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Abstract

We are concerned with the valuation of European options in Heston’s stochas-

tic volatility model with correlation. Based on Mellin transforms we present

new closed-form solutions for the price of European options and hedging pa-

rameters. In contrast to Fourier-based approaches where the transformation

variable is usually the log-stock price at maturity, our framework focuses on

transforming the current stock price. Our solution has the nice feature that

similar to the approach of Carr and Madan (1999) it requires only a single

integration. We make numerical tests to compare our results to Heston’s so-

lution based on Fourier inversion and investigate the accuracy of the derived

pricing formulae.
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1 Introduction

The pricing methodology proposed by Black and Scholes (1973) and Merton

(1973) is maybe the most significant and influential development in option

pricing theory. However, the assumptions underlying the original works were

questioned ab initio and became the subject of a wide theoretical and empiri-

cal study. Soon it became clear that extensions are necessary to fit the empir-

ical data. The main drawback in the original Black/Scholes/Merton (BSM)

model is the assumption of a constant volatility. To reflect the empirical

evidence of a non-constant volatility and to explain the so-called volatility

smile different approaches were developed. Dupire (1994) applies a partial

differential equation (PDE) method and assumes that volatility dynamics

can be modeled as a deterministic function of the stock price and time.

A different approach is proposed by Sircar and Papanicolaou (1999). Based

on the PDE framework they develop a methodology that is independent of

a particular volatility process. The result is an asymptotic approximation

consisting of a BSM-like price plus a Gaussian variable capturing the risk

from the volatility component.

The majority of the financial community, however, focuses on stochastic

volatility models. These models assume that volatility itself is a random pro-

cess and fluctuates over time. Stochastic volatility models were first studied

by Johnson and Shanno (1987), Hull and White (1987), Scott (1987), and

Wiggins (1987). Other models for the volatility dynamics were proposed by

Stein and Stein (1991), Heston (1993), Schöbel and Zhu (1999), and Rogers

and Veraart (2008). In all these models the stochastic process governing the

asset price dynamics is driven by a subordinated stochastic volatility process

that may or may not be independent.

While the early models couldn’t produce closed-form formulae, it was Stein

and Stein (1991) (S&S) who first succeeded in deriving an analytical solu-

tion. Assuming that volatility follows a mean reverting Ornstein-Uhlenbeck
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process and is uncorrelated with asset returns they present an analytic ex-

pression for the density function of asset returns for the purpose of option

valuation. Schöbel and Zhu (1999) generalize the S&S model to the case

of non-zero correlation between instantaneous volatilities and asset returns.

They present a closed-form solution for European options and discuss addi-

tional features of the volatility dynamics.

The maybe most popular stochastic volatility model was introduced by Hes-

ton (1993). In his influential paper he presents a new approach for a closed-

form valuation of options specifying the dynamics of the squared volatility

(variance) as a square-root process and applying Fourier inversion techniques

for the pricing procedure. The characteristic function approach of Heston

(1993) turned out to be a very powerful tool. As a natural consequence it

became standard in option pricing theory and was refined and extended in

various directions (Bates (1996), Carr and Madan (1999), Bakshi and Madan

(2000), Lewis (2000), Lee (2004), Kahl and Jäckel (2005), Kruse and Noegel

(2005), Fahrner (2007) or Lord and Kahl (2007) among others). See also

Duffie et al. (2000) and Duffie et al. (2003) for the mathematical foundations

of affine processes.

Besides Fourier and Laplace transforms there are other interesting integral

transforms used in theoretical and applied mathematics. Specifically, the

Mellin transform gained great popularity in complex analysis and analytic

number theory for its applications to problems related to the Gamma func-

tion, the Riemann zeta function and other Dirichlet series. Its applicability

to problems arising in finance theory has not been studied much yet (Panini

and Srivastav (2004) and Frontczak and Schöbel (2008)). The purpose of

the paper is to show how this approach can be extended to the stochastic

volatility problem. We derive an equivalent representation of the solution

and discuss its interesting features.

The article is structured as follows. In Section 2 we give a formulation of the

pricing problem for European options in the square root stochastic volatil-
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ity model. Based on Mellin transforms the solution for puts is presented in

Section 3. Section 4 is devoted to further analysis of our new solution. We

provide a direct connection to Heston’s pricing formula and give closed-form

expressions for hedging parameters. Also, an explicit solution for European

calls is presented. Numerical calculations are made in Section 5. We test

the accuracy of our closed-form solutions for a variety of parameter combi-

nations. Section 6 concludes this article.

2 Problem Statement

Let S(t) = St be the price of a dividend paying stock at time t and Vt its

instantaneous variance. Following Heston (1993) we assume that the risk

neutral dynamics of the asset price are governed by the system of stochastic

differential equations (SDEs):

dSt = (r − q)St dt+
√
Vt St dWt , (2.1)

dVt = κ(θ − Vt)dt+ ξ
√
Vt dZt , (2.2)

with initial values S0, V0 ∈ (0,∞) and where r, q, κ, θ, ξ > 0. The parameter

r is the riskfree interest rate, and q is the dividend yield. Both are assumed

to be constant over time. κ is the speed of mean reversion to the mean

reversion level θ, and ξ is the so-called volatility of volatility. Wt and Zt are

two correlated Brownian motions with dWtdZt = ρdt where ρ ∈ (−1, 1) is

the correlation coefficient. The Feller condition κθ > 1
2
ξ2 guarantees that the

variance process never reaches zero and always stays positive. For practical

uses it is also worth mentioning that in most cases the correlation coefficient ρ

is negative. This means that an up-move in the asset is normally accompanied

by a down-move in volatility.

