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Abstract

Many machine learning algorithms assume that all input samples are independently and identically distributed from
some common distribution on either the input space X, in the case of unsupervised learning, or the input and output
space X × Y in the case of supervised and semi-supervised learning. In the last number of years the relaxation of this
assumption has been explored and the importance of incorporation of additional information within machine learning
algorithms became more apparent. Traditionally such fusion of information was the domain of semi-supervised
learning. More recently the inclusion of knowledge from separate hypothetical spaces has been proposed by Vapnik
as part of the supervised setting. In this work we are interested in exploring Vapnik’s idea of ‘master-class’ learning
and the associated learning using ‘privileged’ information, however within the unsupervised setting.

Adoption of the advanced supervised learning paradigm for the unsupervised setting instigates investigation into
the difference between privileged and technical data. By means of our proposed aRi-MAX method stability of the
K-Means algorithm is improved and identification of the best clustering solution is achieved on an artificial dataset.
Subsequently an information theoretic dot product based algorithm called P-Dot is proposed. This method has the
ability to utilize a wide variety of clustering techniques, individually or in combination, while fusing privileged and
technical data for improved clustering. Application of the P-Dot method to the task of digit recognition confirms our
findings in a real-world scenario.
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1. Introduction

At the core of machine learning lies the analysis of data. Data are worthless unless they contain meaningful
information and thus useful knowledge about a particular problem or a set of problems. For different areas of machine
learning we can categorise data based on what we know about them, before they are subject to a particular algorithm.
The three core types of learning, supervised, semi-supervised and unsupervised learning, differ first and foremost in
the type of data they have at their disposal. We highlight these differences in Table 1.

In the supervised setting a set of n examples X = (x1, ..., xn) is provided, along with a set of labels Y = (y1, ..., yn),
resulting in a set of pairs of observations S = (x1, y1), ..., (xi, yi). In the semi-supervised setting, the same type of
information is available, however commonly with only a small subset of examples Xl ⊂ X with corresponding labels
Yl ⊂ Y . In contrast to the supervised setting, the amount of unlabelled examples Xu ⊂ X can be fairly large. In
addition, or sometimes instead of the subset Xl of labelled examples, a set of constraints can exist that can be imposed
upon the employed algorithm. Such constraints traditionally denote whether a pair or a set of points should or should
not co-exist in the same cluster. In unsupervised learning the amount of knowledge about data to be analysed is
the most restrictive. Only a set of n examples from X is supplied. This makes unsupervised learning hard to define
formally and thus a difficult computational problem [41].

One aspect that all three types of learning share is the fact that all sample points should be selected independently
and identically distributed from some common distribution on either X, in the case of unsupervised learning, or
X × Y in the case of supervised and semi-supervised learning. The restriction on the distribution from which the
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Table 1: Differences in input knowledge across the three types of learning.

Data

Learning X Y Other

Supervised X = (x1, ..., xn) Y = (y1, ..., yn) –
Semi-Supervised Xl = (x1, ..., xl) Yl = (y1, ..., yl) –

Xu = (xl+1, ..., xl+u) – Constraints
Unsupervised X = (x1, ..., xn) – –

input samples are collected has increasingly been relaxed within the literature and its consequences explored [6].
Importance of incorporation of additional information within machine learning algorithms became more apparent with
the introduction of multiple view learning [1, 8] and learning using privileged information (LUPI) [37]. Traditionally
such fusion of knowledge was the domain of semi-supervised learning, where techniques such as co-training [3] were
employed in order to fuse separate data in order to exploit knowledge encoded within unlabelled data. More recently
the inclusion of knowledge from separate hypothetical spaces has also been proposed by Vapnik [36, 38, 37] as part
of the supervised setting. In his work the notion of “privileged” and “hidden” information denotes the existence
of an additional set of data that provides a higher level information, akin to information provided by a “master” to
a pupil, about a specific problem. In the supervised setting such information is only available during training. The
fusion of separate hypothetical spaces for the purpose of unsupervised learning, particularly cluster analysis has been
investigated in the past [2, 13, 10], however not within the LUPI framework.

In this work we are interested in exploring the idea proposed by Vapnik, however within the unsupervised setting.
We are particularly interested in the notion of ‘master-class’ learning and the associated learning using ‘privileged’
information which is explained in Section 2. Section 3 provides insights into the difference between information
as meant in the traditional sense and the so-called ‘privileged’ information. In Section 4 the question of whether
such information can be used to improve data clustering is investigated and a method for combining ‘privileged’
information as part of a clustering solution is proposed. Section 5 highlights the use of our method on a real world
dataset. The paper concludes with Section 6 where our results are summarised and future work is proposed.

2. Learning Using Privileged Information

To understand the notion of learning using privileged information, first the wider context of ‘learning from em-
pirical data’ is depicted. In machine learning, supervised learning is a subset of learning techniques that have one
common goal. This goal is to learn a mapping from input x to an output y. The standard input for supervised tech-
niques consists of a set X = (x1, ..., xn) of n examples from some space χ of interest. Typically this set of examples
is drawn independently and identically distributed (i.i.d.) from some fixed but unknown distribution with the help of
a generator (Gen). Along with such examples we are also given a set Y = (y1, ..., yn) of labels yi that correspond to
our examples xi. This set is said to have been created by a supervisor (Sup), who knows the true mapping from x
to y. Thus we are provided with a set of pairs (x1, y1), ..., (xi, yi) and from these we aim to learn the real mapping as
accurately as possible using our learning machine (LM). The general model of learning from examples, adopted from
Vapnik [39], can be seen in Figure 1(a). In this figure a generator samples data x i.i.d. from the unknown distribution
of a given problem, which is subsequently paired with an appropriate label y by the supervisor. The pair (x, y) is then
used by the learning machine to learn the mapping from x to y in order for the machine to be able to give as similar
an answer, to the supervisor, as possible.

Figure 1(b) displays the concept of learning using ‘privileged information’, pertinent to our investigation. In
comparison to the supervised setting, there exists an additional data generator Gen∗priv of input data x∗. This generator
is different from the only generator that exists in the traditional supervised setting and which in this figure is called
Gentech. Existence of two separate generators suggests that the inputs x and x∗ do not need to come from the same
distribution. It is however important that they come from the same domain, i.e. the domain of the problem that we
attempt to solve or learn about.
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Figure 1: Two models of learning from examples. In the LUPI setting (b) an additional generator of data x∗ exists. This data is called privileged as
it is available only during training.

Originally, Vapnik [36] suggested a learning paradigm called ‘master-class’ learning, where a teacher plays an
important role. This teacher is not the supervisor (Sup) as used in a supervised setting. The teacher is the additional
data generator Gen∗priv. In this paradigm the teacher is an entity that provides information akin to information provided
by a human teacher. The teacher provides students with hidden information, (x∗). This information is not apparent at
first or explicitly stated. It is usually hidden within the actions of the teacher [38]. It provides the students with the
teacher’s view of the world. It is available to the students in addition to the information that exists in textbooks and as
a result they can learn better and faster. It is important to note that the notion of ‘hidden information’ is different from
information hiding in the the field of data hiding [9, 34]. Both areas deal with information passed across a (possibly)
covert channel, the purpose and use of such information is however different in both cases.

In [37], Vapnik renamed his learning paradigm to ‘Learning Using Privileged Information’. In this formulation
the notion of privileged rather than hidden information is presented, where the data is said to be privileged as it is
available to us only during training and not during testing.

To realize this advanced type of learning, Vapnik developed the SVM+ algorithm [38], where the fusion of priv-
ileged information with the classical, technical, data is performed. To understand how this fusion works we refer to
the SVM decision function, shown below:

f (x) = (w · z) + b =

n∑
i=1

αiyiK(xi, x) + b (1)

In the SVM+ method this decision function depends on the kernel K defined in the transformed feature space,
however coefficients α depend on both the transformed feature space as well as on a newly defined correction space
φ(x∗). The correction space is where the privileged data is optimised and thus incorporated as part of the overall
solution. Thus in addition to the above decision function, an additional correcting function was introduced [38]:

φ(x∗j) = (w∗ · z∗i ) + d =
1
γ

n∑
i=1

(αi + βi −C)K∗i, j + d (2)

An important strength of the SVM+ algorithm is the ability of the system to reject privileged information in
situations when similarity measures in the correcting space are not appropriate, thus privileged information is only
used when it is deemed beneficial. One drawback of the system is the increase in computational requirements due to
the necessity of tuning of more parameters than in the original SVM setting [37].

