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Algorithms for the analysis of 3D finite strain contact problems
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SUMMARY

From the constraint imposition aspects in 3D to friction regularization, various ideas are exposed in this
paper. A variation of the Rockafellar Lagrangian is proposed which results in continuous second-order
derivatives if Lagrange multiplier estimates are greater or equal than one. This fact allows the adoption
of a full second-order (i.e. Lagrange–Newton) method avoiding sequential unconstrained minimization
techniques. An algorithm for global and local contact detection is presented which is developed for
dealing with large step sizes typical of implicit methods. A modified constraint definition to deal
with non-smooth situations is presented. Aspects of friction implementation, including a regularization
scheme which ensures stepwise objectivity, are detailed. Finally, several illustrative examples are carried
out with success. Copyright � 2004 John Wiley & Sons, Ltd.
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1. GENERAL CONSIDERATIONS

It is clear that almost every mechanical deformation process involves contact forces, and
also forces from distinct nature such as volume forces. Notwithstanding the existence of
many papers presenting new advances and techniques for analysing contact problems with the
finite element method, the finite deformation implicit contact analysis, including friction,
of 3D deformable solids is not yet completely robust in large-scale applications.

Two key problems addressed in this work are the analysis of deformable–deformable contact
and self-contact. In the context of metal forming processes, self-contact may emerge in a variety
of situations, some of which are technically undesirable (e.g. Reference [1]). Additionally, it is
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known that the consideration of tool deformation may also be important in certain circumstances.
These two cases may be conceptually thought as contact between deformable bodies, as locally,
there is no distinction between the two.

In the finite element analysis of contact between deformable solids, there are at least two
physically observed phenomena that is imperative to represent: the non-penetration constraint
and friction effects between the interacting surfaces. For an analytical introduction to the theme,
Reference [2] is well known. For an introduction to the physical phenomena, References [3, 4]
are very important.

The finite element treatment of the non-penetration is commonly based on the imposition
of inequality constraints. These inequality constraints can be satisfied making use of modi-
fied equality constraint algorithms or, in alternative, employing active set strategies for the
constraints. These are two paths discussed in non-linear mathematical programming textbooks
[5, 6]. If second-order information is available, a class of effective (see some conclusions in
Reference [7]) methods for solving equality constrained problems is the sequential quadratic
programming (SQP) class of optimization methods, comprehensively exposed in References
[6, 8]. The direct application of the classical version of this method to problems containing in-
equalities can become very expensive for large-scale situations, due to the fact that a inequality
constrained quadratic subproblem must be solved in each SQP iteration. The solution of this
subproblem is costly in the presence of both large number of inequality constraints and large
number of variables (both active-set and Lemke’s methods for solving this sub-problem are
comprehensively described in Reference [9] and Lemke’s method was employed in the finite
element context in Reference [10]). Techniques to deal with the discontinuities that inequal-
ities invariably imply were adopted in the finite element context. Reference [11] presents a
strategy for ‘smoothing’ the Newton–Raphson method for dealing with contact constraints and
Bathe and Bouzinov [12] propose regularizations that allow differentiability at the expenses
of accuracy. Recently, Areias and César de Sá [13] proposed a new second-order algorithm
which allows a smoother transition between active and non-active contact constraints without
modifying the constraint satisfaction accuracy. Besides this innovation, new considerations of
contact constraint definition are presented, which allow difficult non-smoothed 3D problems to
be solved without smoothing procedures.

A review of some of the concepts involved in the study of contact mechanics (including
some key-aspects to be represented in simulations) was carried out by Barber and Ciavarella
[14]. It is interesting to refer that one of the first attempts to analyse classical contact problems
with finite elements was carried out by Francavilla and Zienkiewicz [15] and a much more
rigorous analysis was published in the following year by Hughes et al. [16] already including
independent force variables.

2. INEQUALITY CONSTRAINTS ARISING FROM THE
NON-PENETRATION CONDITION

If the discrete contact problem in study complies with the restrictive circumstance of being
conservative (which among other consequences, eliminates friction forces from the model) then
the discretized model can be classified as a non-linear programming problem.

Given two bodies denoted as B1 and B2, an approach for the condition of non-penetration
of one discretized body over another is achieved through the adoption of a node-to-face strategy
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where every exterior node of body B1 is constrained not to penetrate in every face of body B2,
a reasonable discretization of contact in many situations. If body B1 contains nB1 nodes and
body B2 contains mB2 faces, there should be nB1mB2 inequality constraints (usually not all
active simultaneously). This key-aspect appears to be ignored in most bibliography concerned
with the discretized treatment of contact problems:

• The maximum number of faces that each node is constrained not to penetrate in a given
time step is pre-assigned.
• In most cases, this number is 1. Although during the analysis the faces from which each

node is prevented to penetrate change, the faces are selected one at the time.

This universally accepted strategy allows the total number of constraints to be reduced to only
nB1 , but is the root of some inadequacies in the application of optimization algorithms to the
contact problems as the equidistance dilemma.

A general presentation of the inequality constrained problem is as follows:

min �(x)

s.t h(x) � 0
(1)

where x is an n-dimensional vector, and h(x) is an m-dimensional vector of functions of
x, which, in the present work, is defined for all x ∈ Rn. �(x) is the sum of the elastic
potential energy and the potential of the conservative external forces. The variables xi in x
represent nodal spatial position variables. The concept of signed distance function will be used
for defining h(x) in a subsequent section.

A Lagrangian function corresponding to (1) is established as:

L(x, �) = �(x)+ h(x) · � (2)

where � are additional variables, which will be related with the Lagrange multipliers at one
solution of problem (1). Please note the difference between �, which are variables, and �∗
which are the values of these variables at the solution and are called Lagrange multipliers, as
will be introduced (see Reference [6] for this nomenclature).

Functions �(x) and h(x) are, for now, assumed to be twice continuously differentiable.
At a given value of the variables x, the set of indexes of active constraints can be written

as:

A(x) = {j |hj (x) = 0} (3)

A comprehensive presentation of the first-order necessary conditions can be written as (see
References [6, 17]):

Let x∗ be a local minimum of �(x) satisfying the constraints h(x) � 0 and assume that x∗
is regular. Then there exists a unique Lagrange multiplier vector �∗ such that:

∇xL(x∗, �∗) = 0 (4)

�∗ � 0 (5)

�∗j = 0 ∀j �∈ A(x∗) (6)
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A given point x∗ being regular, means, in the context of inequality constraints, that the gradients
of all constraints whose indexes belong to the set A(x∗) are linearly independent.

From (4), it is possible to write the vectorial equality h(x∗) � �∗ = 0 (such as hi�i = 0
with no sum on i), usually designated as the complementary slackness condition [18]. If a
Lagrange multiplier value is zero, the corresponding constraint can be non-active, but if the
Lagrange multiplier is positive, then the constraint must be active. Situations exist where both
the constraint is active and the correspondent Lagrange multiplier is null.

Let us discuss some methodologies for solving problem (4) for both x∗ and �∗ which
hopefully can be adapted to the contact problem in hands.

A far from exhaustive list of suitable algorithms for the solution of contact problems (in-
equality constraints) which make use of available second-order information is:

1. Exterior penalty or interior barrier methods (usually approximated methods). Referred to
generate ill-conditioned matrices for accurately satisfied constraints, these methods can be
regularized [19] to avoid this effect. In fact, one motivation of the popular method of
multipliers discussed for instance in Reference [7] is to shift the quadratic penalty (or a
modified barrier [19–21]) to ensure that the Hessian matrix remains well conditioned.

2. The method of multipliers, where a penalized Lagrangian function (frequently denominated
Augmented Lagrangian [6]) is adopted and a first-order update of the Lagrange multiplier
estimates is carried out. The inequality constraints can be dealt with an active set strategy
or with a special updating strategy of the multiplier estimates that complies with the
modified Augmented Lagrangian for inequality constraints introduced by Rockafellar [22].
The variants with exponents [7, 20] overcome the absence of second derivatives (at a
given point) of the Augmented Lagrangian by Rockafellar. The use of a modified barrier
has also been adopted for contact problems in Reference [23].

