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Abstract

We address a version of the Half-Product Problem and its restricted variant
with a linear knapsack constraint. For these minimization problems of Boolean
programming, we focus on the development of fully polynomial-time approxi-
mation schemes with running times that depend quadratically on the number
of variables. Applications to various single machine scheduling problems are
reported: minimizing the total weighted flow time with controllable processing
times, minimizing the makespan with controllable release dates, minimizing the
total weighted flow time for two models of scheduling with rejection.

Keywords: Scheduling, half-product, quadratic knapsack, scheduling with
rejection, scheduling with controllable processing times, FPTAS.

1. Introduction

The topic of designing approximation schemes for scheduling problems with
min-sum objective functions has recently drawn considerable attention. While
for many problems of this range purpose-built approximation schemes have been
developed, a general framework has been identified based on reformulation of
the original scheduling problems in terms of minimization problems of quadratic
Boolean programming. The Half-Product Problem and the closely related Sym-
metric Quadratic Knapsack Problem appear to be among the most suitable
models, see recent reviews by Kacem et al. (2011) and Kellerer and Strusevich
(2012).

This paper studies a version of the Half-Product Problem and its modi-
fication with the knapsack constraint, establishes conditions under which the
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problems admit fast fully polynomial-time approximation schemes, describes
the relevant algorithms and discusses their scheduling applications.

Let x = (x1, x2, . . . , xn) be a vector with n Boolean components. Consider
the function

H (x) =
n
∑

1≤i<j≤n

αiβjxixj −
n
∑

j=1

γjxj , (1)

where for each j, 1 ≤ j ≤ n, the coefficients αj and βj are non-negative integers,
while γj is an integer that can be either negative or positive; in fact, without loss
of generality, we may assume that all γj are non-negative, since otherwise for a
negative γj we may set xj = 0 without increasing the value of H (x). Problems
of quadratic Boolean programming similar to (1) were introduced in 1990s as
mathematical models for various scheduling problems by Kubiak (1995) and
Jurisch et al. (1997). This function and the term “half-product” were introduced
by Badics and Boros (1998), who considered the problem of minimizing the
function H (x) with respect to Boolean decision variables with no additional
constraints. The function H (x) is called a half-product since its quadratic part

consists of roughly half of the terms of the product
(

∑n

j=1 αjxj

)(

∑n

j=1 βjxj

)

.

Notice that we only are interested in the instances of the problem for which the
optimal value of the function is strictly negative; otherwise, setting all decision
variables to zero solves the problem.

In this paper, we refer to the problem of minimizing function H (x) of the
form (1), as Problem HP. This problem is NP-hard in the ordinary sense, even
if aj = bj for all j = 1, 2, . . . , n, as proved by Badics and Boros (1998). It
has numerous applications, mainly to machine scheduling; see Erel and Ghosh
(2008) and Kellerer and Strusevich (2012) for reviews. Notice that in those
applications a scheduling objective function usually is written in the form

F (x) = H (x) + K, (2)

where K is a given additive constant. We refer to the problem of minimizing
function F (x) of the form (2), as Problem HPAdd.

Consider the function

P (x) =
n
∑

1≤i<j≤n

αiβjxixj +
n
∑

j=1

µjxj +
n
∑

j=1

νj (1 − xj) + K, (3)

where all coefficients αj are positive integers, and βj , µj , νj and K are non-
negative integers. Following Janiak et al. (2005), we call the problem of minimiz-
ing the function P (x) of the form (3) the Positive Half-Product Problem or Prob-
lem PosHP. Notice that Problem PosHP is a special case of Problem HPAdd.

In all Half-Product Problems introduced above, the minimum is sought for
over all n−dimensional Boolean vectors, i.e., they are quadratic Boolean pro-
gramming problems with no additional constraints. In this paper, we also study
a more restricted version of Problem PosHP, in which an additional knapsack
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constraint is introduced, i.e., the problem

Minimize P (x) =
n
∑

1≤i<j≤n

αiβjxixj +
n
∑

j=1

µjxj +
n
∑

j=1

νj (1 − xj) + K

Subject to
n
∑

j=1

αjxj ≤ A

xj ∈ {0, 1}, j = 1, 2, . . . , n,

(4)

which we call the Positive Half-Product Knapsack Problem and denote by Prob-
lem PosHPK.

Similarly to the classical Linear Knapsack Problem (see the comprehensive
monographs Martello and Toth (1990) and Kellerer et al. (2004) on this most
studied problem of Combinatorial Optimization), Problem PosHPK contains a
linear knapsack constraint. We can view the value αj as the weight of item
j, 1 ≤ j ≤ n, i.e., xj = 1 means that item j is placed into a knapsack with
capacity A, while xj = 0 means that the corresponding item is not placed into
the knapsack. An important feature of our problem is that the coefficients αj in
the knapsack constraint are the same as in the quadratic terms of the objective
function. The latter feature makes Problem PosHPK to be a special case of
another quadratic knapsack problem, namely the problem

Minimize S(x) =
∑

1≤i<j≤n

αiβjxixj +
∑

1≤i<j≤n

αiβj(1 − xi)(1 − xj)

+
n
∑

j=1

µjxj +
n
∑

j=1

νj(1 − xj) + K

Subject to
n
∑

j=1

αjxj ≤ A

xj ∈ {0, 1}, j = 1, 2, . . . , n.

(5)

Following Kellerer and Strusevich (2010a, 2010b), we call the latter problem
the Symmetric Quadratic Knapsack Problem, or Problem SQK. We use the term
“symmetric” because both the quadratic and the linear parts of the objective
function are separated into two terms, one depending on the variables xj , and
the other depending on the variables (1 − xj). A comprehensive review of the
results on Problem SQK and its scheduling applications is given by Kellerer and
Strusevich (2012).

Table 1 summarizes the notation introduced above for all Boolean program-
ming problems under consideration.

Since this paper focuses on the development of approximation algorithms and
schemes, below we recall the definitions of the relevant notions. For a problem
of minimizing a function Z(x), where x is a collection of decision variables,
let x∗ denote the vector that delivers the minimum to the function Z (x); we
call x∗ an optimal solution of the corresponding problem. A polynomial-time
algorithm that finds a feasible solution x′ such that Z(x′) is at most ρ ≥ 1
times the optimal value Z(x∗) is called a ρ−approximation algorithm; the value
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Problem Acronym Objective/Formulation Additional Constraints
HP H(x) (1) None
HPAdd F (x) (2) None
PosHP P (x) (3) None
PosHPK P (x) (4)

∑n

j=1 αjxj ≤ A

SQK S(x) (5)
∑n

j=1 αjxj ≤ A

Table 1: Notation for Boolean programming problems under consideration

of ρ is called a worst-case ratio bound. For a problem of Boolean programming
of minimizing a function Z (x), which may take negative and positive values,
a vector x′ is called an ε−approximate solution if for a given positive ε the
inequality Z (x′) − Z (x∗) ≤ ε |Z (x∗)| holds. A family of algorithms that for
any given positive ε find an ε−approximate solution is called a Fully Polynomial-
Time Approximation Scheme (FPTAS), provided that the running time depends
polynomially on both the length of the input and 1/ε.

