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Abstract 

 Vitrinite reflectance and spectral fluorescence are commonly used together to determine 

the rank and thermal maturity of shale samples. Although vitrinite is not commonly found in the 

New Albany Shale, solid bitumen is found in significant amounts; reflectance of solid bitumen 

provides another method to determine maturity of these samples. The purpose of this study was 

to compare the vitrinite reflectance and spectral fluorescence of liptinites to determine the 

thermal maturity of the New Albany Shale, which can benefit those tasked in the industry who 

determine the oil and gas potential of these source rocks. Establishment of a relationship between 

vitrinite reflectance and fluorescence can help create another rank parameter (alginite 

fluorescence) to determine the thermal maturity in the basin. This methodology for determining 

the hydrocarbon potential can also impact other areas of the country where black shales are 

exploited, including Eastern Kentucky (Ohio Shale) and North Dakota and Montana (Bakken 

Shale). This could potentially improve assessments of source rocks in terms of oil or gas, saving 

companies from potential costly mistakes. The other purpose of this study was to look at the 

potential political, economic, and environmental impacts that result from the extraction of oil and 

gas by the process of hydraulic fracturing. Evaluating the impacts of hydraulic fracturing in the 

State of Illinois allows for a better understanding of how lawmakers, resource companies, and 

scientists can contribute to a broader view of the regional effects of this activity. 

 

Introduction 

The purpose of this study was to compare changes in vitrinite reflectance and spectral 

fluorescence of liptinites in the New Albany Shale of Illinois with increasing rank. A relationship 
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has been observed between an increase in vitrinite reflectance and a decrease in spectral 

fluorescence with increasing rank in previous studies (e.g., Rimmer et al., 1993). By establishing 

this relationship for the New Albany Shale, fluorescence could be used as a rank parameter to 

determine the oil and gas potential of this unit. This is significant because it has been suggested 

that vitrinite reflectance can be suppressed in very organic-rich sources such as the New Albany 

Shale (Price and Barker, 1985; Nuccio and Hatch, 1996). This study will assess whether spectral 

fluorescence can be used as a thermal maturity parameter if vitrinite suppression is present in the 

New Albany Shale.  

The specific objectives were: 

(1) To measure solid bitumen reflectance (BRo) and use this to calculate vitrinite 

reflectance (VRo); 

(2) to compare reflectance (both BRo and VRo) to vitrinite reflectance values reported by 

the Illinois State Geological Survey (ISGS) (e.g., Barrows et al., 1981); 

(3) to measure fluorescence of the maceral, telalginite; and  

(4) to compare spectral fluorescence with VRo to determine thermal maturity of the New 

Albany Shale.  

In determining the thermal maturity of the New Albany Shale, it cannot be ignored that 

there are also environmental, economic, and political impacts when extracting oil or gas through 

methods such as hydraulic fracturing, which will be further discussed. 

 

Geologic Background 

The Devonian New Albany Shale (NAS), located in Illinois and parts of Indiana and 

Kentucky, is organic rich, and is known to produce oil and gas (Cluff and Dickerson, 1982; 
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Werner-Zwanziger et al., 2005; Strapoc et al., 2010). The NAS is thought to have sourced as 

much as 95% of the oil in the Illinois Basin, and may have produced gas in the far southeastern 

region of Illinois (Cluff and Dickerson, 1982). In shales, there are four groups of kerogen: Type I 

kerogen is formed primarily from lacustrine environments and generates oil; Type II kerogen is 

associated with marine environments, and typically produces both oil and gas; Type III kerogen 

is mostly derived from terrestrial environments and produces mostly gas; and Type IV is 

considered "dead" carbon, and has little to no hydrocarbon potential (Taylor et al., 1998). The 

NAS samples used in this study are primarily made up of marine Type II kerogen with abundant 

telalginite and only traces of vitrinite, the latter indicating terrestrial input (Price and Barker, 

1989; Nuccio and Hatch, 1996). Vitrinite represents preserved woody tissues, whereas liptinite 

represents preserved remains of spores, pollen, algae, and resins (Taylor et al., 1998). Solid 

bitumen (often seen in source rocks) represents solidified oil that at one time was generated 

within or migrated through the shale (Cardott et al., 2015). It is also known that solid bitumen 

reflectance is lower than vitrinite reflectance up to a certain reflectance, and there are several 

equations that can be used to convert it into vitrinite reflectance (Bertrand, 1993; Landis and 

