
Greenwich Academic Literature Archive (GALA)
– the University of Greenwich open access repository

http://gala.gre.ac.uk

__

Citation for published version:

Kellerer, Hans, Rustogi, Kabir and Strusevich, Vitaly A. (2013) Approximation schemes for scheduling
on a single machine subject to cumulative deterioration and maintenance. Journal of Scheduling, 16
(6). pp. 675-683. ISSN 1094-6136 (Print), 1099-1425 (Online) (doi:10.1007/s10951-012-0287-8)

Publisher’s version available at:

http://dx.doi.org/10.1007/s10951-012-0287-8

__

Please note that where the full text version provided on GALA is not the final published

version, the version made available will be the most up-to-date full-text (post-print) version as

provided by the author(s). Where possible, or if citing, it is recommended that the publisher’s

(definitive) version be consulted to ensure any subsequent changes to the text are noted.

Citation for this version held on GALA:

Kellerer, Hans, Rustogi, Kabir and Strusevich, Vitaly A. (2013) Approximation schemes for scheduling
on a single machine subject to cumulative deterioration and maintenance. London: Greenwich
Academic Literature Archive.
Available at: http://gala.gre.ac.uk/10164/

__

Contact: gala@gre.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/14306345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://gala.gre.ac.uk/
mailto:gala@gre.ac.uk

PLEASE NOTE: This is the Authors’ A epted Manus ript version. The final pu li ation is

available at Springer via http://dx.doi.org/10.1007/s10951-012-0287-8.

Citation: Kellerer, Hans, Rustogi, Kabir and Strusevich, Vitaly A. (2013) Approximation

schemes for scheduling on a single machine subject to cumulative deterioration and

maintenance. Journal of Scheduling, 16 (6). pp. 675-683. ISSN 1094-6136 (Print), 1099-1425

(Online) (doi:10.1007/s10951-012-0287-8)

http://dx.doi.org/10.1007/s10951-012-0287-8
http://gala.gre.ac.uk/10164/
http://gala.gre.ac.uk/10164/
http://gala.gre.ac.uk/10164/
http://dx.doi.org/10.1007/s10951-012-0287-8

Approximation Schemes for Scheduling on a Single Machine

Subject to Cumulative Deterioration and Maintenance

Hans Kellerer

Institut für Statistik und Operations Research, Universität Graz,

Universitätsstraße 15, A-8010, Graz, Austria

e-mail: hans.kellerer@uni-graz.at

Kabir Rustogi and Vitaly A. Strusevich

School of Computing and Mathematical Sciences, University of Greenwich,

Old Royal Naval College, Park Row, Greenwich, London SE10 9LS, U.K.

e-mail: {K.Rustogi,V.Strusevich}@greenwich.ac.uk

Abstract

We consider a scheduling problem on a single machine to minimize the makespan. The
processing conditions are subject to cumulative deterioration, but can be restored by a
single maintenance. We link the problem to the Subset-sum problem (if the duration of
maintenance is constant) and to the Half-product problem (if the duration of maintenance
depends on its start time). For both versions of the problem, we adapt the existing
fully polynomial-time approximation schemes to our problems by handling the additive
constants.

Keywords: Single machine; Deterioration; Maintenance; Approximation scheme; Subset-
sum problem; Half-Product Problem

1 Introduction

In recent scheduling research, there has been a considerable interest in models in which the
processing conditions are subject to changes that affect the actual processing times of the
jobs. There are two opposite effects that are normally studied: deterioration and learning.
Under deterioration, the later a job starts, the more time is required to process it, which
is attributed to the fact that the processing conditions get worse (e.g., an operator gets
tired, a machine-tool loses its quality, etc.) On the other hand, a learning effect leads to
the decreasing of the actual processing times for the jobs that are scheduled later (e.g., an
operator gets experience in performing jobs that require similar skills). See a survey by
Biskup (2008) and a monograph by Gawiejnowicz (2008) for the results, motivations and
practical applications in this area.

In this paper, we focus on single machine scheduling problems with a particular deteri-
oration effect. The jobs of set N = {1, 2, . . . , n} have to be processed on a single machine.
Each job j ∈ N is associated with an integer pj that is called its “normal” processing time.
A meaningful interpretation of pj is that it defines the processing duration of job j, provided
that the machine is in the perfect condition. In scheduling literature, three basic types of
deterioration effects can be found; see Gordon et al. (2008) where all three types are studied
in one paper. Informally, they can be stated as follows:

1

• Positional Deterioration: the actual processing time of job j depends on pj and on the
position of the job in the sequence;

• Time-Dependent Deterioration: the actual processing time of job j depends on the
start time of the job;

• Cumulative Deterioration: the actual processing time of job j depends on pj and on
the sum of normal processing times of all jobs sequenced earlier.

Notice that numerous studies on scheduling with deterioration/learning suffer from a
common drawback: unless additional conditions are imposed the actual processing times
either eventually go to zero (in the case of learning) or grow uncontrollably (in the case of
deterioration). One way of handling this drawback is to look at more realistic truncated
models, see, e.g., Wu et al. (2011) for truncated cumulative learning, and Kovalyov and
Kubiak (1998) for truncated time deterioration. In truncated models, the actual processing
time cannot become either less or larger than a given value.

In the case of deterioration, there is another approach to preventing actual processing
times from becoming unacceptably large. This approach is more natural and relevant to the
practical needs: the processing conditions can be restored, either fully or partly, by running
machine maintenance. In this case, a special maintenance period (MP) is inserted into a
schedule, and during each MP no processing is done on the machine.