A detailed review on the design of FPTASs for problems relevant to this
study is given by Kellerer and Strusevich (2012). Badics and Boros (1998) give
the first FPTAS for Problem HP but its running time is O(n2 log

∑

αj/ε) is not
strongly polynomial. The first FPTAS for Problem HP that requires strongly
polynomial time O(n2/ε) is due to Erel and Ghosh (2008).

The algorithms that behave as an FPTAS for Problem HP to minimize a
half-product H (x) of the form (1) do not necessarily deliver an ε−approximate
solution for the problem of minimizing the function F (x) of the form (2), al-
though both problems have the same optimal solution x∗ and for any vector x
the equality F (x)−F (x∗) = H (x)−H (x∗) holds. This is due to the fact that
H (x∗) < 0 and it is possible that |F (x∗)| = |H (x∗) + K| < |H (x∗)|. Starting
from the pioneering work by Badics and Boros (1998), the matter of designing
an FPTAS for the Half-product problem with an additive constants, including
adapting an FPTAS for Problem HP, has initiated many publications, see, e.g.,
Janiak et al. (2005), Kubiak (2005), Erel and Ghosh (2008) and Kellerer and
Strusevich (2012). In particular, addressing this issue Janiak et al. (2005) intro-
duce the Positive Half-Product, i.e., Problem PosHP. However, the FPTAS that
they develop in their paper for Problem PosHP still requires O(n2 log

∑

αj/ε)
time. Erel and Ghosh (2008) present several conditions under which an FPTAS
for Problem HP behaves as an FPTAS for Problem HPAdd; see, e.g., Lemma 2
in Section 2 of this paper.

As follows from the survey by Kellerer and Strusevich (2012), in all known
applications of quadratic Boolean programming problems related to the Half-
Product the objective function is convex. That is why we study Prob-
lem PosHPK and its relaxed version, Problem PosHP without a knapsack con-
straint, provided that the objective function P (x) is convex. For each of these
problems with a convex objective function, this paper delivers an FPTAS that
requires O

(

n2/ε
)

time. This running time is much smaller than O
(

n4/ε2
)

established by Kellerer and Strusevich (2010b) for Problem SQK (under ad-

4



ditional assumptions that include the convexity of an objective function) or
O
(

n4 log log n + n4/ε2
)

provided by Xu (2011) for an arbitrary Problem SQK.
The developed FPTAS can be applied to several scheduling problems, resulting
in improved approximation schemes for their solution.

2. What Is Needed to Design an FPTAS

In this section, we describe the ingredients that are needed in order to design
an FPTAS for Problem PosHP and Problem PosHPK.

We start our consideration with Problem PosHPK of the form (4). As is often
the case, the resulting FPTAS is obtained by modifying a dynamic programming
(DP) algorithm for the problem. Such an algorithm is given below. Notice
that the algorithm is rather straightforward and manipulates with the objective
function (3) in a different way, compared to Janiak et al. (2005) who adapt a
decomposition result by Badics and Boros (1998).

Define

Ak =
k
∑

j=1

αj , k = 1, 2, . . . , n.

and suppose that the values x1, x2, . . . , xk have been assigned. Our DP algo-
rithm deals with partial solutions associated with states of the form

(k, Zk, yk) ,

where

k is the number of the assigned variables;

Zk is the current value of the objective function;

yk :=
∑k

j=1 αjxj , the total weight of the items put into the knapsack.

We now give a formal statement and implementation details of the DP al-
gorithm. Notice that

∑

1≤i<j≤n

αiβjxixj =
n
∑

j=2

βjxj

j−1
∑

i=1

αixi.

Algorithm DP

Step1. Start with the initial state (0, Z0, y0) = (0,K, 0). Compute the values

Ak =
∑k

j=1 αj , k = 1, 2, . . . , n.

Step 2. For all k from 1 to n make transitions from each stored state of the
form

(k − 1, Zk−1, yk−1) (6)

into the states of the form
(k, Zk, yk) (7)

by assigning the next variable xk.
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(a) Define xk = 1, provided that item k fits into the knapsack, i.e., if the
inequality yk−1 + αk ≤ A holds. If feasible, the assignment xk = 1
changes a state (6) to a state of the form (7), where

Zk = Zk−1 + βkyk−1 + µk, yk = yk−1 + αk. (8)

(b) Define xk = 0, which is always feasible. This assignment changes a
state of the form (6) into the state of the form (7) such that

Zk = Zk−1 + νk; yk = yk−1. (9)

Step 3. Find Z∗
n, the smallest value of Zn among all found states of the form

(n, Zn, yn). Perform backtracking and find vector x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)

that leads to Z∗
n. Output x∗ and P (x∗) = Z∗

n.

Algorithm DP essentially uses the representation of the objective function
in the form (3). Structurally, the algorithm is similar to the DP algorithms for
various versions of the knapsack problems with quadratic objective functions
that can be found in Kellerer and Strusevich (2006, 2010a, 2010b), and its
running time does not exceed O(nA).

Algorithm DP is the first ingredient we need to design an FPTAS for Prob-
lem PosHPK. As the second ingredient, we require an upper bound PUB , such
that for all instances of the Problem PosHPK the inequality PUB/P (x∗) ≤ R
holds. Since P (x∗) ≥ 1

R
PUB , it follows that PLB = 1

R
PUB is a lower bound on

P (x∗).
With both ingredients at hand, we can convert Algorithm DP into an ap-

proximation scheme. The running time of such an scheme will depend on the
ratio R. To reduce the number of computed function values, we round the ob-
jective function values to multiples of a selected small number. Moreover, we
disregard the generated states with the same rounded objective function value
and keep only one, with the smallest current weight of the knapsack.

Algorithm EpsPosHPK

Step 1. Given an upper bound PUB such that PUB/P (x∗) ≤ R, define
PLB := 1

R
PUB . For an arbitrary ε > 0, define δ := ε

n
PLB . Define

v :=
⌈

PUB/δ
⌉

= ⌈Rn/ε⌉. Split the interval
[

0, PUB
]

into subintervals
I1, I2, . . . , Iv of length δ each, except possibly Iv which may be shorter.