Castaño, 1995; Schoenherr et al. 2007; Cardott et al., 2015). Overall, the thermal maturity of the 

New Albany Shale increases towards the southeast, with vitrinite reflectance increasing and 

fluorescence intensity decreasing as thermal maturity increases (Cluff and Dickerson, 1982). The 

thermal maturity of the New Albany Shale increases due to increased temperature and pressure 

over long periods of time; this alters the rock, causing vitrinite reflectance to increase and 

spectral fluorescence to decrease (Nuccio and Hatch, 1996; Werner-Zwanziger et al., 2005). At 

the time of deposition for the New Albany Shale, mostly organic marine material was deposited, 

with some terrestrial inputs including vitrinite coming from the Catskill Delta to the east 
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(Woodrow, 1985). At this time in geologic history, most of North America was a topical 

environment with varying amounts of rainfall from the Appalachian Mountains (Woodrow, 

1985).  

 

Methods 

The samples were originally collected from cores in select locations throughout Illinois, 

as indicated by the circled sample names on Fig. 1. These samples were initially prepared by the 

Illinois State Geologic Survey (e.g., Barrows et al., 1981), and very thin (<2-3mm) 1” square 

mounts were prepared. As preliminary hand polishing of these mounts was unsuccessful, 

samples were cut into thirds on a diamond saw blade, then oriented on their side and re-

embedded in epoxy in a 1 ¼” round mold. This process produced a sample with strips of kerogen 

that were considerably thicker (~1/3 inch), which would allow multiple polishes without 

grinding away the sample. The samples were polished using a Buehler AutoMet 250 polisher, 

using 320, 400, and 600 grits followed by 1 and 0.06 micron polishes. The samples were 

examined using a Leica DM2500P reflected-light microscope with both blue- and white-light 

illumination, using a 50x objective under oil immersion. Photomicrographs were taken with a 

Retiga 2000R camera and QCapture Pro 6.0 program. J&M Analytic MSP200 Coal Reflectance 

Program was used for solid bitumen reflectance; 30 measurements per sample were taken 

according to ASTM standards, then averaged. The J&M Analytic TIDAS system was used for 

spectral analysis in oil immersion with 10 scans per sample of the maceral, telalginite. Spectral 

scans included intensity at 550 and 650 nm, Q* (relative intensity at 650 nm/relative intensity at 

550 nm), wavelength of maximum intensity (in nm), and maximum intensity, then averaged. 

Spectral scans were different from standard fluorescence methods; since intensity at 500 nm 
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cannot be taken under oil immersion, intensity at 550 nm was taken instead and used in the Q* 

equation as the relative intensity at 650 nm/relative intensity at 550 nm. 

 

Results 

The New Albany Shale samples are primarily Type II kerogens, containing large amounts 

of the maceral, telalginite. There are significant amounts of solid bitumen, inertinite, various 

inorganics, but very few pieces of vitrinite. This is seen with Fig. 2, where the white light 

photomicrographs show the solid bitumen, inorganics, and inertinite (photomicrograph 2E). 

Pieces of alginite are seen in Fig. 2 (photomicrographs B, D, F, H), with no telalginite 

fluorescing in samples NAS 120 and 126, seen in photomicrographs J and L.   

Table 1 shows the vitrinite reflectance reported by the Illinois State Geologic Survey 

(ISGS Vit. Ro (%)), the measured solid bitumen reflectance (Solid Bitumen Ro (%)), and the 

measured vitrinite reflectance collected on samples where vitrinite was identified, and the 

calculated vitrinite reflectance (Vit. Ro (%)). BRo was recalculated to Vit. Ro using the equation, 

Ro = (BRo+0.2443)/1.0495 (Schoenherr et al., 2007), and is reported in Table 1 as Calc. VRo 

(%). Solid bitumen differs from vitrinite, it typically has a lower reflectance until higher 

maturities are reached where solid bitumen can have a higher reflectance compared to vitrinite. 