3. Reduced-gradient methods, described in References [11, 24, 25], for example. Variants
that use second-order information are based on a reduced Hessian matrix (e.g. References
[8, 24]), which is formed by a projection of the original Hessian using a null space
base of the constraint gradients. These methods are related with the so-called multi-point
constraints (MPC), described for linear equality constraints in Reference [26], and demand
carefully designed algorithms to determine which variables should be eliminated from the
original unconstrained problem.

4. Direct applications of the Newton method extended to deal with equality constraints,
subsequently modified for inequalities by a number of techniques:

(a) The use of active set strategies which are supported by the checking of the Lagrange
multipliers signs after an equality constraint problem is solved, along with a strategy
for incorporating activated constraints during the iteration process.

(b) The solution of the necessary conditions for the quadratic subproblem through the
solution of a linear complementary problem (LCP), see Reference [9] for the mathe-
matical details. The application of the Lemke’s algorithm in the finite element context
was carried out, among others, by Chertier and Chabrand [10].

(c) The use of slack variables on a slacked Lagrangian and a perturbation (which depends
on a barrier parameter) of the complementary slackness condition, as presented in
References [17, 25, 27].

(d) The use of a Rockafellar [22] Lagrangian or the exponential multiplier method
[6, 7, 20] with a second-order updating of the Lagrange multiplier estimates, which
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reduces the solution of the quadratic problem to the repeated solution of linear equa-
tions systems.

The method of multipliers is popular in contact finite element analysis. However, steepest
ascent updating of multipliers, or any other first-order strategy that could be cogitated for the
multipliers (see Reference [7] for an in-depth study about multiplier methods) damages the
quadratic convergence properties of the Newton method adopted for the primary variables, x.
This fact is clearly emphasized in Reference [28], for instance in p. 232, ‘When a Newton-type
method is applied to solve the unconstrained subproblem a second order multiplier estimate
should be used in order to achieve the expected quadratic convergence...’.

This argument can be circumvented making use of the stepwise structure of the implicit
finite element codes, freezing the Lagrange multiplier estimates between steps and artificially
obtaining a quadratically convergent scheme for the variables x in each step. This strategy is
described in References [29–33] but leads to multiple sub-steps. Another difficulty with the
method of multipliers is that its convergence to the correct solution depends on the penalty
parameter value which should be greater than a (difficult to obtain) threshold, see Reference [6].

The use of a Rockafellar Lagrangian strategy (which emanates from a slacked Lagrangian
subsequently liberated from the slack variables, see Reference [6]) can be adapted to second-
order updates of the Lagrange multipliers. There is, however, a discontinuity of the Hessian
matrix if at least one (j for example) constraint value equals the ratio between minus the
Lagrange multiplier estimate and the penalty parameter, r:

∀x |hj (x) = −�j

r
⇒ location of the Hessian matrix discontinuity (7)

A solution for this problem is discussed by Bertsekas and co-workers with the introduction
of the exponential method of multipliers [6, 20] adopted within a first-order algorithm for the
Lagrange multiplier estimates. A corresponding Lagrangian is not available for second-order
algorithms. Therefore, a combination of the Rockafellar Lagrangian and the exponential method
of multipliers is employed here. For a set of m inequality constraints, which are grouped in
the vector h(x), it is possible to write, using a vector of m Lagrange multiplier estimates (MR
indicates modified Rockafellar):

LMR(x, �) = �(x)+ 1

2r

m∑
i=1
{max[0, �i + erhi (x) − 1]2 − �2

i } (8)

from which first and second variations follow in a straightforward form. The following com-
ments are applicable to definition (6):

• The effect in terms of gradient is similar to the modified barrier function presented in
References [19, 21] but it is defined for all x ∈ Rn, a fact which does not occur with
classical barrier functions.
• The values of the Lagrangian LMR, the Lagrange multiplier vector, �∗ and the variables

x∗ are the same as the original Lagrangian (2) at a local constrained minimum of �(x).

Regarding the line-search algorithm, both a reduction of �(x) and satisfaction of constraints
are aimed. The following merit function is employed:

MMR = 1
2 ‖∇x�LMR(x, �)‖2 (9)

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:1107–1151



1112 P. M. A. AREIAS, J. M. A. CÉSAR DE SÁ AND C. A. CONCEIÇÃO ANTÓNIO

Although other functions could be adopted (see References [6, 18]) this function (7) does
not make direct use of the value of the function �(x) which is seldom available in the finite
element codes, and it is particularly convenient for an inexact line search. Additionally this
merit function can be used in non-conservative problems with a simple modification. The step
size � is taken as the first �i that satisfies the inequality:

MMR(x + �i�x, �+ �i��) � �MMR(x, �) (10)

where � is a parameter close to one and �i = ( 1
2 )i with i = 0, . . . , mi − 1 with mi being the

maximum number of evaluations of the merit function at each Lagrange–Newton iteration. The
values mi = 4 and � = 0.9 are here adopted.

2.1. The necessary conditions and the slacked version of the proposed Lagrangian:
derivations for one constraint

The common transformation of problem into an equality constraint problem with a side-
constraint can be accomplished by re-writing problem (1) according to:

min �(x)

s.t h(x)+ s = 0

and to s � 0

(11)

with the introduction of the slack variable s. Note that the use of only one constraint does not
imply lack of generality.

The use of a penalty term and the modification of the constraint function h allows the
reformatting of the previous problem as (r > 0):

min �(x)+ r

2

[
erh(x) − 1

r
+ s

]2

s.t
erh(x) − 1

r
+ s = 0

and to s � 0

(12)

whose solution is the same of the previous problem, as the penalty term disappears at the
solution, because the first equation should be satisfied.

A Lagrangian corresponding to problem (10) consists of:

LMRS(x, s, �, �2) =




�(x)+ �

(
erh(x) − 1

r
+ s

)
+ r

2

[
erh(x) − 1

r
+ s

]2

+ �2s, s < 0

�(x)+ �

(
erh(x) − 1

r
+ s

)
+ r

2

[
erh(x) − 1

r
+ s

]2

, s � 0

(13)

where a second Lagrange multiplier was introduced, �2, in the case s < 0. It is clear that a
second penalty term could be introduced for the constraint s � 0. With the slacked Lagrangian
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Table I. The Euler–Lagrange equations of the slacked
Lagrangian (11), after simplification.

Variables s < 0 s � 0

x ∇x�(x∗)+ �∗∇xh(x∗) = 0 ∇x�(x∗) = 0

s �2∗ + �∗ = 0 �∗ = 0

� h∗ = 0
erh(x∗) − 1

r
+ s∗ = 0

�2 s∗ = 0 ∗

(11) in hands, it remains to verify if the stationarity conditions of this Lagrangian (relative to
{x, s, �, �2}) corresponds to the necessary conditions for a point x to be a solution of problem
(1). The stationarity conditions (after simplification) are represented in Table I for both branches.
It is interesting to verify that the necessary conditions are included as Euler–Lagrange equations.
The nullity of � for the unconstrained case is satisfied and for the constrained case, the fact
that a given point x∗ is a given minimum implies that if there is a given �x such that
∇x�(x∗) · �x < 0 then ∇xh(x∗) · �x � 0.

From these arguments it follows that �∗� 0 and �2∗� 0 for the constrained case and �∗ = 0
for the unconstrained case. If m constraints exist, the conclusions remain valid: h(x∗)�0,
h(x∗)� �∗ = 0 and ∇xL(x∗, �∗) = 0 for �∗ ∈ Rm and h(x∗) ∈ Rm.

Having illustrated the direct relation between the necessary conditions and the stationarity
of LMRS, it is possible to remove the slack variable s and obtain LMR as (6).

With this conclusion in hands, it is straightforward to show that no discontinuity occurs
for � > 1.

3. THE ALGORITHM FOR CONTACT DETECTION

Two main steps are usually carried out for the detection: global detection (see the account on
Reference [34]) and local search (see e.g. Reference [35]).

For the local search, whose purpose is to assign at most one face to each incident node,
several strategies are possible: the direct projection onto each candidate face of each incident
node [29, 36], the inside-outside algorithm [37] (based on the definition of an incident’s node
normal vector) or a preliminary step before the projection over the face by the use of a box-like
domain [38, 39] or a spherical domain [40, 41]. An alternative using simplex intersections was
proposed in Reference [42].