Let PE(S, V, t) be the current price of a European put option with strike

price X and maturity T . The option guarantees its holder a terminal payoff
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given by

PE(S, V, T ) = max(X − S(T ), 0) . (2.3)

Using arbitrage arguments it is straightforward to derive a two dimensional

partial differential equation (PDE) that must be satisfied by any derivative

F written on S and V :

Ft+(r−q)SFS+
1

2
V S2FSS+(κ(θ−V )−λξ

√
V )FV +

1

2
ξ2V FV V +ρξV SFSV−rF = 0,

on 0 < S, V <∞, 0 < t < T 1 (see Lewis (2000)). λ is called the market price

of volatility risk. Heston provides some reasons for the assumption that λ

is proportional to volatility, i.e. λ = k
√
V for some constant k. Therefore

λξ
√
V = kξV = λ∗V (say). Hence, without loss of generality λ can be set

to zero as has been done in Guo and Hung (2007) or Ikonen and Toivanen

(2007). For a constant volatility the two dimensional PDE reduces to the

fundamental PDE due to Black/Scholes and Merton and admits a closed-

form solution given by the celebrated BSM formula. If F is a European put

option, i.e. F (S, V, t) = PE(S, V, t), we have

PE
t +(r−q)SPE

S +
1

2
V S2PE

SS+κ(θ−V )PE
V +

1

2
ξ2V PE

V V +ρξV SPE
SV −rPE = 0

(2.4)

where PE(S, V, t) : R+ × R+ × [0, T ] → R+. The boundary conditions are

given by

PE(S, V, T ) = max(X − S(T ), 0) (2.5)

PE(0, V, t) = Xe−r(T−t) , (2.6)

PE(S, 0, t) = max(Xe−r(T−t) − S(t)e−q(T−t), 0) , (2.7)

lim
S→∞

PE(S, V, t) = 0 , (2.8)

and

lim
V→∞

PE(S, V, t) = Xe−r(T−t) . (2.9)

1Throughout this paper partial derivatives with respect to the underlying variables
will be denoted by subscripts.
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The first condition is the terminal condition. It specifies the final payoff of

the option. The second condition states that for a stock price of zero the put

price must equal the discounted strike price. The third condition specifies

the payoff for a variance (volatility) of zero. In this case the underlying

asset evolves completely deterministic and the put price equals its lower

bound derived by arbitrage considerations. The next condition describes the

option’s price for ever increasing asset prices. Obviously, since a put option

gives its holder the right to sell the asset the price will tend to zero if S tends

to infinity. Finally, notice that if variance (volatility) becomes infinite the

current asset price contains no information about the terminal payoff of the

derivative security, except that the put entitles its holder to sell the asset for

X. In this case the put price must equal the discounted strike price, i.e. its

upper bound, again derived by arbitrage arguments.

In a similar manner the European call option pricing problem with solution

CE(S, V, t) is characterized as the unique solution of (2.4) subject to

CE(S, V, T ) = max(S(T )−X, 0) ,

CE(0, V, t) = 0 ,

CE(S, 0, t) = max(S(t)e−q(T−t) −Xe−r(T−t), 0) ,

lim
S→∞

CE(S, V, t) = ∞ ,

and

lim
V→∞

CE(S, V, t) = S(t)e−q(T−t) .

3 Analytic Solution using Mellin Transforms

The objective of this section is to solve equation (2.4) subject to (2.5)-(2.9)

in closed-form. The derivation of a solution is based on Mellin transforms.

For a locally Lebesgue integrable function f(x), x ∈ R+, the Mellin transform
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M(f(x), ω), ω ∈ C, is defined by

M(f(x), ω) := f̃(ω) =

∫ ∞
0

f(x)xω−1 dx.

As a complex function the Mellin transform is defined on a vertical strip in

the ω-plane, whose boundaries are specified by the asymptotic behavior of

the function f(x) as x → 0+ and x → ∞2. For conditions that guarantee

the existence and the connection to Fourier and Laplace transforms, see

Titchmarsh (1986) or Sneddon (1972). Conversely, if f(x) is a continuous,

integrable function with fundamental strip (a, b), then if c is such that a <

c < b and f(c+ it) is integrable, the inverse of the Mellin transform is given

by

f(x) = M−1(f̃(ω)) =
1

2πi

∫ c+i∞

c−i∞
f̃(ω)x−ω dω .