Previous studies have determined equations to calculate vitrinite reflectance from solid bitumen 

reflectance (Bertrand, 1993; Landis and Castano, 1995; Schoenherr et al., 2007). 

In samples NAS 376, NAS 184, and NAS 126, vitrinite was also observed during the 

solid bitumen reflectance analysis, allowing a few vitrinite reflectance measurements to be taken. 

The samples demonstrated a difference of ~0.3% Ro between vitrinite reflectance and solid 

bitumen reflectance.  
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Table 2 shows the fluorescence data collected on telalginite under blue-light illumination 

(oil immersion). The data demonstrates the increase in Q* and λmax wavelength with thermal 

maturity and with an increase in vitrinite reflectance. The data for the λmax intensity appears less 

reliable, with the exception of the decrease in intensity in sample NAS 184, which is closer to the 

edge of the oil/gas window of thermal maturity. Note that samples NAS 120 and 128 has no 

fluorescence, and has a vitrinite reflectance that indicates they are past oil generation.  

Q* values increase relatively regularly with increases in vitrinite reflectance, with 

samples NAS 120 and 128 having a Q* value of 0 (Fig. 3). Figure 4 shows that the first three 

samples increase steadily in λmax intensity as vitrinite reflectance increases, then with the fourth 

sample, NAS 184, the λmax intensity decreases before going to 0 for samples NAS 120 and 128. 

Figure 5 has little increase in λmax wavelength with increased vitrinite reflectance for the first 

three samples; in the fourth sample, NAS 184, λmax wavelength is 600.6 nm compared to the 

range of 574.8 nm-576.2 nm for the first three samples. The λmax wavelength then drops to 0 in 

samples NAS 120 and 128.  

 

Discussion 

There is a clear difference in the fluorescence color of the telalginite as solid bitumen 

reflectance increases. In sample NAS 233 (Fig. 2B) the telalginite is an intense bright 

green/yellow, which then becomes dull in sample NAS 376 (Fig. 2D) and NAS 128 (Fig. 2F). 

Telalginite in sample NAS 184 (Fig. 2H) is a very dull orange/brown at a vitrinite reflectance at 

0.81%. In samples NAS 120 and 126 (vitrinite reflectance’s of 1.19% and 1.58%, respectively) 

the photomicrographs show that there is no fluorescence in the samples (Fig. 2J, L). Ultimately, 

the color of the telalginite shifts from bright yellow to a dull yellow to orange/brown with 
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increase in vitrinite reflectance. Telalginite fluoresces a bright yellow color in samples NAS 233, 

376, and 128, the Q* value is between 0.64 and 0.87, and the λmax wavelengths are clustered 

closely together with values ranging from 574.8 nm to 576.2 nm. Sample NAS 184 fluoresces a 

very dull orange/brown, the Q* value is 1.08, and the λmax wavelength is 600.6 nm. An increase 

in vitrinite reflectance coincides with the increase in Q* and λmax wavelength. Previous studies in 

other basins such as the Cleveland Shale Member of the Ohio Shale in Kentucky have 

determined that the fluorescence color shifts with increase in vitrinite reflectance (Rimmer et al., 

1993). 

NAS 233 (Fig. 6), illustrates the difference in reflectance between the solid bitumen (Fig. 

6A) and a degraded piece of vitrinite (Fig. 6B), revealing that the vitrinite has a much higher 

reflectance than the solid bitumen. To select an equation to convert the measured solid bitumen 

reflectance to the vitrinite reflectance, measurements taken on vitrinite were considered. A 

comparison of re-calculated vitrinite reflectance with actual measured vitrinite reflectance led to 

the selection of the equation of Ro = (BRo+0.2443)/1.0495 (Schoenherr et al., 2007) for the 

NAS. Note that for three of the samples (NAS 233, NAS 128, and NAS 120), there was no 

reliable vitrinite found or measured during analysis. Comparison of the original ISGS vitrinite 

reflectance with the vitrinite reflectance recalculated from solid bitumen reflectance, it is clear 

that the ISGS measured vitrinite reflectance is much lower than the vitrinite reflectance 

calculated in this study as shown in Fig. 7. After converting the vitrinite reflectance taken by the 

ISGS with the same Ro = (BRo+0.2443)/1.0495 equation (Schoenherr et al., 2007), the original 

ISGS reflectance more closely match those acquired during this study (Fig. 8).  