Experimental results using the above algorithm show the new paradigms’ superiority in terms of performance
over the original SVM method. Vapnik shows that a poetic description [38] of a set of images of numbers provides
more useful knowledge for learning than knowledge embedded within a higher resolution image, which holds more
“technical” information about the underlying digits. In Vapnik’s work a poetic description is a poet’s textual depiction
of the underlying image, described in section 5.1. In [37] the work is extended to show its success in tackling a
bio-informatics and a time-series prediction problem.
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More recently Pechyony has analysed the LUPI paradigm theoretically [25, 26]. The LUPI paradigm has also been
compared to the problem of structured or multi-task learning in both the classification [20] as well as the regression
settings [5]. The multi-task learning framework considers problems where training data can naturally be separated
into several groups, which can in turn be used to perform a number of individual model selections. In [20], the authors
suggest that the LUPI setting is a similar problem, where training data are structured, however used to create only a
single model.

2.1. What is Privileged Information?

To understand the problem that is to be solved in this work, first a description of Vapnik’s “privileged information”
needs to be given. Here we will compare it to data as considered in the traditional sense. Vapnik named this traditional
data “technical data”, as in most cases such data originated from a technical process, such as a pixel space in the case
of a digit recognition task or amino-acid space in the case of classification of proteins. To help us understand what
“privileged information” is, it is useful to present examples where such information can become useful. Vapnik
suggested three example types of privileged information [37]:

Advanced Technical Model:. In this scenario the privileged information can be seen as a high level technical model
of a particular problem to be solved. An example of such a model is the 3D-structure information of proteins and their
position within a protein hierarchy in the field of bioinformatics. This 3D-structure is a technical model developed by
scientists to categorise and classify known proteins. Technical data on the other hand refers to amino-acid sequences
on which classification is performed using most traditional approaches. When information contained within the known
3D-structures can be used to improve learning performed on the amino-acid sequences, without the 3D-structures
being required for future predictions, privileged information becomes useful.

Future Events:. Many computational problems involve the prediction of a future event, given a set of current mea-
surements. An example of privileged information in this scenario is a set of information provided by an expert in
addition to the set of current measurements. For instance if the task at hand is the prediction of a particular treatment
of a patient in a year’s time, given his/her current symptoms, a doctor can provide information about the development
of symptoms in three, six and nine months time.

Holistic Description:. The last example type of privileged information relates to holistic descriptions [29] of specific
problems or problem instances by entities that are associated to the problem domain. Considering a medical problem
again where, in this case, biopsy images are to be classified between cancerous and non-cancerous samples, technical
data are the individual pixels of each image. Privileged information on the other hand are reports written about the
images by pathologists in a high-level holistic language. The aim of the computational task becomes the creation of a
classification rule in the pixel space with the help of the holistic reports produced by pathologists, so as to allow for
future classifications of biopsy images without the need of a pathologist.

The above three example types of privileged information are only a very small selection of the possible set of
additional information that could be obtained from a number of problem domains. Vapnik states that almost any
machine learning problem contains some form of privileged information, which is currently not exploited in the
learning process [37]. This includes the unsupervised learning process that we are interested in tackling.

3. The Difference Between Information and Privileged Information

The notion of ‘privileged’ information accentuates the question of what ‘privileged’ information actually is and
why it should be treated differently than other types of data. In the previous paragraph we have highlighted a number
of examples of privileged information. In this section we will first show that there is a difference in the type of data
that one can obtain for a particular problem to be solved. More specifically we will show that there is a difference
between traditional feature space data and the so-called ‘privileged’ information. We will demonstrate this by ob-
serving differences in the results of the K-Means clustering algorithm on various mixtures of these two types of data.
Subsequently we will postulate that the method of fusion of these differing input data has an impact on the data’s
contribution towards a better solution in the unsupervised learning setting and cluster analysis in particular.
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Figure 2: Unsupervised Learning Machine using Privileged Information. In this setting the clustering machine (CM) allows for the fusion of
information from both data sources for the purpose of improved clustering.

3.1. Privileged Information in Supervised Learning

In the supervised setting, Vapnik [36, 38, 37] has shown that a learning machine trained with the help of both
privileged information, as well as the original technical data, provides improved performance over a machine trained
only on technical data. He has also shown that if privileged information is available, the technical data does not need
to be of as high quality as when only technical data is used for training. To put this into context, Vapnik compared the
classification performance of a learning machine (SVM+) trained on low resolution images of digits with privileged
information against a learning machine trained on high-resolution images of the same digits. This comparison has
shown comparable results. It is however not known whether privileged information would provide similar type of
performance increase when used directly as additional features. Below we demonstrate that there is a difference in
combining data from different spaces in ways other than simply concatenating privileged information as additional
features to the technical data.

3.2. Privileged Information in Unsupervised Learning

The use of any type of privileged information as part of the unsupervised setting has not yet been performed.
In order to show the importance of privileged information, we will highlight its usefulness in the domain of cluster
analysis. Figure 2 shows, with the help of the learning machine framework, the unsupervised learning setting using
privileged information.

Similarly to Figure 1(b), we have two generators, where Gentech is the generator of the original technical data and
Gen∗priv supplies the learning machine, in this case the Clustering Machine CM, with privileged information. Unlike
in the supervised setting there is no supervisor, S up, thus the clustering machine needs to be able to exploit the
information encoded within the two data sources, without the knowledge of the number of classes or which instances
belong to which group. The clustering machine produces a clustering C, which provides a set of meaningful partitions
of X according to information encoded in x and x∗.

3.3. Clustering Using Perfect Privileged Information

To demonstrate the usefulness of privileged information, we designed an experiment that highlights the difference
between privileged information as a separate source of data and privileged information as a set of additional features.
We created an artificial dataset that consists of a clear example of a problem with which any clustering algorithm
has difficulties dealing with. The dataset can be seen in Figure 3. This figure shows the original technical data.
This dataset is symmetric in the distribution of points, however it is asymmetric in terms of class assignment. This
problem is ill-posed as it likely violates the cluster assumption and low-density separation assumption [7]. For
this reason no clustering algorithm is able to solve it. Four possible solutions for the problem, using the K-Means
algorithm, can be seen in Figure 4. These solutions are all incorrect and represent approximately 80% of all solutions
produced by K-Means, depending on the starting locations of the centres of the algorithm. The only possibility for
improving the quality of the clustering solution is to obtain additional information. In the real world, such information
may be difficult to obtain, however in many situations where information from the same source cannot be obtained,
information from the same domain can be obtained instead with the help of an expert of some kind.
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Figure 3: Artificial dataset with true class assignment shown. The dataset is symmetric in point distribution however asymmetric in class assign-
ment. This problem cannot be solved using standard clustering techniques.