Let P̃E = P̃E(ω, V, t) denote the Mellin transform of PE(S, V, t). It is easily

verified that P̃E exists in the entire halfplane with Re(ω) > 0, where Re(ω)

denotes the real part of ω. A straightforward application to (2.4) gives

P̃E
t + (a1V + b1)P̃E

V + (a2V + b2)P̃E
V V + (a0V + b0)P̃E = 0 , (3.1)

where

a1 = −(ωρξ + κ), b1 = κθ

a2 =
1

2
ξ2, b2 = 0

a0 =
1

2
ω(ω + 1), b0 = qω − r(ω + 1) . (3.2)

This is a one dimensional PDE in the complex plane with non-constant co-

efficients. To provide a unique solution for 0 < V < ∞, 0 < t < T we

2Fourier transforms (at least those which are typical in option pricing) usually exist
in horizontal strips of the complex plane. This is the key conceptual difference between
the two frameworks.
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need to incorporate the boundary conditions from the previous section. The

transformed terminal and boundary conditions are given by, respectively,

P̃E(ω, V, T ) = Xω+1
( 1

ω
− 1

ω + 1

)
(3.3)

P̃E(ω, 0, t) = e(qω−r(ω+1))(T−t) ·Xω+1
( 1

ω
− 1

ω + 1

)
(3.4)

and condition (2.9) becomes

lim
V→∞

| P̃E(ω, V, t) |=∞ . (3.5)

Now, we change the time variable from t to τ = T − t and convert the

backward in time PDE into a forward in time PDE with solution domain

0 < V, τ <∞. With P̃E(ω, V, t) = P̃E(ω, V, τ) the resulting equation is

−P̃E
τ + (a1V + b1)P̃E

V + (a2V + b2)P̃E
V V + (a0V + b0)P̃E = 0 , (3.6)

where the coefficients a0, a1, a2, b0, b1 and b2 are given in (3.2) and the terminal

condition (3.3) becomes an initial condition

P̃E(ω, V, 0) = Xω+1
( 1

ω
− 1

ω + 1

)
. (3.7)

Additionally we have

P̃E(ω, 0, τ) = e(qω−r(ω+1))τ ·Xω+1
( 1

ω
− 1

ω + 1

)
, (3.8)

and

lim
V→∞

| P̃E(ω, V, τ) |=∞ . (3.9)

To simplify the PDE (3.6) further we assume that the solution P̃E(ω, V, τ)

can be written in the form

P̃E(ω, V, τ) = e(qω−r(ω+1))τ · h(ω, V, τ) (3.10)

with an appropriate function h(ω, V, τ). It follows that h must satisfy

−hτ + (a1V + b1)hV + a2V hV V + a0V h = 0 , (3.11)
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with initial and boundary conditions

h(ω, V, 0) = Xω+1
( 1

ω
− 1

ω + 1

)
(3.12)

h(ω, 0, τ) = Xω+1
( 1

ω
− 1

ω + 1

)
(3.13)

and

lim
V→∞

| h(ω, V, τ) |=∞ . (3.14)

Observe that for κ = θ = ξ = 0, i.e. if the stock price dynamics are given by

the standard BSM model with constant volatility, the PDE for h is solved as

h(ω, V, τ) = Xω+1
( 1

ω
− 1

ω + 1

)
e

1
2
ω(ω+1)V τ . (3.15)

In this case the equation for P̃E(ω, V, τ) becomes

P̃E(ω, V, τ) = Xω+1
( 1

ω
− 1

ω + 1

)
e( 1

2
ω(ω+1)V+qω−r(ω+1))τ , (3.16)

and the price of a European put option can be expressed as

PE(S, V, τ) =
1

2πi

∫ c+i∞

c−i∞
P̃E(ω, V, τ)S−ω dω , (3.17)

with 0 < c <∞. Frontczak and Schöbel (2008) show that the last equation

is equivalent to the BSM formula for European put options.

The final step in deriving a general solution for h or equivalently for P̃E for

a non-constant volatility is to assume the following functional form of the

solution3:

h(ω, V, τ) = c̃ ·H(ω, τ) · eG(ω,τ)·a0·V , (3.18)

with H(ω, 0) = 1, G(ω, 0) = 0 and where we have set

c̃ = Xω+1
( 1

ω
− 1

ω + 1

)
. (3.19)

3The assumption on the general structure of the solution is justified by the Feller
condition.
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Inserting the functional form for h in (3.11), determining the partial deriva-

tives and simplifying yields two ordinary differential equations (ODEs). We

have

Gτ (ω, τ) = A ·G2(ω, τ) +B ·G(ω, τ) + C , (3.20)

and

Hτ (ω, τ) = a0 · b1 ·G(ω, τ) ·H(ω, τ) (3.21)

where A = a0a2, B = a1, and C = 1. The ODE for G(ω, τ) is identified as

a Riccati equation with constant coefficients. These types of equations also

appear in frameworks based on Fourier transforms, see Heston (1993), Bates

(1996) or Schöbel and Zhu (1999). Having solved for G, a straightforward

calculation shows that H(ω, τ) equals

H(ω, τ) = ea0 b1
∫ τ
0 G(ω,x)dx . (3.22)

Thus, we first present the solution for G. The transformation

G(ω, τ) =
1

A
u(ω, τ)− B

2A

gives

uτ (ω, τ) = u2(ω, τ) +
4AC −B2

4
. (3.23)