Step 2. Store the initial state (0, Z0, y0) with Z0 = K and y0 = 0. For each
k, 1 ≤ k ≤ n, do the following:

(a) In line with Algorithm DP, move from a stored state (k−1, Zk−1, yk−1)
to at most two states of the form (k, Z̃k, ỹk), where Z̃k ≤ FUB , using
the relations (8) and (9).

(b) For each interval Iq, find the state (k, Zk, yk) such that Zk belongs to

Iq and yk ≤ ỹk for all states (k, Z̃k, ỹk) with Z̃k from Iq. Keep only

state (k, Zk, yk) and remove all other states (k, Z̃k, ỹk) with Z̃k from
Iq.

6



Step 3. Determine Zε as the smallest value of Zn among the states (n, Zn, yn).
Perform backtracking and find the vector xε = (xε

1, x
ε
2, . . . , x

ε
n) that

leads to Zε. Output xε and P (xε) as an approximate solution of Prob-
lem PosHPK.

Below we briefly analyze the behavior of the algorithm.

Lemma 1. Let xε be a vector found by Algorithm EpsPosHPK applied to Prob-
lem PosHPK to minimize a function P (x) of the form (3), with a lower bound
PLB and an upper bound PUB on the optimal value. Then P (xε) − P (x∗) ≤
εPLB and the running time of the algorithm is O(Rn2/ε) time, where R =
PUB/PLB .

Proof: Define v :=
⌈

PUB/δ
⌉

= ⌈Rn/ε⌉. In Step 2, moving from iteration k−1

to k, Algorithm EpsPosHPK creates at most 2v states of the form (k, Z̃k, ỹk)
from at most v kept states of the form (k − 1, Zk−1, yk−1) and keeps at most v
of them. Thus, for each k, Step 2 takes O(v) time. Thus, the overall running
time of Algorithm EpsPosHPK is O (nv) = O

(

Rn2/ε
)

.
Let

(0, Z∗
0 , y∗

0), (0, Z∗
1 , y∗

1), · · · , (0, Z∗
n, y∗

n)

denote the path of the states created by Algorithm DP that leads to the optimal
solution of Problem PosHPK, i.e., P (x∗) = Z∗

n.
In order to prove that Algorithm EpsPosHPK behaves as an FPTAS, we use

induction to demonstrate that for each k, 1 ≤ k ≤ n, the inequalities

Zk ≤ Z∗
k + kδ; (10)

yk ≤ y∗
k (11)

hold.
For k = 1 Algorithm EpsPosHPK creates two states (1,K + µ1, α1) and

(1,K + ν1, 0) which coincide with those created by the exact Algorithm DP.
Assume that (10) and (11) hold for all k, 1 ≤ k ≤ u − 1 ≤ n, and prove

they also hold for k = u. Take a state (u − 1, Zu−1, yu−1) and create a new
state (u, Z̃u, ỹu). Of all states with the Z−values that belong to an interval Iq

of length δ, Algorithm EpsPosHPK stores only one state, with the least filled
knapsack. Thus, either Zu = Z̃u and yu = ỹu or

Zu ≤ Z̃u + δ, yu ≤ ỹu. (12)

Suppose that in the optimal path created by Algorithm DP the state
(u, Z∗

u, y∗
u) has been found from the state

(

u − 1, Z∗
u−1, y

∗
u−1

)

by applying the for-

mula (8). Then consider (u, Z̃u, ỹu) found in Algorithm EpsPosHPK by applying
the formula (8) to state (u − 1, Zu−1, yu−1), so that Z̃u = Zu−1 + βuyu−1 + µu.
We use (10) and (11) with k = u − 1 to deduce

Z̃u ≤ Z∗
u−1 + (u − 1) δ + βuy∗

u−1 + µu = Z∗
u + (u − 1) δ,
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and (10) with k = u follows from (12). Besides,

yu ≤ ỹu = yu−1 + αu ≤ y∗
u−1 + αu = y∗

u,

which proves (11) with k = u.
Suppose now that in the optimal path created by Algorithm DP the state

(u, Z∗
u, y∗

u) has been found from the state
(

u − 1, Z∗
u−1, y

∗
u−1

)

by applying the

formula (9). Then consider (u, Z̃u, ỹu) found in Algorithm EpsPosHPK by ap-
plying the formula (9) to state (u − 1, Zu−1, yu−1), so that Z̃u = Zu−1 +νu. We
use (10) and (11) with k = u − 1 to deduce

Z̃u ≤ Z∗
u−1 + (u − 1) δ + νu = Z∗

u + (u − 1) δ,

and (10) with k = u follows from (12). Besides, yu ≤ ỹu = yu−1 ≤ y∗
u−1 = y∗

u,
which proves (11) with k = u.

To complete the proof, notice that P (xε) is equal to the smallest found value
Zn, and due to (10) for k = n we have that Zn ≤ Z∗

n + nδ ≤ P (x∗) + εPLB ≤
(1 + ε) P (x∗).

Notice that an FPTAS by Kellerer and Strusevich (2010a, 2010b) that is
designed to handle a more general Problem SQK is much more complicated,
it is based on two versions of the DP algorithm, primal and dual, and uses
intervals of variable length to reduce the number of stored states. The running
time of an FPTAS by Kellerer and Strusevich (2010a, 2010b) can be expressed as
O
(

Rn4/ε2
)

. A simpler structure and a faster time of Algorithm EpsPosHPK is
due to the special shape of the objective function (3), in which all coefficients are
non-negative and the quadratic terms of the form (1 − xi) (1 − xj) are absent.

Algorithm EpsPosHPK works also for a less restricted Problem PosHP with
no knapsack constraint, it suffices in Problem PosHPK to take a sufficiently
large value A on the weight of the knapsack, e.g., A =

∑n

j=1 αj .
On the other hand, there is an alternative way of obtaining an FPTAS

for Problem PosHP. Recall that Erel and Ghosh (2008) describe an algorithm,
which we call Algorithm EG, that behaves as an FPTAS for Problem HPAdd
with an objective function F (x) of the form (2), provided that lower and upper
bounds on the optimal value of the objective function are available, so that
FLB ≤ F (x∗) ≤ FUB . Erel and Ghosh (2008) prove the following statement,
formulated in their paper as Theorem 5.