In our case we first assume a perfect expert that can supply information akin to class labels in terms of class
separability. By this we mean that the additional information allows for clear separation of the dataset into the correct
true clusters. However as this is an unsupervised setting, this additional information cannot be used in the same sense
as labels in a supervised setting. Unlike labels, this information cannot be used with a correcting function as there are
no guarantees about the correctness of the privileged information and no information about which cluster belongs to
a particular class. The information chosen by us for this purpose can be seen in Figures 5(a) and 5(b). Two sets of
privileged information were chosen. This information, which we termed point-wise, as all points belonging to a class
are located at the same location, can be thought of as two dimensional set of points, where each point is associated with
an existing data instance of a particular class in the technical dataset. The two sets of data only differ in the Euclidean
distance, d, also denoted by the Euclidean norm ‖.‖, between points that are representative of the two classes. For
simplicity and clarity, privileged information for data items in dataset where the distance between the two classes is
d =‖ x∗1 − x∗2 ‖=

√
0.2, that belong to class one (l), are all at location (0.1, 0.1), whereas for class two (s), privileged

information is a set of points all located at (0.2, 0.2). In the second privileged dataset where d =‖ x∗1 − x∗2 ‖= 0.5,
points belonging to class one (l) are all at location (0.1, 0.1) and to class two (s) at (0.5, 0.4). These two different
types of data were chosen to reflect on the fact that the larger the difference between values in different classes, the
more separated the two groups become in that particular dimension. Thus if our additional information is very well
separated due to d being very large, then in some cases the problem of separating the two groups becomes easier when
concatenating this data in the original feature space. However if d is small, with respect to other values present in the
technical dataset, then even if such attribute is vital for the successful clustering, its influence on the solution will be
minimal, especially when the number of dimensions of the technical data set is large with respect to the number of
dimensions of the additional data.

3.3.1. Adjusted Rand Index
A clustering validity measure is required to evaluate the performance of the clustering solution provided by all

tested clustering algorithms. A method called the adjusted Rand index [17] was employed to assess the similar-
ity between the clustering solutions produced by the clustering algorithms and the true solution. This method is a
corrected-for-chance version of the RAND index [28], which assesses the degree of agreement between two partitions
of the same set of data. The method has a maximum value of 1, which denotes a perfect agreement between the two
tested partitions. The minimum of 0 denotes that the two sets do not agree on any pairs of points.

3.3.2. Clustering of X Concatenated with X∗ - (X + X∗)
In the first experiment the K-Means algorithm is applied to the original dataset, comprising only of technical data,

X. An agreement between the true clustering and the clustering performed by K-Means using the adjusted Rand
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(a) Solution 1
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(b) Solution 2
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(c) Solution 3
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(d) Solution 4

Figure 4: Application of the K-Means clustering algorithm on the artificial dataset and its failure due to local optima. The symmetric nature of the
dataset provides ambiguity with respect to how the data should be partitioned. Thus many clustering algorithms, such as the K-Means algorithm,
will fail in correctly partitioning the data into the appropriate clusters.
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(b) d =‖ x∗1 − x∗2 ‖= 0.5

Figure 5: Point-wise privileged information, x∗, supplied in addition to original technical data, x. Here d denotes the Euclidean distance between
the points in the two classes x1 and x2. Each class contains as many items in x∗ as there are items in x, however as these are all located at the same
position in this scenario, only one item per class can be seen in this figure.

index method is calculated across 100 runs of the algorithm. As stated earlier the results of the first experiment
confirm that the algorithm cannot find the correct solution and that in many cases it finds a completely wrong solution.
Concordance of 62% between the K-Means solution and the true class assignment is found in the best case, with
a mean concordance of 52%. On the other hand the worst solution finds no agreement between the true clustering
and the solution that K-Means found. This is due to the fact that the algorithm is susceptible to local optima, which
are typically found when the initial centres of the algorithm are not chosen optimally. As the K-Means algorithm
traditionally selects such initial centres at random, it is understandable that many of the algorithm’s solutions might
be incorrect. Numerous solutions to this initialisation problem of the K-Means algorithm have been proposed in the
past, for example [4, 23, 21], however we are not interested in solving this problem per se, nevertheless our analysis
does have implications that are related.

Once the results obtained on the original technical data, X, show that the K-Means algorithm cannot achieve a
very good solution, we now include the privileged information as a part or in addition to the original feature space.

In the first instance we obtain results for the clustering produced by K-Means when the privileged information is
fused into the feature space of the technical data. Hence the additional data is simply appended to the original dataset,
and thus can be thought of as only an additional set of attributes. We will refer to this scenario throughout the rest of
this paper using the following notation: X + X∗, where + denotes a concatenation of the two sets of data, resulting in
one dataset. To evaluate whether significant differences exist in the results, we examine our results with the help of
a statistical test called the Wilcoxon signed-rank test [42]. A confidence interval level of 0.05 was chosen and a null
hypothesis with two alternative hypotheses was given.

By including the additional information as simply another set of attributes we observe that across 100 runs the
quality of solutions of the K-Means algorithm in the case when d =

√
0.2 slightly decreases, from 0.52 to 0.51,

when looking at the mean adjusted Rand index value. Comparing the clustering of X with clustering of X + X∗

statistically, we cannot reject any of our proposed three hypotheses. The null hypothesis states that the two results are
the same. The two alternative hypotheses state that the distribution of either one or the other result has a shift to the
right with respect to the distribution of the other result. The statistical analysis suggests that the two results are not
statistically significantly different. Thus there is no evidence for the benefit of using the additional information from
X∗ by combining it with X for the case when d =

√
0.2.

For the case where d = 0.5, the change in results is however substantial. The average agreement between the
two clusterings improves dramatically, from 0.52 to 0.97. We also note that in this situation when the algorithm finds
a good solution, it is a correct solution. Thus in this case we have an improvement in the clustering result when
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additional information helps to sufficiently separate the two groups, making correct solutions possible. In this case we
cannot, however, call this additional information privileged because it is simply an additional set of features. Here the
fusion of X + X∗ provides enough separation that influences the K-Means algorithm by a sufficient amount. The two
attributes from the technical space now comprise only 50% of the information based on which the K-Means algorithm
makes a decision. The other 50% comprises of the additional information which can be thought of as perfect with a
high level of separability due to d = 0.5. This result highlights the importance of separability of classes based on the
separability of individual features within an analysed dataset. As our original dataset comprises of two dimensions
and the privileged dataset is also two dimensional, if the privileged dataset on its own is well separated, this has great
influence on the analysis of the combined dataset, especially in cases where the dimensionality of X does not differ
greatly from the dimensionality of X∗. In cases where the dimensionality of the technical data is substantially larger
than the dimensionality of X∗, then even if X∗ is perfectly linearly separable, the data in X will degrade the influence
of the information in X∗.

It is also important to note that if our data is always as clearly separable as in this example, then we can always
obtain very good solutions using traditional methods. The above optimal case is however rarely to be experienced.
Furthermore, distinct separation is difficult to obtain if our privileged information includes substantial noise, similar
to that of the technical data. A question begs whether the fact that our privileged information comes from the same
domain, rather than the same distribution, can be of benefit. In answering this question and help us overcome the above
mentioned issue of dimension dependent separability, we used privileged information in a way that fuses knowledge
from the two separate data sources, however not in the feature space of the technical data.

3.3.3. Clustering Consensus of Disparate Hypothetical Spaces - aRi-MAX
As both technical data and privileged data essentially come from the same domain, they should provide an insight

into the problem that we are trying to analyse. In terms of clustering, the two datasets should provide information
about the same or similar sets of clusters that belong to the given domain. Assuming the above is true, when each
dataset is clustered individually, we should be able to achieve a consensus of the two results. Consequently we
should understand better the underlying structure of the analysed data. The field of consensus clustering, sometimes
also called aggregation of clustering [33, 35, 14], addresses a similar problem, where a number of clusterings of
the same dataset exists and a consensus between those is sought after. Here we are interested in the clustering of
two datasets that come from the same domain but different generators. In this section we use the clustering of the
privileged information to select the best possible clustering of the technical data. We have devised an algorithm, called
aRi-MAX, for this purpose. Pseudo-code for aRi-MAX is shown in Algorithm 1.