Although scheduling problems with machine maintenance have been an object of extensive
studies, quite often it appears that the introduced periods are maintenance periods only by
name, not by nature. This, for example, happens when a fixed machine non-availability
interval is called an MP, however such a model does not address the issues of machine
deterioration and restoration. Partly free from this drawback are models that follow Lee and
Leon (2001), in which an MP is treated as a rate-modifying activity.

The papers in which scheduling of maintenance activities is combined with consideration
of various deterioration effects have started to appear only very recently, see Kuo and Yang
(2008), Zhao and Tang (2010), Yang and Yang (2010) for initial work on single machine
scheduling with maintenance and positional deterioration, and Lodree and Geiger (2010) for
a study on single machine scheduling with maintenance and time-dependent deterioration.

This paper addresses the problem of minimizing the makespan on a single machine that
is subject to cumulative deterioration and the decision-maker decides when to schedule a
single maintenance period that completely restores the processing conditions. The duration
of the MP is either a constant or is described by a linear function of its start time.

Notice that the problems with multiple maintenance periods and positional deterioration
are polynomially solvable even in the most general settings, see Rustogi and Strusevich
(2011). In the case of the cumulative deterioration of a fairly simple structure with only a
single MP, the problem under consideration is NP-hard, and therefore we concentrate on the
design of approximation schemes.

Recall that for a problem of minimizing a function G(x), where x is a collection of decision
variables, a polynomial-time algorithm that finds a feasible solution xH such that G(xH) is
at most ρ ≥ 1 times the optimal value G(x∗) is called a ρ−approximation algorithm; the
value of ρ is called a worst-case ratio bound. A family of ρ−approximation algorithms is
called a fully polynomial-time approximation scheme (FPTAS) if ρ = 1+ ε for any ε > 0 and
the running time is polynomial with respect to both the length of the problem input and
1/ε.

2

The approach that we pursue in this study is based on linking the corresponding schedul-
ing problem to problems of Boolean programming. In particular, for the problem with a
constant MP, we show that the variable part of the objective function is related to the
Subset-sum problem, a version of the linear knapsack problem; see Kellerer et al. (2004). On
the other hand, if the duration of the MP depends linearly on its start time, we establish its
link to a problem of quadratic Boolean programming, known as the Half-product problem,
see Badics and Boros (1998) and Kellerer and Strusevich (2011). Although each of the men-
tioned Boolean programming problems admits an FPTAS, a challenge remains to adapt such
an FPTAS to handling the original objective function. The latter task is not straightforward
due to the presence of an additive constant of the sign that is opposite to the sign of the
variable part of the function.

To illustrate this, consider a function of the form

F (x) = G(x) + K,

where G(x) represents a variable part of the overall function F (x) to be minimized, and K is
a constant. If x∗ minimizes the function G(x), it will obviously minimize the function F (x)
as well. Suppose that for minimizing function G(x) an FPTAS is available that delivers a
solution xH , such that G(xH) − G(x∗) ≤ ε |G(x∗)| .

For xH to be accepted as an ε−approximate solution for minimizing the function F (x),
we must establish the inequality

F (xH) ≤ (1 + ε) F (x∗). (1)

For a solution xH found by an FPTAS for minimizing G(x), we will have

F (xH) = G(xH) + K ≤ G(x∗) + ε |G(x∗)| + K = F (x∗) + ε |G(x∗)| .

This leads to two cases.

Case 1: For G(x∗) ≥ 0, we have F (xH) ≤ F (x∗) + εG(x∗) = (1 + ε) F (x∗) − εK. If K ≥ 0,
the inequality (1) holds; however, if K < 0, there is no evidence that (1) will hold, and
further analysis must be performed. We face the latter situation when studying the
problem with a constant time MP in Section 3.

Case 2: For G(x∗) < 0, we have F (xH) ≤ F (x∗) − εG(x∗) ≤ (1 + ε) F (x∗) + εK. If K ≤ 0,
the inequality (1) holds; however, if K > 0, there is no evidence that (1) will hold, and
further analysis must be performed. We face the latter situation when studying the
problem with a start-time dependent MP in Section 4.

The remainder of this paper is organized as follows. Section 2 formally describes the
problems under consideration; we also show that the problem with a constant MP is NP-
hard. In Section 3, we show how an FPTAS by Kellerer et al. (2003) developed for the
Subset-sum problem can be adapted to the scheduling problem with a constant MP. In
Section 4, we show how an FPTAS by Erel and Ghosh (2008) developed for the Half-product
problem can be adapted to the scheduling problem with a MP of a variable duration. Some
concluding remarks can be found in Section 5.

3

2 Preliminaries

In this section, we give formal statements of the problems under consideration and establish
their computational complexity.

The jobs of set N = {1, 2, . . . , n} have to be processed on a single machine. Each job
j ∈ N is associated with an integer pj that is called its “normal” processing time. The
machine is subject to deterioration. A maintenance period has to be run exactly once during
the planning period and it will restore the machine conditions completely, i.e., after the MP
the machine is as good as new.

Throughout this paper, for a non-empty subset N ′ define p(N ′) :=
∑

j∈N ′ pj ; additionally
define p(∅) := 0. In a similar sense, we write e(N ′), q(N ′), etc.

