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Abstract 

The first part of the thesis deals with the strategy development for multiblock 

structured grid generation to complex geometries. Based on the grid generation 

practices over years, a set of grid construction rules is developed to provide the 

CFD engineer an object-oriented method for grid design. 

The essential core of the object-oriented method is to decompose a complex 

meshing task into a set of sub-tasks, which are treated individually at a lower 

level of both geometry and topology. The grid construction rules cover the 

questions of dealing with selection of meshing direction, generation of surface 

description and block topology building. To explain this grid design method, an 

example, dealing with a highly complex geometry, is demonstrated. 

The second part of the thesis deals with the strategy development for multiblock 

structured grid adaptation. Since a grid can be adapted with or without a flow 

solution, the terminologies passive and active grid adaptation are introduced to 

describe a solution-dependent or a solution-independent grid adaptation. 

Passive grid adaptation is performed by generating adequate block topologies, 

such that a local enrichment of grid points can be achieved. It consists of three 

concepts: one-dimensional clustering of grid lines, block encapsulation, and smart 

block. The method for solution-dependent grid adaptation is developed based on 

the idea of grid optimization. A grid is adapted by minimization of objective 

functions, in which relations among weight functions and grid line distribution 

are formulated. The measures for grid quality, such as smoothness, cell aspect 

ratio, and orthogonality, are formulated as control terms of the objective functions 

to improve grid quality. In addition, a concept of smart cell used for solution-

dependent grid adaptation is proposed in this thesis. 
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Chapter 1 

Motivation of the Thesis 

Recent advances in computational fluid dynamics have provided new possibilities 

for flow simulation with both increasingly complex physics and geometries. 

Flow fields that include complicated physical phenomena such as shock waves, 

flow separation, and combustion or heat transfer processes, are simulated by 

numerically solving partial differential equations and visualizing their solutions 

using powerful computer facilities. Flow simulations are used at different stages 

of design and optimization processes in many fields. They provide engineers a 

visual understanding of flow features, so that their influence can be considered 

during the engineering design. Given ever increasing geometric complexity, it 

is becoming more complicated to simulate the overall flow behavior and flow 

characteristics. One of the major difficulties is generating a computational grid 

whose grid lines are aligned with the geometric shape as well as the prevailing 

flow direction, and whose grid density provides sufficient resolution to capture 

the flow features of interest. 

Numerical grid generation is a preprocess of decomposing a given solution 

domain in the form of a mesh. Solution domains with complex geometries can 

either be meshed by unstructured grids or structured grids. Unstructured grids 

are formed with no relation to coordinate directions, while structured grids are 

formed by the intersections of curvilinear coordinate surfaces [91]. 

In general, an unstructured grid consists of tetrahedral cells in the most basic 

form in three-dimensional space, but may be made of mixed hexahedral or 

tetrahedral elements [85]. Unstructured grid generation requires a large 

demand for both cells and relations among them. It would be hard to conclude 

that purely unstructured meshes can provide better solution although 

they do [96], [106]. However, the time saving and the ease of grid generation 

1 



CHAPTER]. MOTIVATION OF THE THESIS 2 

for complex geometries shows a high efficiency in flow simulation [2], [59], [75L 

[91], [100]. It is therefore widely used in different industrial fields due to these 

advantages. 

Multiblock structured grids that are unstructured globally with respect to block 

connectivity, but structured locally within a block enable the user to divide a 

complete solution domain into a set of subdomains that will be meshed with a 

low degree of geometric complexity. Because of its uniform data structure of 

each single block, the solution process can be performed by computing a single 

structured block, and then updating the data on block boundaries [41]. 

Although there are advantages using structured grids in flow simulations, the 

grid generation itself is a more complicated process. It requires a comprehensive 

knowledge of both geometry and topology, as well as flow physics. Another 

complicated task is to adapt a multiblock grid, since grid points within the 

solution domain and on a fixed boundary have different geometric constraints. 

Grid adaptation has to be performed with respect to the geometric features on 

the fixed boundary, as well as the coupling on block to block interfaces. The 

motivation of the present thesis is to develop a general strategy for structured 

grid generation as well as grid adaptation for highly complex geometries. 

1.1 Challenges in Structured Grid Generation 

A general process of grid generation consists of geometry data preparation, block 

structure building, block building or grid topology building, and grid generation, 

as depicted in Fig. 1.1. In order to develop the new strategy for structured 

grid generation for highly complex geometries, the general challenges are briefly 

addressed below. 

1.1.1 Surface Description 

In general, geometric objects of high complexity are modelled by CAD tools. 

Shapes of these objects are described by a set of ruled or approximated surfaces. 

They can be represented by wireframe or solid models, as depicted in Fig. 1.2. 

A wireframe model is given by representing the boundaries of all surfaces, while 

a volume model is represented by a closed surface of the body as the result from 
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Figure 1.1: The flow chart explains the process from CAD geometry 
design to grid generation. In this diagram, the human interaction, 
process and data are represented by symbols ellipsoid, parallelogram 
and rectangle with rounded off vertices, respectively. 

the union of all solids. Since CAD output does not give the complete surface 

description of a volume model, the boundary description of a meshing domain 

will be obtained by extracting the geometric data of the closed surface of a CAD 

volume model. A very general question dealing with modelling a meshing domain 

IS 

• Can an arbitrary geometric configuration modelled be used 
for building a meshing domain? 

Ge:::rretric fea.tures: thy are 
dBra:::teri2Ed 1::y int-erm:iCTE, 
a.n:vatures of SJrfa::Es. 

CAD geometry model : t1E 
cmfiguratim is ar:proxlliatai 
1::y aBlyt:ical cr 8..1rfa:Es. 

Figure 1.2: A CAD model for a generic vehicle. The geometry is rep-
resented by a wireframe and a volume model. The shape features of 
geometry are described implicitly in the CAD output data. 

Shape features such as tangent planes, the principal curvatures, harp edge . or 

intersection curves, are contained in the CAD geometri c data. They characteri ze 
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the geometric complexity of a solid model. If a boundary description for the body. 

to be meshed, is given in the form of a set of points which represents a closed 

surface of the CAD volume model, in general, it may be difficult to generate 

blocks from complex geometries, e.g. in Fig. 1.3. It is convenient to decompose 

a complex surface geometry into parts. The question dealing with decompo ing 

a surface geometry is 

• How can one divide a complex geometry into a set of parts? 

Figure 1.3: The geometric configuration, modelled by the CAD tool, 
contains many shape features, such as sharp edges, intersection curves. 
In order to mesh them exactly, the complete surface is decomposed and 
meshed. 

1.1.2 Grid Topology Building 

Grid topology, also known as wireframe topology or block topology, describes con-

nectivity relations among blocks. A grid topology indicates the decomposition of 

a given solution domain, which can be represented by the topological elements 

vertices, edges, and faces. A block topology has an impact on mesh quality, e.g., 

on shapes of solid boundaries or curvature of grid lines. The influence of grid 

topology on mesh quality as well as on numerical accuracy of flow simulations 

has two main points [102]. 

[> Consistency of wireframe model with geometry. A wireframe model 
should reflect geometric features. Certain geometric shapes have to be 
modelled by choosing adequate block topologies, shown in Fig. 1.-1. ince 
the consistency of a wireframe model with geometric shapes has an influ ence 
on grid quality. 
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I> Alignment of grid lines. Blocks should be generated with respect to 
flow features. For instance, alignment of grid lines with flow directions 
and orthogonality of grid lines on body surfaces are dependent upon block 
contour to a large extent. 

(a) (b) (a) (b) 

Figure 1.4: Consistency of wireframe models with geometric shapes. In 
cases (a), the wireframe models do not reflect geometric shapes, grids 
generated from these block topologies may have the reduced quality. 

A rational block generation (domain decomposition) should consider geometric 

features, block arrangement, and grid line alignment together with the flow di-

rection. Since there are no construction rules containing reduction of geometric 

complexity, generation of surface description and grid topology, it is difficult for 

many CFD engineers to generate grids exhibiting extremely high complexity in 

a short time period. Efficiency of grid generation depends substantially on their 

expenence . 

• Is it possible to establish a set of grid construction rules, 
such that a multiblock structured grid will be efficiently gen-
erated? 

1.1.3 Grid Adaptation 

Clustering of grid points is only necessary in regions where a high resolution is 

required. Grid density can be varied using different methods. A well known 

approach is the use of solution-adaptive grid generation. This prevents a local 

change in grid density from destroying the global grid structure. For instance, a 

N avier-Stokes computation requires a high density of grid lines near a solid wall. 

The grid line distribution for resolving the boundary layer is generated according 

to a prescribed stretching function. Since this flow feature is independent of 
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other flow phenomena, such as a bmv shock grid adaptation for different fimY 

phenomena should be performed separately. The requirements for local grid 

density and separate treatment of flow phenomena leads to the consideration: 

c> 1. Heterogeneity of grid density. A high grid density is often required 
in location, where a high gradient of flow variables can be computed. Al-
though a global uniform aspect ratio of grid cells can reduce global numer-
ical errors, it causes large memory demand and computing time. Hetero-
geneity of grid density requires a special grid generation method. 

c> 2. Re-usability of grids. Local modification of grid topology, in cases 
of complex geometries, should not require a large effort. It is economical 
to generate a grid which is modular, i.e., it consists of a set of individual 
meshing objects that can be added to or removed from the existing grid 
structure according to the requirements of the flow simulation. 

The questions arising in grid generation practices are 

and 

• How does one generate a reusable grid topology that can be 
flexibly modified? 

• How does one generate a grid whose grid density is globally 
heterogenous? 

1.2 Current Status of Structured Grid Genera-

tion 

Industrial expectation for grid generation and CFD turn around time are that a 

CFD engineer generates a grid within one hour [47], and performs the simulation 

within one day for a special configuration, e.g., a turbine [48]. These challenges 

require not only more powerful tools for surface geometry modelling and grid 

topology generation, but also new techniques for grid generation as well as the 

need for efficient flow solvers [34], [90]. 

1.2.1 Overview of Grid Generation 

The topics of grid generation encompass not only the pure mathematical 

but also yarious applications and grid design strategies. In the following. an 
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overview of these topics is presented. 

Grid generation algorithms. Yarious algorithms are de\'eloped to generate 

multiblock blocks. they are based on the knmvledge of the partial 

differential equations. interpolation strategies, and algebraic methods [15]. [--15]. 

[46], [54], [841: [86]. Research and development of grid generation algorithms 

focus on the following aspects. 

[> Grid quality control. :\Iany control functions with respect to smoothness. 
orthogonality, cell aspect ratio, and line distribution are researched. In 
addition, some algorithms are developed by using optimization functions. 
in which grid quality is formulated [50], [51]. 

[> Automatic topology generation. Traditionally, a multiblock grid is 
generated by inputing geometric data, generating a block wireframe struc-
ture and the complete block connectivity. The new techniques provide the 
possibility to semi-automatically generate block topologies [29], [33]. [68]. 
[70], [83]. 

Tool development. The tool development is leaning towards user-friendly op-

eration, geometric and graphic functionality and intelligent processing. It can be 

summarized as follows. 

[> Graphics tools. The goal is to provide the user with a visual impression of 
shape properties. The user "feels" and recognizes geometric problems intu-
itively. The grid generation process is performed interactively [52], [76], [81]. 

[> Automatic building of objects. Some functionality of CAD tools such 
as translation, rotation, deformation or duplication of objects is integrated 
or implemented into the grid generation tools so that the user interaction 
becomes easier [77], [93]. 

[> Preprocessing tools. Grid generation tools provide special functionalities 
for surface preparation, e.g., surface repair, modification, and modelling. 
Data preparation for surface description of grid generation is becoming less 
dependent on CAD meshing tools [17], [79]. 

[> Postprocessing tools Tools are being added into grid generators. such 
as generation of interfaces of grid data to solvers (grid topology file) or 
com'ersion of grid data (block splitting or merging) are an important part 
of grid generation tools [29]. 

Application. \"umerous commercial and research tools are developed. which are 

able to provide grids with" high Grid generation is needed in different 

simulation fields. 

[> High complexity. Generating configurations with high geometric ('(llll-
such as turbines. automobiles. aircraft. or spacecraft. 
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t> High accuracy. Some structured grids show high accuracy of geometric 
micro-components modelled in a sophisticated \Yay [37]. 

Strategy development. One of the missing steps in grid generation is a strategy 

for developing rules for grid construction. 

t> Availability of objects. Preparation of adequate geometric and topo-
logical information is available and contributes to finding an approach to 
assembling and disassembling complete objects. 

t> Flexibility of topology building. A grid topology can be flexibly mod-
ified. Adding or subtracting parts, a new grid topology will be obtained. 
This flexibility requires designing standard topological components whose 
interfaces will be connected easier to other components [S2], [S7]. 

t> Topology database. Structured sets of topological elements are expected 
to support the user in properly deciding how to build a partial grid 
topology. Object-oriented grid generation. A topology database provides 
the user with a powerful workbench for grid generation [29], [39]. 

1.2.2 Overview of Grid Adaptation 

There are two main schemes of grid adaptation, i.e., grid refinement and grid 

redistribution. In the present work, the latter scheme is considered. Grid 

adaptation using a redistribution scheme can be performed by different methods. 

Partial differential equation methods use control functions as a measure for grid 

point movement. Incorporating weight functions, the modified partial differential 

equations redistribute grid points in the solution domain. The robustness of 

this method provides good grid quality. Since all values at fixed boundaries are 

initial values for solving the equations, the movement of grid points at fixed 

boundaries requires special numerical treatment. Algebraic methods formulate 

a relationship between solution gradients or curvatures and grid geometry. An 

adaptation process can be quickly performed. Variational methods formulate 

weight functions and measures for grid quality in the form of functionals. Grid 

adaptation is performed by finding extreme values of the variational equations. 

Successful cases are found in [3], [4], [42], [43], [53L [57], [63], [71], [SO], and [97]. 

For multiblock grids with complex geometry, the adaptation strategy and ih 

implementation are still in research phrases. The key problems in multiblock 

adaptation are to couple grid points across block interfaces, and determine tht' 

restrictions of grid point movement on physical boundaries. The concept (If 

df'.I11H'S of freedom is used to qualify restrictions in grid point movement [1:) . 
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The main purpose of this approach is to prescribe boundary conditions for grid 

points at physical boundaries [14]. 

Remaining problems. Robust algorithms can be selected from successful im-

plementation of single block adaptation. The key problem of their extension into 

multiblock cases is the reliable design of the adaptation procedure [9]. 

[> Different degrees of freedom. For multiblock grids, a movement of 
grid points is subject to geometric constrains. Grid points on physical 
boundaries or within have different degrees of freedom. A classification of 
grid points according to their degree of freedom produces three groups. For 
every group a special algorithm should be employed to perform adaptive 
computations. 

[> Block interface. It deals with data exchange among grid points at 
both sides of a block interface (face connectivity). This has an important 
significance to ensure a CI-continuity of grid lines across the interface. 

1.3 Objective and Scope of the Thesis 

Different degrees of difficulties in grid generation and grid adaptation are ad-

dressed in the literatures [90]. Most of the publications concentrate on math-

ematical methods in grid generation. At present, no systematic research for 

grid construction rules exists. Besides, multiblock structured grid adaptation us-

ing a redistribution scheme is considered as a difficult task in grid generation. 

The difficulties not only depend on the mathematical formulation, but also on 

the implementation of algorithms that are valid in three-dimensional multiblock 

adaptation. The objectives of the thesis are 

[> the development of an advanced method of grid generation of high grid 
complexity for the CFD engineer, establishment of a set of grid construction 
rules, and 

[> the extension of the adaptation algorithm from monoblock to multiblock 
grids. 