Note that this is a special case of the more general class of ODEs given by

uτ (ω, τ) = au2(ω, τ) + b τn ,

with n ∈ N and a and b constants. This class of ODEs has solutions of the

form

u(ω, τ) = −1

a

Fτ (ω, τ)

F (ω, τ)
,

where

F (ω, τ) =
√
τ

(
c1 J 1

2m

( 1

m

√
ab τm

)
+ c2 Y 1

2m

( 1

m

√
ab τm

))
.
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The parameters c1, c2 are again constants depending on the underlying bound-

ary conditions, m = 1
2
(n+2) and J and Y are Bessel functions. See Polyanin

and Zaitsev (2003) for a reference. Setting m = 1 and incorporating the

boundary conditions, u(ω, τ) is solved as

u(ω, τ) =
k

2

tan
(

1
2
kτ
)

+ B
k

1− B
k

tan
(

1
2
kτ
) , (3.24)

where we have set

k = k(ω) =
√

4AC −B2 =
√
ξ2ω(ω + 1)− (ωρξ + κ)2. (3.25)

Thus, we immediately get

G(ω, τ) = − B

2A
+

k

2A

tan
(

1
2
kτ
)

+ B
k

1− B
k

tan
(

1
2
kτ
)

= − B

2A
+

k

2A

k sin
(

1
2
kτ
)

+B cos
(

1
2
kτ
)

k cos
(

1
2
kτ
)
−B sin

(
1
2
kτ
) . (3.26)

Using k2+B2 = 4A is easily verified that an equivalent expression for G(ω, τ)

equals

G(ω, τ) =
2 sin

(
1
2
kτ
)

k cos
(

1
2
kτ
)

+ (ωρξ + κ) sin
(

1
2
kτ
) (3.27)

with k = k(ω) from above. To solve for H(ω, τ) we first mention that (Grad-

shteyn and Ryzhik (2007))∫
B cosx+ C sinx

b cos +c sinx
dx =

Bc− Cb
b2 + c2

ln(b cosx+ c sinx) +
Bb+ Cc

b2 + c2
x.

Therefore,∫ τ

0

G(ω, x)dx = −Bτ
2A

+
1

A
ln

(
k

k cos
(

1
2
kτ
)
−B sin

(
1
2
kτ
)) (3.28)

and

H(ω, τ) = e
κθ
ξ2

[
(ωρξ+κ)τ+2 ln

(
k

k cos( 1
2 kτ)+(ωρξ+κ) sin( 1

2 kτ)

)]
. (3.29)

Finally, we have arrived at the following result:
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Theorem 3.1 A new Mellin-type pricing formula for European put options

in Heston’s (1993) mean reverting stochastic volatility model given by

PE(S, V, τ) =
1

2πi

∫ c+i∞

c−i∞
P̃E(ω, V, τ)S−ω dω , (3.30)

with 0 < c < c∗ and where

P̃E(ω, V, τ) = c̃ · e(qω−r(ω+1))τ ·H(ω, τ) · eG(ω,τ)a0V . (3.31)

with G(ω, τ) and H(ω, τ) from above. The parameters c̃ and k are given in

(3.19) and (3.25), respectively. The choice of c∗ will be commented below.

Remark 3.2 Note that similar to Carr and Madan (1999) the final pricing

formula only requires a single integration.

We now consider the issue of specifying c∗. Recall that to guarantee the

existence of the inverse Mellin transform of P̃E(ω, V, τ) in a vertical strip of

the ω-plane, we need P̃E(c + iy, V, τ) to be integrable, and hence analytic.

From (3.27) and (3.29) we have that G(ω, τ) and H(ω, τ) have the same

points of singularity with

lim
ω→0

G(ω, τ) =
2 sin

(
1
2
iκτ
)

iκ cos
(

1
2
iκτ
)

+ κ sin
(

1
2
iκτ
)

=
2

iκ
sin
(1

2
iκτ
)
e

1
2
κτ

=
1− e−κτ

κ
, (3.32)

and

lim
ω→0

H(ω, τ) = 1. (3.33)

Furthermore, since

k(ω) =
√
ξ2ω2(1− ρ2) + ω(ξ2 − 2ρξκ)− κ2, (3.34)
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it follows that k(ω) has two real roots given by

ω1/2 =
−(ξ − 2ρκ)±

√
(ξ − 2ρκ)2 + 4κ2(1− ρ2)

2ξ(1− ρ2)
, (3.35)

where ρ 6= ±1 and where only the positive root ω1 is of relevance. For ρ = ±1

we have a single root

ω1 =
κ2

ξ2 ∓ 2ξκ
. (3.36)

We deduce that all singular points of G and H are real, starting with ω1 being

a removable singularity. We therefore define c∗ as the first non-removable

singularity of G and H in {ω ∈ C | 0 < Re(ω) < ∞, Im(ω) = 0}, i.e. the

first real root of

f(ω) = k(ω) cos
(1

2
k(ω)τ

)
+ (ωρξ + κ) sin

(1

2
k(ω)τ

)
(3.37)

except ω1. If f(ω) has no roots or no other roots except ω1 in {ω ∈ C | 0 <
Re(ω) <∞, Im(ω) = 0} we set c∗ =∞. By definition it follows that ω1 ≤ c∗,

with the special cases limτ→0 c
∗ =∞, and limτ→∞ c

∗ = ω1.