To detail what is involved in contact detection with the proposed strategy, and what is the
contact detection task, Figure 1 shows the connection between an incident node Nkr within
slave group Sk being associated with a given target face Fks belonging to the master group Mk

(k indicates the group, r and s indicate the node and the face inside the group, respectively).
It is assumed that the number of master and slave groups is equal to ng . The grouping of
slave nodes and master faces is carried out in a pre-processing stage.

Some incident nodes Nkr , represented in Figure 1, may not possess associated target face,
therefore the actual domain of Fks(Nkr) is a subset of Sk . Additionally Fks(Nkr) is not bijective,
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Figure 1. The task of the contact detection algorithm: for each incident node Nkr

belonging to set Sk , to find a related target face Fks belonging to set Mk . The set
Gk = {Sk, Mk} is denominated elements group Gk . This operation is repeated for

all nodes Nkr in each elements group Gk with k = 1, . . . , ng .

Table II. The contact detection algorithm.

1 Determine nodal average normal vectors
2 Define the bucket indexes of global detection
3 Do k = 1, ng : number of groups
4 Do r = 1, rk : number of incident nodes of group Gk
5 Determine the buckets to search for node r
6 Determine the slave node r radius of influence: Rr

7 Do s = 1, sk : number of candidate faces of group Gk
8 Cycle if Fks does not belong to one of the 27 neighbourhood buckets of Nkr
9 Cycle if Fks contains any node coincident with Nkr

10 Determine the radius of influence of face s: Rs

11 Cycle if the distance between the centre of face Fks and the node Nkr (denoted drs ) is larger
than the sum of the radius: Rr + Rs < drs

12 Check if node Nkr can be associated with face Fks by verifying the violation of local
co-ordinates (14), if not, cycle

13 Calculate, by a ranking strategy, the ‘cost’ of forming the element Nkr ∪ Fks : Ckrs , which is
a function of the gap estimate ḡ and of step 12

14 If the ‘cost’ Ckrs is less than the previous minimum, Cmin
krs

then Cmin
krs
← Ckrs and mark face

Fks for association with node Nkr
15 End do
16 If node Nkr has some face associated, then define the element Nkr ∪ Fks forming the new

connectivities
17 If node Nkr does not have some face associated, then delete the element from the connectivities

if it existed previously
18 End do
19 End do
20 If there were changes in the connectivities, then recycle the code’s pointers, and reorder

degrees of freedom to minimize fill-in

each face Fks can be the image of an arbitrary number of nodes Nkr . Furthermore, some faces
Fks can be associated with a null set of nodes.

The proposed contact detection algorithm is exposed in Table II.
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Penetration zone

: Incident node

: Orthogonal projection over the face

No penetration zone

Case I

Converged configuration

Closest face only at the converged configuration

Correction with incremental detection

Correct face
Relative displacement

Non-converged configuration

Correction with iterative detectionWrong face

Converged configuration

Case II

No penetration zone

Wrong face

Correction with iterative detection

Relative displacement

Non-converged configuration

Correct faceClosest face only at the converged configuration

Correction with incremental detection

Figure 2. If the contact detection algorithm (see Table II) is applied during iterations,
then the wrong (please see above definition) target face can be chosen and incorrect

results can be obtained even in these common 2D cases.

The actual contact elements are established after the convergence of a given time step, so
there is no possibility of the wrong face being chosen in the sense shown in Figure 2. In this
figure, two strong arguments for the proposed algorithm are presented.
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It is expected that, if iterative algorithms are used, in 3D cases complex situations can occur
with wrong determination of faces. The nomenclature wrong is adopted here with the following
interpretation:

• The position of the node over the candidate face implies penetration or.
• The resulting stepwise trajectory of the incident node implies penetration.

The paradigms represented in Figure 2 are seldom discussed in specialized literature. Both
cases I and II can lead to incorrect results.

A closely related subject is the one of choosing the correct target face in the case of
equidistance of the incident node relative to 2 faces. With the proposed strategy one of the
three following situations can occur:

• The incident node is not violating any constraint and therefore the selection of either face
is irrelevant, as no contact force exists after convergence.
• The incident node is violating one of the face’s constraint, and therefore the related cost

(step 13) is lower and this face will be selected.
• Both faces are violated, and either of each is selected, but information from both may be

used in constraint enforcement, as will be described.

In terms of the equidistance dilemma, the arguments as those shown in Figure 2 are valid.
Therefore, selecting either face indistinctly, as proposed in Reference [43] ‘...the (orthogonal)
projection may fail to be unique... We circumvent these ambiguities by choosing either can-
didate projection’ can lead to incorrect answers. In the same 2D analysis context, Reference
[33], p. 154 states: ‘In the unlikely event that both distances are equal, either projection is
suitable for subsequent constraint calculation’. It is clear from the observation of the picture in
this last reference that the incident point is represented inside the body, therefore detection is
carried out during iterations, or, with the same consequences, convergence has occurred with
violation.

Even in the case where the distances are distinct, it is far from obvious that the corresponding
face is the correct candidate target face. The equidistance dilemma should therefore be analysed
as a particular case of the problem illustrated in Figure 2.

If the orthogonal projection of the incident node onto the face is calculated, the association
could be made if the local face co-ordinates satisfy the face constraints. However, the accurate
procedure of calculating the orthogonal projection is too expensive for the contact detection
stage. The approximate technique to ensure that at most one face is associated with Nkr is
implemented using the average normal vectors calculated in step 1. The approximate projection
of node Nkr onto face Fks is carried out using the notation x1 for the co-ordinates of node
Nkr , x2 . . . x5 for co-ordinates of nodes belonging to face Fks . The following equation is solved
for �1, �2 and ḡ through the Newton–Raphson method:

x1 −
5∑

k=2
[Nk(�1, �2)xk +Nk(�1, �2)ḡnk] = 0 (14)

where Nk represent the quadrilateral shape functions, the terms �1 and �2 represent the local
co-ordinates, and ḡ is an estimate of the gap.

The selection of a given face out of a number of candidates is carried out using a classification
based on the gap estimate ḡ and the possible violation of the domain [−1, 1] × [−1, 1] by the
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pair of local co-ordinates (�1, �2). The cost Ckrs in Table II is a function of these values and
the previous history.

4. THE GAP FUNCTIONS AND RELATED VARIATIONS IN THE 3D CASE

A widely used constraint function is the so-called signed distance function, based on the
definition of the closest projection point (or orthogonal projection in C1 boundaries) of each
point belonging to the boundary of body B1 into the boundary of body B2.

The contact element for the 3D case is identified in Figure 3. In this figure, the vectors
nk with k = 2, . . . , 5 identify average nodal vectors, which represent the contribution of each
target face that contains node k. If a given node k is common to nelk target faces, then:

nk =
∑nelk

i=1 nAV
i

‖∑nelk
i=1 nAV

i ‖
(15)

where nAV
i is a average normal vector to each face i.

If the set 1, . . . , 5 is known (which is the task of the local detection phase), the orthogonal
projection of point 1 in the target face containing nodes 2 . . . 5 can be determined with the
minimization of the function 0.5‖x − x1‖2 in the parameterized face:

(�1, �2) = argmin�1,�2
(0.5‖x(�1, �2)− x1‖2) (16)

where �i represent the curvilinear co-ordinates in face 2 . . . 5.

x, �2

x 2

Penetration zone

n3

n5

n

n4

x4

x3

x5
n2

x1

No-penetration zone

x , �  1

x (�  1 , �  2 )

Figure 3. The 3D pentahedral element.
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Therefore problem (16) reduces to the following system of non-linear equations in �1
and �2:

�x
��1
· [x(�1, �2)− x1] = r1 = 0

�x
��2
· [x(�1, �2)− x1] = r2 = 0

this system converges to a local minimum, as ‖x(�1, �2) − x1‖2 is unbounded above. Please
note that x is now an orthogonal projection of x1 over the target face.

In the present work, use is made of the Newton–Raphson method with a bisection line-search
to solve this non-linear system. The derivatives of rj with j = 1, 2 can be calculated as:

�rj

��k

= 0.25(1− �jk)�m1�m2xmi(xi − x1i )+ �xi

��j

�xi

��k

An important point in the check for nullity of r1 and r2 is the fact that the norm of the
tangents �x/��i and the difference x − x1 should be taken into account.