1.3.1 Grid Construction Rules 

Grid construction rules contain methods and techniques to diyide a meshing 

t ask into three steps. namely. conceptual. internal. and external tasks. The con-

ceptual task deals with building models that represent general shapes of abstract 
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objects described on a generic level. The internal task is the individual topolog-

ical description of objects through local wireframe building, whi le the external 

task is the collection of specifications of relationships between topological objects. 

The main purpose of establishing a set of construction rules based on experi ence is 

to propose an object-oriented method for multiblock grid generation. As analyzed 

above, the core of these rules is to divide a compound geometry into partial 

components, and to build local and global topologies. The construction rules are 

developed, based on the following considerations: 

[> Simplification of geometry. A complete configuration is decomposed 
into a set of components, defined as meshing objects. Their shapes comprise 
the lower level of geometric complexity. 

[> Extraction of geometric features. Through a decomposition of the 
structure, the geometric features can be precisely modelled by a fine block 
structure. 

[> Object-oriented topology design. Components are modell ed individ-
ually at the lower level. A complete grid topology results in generating 
topological relations between objects followed by the assembly of all ob-
jects. 

Fig. 1.5 depicts an generic aircraft in decomposed form. It consists of three main 

components, namely, fuselage, wing, and engine. At the local level, wirefr ame 

models are built for all components. Its complete grid topology is obtained by 

assembling all meshing objects. 

fuselage 

t$J 
:' ':.' : 

..... .. . / --- .' 

engme 

wmg 

Figure 1.5: An aircraft can be considered as a set of components. The 
components such as wing, fuselage and engine are built by their own 
wireframe topologies. Combining all components, an entire grid topol-
ogy is obtained. 
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1.3.2 Strategy for Grid Adaptation 

Grid adaptation can be performed by generating a special block topology or 

by using a flow solution. These approaches are called passive and active grid 

adaptation, respectively. 

Passive grid adaptation. A highly local grid density is generated without 

having an initial solution. This is realized by generating special block structures. 

It is a topology-oriented grid adaptation, and contains three concepts. 

Concept 1: One-dimensional clustering of grid lines. A grid generation 

process is separated from a grid clustering process due to the following reasons. 

First, control of local grid density, such as grid line distribution in a boundary 

layer, requires an enormous computational intensity if done within the overall 

grid generation process. A special block structure, called closed boundary layer 

topology is employed to control grid line distribution within a set of closed 

blocks wrapping around the body surface. A high grid density is limited to 

one-dimension, namely, the fine distribution of the grid lines is generated in the 

direction off the fixed boundary. The grid density within the closed boundary 

layer will not be extended into the far field [38]. Second, the grid will be used 

not only for an Euler computation, but also for a Navier-Stokes computa-

tion. Thus, separation of grid generation and grid clustering can satisfy this 

requirement. Using an external cluster tool for enrichment, a Navier-Stokes grid 

is quickly generated based on the boundary layer topology, as depicted in Fig. 1.6. 

I NS-grid I tcpJlcgy ----

J 

! pa.rarreter 

Figure 1.6: One-dimensional boundary layer topology is used for gener-
ation of a N-S grid based on an existing Euler grid. In this diagram. 
input, process and output are represented by rectangle, parallelogram. 
and rectangle with rounded off vertices, respectively. 
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Concept 2: Block encapsulation. A block encapsulation is a loop structure 

which ensures that grid lines remain within the local block structure. This 

block structure serves as a block refinement. Since the local block refinement 

is realized by introducing new blocks into an existing grid topology without 

changing the remainder of the grid topology, this method provides fl exibili ty to 

improve the local block structure. Fig. 1.7 shows an example of a spatial block 

encapsulation of a grid for the generic space shuttle. A high grid density is 

necessary below the body flap for simulating flow re-attachment, while the grid 

densi ty on the leeward side can be much lower. 

I 
i 

---------------------------, 

L ____________________________________ _ 

block topology without 
local block enrichment 

------------------------------.--.---, 
i 
i 
i 
i 
i 
i 
! 
I 

I i L ________ . ______________ . ________ . __ . __ j 

block topology with 
local block enrichment 

Figure 1.7: Local block enrichment is generated by modifying the ex-
isting grid topology. The high density of grid points is reached by 
introducing spatial block encapsulation. This figure depicts a block 
encapsulation below a generic flap. 

Concept 3: Smart blocking. The targeted regIOn is isolated by a set of 

blocks_ The boundary of this region is fixed by a closed internal boundary. Cell s 

wit hin the targeted region can be much smaller than those outside. This block 

structure scales cell sizes in the solution domain. It is used to separate coarse 

and fine distribution of grid lines in a special region. In the example shown in 

Fig. 1.8 a grid density is concentrated near the region of the top of an antenna. 

Since this small component has to be modelled by a fine block structure, the 

smart blocking method is used to separate this region from its environment. 

Active grid adaptation. Generation of solution- adaptive grids for fl O\\-

computations aims at increasing numerical accuracy of the simulation in an 

economic way_ By adapting an initial grid according to the flow feature. a better 

local resolution can be obtained. Improved convergence behavior is reached by 

means of reducing numerical approximation errors through fin e grid pacingc 
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Figure 1.8: A fine grid distribution is concentrated in special regions 
while the grid density in their environment is much lower. This sepa-
ration is realized by using block encapsulation techniques. 

in these regions. This kind of grid adaptation is termed active grid adaptation, 

since grid density will be changed according to the flow solution. 

The choice of a redistribution scheme in the present work is justified by the fact 

that such a scheme requires constant memory only and is well suited for fl ow 

simulations with an extremely large number of grid points. The main issues of 

grid adaptation using a redistribution scheme are addressed as follow s. 

[> Fixed boundary. Shape features on fixed boundaries have to be retained 
during an adaptation process. 

[> Cell quality. Skewness or sheared cell s are caused by unconstrained spatial 
movement of grid points. 

[> Block interface. Unsmoothness on block interfaces could be caused by 
an implementation failing in calculating t he common points of both block . 

There are geometri c and topological restrictions for grid adaptation, i. e .. grid 

points have their degrees of fr eedom according to their positi ons in the olution 

domain. The core of the strategy for multiblock grid adaptation is to u e different 

methods to adapt grid points with respect to the e constraint . 



Chapter 2 

Geometry Description for Grid 

Generation 

The boundary of a meshing domain is generally termed physical boundary. It 

is represented by a set of geometry surfaces. Creation of the geometric surfaces 

used for defining the physical boundary of a meshing domain is termed geometry 

description. The topics of geometry description contain geometry modelling 

using CAD tools, CAD data conversion e.g., extraction of geometry surface data 

from a CAD solid model and data generation of geometry surfaces. 

Not every geometric configuration can be used as a meshing object. In three-

dimensional cases, for instance, it is required that a meshing domain must be 

a continuous solid and that its physical boundary can be described by a set of 

closed geometry surfaces. The first question to be answered in this chapter is: 

• Which geometric configuration is available for building a 
meshing domain? 

In cases of complex configurations, geometry surfaces are mostly generated by 

a set of line segments, curves, or surfaces. In order to reflect its complexity, a 

block wireframe should be built with respect to the geometric features. Dividing a 

complete geometry surface into a set of pieces, local block topologies can describe 

the shape features at a lower level of the geometric complexity. The question 

arising from this consideration is: 

• What measures are there for the decomposition of geometry 
surfaces? 

1--1 
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2.1 Geometric Objects for Grid Generation 

In order to represent a geometric object which is available for building a 

solution domain, a formal description of a geometric object and its properties 

is given in the following. Only three-dimensional cases are discussed. ,,"hile 

two-dimensional cases are considered as a reduction of the dimensionality. 

2.1.1 Definition of Geometric Object 

In 1R3
, a set of points represents a collection of regions. Each region is continuous. 

and is bounded by a piece-wisely differentiable surface. The complete region is 

defined as a geometric object or geometric model. Each of pieces with its boundary 

is termed a face segment. A curve segment, results from two or more face segment 

intersection, is termed edge. A common point, at which two face segments joint. 

or a point in which two or more edges meet, is termed isolated point. At each 

point within a face segment, two unit vectors normal to the surface exit. One 

points into the region, the another points the outside of the region. An object is 

representable, when it has the following properties [78]: 

[> An object must occupy a finite volume and must have an invariant form, 
i.e., its shape is independent of the location or orientation. 

[> The boundary of an object must determine the content of the inside unam-
biguously. 

[> A complete solid must be dimensionally homogeneous, l.e., its boundary 
has not dangling edges or dangling faces. 

Such an object can be used for building a solution domain. The geometry of the 

object is represented by its surface, described by a set of face segments. The face 

segments have to satisfy the following conditions, termed validation conditions 

for meshing boundary representation: 

[> A face segment of an object is a subset of the boundary of the object. 

[> The union of all face segments of an object gives the complete boundary of 
the object. 

[> A face must haye a finite area and can be described in analytical or di:;(T('l e 
form. 

Fig. 2.1 shows two solids connected at an isolated point. and along an edge. The 

boundaries in both cases are not be a closed surface. Therefore they ("an not 

build a meshing domain. 
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vertex 
connection 

edge 
connection 

Figure 2.1: Unavailable connections among solids. 

2.1.2 Representation of Complex Geometries 

Geometric objects used for building a meshing domain are often simplified 

by modifying some geometric components or shape features. Moreover, it is 

desirable to model geometric objects using a set of ruled surfaces with respect 

to some quantitative information of shape features. To do this, the surfaces are 

classified into geometry primitive and free-form surface. 

2.1.2.1 Geometry Primitive 

Many engineering or manufacturing parts have similar shapes. A change of di-

mensions by transformation operators has an influence on the geometry, but not 

on the topology of their previous shapes. These shapes are termed parametrized 

shapes. Grouping them into families of some generic forms, termed geometry 

primitives, the individual instances of a family can be generated in an easy man-

ner. The following geometry surfaces belong to the geometry primitives. 

I> Analytical surface. An analytical surface is described by a set of 
ical equations. 

I> Translational sweep surface. A two-dimensional set A lying in a plant' 
in space builds a surface. Let G be the solid swept A, along a line 
segment B which is perpendicular to the plane A and has an endpoint on 
the plane, when translated parallel to its plane, along the B. 
The surface of the solid is termed translational sweep surface [78]. 

I> Rotational sweep surface. A one-dimensional set A lies in a plane in 
the space. A line segment B is co-planar to A. and builds an axis. Let G 
be the solid swept A. when it is rotated about B. The surface of the 
solid is termed rotational S lL'ffP surface [78]. 

I> General sweep surface. A t\\'o-dimensional set A lying in a plane ill 
space builds a surface. Let G be the solid swept A. along S(lllie arbi-
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trary path B , while the surface built by A may change its size. shape and 
orientation [65]. 

These sweep surfaces are shown in Fig. 2.2. The geomet ry primit ives have some 

properties, and their geometry surfaces can be generated using algebraic methods. 

x 

translational 
sweep surface 

z 

A 

B 

rotaional 
sweep surface 
z 

general 
sweep surface 

Figure 2.2: Different types of sweep surfaces. 

2.1.2.2 Free-Form Surface 

Many geometry surfaces can not be represented by geometry primitives. The 

geometries of these surfaces are irregular and are represented using piecewise 

discrete surfaces, or by means of computer tomography. They are termed 

free- form surfaces. Fig. 2.3 shows an example of a generic animal. The geometry 

surface of the animal is represented by a triangulated mesh, whil e its eyes are 

represented using geometry primitives. 

Figure 2.3: Geometry surface of a generic animal , represented by a free-
form surface in the form of triangulated mesh. 
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2.2 Data Preparation for Geometry Surface 

A meshing object is bounded by its physical boundary. In grid generation. the 

geometry surface of this boundary is used for describing the solution domain. A 

general way to generate the geometry data is to model a solid by means of CAD 

tools and generate its surface mesh. The surface mesh of a solid model is then 

used as surface description or boundary description in grid generation. 

A closed surface mesh may have a highly geometric complexity, SInce shape 

features of the solid are implicitly contained in the mesh. On the basis of 

the above classification of geometry surfaces, a complex solid is considered as 

a collection of components, which are represented either by some 

primitives, or by free-form surfaces. 

2.2.1 Partitioning of a Complex Object 

A complex meshing object is intentionally split into a set of parts. Some engi-

neering geometric features are used for representing these parts: 

[> Planar part. The part is partitioned, if it is represented by a plane. 

[> Sweep part. The part is partitioned, if its geometry surface belongs to a 
sweep surface. 

[> Spherical part. The part is partitioned, if it is described by a sphere or 
an ellipsoid. 

The remaining parts are represented by some curved and sculptured surfaces. 

The practical benefit of this engineering feature-based (also object-oriented) 

decomposition of the meshing object permits to generate geometry surface 

data using the geometry primitives as well as free-form surfaces for a complex 

configuration. The relations among parts split represent some shape features, 

which should be accurately reflected by a block topology. 

Fig. 2.--1 shows an example of extracting a cylinder from a given geometric object. 

The complete configuration is divided into two parts, because the important 

shape feature, namely, the intersection curve is the cutter path of the 

and the base surfaces. 
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cutter path of 
two surfaces 

shape 
feature 

Figure 2.4: Decomposition of a complete configuration along surface 
intersection. 

2.2.2 Generation of Geometry Surface 

The surface data for geometry primitives are generated usmg analytical or 

parametrized methods. Free-form surfaces are generated using some spline sur-

faces. For a complex configuration like an aircraft, the geometry is modelled 

CAD tools. Discrete formats of a CAD output may have three types: 

[> Triangulated surface. A triangulated surface consists of a node list and 
an element list. 

[> Quadrilateral surface. A quadrilateral surface consists of a node list and 
an element list. 

[> Patch surface. A patch surface consists of a set of bilinear surfaces, and 
each bilinear surface is a two-dimensional parametrized surface. 

In this work, all patches have two-dimensional structured forms. A multi-patch 

surface is obtained, if patches are connected to each other in a one-to-one manner. 

Fig. 2.5 shows an example of data generation of geometry surface. The process 

of data generation contains the following steps: 

[> Sketch design object. A design object is coarsely sketched with accurate 
indication of size and position of all components. In Fig. 2 .. S, a scaled sketch 
is given in three views. 

[> Partition the geometry surface. The complete geometry surface is 
divided into a set of parts. They are modelled by geometry primitin's or 
free-from surfaces. The parts to be modelled by free-form surfaces should 
have a rectangular topology, such that its geometry surface can be generated 
in the form of spline surface functions, as shm\'n in Fig. :2.6. 

[> Model geometry surface. Geometry surfaces are generated in the form 
of surface meshes. The mesh process is performed in a piecewise maIlner. 
In order to model curyed surfaces. some adequate control points hayp to 

be selected. 



CHAPTER 2. GEOMETRY DESCRIPTION FOR GRID GE."VERA.TIOS 20 

Side View 

Top View 

Surface Geometry for a Generic Car 
From Sketch to Grid Generation 

+-

Front View 

Surface Grid 

Figure 2.5: Geometry data is generated in the form of patch surfaces. 

Figure 2.6: Geometry surface of a sketch is divi ded into a set of parts. 
Each part has a rectangular topology. 
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According to the above method, data for the geometry surface for a generic car 

is generated, as shown in Table 2.1. 