The differences between the vitrinite reflectance and solid bitumen reflectance is clear, 

and it leads to the possibility that the initial ISGS vitrinite reflectance may have collected at least 
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some data on solid bitumen rather than vitrinite. This is illustrated in Fig. 7 where the vitrinite 

reflectance determined in this study are considerably higher than the original ISGS vitrinite 

reflectance. If the ISGS vitrinite reflectance measurements are re-calculated with equation, Ro = 

(BRo+0.2443)/1.0495 (Schoenherr et al. 2007) (making the assumption that they were solid 

bitumen reflectance measurements), the data more closely matches the new vitrinite reflectance 

data.  Further analyses will be required to confirm this possibility. Other studies have suggested 

that incorrect measurements on solid bitumen as opposed to vitrinite can have a large impact 

(~0.2-0.4% Ro difference) on thermal maturity assessments, and can be common even with 

experienced petrographers (Landis and Castano, 1995; Wei et al., 2016). 

Differences in sample preparation and polishing can be a factor in vitrinite reflectance 

measurements. A poor polish results in lower reflectance values, producing error in the data.; it is 

possible that the polishes attained in the current study were of higher quality due to modern 

techniques.  

Werner-Zwanziger et al. (2005) concluded that Type II kerogen, such as telalginite, in the 

New Albany Shale experiences a more gradual chemical change with maturity, measured by 

vitrinite reflectance, and vitrinite reflectance in the SE region of Illinois ranges from 0.94% to 

1.40% (increasing towards the southeast). Thermal maturity of the New Albany Shale increases 

towards the southeast going from the oil window (0.5-1.35% Ro) to the wet gas window (1.35-

2.0%), with the furthest northwest sample (NAS 233) having the lowest thermal maturity, and 

the furthest southeast sample (NAS 126) having the highest thermal maturity. Fluorescence is 

lost around ~1.2% Ro, near the end of the oil window. Previous studies have suggested that 

vitrinite suppression of as much as ~0.3% may be present in the New Albany (Price and Barker, 

1985; Nuccio and Hatch, 1996). It has also been shown that vitrinite reflectance of the Herrin 
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(No. 6) coal seam (Pennsylvanian) in the Illinois Basin ranges from 0.45-0.71% (Thomas and 

Damberger, 1976). This range in coal vitrinite reflectance values falls within the same range of 

those for the New Albany Shale, a unit that has been buried much deeper in the basin and 

therefore should have higher reflectance values. If during these previous studies of the NAS, 

solid bitumen was measured instead of vitrinite, the true vitrinite reflectance could be lower by 

~0.3%. More data will be needed to assess this question by analyzing coal samples from the 

Illinois Basin to determine their vitrinite reflectance and liptinite fluorescence, as well as by 

analyzing more New Albany Shale samples to determine their vitrinite reflectance and liptinite 

fluorescence.  

 

Impact 

Extraction of oil and gas using hydraulic fracturing from organic-rich Devonian shale has 

been a controversial political, environmental, and economic concern throughout the country 

(Rabe, 2014; North et al., 2014; Loomis and Haefele, 2017). Hydraulic fracturing is a process of 

extraction that pressurizes rock until it is cracked, causing the oil or gas to be more easily 

extracted (North et al., 2014). This process has been controversial due to the negative 

environmental impacts that are often associated with fracking (Loomis and Haefele, 2017). Part 

of the goal of this project was to evaluate how hydraulic fracturing of the New Albany Shale 

could affect local and state politics, economics, and the environment in Illinois. It was 

determined that the thermal maturity of the New Albany Shale increases towards the southeast, 

with the calculated vitrinite reflectance indicating potential for oil and gas production, making 

hydraulic fracturing of the New Albany Shale a possibility in the state of Illinois. As of 2014, 31 

states have reserves of gas and oil which can be used for extraction (Rabe, 2014), affecting over 
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50% of American states with how their state and local governments plan to handle these reserves 

and any possible extraction of them. Illinois is one of these states; with the Illinois Hydraulic 

Fracturing Regulatory Act 2013 and the Illinois Department of Natural Resources released its 

first fracking well permit to Woolsey Operating Company in 2017 (Associated Press, 2013). 