Lemma 2. [cf. Erel and Ghosh (2008)] Let xε be a vector found by Algo-
rithm EG applied to Problem HPAdd to minimize a function F (x) of the
form (2), with a lower bound FLB and an upper bound FUB on the optimal
value. Then F (xε) − F (x∗) ≤ εFLB and the running time of the algorithm is
O(R′n2/ε) time, where R′ = FUB/FLB .

Lemmas 1 and 2 are very similar in nature and both rely on what we call
the second ingredient, the presence of the upper bound on the optimal value of
the function. It follows that Problem PosHPK and Problem PosHP admit an
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FPTAS, provided that the ratios R and R′ are bounded by a polynomial of the
length of the input. In particular, if both R and R′ are constants and can be
found in at most O(n2) time, then each of the corresponding FPTAS’s requires
O
(

n2/ε
)

time.
As demonstrated in the following section, a O(n2)-time constant ratio ap-

proximation algorithm can be developed for each Problem PosHP and Prob-
lem PosHPK, provided that the objective is convex.

3. Constant Ratio Approximation Algorithms

Our development of constant ratio approximation algorithms for Prob-
lem PosHP and Problem PosHPK consists of two phases. First, we solve the
continuous relaxation of these problems. Second, we appropriately round the
continuous solution to obtain a Boolean vector of decision variables and show
that the value of the objective function is a constant factor away from the op-
timum. Notice, that in the first phase we need to assume that the objective
function is convex.

A similar two-stage approach is applied in Kellerer and Strusevich (2010b),
where an FPTAS for Problem SQK of the form (5) with a convex quadratic
function is developed.

Solving of the continuous relaxations of Problem PosHP and Prob-
lem PosHPK with convex functions is done by reducing them to a problem
of minimizing a quadratic cost flow function in a network of a special structure.
The same approach is used in Kellerer and Strusevich (2010b) for Problem SQK
with a convex objective. Since this approach involves a non-trivial reduction, in
order to make this paper self-contained we have decided to provide the reader
with its brief description, see Section 3.1.

The rounding procedure in Kellerer and Strusevich (2010b) is a constant
ratio approximation algorithm for Problem SQK. There are two reasons why we
cannot use it directly for the purposes of this paper:

• its running time is O(n3), which would not lead to an FPTAS of O(n2/ε)
running time;

• the constant ratio is only guaranteed under the additional constraints

νj ≥ αjβj , j = 1, . . . , n; (13)

see Theorem 2 of Kellerer and Strusevich (2010b).

Thus, the rounding procedure in Section 3.2 relies on different reasoning and
algorithmic techniques, e.g., the use of a constant ratio approximation algorithm
for a linear integer knapsack minimization problem.
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3.1. Solving Continuous Relaxation

For a problem of Boolean programming, introduce its continuous relaxation,
i.e., the problem obtained from the original Boolean formulation by relaxing the
integrality constraints and replacing the condition xj ∈ {0, 1} by 0 ≤ xj ≤ 1,
j = 1, 2, . . . , n. For Problem PosHP and Problem PosHPK, denote their con-
tinuous relaxations by Problem PosHPr and Problem PosHPKr, respectively.
Denote the vector that solves a relaxation problem by xC =

(

xC
1 , xC

2 , . . . , xC
n

)

.
Obviously, for each Problem PosHP and Problem PosHPK, the inequality
P
(

xC
)

≤ P (x∗) holds.
Recall that our ultimate goal is to develop an FPTAS that for each Prob-

lem PosHP and Problem PosHPK requires O(n2/ε) time. Thus, for each Prob-
lem PosHPKr and Problem PosHPKr we need an algorithm that solves the
corresponding problem in at most O(n2) time.

The idea is outlined below. Assume that function (3) is convex. Using the
fact that for a Boolean variable xj = x2

j , j ∈ N , rewrite

P (x) =
∑

1≤i<j≤n

αiβjxixj +

n
∑

j=1

µjxj +

n
∑

j=1

νj (1 − xj) + K

=
∑

1≤i≤j≤n

αiβjxixj −
n
∑

j=1

(νj − αjβj − µj) xj +
n
∑

j=1

νj + K.

Introduce new decision variables χj = αjxj , j = 1, 2, . . . , n, and rewrite the
continuous relaxation of Problem PosHPK as

Minimize P (χ) =
n
∑

i=1

ciχi

i
∑

j=1

χj −
∑n

j=1 γjχj + K ′

Subject to
∑n

j=1 χj ≤ A

0 ≤ χj ≤ αj , j = 1, 2, . . . , n;

where K ′ =
∑n

j=1 νj + K, cj = βj/αj and γj = (νj − αjβj − µj) /αj . We can
reformulate the objective function in an almost separable form

n
∑

i=1

ciχi

i
∑

j=1

χj =
1

2

n
∑

i=1

ciχ
2
i +

1

2

n−1
∑

i=1

(ci − ci+1)





i
∑

j=1

χj





2

+
1

2
cn

(

n
∑

i=1

χi

)2

;

the proof of a similar equality can be found in Kellerer and Strusevich (2010b).
Introduce the network G with the set V of vertices and set E of arcs. Set

V consists of a single source vs, a single sink vt, the vertices wn, wn−1, . . . , w2

and the vertices tn, tn−1, . . . , t1. Set E consists of the following arcs: (vs, wn)

of capacity A, (wj , tj) of capacity αj and (wj , wj−1) of capacity
∑j−1

i=1 αi for
j = n, n − 1, . . . , 3; (w2, t2) and (w2, t1) of capacity α2 and α1, respectively;
besides, for each j, 1 ≤ j ≤ n, vertex tj is connected to the sink by the arc
(tj , vt) of capacity αj . Let f be a flow on an arc, then the cost of that flow
is defined as 1

2
cnf2 for arc (vs, wn), as 1

2
(cj−1 − cj) f2 for each arc (wj , wj−1)

10



where j = n, n − 1, . . . , 3; as 1
2
cjf

2 − γ′
jf for the arc that enters vertex tj ,

j = 2, 3, . . . , n; as (c1 − 1
2
c2)f2 − γ′

1f for arc (w2, t1), while the cost of the flow
on each arc that enters the sink is zero. It is clear that the minimum cost of the
flow in the constructed network corresponds to the minimum value of Z − K ′,
while the flow on the arc that enters vertex tj is equal to the corresponding
value of the decision variable χj . See Kellerer and Strusevich (2010b, 2012) for
a numerical example of the network.