A tractable strategy can be used to deal in a simple way with projections outside each current
target face. An important point in this strategy is the one of normality of the force. Strategies
such as the PCE (planned contact element [44]) and the pinball algorithm (e.g. Reference [40])
or the smoothing of the original geometry [45, 46] cause the non-penetration force to contain
a tangential component. To detail some particular cases, let us consider the 2D case. In this
case two situations can occur: the projection x(�1) of the incident point with co-ordinates x1
is over a line segment �1 ∈ [−1, 1] and no special treatment is required, or the projection does
not belong to the original segment, �1 �∈ [−1, 1], and a special treatment is adopted.

The last case is represented in Figure 4, with a representation of what is found to be suitable
in terms of point position correction.

Due to correspondence between constraint (the gap function) and its gradient, which is
proportional to the corrective force, the gap must be defined according to orientation of the
corrective force.

In the 3D case, the local geometry of the problem can be much more complex. A projection
of a point with co-ordinates x1 can be found over a line segment with convex and concave
parts or a node with a complex arrangement of neighbourhood faces. The Figure 5 illustrate
two possible situations and the vector n determined by the proposed algorithm.

Three vectors can be readily defined which are necessary to identify the situation. The face
normal vector, nf , the average nodal vector nn and the difference nd between a corrected
projection x∗ and the incident point x1. These vectors can be written for the general 3D
case as:

nf = �x/��1 × �x/��2

‖�x/��1 × �x/��2‖
(17)

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:1107–1151



ALGORITHMS FOR THE ANALYSIS OF 3D 1119

2

3

nf

n f
3

2

1

n = n f

nn

nn

1

n = nd

x

x *

 *

x

x 

Figure 4. The 2D case: normals in the concave and convex cases. In the two cases the updated
position of 1 should be the projection x along vector n.

nn =
5∑

i=2
Nini (18)

nd = (x∗ − x1)

‖x∗ − x1‖ (19)

The notion of corrected projection can be introduced as follows: If the orthogonal projection
of x1 onto the face 2 . . . 5 results in curvilinear co-ordinates (�1, �2) �∈ [−1, 1] × [−1, 1] then
it is clear that x no longer belongs to face 2 . . . 5 (i.e. the point 1 has a projection in other
face or does not possess orthogonal projection in the considered set of target faces).

A set of corrected curvilinear co-ordinates can be defined as:

�∗i = max[−a, min(a, �i )] (20)

where a is a number slightly larger than 1 to ensure that the correction of the curvilinear
co-ordinates does not preclude sliding of points between faces in the concave case. The vector
nd in (19) is evaluated using the corrected curvilinear co-ordinates (20).

x∗ =
5∑

i=2
Ni(�

∗
1, �
∗
2)xi (21)
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Figure 5. A 3D case of a box corner. In this case a point x∗ in the closest side is selected
as projection of x1. If point 1 moves in the direction of x in the negative sense, then x∗

can coincide with the co-ordinates of point 5.

Table III. The determination of contact force direction due to penetration
and the gap function.

nd · nf [(I− nf ⊗ nf )nn] · nd n g

Case 1 � 0 ∗ nf (x1 − x) · nf

Case 2 > 0 � 0 nf (x1 − x) · nf

Case 3 > 0 > 0 nd (x1 − x∗) · nd

The candidate vector and therefore the direction of the contact force are calculated according
to Table III.

The gap function obtained from Table III is always (x1 − x) · nf in the case of (�1, �2) ∈
[−1, 1]×[−1, 1] and therefore reduces to the classical approach of signed distance gap function
(in this situation g is twice differentiable).

However if point 1 does not project onto face 2 . . . 5 (which was selected after convergence
of the previous time step) and there is penetration of 1 relative to the face 2 . . . 5 then two
situations can occur, as a function of the classification of point x∗.
• If the point is classified as a sticking point (Case 2) then x1 is constrained to be equal

to x∗. This situation precludes the slipping of the point during the current time step but
not during the following time step, as due to the fact the parameter a in (16) is greater
than 1, it is ensured that point 1 will belong to a corresponding adjacent face in the next
time step.
• If the point x∗ is classified as slipping (Case 3) then the gap function is the signed

distance to the current face and the point will belong to an adjacent face in the following
time step.
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The selection represented on Table III is based upon the assumption that g �= 0. If a penalty
strategy is used to model contact, this is assured. However, as a Lagrangian method is adopted,
the condition g = 0 is approximately verified if convergence criteria are satisfied. To guarantee
that the condition g �= 0 is satisfied even if convergence is achieved, instead of satisfying the
constraint g = 0, another constraint is satisfied:

g2 = g + rltg = 0 (22)

where g represents the previously introduced gap, rl represents a measure of the target face size
and tg is a user-defined tolerance. Alternative strategies for dealing with non-existent normal
vectors consist in adopting an average normal vector in the incident nodes (see e.g. Reference
[47]) or to use a steepest ascent method for the Lagrange multiplier estimates with a node-to-
node contact enforcement with an additional strategy for ensuring the existence of the force
direction for g = 0 (e.g. Reference [48]). Both these strategies contain shortcomings: the first
one is inconsistent with the constraint and the second one is restricted to be adopted in a
first-order strategy for the multiplier estimates. Due to the fact that each element’s target face
size rl depends on the converged co-ordinates alone, then �g2 = �g.

Finite element applications including a Rockafellar Lagrangian were presented in References
[43, 49], however, and according to previous developments, the following constraint potential
for g2 � 0 is adopted:

�c[x, �] = 1

2r
{max[0, �− 1+ e−rg2(x)]2 − �2} (23)

Near g2 = 0, the Lagrange multiplier � starts to represent the normal contact force. The
total Lagrangian LMR for one constraint can be written as: LMR(x, �) = �(x)+�c[g2(x), �].

The first variation of �c can be written according to:

��c =




(e−rg2 − e−2rg2 − �e−rg2)�g +
(

e−rg2 − 1

r

)
��, �− 1+ e−rg2 � 0

−�

r
��, �− 1+ e−rg2 < 0

(24)

It is noticeable that for the limiting case � = 1− e−rg2 it is possible to write:

lim
�→(1−e−rg2 )−

��c = lim
�→(1−e−rg2 )+

��c = e−rg2 − 1

r
�� (25)

which means that the contact force is defined for every g2 ∈ R. This particular form (24) of
the Lagrangian part of the total potential plays a role in the satisfaction of the non-penetration
constraints.

The use of second variation of the potential �c[g2(x), �] can be written as:

d��c =




r(�− 1+ 2e−rg2)e−rg2 dg�g+
(1− �− e−rg2)e−rg2 d�g − e−rg2�g d�, �− 1+ e−rg2 � 0

−d���

r
, �− 1+ e−rg2 < 0

(26)
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5. FRICTION FORCE AND REGULARIZATION

Friction force can be expressed as (see Reference [3]) ‘...the force exerted by either of the
contacting bodies tending to oppose relative tangential displacement of the other’. This denom-
ination is adopted here. The definition is not unique, as according to Reference [50]: ‘...is the
tangential force that must be overcome in order for one solid contacting body to slide over
another’.

The limiting friction force fa and the friction force magnitude f = ‖f‖ obey the following
inequality:

f − fa � 0 (27)

with f being the friction force. If large loads are present, plastic zones beneath the interacting
asperities will grow and eventually the real area of contact will be close to the apparent area of
contact (see also Reference [50]). In bulk forming high normal pressures are usually present,
therefore the maximum friction force fa should be limited by plastic shear.

The limit is such that, including all relevant effects, the resulting friction shear stress must
be smaller than the yield shear stress, �y :

�max = m�y (28)

where m is denominated friction factor, due to the fact that the real area, Ar , would be always
less than the apparent area, Aa [50, 51].

The maximum magnitude of friction force, fa , can therefore be calculated as:

fa = min(�w, Aam�y) (29)

with � being the friction coefficient and w the normal load.
Wear effects (damage of surfaces with loss of material) conforming to Archard’s law are

simply included (see References [3, 50, 52]) with the volume loss of a given surface, V , being
calculated as:

V = K
wut

p
(30)

with ut � 0 being the distance of the relative displacement, p being the surface hardness and
K being the wear coefficient. Both abrasive and adhesive wear mechanisms may be accounted
with Equation (30) and incorporated in the value of the coefficient K .