Let the jobs be sequenced in accordance with a permutation π, so that π(k) is the job
sequenced in position k. In the case of no machine maintenance, one of the most common
models for cumulative deterioration is as follows, see, e.g., Gordon et al. (2008): The actual
processing time of a job j that is sequenced in position r of a permutation π is given by

pj(r) = pj

(

1 +
r−1
∑

k=1

pπ(k)

)Z

, (2)

where Z is a given non-negative constant which is common for all jobs. This definition is
very similar to the one given by Kuo and Yang (2006a, 2006b) who have initiated a study
on cumulative effects in the case of learning, i.e., they assume that Z < 0. Wu et al.
(2011) list about a dozen of models with cumulative learning, in which pj(r) is expressed in
different ways in terms of

∑r−1
k=1 pπ(k). Models with precedence constraints and cumulative

deterioration effects as given by (2), for Z = 1 and Z = 2, are studied by Gordon et al. (2008).
As a rule, for the problems with cumulative deterioration and no machine maintenance,
polynomial-time algorithms are derived.

In this paper, we focus on the models with a specific cumulative deterioration effect, such
that the actual processing time of a job j that is sequenced in position r, 1 ≤ r ≤ n of a
permutation π is given by

pj(r) = pj

(

Aj + B
r−1
∑

k=1

pπ(k)

)

, (3)

where Aj , j ∈ N , and B are positive constants. Comparing the above model with (2), we
assume that Z = 1, while on the other hand, we extend the model (2) by introducing the
additional coefficients Aj and B. These coefficients allow us to handle other variations of the
problem, without the need to alter our methodology in any way. In a special case of our
model, with Aj = 1, j ∈ N , and B = p (N)−1, the effect (3) becomes equivalent to the model
introduced by Koulamas and Kyparisis (2007).

In this paper, we distinguish between two versions of the maintenance periods:

(i) Constant maintenance: the duration of the MP is β time units, where β > 0.

(ii) Start-time dependent maintenance: the duration of the MP is ατ+β time units, provided
that the MP starts at time τ ; here α > 0 and β ≥ 0.

4

For the latter type of maintenance, the later a machine is sent for maintenance, the longer
it takes to restore it to an acceptable condition. This type of maintenance has been introduced
by Kubzin and Strusevich (2005, 2006), and in combination with positional deterioration has
recently been studied by Mosheiov and Sidney (2010), Rustogi and Strusevich (2011) and
Yang and Yang (2010).

Given a schedule S, let Cmax(S) denote the makespan, i.e., the maximum completion time.
Extending standard notation for scheduling problems, we denote the problem of minimizing
the makespan by 1 |Cumu, MP (α)|Cmax, provided that the machine is subject to cumulative
deterioration and the duration of the MP is equal to ατ + β. The version with constant
maintenance is denoted by 1 |Cumu, MP (0)|Cmax.

An instance of problem 1 |Cumu, MP (α)|Cmax is defined by the sequences pj and Aj ,
j ∈ N , and numbers B and β, which are arbitrary positive integers. However, for α > 0,
we assume that α is bounded from above by a constant. This assumption is well justified
by the fact that the duration of an MP is at least α times longer than the preceding period
during which the machine was used. Without the made assumption, maintaining the machine
would take considerably longer than the total processing time before the maintenance, which
is hardly realistic.

In a schedule with a single MP the jobs are split into two groups: group 1 consists of
the jobs scheduled before the maintenance and group 2 contains all other jobs. For problem
1 |Cumu, MP (α)|Cmax, consider a schedule S with two groups. Let Ni be the set of jobs in
group i and |Ni| = ni, for i ∈ {1, 2}. Let π = (π(1), . . . , π(n1)) and σ = (σ(1), . . . , σ(n2))
denote a sequence of jobs of set N1 and N2, respectively. In accordance with (3), the makespan
of schedule S is given by

Cmax(S) = pπ(1)Aπ(1) +

n1
∑

r=2

pπ(r)

(

Aπ(r) + B
r−1
∑

k=1

pπ(k)

)

+α

(

pπ(1)Aπ(1) +

n1
∑

r=2

pπ(r)

(

Aπ(r) + B

r−1
∑

k=1

pπ(k)

))

+ β

+pσ(1)Aσ(1) +

n2
∑

r=2

pσ(r)

(

Aσ(r) + B
r−1
∑

k=1

pσ(k)

)

.

The total processing time of the jobs in the first group can be computed as

pπ(1)Aπ(1) +

n1
∑

r=2

pπ(r)

(

Aπ(r) + B
r−1
∑

k=1

pπ(k)

)

=

n1
∑

r=1

pπ(r)Aπ(r) + B
∑

1≤k<r≤n1

pπ(k)pπ(r)

=

n1
∑

r=1

pπ(r)Aπ(r) +
B

2

(

p(N1)
2 −

n1
∑

r=1

p2
π(r)

)

.

Similarly, the total processing time of the jobs in the second group can be computed as

pσ(1)Aσ(1) +

n2
∑

r=2

pσ(r)

(

Aσ(r) + B
r−1
∑

k=1

pσ(k)

)

=

n2
∑

r=1

pσ(r)Aσ(r) +
B

2

(

p(N2)
2 −

n2
∑

r=1

p2
σ(r)

)

.

Define
qj = pjAj , j = 1, 2, . . . , n,

5

so that

q(N1) :=

n1
∑

r=1

pπ(r)Aπ(r), q(N2) :=

n2
∑

r=1

pσ(r)Aσ(r), q(N) := q(N1) + q(N2).