Table 2.1: Data generation of geometry surface 

component partition geometry representation shape type 

chassis many parts free-form surface 

wheel geometry primitive cylinder 

mIrror geometry primitive cube 

exhaust geometry primitive sweep surface 

antenna geometry primitive cylinder 

2.2.3 Repair of Geometry Surface Data 

The validation conditions for meshing boundary representation in section 2.1.1 

require a closed boundary for a solution domain. This surface representation 

must be unique and unambiguous. If the complete boundary of a solid model is 

described by a set of geometry surfaces, these surfaces are connected to each other 

in a trimmed manner. Three cases are considered as ill-connected, as shown in 

Fig. 2.7: 

unclosed 
surface 

overlapping 
surface 

dangling 
surface 

Figure 2.7: Three cases of ill-connected surfaces: surface gap, surface 
overlap, and surface dangling. 

t> Surface gap. The connecting edges of two faces are not stitched exactly. 
The boundary of the surface is unclosed. 

t> Surface overlap. Two surfaces are connected to each other. The surface 
data is partially duplicated, when the surfaces are overlapping. 

t> Surface dangling. Some part of a surface is jutting out of the solid 
object. The dangling surface does not describe the boundary of a solution 
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domain [78]. 

In any of these cases, the missing or ambiguous geometric information has to be 

completed or removed. 

2.3 Chapter Summary 

The main contribution of the present chapter is that a method for describing the 

boundary of a meshing domain is presented. The essential core of this method 

is that geometry surfaces are classified into two types based on shape features of 

geometric configurations, i.e., geometry primitives and free-form surfaces. The 

classification enables the designer to simplify a complex configuration in analyti-

cal, parametric as well as discrete forms. In addition, the method for generating 

surface description is explained. It contains partitioning of a complex object, and 

surface data generation. The issue of surface data repair is addressed. 



Chapter 3 

N urnerical Grid Generation 

The concept of a boundary (or body) fitted grid or structured grid was first 

published by Winslow [101]. It was systematically further developed in the 

work of Thompson [88], [89]. The grids generated using this method have a 

high degree of smoothness of the grid lines. In addition, a boundary fitted grid 

accurately matches curved boundaries, and its grid lines can be generated almost 

orthogonal at boundaries. This advantage is one of the major reasons for the 

preference of a structured grid in the solution of the Navier-Stokes equations, 

since the simulation demands that the grid is closely clustered near the body 

to describe the physics of the boundary layer. In this case, the specification of 

boundary conditions becomes more difficult, when the equations are solved in a 

coordinate system that does not match the shape of the solid boundary [98]. 

The present thesis does not directly deal with numerical methods for grid 

generation. Therefore, only a brief description of structured grid generation 

using elliptic partial differential equations is presented in this chapter. 

3.1 Fundamentals of Numerical Grid Genera-

tion 

Scalar and vector notations are used in presenting the grid generation equations. 

3.1.1 Coordinate Systems and Vectors 

In the Euclidean space IRn. with Cartesian basis unit Yectors 11 .... , In. and using 

the Kronecker symbol <Sij. an orthogonal of vectors is given by 

23 
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{
I for i = j 

Ii . lj = 6ij = 
o for i # j 

2--1 

(3.1 ) 

The coordinate systems used for the derivation of grid generation equations are 

Cartesian and general curvilinear coordinate systems. Cartesian coordinates are 

denoted as Xl, x2
, ... , xn

, while general curvilinear coordinates are denoted as 

In three-dimensions, a vector r can be written as 

(3.2) 

In cases of continuous and differentiable transformation functions, three numeri-

cal values specified with e, e, and e result in the corresponding values of the 

Cartesian coordinates Xl, x2
, and x3 . 

A position vector, shown in Fig. 3.1, is written as 

(3.3) 

Xl=X 

X3 X2= Y 11 
X3= Z S 

Figure 3.1: Curvilinear nonorthogonal coordinate system. The 
basis vectors ei point in the tangential directions but are not unIt 
vectors. Vectors Ii are Cartesian unit vectors. 

In order to simply describe equations. the yariant of the summation conYf'ntiml i" 

employed. in which an index is summed O\"er. if it is repeated once a :-;11 h:--nipr 
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and once a superscript in any term of an equation. The set of the covariant basis 

vectors is defined by 

(3.-1) 

The vector ei is the tangent to the curve labeled e. A curve can be represented 

by specifying either the Cartesian coordinates xi or the curvilinear coordinates 

as functions of some parameter s, namely 

(3.0) 

Taking s to be the distance along the curve from some arbitrarily chosen point, 

the vector tangent to the curve is obtained by 

Since T is a unit vector, it satisfies the relation 

de 
T·T=l=ei·e·--

J ds ds 

From the above equation, one obtains 

where the covariant components of the metric tensor giJ are defined as 

The set of the contravariant basis vectors, denoted by e
i
. is defined by 

. . {I for i = j 
e

Z 

• ej = 5; = 0 for i -# j 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

b d ie the ,'ector e1 can be ex])!'(,:.;:.;(,d Because a vector can e expresse as v = t' i, ' .. 

using the contravariant components of the metric tensor gil 
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The relation between the co- and contravariant components of the metric tensor 

is expressed by 

(3.12) 

where 19ij I is the determinant of 9ij, denoted by a simple form g. In three-

dimensional case, the determinant is in the form of 

911 g12 913 

9 = 921 922 923 

931 932 933 

3.1.2 Derivatives of Vectors and Scalars 

(3.13) 

Moving a point from a position with coordinates t;,i to a neighboring point with 

coordinates t;,i + dt;,i, the vectors ei are incremented by dei. Referring to the basis 

ei, the coefficients are linear in the differentials dei, that is 

(3.14) 

where the Christoffel symbol rt denotes the components of affine connection. 

The above equation can be written as 

(3.15) 

3.2 Grid Generation Using Elliptic Partial Dif-

ferential Equations 

In order to use body fitted grids, all equations are expressed in general curvi-

linear coordinate systems. The one-to-one transformation from the Cartesian 

coordinate system to the computational coordinate system is given 
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For the derivation of the transformed grid generation equations, the Poisson 
equations are used [58], [98] 

(3.16) 

In order to solve Eq. (3.16) in a convenient manner, the equation is multiplied 
with en 

(3.17) 

Using the relation (3.15), one can rewrite this equation as 

(3.18) 

Since 

(3.19) 

the following form of the Poisson equation can be obtained 

(3.20) 

where are source terms, often denoted as 

(3.21 ) 

They are very often used to control grid line distribution or generate solution-

adaptive grid [28], [35], [89]. Eq. (3.20) provides a convenient approach to for-

mulating the elliptic partial differential equations for grid generation. C sing the 

relation (3.3), the elliptic equations in two dimensions obtained from Eq. (3.20) 

have the form 
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For simplicity, the following symbols are introduced 

and Eq. (3.22) is rewritten as 

For three-dimensions, the elliptic equations take the form 

+ + + g22XTJTJ + 2g23XTJ( + +xTJQ+x(R = 0 

+ + + g22YTJTJ + 2g23YTJ( + g33y(( + P + YTJQ + Y( R = 0 

28 

(3.23) 

g11 2g12 + g22 zTJTJ +2g23ZTJ(+ g33 zTJQ+ z(R= 0 (3.24) 

The above equations are generally solved in the computational space. Using the 

relation (3.12), the contravariant components of metric tensor are substituted by 

the corresponding covariant components. The elliptic partial differential equa-

tions for grid generation, for instance, in two-dimensional cases, can be expressed 

by 

11 g22 12 g21 22 gll 
g = -, g = --, g =-

g g g 

where Eq. (3.23) can be rewritten as 

- + g11XTJTJ + + xTJQ) = 0 

- + g11YTJTJ + + Y7]Q) = 0 

(3.25) 

(3.26) 

Numerical solution of Eq. (3.26) requires the specification of control functions P 

and Q, as well as adequate boundary conditions. The detailed method for the 

numerical solution can be found in [35]. These equations are formulated for a 

single block. In cases of a multiblock grid, there is a need for updating grid data 

on block interfaces to their neighboring blocks [99]. 
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3.3 Chapter Summary 

The main contribution of the present chapter is that an outline of the basic 

knowledge of numerical grid generation is given. It contains the method 

for representation of vectors and scalars in different coordinate systems and 

their transformation relations. In order to provide the designer a clear 

mathematical understanding of numerical grid generation, the elliptic partial 

differential equations for numerical grid generation are derived using the methods 

in [58], [89], [98], and [101]. 



Chapter 4 

Representation of a Multiblock 

Grid 

A structured multiblock grid can be considered as an ordered set of points in 1R3. 

It divides a given physical domain into a set of structured subdomains, termed 

block, which has a hexahedral shape. In a topological sense, it can be considered 

as a cube, in which grid points are arranged in regular three-dimensional order. 

In general, such a structured multiblock grid is represented at two levels. At the 

micro-level, grid points are arranged in a regular manner. At the macro-level, 

connectivity relations among blocks are described by means of connecting block 

faces to neighboring blocks. 

The connectivity relations among blocks can be very complex. This complexity 

may impede the designer's understanding of a multiblock grid. Moreover, a stan-

dard method for representing multiblock grids does not exist in the literature. 

Various representations of multiblock grids probably cause misunderstanding 

and incorrect interpretation of data structures during data exchanges. In the 

industrial environment, because information is to be reused, it is expected 

to define a data structure in an object-oriented fashion. Since such a grid 

is block structured but is topologically unstructured, a formal description of 

representation of grids, including structures and properties both at macro-and 

micro-levels, is given in this chapter. 

In grid generation, the main focus of the designer is often on domain decomposi-

tion at the macro-level, i.e., his work concentrates on a wireframe building usillg 

grid elements such as vertex, edge, and face, while a subdomain discretization 

is generated by solving some governing equations at the micro-level. namely, at 

block level. Similar terms vertex, edge, and face are used in geometry, topology 

30 



CHAPTER 4. REPRESENTATION OF A MULTIBLOCK GRID 31 

or computer-aided design. In order to prevent confusion of terminologies, a set 

of definitions for grid elements and a formal description are given in this chapter. 

The formal description of a multiblock grid contains: 

!> description of data structure of sub domains at micro-level namely a de-, , 
scription of block data structure, and 

!> description of data structure of sub domains at macro-level, namely, a 
description of relations among blocks. 

4.1 Grid Structure at Micro-Level 

A structured grid is generated based on the ideas of regular domain decompo-

sition. A physical domain with complex geometry in 1R3 is divided into a set of 

sub domains that consist of a set of points. The subdomains form a finite number 

of regions being occupied by hexahedrons, called volume cells or voxels. Each 

voxel is compact and contiguous, and joins together with its neighboring voxels. 

A collection of voxels is bounded by six surfaces. Eight vertices and twelve edges 

result from surface intersections. Such a subdomain is termed a block. Block 

boundaries are the interfaces of sub domains to adjacent blocks. 

Using such a multiblock grid in flow simulation, the computation is usually 

performed block-to-block in the computational space. Although the position 

of a grid point in the solution domain is uniquely given, it can be represented 

in two different ways in the physical or computational space. In the physical 

space, its position can be expressed by Cartesian coordinates, termed physical 

position, while its position in the computational coordinate system is given by 

a subdomain number and an index of a three-dimensional array. This position 

is also termed storage position, since the position indicates a sequence of grid 

points ordered in a storage. 
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Definition 4.1: Block. A set of points is given in the form 

B = {Pi,j,k(X) 1 i, j, k} C 1R3 

where x=x, y, z, and the index set of the points satisfies 

I= {(i,j,k) Ii = 1, ... ,1; j = I, ... ,J; k = I, ... ,K}; i,j.k E N 

The index 1 denotes the point number of a line in the first dimension. J 
denotes the line number in the second dimension, and K is the number of 
the three-dimensional array in the third dimension. This set of points is 
defined as a block. 

A block boundary is an interface to adjacent blocks, which is coupling of 

geometric and physical values among blocks. Since a block has a hexahedral 

shape, its boundary is divided into six pieces, termed faces. The definition of 

faces is given as follows. 

Definition 4.2: Face. Given a block 

B = {Pi,j,k(X) 1 i, j, kEN} 

where i = 1, ... ,1; j = 1, ... , J; k = 1, ... , K. A subset of the block is in 

the form 

Fn = {Pi,j,k(X) I i = 1, ... ,1; j = 1, ... , J; k = 1, ... , K} C B 

This subset of the block is defined as faces. The subscript n denotes the 
face number. Faces of a block are numbered as follows: 

n= 

1 
2 
3 
4 
5 
6 

k = 1, i = 1, ... ,1; j = 1, ... , J 
j=I, i=I, ... ,l; k=I, ... ,K 
i = 1, j = 1, ... , J; k = 1, ... , K 
i = 1, j = 1, ... , J; k = 1, ... , K 
j = J, i = 1, ... , 1; k = 1, ... , K 
k = K, i = 1, ... ,1; j = 1, ... , J 

Fig. 4.1 depicts a standard block. Faces are indicated by arrows in accordance 

with their definitions, namely, face 1 bottom (( = 1), face 2 left (TJ = 1), face 3 

back 1), face 4 front 1), face 5 right (TJ = J). face 6 top (( = K). This 

definition supplies a simplified expression for block boundary. For instance, face 

1 is expressed by 

FI = {Pi,j,I(X) 1 i = 1, ... ,1;j = 1, .... J}. 
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[I] face 3: 
face 4· _t • :-\:'mn 

'-------. 1'\ 

2 

1 

3 

5 

--""1'\ 

face 2: 11=1 
face 5: 11=11 max 

'-------. 

1'\ 

'------
face 1: 
face 6: 

33 

Figure 4.1: Standard block in computational space. Each block has it 
own local coordinate system. The arrows indicate the normal direc-
tions of faces [41]. 

4.1.1 Data Structure of a Block 

Grid points of a block are considered as a set of points B in 1R3 , expressed by 

B = {Pi,j,k(X) I i = 1, ... ,I; j = 1, ... , J, k = 1, ... ,K} C 1R3 

Its elements, i.e., grid points are arranged as a three-dimensional array with 

indices i, j, kEN, which correspond to the computational coordinates ( E N. 

Grid points are saved in such a manner that the i direction is treated first, followed 

by the j and k directions, respectively, namely 

B {Pl,1,1(X),P2,1,1(X), ... ,PI,l,l(X), ... ,Pl,2,1(X),P2,2,1(X), ... , 

PI,J,l(X), ... ,Pl,1,2(X),P2,1,2(X), ... ,PI,J,K(X)} 

The sequence of grid points ordered in computational space is shown in Fig. 4.2. 

Since three coordinates Tj, () are orthogonal in computational space, and 

form a right-handed coordinate system, each block has its own right-handed 

coordinate system. The physical position of a point is given by its coordinate 

values (x, y, z), which is indicated by the index (i, j, k) in the Tj, () directions. 

respecti vely. 

4.2 Grid Structure at Macro-Level 

A complete solution domain is a collection of subdomains, which are represented 

by a set of standard blocks. In cases of high complexity of block topology. a 
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) 
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k 

) 

) 

3-:1 

Figure 4.2: Grid points are arranged in the sequence indicated by the 
arrow. 

multiblock grid can not be represented in a computational space by a one-to-one 

mapping. In order to understand multiblock grid structure at the macro-level, 

a formal description of block connectivity is given in the following section. 

4.2.1 Block Connectivity 

Relationships among blocks are generally termed block connectivity. In the 

present thesis, this connectivity is restricted to a one-to-one connectivity across 

block boundaries. That means, an arbitrary face of a block can only be connected 

to a single face of another block. Block connectivity is defined as follows. 

Definition 4.3: Block connectivity. P = {Pi(X, y, z) liE N} and 
Q = {qj (x, y, z) I j EN} represent two sets of grid points of faces Fr,m 
and Fs n from different blocks Br and Bs, where the subscripts rand s de-, 
note block numbers, and m and n denote face numbers, respectively (see 
definitions 4.1 and 4.2), i.e., P E Fr,m and Q E Fs,n' The following metric 
and combinatorial conditions between both sets are satisfied: 

1. Both faces have the same number of points as well as the same number 

of quadrilateral elements. 

