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Abstract—The UK electricity industry will shortly have
available a massively increased amount of data from domestic
households and this paper is a step towards deriving useful
information from non intrusive household level monitoring of
electricity. The paper takes an approach to clustering domestic
load profiles that has been successfully used in Portugal and
applies it to UK data. It is found that the preferred technique in
the Portuguese work (a process combining Self Organised Maps
and Kmeans) is not appropriate for the UK data. The work
uses data collected in Milton Keynes around 1990 and shows
that clusters of households can be identified demonstrating the
appropriateness of defining more stereotypical electricity usage
patterns than the two load profiles currently published by the
electricity industry.

The work is part of a wider project to successfully apply
demand side management techniques to gain benefits across
the whole electricity network.

I. INTRODUCTION

The electricity market in the UK is subject to various
pressures and is currently undergoing a period of major
change. Some of these pressures are arising from UK specific
situations, such as the history and current design of the
National Grid, and others from worldwide trends, such as the
need to reduce carbon emissions and the declining sources
of hydro-carbon fuels. New technologies, such as electric
cars and their need for household charging facilities, are
expected to become much more prevalent. In addition, the
drive to change the mix of electricity generation technologies
to include more renewable technology, the desire to reduce
carbon dioxide by switching non-electric demand such as
gas central heating to the electricity network, and the impact
of climate change, with its associated change in electricity
demand for cooling or heating and more frequent extreme
weather events, will impact on the market.

An important factor influencing the UK electricity market
is that the presumption by consumers of the availability of an
infinite supply of electricity, albeit at a cost, is no longer valid
and domestic users will have to adapt to changing approaches
to using electricity or suffer from increasing unreliability
of the supply. [3] provides insight into the concerns of the
industry in the USA and a number of these also apply to the
UK market.
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Prior to the planned roll out of smart meters, electricity
suppliers were reliant on a single meter reading (or possibly
2 readings for households with Economy 7 meters) giving
total usage for a 3 monthly period. There was no information
on times of electricity usage, both time of day (beyond the
Economy 7 period), and day by day. Electricity suppliers
were therefore unable to offer tariffs to change user behaviour
as there was no knowledge of the detailed behaviour.

The information available to monitor and to manipulate
electricity usage will grow very rapidly, particularly with the
roll out of Smart Meters which is planned to be complete in
the UK by 2019.

[2] shows that the provision of Smart Meters will allow
greatly increased analysis of a customer’s electricity usage
and provide the ability to make customised offers on pric-
ing and supply availability. This will offer an opportunity
to change customer behaviour (for example, to minimise
usage during peak periods) or to increase efficiencies in the
electricity supply chain in meeting the predicted demand [9].

The identification of typical electrical usage patterns for
households is necessary as a starting point for:

• Defining the type of Demand Side Management pro-
gram (e.g. peak clipping) to undertake to match the
overall electricity supply goals.

• Assessing the impact of any initiatives to reduce overall
energy usage in order to discover the amount of overall
reduction which occurs during different times of the day.

• Allowing accurate aggregation to provide a pattern of
total demand to be met by supply side generation and
transmission.

Previous detailed monitoring research (for example [10])
has generally concentrated on working with a small number
of households which are well understood, which include
many different monitoring devices, and where the house-
holder is supportive of the research and is prepared to
dedicate time and effort to correct labelling of devices and
to following researcher defined procedures. There remain a
large number of households without a commitment to ”green
issues” and where detailed monitoring will not be possible,
either due to lack of support from the householder, or for
financial or time reasons.

The paper describes work which forms part of a ”demand
side maximisation” project and focuses on identifying typical
usage profiles for households and then clustering them into
a few archetypical profiles with similar kinds of customers
grouped together. Differences between an individual house-
hold profile and that of others within the same group can be
used to suggest energy usage behaviour changes to reduce
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overall electricity usage or to improve electrical efficiencies,
possibly by time shifting the usage of particular appliances.
In addition, particular groups (for example, large users during
peak times) can be identified for targeting for reduction
initiatives. The work tests the applicability of applying the
framework defined by [6] to UK specific data and identifies
possible enhancements or modifications to the framework
in order to better fit the UK situation. In particular, the
conclusion that a 2 stage process (Kohonen Self Organising
Map and then Kmeans clustering) is the best approach to
clustering the data is tested against the UK dataset.