In Equation (30) the normal load, w, is assumed to be constant. If w depends upon ut , then
the integration variable u is introduced:

V = K

p

∫ ut

0
w(u) du (31)

If the thickness decrease �h is aimed, then the apparent area, Aa(u) is introduced (this
concept will be further inspected):

�h = K

p

∫ ut

0

w(u)

Aa(u)
du (32)

The difficulty of treatment of the exact Coulomb friction law, with a null tangential behaviour
for f <fa , lead several authors to adopt a regularized form of the Coulomb law which has
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the side-effect of allowing some quantity of tangential displacement. Arguments supporting
experimentally this tangential displacement are given in Reference [53].

Two approaches are commonly adopted for regularizing the Coulomb friction law:

• Direct regularization, with the use of a regularizing function for the relative tangential
displacement (see References [54–57]).
• Return mapping with elastoplastic analogy of friction (analysed in Reference [58] and

subsequently described in References [21, 33, 59, 60]).
The direct regularization procedure allows a simpler implementation, but the latter technique
seems currently more popular, due to a stronger theoretical support [58], and also to the fact
that the elastic sticking can be carried out during more than one time step (Reference [61]
describes the technique).

In the present work, the elastic stick part of the tangential displacement is approximated
by a single linear segment. To ensure frame-invariance of the frictional stress (or force), an
objective rate can be used (Jaumann stress rate in References [44, 59], the Lie derivative of the
tangential force in Reference [60]), or the definition of the tangential force scalar components
in the moving surfaces [29, 61, 62].

In this work, a distinct strategy is adopted: the accurate determination of the elastic stick part
of the tangential displacement is carried out from which the total tangential force is calculated.
Therefore, there is no need of consistently integrating an objective stress rate, at least for
isotropic friction laws.

The updating of the tangential displacement vector is carried out with its contravariant scalar
components. The tangential stress (or force) is calculated directly as a function of the total
tangential displacement.

If two instants are considered, identified as n and n + 1 then the tangential displacement
vector at instant n can be written as:

utn = u1nt1n + u2nt2n (33)

where tkn represent the tangential vectors defined at the orthogonal projection of point 1 in
instant n. The calculation of these vectors can be written as:

tkn =
�x
��k

=
(

�Ns

��k

)
n

xsn (34)

where xsn are the co-ordinates of local node s at time step n. The Ns shape functions in (34)
are calculated at instant n.

The contravariant scalar components, u1n and u2n can be therefore calculated as the following
dot-product:

ukn = utn · tkn (35)

where use was made of the definition of tkn :

trn · tkn = �k
r (36)

with �k
r being the mixed-variant scalar components of the metric tensor.
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Assuming that if there is no relative slip between the two instants n and n+1 the contravariant
components are fixed, and that the local converged co-ordinates �1 and �2 remain fixed, then
it follows that:

u∗tn+1
= (utn · trn)tkn+1m

kr
n (37)

where mkr
n represent the contravariant metric tensor components (in instant n), which can be

written as:

mkr
n = tkn · trn = m−1

krn (38)

The term tkn+1 in Equation (37) is calculated as (34) but using the spatial co-ordinates of
instant n+ 1:

tkn+1 =
(

�Ns

��k

)
n

xsn+1 (39)

Terms m−1
km in (38) represent the components of the inverse of the covariant metric tensor

matrix. Please note that in Equation (39) the co-ordinates �1 and �2 remain the same as
those adopted in Equation (34) which agrees with the assumption of null relative tangential
displacement.

The updating formula presented in Equation (37) is purely of geometric nature. Additionally,
any relative displacement that might occur due to modification of converged co-ordinates �1
and �2 is not included. This can be included using the following observation:

• The relative tangential displacement between instants n and n+1 is due to the modification
of the converged co-ordinates �1 and �2 between instants n and n+ 1.

The relative tangential displacement vector must contain a null normal component. The relative
tangential displacement vector can be expressed as:

�ut = [I− n⊗ n](x1n+1 − x1n −Nkxkn+1) = xkn+1�Nk (40)

with �Nk = Nkn+1 −Nkn reflecting the change in shape functions values.
In Equation (40) the need for the tangential projection is due to the fact that even if n

corresponds to a converged time step where g ∼= 0, the current iteration of time step n + 1
may result in g �= 0 and therefore the vector x1n+1 − x1n − Nkxkn+1 is not guaranteed to be
tangential. The total tangential displacement can therefore be calculated as:

utn+1 =
{

�ut + u∗tn+1
�− 1+ e−rg2 � 0

0 �− 1+ e−rg2 < 0
(41)

In analogy with the small elastic strain theory of plasticity, the relative displacement (41)
represents the sticking part of the tangential displacement, according to the notation:

utn+1 = uT
tn+1
− up

tn+1
(42)

where uT
tn+1

represents the total relative displacement (in practice never calculated) and up
tn+1

represents the slipping part of the tangential displacement.
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Figure 6. The updating of the elastic sticking displacement between two time steps, n and n+1. If the
relative tangential displacement is null (�ut = 0), then the position of xn+1 is given by the previous

converged local co-ordinates �1n
and �2n

. Otherwise xn+1(�1n+1 , �2n+1) = xn+1(�1n
, �2n

)+ �ut .

The friction force, f , is caused by the sticking part of the relative tangential displacement,
through the use of an elastic law:

f = − fa

max(	rl, ‖utn+1‖)
utn+1 (43)

where 	 is the non-dimensional relative tangential admissible displacement.
The apparent area, Aa (see Equation (29)) is calculated using the action–reaction principle

as:

nT�nnAa = �n (44)

where �n is the Kirchhoff stress tensor extrapolated from integration points to node 1.
Please note that in Equation (44) the Lagrange multiplier is the one representing the normal

force at the last converged time step. In a similar way, the Kirchhoff stress tensor in Equation
(44) represents the last converged value (Figure 6). This strategy ensures that fa does not
change during the iterations. Certainly, this induces a lack of precision that is subsequently
corrected in a set of special friction evaluation iterations, as discussed. This partial decoupling
between the normal force, represented by the Lagrange multiplier � and the friction force f

can be thought as a consequence of a well known fact in the friction analysis:

• The normal force, �, is explicitly independent of the friction force, f .
• The maximum friction force magnitude, fa , depends on the value of the normal force

and it is limited by shear plastic flow.

Certain authors have proposed to use converged normal forces values in friction evaluation in
the context of penalty method with no limiting friction stress (see Reference [63]) but without
subsequent correction. The purpose there was to obtain a symmetric stiffness matrix (a result
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Figure 7. The contact between two deformable cubes along faces. The apparent contact area, Aa is
unitary. Cube 1 has a varying number of elements in each side.

that could be obtained with the first order Augmented Lagrangian method [33] or a modification
of the penalty contact law [64]).

The fundamental motivation for the use, in each time step, of a constant fa , is related to
the fact that with the particular strategy for the imposition of non-penetration the Lagrange
multiplier estimate only has the meaning of normal force once the penetration is very close to
zero, therefore at convergence. This is in contrast with the Rockafellar Lagrangian, for example.

In terms of apparent area calculation, the previous purely geometric proposal which is the
underlying topic of Reference [65] can lead to poor results. As the apparent area (Aa) is a key
aspect of many constitutive friction laws, this topic is particularly important. Additionally, the
apparent area calculated as proposed in Reference [65] contradicts the action-reaction principle
(40) if a Lagrangian method is adopted.

To inspect what occurs with the apparent area calculated with the present approach, a test is
introduced. The test consists on the contact between two deformable cubes, with distinct size,
as shown in Figure 7. The accuracy, in this particular case, of both the geometric approach
described for the 2D case in Reference [65] and the proposed approach (see Equation (44))
is compared with the unitary analytical solution. If cube 1 contains n13 elements, then the
geometric approach gives an area of 1 + 2/n1 consistent units. The chart in Figure 7 shows
that the present approach gives extremely accurate results for all mesh densities, in contrast
with the geometric approach.