4 Further Analysis

In the previous section a Mellin transform approach was used to solve the

European put option pricing problem in Heston’s mean reverting stochastic

volatility model. The outcome is a new characterization of European put

prices using an integration along a vertical line segment in a strip of the pos-

itive complex half plane. Our solution has a clear and well defined structure.

The numerical treatment of the solution is simple and requires a single inte-

gration procedure. However, the final expression for the option’s price can

still be modified to provide further insights on the analytical solution. First

we have the following proposition.
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Proposition 4.1 An equivalent (and more convenient) way of expressing

the solution in Theorem 3.1 is:

PE(S, V, τ) = Xe−rτP1 − Se−qτP2 , (4.1)

with S = S(t) being the current stock price,

P1 =
1

2πi

∫ c+i∞

c−i∞

(Xe−rτ
Se−qτ

)ω 1

ω
H(ω, τ)eG(ω,τ)a0V dω, (4.2)

and

P2 =
1

2πi

∫ c+i∞

c−i∞

(Xe−rτ
Se−qτ

)ω+1 1

ω + 1
H(ω, τ)eG(ω,τ)a0V dω, (4.3)

where 0 < c < c∗.

PROOF: The statement follows directly from Theorem 3.1 by simple rear-

rangement. �

Remark 4.2 Equation (4.1) together with (4.2) and (4.3) provides a direct

connection to Heston’s original pricing formula given by

PE(S, V, τ) = Xe−rτΠ1 − Se−qτΠ2 , (4.4)

with

Π1 =
1

2
− 1

π

∫ ∞
0

Re

(
e−iω lnXϕ(ω)

iω

)
dω, (4.5)

and

Π2 =
1

2
− 1

π

∫ ∞
0

Re

(
e−iω lnXϕ(ω − i)

iωϕ(−i)

)
dω, (4.6)

where the function ϕ(ω) is the log-characteristic function of the stock at ma-

turity S(T ):

ϕ(ω) = E
[
eiω lnS(T )

]
. (4.7)
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Remark 4.3 By the fundamental concept of a risk-neutral valuation we have

PE(S, V, τ) = EQ
t

[
e−rτ (X − S(T )) · 1{S(T )<X}

]
= Xe−rτEQ

t

[
1{S(T )<X}

]
− Se−qτEQ∗

t

[
1{S(T )<X}

]
,

with E·t being the time t expectation under the corresponding risk-neutral prob-

ability measure, while Q∗ denotes the equivalent martingale measure given by

the Radon-Nikodym derivative

dQ∗

dQ
=
S(T )e−rτ

Se−qτ
.

So the framework allows an expression of the above probabilities as the inverse

of Mellin transforms.

A further advantage of the new framework is that hedging parameters, com-

monly known as Greeks, are easily determined analytically. The most pop-

ular Greek letters widely used for risk management are delta, gamma, vega,

rho, and theta. Each of these sensitivities measures a different dimension of

risk inherent in the option. The results for Greeks are summarized in the

next proposition.

Proposition 4.4 Setting

I(ω, τ) = H(ω, τ)eG(ω,τ)a0V ,

the analytical expressions for the delta, gamma, vega, rho, and theta in the

case of European put options are given by, respectively,

PE
S (S, V, τ) =

−1

2πi

∫ c+i∞

c−i∞

(X
S

)ω+1 1

ω + 1
e(qω−r(ω+1))τI(ω, τ)dω, (4.8)

PE
SS(S, V, τ) =

1

2πi

∫ c+i∞

c−i∞

1

S

(X
S

)ω+1

e(qω−r(ω+1))τI(ω, τ)dω, (4.9)

PE
V (S, V, τ) =

1

2πi

∫ c+i∞

c−i∞

X

2

(X
S

)ω
e(qω−r(ω+1))τG(ω, τ)I(ω, τ)dω. (4.10)
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Recall that the rho of a put option is the partial derivative of PE with respect

to the interest rate and equals

PE
r (S, V, τ) =

−Xτ
2πi

∫ c+i∞

c−i∞

(X
S

)ω 1

ω
e(qω−r(ω+1))τI(ω, τ)dω . (4.11)

Finally, the theta of the put, i.e. the partial derivative of PE with respect to

τ is determined as

PE
τ (S, V, τ) =

1

2πi

∫ c+i∞

c−i∞
X
(X
S

)ω 1

ω(ω + 1)
e(qω−r(ω+1))τI(ω, τ)J(ω, τ)dω ,

(4.12)

with

J(ω, τ) = qω − r(ω + 1) +
1

2
ω(ω + 1)

(
κθG(ω, τ) + V Gτ (ω, τ)

)
, (4.13)

where

Gτ (ω, τ) =

(
1− (ωρξ + κ)2

ξ2ω(ω + 1)

)
1

cos2
(

1
2
kτ + tan−1

(
−(ωρξ+κ)

k

)) . (4.14)

PROOF: The expressions follow directly from Theorem 3.1 or Proposition

4.1. The final expression for I(ω, τ) follows by straightforward differentiation

and (3.21). �

We point out that instead of using the put call parity relationship for valuing

European call options a direct Mellin transform approach is also possible.