As part of this project, Illinois State Senator Jason Barickman of the 53rd district (R-IL) 

was interviewed. When asked, “How do you think hydraulic fracturing will affect the state, its 

citizens, and economy?”, Sen. Barickman replied, “The critical variable that was considered was 

the employment factor and this industry could bring a significant number of jobs to Illinois.” 

Sen. Barickman further expressed that this is why many states, such as Illinois, have allowed 

fracking, because it brings a lot of revenue to their economy. Studies have found that oil and gas 

extraction through hydraulic fracturing has led to greater investment and employment 

opportunities for states because of the relative low cost that this method provides (Rabe, 2014). 

An example of this includes North Dakota, which had the lowest unemployment rate in the 

country of 2.6% in 2013, and this economic growth was seen throughout the state with increases 

in median household income and population growth (Brown, 2014). Sen. Barickman described 

how he and other state politicians attended a conference, and the North Dakota politicians 

attending described how their state has extra revenue from hydraulic fracturing. Sen. Barickman 

suggested many politicians in the state want to bring something positive to Illinois, and to bring 

in the extra revenue that fracking could generate.  

When asked how fracking could potentially impact renewable energy in the state, 

Barickman responded, “Dollars that are generated through fracking will be reused in research 

and development that could go into increasing the renewable energy portfolio at large.” Overall, 

by using hydraulic fracturing as a replacement for coal for production of electricity, this has 
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allowed for opportunities for governments to plan and practice for less environmental affects 

since coal produces a lot more negative environmental effects than shale (North et al., 2014). 

Some of these negative environmental effects of coal include air pollution and carbon dioxide, 

and shale gas from hydraulic fracturing is found to emit half the amount of CO2 compared to 

coal when generating electricity (North et al., 2014). However, hydraulic fracturing doesn’t come 

without its own controversy with negative environmental impacts. These negative impacts can 

include the following: contamination of water sources, air pollution from methane gas, noise 

from drilling, and increased earthquake activity due to wastewater injection, often associated 

with hydraulic fracturing (Loomis and Haefele, 2017). One of the most controversial of these is 

water pollution, where a lot of the water that is used to inject in the ground can interfere with 

drinking water sources, and even can come back up to the surface, bringing new contaminants 

with it, possibly contaminating sources of drinking water (Rabe, 2014). Another study has shown 

that 1-3% of houses within 1 mile of well sites see contaminated drinking water, air pollution, 

noise from drilling, and truck traffic which can lower property value (Loomis and Haefele, 

2017).  More specifically, Illinois law states that well sites must be 500 feet away from any 

residents, places of worship, schools or hospitals. The wells must also be 1500 feet away from 

any surface water and/or groundwater for public drinking.  

States range from banning hydraulic fracturing completely such as New York, while 

other such as North Dakota encourage it (Rabe, 2014), and this brings up the topic of why the 

states are put in the position to decide the best way to regulate hydraulic fracturing instead of the 

federal government. Sen. Brickman said that each state is culturally different, which is why 

many states want to control regulation of fracking. When asked whether the federal government 

should have more of a role in regulating fracking he responded with, “[My] initial reaction would 
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be no, let the states make these decisions based on the uniqueness and the traits that the people of 

these states [have] because if you try and blanket over the entire country you won’t recognize the 

difference between a New Yorker and Illinoisan and Californian and North Dakotan.” He also 

expressed that it would be difficult for the federal government to design a law that would fit 

every state’s needs and wants, making it more reasonable to make laws at the state level instead.  