2. The equivalent relation (\fFr.mP)(:3Fs.nQ): P ---+ Q is met [6]. 

Such two faces from distinct blocks have a neighboring relation. 

However, this definition only requires the same number of elements and a 

one-to-one mapping of grid points of two neighboring faces. In order to couple 

grid points of a common face from neighboring blocks, it is necessary to know 

how grid points of different blocks are matched on neighboring faces. 
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4.2.2 Block Matching 

Determination of a pair of face connectivity gives only a neighboring relation 

between two faces. For two standard blocks, there are eventually four pussi-

bilities to connect any face of a neighboring block. Suppose that t,,·o blocks 

are connected to each other, as depicted in Fig. 4.3. In addition. both fa('(IS 

connected have the same point number in and (-directions. Let block 1 be 

a reference block, and keep it fixed. The pair of face connectivity for block 1 is 

face 6, and for block 2 face l. Block 2 is rotated about the (-axis by () = i. 

with i=O, 1, 2, 3, respectively, and then four pairs of vertices are matched. 

obtains four cases, as shown in Fig. 4.4. The cases are termed block matching or 

block matching orientation. 

block 2 I;t 

a' ........ c 
.... ..·--....11 

/'> d 

block 2 

c 

block 2 
case 3 

block 2 
case 4 

-- b I; 
----a t 

b 
d 

--""11 

.... --- a 

/c 
'1 

/ 
block 1: reference block 

Figure 4.3: Two connected blocks with the common faces. Different 
cases of block matching are obtained by fixing the reference block and 
rotating its neighboring block. 

Clearly, a graphic representation of block connectivity and block matching is 

unlikely to describe a grid topology with a large number of blocks. 

4.2.3 Representation of Block Interface 

With increase of block number and complexity of block one j)('(l(b 

a method to represent such a grid topology unambiguously and The 

block structure such as number of grid points and their order in each block. and 

relations among blocks have to be contained in a grid topology representation. 

To this end. a block file (interfacE to jiOlL' soll'crs) is formalized in 

this thesis. To avoid using mixed local coordinate all blocb are ()f t 1)(' 
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case 1 
o 

case 2 case 3 case 4 

tUbsrJ 
reference block 

36 

4.4: The four possible block matching of a pair of face connec-
tIvIty. Four cases are obtained by successive rotations about (-axis of 
block 2 by 0, 7r, and 

right-handed systems in the block connectivity file. 

Since a multiblock grid is structured at the block level, each block is declared as an 

object, specified by object string, block number, dimensions, block connecti\'it.\, 

and block matching in the following form 

BLOCK blockld 
I J K 
fl fc nb nf 1 J nCr nC2 
f2 fc nb nf 1 k nCl nC2 
f3 fc nb nf J k nCr nC2 
f4 fc nb nf J k nCr nC2 
f5 fc nb nf 1 k nCr nC2 
f6 fc nb nf 1 J nCr nC2 

where, the key word BLOCK is a control string and gives the object name. This 

is followed by block number, denoted by blockld, and block dimensions in 

r;- and (-directions, denoted by I J K. For each face there is one line 

with face-specific information. fl, ... , f6 are face numbers. The key word fe 

implies face condition, e.g., a physical boundary or an internal boundary. 

is specified by an integer number 0 for a physical boundary and 1 for an internal 

boundary. Block connectivity is specified by the neighboring block number nb. 

and the neighboring face number nf. Face matching is specified by relatioIl:- (If 

two local coordinate systems. The fifth and sixth columns indicate the fir:-;t and 

second computational coordinates of the present faces of reference block. ne 1 

and ne'2 are the computational coordinates of the faces of the neighhllring bl()("k. 
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In [36], the format of a structured grid topology file is presented for the first time. 

which gives the matching orientation implicitly. The matching cases are gi"en 

integer numbers. In this thesis, matching cases are given in an explicit manner. 

i.e., the cases are represented by indicating computational coordinates of faces 

instead of integer numbers. 

block 1 

face 6 

i: parallel to -j 
offace 1, block 2 

J: parallel to -j 
offace 1, block 2 

face 1 

block 2 

j: parallel to -j 
of face 6, block 1 

j: parallel to -j 
of face 6, block 1 

Figure 4.5: A block neighboring relation is given by face connectivity 
and matching orientation. 

Example of a block connectivity file. The block connectivity of this example 

is depicted in Fig. 4.5. It is supposed that these two blocks have the same 

dimensions I = 5, J = 5, and K = 5, in 7]- and (-directions, respectively. 

The face 6 of block 1 and the face 1 of block 2 are connected to each other. The 

block connectivity file has the form 

BLOCK 1 

555 
1 0 0 0 l j 0 0 

2 0 0 0 i k 0 0 

3 0 0 0 J k 0 0 

4 0 0 0 J k 0 0 

5 0 0 0 l k 0 0 

6 1 2 1 l j -l -J 
BLOCK 2 
5 5 5 
1 1 6 1 l J -i -J 
2 0 0 0 l k 0 0 

3 0 0 0 J k 0 0 

4 0 0 0 J k 0 0 

5 0 0 0 l k 0 0 

6 0 0 0 l J 0 0 

In the above block file, one finds the following informati( m 
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1> The grid consists of two blocks. Both blocks have the dimension I = o. 
J=5, and K=5. 

1> Face 6 of block 1 is a non-physical boundary, f c is 1. It is connected to the 
face 1 of block 2. 

1> Face 1 of block 2 is a non-physical boundary, fc is 1. It is connected to the 
face 6 of block 1. 

t> On face 6 of block 1, the first and the second computational coordinates 
indicate and 7]-directions, denoted by i and j. At the view port of block 
1, the parallel axes of the face 1 of block 2 to its and 7]-axes are the 
negative and 7]-axes, respectively, denoted by -i and - j, comparing in 
Fig. 4.4. 

1> On the face 1 of block 2, the first and the second computational coordinates 
indicate and 7]-directions, denoted by i and j. At the view port of block 
2, the parallel axes of the face 6 of block 1 to its and TJ-axes are the 
negative and 7]-axes, respectively, denoted by -i and - j, comparing in 
Fig. 4.4. 

In general, a block connectivity file can be generated by comparing coordinates 

of grid points selected from two faces of different blocks. If the conditions of the 

definition 4.3 are satisfied, a pair of block connectivity is determined. 

The block connectivity file provides the necessary as well as sufficient information 

about block interfaces to a flow solver. It is, however, not sufficient for a grid 

adaptation process using a redistribution scheme. This type of grid adaptation 

requires that the original geometry on physical boundary is retained. Therefore, 

geometric features on block boundaries have to be regarded in an adaptive grid 

generation. 

4.2.4 Geometric Features on Physical Boundary 

According to their roles in describing geometric shapes, grid elements such 

as faces, edges and vertices fall under different geometric constraints. In grid 

adaptation process, grid points have to be treated subject to the geometry 

surface of the physical boundaries. To distinguish them, the faces of 

boundaries are termed external faces, while other faces are called internal faces. 

The grid points of external or internal faces are called external or internal points. 

respecti vely. 
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Extracting external faces from a volume grid, these faces are connected to each 

other on four sides. Since such a block topology is two-dimensional, connectivity 

relations among external faces are termed face connectivity. 

4.2.5 Face Connectivity 

The neighboring relations among external faces are represented by connectivity 

of sides. Fig. 4.6 shows three blocks that are connected to each other. The 

geometric features at common sides have to be specified before a grid adaptation 

process is started, since different methods will be employed to move grid points 

with different degrees of freedom. 

There is no clear and strict definition of a measure for a sharp edge. However, 

such a geometric feature must be specified by a quantity, such as an angle 

between two intersection faces. 

block 2 

block 3 

block 1 

Figure 4.6: Three faces are connected to each other. At two co:n-
mon sides, the geometric features are important for a grId adaptatIon 

process. 

4.2.6 Face Matching 

Two faces are matched at their common side, if the one-to-one relations of 

points along the the common side are found, and every pair of the common 

points is in the same position, as shown in Fig. 4.7. 

Similar to the block matching, face matching is represented using the relatin' 
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(a) 

Figure 4.7: Two cases of face matching: (a) Faces are matched along the 
common sides; (b) faces are not matched along the common sides. 

coordinate direction of two common sides. 

4.2.7 Representation of Grid Physical Boundary 

The information about external or internal face types is directly obtained from 

a block connectivity file, while edge and vertex types can be derived using the 

wireframe topology. Besides a block connectivity file, a face connectivity file is 

formalized to describe block topology of a grid and its geometric features on fixed 

boundary. Its format is given as follows. 

BLOCK blockld 
I J K 
f1 
I min sc nb nf ns gf 
Imax sc nb nf ns gf 
J min sc nb nf ns gf 
Jmax sc nb nf ns gf 
f2 
I min sc nb nf ns gf 
Imax sc nb nf ns gf 
Kmin sc nb nf ns gf 
Kmax sc nb nf ns gf 
f3 
J min sc nb nf ns gf 
Jmax sc nb nf ns gf 
Kmin sc nb nf ns gf 
Kmax sc nb nf ns gf 
f4 
Jmin sc nb nf ns gf 
Jmax sc nb nf ns gf 
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Kmin sc nb nf ns gf 
Kmax sc nb nf ns gf 
f5 
I min sc nb nf ns gf 
Imax sc nb nf ns gf 
Kmin sc nb nf ns gf 
Kmax sc nb nf ns gf 
f6 
I min sc nb nf ns gf 
Imax sc nb nf ns gf 
Jmin sc nb nf ns gf 
Jmax sc nb nf ns gf 

where sc denotes side condition; ns and gf denote neighboring side and geometric 

feature. The method for determination of edge features will be explained in 

section 5.3.1. 

face 6 face 2 

block 1 

Figure 4.8: An example for explanation of a fixed boundary file. 

Example of a face connectivity file. Fig. 4.8 is depicted to explain a fixed 

boundary file. Suppose that face 6 of block 1 and face 2 of block 2 are on 

physical boundary. The common side of both faces describes a sharp edge. In a 

face connectivity file, the topological relation and geometric feature are given in 

the following form 

BLOCK 1 
II J1 Kl 

f6 
I min 000 o 0 

Imax 000 o 0 

Jmin 000 o 0 
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Jmax 1 2 2 -K 1 
BLOCK 2 
12 J2 K2 

f2 
1min 000 o 0 
1max 000 o 0 
Kmin 000 o 0 
Kmax 1 1 6 -J 1 

The above face connectivity file provides the following information: 

I> Face 6 of block 1 as well as face 2 of block 2 are on the physical boundary. 

I> For block 1: Jmax-side of face 6 is a common side of Kmax-side of face 
2 of block 2. The minus symbol for the Kmax-side means to reverse the 
sequence of grid points along this side. 

I> For block 2: Kmax-side of face 2 is a common side of Jmax-side of face 6 of 
block 1. The minus symbol for the J means to reverse the sequence of grid 
points along this side. 

I> The common side describes a sharp edge on physical boundary, denoted 
by the integer 1. 

4.3 Wireframe Topology 

Theoretically, one can visualize all grid points to represent the complete solution 

domain. However, it is extremely expensive when grid point numbers are large. 

A practical simplification of a complete grid is to extract the grid elements from 

the complete grid, which represent the complete block boundaries, and to build 

the model of block boundaries. The model can be imaged as being made out of 

a deformable material that can be stretched or continuously deformed in any 

manner other than separating or tearing. The model built by selected elements 

is termed wireframe model. 

4.3.1 Elements of Wireframe Topology 

The wireframe model simplifies a block in the form of a hull, and is used to 

specify shape features of a block. Fig. 4.9 shows a wireframe model extracted 

from a block. It can be seen that a block whose boundaries are formed by 
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curved faces is converted to a cube. A formal description of terminologies for the 
elements of a wireframe model is given as follows. 

Figure 4.9: Vertices, edges, faces and block are extracted from a block in 
order to build a wireframe model that is used to represent a multi block 
grid. 

Definition 4.4: Vertex of wireframe model. A vertex of a wireframe 
model is one of the eight corners of a block, denoted by V. 

Definition 4.5: Edge of wireframe model. An edge of a wireframe 
model is a pair of vertices, denoted by £. It represents one of the twelve 
curved edges of a block, and can be written by £{V1, V2}' 

Definition 4.6: Face of wireframe model. A face of a wireframe model 
is a closed loop of four edges, denoted by F. It represents one of the six 
curved surfaces of a block, and can be written by F{£I, £2, £3, £4}. Ac-
cording to the above definitions, a face of a wireframe model can also be 
expressed by F{t't{V 1, V2}, £2{V1, V3}, t'3{V2, V4}, £4{V3, V4}}' 

Definition 4.7: Cube of wireframe model. A cube of a wireframe 
model is a simplified solid model of a block. It consists of six faces, twelve 
edges and eight vertices of wireframe model, denoted by B. According to 
the above definition, it can be expressed by B{ F1, F2, F3, F4, F5 , F6}. 

The topological relations of a single block among the grid elements defined above 

are given in Table 4.1. 

It is convenient to use a wireframe model to visualize a complex grid topology 

in space. A visualization tool for this application needs only minimal storage to 

represent a complete grid. 
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Table 4.1: The topological relations between the elements of wireframe model of 

a single block. 

B v 
1 1 1, 2, 3, 4 1, 2, 3, 4 

2 1, 5, 7, 9 1, 2, 5, 6 

3 2, 6, 9, 11 1,3,5,7 

4 3, 7, 10, 12 2,4,6,8 

5 4, 8, 11, 12 3, 4, 7, 8 

6 5, 6, 7, 8 5, 6, 7, 8 

Moreover, the elements are divided into the external and internal types. The 

former are the elements at physical boundary, while the latter the other elements. 

Hiding the internal elements, a block structure on the surface of the physical 

boundary is given. 

4.4 Chapter Summary 

The main contribution of the present chapter is that a set of terminologies and 

definitions is introduced to represent a grid. Using these terminologies and defini-

tions, a formal description of a multiblock grid is given. Based on a standardized 

block data structure, the method for representing a multiblock grid is developed. 

Given a data structure for single block, a multiblock grid can be represented by 

connectivity relations among blocks. These relations are termed block topology, 

and are formalized in a block connectivity file. In addition, a set of definitions for 

a simplified model, called wireframe model, used for visualizing a multiblock grid 

IS gIven. 



Chapter 5 

Automatic Identification of Grid 

Topology 

The central issues in grid topology identification are the determination of block 

connectivity and matching cases, as well as the identification of geometric 

features at physical boundaries of a given grid. The former process supplies the 

information about block neighbors, including block connectivity and matching 

orientation. These build the interface of a multiblock grid to a flow solver. 

However, they do not contain any geometric features of the grid. 

For a process of grid adaptation, description of a grid topology based only 

by these neighboring relations is rough. The geometric characteristics on 

fixed boundaries have to be incorporated into an adaptation computation in or-

der to prevent deformation or destruction of surface geometry of fixed boundaries. 

A complete representation of a structured grid consists therefore of connectivity 

relations and geometric features of block boundaries. With the increase in 

block numbers, it is becoming more important to generate the grid topology 

automatically, since the complexity of the grid makes it impossible to identify 

and specify block relations and features manually. 

The objective of the present chapter is to describe the strategy and algorithms 

developed for automatically identifying the block topology. It contains the 

algorithms for detecting block connectivity, determining matching orientation, 

and finding geometric features on fixed boundaries. 

-15 
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5.1 Block Connectivity among Blocks 

A multiblock grid has a standard form, defined in the previous chapter. It 

requires that all local coordinate systems are right-handed, and a one-to-one 

mapping of grid points of two neighboring faces. The algorithm developed 

for automatic grid topology identification contains the block standardization. 

recognition of block connectivity, and determination of matching orientation. 