However, a slightly modified definition is needed to guarantee the existence

of the integral. We therefore propose to define the Mellin transform for calls

as

M(CE(S, V, t), ω) = C̃E(ω, V, t) =

∫ ∞
0

CE(S, V, t)S−(ω+1) dS, (4.15)

where 1 < Re(ω) < ∞. Conversely, the inverse of this modified Mellin

transform is given by

CE(S, V, t) =
1

2πi

∫ c+i∞

c−i∞
C̃E(ω, V, t)Sω dω , (4.16)
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where 1 < c. Using the modification and following the lines of reasoning

outlined in Section 3 it is straightforward to derive at

Theorem 4.5 The Mellin-type closed-form valuation formula for European

call options in the square-root stochastic volatility model of Heston (1993)

equals

CE(S, V, τ) = Se−qτP ∗2 −Xe−rτP ∗1 , (4.17)

where

P ∗2 =
1

2πi

∫ c+i∞

c−i∞

( Se−qτ
Xe−rτ

)ω−1 1

ω − 1
H∗(ω, τ)eG

∗(ω,τ)a∗0V dω , (4.18)

and

P ∗1 =
1

2πi

∫ c+i∞

c−i∞

( Se−qτ
Xe−rτ

)ω 1

ω
H∗(ω, τ)eG

∗(ω,τ)a∗0V dω , (4.19)

with

H∗(ω, τ) = e
κθ
ξ2

[
−(ωρξ−κ)τ+2 ln

(
k∗

k∗ cos( 1
2 k

∗τ)−(ωρξ−κ) sin( 1
2 k

∗τ)

)]
, (4.20)

G∗(ω, τ) =
2 sin

(
1
2
k∗τ
)

k∗ cos
(

1
2
k∗τ
)
− (ωρξ − κ) sin

(
1
2
k∗τ
) , (4.21)

k∗ = k∗(ω) =
√
ξ2ω(ω − 1)− (ωρξ − κ)2 , (4.22)

and a∗0 = 1
2
ω(ω − 1). Furthermore, we have that 1 < c < c∗ with c∗ being

characterized equivalently as at the end of the previous section.

Remark 4.6 Again, a direct analogy to Heston’s original pricing formula

is provided. Also, the corresponding closed-form expressions for the Greeks

follow immediately.

5 Numerical Examples

In this section we evaluate the results of the previous sections for the purpose

of computing and comparing option prices for a range of different parameter
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combinations. Since our numerical calculations are not based on a calibration

procedure we will use notional parameter specifications. As a benchmark we

choose the pricing formula due to Heston based on Fourier inversion (H).

From the previous analysis it follows that the numerical inversion in both

integral transform approaches requires the calculation of logarithms with

complex arguments. As pointed out by Schöbel and Zhu (1999) and Kahl

and Jäckel (2005) this calculation may cause problems especially for options

with long maturities or high mean reversion levels. We therefore addition-

ally implement the rotation count algorithm proposed by the second authors

to overcome these possible inconsistencies (H(RCA)). The Mellin transform

solution (MT) is based on equations (4.1) for puts and (4.17) for calls, respec-

tively. The limits of integration c± i∞ are truncated at c± i500. Although

any other choice of truncation is possible this turned out to provide compara-

ble results. To assess the accuracy of the alternative solutions we determine

the absolute difference between H(RCA) and MT (Diff). Table 1 gives a first

look at the results for different asset prices and expiration dates. We dis-

tinguish between in-the-money (ITM), at-the-money (ATM), and out-of-the-

money (OTM) options. Fixed parameters are X = 100, r = 0.04, q = 0.02,

V = 0.09, κ = 3, θ = 0.12, ξ = 0.2, and ρ = −0.5, whereas S and τ vary

from 80 to 120 currency units, and three months to three years, respectively.

Using these values we have for the European put ω1 = 9.6749 constant, while

c∗ varies over time from 54.7066 (τ = 0.25) to 11.7046 (τ = 3.0) and for the

European call ω1 = 31.0082 with c∗ changing from 116.7385 (τ = 0.25) to

33.7810 (τ = 3.0). We therefore use c = 2 for the calculations (in both cases).

Our major finding is that the pricing formulae derived in this paper provide

comparable results for all parameter combinations. The absolute differences

are very small (of order 10−6 to 10−8 for puts and 10−5 to 10−8 for calls).