The application for a company to get a permit for hydraulic fracturing shows the 

discretion is given to the Illinois Department of Natural Resources (IDNR). If there are any 

accidents that exceed the $5,000,000 insurance required for a permit, the IDNR and the director 

are in charge of how that cost will be covered. Sen. Barickman expressed the legislator of the 

state makes the law, and then the governor implements the law with the state industries (such as 

IDNR). It comes down to the governor and the state industries to make rules and regulations, and 

to enforce them. It is possible that a permit for fracking can be rejected by the municipality it is 

located in. Further regulation requires tests for cement strength, VOCs, heavy metals, NORMs, 

well strength, water quality, and other environmental and health impacts, according to the Illinois 

Hydraulic Fracturing Regulatory Act. According to the article, “Illinois’ first fracking permit 

returned by Kansas company, citing ‘costly’ regulations.” by the Associated Press, Woolsey 

Company announced that they would not use the permit they obtained because of the “state’s 

burdensome and costly regulations.” This process was said to be very strict, and it would not 

change for any potential applicants in the future.  

Interviews to be done in the future include interviewing other politicians and those from 

the IDNR to better understand the differing political views on hydraulic fracturing and the rules 

and regulations in place for companies with permits.  
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Conclusion 

This study determined that solid bitumen and vitrinite can be easily confused with one 

another, and can cause the analysis of thermal maturity to be inaccurate. The presumption is that 

the original vitrinite reflectance measurements taken on these samples by the Illinois State 

Geological Survey, may have been collected on solid bitumen, causing the original reflectance 

data to be lower than the analysis done for this study. By measuring the solid bitumen instead of 

vitrinite, the ISGS measurements were found to be ~0.3% below the vitrinite reflectance taken 

for this study. Additional analysis on these samples should be performed to confirm this. 

Thermal maturity increases towards the southeast, with λmax wavelength increasing, Q* 

increasing, λmax intensity decreasing, and vitrinite reflectance increasing. The change in the color 

and intensity of telalginite fluorescence with increased vitrinite reflectance is also observed, with 

the color changing from a bright green/yellow, to yellow, to orange, and then to a dull brown. 

Samples NAS 233, 376, 128, and 184 exhibit fluorescence in the range of vitrinite reflectance 

from 0.68-0.81%, but fluorescence disappears around 1.2% reflectance, close to where the oil 

window ends and the gas window begins. Fluorescence is a reliable indicator of the thermal 

maturity of the New Albany Shale; additional analysis should be done to confirm these 

observations. 

Determining the relationship between spectral fluorescence and vitrinite reflectance as a 

thermal maturity indicator could help those in the industry tasked with determining the oil or gas 

potential in the New Albany Shale, and other organic-rich shales in the country by using another 

rank parameter. This can also prevent costly mistakes, causing companies, and potentially state 

and local governments, economic loss. Calculated vitrinite reflectance measurements of the New 

Albany Shale indicate potential for oil or gas extraction, through hydraulic fracturing. Hydraulic 
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fracturing in the state of Illinois is motivated by lawmakers for its opportunity to bring jobs and 

revenue to the state, but can also come with its own challenges with negative environmental 

impacts. Because of the tight regulations established by the state, the first permit obtained by a 

company will not be used, apparently due to the state's strict rules and regulations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Zalucha-Seaman 

 
16 

References Cited 

Associated Press, 2017. Illinois’ first fracking permit returned by Kansas company, citing 

‘costly’ regulations. Chicago Tribune. November 3rd, 2017 publication.  

Barrows, M., Cluff, R., Harvey, R.D., 1981. Petrology and maturation of dispersed organic 

matter in the New Albany Shale Group of the Illinois Basin: Reprint 1979-N, 

Champaign, Illinois, Illinois State Geological Survey, 25 pp. 

 

Bertrand, R., 1993. Standardization of Solid Bitumen Reflectance to Vitrinite in Some Paleozoic 

Sequences of Canada. Energy Sources 15, (2), 269-287. 

Brown, T.H., 2014. Fracking fuels an economic boom in North Dakota. Forbes. Jan. 29, 2014 

publication. 

Cardott, B.J., Landis, C.R., Curtis, M.E., 2015. Post-oil solid bitumen network in the Woodford 

Shale, USA - A potential primary migration pathway. International Journal of Coal 

Geology 139, 106-113. 

 

Cluff, R.M., Dickerson, D.R., 1982. Natural Gas Production of the New Albany Shale Group 

(Devonian-Mississippian) in Southeastern Illinois. Society of Petroleum Engineers 

Journal, 291-300. 