Tamir (1993) presents an algorithm that minimizes a quadratic convex flow
cost function on a series-parallel network with a single source and sink. In
our case, network G satisfies the required condition, since it is a rooted tree
with a single source and sink. Another point that makes our problem a special
case of the one solved by Tamir is that his model is parametric, with the sum
of all decision variables bounded by a running parameter that in his paper is
denoted by q. For this parametric problem, each decision variable is defined as
a piecewise-linear function of q. In our case, we only need an output of Tamir’s
algorithm for q = A, where A is either

∑

j∈N αj (for Problem PosHPr) or the
right-hand side of the knapsack constraint (for Problem PosHPKr).

In general, for a network with the set of vertices V and the set of arcs E,
the running time of Tamir’s algorithm is O(|V | |E| + |E| log |E|), and it takes
extra O(log |E|) time to output the solution for a particular value of q. Since
for our network G, we have that |V | = O(n) and |E| = O(n), we conclude that
the following statement holds.

Theorem 1. Each Problem PosHPr and Problem PosHPKr with a convex ob-
jective function can be solved in O(n2) time.

Notice that function P (x) of the from (3) is convex, provided that

α1

β1

≤ α2

β2

≤ . . . ≤ αn

βn

. (14)

This follows from the fact that matrix

G =











α1β1 α1β2 · · · α1βn

α1β2 α2β2 · · · α2βn

...
...

. . .
...

α1βn α2βn · · · αnβn











is positive semi-definite, as proved by Skutella (2001). As will be seen in Sec-
tion 4, the condition (14) is an analogue of the famous WSPT rule, widely used
in scheduling theory.

3.2. Rounding Algorithms

In this subsection, for each Problem PosHP and Problem PosHPK with the
objective function of the form (3), the components of vector xC can be appropri-
ately rounded, so that for the resulting Boolean vector xH =

(

xH
1 , xH

2 , . . . , xH
n

)

,

the inequality P
(

xH
)

≤ ρP (x∗) holds, where ρ is a constant. Notice that our

11



goal is not to design an algorithm with a particularly small worst-case ratio ρ;
we are rather interested in the fact that a fast constant-ratio rounding algorithm
can be developed for each problem.

In the corresponding rounding algorithms the number λ = 1
2

√
5 − 1

2
=

0.618 03 plays an important role. This number is the positive root of the equa-
tion x2 = 1 − x. Notice that

1

λ2
=

1

1 − λ
=

3 +
√

5

2
= 2. 618 . . . > 1. 618... =

1

λ
. (15)

The algorithm below uses an approximation algorithm for a linear knapsack
minimization problem. Consider the minimization linear knapsack problem with
the set of items I.

Minimize
∑

j∈I cjyj

Subject to
∑

j∈I qjyj ≥ Q

yj ∈ {0, 1} , j ∈ I.

Let y∗ be an optimal solution vector. Csirik et al. (1991) give an O(n log n)
algorithm, which they call Algorithm GR, that finds a vector yH such that

∑

j∈I

cjy
H
j ≤ 2

∑

j∈I

cjy
∗
j .

There are other algorithms known for the problem that also provide a con-
stant ratio; see, e.g., Güntzer and Jungnickel (2000).

Algorithm PosHPKConstR

Step 1. Input vector xC =
(

xC
1 , xC

2 , . . . , xC
n

)

that solves Problem PosHPKr.

Define λ := 1
2

√
5 − 1

2
.

Step 2. Define N1 :=
{

j ∈ N |xC
j ≤ λ

}

and N2 := N\N1.

Step 3. Introduce the following auxiliary linear knapsack problem

Minimize
∑

j∈N2
νjyj

Subject to
∑

j∈N2
αjyj ≥∑j∈N2

αj − A

yj ∈ {0, 1} , j ∈ N2.

(16)

Run Algorithm GR by Csirik et al. (1991) to find a vector yH with com-
ponents yH

j , j ∈ N2, which delivers an approximate solution to problem
(16).

Step 4. Output vector xH with components xH
j = 0 for j ∈ N1 and xH

j =

1 − yH
j for j ∈ N2 and the value Z(xH). Stop.

12



Theorem 2. Let x∗ be a vector that delivers an optimal solution to Prob-
lem PosHPK with a convex objective function. Algorithm PosHPKConstR re-
quires O(n log n) time and finds a vector xH such that

P (xH)

P (x∗)
≤ 7 +

√
5

2
= 4.618 . . .

Proof: It is clear that for a given vector xC , Algorithm PosHPKConstR
requires O(n log n) time, since its most time consuming component is Step 3,
and Algorithm GR takes O(n log n) time.

Notice that a solution represented by vector xH is knapsack-feasible since
∑

j∈N2
αjy

H
j ≥∑j∈N2

αj − A and

∑

j∈N

αjx
H
j =

∑

j∈N1

αjx
H
j +

∑

j∈N2

αjx
H
j =

∑

j∈N2

αjx
H
j =

∑

j∈N2

αj(1 − yH
j )

=
∑

j∈N2

αj −
∑

j∈N2

αjy
H
j ≤ A.

For vector xH , let us estimate the contributions to the quadratic part of the
objective function. Take an arbitrary pair of items i and j, with i < j. If either
i ∈ N1 or j ∈ N1 then

αiβjx
H
i xH

j = 0 ≤ 1

λ2
αiβjx

C
i xC

j .

If both i and j are from set N2 then xC
i > λ and xC

j > λ, so that

αiβjx
H
i xH

j ≤ αiβj ≤ 1

λ2
αiβjx

C
i xC

j .

Thus,
∑

1≤i<j≤n

αiβjx
H
i xH

j ≤ 1

λ2

∑

1≤i<j≤n

αiβjx
C
i xC

j . (17)

Now we estimate the contributions to the linear part. For j ∈ N1, we obtain

µjx
H
j = 0 ≤ 1

λ
µjx

C
j <

1

1 − λ
µjx

C
j ;

νj(1 − xH
j ) = νj ≤ 1

1 − λ
νj

(

1 − xC
j

)

,

so that

∑

j∈N1

µjx
H
j +

∑

j∈N1

γj(1 − xH
j ) ≤ 1

1 − λ





∑

j∈N1

µjx
C
j +

∑

j∈N1

γj

(

1 − xC
j

)





For each j ∈ N2 we have that

µjx
H
j ≤ µj ≤ 1

λ
µjx

C
j <

1

1 − λ
µjx

C
j .
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Besides,
∑

j∈N2

γj(1 − xH
j ) =

∑

j∈N2

γjy
H
j ≤ 2

∑

j∈N2

γjy
∗
j ,

where y∗
j is a component of an optimal solution vector for problem (16) in

Step 3 of the algorithm. By definition,
∑

j∈N2
γjy

∗
j ≤ ∑

j∈N2
γjyj for any

feasible binary vector with the components yj . For vector x∗ that is optimal for
Problem PosHPK, we deduce

∑

j∈N

αjx
∗
j =

∑

j∈N1

αjx
∗
j +

∑

j∈N2

αjx
∗
j ≤ A,

so that
∑

j∈N2

αj(1 − x∗
j ) ≥

∑

j∈N2

αj − A +
∑

j∈N1

αjx
∗
j ≥

∑

j∈N2

αj − A.