Thus, the makespan can be written as

Cmax(S) = q(N1) +
B

2

(

p(N1)
2 −

n1
∑

r=1

p2
π(r)

)

+ α

(

q(N1) +
B

2

(

p(N1)
2 −

n1
∑

r=1

p2
π(r)

))

+ β

+q(N2) +
B

2

(

p(N2)
2 −

n2
∑

r=1

p2
σ(r)

)

,

which implies

Cmax(S) = q(N)+
B

2

p(N1)
2 + p(N2)

2 −
∑

j∈N

p2
j

+α

q(N1) +
B

2

p(N1)
2 −

∑

j∈N1

p2
j

+β

(4)
for problem 1 |Cumu, MP (α)|Cmax and

Cmax(S) = q(N) +
B

2

(

p(N1)
2 + p(N2)

2
)

−
B

2

∑

j∈N

p2
j + β (5)

for problem 1 |Cumu, MP (0)|Cmax.

Notice that (4) and (5) demonstrate that for problems 1 |Cumu, MP (α)|Cmax and
1 |Cumu, MP (0)|Cmax respectively, the order of jobs in each group does not affect the
makespan. This complies with Gordon et al. (2008), where the makespan has been shown
to be sequence independent for the single machine problem with the deterioration effect
(2), with Z = 1, and no maintenance period. Thus, the main issue in solving problem
1 |Cumu, MP (α)|Cmax, including its simpler version 1 |Cumu, MP (0)|Cmax, is to find an
appropriate partition of the jobs into two groups.

In Section 3, problem 1 |Cumu, MP (0)|Cmax is proved NP-hard in the ordinary
sense. It is clear that problem 1 |Cumu, MP (α)|Cmax is no easier than problem
1 |Cumu, MP (0)|Cmax. Thus, the best possible approximation result that can be derived
for either problem is an FPTAS. In the subsequent sections we develop such approximation
schemes.

3 Constant Maintenance: FPTAS by Subset-Sum

In this section, we consider problem 1 |Cumu, MP (0)|Cmax. It follows from (5) that to
achieve the minimum makespan we only need to partition the set N of jobs into two subsets,
N1 and N2 in such a way that the value p(N1)

2 + p(N2)
2 is as small as possible.

First, we show that the smallest value of p(N1)
2 + p(N2)

2 can be achieved if the values
p(N1) and p(N2) are as close as possible. The latter problem can be formulated as the

6

well-known Subset-sum problem:

max
∑

j∈N

pjxj

subject to
∑

j∈N

pjxj ≤ ∆

xj ∈ {0, 1} , j ∈ N,

(6)

where ∆ := p(N)/2. In scheduling terms, this problem is interpreted as problem P2 ||Cmax

of minimizing the makespan on two parallel identical with no preemption allowed. Ju-
risch et al. (1997) show that the latter problem reduces to maximizing the product
(

∑

j∈N pjxj

)(

∑

j∈N pj(1 − xj)
)

for xj ∈ {0, 1} , j ∈ N .

For problem 1 |Cumu, MP (0)|Cmax, let xj = 1 if job j is assigned to set N1; otherwise,

define xj = 0. The problem reduces to minimizing p(N1)
2 + p(N2)

2 =
(

∑

j∈N pjxj

)2
+

(

∑

j∈N pj(1 − xj)
)2

= p(N) − 2
(

∑

j∈N pjxj

)(

∑

j∈N pj(1 − xj)
)

, i.e., to maximizing
(

∑

j∈N pjxj

)(

∑

j∈N pj(1 − xj)
)

, as in problem P2 ||Cmax.

From this we immediately derive that problems 1 |Cumu, MP (0)|Cmax and P2 ||Cmax

are essentially equivalent, and the following statements hold.

Proposition 1 Problem 1 |Cumu, MP (0)|Cmax is NP-hard in the ordinary sense.

Proposition 2 Suppose that x∗
j ∈ {0, 1} , j ∈ N , are the optimal values of the decision

variables for the problem (6). Define N∗
1 :=

{

j ∈ N |x∗
j = 1

}

and N∗
2 = N\N∗

1 . Then for

problem 1 |Cumu, MP (0)|Cmax there exists an optimal schedule S∗ in which the jobs of set
N∗

1 are scheduled in one group and the jobs of set N∗
2 are scheduled in the other group.

Corollary 1 For a schedule S∗ that is optimal for problem 1 |Cumu, MP (0)|Cmax the fol-
lowing lower bound

Cmax(S
∗) ≥ q(N) + B∆2 −

B

2

∑

j∈N

p2
j + β (7)

holds.

To see this, observe that for any partition of set N into subsets N1 and N2 the inequality
p(N1)

2+p(N2)
2 ≥ 2∆2 holds. Indeed, if for some non-negative δ we have that p(N1) = ∆−δ

and p(N2) = ∆ + δ, then p(N1)
2 + p(N2)

2 = 2∆2 + 2δ2 ≥ 2∆2.

Our further consideration is based on the following statement; see Kellerer et al. (2003)
and Lemma 4.6.1 in Kellerer et al. (2004).

Theorem 1 Consider the Subset-sum problem of the form

max
∑

j∈N

pjxj

subject to
∑

j∈N

pjxj ≤ c

xj ∈ {0, 1} , j ∈ N,

(8)

7

This problem admits an FPTAS that for a given positive ε, either finds an optimal solution
x∗

j ∈ {0, 1} , j ∈ N , such that
∑

j∈N

pjx
∗
j < (1 − ε)c

or finds an approximate solution xε
j ∈ {0, 1} , j ∈ N , such that

(1 − ε)c ≤
∑

j∈N

pjx
ε
j ≤ c.