Landis, C.R., Castaño, J.R., 1995. Maturation and bulk chemical properties of a suite of solid 

hydrocarbons. Organic Geochemistry 22, 137-149. 

Loomis, J., Haefele, M., 2017. Quantifying Market and Non-market Benefits and Costs of 

Hydraulic Fracturing in the United States: A Summary of the Literature. Ecological 

Economics 138 (C), 160-167. 

North, D.W., Stern, P.C., Webler, T., Field, P., 2014. Public and Stakeholder Participation for 

Managing and Reducing the Risks of Shale Gas Development. Environmental Science 

Technology 48, 8388-8396. 

Nuccio, V.F., Hatch, J.R., 1996. Vitrinite reflectance suppression in the New Albany Shale, 

Illinois Basin. U.S.G.S Open-File Report 96-665, 37 pp.  

Price, L.C., Barker, C.E., 1985. Suppression of Vitrinite Reflectance in Amorphous Rich 

Kerogen-A Major Unrecognized Problem. Journal of Petroleum Geology 8, 59-84.  

Rabe, B., 2014. Shale play politics: The intergovernmental odyssey of American shale 

governance. Environmental Science Technology 48, 8369-8375. 



Zalucha-Seaman 

 
17 

Rimmer, S.M., Cantrell, D.J., Gooding, P.J., 1993. Rock-Eval pyrolysis and vitrinite reflectance 

trends in the Cleveland Shale Member of the Ohio Shale, eastern Kentucky. Organic 

Geochemistry 20, 735-745.  

Rimmer, S.M., Thompson, J.A., Goodnight, S.A., Robl, T.L., 2004. Multiple controls on the 

preservation of organic matter in Devonian-Mississippian marine black shales: 

geochemical and petrographic evidence. Palaeogeography, Palaeoclimatology, 

Palaeoecology 215, 125-154 

Schoenherr, J., Littke, R., Urai, J.L., Kukla, P.A., Rawahi, Z., 2007. Polyphase thermal evolution 

in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of 

solid reservoir bitumen. Organic Geochemistry 38, 1293-1318. 

Strapoc, D., Mastalerz, M., Schimmelmann, A., Drobniak, A., Hasenmueller, N.R., 2010. 

Geochemical constraints on the origin and volume of gas in the New Albany Shale 

(Devonian-Mississippian), eastern Illinois Basin. AAPG Bulletin 94, 1713-1740. 

Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P., 1998. Organic 

Petrography. Gebruder Borntraeger.  

Thomas, J.Jr., Damberger, H.H., 1976. Internal Surface Area, Moisture Content, and Porosity of 

Illinois Coals: Variations with Coal Rank. I.S.G.S. Report Circular No. 493.  

Wei, L., Wang, Y., Mastalerz, M., 2016. Comparative optical properties of macerals and 

statistical evaluation of mis-identification of vitrinite and solid bitumen from early 

mature Middle Devonian – Lower Mississippian New Albany Shale: Implications for 

thermal maturity assessment. International Journal of Coal Geology, 128, 222-236. 

Werner-Zwanziger, U., Lis, G., Mastalerz, M., Schimmelmann, A., 2005. Thermal Maturity of 

type II kerogen from the New Albany Shale assessed by 13C CP/MAS NMR. Solid State 

Nuclear Magnetic Resonance 27, 140-148. 

Woodrow, D.L., 1985. Paleogeography, Paleo-climate, and Sedimentary Processes of the Late 

Devonian Catskill Delta. Geological Society of Amererica Special Paper 201, 51-63. 

 

 



Zalucha-Seaman 

 
18 

 

 

Figure 1. Map of the Illinois Basin showing samples used in the study circled in red. The far 

northwestern sample is NAS 233 and the far southeastern sample is NAS 126. (Base map: 

courtesy of the Illinois State Geological Survey). 
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Figure 2. 

 

 

 

 

 

 



Zalucha-Seaman 

 
20 

 

 

 

 

Figure 2. Photomicrographs showing change in NAS macerals with increased maturity. This is 

expressed with the solid bitumen reflectance increasing (A, C, E, G, I, and K) and the 

fluorescence changing from a bright green yellow (B), to a duller yellow (D and F), to a very dull 

orange/brown (H), and to no fluorescence (J and L). 