This is the first step in exploring the limits of the infor-
mation that is obtainable by non-intrusive monitoring at the
whole household level. As well as the obvious overall usage
information, future research will investigate knowledge that
can be derived from the overall shape of the usage pattern
as well as analysis of motifs that may repeat in the stream
of usage data.

II. BACKGROUND

The Electricity industry defines a process [5] for defining
the details of eight standard usage profiles for the UK. The
profiles take into account the season and the day of the week
but only two are for domestic properties. As an example
of the standard profiles, Figure 1 shows the profiles for
the winter for Saturday and Sundays, both for Economy 7
customers and standard customers, plotted as 48 half hourly
readings over the day. Economy 7 is a tariff offer that
provides much cheaper night time electricity (typically for
7 hours between 11pm and 8am) at the expense of slightly
increased day time charges.

(a) Standard users (b) Economy 7 users

Fig. 1: Example industry standard profiles

Figueiredo [6] takes various differing clustering ap-
proaches and reaches the conclusion that a combination of
Self Organised Maps (using a 10 x 7 grid), followed by a
Kmeans algorithm to reach a final set of 9 clusters, is the
best approach as measured by a ”cluster quality” measure
defined in the paper.

The Kmeans algorithm requires a number of clusters as
an input parameter (n) and works by randomly selecting
an initial n locations for the centres of the clusters. Each
data point is then assigned to one of the centre locations
by selecting the centre that is nearest to that data point. The
Kmeans method uses Euclidean distance calculated for centre
c = (c1, c2, ..., cn) and point p = (p1, p2, ..., pn) as

distance =

√∑
i

(ci − pi)2 (1)

Once all the data points are assigned, each collection of
points is considered, the new centre of the allocated points is
calculated and the centre for that cluster is reassigned. The
points are then reallocated to their new nearest centre and
the algorithm continues as before until no changes are made
to the allocations of points for an iteration. The method is
highly dependent on the initial random allocation of centres
[7].

The Self Organising Map (SOM) is a neural network
algorithm that can be used to map a high dimension set
of data into a lower dimension representation. In the work
presented in this paper, the mapping is to a 2 dimensional set
of representations which are arranged in a hexagonal map.
Each sample (mean load profile for a given household) is
assigned to a position in the map depending on the closeness
of the sample to the values of the nodes assigned to each
position in the map (using a Euclidean measure of distance).
Initially the nodes are assigned at random but, as samples are
assigned to the nodes, the node incorporates the assigned
data. Over time, the map produces an arrangement where
similar samples are placed closely together and dissimilar
are placed far apart [8].

The Figueiredo approach includes the following stages:

• Cleaning of the data in order to cope with missing data
and outliers in the data.

• Normalisation of the data to make differing readings
comparable.

• Splitting of the data into typical types of day such as
weekday, weekend, or season.

• Creation of representative daily load profiles. Figueiredo
uses the mean across all available days within the type
of day and season.

• Application of a number of clustering techniques in
order to group the data into a pre-defined number of
clusters and then the definition of a representative load
profile for each cluster. A target number of clusters of
nine is selected based on advice from the Portuguese
electricity industry together with some investigation on
the quality of the clusters obtained when trying numbers
of clusters between 6 and 14.

• Calculation of the Mean Index Adequacy (MIA) as de-
fined in [1] in order to assess the comparative suitability
of the generated clusters.

Figueiredo makes use of Portuguese data on 165 con-
sumers, with readings taken at a 15 minute frequency, in
order to validate the approach taken.

The data used in this study is from an area of Milton
Keynes, UK and was originally collected in 1988-91 by [4]
but was stored on floppy disks which deteriorated physically
and some of the original data was lost. The original data
disks were rescued and, where possible, regenerated by Steve
Pretlove of UCL and, more recently, by Alex Summerfield
with the work detailed in [11]. The datasets have been made
available in the UKERC data store.