Algorithm 1: aRi-MAX - Clustering consensus of X and X∗ using adjusted Rand index.
Input: Technical Data X, Privileged Data X∗

Output: Clustering of X, maximizing agreement between X and X∗

1 initialization;
2 foreach i in Runs do
3 Cti ← clust(X);
4 Cei ← clust(X∗);
5 end
6 foreach i in Cti do
7 Cci ← max(adjustedRandIndex(Cti,Ce))
8 end
9 max(Cci)

In aRi-MAX the two datasets are fused by a consensus of clusterings that are evaluated using the adjusted Rand
index method. First, a number of clustering solutions of the technical data are performed, followed by a number of
clustering solutions of the privileged information. This corresponds to steps 2-5 in algorithm 1, where clust(X)

can be any type of clustering algorithm. In our experiments this is the K-Means algorithm. Subsequently solutions
of these two clusterings are compared using the adjusted Rand index method and the two cluster solutions with the
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(b) d =‖ µ1 − µ2 ‖= 5, σ = 1.5

Figure 6: More realistic, Gaussian noise based privileged information, X∗. This privileged information is more akin to data in real-world scenarios,
where numerous data items from different classes overlap, making a separation of the classes more difficult. d again denotes the Euclidean distance
between the centres of the two existing classes and σ denotes the standard deviation.

highest agreement are selected as the final solution candidate, steps 6-9 in 1. Once this is completed, the candidate
clustering solution of the technical dataset is evaluated against the true solution.

3.3.4. Clustering by Fusion of X with X∗ - (X � X∗)
The fusion of X and X∗ by means of our aRI-MAX method as well as our future fusion methods shall be denoted in

the following way, X � X∗. Here however the term � shall not be interpreted in the strict mathematical sense denoting
congruence. The choice of this symbol was due to the fact that X and X∗ essentially should provide a congruent view
of the same problem domain.

Experiments using the aRI-MAX method were performed on X � X∗, for both the d =
√

0.2 and the d = 0.5
cases. Results obtained show that across the one hundred runs we are now able to obtain the best achievable result,
given the dataset and clustering algorithm, 100% of the time in both cases. Thus the average agreement between
the correct clustering and our solution across the 100 runs is 0.62. Even though the performance of our aRi-MAX
method is limited by the capability of the underlying clustering technique applied on the technical data, X, in the case
of K-Means, the variability of the outcome of the algorithm is reduced from a standard deviation (σ) of 0.23 for the
d =
√

0.2 case and 0.1 for the d = 0.5 case to σ = 0 in both cases when our aRI-MAX method is used. Statistical tests
performed reveal that obtained results are statistically significant and that the distribution of the results of our method
were shifted to the right from the distribution of the results obtained on both the original data, X, as well as on the
combined data, X + X∗, fused in feature space in the d =

√
0.2 case. These results confirm that the use of privileged

information, in a way different than as part of the original feature space, is a viable direction.

3.4. Clustering Using Imperfect Privileged Information

The previous example was a very simplified form of the problem we are trying to tackle. In the next step, we
investigate a situation, in which our privileged information is slightly more realistic. Additional information is mod-
elled using Gaussian noise, centred on the location of privileged information used in the previous experiment. The
new dataset is depicted in Figure 6. To investigate the amount of information that the privileged information holds
about the underlying problem, the privileged data was clustered using K-Means on its own. Results show that the
privileged data by itself can at best reveal the underlying clusters with approximately 62% to 66% accuracy in the
d =

√
0.2 case and with 80% accuracy in the d = 0.5 case. Thus on its own, the data in X∗ is not any more useful

than the technical data, X, for d =
√

0.2. For d = 0.5, the additional 20% might provide a benefit when the privileged
information is fused by X + X∗, similarly to the point-wise dataset with d = 0.5.
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Table 2: Results of statistical analysis of performance of K-Means algorithm on technical data, X, versus fusion X +X∗ and the aRi-MAX method on
X � X∗. Gaussian privileged information with d =‖ µ1 − µ2 ‖=

√
0.2. Statistical test performed is Wilcoxon signed-rank test at the 0.05 confidence

interval level.

Clustering R1 = R2 R1 < R2 R1 > R2

R1 R2 p-value reject? p-value reject? p-value reject?

X vs. X + X∗ 0.08318 no 0.04159 yes 0.9599 no
X vs. X � X∗ 0.00024 yes 0.9999 no 0.00012 yes
X + X∗ vs. X � X∗ 4.207e-05 yes 1 no 2.104e-05 yes

3.4.1. Clustering of X Concatenated with X∗ - (X + X∗)
When this more noisy type of additional knowledge is fused with the technical data in the original feature space,

X + X∗, in the d =
√

0.2 case, the results of the K-Means clustering algorithm slightly degrade to 48% compared to
using only technical data, X, where a result of 52% is achieved. Again in the case where d = 0.5, the overall perfor-
mance improves, however this time not as dramatically as in the point-wise dataset case with an average concordance
of 91% rather than 97%. Statistical tests were also performed on the results obtained from the new fusions of data
using Gaussian privileged information. From these tests it is apparent that for d =

√
0.2 we reject the hypothesis that

the distribution of the result of the fused X + X∗ space is shifted to the right of the result on X. Therefore we can
conclude that in this example the addition of privileged information by means of X + X∗ provides an inferior solution.

3.4.2. Clustering by Fusion of X with X∗ - (X � X∗)
By using our aRi-MAX method, results show a dramatic improvement with regards to the consistency of the

solutions. Even if the information in the privileged dataset is obscured by noise, a more consistent solution using
the K-Means algorithm was achieved with σ = 0 for both cases of privileged information. To evaluate the results
statistically we performed the Wilcoxon paired signed-rank test again and summarised the results in Table 2 for the
d =
√

0.2 case.
These results show that addition of privileged information to the technical data by X +X∗ has negative effect on the

capability of the K-Means algorithm. Conversely, the use of the proposed aRi-MAX method gives results that surpass
other results in consistency and therefore in performance. For the case when d = 0.5, the statistical results confirm
that the fused privileged data in the original technical space provides the K-Means algorithm enough information for
achieving a very good solution in the majority of performed runs.

4. Can Privileged Information Improve Clustering?

Having established experimental evidence which shows that the use of privileged information in a unique way can
be beneficial to the task of clustering, we are now interested in exploring the possibility of using knowledge encoded
within privileged information for improved clustering. As mentioned in previous section, this task is problematic
mainly due to the fact that as we deal with unsupervised learning, we are unable to discriminate between which
groups or classes a feature vector belongs to. Thus in turn we are unable to distinguish which group or cluster a piece
of information encoded in X∗ should affect. Unlike in supervised learning, where privileged information is used for
making decisions about the slack variable for the creation of the decision boundary in the SVM algorithm, we can only
deal with relative relations between groups of data and their properties across the two hypothetical spaces X and X∗.
There are two main methods which can deal with information, independent of class assignments [33]. The Bayesian
approach and the information theoretic approach. Both of these are linked as they essentially deal with probabilities,
however their approach to information is slightly different. The Bayesian approach deals with the likelihood of events
occurring or their frequencies, possibly given some knowledge, whereas information theoretic approach deals with
the uncertainty of events and the amount of information that is encoded within a sequence that describes such events.
In our work we are interested in the information theoretic approach.
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Figure 7: Depiction of the relationship between various information theoretic concepts. H(X) and H(Y) denote entropy of variables X and Y
respectively. H(X|Y) denotes the conditional entropy of X given Y. H(X;Y) is the joint entropy of variables X and Y and I(X;Y) is the mutual
information of the aforementioned variables.

4.1. Information Theoretic Approach

Information theory deals with the quantification of information. It was originally inspired by a subfield of physics
called thermodynamics, where the measure of uncertainty about a system is measured using a concept called entropy.
Entropy in this case is the amount of information that is necessary for the description of the state of the system. At
a lower level, entropy is the inclination of molecules to disperse randomly due to thermal motion. The more disper-
sion, the larger the entropy [15, 12]. Ludwig Boltzman devised a probabilistic interpretation of such thermodynamic
entropy,

S = k log W (3)

where the entropy of the system S is the logarithmic probability of its occurrence, up to some scalar factor, k, the
Boltzmann constant. Subsequently it was observed that the properties of entropy can be found across many different
fields of science. Claude E. Shannon introduced in 1948 the concept of entropy for the purpose of communication
over a noisy channel [31], which started the field of information theory. In our work we are dealing with Shannon’s
concept of entropy and its subsequent variations and derivations.