To ensure the satisfaction of condition (27), the algorithm in Table IV is adopted.
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Table IV. Algorithm for calculating the friction force.

fTR = − fa

	rl
utn+1

f TR = ‖fTR‖

if f TR > fa then

f ←− fa

‖utn+1‖
utn+1

utn+1 ←
	rl
‖utn+1‖

utn+1

else

f ← fTR

endif

f = ‖f‖

The accounting for wear phenomena is based on Equation (32), with w replaced by �:

�h = K

∫ ut

0

�(u)

pAa(u)
du (45)

where �(u) represents the normal load as a function of the tangential displacement u (in the
present case the load is given by the Lagrange multiplier �). Integrating (45) numerically using
the backward Euler method, it results:

�h0 = 0

�hn+1 =�hn +K
�n+1�ut

pAan+1

(46)

6. NODAL FORCE VECTOR, RESPECTIVE (APPROXIMATE) JACOBIAN
MATRIX AND THE TWO-STEP ALGORITHM

The internal nodal force vector for the pentahedral element can be written as:

fki =
{−Nk[ni(1− �− e−rg2)e−rg2 + sif ], �− 1+ e−rg2 � 0

0 �− 1+ e−rg2 < 0
(47)

f� =




e−rg2 − 1

r
, �− 1+ e−rg2 � 0

−�

r
�− 1+ e−rg2 < 0

(48)

where si = uti /‖ut‖ represent the stick direction components.
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Table V. The approximate Jacobian matrix of the contact
element force vector.

if �− 1+ e−rg2 � 0 then

Kkilj = rNkn+1Nln+1ninj (�− 1+ 2e−rg2 )

−Nkn+1Nln

fa

f · f max(	rl , ‖ut‖)fifjH(‖ut‖ − 	rl)

+Nkn+1Nln

fa

max(	rl , ‖ut‖)�ij

K�lj = Nln+1nj e−rg2

Kki� = Nkn+1nie
−rg2

K�� = 0

else

Kkilj = K�lj = Kki� = 0

K�� = −1

r
endif

Table VI. Schematic algorithm for correction of the friction forces.

Step i—contact detection and pointer recycling
Update stresses, internal variables, maximum friction forces
Update load/displacement factor or arc-length
Iterate to convergence for x and � with fixed maximum friction forces—abort and retry
with smaller step if convergence does not occur
Update maximum friction forces with the same load/displacement factor
Iterate to convergence for x and � with fixed (but updated) maximum friction forces—
re-start whole step if convergence does not occur
i ← i + 1 and repeat procedure

An approximation to the Jacobian matrix of the element’s forces can be determined as
(neglecting the variation of n) represented in Table V where H(x) represents the Heaviside
function of an argument x, and �ij represent the scalar components of the identity matrix.

This matrix is exact in the rigid-deformable case if the rigid body is represented by constant
normal faces.

Two iteration loops are used. The first one iterates for both Lagrange multipliers and spatial
position co-ordinates of the mesh with fixed maximum friction force, fa with a load or
displacement factor update. The second one iterates for both Lagrange multipliers (which now
remain almost constant) and the spatial position co-ordinates with updated maximum friction
forces and fixed load/displacement factor, see Table VI.
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7. NUMERICAL EXAMPLES

Two goals are aimed with the following set of numerical examples:

• The inspection of the accuracy and robustness of the algorithms regarding both normal
interaction and friction.
• The inspection of the accuracy of the 3D elements in problems which are usually analysed

with shell elements.

Regarding the finite element technology employed, enhanced assumed strain elements are used,
based on the 18 internal variable formulation proposed by Areias et al. [66]. Various material
models are employed to represent the material behaviour of the bulk solids (for an accounting
of the elastoplastic model employed, please consult References [67, 68]). Another point is that
the applicability of the previous framework in the dissipative context is that plasticity algorithms
do not allow, in a given point, both loading and unloading during the same time-step. This is
equivalent, for each time-step, to use a point-wise deformation plasticity model.

All the examples were carried out in the finite element code SIMPLAS, a FORTRAN 90 code
developed by the first author of this work.

7.1. Contact between two cylinders and comparison with Hertz solution

A 2D test of contact between two elastic cylinders is carried out, based on the geometry and
properties presented in Reference [69]. The geometry, mesh, boundary conditions and material
properties are identified in Figure 8.

The original mesh, adopted in Reference [69], consists of bi-quadratic elements. The element
side size in the original mesh is here divided by 2 because bi-linear elements are adopted.

The normal stress contour lines over the deformed geometry are represented in Figure 9. It
is clear that accurate results are obtained with the proposed formulation.

To further validate the model with this exercise, a comparison with the results obtained in
Reference [69] is carried out. The results in that reference were obtained using the mortar finite
element method for mesh compatibility of the contact lines. Figure 10 presents the comparison,
where very good agreement with both the above reference and Hertz theoretical solution is
observable.

7.2. A 2D friction test

This test was exposed in Reference [55] and represents an important verification test for the
2D analysis of friction. A more recent variant of this test (with a finer low order mesh) has
been carried out by Armero and Petocz [70]. This last mesh is here adopted.

The geometry, mesh, boundary conditions and material properties are all represented in
Figure 11, along with the final deformed mesh.

As indicated in Figure 11, the inspected zone corresponds to the lower edge of the block,
which is in contact with the rough surface.

A comparison of the present results in terms of normal pressures and tangential stresses in
the inspected zone is accomplished. Results obtained in References [55, 70] are also presented.
Figure 12 shows the comparison.
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Figure 8. Contact between two elastic cylinders. Mesh of 2D plane strain elements.

7.3. Boot seal test: comparison of the Rockafellar Lagrangian and the proposed LMR
in terms of numerical efficiency

This 3D test consists in the analysis of the rotation motion of a shaft inside a boot seal
and represents a benchmark for deformable-deformable 3D contact procedures in commercial
finite element codes (see for example Reference [71]). An analogous problem, although with a
distinct geometry, was analysed by Bathe and Bouzinov [12], with the purpose of illustrating
the robustness of their algorithm.

Here, the test’s purpose is to verify both the correctness of the detection algorithm and the
efficiency of the present approach. For comparison, the penalty method and the Lagrange–
Newton method with a Rockafellar Lagrangian are here also tested. The number of iterations
and time-steps are monitored. Relative to Reference [71] two differences exist: the steel tube
is hollow and it is deformable. This fact adds considerable difficulty to the solution as the
problem becomes a truly deformable-deformable situation.

The problem geometry consists on two objects: a deformable circular tube made of steel:
E = 2.1 × 105 N/mm2 and 
 = 0.3 with an internal diameter of �i = 20 mm and outer
diameter of �o = 28 mm. The total length of the tube is LTUBE = 150 mm and it is positioned
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Figure 9. Contact between two elastic cylinders. Normal pressure contour lines.

33 mm below the boot seal. The second object is a boot seal whose geometry and dimensions
correspond those described in Reference [71]. It is made of rubber, and a Mooney–Rivlin
material model was adopted to represent the rubber mechanical behaviour. Its material properties
are: C1 = 0.752N/mm2 and bulk modulus � = 7519.5N/mm2 (slightly compressible). The first
parameter agrees with the value given in the above reference. As one symmetry plane exists,
only half of the geometry is actually meshed. The tube contains 48 hexahedral elements and
the boot seal contains 1680 hexahedral elements (12 elements circumferentially and 2 along
the thickness). The original mesh and 3 steps of the analysis are presented in Figure 13.

In terms of boundary conditions, the boot seal is clamped in its lower faces and the tube
rotates around a straight line perpendicular to the symmetry plane. Additionally, all external
surfaces may contact each other: there are 3 incident and 3 target surfaces.

The analysis is actually carried out in 2 parts: the first one consists in a correction of
pre-existent gap and is carried out in only one time step, and the second part with rotation
of the tube (for convergence analysis a target angle of �TUBE = 20o is employed). The initial
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Figure 10. Contact between two elastic cylinders. Comparison with the results of
Reference [69] and Hertz solution.

radial interference has a value of 2 mm. The problem is considered frictionless, the normal
regularization parameter is r = 1 × 10−4 N/mm and the displacement relative displacement
tolerance is fixed at tolD = 1×10−6. The force absolute tolerance is tolF = 1×10−3 N. For the
penalty method, which is also employed for comparison, a value of rPENALTY = 1×102 N/mm
is adopted.

As results presented in Table VII show, the new Lagrangian functional allows very large
steps to be carried out without loss of convergence. It is noticeable that the original Rockafellar
Lagrangian results in slower convergence. This example shows the improvement brought by
the proposed solution in terms of efficiency.