III. METHODOLOGY

The approach detailed by Figueiredo [6] has been applied
to the UK data as closely as possible in order to assess the
suitability of the framework to the UK data. The individual
steps in the process are detailed below.

A. Cleaning

Some of the UK data readings are missing readings for
some hours of the day, either due to the way in which the
data was recovered from floppy disks, or because of issues
with the original collection of the data. For an initial view
of the data, all the days which contained a missing hourly
reading were omitted. Alternative approaches to replacing
some of the missing data making use of available data from
a similar day will be investigated in the future.

B. Normalisation

The UK data has been normalised within each day’s
readings by scaling all readings using the maximum hourly
reading on the day set to 1. Thus all hourly readings are in
the range 0-1. The effect of this normalisation is to focus on
the shape of the usage pattern and not on the total usage.
Two households with a similar shape but with differing total
usages (e.g. if one household is much larger than the other)
will have the same normalised load profile once scaling is
done. The households will be clustered as similar in the
further analysis whereas, depending on the way ”similar” is
defined, it might not be the intention to group these together
(for example, if total electricity usage is to be the main
differentiation between households).

C. Stratifying the data

The UK data was stratified using a split between weekend
(Saturday and Sunday) and weekdays. It was further stratified
into winter (the months of November, December, January,
February, March, and April) and summer (the remaining
months). With the variability of the UK climate, it may be
more accurate to stratify the data based on daily temperatures
rather than on the season and this will form the basis for
future work. The data for winter weekends was arbitrarily
chosen for further exploration as detailed in the remainder
of this paper. Future work will concentrate on the other
stratifications (e.g. summer weekday) which can be analysed
in the same way. How individual households are allocated to
the same or different groupings as the season or type of day
changes will be investigated.

The Milton Keynes data has varying amounts of valid data
for each household depending on the success of regeneration
of the data after its rescue from floppy disks. The winter
weekend data consists of between 25 and 111 valid days
of readings for each of the households with a mean of 95
valid readings per household. Future analysis may suggest
excluding some of the households with low values for valid
data from the clustering but all have been included in this
initial investigation.

D. Creation of load profiles
Each household has a representative average load profile

generated by calculating the mean value for each hourly
reading across all valid readings for the winter weekend.
Other methods of calculating a representative profile could be
adopted but this analysis has duplicated the approach taken
with the Portuguese work.

E. Application of clustering algorithms
The Figueiredo approach compares the Kmeans algorithm

with both a self-organised map (SOM) using a 3 x 3 grid and
also with a 2 stage process of first creating a SOM with 10 x
7 grid (i.e. 70 load diagrams) which are then clustered using
the Kmeans algorithm. This approach has been replicated
with the UK data although the volume of households is less
(165 in Portugal, 93 in the UK) and hence the reduction in
dimensions from the first SOM stage is not as great as with
the Portuguese data.

The Kmeans clustering method relies on a random starting
situation and requires the desired number of clusters to be
input. In order to minimise the effects of the random starting
point, the clustering algorithm was run 1000 times with
differing random seeds. Examination of the results suggests
that the large number of runs allows the same optimum
solution to be found regardless of the starting random seed.

The within cluster sum of squares was calculated for each
of the input numbers of clusters from 2 to 15. As the number
of clusters increases, the total sum of squares will decrease
(with the extreme example of each sample being in its own
cluster with a total within cluster sum of squares being 0)
and the graph (Figure 2) can be examined to find an obvious
”elbow” that denotes an appropriate number of clusters to
select. The graph can be seen to be fairly uniform with no
obvious elbows apart from that at 3 and possibly that at 9.
In order to match the Portuguese work, the input value of 9
clusters was used for future analysis.

