the thinner section and is pulled in the longitudinal direction in the thicker section to a total
longitudinal displacement value of 14 (7 in Refs. [24,34]). Two mesh densities are adopted: 960
elements and 378 elements.
The eIective plastic strain (�) and the damage ( VD) contour plots over the re ned deformed mesh,

using the gradient model are presented in Fig. 25.
The longitudinal reaction forces for the proposed gradient model and the results obtained from

the 2D analysis carried out in Ref. [34] are presented in Fig. 26.
It is clear, from the observation of Fig. 26 that the results are almost mesh independent and that

even the sparse mesh reproduces the result obtained in Ref. [34] where a 2D re ned mesh was used.
The necking displacement (radial displacement at the transversal plane of symmetry) is presented

in Fig. 27 for both the local and gradient models. It can be observed that the results are almost
mesh independent for the gradient model and highly mesh dependent for the local model.
An eIect of the introduction of damage in the  nal radial displacement at the symmetry plane is

the increase of the diIuse strain localization, which constitutes necking (see Ref. [58] for a de nition
of diIuse strain localization and how it is a consequence primarily of geometric eIects) due to strain
softening that is not present in the undamaged case.
Therefore, in the present of damage, and hence strain softening, two eIects contribute to the

necking displacement: strain softening and geometric softening.
A mistake would be committed if the necking displacement is used as an indicator of the deformed

volume. As damage evolves, the deformed volume should be greater than without the presence of
damage. This occurs because the damage process reproduces the nucleation and growth of cavities
inside the body.
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Fig. 26. Reaction forces for the gradient model, using 2 meshes and the results from Ref. [34].
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Fig. 27. Necking displacement of the specimen for various cases.

The deformed volume of 1=8 of the specimen is presented in Table 8.
From the inspection of Table 8, one may conclude that, as the imposed displacement increases,

the damaged specimens have a higher volume. The fact that volume increases in the von-Mises
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Table 8
Deformed volume of 1=8 of the specimen

Imposed displacement 0 3.5 4.2 5.6 7.0

von-Mises 840.53 841.69 841.62 841.52 843.44
Damage, local model 840.53 841.69 841.61 843.33 848.78
Damage, gradient model 840.53 841.69 841.60 841.70 845.50

model is a consequence of the increase in the elastic strain, as hardening is present (see Table 7).
Therefore necking displacement is an indicator of softening (both geometric and strain softening)
but not an indicator of the deformed volume.

8. Conclusions

The presented formulation, which consists on a coupled  nite element technique and material
model where several  elds are interpolated (damage, spatial position and enhanced strain variables)
is very eIective in removing mesh dependency due to strain softening that aIects the standard local
models, usually adopted for the analysis of ductile material behavior. All the details relevant for the
successful implementation of the proposed model were presented and further extensions, such as the
crack closure e3ect [14] although not presented here, are easily introduced and have been already
implemented within the implicit gradient approach. The present approach shows a great potential
for dealing with plastic and damage anisotropy and more complex physical models, if adequate
experimental evaluation of the material properties is available.
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