Such an FPTAS requires no more than O
(

min
{

n/ε, n + 1
ε2 log

(

1
ε

)})

time.

The algorithm below assigns the jobs to groups in accordance with the above mentioned
FPTAS, applied to problem (6) with c = ∆ = p(N)/2.

Algorithm Eps1

Input: An instance of problem 1 |Cumu, MP (0)|Cmax and an ε > 0

Output: A schedule Sε such that Cmax(S
ε) ≤ (1 + ε) Cmax(S

∗)

Step 1. For a given ε > 0 define ε0 := ε
ε+1 .

Step 2. With the defined ε0, run an FPTAS for problem (6) to find the values xε
j ∈ {0, 1} ,

j ∈ N . Define N ε
1 :=

{

j ∈ N |xε
j = 1

}

and N ε
2 := N\N ε

1 .

Step 3. Output schedule Sε for the original problem 1 |Cumu, MP (0)|Cmax, in which the
jobs of set N ε

1 are assigned to one group and sequenced before the maintenance and the
jobs of set N ε

2 are assigned to the other group to be scheduled after the maintenance.
Stop.

Recall that the makespan as given in (5), consists of a variable part and a constant.
Due to Proposition 2 and Theorem 1, the variable part can be minimized by means of an
FPTAS. However, as discussed in Section 1, a direct application of that FPTAS does not
necessarily result into an FPTAS for the original problem, since (5) contains a constant
q(N)+β− B

2

∑

j∈N p2
j , which can be negative. Below we prove that Algorithm Eps1 gives an

appropriate treatment to the negative constant, and therefore allows us to adapt the existing
FPTAS to deliver an ε−approximate solution for minimizing the overall original objective
function.

Theorem 2 Algorithm Eps1 is an FPTAS for problem 1 |Cumu, MP (0)|Cmax that runs in

O
(

min
{

n/ε, n +
(

1 + 1
ε

)2
log
(

1 + 1
ε

)

})

time.

Proof: Using an FPTAS by Kellerer et al. (2003) from Theorem 1 with ε0 := ε
ε+1 , we

observe that O(n/ε0) = O
(

n ε+1
ε

)

= O(n/ε) and 1
ε2

0

log
(

1
ε0

)

=
(

1 + 1
ε

)2
log
(

1 + 1
ε

)

, so

that the required running time is achieved. To complete the proof, we need to prove that
Cmax(S

ε) ≤ (1 + ε)Cmax(S
∗).

Due to Theorem 1, we only need to consider the case that the FPTAS in Step 2 does
not find an optimal solution to problem (6); otherwise schedule Sε is optimal. Below we

8

only look at the instances of problem 1 |Cumu, MP (0)|Cmax for which pj ≤ ∆, j ∈ N , since
otherwise an optimal solution can be obtained by scheduling the largest job in one group
and the remaining jobs in the other.

We assume that there exists a δ, δ ≤ ε0, such that (1 − ε0)∆ ≤ p(N ε
1) = ∆ (1 − δ) < ∆

and p(N ε
2) = (1 + δ) ∆. Applying (5) and (7), we have that

Cmax(S
ε) = q(N) +

B

2

(

p(N ε
1)2 + p(N ε

2)2
)

+ β −
B

2

∑

j∈N

p2
j

= q(N) + B
(

∆2 + δ2∆2
)

+ β −
B

2

∑

j∈N

p2
j ≤ Cmax(S

∗) + Bδ2∆2.

Below we demonstrate that Bδ(1 − δ)∆2 is a lower bound on the optimal makespan
Cmax(S

∗). Consider the problem

max
∑

j∈N

p2
j

subject to
∑

j∈Nε

1

pj = (1 − δ) ∆

∑

j∈Nε

2

pj = (1 + δ) ∆

0 ≤ pj ≤ ∆, j ∈ N.

(9)

This problem is related to one of the basic problems of submodular optimization, a so-
called resource allocation problem with a convex separable objective function; see Hochbaum
and Hong (1995) and Katoh and Ibaraki (1998). The problem is known to be solvable by
the greedy algorithm, which in the case under consideration, scans the values pj in any order
and gives each of them the largest possible value. In our case, the greedy algorithm will find
an optimal solution to (9) in which one of the pj ’s is equal to ∆, one to (1 − δ) ∆ and one to
δ∆, while all others are equal to zero. Thus,

∑

j∈N

p2
j ≤ (1 − δ)2 ∆2 + ∆2 + (δ∆)2 = 2∆2(1 + δ2 − δ)

provides an upper bound on the sum of squares of the processing times for all instances of
the problem for which Step 2 of Algorithm Eps1 delivers p(N ε

1) = ∆ (1 − δ) and p(N ε
2) =

(1 + δ) ∆, including the instance under consideration.

Substituting this into (7) we derive a lower bound

Cmax(S
∗) ≥ q(N) + B

(

δ − δ2
)

∆2 + β ≥ Bδ (1 − δ) ∆2.

This lower bound implies that

Cmax(S
ε) ≤ Cmax(S

∗) + Bδ2∆2 ≤

(

1 +
δ

1 − δ

)

Cmax(S
∗).

Since δ
1−δ

increases, we have that

Cmax(S
ε) ≤

(

1 +
ε0

1 − ε0

)

Cmax(S
∗).

Thus, to obtain an FPTAS for our problem with the accuracy ε, we need to use the
FPTAS for problem (6) with ε0 = ε

ε+1 .