This implies that the vector with the components 1− x∗
j , j ∈ N2, is feasible

for problem (16) and therefore

∑

j∈N2

γjy
∗
j ≤

∑

j∈N2

γj(1 − x∗
j ).

Thus,

∑

j∈N2

µjx
H
j +

∑

j∈N2

γj(1 − xH
j ) ≤ 1

1 − λ

∑

j∈N2

µjx
C
j + 2

∑

j∈N2

γj(1 − x∗
j ).

Using (15), we deduce

P (xH) =
∑

1≤i<j≤n

αiβjx
H
i xH

j +
∑

j∈N1

µjx
H
j +

∑

j∈N1

γj(1 − xH
j ) +

∑

j∈N2

µjx
H
j

+
∑

j∈N2

γj(1 − xH
j ) + K

≤ 1

λ2

∑

1≤i<j≤n

αiβjx
C
i xC

j +
1

1 − λ





∑

j∈N

µjx
C
j +

∑

j∈N1

γj

(

1 − xC
j

)





+2
∑

j∈N2

γj(1 − x∗
j ) + K

=
3 +

√
5

2





∑

1≤i<j≤n

αiβjx
C
i xC

j +
∑

j∈N

µjx
C
j +

∑

j∈N1

γj

(

1 − xC
j

)





+2
∑

j∈N2

γj(1 − x∗
j ) + K

≤ 3 +
√

5

2
P (xC) + 2P (x∗) ≤ 7 +

√
5

2
P (x∗),
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as required.
Algorithm PosHPKConstR can easily be simplified to handle Prob-

lem PosHP with no knapsack constraint. It suffices to skip Step 3 all together
and set xH

j = 1 for j ∈ N2. The modified rounding algorithm requires only

O(n) time and finds a vector xH such that

P (xH)

P (x∗)
≤ 3 +

√
5

2
= 2.618 . . .

Thus, we can summarize the results of Sections 2 and 3 as the following
statement.

Theorem 3. Each of Problem PosHP and Problem PosHPK with a convex
objective of the form (3) admits an FPTAS that requires O(n2/ε) time.

In the following section, we demonstrate the implications of Theorem 3 for
various scheduling applications.

4. Scheduling Applications of Problems PosHP and PosHPK

In this section, we present a number of scheduling problems that can be for-
mulated in terms of either Problem PosHP or Problem PosHPK. We show that
for each of these problems an ε−approximate solution can be found in O(n2/ε)
time, thereby improving most of the known results. A detailed review of the re-
lated issues is contained in Kellerer and Strusevich (2012). Also notice that the
presented applications do not follow from the previously known FPTASs, e.g.,
for Problem SQK. In particular, this is because for all scheduling applications
given below the conditions (13) need not hold.

In most scheduling problems reviewed in this paper, we are given a set N =
{1, 2, . . . , n} of jobs to be processed without preemption on a single machine.
The processing of job j ∈ N takes pj time units. There is a positive weight wj

associated with job j, which indicates its relative importance. All values pj and
wj are positive integers. The machine processes at most one job at a time. The
completion time of job j ∈ N in a feasible schedule S is denoted by Cj(S), or
shortly Cj if it is clear which schedule is referred to. In a specific problem, it
is required to minimize a function F (S) that depends on the completion times
Cj(S). For all problems under consideration S∗ denotes an optimal schedule,
i.e., F (S∗) ≤ F (S) for any feasible schedule S.

For all scheduling problems we use a classification scheme widely accepted
in scheduling theory that associates each problem with a three-field descriptor
α|β|γ where α represents the machine environment, β defines the job charac-
teristics, and γ is the optimality criterion.

Unless stated otherwise, the jobs are numbered in such a way that

p1

w1

≤ p2

w2

≤ . . . ≤ pn

wn

. (18)
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We call the sequence of jobs numbered in accordance with (18) a Smith se-
quence or a WSPT sequence (Weighted Shortest Processing Time). Recall that
in an optimal schedule for the classical single machine problem of minimizing
the sum of the weighted completion times, the jobs are processed according to
the WSPT sequence, see Smith (1956).

In our working presented below we often use the fact for a Boolean variable
x2

j = xj .

4.1. Scheduling with Controllable Processing Times

In scheduling with controllable processing times, the actual durations of the
jobs are not fixed in advance, but have to be chosen from a given interval. This
area of scheduling has been active since the 1980s, see surveys by Nowicki and
Zdrza lka (1990) and by Shabtay and Steiner (2007).

Normally, for a scheduling model with controllable processing times two
types of decisions are required: (i) each job has to be assigned its actual pro-
cessing time, and (ii) a schedule has to be found that provides a required level of
quality. There is a penalty for assigning shorter actual processing times, since
the reduction in processing time is usually associated with an additional effort,
e.g., allocation of additional resources or improving processing conditions. A
quality of the resulting schedule is measured with respect to the cost of assign-
ing the actual processing times that guarantee a certain scheduling performance.

Consider the following problem of scheduling jobs on a single machine. For
each job j ∈ N , its processing time pj is not given in advance but has to be

chosen by the decision-maker from a given interval
[

p
j
, pj

]

. That selection pro-

cess can be seen as compressing (also known as crashing) the longest processing
time pj down to pj , and the value yj = pj −pj is called the compression amount
of job j. Compression may decrease the completion time of each job j but
incurs additional cost vjyj , where vj is a given non-negative unit compression
cost. The goal is to find the actual processing times and the sequence of jobs
such that the sum of the total weighted completion time

∑

j∈N wjCj and the
total compression cost

∑

j∈N vjyj is minimized. Extending standard scheduling

notation, we denote this problem by 1
∣

∣pj = pj − yj

∣

∣

∑

j∈N wjCj +
∑

j∈N vjyj .
For this problem,Vickson (1980) proves what is known as the “All-or-None”

property: in an optimal schedule each job is either fully compressed, i.e., pj = p
j

or fully decompressed, i.e., pj = pj .
We focus on a special case of the problem in which p

j
= 0. The result-

ing problem is NP-hard in the ordinary sense, as independently proved by
Hoogeveen and Woeginger (2002) and by Wan et al. (2001). Combining the
results by Vickson (1980) and the optimality of the WSPT rule (18) for mini-
mizing

∑

j∈N wjCj on a single machine, it follows that in an optimal sequence
some jobs will have zero processing times (and therefore zero completion times),
while the other jobs will be sequenced in non-decreasing order of pj/wj and for
each of these jobs the compression cost is zero.