They can be neglected from a practical point of view. In addition, since

the numerical integration is accomplished in both frameworks equivalently

efficient, the calculations are done very quickly.
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Puts Calls
(S, τ) H H(RCA) MT Diff H H(RCA) MT Diff

(80 ; 0.25) 19.8379 19.8379 19.8379 1.7 · 10−6 0.4339 0.4339 0.4339 1.7 · 10−6

(90 ; 0.25) 11.6806 11.6806 11.6806 1.1 · 10−6 2.2267 2.2268 2.2268 1.1 · 10−6

(100 ; 0.25) 5.9508 5.9508 5.9508 4.9 · 10−7 6.4471 6.4471 6.4471 4.9 · 10−7

(110 ; 0.25) 2.6708 2.6708 2.6708 6.4 · 10−6 13.1172 13.1173 13.1173 6.4 · 10−5

(120 ; 0.25) 1.0870 1.0870 1.0870 7.5 · 10−6 21.4835 21.4835 21.4835 7.4 · 10−6

(80 ; 0.5) 20.5221 20.5221 20.5221 3.4 · 10−6 1.7062 1.7062 1.7062 3.4 · 10−6

(90 ; 0.5) 13.5342 13.5342 13.5342 2.2 · 10−6 4.6188 4.6188 4.6188 2.2 · 10−6

(100 ; 0.5) 8.4302 8.4302 8.4302 1.1 · 10−6 9.4153 9.4153 9.4153 1.1 · 10−6

(110 ; 0.5) 5.0232 5.0232 5.0232 3.0 · 10−7 15.9088 15.9088 15.9088 3.0 · 10−7

(120 ; 0.5) 2.8995 2.8995 2.8995 9.7 · 10−7 23.6856 23.6856 23.6856 9.7 · 10−7

(80 ; 1.0) 22.1413 22.1413 22.1413 6.7 · 10−6 4.4783 4.4782 4.4783 6.7 · 10−6

(90 ; 1.0) 16.2923 16.2923 16.2923 4.7 · 10−6 8.4312 8.4312 8.4312 4.7 · 10−6

(100 ; 1.0) 11.7819 11.7819 11.7819 2.3 · 10−6 13.7229 13.7229 13.7229 2.3 · 10−6

(110 ; 1.0) 8.4207 8.4207 8.4207 2.5 · 10−7 20.1636 20.1636 20.1636 2.5 · 10−7

(120 ; 1.0) 5.9755 5.9755 5.9755 2.3 · 10−6 27.5204 27.5204 27.5204 2.3 · 10−6

(80 ; 2.0) 24.5972 24.5972 24.5972 1.3 · 10−6 9.1487 9.1487 9.1487 1.3 · 10−5

(90 ; 2.0) 19.8041 19.8041 19.8041 8.2 · 10−6 13.9635 13.9635 13.9635 8.2 · 10−6

(100 ; 2.0) 15.9136 15.9136 15.9136 3.6 · 10−6 19.6809 19.6809 19.6809 3.6 · 10−6

(110 ; 2.0) 12.7852 12.7852 12.7852 7.2 · 10−7 26.1604 26.1604 26.1604 7.2 · 10−7

(120 ; 2.0) 10.2833 10.2833 10.2833 5.2 · 10−6 33.2664 33.2664 33.2664 5.2 · 10−6

(80 ; 3.0) 26.1731 26.1731 26.1731 1.4 · 10−6 12.8222 12.8222 12.8222 1.4 · 10−6

(90 ; 3.0) 21.9865 21.9865 21.9865 7.3 · 10−6 18.0533 18.0533 18.0533 7.3 · 10−7

(100 ; 3.0) 18.5011 18.5011 18.5011 2.3 · 10−8 23.9855 23.9855 23.9855 2.3 · 10−8

(110 ; 3.0) 15.6055 15.6055 15.6055 6.9 · 10−6 30.5076 30.5076 30.5076 6.9 · 10−6

(120 ; 3.0) 13.2004 13.2004 13.2004 1.2 · 10−6 37.5201 37.5201 37.5201 1.2 · 10−6

Table 1:

Comparison of European option prices in Heston’s stochastic volatility

model for different asset prices S and maturities τ . Fixed parameters are

X = 100, r = 0.04, q = 0.02, V = 0.09, κ = 3, θ = 0.12, ξ = 0.2, ρ = −0.5,

and c = 2.

Next, we also examine how the option prices vary if the correlation between

the underlying asset and its instantaneous variance changes. Although from

a practical point of view it may be less realistic to allow for a positive correla-
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tion we do not make any restrictions on ρ and let it range from −1.00 to 1.00.

We fix time to maturity to be 6 months. Also, to provide a variety of pa-

rameter combinations we change some of the remaining parameters slightly:

X = 100, r = 0.05, q = 0.02, V = 0.04, κ = 2, θ = 0.05, and ξ = 0.2. We ab-

stain from presenting the numerical values of ω1 and c∗ in this case and choose

again c = 2 for the integration. Our findings are reported in Table 2. Again,

the Mellin transform approach gives very satisfactory results as the absolute

differences show. For both puts and calls they are of order 10−5 to 10−6.

Analyzing the results in detail one basically observes two different kinds of

behavior. For ITM put options we have an increase in value for increasing

values of ρ. The maximum difference is 0.6655 or 3.60%. The opposite is

true for OTM puts. Here we have an strict decline in price if ρ is increased.

The magnitude of price reactions to changes in ρ increases, too. The max-

imum change in the downward move is 0.7787 or equivalently 75.21%. The

same behavior is observed for ATM options. However, the changes are much

more moderate with a maximum percentage change of 0.80%. For European

calls the situation is different. OTM calls increase significantly in value if ρ

is increased whereas ITM and ATM call prices decrease for an increasing ρ.