5.1.1 Generation of the Standard Cube 

The data structure for a standard block, described in section 4.1.1, is defined 

based on a local right-handed coordinate systems. For this reason, a pre-process 

is designed to ensure that all blocks have local right-handed coordinate systems, 

such that block topology will be uniquely and unambiguously interpreted. 

Determination of local coordinate systems. Suppose, a voxel in physical 

space has the form depicted in Fig. 5.1. The normal vector given by 

is orthogonal to the plane spanned by vectors and rT]" The unit vector 

r( 

e( = \r(\ 

(5.1) 

(5.2) 

it points in the direction along the vector r(. The angle between 1]) and e( 

is expressed by 

Rewriting the above equation 

x rTJ) . r( 
cosj3 -

- x rTJ)\' \r(\ 

(5.3) 

(5.4) 

where cosj3 is a measure of the angle between the (-axis and the the normal 

vector of the plane spanned by and 1]-axes. 

The voxel forms fall into three classes: 
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Figure 5.1: A model of an arbitrary voxel and three vectors built by r {, 
rTJ and r,. 

[> cosf3 is negative, a voxel has a local left-handed coordinate system. 

[> cosf3 is equal to zero, the (-axis lies in the plane spanned by the and 
7]-axes. 

[> cosf3 is positive, a voxel has a local right-handed coordinate system. 

Theoretically, the quantity cosf3 can be employed to detect a local coordinate 

system. In practical application, it should be avoided that the value of divisor 

may occasionally be very small, since the robustness of computation may be 

affected in this case. 

Algorithm 5.1: Generation of the Standard Cube. An alternative of the 

algorithm provides more robustness for practical applications. The determination 

of the type of local coordinate system is performed in two stages: 

[> Stage 1: compute the divisor of Eq. (5.4). A non-zero divisor indicates that 
vector r, is not linear dependent on vectors r{ and r TJ , and 

[> Stage 2: since the absolute value of divisor is non-negative, the denominator 
is sufficient to check the type of local coordinate system. 

Suppose that an arbitrary grid point within a block is chosen as a reference point, 

depicted in Fig.5.2. This can be expressed as 

Pi,j,k = {Pi,j,k(X,y,Z) I i,j,k E N} C 1R3 

The three neighboring points of the reference point in T]-, and 

are selected to build three vectors with respect to the reference point. .-\ 

product of two vectors, namely, r{ x r TJ , gives the normal vector for the plane. 

The local coordinate system of the voxel is determined by the following relation 
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< 0 left - handed 

D[re,r'1,rd = x r1])·r, = = 0 

>0 
de farmed vaxel 

right - handed 

(5.5) 

where D[re,r'1,rd is termed the determinant, and the subscript denotes the dot 

product of 1]) and e,. The vectors are constructed from the points 

= PHl,j,k(X, y, z) - Pi,j,k(X, y, z) 

r1] = Pi,j+l,k(X, y, z) - Pi,j,k(X, y, z) 

r, = Pi,j,k+l(X, y, z) - Pi,j,k(X, y, z) (5.6) 

In physical space, a block may occupy a region described by curved boundaries. 

Voxels deformed or skewed can also be detected using this method. 

reference 
point 

Pn (I,J,k+l) 

t(n(I,J+l'k) 

Pn (I,J,k) 

./ 
Pn (1+1, J, k) 

Figure 5.2: A reference point of a block is selected, and a dot product 
is built to determine the type of local coordinate system. 

Implementation of the algorithm 5.1. The algorithm serves as a detector to 

identify the type of local coordinate systems. It is used as a preprocess to unify 

local coordinate system of all blocks. Meanwhile, it provides a simple quality 

control of bad voxels and their locations. The algorithm contains the following 

steps: 

I> Step 1. Read a block B = {Pi,j,k (x, y, z)} and assign all points into a three-
dimensional array (i, j, k). 

I> Step 2. Build a three-level loop to check voxels and their local coordinate 
systems. Referring to a point Pi,j,k(X, y, z) three vectors are constructed 
using Eq. (5.6), and their dot product given by Eq. (5.4), is computed. A 
non-zero value allows the process to proceed. 

I> Step 3. Compute the determinant D[r r r.j of Eq. (5.5) and determine the e, '1' " 
type of local coordinate system. 
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r> Step 4. Record the block number and location of bad voxels for cases 
1 and 2 in Eq. (5.5). All left-handed voxels are converted into right-handed. 

5.1.2 Generation of Block Connectivity 

Block connectivity is determined by identifying the positions of two sets of 

points that are selected from two faces of different blocks. If these two sets 

have a one-to-one mapping and the coordinates of the respective points are the 

same within a specified tolerance, these two faces are neighbored. However, this 

identification method might not be practical for implementation. 

The approach implemented to determining face connectivity is based on a face 

data structure. An arbitrary face is represented by a single point, and its coordi-

nates give the position of the face uniquely in space. This representative position 

of a face is employed to speed up this process. 

Definition 5.1: Face simplex. A face of a block consists of a set of points, 
forming a set of quadrilateral elements. It is supposed that the quadrilateral 
elements have a homogeneous material property with a virtual and constant 
density and thickness. The center of mass of the face is represented by a 
single point uniquely and unambiguously in 1R3

, this point is defined as face 
simplex, denoted by Xb,/(x, y, z), where indices band f indicate block and 
face numbers, respectively. 

A face simplex serves as a comparative quantity to find a neighboring face. The 

algorithm tracks the shortest distance between a pair of face simplices. Once a 

neighboring relation of two faces is determined, the matching orientation will be 

identified by comparing positions of four pairs of vertices. 

Building a face simplex. Suppose that a face with I x J grid points has a 

material property with a virtual and constant density and thickness, denoted by 

P· . and thickness t· . at each grid point. The concept of the center of mass of the ZJ ZJ 

face is used to evaluate a face simplex 

",1-1 ",J-1- A .. t- . .. 
X _ L...ti=l L...tj=l Pi,j t,) t,)Pt,) 

b,j - ",1-1 ",J-1 A· .t. 'p' . 
L...ti=l L...tj=l t,) t,) t,) 

where A·· denotes the area of an element built by four points Pi,j(r. y. z), 
Z,) 

Pi+1,j(X, y, z), Pi,j+1(X, y, z), and Pi+1,j+1(X, y, z), and i\j(x, y. z) is the average 

value of the four points. Obviously, the above equation can be simplified to 
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,,1-1 "J-1- A 
Xb = L...i=l L...j=l Pi,j i,j 

,j Lt·1 ,,-!-1 A .. 
z-l L...J=l Z,J 

(5.T) 

Once a large amount of points on a face is reduced into a single point. the 

problem of determining a connectivity relation is devoted to finding the minimal 

distance function between a pair of face simplices. 

centroid of face 

face 6 

connectivity: {(bn ,[6) ,( bm , [6) } 

matching: uncertain 

Figure 5.3: Face simplex is employed to determine face connectivity. 

Fig. 5.3 depicts two connected blocks. The boundary of a block is bounded 

by six faces, and the centroids of these faces possess their unique locations. 

In the entire mesh domain, there are no penetrating blocks. A face simplex, 

represented by the centroid of the face, gives the position of the face, which is 

used for checking its common face simplex in another block. Table 5.1 gives the 

pseudocode of the algorithm employed to determine block connectivity. 

Description of the algorithm 5.2. The algorithm for determination of block 

connectivity detects a face connectivity in two stages. First, the positions of 

faces are replaced by their centers of mass. Second, if two centers of mass of 

two different faces are equal, the corresponding blocks might be connected. The 

sufficient condition is that the vertices of two faces satisfy a one-to-one mapping. 

The algorithm begins with calculation of the face simplex. Before a loop of 

comparing two face simplices of different blocks is started, all face are 

initialized with a face condition non-connectivity (lines [6] to [7] in the table). 
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[ i}: 
[ 2}: 
[ 3}: 
[ 4}: 
[ 5}: 
[ 6}: 
[ 7}: 
[ B}: 
[ 9}: 
[iO}: 
[ii}: 
[i2}: 
[i3}: 
[i4}: 
[i5}: 
[i6}: 
[i7}: 
[iB}: 
[i9}: 
[20}: 
[2i}: 
[22}: 

Table 5.1: Pseudocode of Algorithm 5.2: Determine block connecti,-it,-

read a grid, save face data in two stores fN and 9 -. f ,6 .\,6 
ass1gn ace connectivity to FN6 and GN , ,6 
computing face simplices, and save them in X YN 6 
for (b:=i to N) N,6, , 

for (f:=i to 6) 
Fb,J +- non-connectivity; 
Gb,J +- non-connectivity; 
Xb,J +- (centroid of face) 
Yb,J +- ( centroid of face) 

compare face simplices 
for (m:=i to N) 
for (fl:= i to 6) 

if (Fm,h) == non-connectivity) 
for (n:= i to N) 

if (m =I- n) 
for (h:=i to 6) 

if (Fn,h == non-connectivity) 
if (Xm,h == Yn,h) 
connectivity : block m face It --+ block n face f2; 
connectivity : block n face f2 --+ block m face fl; 
out of m - loop: F m,fl +- connectivity; 
out of m - loop: Fn,/2 +- connectivity; 

Then, two loops for blocks m and n and their sub-loops for faces hand h 
are executed in order to detect block connectivity. Once a block connectivity is 

detected, a pair of neighboring faces are recorded (lines [i9) to [20j), and the face 

condition is changed to connectivity (lines [2i) to [22j), i.e., both faces are out of 

the loop. 

[> Step 1. A grid with N blocks is read. Its vertices are extracted from 
blocks and saved duplicated as two variables fb,J and gb,f, where indices 
b = 1, ... ,N, and f = 1, ... ,6 denote block and face number, respectively. 

[> Step 2. Coordinates of face simplices are constructed by computing the face 
centroids according to Eq. (5.7), and are stored using a two-dimensional 
array that indicates block and face number Xb,f and lb,f' 

[> Step 3. Before a loop of comparing face simplices is started, variables Fb,f 
and Gb,J for face condition is introduced. At the beginning, all faces are 
assigned to non-connectivity. If a pair of face is found, both 

faces are assigned to connectivity. 

[> Step 4. To find a pair of block connectivity, simplices from distinct blocks 
are compared, as shown in Fig. 5.4. If the condition IXb1,h-}b2,hl for b1 =l-b2 

is met, a pair of block connectivity is determined. 



CHAPTER 5. AUTOMATIC IDENTIFICATIOS OF GRID TOPOLOGY 52 

C9®®®®®® 

cg®®®®®® 
Figure 5.4: The possibilities of block connectivity of two neighboring 
blocks amount 2:f=l i. 

5.1.3 Generation of Block Matching Orientation 

Data exchange on block interface of two neighboring blocks can only be 

performed correctly, if the relation of block matching orientation is identified. 

Similar to the generation of a block connectivity file, the matching orientation is 

determined by comparing vertex positions of two neighboring faces. 

The algorithm used to automatically generate the matching orientations consists 

of three main steps. 

I> Step 1. Read a grid file, and extract the vertices from the blocks. Every 
four vertices are assigned to their corresponding block and face number. 

I> Step 2. Read the block connectivity file. Coordinates of four vertices of 
two faces neighbored are compared to determine their block matching ori-
entation. 

I> Step 3. If a block matching orientation for two neighboring faces is de-
termined, their matching case is added to the block connectivity file (see 
section 4.2.3). 

5.2 Face Connectivity among External Faces 

Face connectivity deals with the connectivity relations of the external faces. 

These relations are important for a grid adaptation process, since the degrees 

of freedom of grid points along the common edges of faces connected will be 

determined by their shape features. 

A face connectivity file should provide the information about the neighboring 

relations among external faces, and the shape features of the common sides. For 

instance, in cases that common sides describe sharp edges, grid poinb will be 

moved along these sides. 
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5.2.1 Generation of Face Connectivity 

In order to speed up this process, the existing block connectiyity file is employed 

to separate the external faces from the internal faces. The problem is to find the 

common sides on the external boundary of a grid. One can use a representatiYe 

quantity, e.g., the center of a side, to compare the position and orientation of 

two common sides from different faces. Since the principle of generating a face 

connectivity can be found in the algorithm for generating a block 

the main steps of the algorithm are explained without the pseudocode. 

I> Step 1. Read a block connectivity file, and save all vertices of the internal 
faces, and the information about their block, face and side numbers. 

I> Step 2. Compute the geometric centers of all sides, and save the information 
about their block, face and side numbers. 

I> Step 3. Compare the distance between two centers of two different faces, 
and find the face connectivity relation, and then compare the vertices of 
the side to determine the face matching. 

I> Step 4. Assign the face connectivity and face matching in a face connectivity 
file. 

5.3 Shape Features on Physical Boundary 

The fixed boundary file explained in section 4.2.7 is formalized in order to store 

the geometric shape features, i.e., sharp edges. Since shape features appear only 

on a physical boundary, it is sufficient to identify the shape features on the 

external faces. 

5.3.1 Determination of Shape Feature 

There is no clear and strict definition of a measure for a sharp edge. However, 

such a geometric feature should be specified using a quantity according to the 

geometric accuracy required. Fig. 5.5 shows three blocks that are connected to 

each other. In case 1, face Ii of block b1 and face fJ of block b2 , as well as face fJ 

of block b
2 

and face face Ik of block b3 are neighbored. The common edges of 1, 
and fJ as well as fJ and fk have different shape feature than that of the common 

edge of face Iz and face f m· 
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Figure 5.5: Three blocks are connected each other. Two types of face 
connectivities are possible. (1) A sharp edge is formed by the boundary 
of two faces connected. (2) The common boundary of two faces do not 
build a sharp edge. 

A sharp edge is often formed by an intersection curve of two surfaces. To explain 

the method for identification of the geometric feature, the following definition is 

introduced. 

Definition 5.3: Offset point. Let p(x, y, z)c/R 3 be a point on a para-
metric surface 8(u, v)c/R 3

. A point q(x, y, z)c/R3 is obtained by pro-
jecting p(x, y, z) in the normal direction of the surface with the distance 
d(p(x,y,z),q(x,y,z)) 

q(x, y, z) = p(x, y, z) + d· n 

where n denotes the normal vector of surface 8(u, v) at point p(x, y, z). 
Point q( x, y, z) is defined as offset point of point p( x, y, z) on surface 8 (u, v), 

Let two external faces 81(Ul, vd and 82(U2, V2) be connected, as shown in Fig. 5.6. 

Along their common side, points are one-to-one connected, i.e., any two points 

connected have the same coordinates. A pair of points PI, P2 (PI C 81 and 

P2 C 82) is chosen, and two normal vectors nl at PI, and n2 at P2 are calculated. 

Specifying a distance d, and projecting the points along the two normal vectors 

with this distance, one obtains two offset points qI and q2. The angle () between 

PIqI and P2q2 is given by 

() 
(PI - qr) . (P2 - q2) 

cos = 
iPI - qIllp2 - q2i 

(5.8) 

An edge feature is determined by comparing this value with the value prescribed 

for a sharp edge. 

The algorithm for angle computation contains the following steps. 
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Figure 5.6: Using a reference point at an edge intersection, from the 
both faces this point will projected along both normals by a prescribed 
distance. 

[> Step 1. Based on the given geometric features, a value of a maximal angle 
(}max is specified. 

[> Step 2. A pair of common edges is chosen. Offset points for both faces are 
generated. The mean value of the intersection angles for all pairs of the 
offset points (}mean is computed. Comparing the mean value with the value 
specified, the shape feature of the common edge is determined and specified 
in the face connectivity file. 

[> Step 3. The process continues to the next common edges, until all common 
edges are calculated. 

The information about geometric features indicates the degrees of freedom of 

grid points on physical boundary, and is stored in a face connectivity file for grid 

adaptation processing. 