The high rigor of the constraint satisfaction is depicted in Figure 14.

7.4. Verification of the Archard’s wear law implementation

This is a simple verification test, where constant normal pressure is applied to a deformable
block which is subsequently displaced along one of the diagonals of a larger deformable block.
As normal pressure is imposed and constant, the actual wear that occurs due to contact and
relative displacement of the blocks can be determined in closed-form. As the selected relative
motion causes the upper block to cross diagonally the elements of the lower block, this test
allows the accuracy verification of both the numerical integration of the wear law and the
relative tangential displacement. In addition, the accuracy of the normal force is also verified.
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Figure 11. Elastic block pressed against a rough surface and pulled tangentially (see
Reference [55] for additional details).
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Figure 12. Comparison between the pressures and tangential stresses in the inspected zone. Results
from References [55, 70] are also presented.
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Figure 13. The mesh and steps in the boot seal deformation for 2 values of the rotation angle:
(a) �TUBE = 0o; (b) �TUBE = 12.47o; (c) �TUBE = 22.21o; and (d) �TUBE = 22.21o.

Table VII. Boot seal problem: the number of iterations carried out using three methods: penalty
method (P), Lagrange–Newton with Rockafellar Lagrangian (LNR) and Lagrange–Newton with pro-

posed Lagrangian (LNMR). Please note that a target value of �TUBE = 20o is adopted.

P LNR LNMR

Total number of iterations 484 161 70
Total number of time-steps 33 12 7

The geometry, boundary conditions and material properties are presented in Figure 15. The
coefficient of wear is taken as K = 7 × 10−3, according to the tabulated value for mild
steel in Reference [52]. Additionally, the hardness value is taken as p = 1822.8 MPa, also in
agreement with the above reference. The problem is considered frictional, with a friction
coefficient of � = 0.62. The smaller block is deformable in the normal direction only, as a
measure to ensure that the normal stresses are reasonably constant in the contact area. Figure
15, besides the mesh and boundary conditions, also shows the distribution of the thickness
reduction in the smaller block.

It is noticeable from Figure 15 that the accuracy in the calculation of thickness reduction is
very high, and the thickness reduction in the contact area is practically homogeneous.

7.5. Axial crushing of a cylinder

This 2D axisymmetric example (see Reference [33] for the relevant data) involves self-contact
consists on a cylinder which is forced into a conical die through the application of a downward
displacement at its top. After some value of the downward displacement is attained, wrinkles
start to form. The combination of axial and bending efforts results in a staircase-like force-
displacement plot.
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Figure 14. Boot seal test: detail illustrating the rigor in constraint satisfaction.

Two aspects are inspected in this example: the displacement/reaction curves and the number
of wrinkles. The dimensions of the cylindrical shell are the following: the internal diameter
is �i = 27 mm, the external diameter: �o = 31.75 mm and the total length of LCYLINDER =
180 mm, the die is considered rigid and the pipe is made of steel with a Young’s modulus of
E = 210 GPa a Poisson coefficient of 
 = 0.3, an yield stress given by 
Y = 700+ 808�p MPa.

In terms of contact parameters, the normal regularizing penalty value is taken as r =
1 × 10−1 N/mm, and the non-dimensional regularization parameter for friction is taken as
	 = 1× 10−3 and no limit is imposed on the surface shear stress. For the sparser mesh, in the
frictionless case, the deformed mesh at 5 distinct time steps, and the effective plastic strain
contour lines are plotted in Figure 16. It is interesting to note that in Reference [33] only 3
wrinkles appear, as a much lower value of the total top displacement is imposed.

The comparison of the load-displacement curves with the results presented in Reference [33]
is represented in Figure 17. A very close agreement is obtained with the results from the above
reference, but one more wrinkle is formed.

7.6. Contact between two square plates

This example was introduced in Reference [72] in the context of testing contact between plates
using shell elements. The plates measure 10 × 10 consistent units and are separated by a
distance of 1 between their mid-surfaces. Furthermore, there is a separation of 2 units between
a free side of the upper plate relative to the clamped side of the lower plate. The upper plate
is subject to a downward pressure which follows the deformation. As the pressure intensity
increases, the upper plate touches the lower plate and both move downward. The resistance to
the pressure starts to decrease until a snap-through occurs. This fact has not been studied in
the above reference and is here inspected. The plates are made of an elastic material with a
Young’s modulus E = 4000 consistent units and a Poisson coefficient of 
 = 0.3.

Two tests are carried out: one frictionless and another one with a friction coefficient of
� = 0.4 and no limit on the shear stress. The regularizing penalty is chosen to be r = 0.1
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Figure 15. The geometry, mesh and boundary conditions of the wear verification
test (all dimensions are in mm). The final distribution of the thickness reduction

(�h) over the deformed mesh is also represented.

and the regularizing parameter for friction is 	 = 1 × 10−3. A spherical arc-length method is
adopted with a linearized treatment if no real roots are obtained. Both the non-deformed and
the deformed mesh of the frictional case are presented in Figure 18.

The pressure–displacement curve for the two studied cases is presented in Figure 19. It is
clear that the inversion in the sense of pressure rate occurs and this has not been observed in
the above reference.

7.7. A 3D variation of the two arches problem

This problem was presented in the recent book by Wriggers [73] and consists in the analysis
of two circular arches including a snap-through behaviour which is analysed with an arc-length
method. In the present work a variant of the arc-length procedure proposed by Ramm [74] is
employed.

A mesh convergence test was carried out in Reference [73], with the conclusion that con-
vergence only occurs with a 14 000 element 2D mesh. Here, besides the comparison analysis
with the results of the above reference, the inspection of higher load factors is accomplished.
The selected mesh, boundary conditions and material properties is presented in Figure 20.
Only one-half of the geometry is actually meshed, due to existence of the symmetry plane
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Figure 16. The deformed sparse mesh at 5 distinct time steps, and the effective
plastic strain contour plot: (a) initial mesh; (b) displacement into the conical support;

(c) first wrinkle; and (d) fourth wrinkle.

represented in the figure. The value of the normal regularization parameter adopted is r = 0.1
and no friction was considered.

The vertical displacement of the lower node of the larger arch (point A in 20) and the
upper node of the smaller arch (point B in 20) are monitored. Three distinct time steps in
the deformation process are represented in Figure 21. Please note the edge effect in the last 2
steps in the zone of force application, which is due to the plane stress condition near the free
edge.

The load factor and the norm of the vertical displacement of point A are both represented
in Figure 21 for three time steps.

The complete load factor versus displacement plots for both points A and B are represented
in Figure 22. It is noticeable that when the two arches recover contact, the curves present a
marked undefined tangent.

For comparison purposes, the previous curve for point A is reproduced and compared with
the results of Reference [73] and exposed in Figure 23. It is an extraordinary fact that, although
the present analysis was carried out with a very sparse mesh in the plane (only 480 elements
in the plane) and 3 elements along the depth, the results coincide with a 14 000 plane elements
mesh. Furthermore, the analysis is carried out to a much higher level of load (compare Figures
22 and 23). This analysis took only 58 variable size time steps to be concluded.

7.8. Pulling of a plug through a narrowing channel and the role of smoothing

This 3D deformable-deformable example has been proposed in the context of testing a surface
smoothing procedure [75] for triangular target faces and tetrahedral elements. It can be described
as a displacement of a parallelepiped along a channel with a narrowing open. The parallelepiped
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Figure 17. The load-displacement curves: both frictional and frictionless cases are represented and
compared with the results of Reference [33].

is subject to imposed displacements in the longitudinal direction of the channel in a given edge.
In its initial position, the plug overlaps the channel with the value � = 0.1. Therefore, initially,
the overlapping must be eliminated in a single step, and after that, the plug slides inside the
channel.

The purpose of this example in the present work is to show that, contrary to what occurs
in the previous reference, the frictional case can be dealt without loss of convergence (and
without smoothing strategies). Furthermore, as both the plug material and the channel material
are considered hyper-elastic, in the frictionless case the final deformed shape of the plug should
be a perfect parallelepiped. The mesh, boundary conditions and material properties are given
in Figure 24.