From the information theoretic point of view entropy is defined as follows,

H(X) = −

n∑
i=1

p(xi) logb p(xi) (4)

where H(X) is the entropy of a random variable X and p(x) is the probability mass function of an instance x of X.
Georgii [15] states that entropy should not be considered a subjective quantity. Entropy is essentially a measure of the
complexity inherent in X, which describes an observer’s uncertainty about the variable X. Now considering we have
two random variables and we would like to find out the information that the two variables share. In other words we
would like to know the mutual dependence of variable X on variable Y . For this purpose the following calculation,
called Mutual Information exists,

I(X; Y) =
∑
y∈Y

∑
x∈X

p(x, y) logb
p(x, y)

p1(x)p2(y)
(5)

where p(x, y) is the joint probability of variables x and y and p(x) and p(y) are the probability mass functions of
variables x and y respectively. The relationship between these information theoretic measure can be seen in Figure 7.

Strehl and Ghosh [33] applied the concept of Mutual Information to the comparison of clusterings, where a modi-
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fied version of the Mutual Information concept, now normalised to return values in the range [0, 1], has been proposed,

NMI(X,Y) =
I(X; Y)

√
H(X)H(Y)

(6)

In this equation I(X; Y) denotes the Mutual Information between variables X and Y . H(X) and H(Y) denote the entropy
of variables X and Y respectively.

The above information theoretic method provides a way to measure and compare the levels of information across
different variables. This provides a tool that allows for an insight into combining separate sets of data and extracting
the necessary segments of such data that could contribute to an improved solution, without the need for explicit class
labels.

4.2. Dot Product Ratio Measure

To account for information encoded in the privileged dataset, a method has to be devised that is able to discern
which group or cluster should be affected by the information in X∗. As our data does not have labels, such processing
can only take place according to similarity or consensus between solutions of two or more methods that provide us
with their understanding of the underlying data structure. In section 3.3, we have proposed a method to evaluate a
number of solutions of the K-Means algorithm, run on the two disparate datasets. In this case one dataset, the technical
data, is considered as the dominant set. The solution found for the privileged dataset is only used to find an agreement
in order to select the most similar solution for the dominant set. An apparent issue arises with this method however.
In cases where both solutions end in local minima, this might result in an agreement between the two solutions that
is stronger than a more accurate solution, which does not agree strongly across the two datasets. The use of methods
which do not have issues with local minima partially resolves this issue. Also our aRi-MAX solution only selects the
best solution from the technical dataset. It does not provide for an improvement, based on the privileged information.
Thus if data in X∗ holds information that is not encoded in X, we cannot exploit this. For this reason we must go
beyond consensus and attempt to use data in X∗ to amend the solution of X.

The first problem with attempting this is how a solution can be affected in a general enough manner to make our
method applicable across a wide variety of clustering methods. If we adapt the approach taken by Vapnik [37], we are
posed with a number of difficulties. First of all, as mentioned above, we do not have labels. Secondly in order to affect
a decision boundary in a similar manner to SVM+, we need to be able to empirically assess our level of correctness
of assigning a data item to a specific cluster. Without labels this is impossible. However even if this was possible,
for some algorithms this does not pose a reasonable solution. When considering our artificial dataset, the amendment
of the cluster centres found by the K-Means algorithm shifts the decision boundary toward a solution which in this
case might be correct, however this only works when our data is linearly separable. Any movement of the cluster
centres affects the decision boundary, which when moved, might lower the quality of the final solution overall. Thus
rather than directly affecting a decision boundary or a cluster centre, we propose to generate additional dimensions
or attributes, which encode the best possible solution of a clustering algorithm on the privileged data. In this manner
we can try to avoid the issue of linear separability as a non-linear problem might become linearly separable in some
arbitrary high dimensional space [30].

The issue of which cluster should be affected by information in X∗ is still pertinent however. In order to deal with
this we propose to use a dot-product based ratio measure which evaluates whether an item in X is more likely to have
been correctly clustered than a related item in X∗. Our approach is depicted in Figure 8, which shows how a feature
vector xi is being evaluated against the clustering on X and X∗ and the relative ratio of the location of this vector with
respect to its assigned cluster centres is used to determine whether the data item is classified correctly or whether its
class should be changed and re-evaluated.

More mathematically we are concerned with calculating the distance of the point xi projected onto a plane con-
necting the two cluster centres C1 and C2. To perform such operation we use the dot product,

X · Y =| X || Y | cos θ (7)

where X denotes a vector in the mathematical sense, originating at C2 and connecting xi. Y is a vector connecting
the two cluster centres, see Figure 8. cosθ is the angle between these two vectors, however as we do not know the
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Figure 8: Depiction of the dot product ratio measure used to determine whether an assignment of an input feature vector is more likely to belong
to a cluster as determined by clustering of X (a) or to a cluster as determined by clustering of X∗ (b). In our approach this decision depends on the
comparison of relative ratios of distance from the vector’s assigned cluster centre for each clustering. In this figure Y denotes a vector connecting
the two cluster centres, X denotes a vector connecting input xi with the closest cluster centre and Z denotes the projection of X onto Y .

value of this angle, we use the dot product form which calculates the projection Z using the known lengths of X and
Y as follows,

Z =
X · Y
Y · Y

Y (8)

To calculate the necessary ratio which allows us to evaluate how correct a clustering solution might be for a
particular point x, we perform the following calculation,

Rd(x) =
‖Z −Ck‖

‖Z −Ck+1‖
(9)

where Rd(x) denotes the function that calculates the distance ratio on x, Z denotes the projection of the currently
examined input xi onto the vector X and Ck and Ck+1 are the assigned cluster centre and the closest subsequent cluster
centre respectively. In cases where we only have two clusters, Ck+1 denotes the cluster centre to which xi has not been
assigned, in other words the opposing cluster centre. In cases where k > 2 the cluster centre Ck+1 is the closest cluster
centre according to some metric, such as the Euclidean distance or the topographic distance in the SOM algorithm.
In our experiments we only deal with k = 2 to simplify our analysis. The symbol ‖.‖ denotes the Euclidean norm and
in our calculation the distance between the projected location Z from its assigned cluster centre as well as from the
opposing cluster centre. The projection of point xi is calculated according to Equation 8 as follows,

Z =
(xi −Ck) · (Ck+1 −Ck)

(Ck+1 −Ck) · (Ck+1 −Ck)
(Ck+1 −Ck) (10)

where xi denotes our input vector of interest and Ck and Ck+1 again the cluster centres computed by a clustering al-
gorithm. To put this calculation into perspective the pseudo-code for our method, called P-Dot, is shown in Algorithm
2 and explained in detail in the next paragraph.

4.3. Privileged Information Dot Product Consensus: P-Dot
Having established a method for evaluating whether an input from X is more likely to have been correctly clustered

than the input from X∗ or vice versa, we now describe our algorithm that combines this method for the benefit of
improved clustering. Pseudo-code 2 highlights each step of our proposed P-Dot algorithm.
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Algorithm 2: P-Dot Algorithm
Input: Technical Data: X
Input: Privileged Data: X∗

Output: Clustering of X

1 initialization;
2 foreach i in iter do /* Consensus Step */

3 Ctechi ← clust (X);
4 Cprivi ← clust (X∗);
5 end
6 foreach i in Ctechi do
7 Cbestp ← max (NMI (Ctechi;Cprivi)) ; /* Mutual Information */

8 end
9 Ctechbest ← which (max (Cbestp));

10 Cprivbest ← max (Cbestp);

11 if NMI (Ctechbest;Cprivbest) < min (H (Ctechbest);H (Cprivbest)) then
12 if differences > matches then /* Fusion Step */

13 xi ← matches (Ctechbest;Cprivbest);
14 else
15 xi ← differences (Ctechbest; Cprivbest);
16 end
17 foreach i in xi do
18 if Rd(Ctechbest [xi]) > Rd(Cprivbest [xi]) then /* Ratio Measure */