5.4 Chapter Summary 

The main contribution of the present chapter is that the algorithms for deter-

mination of block connectivity, face connectivity, and shape features on fixed 

boundary are developed. 

1. Block connectivity. In order to determine block connectivity. a 

face simplex is built. This quantity represents the position of a face uniquely and 

unambiguously. Comparing face simplices of different blocks. the neighboring 

relations among blocks can be found. In addition, correspop<:li[lg four of 
'-' 

1';:-
l . , 

t..J 
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vertices of two neighboring faces are compared in order to determine the cases 

of matching orientation. 

2. Face connectivity. In order to generate data exchange on fixed boundary, 

the connectivity relations among the faces of the fixed boundary must be 

determined. Similar to the above method, this type of connectivity relation ,,"ill 

be determined using a comparative quantity, built from a side of a face, while 

their matching orientation is determined by comparing two pairs of vertices of 

two faces connected to each other. 

3. Shape features on physical boundary. Sharp edges must be identified. 

so that the geometric feature on the physical boundaries can be retained during 

a grid adaptation process. Since there is no strict measure for a sharp edge, the 

detection of shape features on fixed boundary requires user specification. 



Chapter 6 

Grid Design Strategy and 

Construction Rules 

There is presently no theory or set of construction rules for a topology design 

methodology for block structured grids, consisting of a general process of 

wireframe building, and the control of grid quality. 

It is well known that efficiency in grid generation depends not only on a mesh 

tool, but also on a comprehensive knowledge of topology concepts and graphic 

imagination. From this standpoint, it is expected that a general design methodol-

ogy provides both the theoretical and practical foundations for meshing complex 

geometries in reasonable time and effort. The questions often in grid generation 

practices are 

and 

• How can one understand the design object to be meshed? 

• Is it possible to establish a set of grid construction rules, 
such that a structured grid will be efficiently generated? 

The objective of the present chapter is to answer the above questions with a 

new strategy for grid design, and a set of grid construction rules. The strategy 

deals with the general methods for decomposing a complex meshing task into a 

set of sub-tasks, and their grid topology building. The simplified forms of these 

sub-tasks provide the designer with fewer abstract images of his grid design 

object. The grid construction rules are experience-based methods to support 

grid design reasonably and efficiently. In contrast to the grid construction 

for automatic generation of block structured grids in [68] and [70]. the grid 

construction rules in this thesis are not presented in a mathematical sen:-;e. 

57 
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6.1 Grid Design Strategy 

A grid design process usually contains human interaction as well as data 

processing. Human interaction deals with defining a valid geometric object 

(see section 2.1.1), generating its geometry surface and block structure, and 

specifying boundary conditions for grid generation, while a data processing deals 

with numerical solution of grid generation equations, e.g., the elliptic partial 

differential equations, explained in section 3.2. 

To simplify an abstract meshing object, a complete meshing task is divided 

into sub-tasks using certain rules. These sub-tasks occupy some spaces, and 

are parts of the complete solution domain. Their block topologies represent 

therefore the local block structures, called local grid topologies. Due to their 

simpler forms than the complete block topology, the local block topologies are 

built at lower levels of geometric and topological complexity. 

The conceptual model of a grid generation process is shown in Fig. 6.1 and can 

be formulated as follows. 

!> Analysis of a meshing task. A meshing task may contain special re-
quirements and restrictions. Based on the known information, a complete 
meshing task will be divided into a set of sub-tasks, called meshing ob-
jects. They will be individually treated at lower levels of geometric and 
topological complexity. 

!> Determination of relations among meshing objects. For the inte-
gration of all meshing objects, one needs to determine the geometric and 
topological relations among them. 

!> Data processing. First, wireframe models are individually built for mesh-
ing objects. Assembling these wireframe models with respect to their rela-
tions, grid topology building is completed. 

!> Evaluation of design result. The initial design result is controlled 
criteria of quality. New requirements and constraints are specified according 
to the result of evaluation. 

6.1.1 Analysis of a Meshing Task 

The attempt of analysis of meshing task is to more accurately declare some 

requirements and restrictions for a design objective. Based on this analysis. a 

design planning or working schedule can be established. In cases of complex 

geometries, a precise analysis of meshing task might avoid mistakes in the 
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Begin 

End 

Figure 6.1: The conceptual model of a grid generation process. In this 
diagram, human interaction, process and data are represented by sym-
bols ellipsoid, parallelogram and rectangle, respectively. 

meshing objective specified. 

6.1.1.1 Meshing Requirements 

In the example a generic aircraft in subsonic flow, shown in Fig. 6.2, the 

grid generation consists of the following topics: 

[> description of the complete aircraft geometry; 

[> definition of an outer flow boundary; 

[> building of block topology, and 

[> generation of the grid. 

Since meshing requirements and restrictions are determined based on the infor-

mation about engineering (structural) and geometric features, as well as flow 

physics, all relevant information is collected as follows: 

[> Structural features. There are three components, namely, fuselage, wing, 
and vertical fin. 

[> Geometric features. In a Cartesian coordinate system, geometric shapes 
of different objects are expressed in a generic form. 

[> Flow field. Flow is subsonic flow. The outer flow boundary should be far 
away from the aircraft. 
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Figure 6.2: A generic aircraft consists of fuselage, wing and vertical 
fin. The dimensions and positions of all components are given in the 
drawing. 

6.1.1.2 Definition of Meshing Objects 

Three components have their own structural features, and are considered as 

three individual parts. Complete geometric configuration is decomposed into 

a set of parts or sub-tasks. The meshing task is transformed into a set of 

sub-tasks, called meshing objects. Using transformation and rotation operators, 

their positions in the given coordinate system are determined. Their simplest 

shapes of generic forms can be approximated at a lower degree of geometric 

complexity. 

The grid construction begins with building grid topologies for meshing objects, 

and then relations among them are generated. Dealing with a complete meshing 

task, these relations have to be clearly and correctly described for the final 

assembly of all objects. 

6.1.2 Determination of Relations among Meshing Objects 

Individual generation of meshing objects reduces the complexity of geometry and 

topology. However, it may be difficult to assembly all meshing objects together. 

In order to describe these relations exactly, a graph of a network system, called 

object tree, is introduced. 
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6.1.2.1 Generation of an Object Tree 

Similar to the graph geometry tree used in engineering design [24], the relations 

among meshing objects is represented by a graph called object tree. In an 

object tree, the sub-tasks are represented by nodes, while the relations between 

sub-tasks are represented by routes between nodes. 

Fig. 6.3 shows the object tree of the example in Fig. 6.2. The root of the tree 

is the meshing task. Each branch from the root represents one meshing object. 

Introducing an orientation vector, denoted by V [x ]T h 

object vertical fin 0 3 is placed to its position. 
= 0, Yo, zo, Q'x, Q'y, Q'z , t e 

T: Task T 

V: Orientation vector T 
0: Object :/ \. 

V -[ L, 0, 0, 0, 0, e ] 

"\ 
® @ @ 

name: fuselage wing vertical fin 

parameter: a, b, c d,e,f g, h, i 

Figure 6.3: An object tree represents relations of coordinates and loca-
tions among sub-tasks of the example in Fig. 6.2. 

The above object tree supports the understanding of a complex meshing task 

and the relationship between the meshing task and meshing objects. 

6.1.3 Data Processing 

First, geometric configuration given in a construction drawing is modelled using 

a CAD tool, and its output file is converted into a suitable boundary description 

of the solid model. The process of geometry data generation, called generation 

of surface description, is explained in section 2.2. A more complicated data 

processing procedure involves the wireframe building for meshing objects. \Ve 

employ the object-oriented method for wireframe building. That is, any of the 

wireframe structures represents a partial block structure in the solution domain. 

It is important to assign and specify their interfaces to other meshing obj('('ts. 

Then, the wireframe models are assembled according to the sequence 
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with respect to their interface relations. 

6.1.3.1 Generation of Local Grid Topologies 

The essence of an object-oriented grid topology building is to encapsulate all 

the information of each component within an individual package, described by a 

data structure defined for the object. It is so-called object hiding. The complete 

meshing task is considered as being made up of meshing objects and their rela-

tions, represented in an object tree. The nodes are instances of objects, and will 

be treated locally. Combination of all local nodes is the global topology generation. 

A simple approach to encapsulating a local topology is to generate a set of cubes 

connected in a structured form, called framework. 

Definition 6.1: Framework. A wire frame model is built in the manner 
that its vertices are ordered in a three-dimensional array (i,j, k), where i, 
j, and k denote the vertex numbers in three directions, respectively. There 
are (i - 1) x (j - 1) x (k - 1) cubes arranged in the form of a box. This 
wireframe model is defined as framework. 

For instance, a framework with the index (2,2,4) means that this framework 

consists of 2 vertices in the first dimension, 2 vertices in the second dimension, 

and 4 vertices in the third dimension. Introducing a function framework (i , j , k) , 

where arguments i, j, and k denote the number of vertices in three dimensions, 

the framework is represented by framework (2,2,4). 

Using this definition, the fuselage and wing of the example of Fig. 6.3 are 

separately described by frameworks framework(2,2,4) and framework(4,2,2), 

respectively, as shown in Fig. 6.4. Using translation, rotation or deformation 

operators, the meshing objects can be assembled together in an easy manner. 

6.1.3.2 Generation of Global Grid Topology 

Since there is no mesh tool that automatically completes a meshing task, human 

participation is still necessary. The human participation in an informal basis 

will solve the issues such as selection of topological structures, or yariation of 

local block structures, while a data process, i.e., mesh generation, is operated by 

the formalized input data and the rules applied. 
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Building of the objects does not obey a certain sequence, HO\\'e\'er. an a embh' 

of objects is often sequence-dependent [55], These two important fact 

to be considered in grid design Since an obJ'ect tree l ' d ' 1 ' can on y III Icate t le 
relations of mesh objects in it s finall y assembled form d d O , , an oes not COntalll am' 
information about a sequence of assembly, the global topology building i 

generation of interfaces of objects, 

In order to ensure the correctness of a global topology building, the designer 

should have a complete outline of the h' t k 11 mes lllg as , as we as the relations 
among the meshing objects, 

\ interface (:J towing 

\ 

position 
In space 

§_ .. ----
z 

y 

x 

interface 
to fuselage 

wireframe 
model 

Figure 6.4: The assembly graph gives a geometric and topological de-
scription of the connectivity relation between these two objects. 

Fig, 6.4 gives a geometric and topological description of the connectivit y relation 

among the wing and fuselage, The meshing objects, their symbols of the object 

tree, and the assembly sequence directed by the arrow, are illu strated, Howe\'er. 

it is more diffi cult to sketch an assembly graph for a complex geometry. A short 

form for representation of an assembly is introduced, call ed assembly function. 

The objects fuselage, wing and vertical fin are substituted by the symbol Of I OWl 

and OV' Introducing a notation S(Oi , OJ) to express a sub- assembly of an object 

Oi to OJ, and an assembly function A{Sl(Ow, Of) , S2(Ov, Of)}, the equence 

and direction of a complete assembly process are indicated in a imple form. 

In reality, an assembly of meshing objects could be substantiall y complicated 

due to the complexity of a geometric configuration as well a the topological 

structures, 
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6.1.4 Evaluation of Results 

The initial grid result is evaluated in order to determine whether the design 

objective was achieved. Upon failure, part of the design refinement is required. 

Backtracking is necessary to find out the refinement steps that were responsible 

for the mismatch between design specification and its result. The refinement 

might be expressed as a selection of a subset of all known rules which are already 

being considered applicable. 

The basic requirements of a structured multiblock grid are in two aspects, 

Firstly, the accuracy of geometry model must be ensured, such that flow features 

can be simulated. Since this accuracy handles the shape and geometry of a grid, 

it is called accuracy of grid geometry. Secondly, cells of a grid must have a good 

quality, such that numerical errors in flow computation are reduced. The grid 

quality associated with cell is called cell quality. 

6.1.4.1 Accuracy of Grid Geometry 

Accuracy of grid geometry can only be estimated for some special configurations, 

e.g., a rectangle, a circle, the geometric accuracy can be determined. Due to 

geometric complexity in most cases, it is unlike to measure a tolerance between a 

given geometric configuration and a surface geometry of a mesh. It is suggested to 

measure the accuracy of geometry modelling using some representative geometric 

features. 

[> Sharp edge. The form of a sharp edge will give a clear sign whether the 
shape feature required is modelled. 

[> Intersection curve. An intersection curve should be modelled by the grid 
elements edges and vertices. This ensures that the curve shape can be used 
to keep the geometric given feature. 

[> Location of a large curvature. The geometric feature at this location 
will be accurately modelled, if a high grid density is generated. general 
rule is: the larger the curvature, the larger the grid density. 

6.1.4.2 Cell Quality 

d b h "t l'a They' are: orthogonality' of The cell quality is evaluate y tree mam cn er. - -

grid lines, cell smoothness, and cell aspect ratio. 
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Orthogonality. A general discussion of orthogonal systems on planar and 

curved surfaces, as well as various generation procedures are given in [2,;. The 

measure of orthogonality of the grid lines closed to the fixed boundaries is that 

the angles between mesh lines is not larger than 45 degrees in the domain, and 

continuity of the mesh slopes and volumes, Small deviation of the mesh lines 

from one cell to the next one, an it should not exceed 10 to 15 degrees [-19]. 

Cell smoothness. This quality is also considered as regularity. It requires that 

grid lines are uniformly distributed in all curvilinear coordinate directions of a 
grid [50], [51]. 

Cell aspect ratio. An aspect ratio is measured by calculating the length 

proportion between two arc lengths along a computational coordinate direction. 

A measure of cell aspect ratio could be: small volume rate between adjacent 

cells is kept between 0.7 and 1. 3 in critical areas [49]. 

6.1.4.3 Local Cell Repair 

A special tool for cell repair is developed in [72]. The cell qualities of a grid are 

checked using the above three criteria. The positions and the values of bad cells 

are indicated in the form of a list. The user can invoke these cells as well as their 

neighboring cells to repair them locally. 

6.2 Concept of a Topology Database 

In section 2.1.2 some surface types were defined as primitives. The formal 

representation of the primitives provides the possibility to vary their forms 

through parameters. The question arises of whether topological structures can 

be incorporated in geometric configurations, such that special wireframe models 

can be stored or reused as parametrized components. Based on the idea of 

knowledge-based system in manufacturing design [56], the concept of a topology 

database is developed. The goal is that the information about and 

topology of an object is structured at a generic level [39], and both geometric and 

topological statements of an object are saved in a predefined form. For instance, 

positions, sizes, and wireframe descriptions of a geometric configuration are 

saved in a standard form, and can be varied by corresponding parameters. t 
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supply a flexibility and re-usability for grid topology building. In a topology 

database, these statements are called topology entities. 

Fig. 6.5 shows the principle of a topology database. The user invokes entities, 

and inputs their parameters. The information about shapes and wireframe 

models of entities is processed according to their definitions in a topology 

database. An initial model is visualized, such that the user can modify his 

design parameters. The user interaction will be iteratively performed until the 

result is satisfactory, and output as the final model. 

parameter 
- input 1--_,£ 

1 change parameter initial 
output 

final 
output 

topology 
database 

Figure 6.5: The user interaction for generating an object using a topol-
ogy database. In this diagram, the human interaction, input, process 
and output are represented by ellipsoid, rectangle, parallelogram and 
rectangles with rounded off vertices, respectively. 

6.2.1 Topology Entities 

In a topology database, each entity is defined associated with its correspond-

ing geometric description, which are restricted to explicit and implicit algebraic 

equations, and wireframe models predefined. Their shapes, sizes and positions 

can be varied by using scaling, translation or rotation operators. Variables of an 

entity are: 

[> Vertices. Vertices are numbered according to the definition of entities. 
They are ordered in a sequence. 