9

4 Start Time Dependent Maintenance: an FPTAS by Half-

Product

In this section, we show that problem 1 |Cumu, MP (α)|Cmax can be formulated in terms of
quadratic Boolean programming. We discuss an opportunity that this reformulation offers
regarding the design of an FPTAS for the problem under consideration.

Let x =(x1, x2, . . . , xn) denote a vector with n 0− 1 components. Introduce the function

H (x) =

n
∑

1≤i<j≤n

aibjxixj −

n
∑

j=1

hjxj , (10)

where for each j, 1 ≤ j ≤ n, the coefficients aj and bj are non-negative integers, while
hj is an integer that can be either negative or positive. Problems of quadratic Boolean
programming similar to (10) were introduced in 1990s as mathematical models for various
scheduling problems by Kubiak (1995) and Jurisch et al. (1997). The function H (x) is called
a Half-product since its quadratic part consists of roughly half of the terms of the product
(

∑n
j=1 ajxj

)(

∑n
j=1 bjxj

)

. This function and the term “Half-product” were introduced by

Badics and Boros (1998), who considered the problem of minimizing the function H with
respect to Boolean decision variables with no additional constraints. Notice that we are
only interested in the instances of the problem for which the optimal value of the function
is strictly negative; otherwise, setting all decision variables to zero solves the problem. The
problem of minimizing function H (x) of the form (10) is called the Half-product problem.
The first FPTAS for the Half-Product problem that requires strongly polynomial time is due
to Erel and Ghosh (2008), the running time is O(n2/ε).

Given problem 1 |Cumu, MP (α)|Cmax, introduce a Boolean variable xj in such a way
that

xj =

{

1, if job j is scheduled in the first group
0, otherwise

for each job j, 1 ≤ j ≤ n. Taking the jobs in any order, i.e., in the order of their numbering,
if job j is scheduled in the first group then it completes at time

Cj = pjxj

(

Aj + B

j−1
∑

i=1

pixi

)

,

so that the MP starts at time
∑n

j=1 pjxj

(

Aj + B
∑j−1

i=1 pixi

)

. If job j is scheduled in the

second group, then

Cj =
n
∑

j=1

pjxj

(

Aj + B

j−1
∑

i=1

pixi

)

+ α

n
∑

j=1

pjxj

(

Aj + B

j−1
∑

i=1

pixi

)

+ β

+

n
∑

j=1

pj(1 − xj)

(

Aj + B

j−1
∑

i=1

pi(1 − xi)

)

.

This implies that in order to solve problem 1 |Cumu, MP (α)|Cmax, we need to minimize
the function

Fα (x) = (α + 1)

n
∑

j=1

pjxj

(

Aj + B

j−1
∑

i=1

pixi

)

10

+

n
∑

j=1

pj(1 − xj)

(

Aj + B

j−1
∑

i=1

pi(1 − xi)

)

+ β,

which can be rewritten as

Fα (x) = (α + 1)

B
∑

1≤i<j≤n

pipjxixj +

n
∑

j=1

pjAjxj

 (11)

+B
∑

1≤i<j≤n

pipj(1 − xi)(1 − xj) +

n
∑

j=1

pjAj(1 − xj) + β.

The lemma below links the function Fα (x) to the Half-product problem.

Lemma 1 Function Fα (x) can be represented as Fα (x) = H (x) + K, where H(x) is
the half-product function of the form (10), with ai := (α + 2)Bpi, bj := pj and hj :=

B
(

pjp(N) − p2
j

)

+ αpjAj, j ∈ N , and the constant K is defined as

K := β + q(N) +
∑

1≤i<j≤n

pipj ,

where q(N) =
∑n

j=1 pjAj .

Proof: It follows that

∑

1≤i<j≤n

pipj(1 − xi)(1 − xj) =
∑

1≤i<j≤n

pipjxixj +
∑

1≤i<j≤n

pipj

−
n
∑

j=1

pjxj

(

j−1
∑

i=1

pi

)

−
n
∑

j=1

pj

(

j−1
∑

i=1

pixi

)

.

Notice that
n
∑

j=1

pj

(

j−1
∑

i=1

pixi

)

=
n
∑

j=1

pjxj

n
∑

i=j+1

pi

so that

∑

1≤i<j≤n

pipj(1 − xi)(1 − xj) =
∑

1≤i<j≤n

pipjxixj +
∑

1≤i<j≤n

pipj −
n
∑

j=1

(

pjp(N) − p2
j

)

xj .

Thus, (11) becomes

Fα (x) = (α + 2)B
∑

1≤i<j≤n

pipjxixj −
n
∑

j=1

(

Bpjp(N) − Bp2
j + αpjAj

)

xj

+

β +

n
∑

j=1

pjAj + B
∑

1≤i<j≤n

pipj

 ,

11

which proves the lemma.

Consider the problem of minimizing the function F (x) = H(x) + K, where H(x) is a
Half-product function of the form (10), and K is a constant. It is known that an FPTAS for
minimizing the function H(x) does not necessarily behave as an FPTAS for minimizing the
function F (x). This is due to the fact the optimal value of H(x) is negative; see Erel and
Ghosh (2008) and Kellerer and Strusevich (2011) for discussion and examples. Suppose that
a lower bound LB and an upper bound UB on the optimal value of the function F (x) are
available, i.e., LB ≤ F (x∗) ≤ UB. Erel and Ghosh (2008) adopt their FPTAS for minimizing
the function H(x) to minimizing the function F (x). They develop an algorithm that delivers
a solution x0 such that F (x0)−LB ≤ εLB in O(γn2/ε) time, where γ ≥ UB/LB. We refer
to this version of the scheme as γ−FPTAS.