19 swap.cluster.assignment(Ctechbest [xi]);
20 end
21 end
22 Xnew ← bind (X, Ctechbest [A], Ctechbest [B]);
23 C f inal ← clust (Xnew);
24 end
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In Algorithm 2 lines 2 to 10 highlight an amended version of our consensus method described in section 3.3.
Instead of using the Adjusted Rand Index method, we employ here the Normalised Mutual Information (Equation 6)
to find two most similar clusterings amongst a set of solutions. Strehl and Ghosh [33] have shown that this measure
is a suitable way of comparing clusterings with some advantages over the Adjusted Rand Index method, such as the
absence of strong assumptions on the underlying distribution. Steps 11 to 24 outline each step of the P-Dot method.
Initially the results of the best clustering solutions are evaluated for similarities at steps 12-16. If the two clusterings
are identical, then no improvement can be obtained. If there exist differences between the solutions, we determine
whether there are more differences than similarities between the two solutions (lines 12-14) or vice versa (lines 15-
16). This is due to the fact that explicit cluster labels are meaningless and thus cluster A on X can be called cluster
B in X∗. For this reason we only need to deal with the smaller set of values, whether they are matching labels or
dissimilar labels. Then for each match or mismatch (line 17), the dot-product ratio Rd(x) is calculated (line 18) for
both inputs from X and X∗, to determine which of the two solutions is more likely to be correct. If the solution on
space X∗ is more likely to be correct, the label of the corresponding item in the solution of X is inverted (for k = 2),
at step 19. Once this procedure is completed, k new attributes are created, one per each cluster found (line 22). These
attributes are filled with maximum normalised values for data items that belong to that particular cluster according to
the labels as decided in the previous step. Eventually a new dataset Xnew is generated. This data is clustered again and
its solution is the final solution of our method (line 23). What this approach achieves is in effect taking into account
data streams separately and treating them uniquely. This allows for data that might normally be deemed irrelevant due
to swamping, to become equally important in the final processing of the dataset.

4.4. Experimental Evaluation

To evaluate our proposed method empirically we employ our artificial dataset from paragraph 3.4. The K-Means
clustering algorithm is used within the P-Dot method and compared against our previous aRi-MAX method as well as
a set of four established clustering methods. These methods are the Expectation Maximization algorithm [11], which
is a probabilistic algorithm that fits Gaussian models onto the dataset, Spectral Clustering [32, 22], which transforms
the original data into another space within which the actual clustering is performed. Also two versions of the SOM
[18] algorithm are employed. One method that treats the SOM as a clustering algorithm assigning one node per
cluster, similarly to K-Means and another method which specifies a larger number of nodes that are shared between
clusters present within the dataset. These nodes are subsequently clustered using the K-Means algorithm in the same
way as was performed by Vesanto and Alhoniemi in [40]. The mixture of X + X∗, combined in the same feature space
is used as the dataset on which the comparison techniques are employed.

First our P-Dot method is tested on the artificial dataset with point-wise (perfect) privileged information. In both
cases (d =

√
0.2 and d = 0.5) the performance of our new method is superior to the aRi-MAX method. The P-

Dot method achieves almost 100% accuracy in both cases, compared to 62% performance of the aRi-MAX method.
Subsequently when the more complex Gaussian based privileged information is tested, again our new method achieves
very good results in both situations. An average concordance of 85% and 95% for the d =

√
0.2 and d = 0.5 cases are

achieved, respectively. This is an improvement of 23% and 33%, respectively, over the aRi-MAX method.
When compared to other existing techniques, such as the SOM, Spectral Clustering and Expectation Maximization

algorithms, we can see that our method is still superior in both cases where privileged information is more complicated
(d =

√
0.2). Box plots for these results can be seen in Figures 9(a) and 9(b) respectively.

Table 3 highlights a summary of statistics for all of the tested algorithms on the Gaussian privileged dataset with
d =
√

0.2. It is apparent that our P-Dot method outperforms all others in all aspects except possibly stability. However
the standard deviation of the results for our method is still very low. Best results in this table have been underlined for
the purpose of clarity.

5. P-Dot in the real world

To fully assess the usefulness of our P-Dot method, we need to apply it to and analyse it within a much more
complex scenario. The existence of privileged information in existing datasets is not prevalent due to the novel nature
of the paradigm proposed by Vapnik. A dataset created for the evaluation of such type of learning has however been
created in [38]. We will use this dataset for our analysis and for comparison with existing clustering techniques.
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Table 3: Statistical information on the performance of the P-Dot method compared to various clustering techniques applied to X + X∗ using the
Gaussian based privileged information with d =

√
0.2 (Figure 6a). The values show the normalized mutual information between clusters found

using a given method and the true class labels across 100 runs. 1 denotes perfect match and 0 denotes no matches at all. Best results have been
underlined. P-Dot performs best overall. SOM2K denotes the combination of SOM and K-Means according to [40].

Min Max Mean Median St.Dev.

K-Means (X) -0.0129 0.6184 0.4719 0.6184 0.2623
K-Means (X + X∗) -0.0129 0.6184 0.5373 0.6184 0.2109
aRi-MAX 0.6184 0.6184 0.6184 0.6184 0.0000
P-Dot 0.8462 0.8960 0.8472 0.8462 0.0070
EM 0.7979 0.7979 0.7979 0.7979 0.0000
Spectral 0.6184 0.7979 0.6902 0.6184 0.0884
SOM 0.6184 0.6184 0.6184 0.6184 0.0000
SOM2K -0.0162 0.7054 0.4395 0.5770 0.2629
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Figure 9: Box plots comparing the diverse clustering techniques tested against our proposed P-Dot method. These plots provide a clear overview
of the results, confirming our P-Dot method performing best in both cases.

17



28x28 pixel Digit Images

(a) 28 ∗ 28 pixel digit dataset

10x10 pixel Digit Images

(b) 10 ∗ 10 pixel digit dataset

Figure 10: Subset of the MNIST digit dataset comprising of 100 digits at two different resolutions, providing different levels of information. The
lower the resolution, the more information is potentially lost. The dataset comprises of two classes of digits, the numbers 5 and 8 and variations
thereof. There are 50 examples of each class.

5.1. The Task of Digit Recognition
The task of digit recognition is one of the most frequent pattern recognition tasks. Numerous research papers

and results have been generated on this topic, particularly within the supervised learning community. The MNIST
database of handwritten digits [19] is an eminent source of such research1. Vapnik [38] used a subset of the MNIST
dataset comprising of 100 digits from two different groups. The two groups are 50 variations of the digit 5 and 50
variations of the digit 8. Each digit is originally a 28*28 pixel gray-scale image, seen in Figure 10(a). Thus an
image can be thought of as a 784-dimensional feature vector with values in the range [0 − 255]. To make the task of
classification slightly more difficult, Vapnik created a second dataset, based on scaled down versions of the original
images. Thus a set of 100 gray-scale images at a resolution of 10*10 pixels has been created, seen in Figure 10(b).
This dataset can again be thought of as a 100-dimensional dataset with a range [0 − 255].

5.2. Privileged Information
To explore the notion of learning using privileged information, such type of additional information had to be

created. In order to do this Vapnik et al. [38] created a set of poetic descriptions with the help of language experts.
By poetic description we mean a description of what the expert saw and interpreted using his own words in the form
of a poem. An example of such a description follows:

Poetic Description: “Item.4 - A two-part contradictory creature. One part is rounded, the other is a
bit angular. The bottom is on the earth (steadier than the first three figures). Open and free for the wind.
It is slightly slanted to the right. The upper part is broken. It has a small gap. Insignificant. The lower
round part has no “hill”. The man throws a stick. He goes headfirst. He looks ahead - where is the stick?
He is attacking somebody or training. The wriggling snake is beating its tail. The unpleasant movement.
Not so nice. A bit irregular. Not so clear. A rope. Asymmetrical. No curlings of the ends.”