Janiak et al. (2005) use problem 1
∣

∣pj = pj − yj

∣

∣

∑

j∈N wjCj +
∑

j∈N vjyj as
an example of a scheduling problem for which reformulation in the form F (x) =
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H(x) +K is possible, but |H(x∗)/F (x∗)| can be arbitrary large, so that an FP-
TAS available for the corresponding Problem HP does not behave as an FPTAS
for Problem HPAdd. In fact, namely problem 1

∣

∣pj = pj − yj

∣

∣

∑

j∈N wjCj +
∑

j∈N vjyj has motivated Janiak et al. to introduce the positive half-product.
Following Janiak et al. (2005), introduce the Boolean decision variables

xj =

{

1, if pj = pj

0, otherwise

and renumber the jobs in non-decreasing order of pj/wj .
Then job j completes at

Cj =

j
∑

i=1

pixi, (19)

so that the objective function can be written as

n
∑

j=1

wjCj +
n
∑

j=1

vjyj =
n
∑

j=1

wjxj

j
∑

i=1

pixi +
n
∑

j=1

pjvj (1 − xj)

=
n
∑

1≤i<j≤n

pixixj +
n
∑

j=1

pjwjxj +
n
∑

j=1

pjvj (1 − xj) ,

i.e., the function is a positive half-product function of the form (3) with

αj = pj , βj = wj , µj = pjwj , νj = pjvj , K = 0.

It is shown in Janiak et al. (2005) that problem 1
∣

∣pj = pj − yj

∣

∣

∑

j∈N wjCj+
∑

j∈N vjyj admits an FPTAS that requires either O
(

n2 log
(
∑

pj

)

/ε
)

or

O
(

n2 log (
∑

wj) /ε
)

time. Erel and Ghosh (2008) give a faster FPTAS of the
running time O(n2 log (max {pj , wj , n})/ε) .

Due to the numbering of the jobs, the condition (14) holds, so that the
objective function is convex. Thus, a direct application of Theorem 3 guarantees
that problem 1

∣

∣pj = pj − yj

∣

∣

∑

j∈N wjCj +
∑

j∈N vjyj admits an FPTAS that

requires O(n2/ε) time.

4.2. Scheduling with Controllable Release Dates

In scheduling with controllable release dates, the actual times at which the
jobs enter the system are not fixed in advance, but have to be chosen from a
given interval. These problems can serve as mathematical models of situations
that arise in supply chain scheduling, i.e., when the times by which the supplier
delivers the required materials to the manufacturer can be negotiated.

If the due dates rj are fixed and the jobs are numbered in non-decreasing
order of their values, then for an optimal schedule S∗ the makespan, i.e., the
maximum completion time, is given by

Cmax(S∗) = max
1≤u≤n







ru +
n
∑

j=u

pj







. (20)
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Below, we focus on the model studied by Shakhlevich and Strusevich (2006),
in which the processing times are fixed and equal to pj , and the decision-maker
chooses the actual values of the release dates rj from a given interval [r, r̄], the
same for all jobs j ∈ N . We further assume that the length of the interval
exceeds the sum of all processing times. Reducing r̄ to some actual value rj ,
r ≤ rj ≤ r̄, incurs additional cost βjyj , where yj = r̄ − rj is the compression
amount of the corresponding release date. The goal is to find the actual release
dates and the sequence of jobs such that the sum of the makespan Cmax and the
total compression cost of the release dates

∑

j∈N vjyj is minimized. We denote
this problem by 1 |rj ∈ [r, r̄]|Cmax +

∑

j∈N vjyj .
Let the jobs that become available earlier than time r̄ be called early jobs,

while the other jobs are called late. Notice that the late jobs have a common
release date r̄, while for the early jobs the release dates have been reduced
individually. As proved by Shakhlevich and Strusevich (2006), in an optimal
schedule either all jobs are late or there exists a sequence of early jobs with the
last early job completed at time r̄.

Adapting the WSPT rule (18), we deduce that in an optimal sequence the
early jobs will be sequenced in non-decreasing order of vj/pj . Renumber the
jobs in this order, and introduce the Boolean decision variables

xj =

{

1, if j is sequenced early
0, otherwise

.

Then problem 1 |rj ∈ [r, r̄]|Cmax +
∑

j∈N vjyj reduces to minimizing the
function

Cmax +

n
∑

j=1

vjyj =



r̄ +

n
∑

j=1

pj (1 − xj)



+

n
∑

j=1

vjxj

j
∑

i=1

pixi

=
n
∑

1≤i<j≤n

vipjxixj +
n
∑

j=1

pjvjxj +
n
∑

j=1

pj (1 − xj) + r̄,

i.e., to a positive half-product function of the form (3) with

αj = vj , βj = pj , µj = pjvj , νj = pj , K = r̄.

Interpreting the results of Janiak et al. (2005), this implies that the problem
admits an FPTAS that runs either in O

(

n2 log (
∑

pj) /ε
)

or O
(

n2 log (
∑

vj) /ε
)

time.
Due to the numbering of the jobs, the condition (14) holds, so that the

objective function is convex. Thus, a direct application of Theorem 3 guarantees
that problem 1 |rj ∈ [r, r̄]|Cmax +

∑

j∈N vjyj admits an FPTAS that requires

O(n2/ε) time.

4.3. Scheduling with Rejection

Consider the following model of scheduling with rejection introduced by
Engels et al. (2003). The decision-maker has to decide which of the jobs of
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set N to accept for processing and which to reject. This decision splits the set
of jobs into two subsets, NA and NR = N\NA of accepted and rejected jobs,
correspondingly. Each rejected job j incurs a penalty of vj . The purpose is
to minimize the sum of the total weighted completion time

∑

j∈NA
wjCj of the

accepted jobs and the total rejection penalty
∑

j∈NR
vj . We denote this problem

by 1 |rej|
∑

j∈NA
wjCj +

∑

j∈NR
vj .

In practice rejection decisions are often taken when the processing capabil-
ities will not allow the completion of all jobs by a given deadline. Below, we
introduce a restricted version of the problem not studied by Engels et al. (2003),
in which all accepted jobs must be completed by a given time d. We denote this
problem by 1 |rej, Cj ≤ D|∑j∈NA

wjCj +
∑

j∈NR
vj .