 

 



Zalucha-Seaman 

 
21 

 

 

 

 

 

 

 

 

 

Figure 3. Relationship between Q* (relative intensity at 650 nm/relative intensity at 550 nm) and 

vitrinite reflectance. Q* is shown to increase with the increase of vitrinite reflectance. Q* of 

samples NAS120 and NAS128 could not be determined since there was no fluorescence. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Relationship between λmax intensity and vitrinite reflectance. λmax intensity is shown to 

increase with samples NAS233, 376, and 128, with a sudden decrease in λmax intensity with 

sample 184 as vitrinite reflectance increases. The λmax intensity of NAS120 and NAS128 could 

not be determined since fluorescence was not visible. 
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Figure 5. Relationship between λmax wavelength and vitrinite reflectance. λmax wavelength for 

the samples NAS233, 376, and 128 is shown to be very close together, with NAS 184 having a 

higher λmax wavelength value. Overall, the λmax wavelength increases with increased vitrinite 

reflectance. The λmax wavelength of NAS120 and 128 could not be determined since 

fluorescence was not visible.  

 

Figure 6. Photomicrograph A and B demonstrate the difference in reflection, visually between 

the solid bitumen (on left) and weathered vitrinite (on right) in the same sample, NAS 233. This 

difference is observed to be ~0.30% based on data collected during this study and by the Illinois 

State Geological Survey. 
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Figure 7. ISGS-collected vitrinite reflectance (in blue) versus calculated vitrinite reflectance (in 

orange) from this study. Vitrinite reflectance was calculated using Schoenherr’s equation of 

Ro=(Bro+0.2443)/1.0495 (Schoenherr et al., 2007). In four of the six samples (NAS 233, 128, 

120, and 126) the difference in vitrinite reflection is ~0.3%. 

 

 

 

 

 

 

 

 

Figure 8. ISGS-calculated vitrinite reflectance (in blue) and the calculated vitrinite reflectance 

from this study (in orange). The ISGS-calculated vitrinite reflectance uses the same equation for 

the calculated reflectance of the vitrinite reflectance taken during this study (Schoenherr et al., 

2007). Four of the six samples (NAS 233, 128, 120, and 126) express little difference in vitrinite 

reflectance (<0.05%).  
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Sample ISGS Vit. Ro. 

(%) 

Solid Bitumen 

Ro (%) 

Vit. Ro (%) Calc. VRo (%) 

NAS 233 0.50 0.47  0.68 

NAS 376 0.58 0.44 0.71 0.65 

NAS 128 0.62 0.59  0.79 

NAS 184 0.79 0.61 0.82 0.81 

NAS 120 1.00 1.00  1.19 

NAS 126 1.45 1.41 1.76 1.58 

 

Table 1. Vitrinite and solid bitumen data for NAS samples. ISGS Vit. Ro is the original data 

supplied by the Illinois State Geological Survey; Solid Bitumen Ro. and Vit. Ro are the solid 

bitumen and vitrinite reflectance measurements, respectively; Calc. VRo is the calculated 

vitrinite reflectance using Schoenherr’s equation, Ro=(BRo+0.2443)/1.0495 (Schoenherr et al. 

2007).  

 

Sample 550 nm 650 nm Q* λmax 

wavelength 

(nm) 

λmax intensity 

NAS 233 2930.70 1759.70 0.64 574.80 3158.80 

NAS 376 2261.60 1552.50 0.70 575.60 2525.40 

NAS 128 3200.80 2716.60 0.87 576.20 3596.90 

NAS 184 547.50 585.70 1.10 600.60 653.30 

NAS 120 0.00 0.00 0.00 0.00 0.00 

NAS 126 0.00 0.00 0.00 0.00 0.00 

 

Table 2. Spectral fluorescence data for telalginite in NAS samples. The averaged intensity 

measurement was acquired at 550 nm and 650 nm; Q* is the averaged relative intensity at 650 

nm divided by the relative intensity at 550 nm; λmax wavelength is the averaged maximum 

wavelength taken in nm; λmax intensity is the averaged intensity of the maximum wavelength.  
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