In addition to this description a separate interpretation of the digits has also been created. Rather than a subjective
description of the emotive impact of each digit on the observer using arbitrary words, the second set of privileged
information has been created using words of opposing meanings. For this purpose this set of privileged data is termed
Ying Yang2. An example of this type of data follows:

Ying Yang: “Item.3 - Very sociable creature between 30 and 40. Everything is normative and right-
ful. Masculine firmness in everything. May be dull and uninventive but good-natured. Seeking nothing. It
is still water but useful with all the usual advantages. Take your time - you can live nearby and be happy.
Nothing mysterious about it. You see the bottom, the water is so transparent. Simplicity may be its strong
side.”

1The MNIST dataset can be downloaded from http://yann.lecun.com/exdb/mnist/. This website also contains a summary of the best published
classification results of various supervised algorithms using this data

2An ancient Chinese philosophy of the interconnection and interdependency of opposing forces within the natural world
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Figure 11: Analysis of the K-Means algorithm on X itself as well as on both sets of privileged data X∗ on their own. It is apparent that the higher
resolution data contains more information, useful for better clustering. The Poetic X∗ data is not a useful resource of information on its own when
clustered using K-Means. The opposite is true for the Ying Yang X∗, which allows for correct identification of the two true clusters on its own.

To make these additional sets of data usable in computation, the text has been analysed and a set of keywords that
occur across the dataset have been extracted. An example of such a keyword is “Upright”, which captures whether
a digit is slanted or not, or “Gaps”, which measures the amount of gaps a digit has. For each keyword a scale of
the term’s possible range of meaning has been proposed. In our example keywords “Upright” has a binary value and
“Gaps” has a scale from 0 to 5. Finally a 21-dimensional vector has been created for each digit encoding the poetic
description of each digit and a 31-dimensional vector has been created for the Ying Yang dataset3.

5.3. Clustering Performance
To evaluate the capability of our proposed P-Dot method, we have used the above described dataset and performed

a number of experiments. We have run each algorithm 100 times to ensure better consistency for the comparison of
results. First we used the K-Means algorithm and clustered each individual dataset on its own, to understand how
well each dataset can segment the data into the correct categories. The result of this clustering, Figure 11, provides an
insight into the approximate level of information encoded within the datasets that can be revealed using the K-Means
method. The higher resolution version of the data gives a slightly better insight into the data’s underlying structure and
thus the K-Means performs better in this scenario, by approximately 3%. When looking at the privileged information,
we observe that there is a dramatic difference between the two sets of data. The poetic description of each digit reveals
very little on average, with a hint that in cases when the K-Means algorithm starts with a good set of initial values
it is possible to achieve clustering that has an agreement of at maximum 38%. On the other hand when looking at
the Ying Yang privileged information we can see that the dataset can be categorised into the two required groups
with 100% accuracy, consistently, using just the privileged information. From a logical point of view this difference
between the privileged information makes sense as the Ying Yang descriptions seek to evaluate visual features that
are contradictory and thus aim at describing each digit at extreme ends of the description scale. For our analysis we
are mainly interested in exploring the benefit of privileged information with a discrimination ability such as the poetic
dataset as we believe such type of additional information, which is insufficient on its own to solve the task, is more
likely to occur in many real-world situations.

Subsequently an evaluation of the clustering performance of the K-Means dataset on the fusion X + X∗ is required
to be able to assess if such a combination provides good enough results on its own. The data has been standardised
using the min-max method [27, 16] in order to ensure that no swamping of attributes can occur. The result of the
K-Means clustering on the normalised version of the space X can be seen in Figure 12. The fusion of the technical
and the privileged data resulted in decreasing the quality of the K-Means solution in both cases by up to 6%. Thus we
can assume that without any further processing the additional information in the original feature space only hinders

3The reader is referred to http://www.nec-labs.com/research/machine/ml website/department/ software/learning-with-teacher/ where a detailed
description of the dataset exists.
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Figure 12: Comparison of results of the K-Means algorithm and the P-Dot method on the digit dataset. Results for individual clusterings of X for
both versions of the normalised datasets as well as the clustering on the fused X + X∗ data using K-Means are shown. The X + X∗ fusion clearly
degrades the performance of the K-Means algorithm. Results of the P-Dot method using Poetic X∗ on the other hand show an improvement over
K-Means in both situations. An improvement over X and more dramatically over X + X∗ is apparent.

our search for a good solution. This highlights the necessity of processing such data in a unique way that allows for
the extraction of information from X∗ that can improve the final cluster, but not degrade it.

Knowing that privileged information fused within the feature space of the technical data does not bring any benefit
to cluster analysis, our P-Dot method is employed to assess the benefit of data from X∗ combined in our unique way.
For the lower resolution dataset we observe that our method provides an improvement over both, X only, as well as
the fused X + X∗, seen in Figure 12. This is the case for both the mean performance across the 100 runs, where an
improvement of 5% with respect to clustering on X is observed and 11% with respect to X + X∗. The best possible
attainable solution also improved in this case. In the case of the higher resolution version, there is an improvement
of 1% with respect to X and 6% with respect to X + X∗. This is a promising result as we only want to improve upon
a solution in case the privileged data can provide such benefit. When such improvement is unattainable from the
additional dataset, we do not want to negatively affect our existing solution. Wilcoxon signed-rank statistical test was
performed, confirming these results. Very small p-values for the two-sided tests reject the hypothesis that the two
results are the same. Analysis of the alternative hypotheses help us clearly identify that our P-Dot method has better
results in both cases.

5.4. The Importance of Dimensionality Reduction in P-Dot
When considering how the P-Dot algorithm works, one might realise that the higher the dimensionality of the

data, the smaller the influence of combining the privileged data with the technical data on the final outcome. The way
the P-Dot algorithm amends the solution based on privileged data is based on adding additional dimensions which
encode the consensus view of the clusterings of the two separate hypothetical spaces. Thus in the case of the higher
resolution digit dataset, the P-Dot algorithm essentially adds two more dimensions to the existing 784 dimensions. For
this reason even when all attributes are normalised, the influence of the two additional attributes is negligible. For this
reason we believe that the consensus attributes generated by our method need to be evaluated at a comparable level
to the rest of the data. One way of achieving this is to perform dimensionality reduction. One of the most frequently
used methods for such a task is the Principal Component Analysis (PCA) method developed by Karl Pearson [24].
The PCA is a non-parametric transformation method that transforms data to a new coordinate system, where data
with the largest variance are projected on the first coordinate. Such coordinate is called a principal component. Data
of subsequent smaller variances are projected on the second and then subsequent coordinates. Eventually the whole
dataset is transformed in a way which emphasizes uncorrelated variables where the first variable captures the majority
of variance of the whole dataset. For this reason, when the PCA is used for dimensionality reduction, traditionally
the first two principal components are used in analysis as they generally capture the majority of the data’s underlying
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structure. In our next experiment we have employed the PCA technique on the technical data in order to reduce the
dimensionality from 784 dimensions to only two. Our experiments have shown that such a transformation does not
hinder greatly the clustering capability of the K-Means algorithm with respect to clustering on X. On the contrary
the reduction has selected the most relevant features of the X + X∗ data which more clearly reveal the underlying
structure and thus improve performance with respect to the clustering on X + X∗. When the PCA is used on X as
part of our P-Dot algorithm, there is no apparent difference for the lower resolution dataset with respect to the P-Dot
method on normalised X. On the other hand the higher resolution dataset benefits significantly from this reduction
and the P-Dot method can have greater influence on the final clustering result. This results is a further improvement
of approximately 5% on top of the P-Dot method on normalised X. Statistical tests were performed on all results to
confirm their validity.

We believe that there is a fundamental issue that needs to be addressed that is missing from many machine learning
experiments. The fact that our P-Dot method could improve upon the solution of a traditional method on the same
dataset, using only a form of an agreement and subsequent encoding of such an agreement within a dataset that is
re-evaluated, hints at the possible importance of not only the notion of privileged information, but more interestingly
on the importance of different generators of data. Privileged information can be thought of as simply an additional
set of attributes that describe a given problem. Our analysis above however showed that when adding such data to
existing technical data in the traditional way, no benefit is apparent. What is necessary for this data to become useful
is, we believe, the relative importance of the information encoded within, to be treated with equal weight as data from
any other source, independent of dimensionality. In other words, one attribute from a separate source or generator of
data should be treated equally to any number of attributes from another, but single source.