Engels et al. (2003) show that problem 1 |rej|∑j∈NA
wjCj +

∑

j∈NR
vj

is NP-hard in the ordinary sense and present an FPTAS that requires
O
(

n2 log (
∑

pj) /ε
)

time. Their reasoning does not use a link between this
problem and quadratic Boolean programming.

Below we show that the objective function in each of the problems
1 |rej|

∑

j∈NA
wjCj +

∑

j∈NR
vj and 1 |rej, Cj ≤ d|∑j∈NA

wjCj +
∑

j∈NR
vj is

in fact a convex positive Half-Product, so that Theorem 3 is applicable.
As before, it follows from the optimality of the WSPT rule for minimizing

the total weighted completion time
∑

j∈N wjCj on a single machine that in an
optimal sequence the accepted jobs will be sequenced in accordance with (18).
Renumber the jobs in this order, and introduce the Boolean decision variables

xj =

{

1, if j is accepted
0, otherwise

.

Then an accepted job j completes at time Cj given by (19), and the objective
function can be written as

∑

j∈NA

wjCj +
∑

j∈NR

vj =
n
∑

j=1

wjxj

j
∑

i=1

pixi +
n
∑

j=1

vj (1 − xj)

=
n
∑

1≤i<j≤n

piwjxixj +
n
∑

j=1

pjwjxj +
n
∑

j=1

vj (1 − xj) ,

i.e., to a positive half-product function of the form (3) with

αj = pj , βj = wj , µj = pjwj , νj = vj , K = 0.

Thus, problem 1 |rej|
∑

j∈NA
wjCj +

∑

j∈NR
vj is Problem PosHP. For prob-

lem 1 |rej, Cj ≤ D|∑j∈NA
wjCj +

∑

j∈NR
vj the condition that all accepted jobs

complete no later than time d can be written in the form of an additional knap-
sack constraint

n
∑

j=1

pjxj ≤ d,

so that the problem can be seen as Problem PosHPK.
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Due to the numbering of the jobs, the condition (14) holds, so that the objec-
tive function is convex. Thus, a direct application of Theorem 3 guarantees that
each problem 1 |rej|∑j∈NA

wjCj+
∑

j∈NR
vj and 1 |rej, Cj ≤ D|∑j∈NA

wjCj+
∑

j∈NR
vj admits an FPTAS that requires O(n2/ε) time.

4.4. When Positive Half-Product Formulations are Impossible

There are other scheduling problems that can be formulated, e.g., as Prob-
lem PosHP; see Erel and Ghosh (2008) and Kellerer and Strusevich (2012). We
do not discuss such problems here, since they are known to admit an FPTAS
that requires O(n2/ε) time. On the other hand, there are problems that can be
reformulated in terms of Problem HPAdd or Problem SQK, but not in terms of
minimization of a positive Half-product.

As an illustration, we take the problem of minimizing the total weighted
earliness and tardiness on a single machine. In this model, the jobs have a
common due date d. In a schedule S, a job is said to be early if Cj(S) − d ≤ 0,
and its earliness is defined as Ej(S) = d−Cj(S). On the other hand, a job is said
to be late if Cj(S)−d > 0, and its tardiness is defined as Tj(S) = Cj(S)−d. The
aim is to find a schedule that minimizes the function

∑

j∈N wj (Ej (S) + Tj (S)).
Problems with an earliness-tardiness criterion are important in just-in-time

manufacturing, where the earliness generates holding costs and the tardiness
incurs a penalty for a late delivery. Notice that the weights are symmetric, i.e.,
for job j the same weight wj is applied, no matter the job is late or early. Below
we only focus on the version of the problem with a large or nonrestrictive due
date, i.e., we assume that d ≥∑ pj . We denote this problem by 1| |∑wj(Ej +
Tj). It is solvable in O(n log n) time, provided that the weights are equal;
otherwise, it is NP-hard in the ordinary sense as proved by Hall and Posner
(1991). As proved by Hall and Posner (1991), for problem 1| |

∑

wj(Ej + Tj)
there exists an optimal schedule in which some job completes exactly at time
d, i.e., it will have neither earliness nor tardiness. There is no intermediate
idle time in job processing, but some idle time may occur before the first early
job. Renumber the jobs in accordance with the WSPT rule (18). In an optimal
schedule the early jobs are processed in the order opposite to this numbering,
while the jobs that start either at or after the due date are processed in the
order of their numbering; see Hall and Posner (1991).

Kellerer and Strusevich (2010b) show that problem 1| |
∑

wj(Ej + Tj) can
be formulated as Problem HPAdd. Introduce Boolean decision variables

xj =

{

1, if job j completes by the due date d
0, otherwise.
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Then

n
∑

j=1

wj(Ej + Tj) =
∑

1≤i<j≤n

piwjxixj +
∑

1≤i<j≤n

piwj(1 − xi)(1 − xj)

+
n
∑

j=1

pjwj(1 − xj)

= 2
∑

1≤i<j≤n

piwjxixj −
n
∑

j=1



pj

n
∑

i=j

wi + wj

j
∑

i=1

pi − pjwj



xj

+
n
∑

i=1



pi

n
∑

j=i

wj



 ,

so that this function can be seen as a function of the form (2) with

αj = pj , βj = 2wj , γj = pj

n
∑

i=j

wi + wj

j
∑

i=1

pi − pjwj , K =
n
∑

i=1



pi

n
∑

j=i

wj



 .

However, it can be verified the function cannot be written in the form (3)
with all non-negative coefficients. This means that Theorem 3 is not applicable,
and the best known FPTASs for the problem remain those developed by Erel and
Ghosh (2008) and Kellerer and Strusevich (2010b) that require O(n2 log (K) /ε)
and O(n4/ε2) time, respectively.

5. Conclusion

In this paper we demonstrate that the quadratic Boolean programming prob-
lem known as the positive Half-Product admits an FPTAS that requires O(n2/ε)
time, provided that the objective function is convex. Moreover, if an additional
linear knapsack constraint is added, the running time of the resulting FPTAS
does not increase.

Notice that the factor n2 in the running time estimate cannot be reduced,
since computing the objective function for a given set of decision variables takes
O(n2) time. The proposed fast FPTASs are applied to several scheduling prob-
lems, for which no FPTAS with a strongly polynomial time has been known.

It is an attractive goal to continue a search for sufficient conditions under
which Problem HPAdd or Problem SQK admits an FPTAS that runs faster than
in general case. Another interesting topic is to study Boolean programming
problems with a quadratic objective function more general than a half-product,
as well as quadratically constrained problems.
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