Results are presented in Reference [75] for two situations: one where the coefficient of
friction had a value of � = 0.1 and other without friction. It is an adequate example to test the
present approach for sliding in both convex and concave arrangement of target faces. The values
for the regularization parameters are r = 1 and 	 = 1×10−2. The normal 
zz stress component
is represented through a contour plot over the deformed mesh in both cases: frictionless and
frictional. Figure 25 presents the contour plot over the deformed meshes. In the frictionless case
the stress field for that component (and also the others) is completely homogeneous, because
the plug remains a perfect parallelepiped.

The difference between the normal stresses at the interface is consequence of a very sparse
mesh.

The relation between the longitudinal displacement (ū in Figure 24) and the corresponding
reaction is represented in Figure 26. The figure contains results from Reference [75] and also
the theoretical friction force, which was calculated multiplying the friction coefficient by the
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Figure 18. Contact between two square plates. The deformed mesh corresponds
to the last step of the frictional case.
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Figure 19. Pressure–displacement plot for the frictionless and the frictional cases,
comparison with results obtained in Reference [72].
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Figure 20. Two arches problem: geometry and mesh, boundary conditions
and elastic material properties.

normal reactions. Two conclusions can be drawn:

• The present formulation allows convergence in the frictional case without smoothing. The
use of averaged normal vectors induces the presence of tangential forces in the frictionless
case, if the plug is sufficiently near the ramp.
• The exact value of the friction force is obtained with the present formulation.

7.9. Forming of an aluminium sheet into a S-rail

This benchmark was part of NUMISHEET 1996 benchmark test B2 (see Reference [76]) and
consists in carrying out the plastic forming of a metal sheet whose final shape should be a
S-shaped rail. Tools are considered rigid. Only the aluminium material is tested with a blank
holding force of 10 kN. This force is imposed through a bisection method applied to the
displacement factor. The sheet thickness is 0.92 mm and the elastic material property values
are: E = 69 GPa and 
 = 0.3. The average value for the friction coefficient is � = 0.1, in
agreement with the above reference.

The yield stress adopted is given by: 
Y = 518.1(0.01041 + �p)0.2366 MPa. All the data,
including the sheet mesh containing elements is detailed in the above reference. Several pictures
of the deformed mesh are presented, and wrinkles are found in the experimentally indicated
zones in Figure 27.

Finally, the punch force curve is presented, which is found to be very close to average
experimental results (please see Figure 28).
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Figure 21. Two arches: three distinct time steps in the deformation process: (a) load
factor = 91.23, Disp. A = 25.74; (b) load factor = 192.8, Disp. A = 63.64; and (c) load

factor = 1153, Disp. A = 67.66.
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Figure 22. Load factor versus displacement for points A and B represented in Figure 20.
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Figure 24. Pulling of a plug: mesh, boundary conditions and material properties. Only
one-fourth of the geometry is actually meshed.

Figure 28 presents both the average of explicit and implicit analysis carried out by the
participants of NUMISHEET 1996, and also the average, minimum and maximum values for
the experiments carried out by the experimental participants in the benchmark. Please note that
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Figure 25. Pulling of a plug: final deformed mesh with the 
zz stress component. Two
cases are dealt: frictionless and frictional with � = 0.1: (a) frictionless case. Black: 0.8832;

White: −334.5; and (b) frictional case. Black: 5.747; White −397.2.
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Figure 26. Pulling of a plug: reaction forces as a function of the imposed longitudinal dis-
placement for the frictionless and the frictional cases. For comparison purposes, the results

from Reference [75] are also reproduced.

the presented values correspond to all participants in NUMISHEET 1996, which induces a very
wide amplitude between the minimum and maximum for the experimental values.

7.10. Spring-back in cylindrical bending

This test was a benchmark relative to the NUMISHEET 2002 conference [77] and was analysed,
for example, in Reference [78]. The material and friction properties from this last source are
adopted here. A 1mm thick plate is subject to unconstrained bending through the application of
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Figure 27. Various pictures of the S-rail forming process—the presence of wrinkles was ver-
ified experimentally (see Reference [76]): (a) initial configuration; (b) final configuration with

all the tools; and (c) final configuration without the tools.

a cylindrical punch. Both the tool and the die are assumed rigid. The dimensions and motion
of tools are the ones described in the above references. For comparison purposes, in this work
456 3D low-order elements are employed in the discretization of the plate. A steel plate is
considered, with a Young’s modulus of E = 222.170 GPa, Poisson coefficient of 
 = 0.3
and the following yield stress 
Y = 645.24(0.0102 + �p)0.25177 MPa. A friction coefficient of
� = 0.14817 is adopted. The values of the regularizing parameters are r = 2 × 10−2 N/mm
and 	 = 1 × 10−3. Three instances of the loading process are represented, namely: unloaded
initial mesh, fully loaded position and final position after spring-back in Figure 29.

The effective plastic strain contour plot is represented in Figure 30.
Several quantities are of concern in this problem: the final spring-back angle (the internal

angle between the two arms), the angle prior to unloading, and the punch stroke when separation
of the sheet occurs. Table VIII presents the results.
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Figure 28. The punch force versus punch displacement for the S-rail problem. Comparison with
experiments and results obtained from all the participants in NUMISHEET 1996.

Figure 29. Main time steps in the cylindrical bending.

7.11. V-die bending of a steel sheet

This example is taken from a detailed paper about V-die bending [79] of steel sheets. The
present analysis is carried out using 3D elements, whereas in the above reference 2D plane
strain elements were adopted. The main purpose of this test is to verify the ability of the
proposed algorithms in predicting experimental results in terms of punch force–displacement
curve. Information about geometry and boundary conditions can be consulted in the above
reference for the problem with nomenclature V 1. The material properties are the following:
Young’s modulus: E = 205.8 GPa, Poisson coefficient 
 = 0.3 and yield stress given by

Y = 720.85(0.06 + �p)0.3282 MPa. A friction coefficient with value � = 0.1 is adopted, in
agreement with the above reference. The plate has a thickness value of 2 mm. The sheet depth
has a value of 100 mm and a width of 50 mm. The punch radius has a value of 6 mm and the
die radius has a value of 15 mm. Further details about the geometry and boundary conditions
are described in the above reference. A total punch stroke of 16.65 mm is imposed.
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Figure 30. Effective plastic strain distribution after spring-back.

Table VIII. Cylindrical bending: comparison with experimental values.

Present Min. Max.
Quantity simulation experimental experimental

Angle at full stroke 21.347 20.75 2
Angle after spring-back 33.04 30.9 37.4
Stroke at separation 9.12 3 11.49

In terms of normal regularization a value of r = 1 N/mm and frictional regularization
	 = 1 × 10−3. This problem contains two symmetry planes and therefore only one-fourth of
the geometry is actually meshed. Both the non-deformed mesh and the deformed mesh with
the effective plastic strain contour plot are presented in Figure 31 for the complete model.

The punch force–displacement curve is illustrated in Figure 32. It is clear, that although both
experimental and numerical tests have been carried out by Huang and Leu [79], the present
3D results are more accurate in most parts of the force–displacement plot. The analysis took
88 time steps with automatic step size selection.

8. CONCLUSIONS

In this work, some innovations were introduced that allow a robust analysis of contact between
deformable solids. A study and modification of established main steps in the algorithms of
contact was carried out. Innermost details regarding both the mathematics of contact enforcement
and the friction analysis were derived and the actual practical implementation was detailed.

The main contributions of this work were:

• The inspection of the existent suitable methods to carry out contact analysis with finite
elements.
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Figure 31. V-die bending of a steel sheet: the non-deformed mesh and the deformed mesh with the
effective plastic strain contour plot. Black: �p = 0.1839; White: �p = 0.

• The investigation of new strategies in contact detection and the circumventing of the
equidistance dilemma and face selection, including criteria for avoiding wrong selection
of target faces.
• The proposition of a new Augmented Lagrangian function corresponding to a modifica-

tion of the classical Rockafellar Lagrangian which allows the removal of the Hessian
discontinuity for �i � 1.
• A new regularization approach for friction forces which does not rely on the selection of

a particular stress rate but rather on the use of curvilinear co-ordinates.
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Figure 32. V-die bending of a steel sheet: punch force–displacement plot. For comparison purposes,
the experimental and numerical results from Reference [79] are also reproduced.
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