The makespan Cmax(S) associated with a partition of the jobs N = N1 ∪ N2 into two
groups will be denoted by Fα(N1, N2) and defined by (4); for α = 0 the makespan will be
denoted by F0(N1, N2) and defined by (5).

Below we describe how to adapt the γ−FPTAS for solving problem
1 |Cumu, MP (α)|Cmax.

Algorithm Eps2

Input: An instance of problem 1 |Cumu, MP (α)|Cmax with α bounded by a constant
and an ε > 0

Output: A schedule Sε such that Cmax(S
ε) ≤ (1 + ε) Cmax(S

∗)

Step 1. Given an instance for problem 1 |Cumu, MP (α)|Cmax, take an arbitrary positive
ε′ and run Algorithm Eps1 with ε = ε′, applied to the counterpart of the original
problem with constant maintenance (α = 0). Let N ε′

1 and N ε′

2 be the groups found by
Algorithm Eps1. Compute F0(N

ε′

1 , N ε′

2) by (5) with N1 = N ε′

1 and N2 = N ε′

2 .

Step 2. Define UB :=
(

1 + α
2

)

F0(N
ε′

1 , N ε′

2), γ :=
(

1 + α
2

)

(1 + ε′) . Take a small positive ε
and run the γ−FPTAS by Erel and Ghosh (2008). With the found values xε

j ∈ {0, 1} ,

j ∈ N , define N ε
1 :=

{

j ∈ N |xε
j = 1

}

and N ε
2 = N\N ε

1 . If

q(N ε
1) +

B

2
p(N ε

1)2 −
B

2

∑

j∈Nε

1

p2
j > q(N ε

2) +
B

2
p(N ε

2)2 −
B

2

∑

j∈Nε

2

p2
j ,

swap N ε
1 and N ε

2 .

Step 3. Output schedule Sε for the original problem 1 |Cumu, MP (α)|Cmax, in which the
jobs of set N ε

1 are assigned to one group and sequenced before the maintenance and the
jobs of set N ε

2 are assigned to the other group to be scheduled after the maintenance.
Stop.

Theorem 3 Algorithm Eps2 is an FPTAS for problem 1 |Cumu, MP (α)|Cmax that runs in
O(n2/ε) time.

Proof: It follows from (4) and (5) that

Fα(N1, N2) = F0(N1, N2) + α

q(N1) +
B

2
p(N1)

2 −
B

2

∑

j∈N1

p2
j

 .

12

Besides, for the purpose of finding the best schedule for problem 1 |Cumu, MP (α)|Cmax

defined by a partition N = N1 ∪ N2 we may assume that

q(N1) +
B

2
p(N1)

2 −
B

2

∑

j∈N1

p2
j ≤ q(N2) +

B

2
p(N2)

2 −
B

2

∑

j∈N2

p2
j ,

otherwise, we will swap the groups scheduled before and after the maintenance. This implies
that

q(N1) +
B

2
p(N1)

2 −
B

2

∑

j∈N1

p2
j ≤

1

2
F0(N1, N2),

and therefore
Fα(N1, N2) ≤

(

1 +
α

2

)

F0(N1, N2). (12)

Let S∗
α denote a schedule that is optimal for problem 1 |Cumu, MP (α)|Cmax. That

schedule is defined by a partition of the set N of jobs into two subsets, which we denote
by N∗

1 (α) and N∗
1 (α). In particular, N∗

1 (0) and N∗
1 (0) define an optimal schedule for prob-

lem 1 |Cumu, MP (α)|Cmax. Let also N ε′

1 and N ε′

2 be the sets that are found in Step 1 of
Algorithm Eps2. Due to (12) we have

Fα(N∗
1 (α), N∗

2 (α)) ≤ Fα(N ε′

1 , N ε′

2) ≤
(

1 +
α

2

)

F0(N
ε′

1 , N ε′

2).

On the other hand,

Fα(N∗
1 (α), N∗

2 (α)) ≥ F0(N
∗
1 (0), N∗

2 (0)) ≥
F0(N

ε′

1 , N ε′

2)

(1 + ε′)
.

Thus, for the optimal makespan in problem 1 |Cumu, MP (α)|Cmax, we deduce that
F0(Nε

′

1
,Nε

′

2
)

(1+ε′) is a lower bound, while
(

1 + α
2

)

F0(N
ε′

1 , N ε′

2) is an upper bound, and therefore
the values of UB and γ in Step 2 are correct. The overall running time of Algorithm Eps2
is determined by the time complexity of Step 2. According to Erel and Ghosh (2008), the
γ−FPTAS requires O(γn2/ε), which in our case becomes O(n2/ε), since γ only depends on
a given α bounded by a constant and on a chosen constant ε′. Algorithm Eps2 will deliver
a solution of the required accuracy, i.e., Cmax(S

ε)/Cmax(S
∗) ≤ 1 + ε.

5 Conclusion

The paper makes a contribution to the fast developing area of scheduling with rate-modifying
maintenance activities, which allow us to restore the conditions of the machine that may get
worse during the processing. Mathematically, the considered models are linked to linear and
quadratic problems of Boolean programming that admit an FPTAS. Our main technical task
has been to adapt the known FPTASs to our problems, which is not straightforward due to
the opposite signs of the variable and constant parts of the objective function.