[> Position of vertices. The positions of vertices, represented by its param-
eter, are contained in an entity. 

[> Surface. A vertex has not only its number and position, it also to 
a certain surface. The assignments of vertices to surfaces are contained in 
an entity. 
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c> Linkage of vertices. The link relations among vertices are given in a 
backward manner, namely, the vertices of higher numbers are linked to 
those of lower numbers. 

6.2.1.1 Standard Topology Entities 

As an example, the topology entity torus is given. Shape and wireframe model 

of a torus are saved at a generic level. Invoking this entity and specifying shape 

parameters r for radius of cross section, and R for radius of torus, its surface is 
generated by 

x = (R + rcoscp)cos(), y = (R + rcoscp)sin(), z = rsin¢ ,(R > 2r) (6.1) 

where cp and () are the sweep angles, respectively, as shown in Fig. 6.6. 

z 

-trjf_l z 
'" " " .. ' x 

Figure 6.6: The information about the entity torus is saved in a topology 
database. It can be invoked by inputing required parameters. 

The vertices, assigned to their corresponding surfaces, are numbered, and ordered 

in a sequence. In addition, the linkage relation among vertices is indicated, as 

shown in Table 6.1. For instance, vertex 1 has connectivity with vertices 2. The 

backward link relation means that the connectivity is interpreted by vertex 2 to 

vertex 1. This information is found in the table by row 2. 

6.2.1.2 User-Defined Topology Entities 

The most complex geometry surfaces are described by non-geometry primitin's. 

In modern industrial design environments, geometry shapes of design objects 

are incorporated with optimization processes. The need for special templates of 

design objects leads to an extension of the standard topology entities. Thes!' 

templates have unchanged block topologies, while the corresponding 

surfaces are variable. This type of templates is called user-defined entities. 
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Table 6.1: Data structure of topology entity for a generic torus in a database 

! V I p(x, y, z) I surface # I ve t 1 . nk r ex 1 age 
r)y'2 '1, -(R - r)y'21 -r 1 (R 1 

T ' 
2 (R r)J2 ,-(R - r)J2 '\-r 1 1 
3 (R - r)y'2\ (R - r)y'2 '1,_r 1 2 
4 -(R - r)y'2 T, (R - r)..;21,-r 1 1,3 

5 -(R + r)y'2 '1, -(R + r)..;2 .1,_r 1 1 

6 (R + r)..;21, -(R + r)..;2\-r 1 2,5 

7 (R + r)..;2 1, (R + r)J2\-r 1 3,6 

8 -(R + r)..;21, (R + r)J2 -\-r 1 4,5,7 

9 -(R - r)y'21, -(R - r)..;2 .\ r 1 1 

10 (R - r)y'2 .\ -(R - r)..;2 1, r 1 2,9 

11 (R - r)..;2 l., (R - r)..;2 '1, r 1 3,10 

12 -(R - r)..;2 'r, (R - r)y'21, r 1 4,9,11 

13 -(R+r)y'2 'l,-(R+r)..;2 '\r 1 5,9,13 

14 (R + r)..;2 'r, -(R + r)..;2 '1, r 1 6,10,14 

15 (R + r)y'2 T, (R + r)..;21, r 1 7,11,15 

16 -(R + r)y'2 'r, (R + r)..;2 'r, r 1 8,12,13,15 

The concept of a topology database is implemented in [29]. Like a geometry 

library in many CAD systems, the knowledge-based topology database supplies 

the user to improve his grid design. 

6.3 Grid Construction Rules 

The immediate purpose or motivation of developing a set of construction rules is 

twofold, that is first, to obtain objective and scientific knowledge on grid genera-

tion activities and second, to optimize or make the grid generation process more 

efficient and economical. The construction rules based on the experience of grid 

generation have been successfully applied in grid design over several years. The 

core of the construction rules can be summarized as follows. 

[> Reduction of degrees of complexity. Adequate geometric and topolog-
ical information is available and contributes to finding the way to assemble 
and disassemble the objects from and into sub-assemblies and parts respec-

tively. 

[> Object-oriented grid generation. Designers can see and inspect the 
shape to whatever degree of geometric complexity at which t hey are 
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working. 

6.3.1 Definition of Solution Domain 

The domain over which the mathematical model is applied is often limited to 

a portion of the complete domain. Definition of a solution domain idealizes a 

geometric object through removing some microscopic geometric features that are 

not needed for a model building. However, these idealizations add errors, i.e., a 

simplification of the computing model reduces the geometric accuracy. Details 

of how geometric simplification of the domain are introduced to the model can 

be critical to the solution reliability. Since there is no existing rule to explain 

the criteria for model simplification, the execution of model simplification should 

regard the requirements of flow simulation. Usually, microscopic components 

that do not have influence on the particular flow are removed. For instance, it 

is not meaningful to model geometric components like screws, bolts or nuts in 

the simulation process of a spacecraft. Suppose that a given geometric object is 

simplified as necessary. The next step is to define a solution domain for grid gen-

eration. Two types of meshing domain are defined as follows, as shown in Fig. 6.7. 

Definition 6.2: The first type of meshing domain. Let {D : 
p(x, y, z)} C 1R3 be a domain. Its boundary is represented by a continuous 
and closed boundary {8: p( x, y, z) }. If the meshing area can be expressed 
by the set {o: D n 8} c IR 3 , the domain is defined as the first type of meshing 

domain, denoted by 0 1 . 

Definition 6.3: The second type of meshing domain. Let {Dl : 
p(x, y, z)} C 1R3 and {D2 :p(x, y, z)} C 1R3 be two domains. Their boundaries 
are represented by two continuous and closed boundaries {81 : p(x, y, z)} 
and {82 : p( x, y, z) }. If the meshing area can be expressed by the set 
(D2 - D1) n 8 1} c 1R3 , the domain is defined as the second type of meshzng 
domain, denoted by O2, The boundary 81 is called internal mesh boundary. 

while 82 is the external mesh boundary. 

During a grid generation process, grid points on physical boundaries are consid-

ered as known initial and boundary conditions, while other points are calculated 

by solving governing grid generation equations. Similar to this process. the 

ical boundary of a meshing domain is considered as a known condition for grid 

topology building. That is, a grid topology building begins with generating wire-

frame models for a set of the known boundaries of geometric components. The 
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the 1 . type of 
meshing domain 

the 2. type of 
meshing domain 

Figure 6.7: Two types of meshing domain. 

, 0 

wireframe models for meshing objects are locally generated. They ""i ll be ex-

tended to other regions of the solution domain, so that a global grid i 

completed. An important question is how to use this idea to carry out the whole 

wireframe building. 

Definition 6.4: Meshing direction. A meshing direction is referred to 
as the direction from a start wireframe model to complete wireframe model. 
There are two types of meshing direction, used in building a wirefr ame grid 
topology, namely, inward and outward meshing directions. If a wireframe 
model is built starting from the outer boundary and going inward to the 
body surface, it is defined as inward meshing direction. It the wireframe 
model is built starting from the body surface and going outward to the 
outer boundary, it is defined as outward meshing direction. 

In case of the first type of meshing domain (see Definiti on 6.2), there exist 

only an external boundary. To represent the shape features of the surface 

geometry accurately, a wireframe topology should be built first for the surface 

geometry of the external boundary. This wireframe model, represented by a set 

of continuous two-dimensional blocks, covers the whole surface of the physical 

boundary. Extending this two-dimensional layer of wireframe model inward to 

the given meshing domain, and varying its block structures in location, where 

a space is not filled with block structures, the complete grid topology is obtained. 

In case of the second type of meshing domain (see Defini t ion 6.3). there are an 

external boundary as well as a set of internal boundari es. For in tance. the olid 

boundary of the spacecraft X- 33 is of highly geometri c complexity, It con i, t-

of lifting body, verti cal fins, aerospike engine etc., while an outer fl o\\' 

is defin ed in the form of an ellip soid or box, as shown in Fig. 6 .. The geometri c 

complexity of t he meshing objects on the internal boundary i much highr r 

than that of the outer boundary. A wireframe buil ding i con idered as bri ng 
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a process of extension of a two- dimensional wireframe model into the third 

dimension with constant or varying block structures A I , . " f 
. f \' ayer-\\'lSe \'anatlOn 0 

block structure is easily done if the extension begins "vith the surface \\'ho e 

block structure is of the highest topological complexity. As a result. the follo\\'ing 

rule for selecting a meshing direction is established. 

Figure 6.8: The internal boundary of the meshing domain is described 
by the surface geometry of the X -33 vehicle. Due to its geometric 
complexity, the outward meshing direction is selected. 

Grid construction rule 1: Selection of a meshing direction. Based 
on the complexity of the two-dimensional topology, the surface with the 
most complex geometry is chosen and its two-dimensional topology is con-
tinued in three-dimensional space following the direction of it s normal vec-
tors. Thus, it is ensured that the wireframe building goes in a direction 
that does not increase the topological complexity of the wireframe model. 

Fig. 6.9 shows a solution domain defined by both an internal and an external 

boundary. Suppose that the internal boundary represents the geometry to be 

meshed, while the external boundary is an artificial outer boundary. The outer 

boundary is described by an ellipsoid. A meshing direction should be selected. 

so that the topological complexity of block structures is reduced during the 

extension of wireframe structure. Conversely, the designer is facing again t an 

increase in the complexity of his wireframe structure from the outer 

toward the meshing objects. 

Another reason for the choice of the outward meshing direction i ba ed on 

the spatial visibility during wireframe building. Extending a two- dimen ional 

wireframe model inward to the internal boundary, the front of a \\'ir frame I110clrl 

is not visible due to the interference of the vi ews. The de igner rna\' loc r hi .' 
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Figure 6.9: An outward meshing scheme is used in case that a solution 
domain is described by an external and a set of internal boundaries. 

understanding of the global block topology. 

6.3.2 Generation of Surface Description 

In order to describe the boundary of a meshing area, a CAD output is processed 

in the manner that the surface geometry of a soli d model is described by a set 

of geometry surfaces. They can have analytical, parametric or discrete data 

formats. In case of parametric or discrete data formats, a complete geometry 

surface may be C 1-discontinuous. The abrupt changes of normals of elements 

imply geometric features. In wireframe model building, there is need for speciall y 

treating these features. 

Grid construction rule 2: Partitioning of a surface along curves 
that are not C1-continuous. Any surface is partitioned into a set of 
patches that are C1 or slope continuous. A curve, connecting any two 
patches, may be C O-continuous. The grid generation process has to ac-
count for this geometric feature by reducing the degree of fr eedom for the 
movement of grid points. 

The goal of part it ioning a surface description along curves that are not C
1 

continuous is to control slope discontinuous points. For instance. a urface 

description of an arbitrary airfoil can be roughly divided into three piece . The 

first piece gives the geometry of the leading edge. The other two piece repre. ent 

the profile of both windward and leeward sides, respecti \·ely. At the trailin g 

edge, the slope is not uniquely determined. Curyatures along the lin e 
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are taken in account in a wireframe model building FI'g 6 10 h . t. 
. " S 0\, S "0 

alternatives of block topologies. The first block topology neglects the geometric 

feature of the trailing edge, while the second one fixes the trailing edge through 

the singularity point of four blocks. 

\ 7/ zone2 

zone 1 ( _____ 7- zone3-

topology I topology 2 

Figure 6.10: A closed surface geometry is separated into three parts due 
to large changes of surface curvatures. 

6.3.3 Wireframe Building 

A complex wireframe model is made of active elements (procedures) and passive 

elements (data). They comprise primitive topological structures and higher level 

constructs created by the repetitive invoking of predefined entities and employing 

binding rules to those at lower levels. The construction rules, developed for 

wireframe topology building with complex geometries, are summarized in the 

following sections. 

6.3.3.1 Block Topology on Solid Boundaries 

A three-dimensional grid topology can be considered as being an extension 

of a two-dimensional block structure into the third dimension. The wire-

frame topology on a physical boundary has to cover all surface region with 

a set of quadrilateral block structures, shown in Fig. 6.11. Partitioning a 

complete physical boundary into a set of regions, and projecting them to a 

two-dimensional plane, the wireframe block topology for each region must reflect 

a two-dimensional block topology in the transformed plane. 
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2D block structure 
on body surface 

,-1 

Figure 6.11: On a solid boundary, block topology must have a two-
dimensional block structure. This rule is employed to check whether 
all regions of the solid boundary are covered by the structured block 
topology. 

Grid construction rule 3: Block structure on a solid boundary. 
On a solid boundary, represented by a closed surface, a block structure i 
devised for the three- dimensional surface. As a surface, it must have a 
two- dimensional block structure. 

6.3.3.2 Interfaces among Objects 

Generation of connectivity relations among objects and assembly form of them 

is the key issue of completing a grid topology. The topological structures of the 

outer vertices of objects are considered as interfaces. A wireframe model that 

provides all objects geometric and topological environment, in which the objects 

have their unambiguous locations, and their interfaces have unique connections to 

the local block structures of the wireframe model, is called a background wireframe 

model. In order to generate an available interface and background wi reframe, the 

following rules are established. 

Grid construction rule 4: Interface of an object. The interface of an 
object is represented by its outer block topology. In order to integrate the 
object into the background wireframe model, the interface mu t ha\'e the 
same topology as the local topology of the background wireframe model. 

As an example, the interface of a generic fuselage is generated. The wirefraI11C' 

of the fuselage is illustrated in Fig. 6.12. The interface of the fu elage i, built 

by a (2, 2,4) wireframe model. An assembly of the object into a backgrollnd 

wireframe model is only possibl e, if the interface tructure i a part of the 
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background wireframe model. 
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Figure 6.12: The interface of fuselage is generated by a 2x2x4 wireframe. 
This structure is part of the the background wireframe model. 

In general, the interface of an object is built in a simple form, i.e., the external 

boundary of its wireframe model is represented by a fr amework (see Defini-

tion 6.1), when it is possible. A complex interface increases the complexity of 

the background wireframe model. This will make an assembly of objects into a 

background wireframe model diffi cult . 

6.3.3.3 Background Wireframe Topology 

A background wireframe model is filled into the entire solution domain. It covers 

all regions, where objects will be inserted. 

Grid construction rule 5: Generation of a background wireframe. 
A background wireframe has to be generated such that it can accommodate 
the topologies of all objects in the object tree together with their topolog-
ical interfaces to neighboring objects. The region, where an object wi ll be 
inserted needs to have the same topological structure as the visible (exter-
nal) topology of this object along wit h its set of interfaces describing the 
interference with neighboring objects. 

6.4 Chapter Summary 

The main contribut ion of the present chapter consists of the followin g three part. . 

1. Object-oriented grid generation. Grid design strategy pre enteci in t 

chapter is developed based on the object- oriented method. Th essential cme 
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of this method is to divide a complete meshing task into a set of sub-tasks. 

called meshing objects, so that the meshing task can be treated at lower levels 

of geometric and topological complexity. The relations among meshing objects 

are described in an object tree. The meshing objects in the object tree are 

generated individually. Their block topologies represent parts of the complete 

grid topology, and are called local topologies. Assembling all local topologies, the 

complete grid topology (global topology) is finished. 

2. Concept of topology database. A topology database consists of a set 

of topology entities defined. They store analytic and parametrized surface 

geometries and their corresponding block topologies. It serves as a workbench 

for the designer. Invoking these entities with suitable parameters, some meshing 

objects are generated. 

3. Grid construction rules. In order to provide the CFD engineer technical 

supports in his grid design process, a set of grid construction rules is summarized 

from the practices of grid generation over several years. They cover the following 

issues: 

I> Grid construction rule 1: Selection of a meshing direction. Based 
on the complexity of the two-dimensional topology, the surface with the 
most complex geometry is chosen and its two-dimensional topology is con-
tinued in three-dimensional space following the direction of its normal vec-
tors. Thus, it is ensured that the wireframe building goes in a direction 
that does not increase the topological complexity of wireframe model. 