F. Calculation of adequacy measure
A measure is needed for assessing the quality of the

clusters generated in order that the differing approaches can
be compared. A good clustering scheme will create clusters
where the members of a particular cluster are closely grouped
but where the differences between members of differing
clusters (or the representative profiles for the clusters) are
well separated. A measure, Mean Index Adequacy (MIA), is
defined in [1] as

MIA =

√√√√ 1

K

K∑
k=1

d2(r(k), C(k)) (2)

where K clusters (k = 1..K) have been defined, r(k) is a load
profile assigned to cluster k and C(k) is the calculated centre
of the cluster k.

The distance between 2 load diagrams is defined as

d(li, lj) =

√√√√ 1

H

H∑
h=1

(li(h)− lj(h))2 (3)



Fig. 2: Varying numbers of clusters input to Kmeans

where H is the number of individual readings in each load
diagram (24 hourly readings) and li(h) and lj(h) are the hth
readings for two profiles, li and lj .

The MIA can be better described as

MIA =

√√√√ 1

K

K∑
k=1

∑
r

d2(r(k), C(k)) (4)

to signify the need to sum over all the distance calculations
for each of the load profiles assigned to the given cluster (the
distances between the load profiles and the cluster centre).

A lower value of MIA for a particular clustering solution
signifies that the load profiles assigned to the calculated
clusters are grouped closely together and hence a low value
for MIA is better and shows more compact clusters. The
measure is useful as a comparison between differing clus-
tering algorithms (where a lower value shows more compact
clusters) but has little meaning as an absolute value.

The analysis work used R 2.12.2 running on a Samsung
R580 laptop with Windows 7 Enterprise 64 bit operating
system Service Pack 1. The laptop used an Intel i3 CPU
(M350) running at 2.27 GHz and contained 3GB of memory.

IV. RESULTS

Differing clustering approaches were considered in order
to explore the most appropriate for the UK data.

A. Kmeans

Initially the Kmeans clustering algorithm, with a target
of 9 clusters, was used to form the clusters. The clustering
results using the Kmeans algorithm can be seen in Figure 3
where the black lines show the load profiles for the individual
households allocated to the particular cluster and the red line
shows the calculated representative profile for the cluster (the
centroid). Where only one household is allocated to a cluster

(e.g. as with ”Cluster8”), the red line is overlaid on the black
line.

(a) Cluster1 (b) Cluster2 (c) Cluster3

(d) Cluster4 (e) Cluster5 (f) Cluster6

(g) Cluster7 (h) Cluster8 (i) Cluster9

Fig. 3: Clusters generated using Kmeans

The number of households allocated to each cluster by
each technique are detailed in Table I.

TABLE I: Size of clusters

1 2 3 4 5 6 7 8 9

Kmeans: 2 6 15 19 13 21 13 1 3

SOM: 2 6 15 22 12 9 12 1 14

2 Stage: 6 6 13 19 15 22 8 1 3

B. Self Organising Map

The Kohonen Self Organising Map algorithm was applied
to the data using a hexagonal grid of 3 x 3 (i.e. 9 clusters).
This creates the map of load profiles as shown in Figure 4.

Plotting the household load profiles alongside the calcu-
lated cluster centres produces the results in Figure 5 with
the numbers of households allocated to each cluster listed in
Table I. The clusters are numbered randomly and the order
in the figure has been modified in order to match the Kmeans
clusters as far as possible. The match between the generated
clusters is visually obvious with the exception of ”Cluster9”.

C. Two stage process

The conclusion in [6] is that the application of a Kohonen
Self Organising Map algorithm to the data in order to create
70 (10 x 7) clusters in a hexagonal grid followed by the appli-
cation of the Kmeans algorithm to the SOM output produces



Fig. 4: Kohonen self organised map using 3 x 3 grid

(a) Cluster1 (b) Cluster2 (c) Cluster3

(d) Cluster4 (e) Cluster5 (f) Cluster6

(g) Cluster7 (h) Cluster8 (i) Cluster9

Fig. 5: Clusters generated using Kohonen Self Organising
Maps

the best clusters as defined by the MIA measure. This work
was replicated using the UK data although the number of
households is lower than that used in the Portuguese work.