The next step in studying the models with cumulative deterioration could be a search for
approximation algorithms or schemes that would allow us to handle multiple maintenance
periods.

Acknowledgement

The first and third authors were partly supported by the EPSRC funded project
EP/I018441/1 “Quadratic and Linear Knapsack Problems with Scheduling Applications”.

13

References

Badics, T., & Boros, E. (1998). Minimization of half-products. Mathematics of Operations
Research, 33, 649–660.

Biskup, D. (2008). A state-of-the-art review on scheduling with learning effects. European
Journal of Operational Research, 188, 315–329.

Erel, E., & Ghosh, J.B. (2008). FPTAS for half-products minimization with scheduling ap-
plications. Discrete Applied Mathematics, 156, 3046–3056.

Gawiejnowicz, S. (2008). Time-Dependent Scheduling. Berlin: Springer.

Gordon, V.S., Potts, C.N., Strusevich, V.A., Whitehead, J.D. (2008). Single machine schedul-
ing models with deterioration and learning: Handling precedence constraints via priority
generation. Journal of Scheduling, 11, 357–370.

Hochbaum, D.S., & Hong, S.-P. (1995). About strongly polynomial time algorithms for
quadratic optimization over submodular constraints. Mathematical Programming, 69, 269–
309.

Jurisch, B., Kubiak. W., Józefowska, J. (1997). Algorithms for minclique scheduling prob-
lems. Discrete Applied Mathematics, 72, 115–139.

Katoh, N. & Ibaraki, T. (1998). Resource allocation problems. In D.-Z. Du and P.M. Pardalos
(Eds.) Handbook of Combinatorial Optimization, Vol. 2 (pp. 159–260), Dordrecht: Kluwer.

Kellerer, H., Mansini, R., Pferschy, U., Speranza, M.G. (2003). An efficient fully polynomial
approximation scheme for the Subset-Sum Problem. Journal of Computer and System
Sciences, 66, 349–370.

Kellerer, H., Pferschy, U., Pisinger, D. (2004). Knapsack Problems. Berlin: Springer.

Kellerer, H., & Strusevich, V.A. (2010a). Fully polynomial approximation schemes for a
symmetric quadratic knapsack problem and its scheduling applications. Algorithmica, 57,
769–795.

Kellerer, H., & Strusevich, V.A. (2010b). Minimizing total weighted earliness-tardiness on a
single machine around a small common due date: An FPTAS using quadratic knapsack.
International Journal of Foundations of Computer Science, 21, 357–383.

Kellerer, H., & Strusevich, V.A. (2011). The symmetric quadratic knapsack problem: ap-
proximation and scheduling applications. Submitted.

Koulamas, C., & Kyparisis, G.J. (2007). Single-machine and two-machine flowshop schedul-
ing with general learning functions. European Journal of Operational Research, 178, 402–
407.

Kovalyov, M.Y., & Kubiak, W. (1998). A fully polynomial approximation scheme for mini-
mizing makespan of deteriorating jobs. Journal of Heuristics, 3, 287–297.

Kubiak, W. (1995) New results on the completion time variance minimization. Discrete
Applied Mathematics, 58, 157–168

14

Kubzin, M.A., & Strusevich, V.A. (2005). Two-machine flow shop no-wait scheduling with
machine maintenance. 4OR, 3, 303-313.

Kubzin, M.A., & Strusevich, V.A. (2006). Planning machine maintenance in two-machine
shop scheduling. Operations Research, 54, 789–800.

Kuo, W.-H., & Yang, D.-L. (2006a). Minimizing the makespan in a single machine scheduling
problem with a time-based learning effect. Information Processing Letters, 97, 64–67.

Kuo, W.-H., & Yang, D.-L. (2006b). Minimizing the total completion time in a single-machine
scheduling problem with a time-dependent learning effect. European Journal of Operational
Research, 174, 1184-1190.

Kuo, W.-H., & Yang, D.-L. (2008). Minimizing the makespan in a single-machine scheduling
problem with the cyclic process of an aging effect. Journal of the Operational Research
Society, 59, 416–420.

Lee, C.-Y., & Leon, V.J. (2001). Machine scheduling with a rate-modifying activity. European
Journal of Operational Research, 128, 119–128.

Lodree Jr., E. J., & Geiger, C.D. (2010). A note on the optimal sequence position for a
rate-modifying activity under simple linear deterioration. European Journal of Operational
Research, 201, 644–648.

Mosheiov, G., & Sidney, J.B. (2010). Scheduling a deteriorating maintenance activity on a
single machine. Journal of the Operational Research Society,61, 882–887.

Rustogi, K., & Strusevich, V.A. (2012). Single machine scheduling with general positional
deterioration and rate-modifying maintenance. Omega, doi: 10.1016/j.omega.2011.12.007.

Wu, C.-C., Yin, Y, Cheng, S.-R. (2011). Some single-machine scheduling problems with a
truncation learning effect. Computers and Industrial Engineering, 60, 790–795.

Yang, S.-J., & Yang, D.-L. (2010). Minimizing the makespan single-machine scheduling with
aging effects and variable maintenance activities. Omega, 38, 528–533.

Zhao, C.-L., & Tang, H.-Y. (2010). Single machine scheduling with general job-dependent
aging effect and maintenance activities to minimize makespan. Applied Mathematical Mod-
elling, 34, 837–841.

15

	10164
	10164_RUSTOGI_STRUSEVICH_PaperCumuRev3 (AAM) (2013)