The maximum percentage changes are 492.96% (OTM), 3.49% (ITM), and

0.62% (ATM), respectively. Our numerical experiments suggest that the new

framework is flexible enough to account for all the pricing features inherent

in the model.

6 Conclusion

We have applied a new integral transform approach for a closed-form val-

uation of European options on dividend paying stocks in a mean reverting

stochastic volatility model with correlation. Using the new framework our

main results are new analytical characterizations of options’ prices and hedg-
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ing parameters. Our equivalent solutions may be of interest for theorists as

well as practitioners. On one hand they provide further insights on the

analytic solution, on the other hand they are easily and quickly treated nu-

merically by applying efficient numerical integration schemes. We have done

extensive numerical tests to demonstrate the flexibility and to assess the ac-

curacy of the alternative pricing formulae. We have shown that the results

are very gratifying and convincing. The new method is very competitive and

should be regarded as a real alternative to other approaches, basically Fourier

inversion methods, existing in the literature. Also, since the transformation

variable is the current value of the asset instead of its terminal price the new

framework may turn out to be applicable to path dependent problems.
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Puts Calls
(S, ρ) H H(RCA) MT Diff H H(RCA) MT Diff

(80 ; -1.00) 18.4620 18.4620 18.4620 1.7 · 10−6 0.1350 0.1350 0.1350 1.7 · 10−6

(100 ; -1.00) 5.0431 5.0431 5.0431 2.1 · 10−6 6.5170 6.5170 6.5170 2.1 · 10−6

(120 ; -1.00) 1.0353 1.0353 1.0353 2.6 · 10−5 22.3103 22.3103 22.3103 2.6 · 10−5

(80 ; -0.75) 18.5533 18.5533 18.5533 1.3 · 10−6 0.2263 0.2263 0.2263 1.3 · 10−6

(100 ; -0.75) 5.0403 5.0403 5.0403 4.1 · 10−6 6.5143 6.5143 6.5143 4.1 · 10−6

(120 ; -0.75) 0.9541 0.9541 0.9541 6.6 · 10−6 22.2291 22.2291 22.2291 6.6 · 10−6

(80 ; -0.50) 18.6413 18.6413 18.6413 1.0 · 10−6 0.3143 0.3143 0.3143 1.0 · 10−6

(100 ; -0.50) 5.0371 5.0371 5.0371 4.4 · 10−6 6.5111 6.5111 6.5111 4.4 · 10−6

(120 ; -0.50) 0.8695 0.8695 0.8695 2.5 · 10−6 22.1445 22.1445 22.1445 2.5 · 10−6

(80 ; -0.25) 18.7269 18.7269 18.7269 7.9 · 10−6 0.3999 0.3999 0.3999 7.9 · 10−6

(100 ; -0.25) 5.0332 5.0332 5.0332 4.7 · 10−6 6.5072 6.5072 6.5072 4.7 · 10−6

(120 ; -0.25) 0.7812 0.7812 0.7812 1.5 · 10−6 22.0562 22.0562 22.0562 1.5 · 10−6

(80 ; 0.00) 18.8104 18.8104 18.8104 4.9 · 10−5 0.4834 0.4834 0.4834 4.9 · 10−5

(100 ; 0.00) 5.0285 5.0285 5.0285 2.7 · 10−5 6.5025 6.5025 6.5025 3.0 · 10−5

(120 ; 0.00) 0.6887 0.6887 0.6887 6.0 · 10−5 21.9637 21.9637 21.9637 6.0 · 10−5

(80 ; 0.25) 18.8921 18.8921 18.8921 1.1 · 10−6 0.5651 0.5651 0.5651 1.1 · 10−6

(100 ; 0.25) 5.0229 5.0229 5.0229 5.3 · 10−6 6.4969 6.4969 6.4969 5.3 · 10−6

(120 ; 0.25) 0.5913 0.5913 0.5913 9.6 · 10−6 21.8663 21.8663 21.8663 9.5 · 10−6

(80 ; 0.50) 18.9721 18.9721 18.9721 2.2 · 10−6 0.6451 0.6451 0.6450 2.2 · 10−6

(100 ; 0.50) 5.0166 5.0166 5.0166 5.7 · 10−6 6.4906 6.4906 6.4906 5.7 · 10−6

(120 ; 0.50) 0.4882 0.4881 0.4881 1.2 · 10−6 21.7931 21.7630 21.7630 1.2 · 10−6

(80 ; 1.00) 19.1275 19.1275 19.1275 9.60 · 10−6 0.8005 0.8005 0.8005 1.4 · 10−5

(100 ; 1.00) 5.0027 5.0027 5.0027 4.2 · 10−6 6.4767 6.4767 6.4767 5.7 · 10−6

(120 ; 1.00) 0.2566 0.2566 0.2566 1.3 · 10−6 21.5316 21.5316 21.5316 2.0 · 10−6

Table 2:

Comparison of European option prices for different asset prices S and

correlations ρ. Fixed parameters are X = 100, r = 0.05, q = 0.02, V = 0.04,

κ = 2, θ = 0.05, ξ = 0.2, and c = 2.
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