The intermediate map generated by the SOM is shown
at Figure 6. The intermediate load profiles shown are then
input to the Kmeans algorithm in order to generate 9 final
clusters. The original allocation of household load profiles to
the intermediate SOM and thence to the final clusters is then
examined in order to determine the number of households
in each final cluster and to allow for plotting of the final
cluster profiles alongside the households allocated to that

cluster. Again the order of the generated clusters has been
altered to match the Kmeans generated clusters as closely as
possible. The results are shown in Figure 7 with the number
of households allocated to each cluster detailed in Table I.

Fig. 6: Kohonen self organised map using 10 x 7 grid

(a) Cluster1 (b) Cluster2 (c) Cluster3

(d) Cluster4 (e) Cluster5 (f) Cluster6

(g) Cluster7 (h) Cluster8 (i) Cluster9

Fig. 7: Clusters generated using the 2 stage process

D. Comparison of clustering techniques
The MIA figures for each clustering approach are listed

in Table II with a lower figure denoting more compact
clusters. The results show the best algorithm for clustering
(as measured by MIA) is Kmeans.



The MIA measure is very sensitive to the few profiles
which differ from the profile for the generated cluster to
which they are allocated. This sensitivity may detract from
the MIA as a good measure of clustering success as, whilst
most of the households may be well clustered, a single
household profile allocated to one cluster rather than another
can greatly increase the MIA value and hence reduce the
measured effectiveness of the clustering. It is proposed in
future work to examine alternative clustering measures and
to assess the sensitivity of the measures to a few profiles
which are difficult to allocate to clusters.

TABLE II: MIA calculations

Kmeans Kohonen SOM 2 stage process

MIA value: 0.3050533 0.3166297 0.3205487

The graphs showing the generated clusters and the house-
holds that are allocated to each cluster show that each
technique produces some clusters which appear visually to
be very similar but also some clusters that vary widely. In
particular the ”Cluster9” is significantly different for the
various clustering techniques. The numbers of households
allocated to each cluster vary and this demonstrates that the
clustering techniques will have differing levels of success in
generating the best split into clusters.

V. CONCLUSIONS AND FUTURE WORK

The work demonstrates that UK domestic load profiles
can be usefully clustered and the visual impression from the
cluster representative profiles is of very differing shapes of
usage. In particular, the load shapes differ significantly from
the standard domestic profiles used by the industry which
are only differentiated by Economy 7 usage (see Figure 1).
This shows that the application of appropriate clustering tech-
niques will allow for more accurate differentiation between
household usage patterns than that currently published by
the industry and will lead to more accurate representative
profiles which can be used for demand aggregation, supply
side planning, marketing and other purposes.

The selection of nine as the target number of clusters
reflects the decision taken in Portugal. The evidence for
selecting nine clusters for the UK winter weekend data is
weak and more investigation of an appropriate target number
of clusters appropriate to the UK data is planned.

The work undertaken in Portugal using Portuguese data
concluded that using a two-stage process of building a Self
Organising Map and then applying a Kmeans clustering algo-
rithm was the most effective in generating well distinguished
clusters as measured by the MIA measure. The UK data does
not support this conclusion and the best MIA figure is from
the simple application of the Kmeans algorithm. In fact, it
was found that the SOM technique alone provided better
results (as measured by the MIA measure) than the two-stage
process.

Analysis has been concentrated on the winter weekend
data and other slices across the data may show differing

results. In particular it may be found that households are
clustered together differently for different types of day (by
season or weekend/weekday) and year long stable clusters,
with the same members for each season, may not be identi-
fiable. Future work is planned to investigate this further.

The MIA measure of the quality of the generated clusters
is very sensitive to a few households which are hard to
allocate and differing measures of cluster quality will be
investigated in the future.

The normalisation used in the exercise has the effect of
comparing shapes of usage but not absolute values of usage
and a clustering approach that differentiates a household
using much more electricity from another using less may
be required (depending on the use to be made of the clusters
found). The appropriateness of the normalisation is related
to the definition of ”similar” users which will be explored in
future work.
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