5.5. Comparison with Other Clustering Techniques
To contrast our P-Dot method with other existing clustering techniques, we have applied the same set of clustering

algorithms used in section 4.4 to the digit datasets. An overview of the results obtained for the digit dataset can be
seen in Figures 13 and 14. All datasets except our P-Dot method were run on the normalised fused version of the digit
data (X + X∗). From the results we can observe that all algorithms, except Spectral Clustering and our P-Dot method,
perform very badly in the 10x10 case, shown in Figure 13(a). We believe that this is due to the effect of the fusion
of the two datasets. By combining the two in the original feature space, the task of finding the correct underlying
structure within the data becomes more difficult. A possible reason for Spectral Clustering performing better than
other techniques is that this method is a data transformation method that transforms data to a new metric space where
distances are based on flow rather than just one metric distance, upon which a clustering is performed. In this new
metric space non-linear problems can become linearly separable and thus the Spectral Clustering algorithm is able to
perform well even with the possible introduction of noise or data that make the problem more complex. Our P-Dot
method performs best, in terms of the mean agreement between the method’s clustering and the true clustering, with
a concordance of approximately 19%, followed by Spectral Clustering at 14% in both datasets.

When we subject the dataset to PCA, the results for majority of the tested algorithms change, Figure 14. This
suggests that the variance of the underlying data is an important property that is required for correct clustering of
the data. The result of our method does not show any significant difference from the untreated dataset, however the
P-Dot’s result is still the highest amongst all the tested algorithms for the 10x10 dataset, see Figure 14(a). Both the
EM algorithm and Spectral Clustering benefit from the PCA treatment and their results improve dramatically. The
mixture of SOM with K-Means in a second layer also performs substantially better and is almost on par with our
approach. Statistical overview of results for all tested algorithms for this scenario are shown in Table 4.

The performance of the tested algorithms on the high resolution dataset can be seen in Figures 13(b) and 14(b).
It is apparent that the performance of all the algorithms on the 28x28 dataset that has only been normalised is still
very low. In this case, on average, our P-Dot method still performs the best. However once the dataset undergoes
dimensionality reduction, the EM algorithm is able to determine the structure of the underlying data very well and
achieves a very good result of almost 50% agreement between the solutions and the correct clustering. Thus in this
scenario our method comes second, only after the EM method.

It is widely accepted that different clustering techniques are applicable to different problems. Some methods are
simply more suitable to specific types of data. This has been highlighted by our results in this case. Taking this into
account, we can apply our P-Dot method while using a different underlying method than the K-Means algorithm.
For this purpose we have used the EM algorithm as the last step of the P-Dot process (step 23 in Algorithm 2). The
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Figure 13: Performance of diverse clustering algorithms on the digit dataset, normalised and fused by X +X∗. The box plots of these results confirm
a good performance of our P-Dot method in both scenarios. Spectral Clustering also performs well in comparison to other methods and the EM
algorithm performs well in the 28x28 case.
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Figure 14: Performance of diverse clustering algorithms on the digit dataset, normalised and fused by X + X∗, then subject to PCA. In this scenario
the EM algorithm performs best for the 28x28 dataset with our P-Dot method coming second. In the lower resolution dataset, our method has a
slight edge over other methods, however both Spectral Clustering and the EM algorithm have an advantage in terms of result stability.

Table 4: Statistical results of the clustering algorithm comparison on the 10x10 dataset subjected to PCA. Values show the normalized mutual
information between clusters found by a given algorithm and the true class labels across the 100 runs performed. Best results are highlighted for
convenience. In this case again our P-Dot method performs best with P-DotEM achieving the most consistent good result. SOM2K denotes the
combination of SOM and K-Means according to [40].

Algorithm Min Max Mean Median St.Dev.

K-Means (X + X∗) 0.0002285 0.3782 0.1229 0.0002285 0.1482
SOM 0.0000 0.004603 0.0000 0.0002285 0.001893
SOM2K 0.0000 0.4036 0.1627 0.1606 0.1492
EM 0.1708 0.1708 0.1708 0.1708 0.0000
Spectral 0.004489 0.1708 0.1658 0.1708 0.02852
P-Dot 0.0000 0.4299 0.1893∗ 0.2047∗ 0.1329
P-DotEM 0.3077 0.3077 0.3077 0.3077 0.0000
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results of this mixture are contrasted with the EM algorithm run on the fusion of X + X∗. By combining two different
clustering methods within our P-Dot approach we are able to achieve even better results for the 10x10 dataset than
using any other tested method. An average agreement of 31% is achieved in this case, confirming our intuitions.

6. Conclusions and Future Work

In this work we have investigated the importance and incorporation of privileged information in cluster analysis.
In the supervised setting Vapnik and colleagues have shown in the past that a new paradigm called “Learning Using
Privileged Information” provides a novel approach for learning using data from disparate hypothetical spaces that
surpasses traditional supervised techniques. In our work we translate the notion of privileged information to the unsu-
pervised setting in order to improve clustering performance. This allows us to use disparate types of data from many
existing machine learning problems in a way that enhances the clustering process, while avoiding the degradation of
the quality of clusters when such additional data is incorporated.

First we have highlighted and empirically demonstrated the difference between technical and privileged informa-
tion. Our analysis confirms that there is a benefit in using information from different hypothetical spaces in a way that
is different from simply combining the data in the technical feature space. With the help of an artificial dataset we
showed that we can improve the stability of the K-Means algorithm by employing an adjusted Rand index consensus
method, we termed aRi-MAX, which selects a clustering of the technical data according to the best matching clustering
of the privileged data. This form of consensus tends to select the best possible solution of the technical data, as can
be achieved with the underlying clustering technique. The drawback of this approach is the increased computational
complexity due to the repetitive nature of the consensus selection method and the clustering performance which is
limited by the underlying clustering algorithm. One benefit is the possibility of the use of a variety of clustering
algorithms with the aRi-MAX method and thus the most suitable combination of algorithms can be chosen, depending
on the problem in question.

Another positive and important feature is the fact that the two datasets X and X∗, which possibly originate from
different generators, are treated equally in terms of processing. We believe that this is a very important requirement for
correct clustering of any data that includes signals from more than one generator. Even though the separate generators
of data are treated equally in our method, only original data is used for final partitioning.

Aiming towards improved clustering performance using privileged data, we exploit privileged information as part
of the clustering process itself. One major issue of such task is the lack of knowledge of classes. In the supervised
setting this information is available for the learning machine and thus can be exploited and combined with the infor-
mation encoded in the privileged data stream. In the unsupervised setting we do not know which clusters, classes or
groups of data should be affected using our additional knowledge. Thus in order to answer the question whether priv-
ileged information can be used to improve clustering performance, we have proposed a novel cluster fusion algorithm
based on information theory and the dot-product, called P-Dot. This algorithm, when tested on our artificial dataset,
has shown very encouraging results, confirming our hypothesis that privileged information can enhance clustering in
a more substantial manner than by simply appending this type of information at the end of the original technical data.
When comparing our method to other clustering approaches we can still see a considerable improvement over these
methods.

By testing our proposed P-Dot algorithm on a real world digit dataset, we are able to assess its usefulness for
a larger variety of tasks. Our analysis has shown that the proposed method does provide for an improvement in
clustering over the classical K-Means algorithm as well as many existing established clustering techniques. Some
techniques can achieve very good results in specific scenarios, such as the EM algorithm in the case of the PCA
treated fusion of the technical 28x28 dataset with the poetic privileged information. Nevertheless the strength of our
approach is the ability to use many existing clustering techniques individually or in combination and thus focus on
exploiting the benefits of each technique, where it is needed.

In the future we believe that our method could be improved when considering more than only the solution of
a number of clustering algorithms. A form of information theoretic measure which highlights some properties of
the underlying data could be used to assess which type of algorithm to use and how much the fusion of the two
hypothetical spaces should be encouraged. This analysis is left for future work.
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