I> Grid construction rule 2: Partitioning of a surface along curves 
that are not C1-continuous. Any surface is partitioned into a set of 
patches that are C1 or slope continuous. A curve, connecting any two 
patches, may be CO-continuous. The grid generation process has to ac-
count for this geometric feature by reducing the degree of freedom for the 
movement of grid points. 

I> Grid construction rule 3: Block structure on a solid boundary. 
On a solid boundary, represented by a closed surface, a block structure is 
devised for the tow-dimensional surface. Therefore, it must have a t\\"()-
dimensional block structure. 

I> Grid construction rule 4: Interface of an object. The interface of an 
object is represented by its outer block topology. In order to integrate the 
object into the background wireframe model, the interface must haye the 
same topology as a local topology of the background wireframe model. 

I> Grid construction rule 5: Generation of a background wireframe. 
A background wireframe has to be generated such that it can accommodate 
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the topologies of all objects in the object tree together with their topolog-
ical interfaces to neighboring objects. The region, where an object will be 
inserted needs to have the same topological structure as the ,'isible (exter-
nal) topology of this object along with its set of interfaces describing the 
interference with neighboring objects. 



Chapter 7 

Grid Example for a Complex 

Topology 

The grid generation strategy explained in the previous chapter stems from the 

numerous ideas of the engineering design theory [105]. As it is mentioned, the 

essence of the object-oriented method for grid generation is to reduce geometric 

and topological complexity by dividing a complete meshing task into a set of 

sub-tasks. The sub-tasks are the meshing objects. In wireframe building, each 

meshing object will be individually treated with respect to its relations to other 

objects. Since they are at the lower level of geometric complexity than the main 

task, wireframe models of sub-tasks are easily generated. Another advantage of 

using this method is that the objects are built in a manner that their interfaces 

to other objects are described by simple topologies. The geometric complexity 

of an object can be encapsulated with its local topology. 

The work described here has been used over several years to generate numerous 

grids with complex geometries and topologies. The example presented in this 

chapter is chosen from a multiblock grid for the Ariane 5 launcher, which is one 

of the most important International Launch Vehicles [74]. The grid is generated 

for simulating its flight under subsonic and transsonic flow conditions. A detailed 

description of the strategy as well as the application of the construction rules 

are given below. 

7.1 Analysis of the Meshing Task 

Ariane 5 is the most heavy-lift launcher in Europe [22], [23]. Its first st agf' 

comprises liquid hydrogen oxygen engme, and upper stages. The segmentf'd 

7R 
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solid-fuel boosters augment its lift-off capability. It is able to launch 18.000 

kg into low earth orbit, and 7,000 kg into geostationary transfer orbit. The 

diameter of the payload fairing amounts to 5 meters with the useful diameter of 

4.8 meters. Because of its capability of lofting a large payload, two satellites can 

be transported in one mission to orbit. The lower satellite will be mounted in a 

bulbous cocoon-like structure referred to as SPELTRA and SPILMA with the 

latter mounted on top of the SPELTRA [74]. 

The goal of the flow simulation is twofold. Firstly, the flow separation effect was 

observed during the Ariane 502 mission. This phenomenon causes vibrations, 

which may damage the instruments to be transported to orbit. In order to 

reduce these vibrations, the construction is modified by adding components to 

stabilize the structure. These components increase the weight of the launcher, 

and change aerodynamic behavior of the launcher. Secondly, according to the 

data measured during the Ariane 502 mission, an unexpected rotation of the 

complete launcher around the main stage axis was observed. 

7.1.1 Meshing Requirement 

Flow simulation is concentrated both on a subsonic and on a transsonic flow 

condition. Requirement for grid generation is specified as follows. 

I> Flow separation. In order to explain the phenomenon of flow separation 
the components such as attachments, helium tank, have to be accurately 

modelled. 

The geometry of the Ariane 5 launcher is modeled by the CAD system CA-

TIA [21]. The original CAD file contains the detailed geometry design, shown 

in Fig. 7.1. The complete CAD output consists of several hundreds of ICES 

entities [67]. The micro-components, such as screws or nuts, have no influence 

on the flow phenomena to be simulated. They are removed to considerably 

simplify the mesh generation process. 

7.1.2 Definition of Meshing Object 

The components taken into account are the sub-tasks. They are: 



CHAPTER 7. GRID EXAMPLE FOR A COMPLEX TOPOLOGY o 

Figure 7.1: Partial CAD model for the Ariane 5 launcher. 

[> Cryogenic main stage (EPC). It has the largest size among all compo-
nents and an axisymmetric configuration. Many sharp edges on its surface 
may cause local flow separation. 

[> Boosters. Two boosters are placed at both sides of the main stage. Many 
sharp edges on their surface may cause local fl ow separation. 

[> DAV: forward attachment hardware. Two DAY attachments connect 
the main stage and boosters together. The fl ow separation may be caused 
by these components. 

[> DAAR: aft attachment struts. They connect the main stage and boost-
ers. The flow separation may be caused by these components. 

[> Helium tank. Its position changes the geometric symmetry of the config-
uration. The helium tank is important to model flow separation effect . 

[> GATT: high-pressure capacity for the the cryogenic main stage 
thrust-vector control. They are attached at the boosters. Since they 
are not symmetric to a neutral axis (x- axis in this case)) they may ha \'e an 
influence on the rotation of the launcher during a mission. 

[> Hydraulic accumulator. Due to its position and size, it may ha\'e influ-
ences on flow separation effects. 

[> Nozzle of the main stage, At the launcher lif t- off, the refl ection of the 
exhaust from the nozzle may have an acoustic influence on the launchr[ 

structure. 
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I> Booster nozzles. The shock wave and the acoustic effect cau ed at 
lift-off from the exhaust of the nozzles are tasks for the CFD simulation. 

The surface geometry of meshing object is described by geometry primiti\·e a 

well as by the free- form surfaces. The choice of surface types is ba ed on the 

geometric feature of objects. 

I> Surface description using geometry primitives. The objects such as 
main stage, nozzles and DAAR attachment are axisymmetric. They are 
described by the geometry primitives using the rotational sweep surfaces. 

I> Surface description using free-form surface. All other objects are 
described using free- form surfaces. 

Surface description is in the form of a set of rotational sweep surfaces, and 

triangular or quadrilateral surfaces, as shown in Fig. 7.2. In addition, the outer 

boundary is described by the surface of a cylinder whose top and bottom are the 

inflow and outflow boundaries, respectively. 

Figure 7.2: Partial surface description of the Ariane 5 launcher. 
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7.2 Determination of Relations among Meshing 
Objects 

The relation between the main task and sub-tasks as well as the relations among 

the sub-tasks are depicted in the object tree as shown' F' 73 
' III Ig ... 

B: booster 
V: DAV 
M: main stage 
N: nozzle 
G: GATT 
R: DAAR 

MT: main task 
H: helium tank 
A: accumulator 

Level 1 

Level 2 

Level 3 

Level 4 

Figure 7.3: Object tree of the meshing objects of the Ariane 5 launcher. 

There are four levels of the object tree for the decomposition of the complete 

meshing task. The main task, denoted by MT, is at the highest level. On other 

levels, the topological relations among the sub-tasks are indicated by edges 

between objects. 

7.3 Data Processing 

The grid topology is built in three stages. Firstly, a background wireframe 

model, consisting of a set of frameworks, is generated. It covers the complete 

solution domain, and its local frameworks provide enough space for all other 

objects. Secondly, for each object a local topology is generated. Each of them 

has its own wireframe model. Interfaces of these wireframes to other objects are 

represented by their external block topologies. In order to simplify connectiyity 

relations between the individual objects and their wireframe em'ironments. the 

external block topology of an object has a box-like form when ever possible. 

while its internal block topology may be highly complex. The external topology 
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encapsulates a highly complex internal block topology. 

7.3.1 Background Wireframe Model 

The outer boundary of the solution domain is described by a cylinder. Its top 

and bottom represent inflow and outflow boundaries, respectively. The internal 

boundary of the solution domain is given by a closed surface resulting from the 

union of all objects. A background wire frame model divides the solution domain 

into a set of regions with respect to the configuration of the solution domain 

and the other meshing objects, as shown in Fig. 7.4. It can be seen that all 

objects are placed in a box-like framework. If their external topologies are also 

represented by box-like topological structures, they can be easily inserted into 

the background wireframe model. 
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Figure 7.4: A background wireframe model is generated with respect. to 
the configuration of the solution domain and positions of the meshIng 

objects. 

7.3.2 Local Topology Building at Level 4 

b· t G A'TT d DAAR denoted by G and R are treated indi\-idually at Two 0 Jec s, rt an " .. 
level 4. Their geometry and block topology are sa\'ed in a general form. l SlIlg 
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the orientation vectors, they will be duplicated and positioned in the positions 
required. 

7.3.2.1 Local Topology Building for Object G 

The GATT consists of three components, G1, G2 and G3, where a superscript 

denotes the number of the component. Since the GATT is connected to the 

object booster, its local topology is built with respect not only to its geometric 

and topological feature, but also to it relation to the booster, as shown in Fig. 7.5. 

partial 
object tree 

booster 

Figure 7.5: GATT consists of three components. Its geometry and wire-
frame model are illustrated. 

One of the GATTs is selected for topology building. Its orientation vector is 

expressed by VG = [a, b, c, 0, 0, O]T, where a, b, and c denote the coordinates of 

the center of geometry. Another GATT will be obtained by rotating this object 

about the z-axis by 180°. 

In order to simplify the interface of the object G to the object B, three components 

G1
, G2 and G3

, are encapsulated by the wireframe model, termed object hiding. 

That means, the external boundary of the wireframe for G has the form of a 

framework, while its internal block topology could be very complex, as shown in 

Fig. 7.6. 

The encapsulation of objects using the object hiding enables easy assembly. 

The background wireframe model is built by connecting a set of frameworks 

together, which are generated in the form of box-like frameworks. It is easy to 

select a location that is covered by a framework. An object encapsulated will be 

assembled in this location. 



CHAPTER 7. . GRID EXAMPLE FOR A COMPLEX TOPOLOGY 
85 

Figure 7.6: The object GATT is assembled into the background wire-
frame. 

Fig. 7.7 shows the target region covered by a local background wireframe and the 

interface of the object G. The external boundaries of the object and the region 

targeted for this object have the same topology. Assembly of the object in the 

target region is accomplished by generating a one-to-one vertex connection. 

/ 
local 

topology 

local backgrOund············· .. l::::······j ......... 
wireframe model ..... ,v .. 

Figure 7.7: The object GATT is assembled into the background wire-
frame. 

7.3.2.2 Local Topology Building for Object R 

The object DAAR consists of three components that attach the object mam 

stage M and the objects booster B. In the object tree, they are represented by 

three ending nodes, Rl, R2 and R3 , where the superscript denotes the number of 

DAAR's component, as shown in Fig. 7.3. In wireframe building, its neighboring 

objects are sketched in a partial object tree in order to generate interfaces among 

objects accurately, as shown in Fig. 7.8. 

One of the DAARs, R1 , is selected to generate the local topology in a standani 

form. The other object R2 can be obtained by duplicating Rl and rotat iIlg it 
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M B 

partial 
object tree 

R 

main sm\ booster 

... -.. -\. 
R 

Figure 7.8: Object DAAR and its relation to other objects. 

about the z-axis by 180°. 

The difficulty is to generate an adequate block topology for the Y-joint, built by 

the intersection of the components R1 and R2. The external wireframe topology 

of the complete R should have a simple form, such that its interface to the 

targeted region in the background wireframe model can be represented by a 

framework. 

main 
stage booster 

r'-' '-'-'-' ._._, 
i 
i 
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Figure 7.9: The simplified geometry of the DAAR object and its topol-

ogy building. 

To encapsulate the complete R, a framework that covers all DAAR components 

is first generated. Object R2 has the form of a f-type tube. Then, the blocks 

which cover the region of R2 are selected. The internal blocks are generated 

within the region selected, which represent the f-type component R2, as shown 

in Fig. 7.9. 
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7.3.3 Object Building at Level 3 

The objects to be generated at level 3 are the nozzle of the main stage NM• the 

nozzles of booster Nl and N2 , the attachment struts Rl and R2 , the helium tank 

H and the accumulator A. Similar to the objects GATT and DAAR, the local 

topologies for these objects are generated with respect to their geometric fea-

tures and their relations to other objects as well as to the environments of the 

background wireframe model. 

7.3.3.1 Local Topology Building for Object NM 

The nozzle is considered as an internal component of the mam stage. The 

geometries of these two objects are originally designed as separate CAD models. 

If the nozzle geometry is varied, the CAD model will be easily modified by 

updating the nozzle geometry. Regarding modification of the nozzle geometry, 

the grid topology is generated by separating the nozzle from the main stage. 

The geometry of the object NM is described by an axisymmetric surface. The 

object and its relations to other objects are shown in Fig. 7.10. 

partial 
object tree 

nozzle 

Figure 7.10: The geometry of the object NM and its relation to the object 

M. 

The objects NM and M are connected at the nozzle exit. Since the object NM is an 

internal component of the main stage, they will be assembled by merging their 

common interface. 

In order to generate the common interface of two objects. both objects are 

selected. The local topology for the object NM is generated with respect to the 

main stage. The topology of the common interface of the object NM is employed 

as a part of the local topology of the main stage, as shown in Fig. 7.11. 
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Figure 7.11: The wireframe topology of the object NM and its interface 
to the object M. 

7.3.3.2 Local Topology Building for Object N 

The geometry of object N is axisymmetric about the z-axis. Its surface geometry 

is described by a rotational sweep surface. The position of the object N1 is 

expressed by the orientation vector VNl = [a, 0, 0, 0, 0, 0]T, where a gives the 

distance between the z-axis and the rotational axis of the nozzle. Obviously, 

the position of the object N2 is expressed by VN2 = [-a, 0, 0, 0, 0, 0]T, as shown in 
Fig. 7.12. 

partial 
object tree 

booster 

/ 

nozzle 

Figure 7.12: The geometry of the object Nb and its relation to the object 
booster. 

The nozzle is considered as an internal component of the booster. In general, one 

can generate a booster together with its nozzle. With respect to modification of 

the nozzle geometry, the nozzle is treated separately. 

The vertices at the bottom of the wireframe model of the nozzle are connected 

to the booster. The interface of the local topology to the booster is therefore 
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generated in a simple form, as shown in Fig. 7.13. 

booster 

/ 

Figure 7.13: The wireframe topology of the object Nb and its interface 
to the booster. 

7.3.3.3 Local Topology Building for Object H 

The object helium tank, denoted by H, is attached to the main stage. The 

relation of the object to the main stage M is shown in Fig. 7.3. The geometry 

of the helium tank is described by a rotational sweep surface. Its geometric 

features as well as its relation to the object M are depicted in Fig. 7.14. 

Since the object H will not be duplicated, it is generated in its original size and 

position in the physical space. 

ft 
® 

partial 
object tree 

main 
stage 

/ 
helium 

tank 

Figure 7.14: The geometry of the object helium tank H and its relation 
to the main stage. 

The object H has a block topology similar to a Y -joint. In order to encapsulate 

the helium tank within a framework, the local topology is generated according 

to the following steps. Firstly, a framework of the region that coyers the helium 
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tank is selected. Secondly, an internal block topology is built for the helium 

tank. Finally, the connection between the internal topology and the selected 

framework is generated. 

r'-' '-'-'-'-.-.-.-- --'1 

i 

Figure 7.15: Topology building of object H. 

7.3.3.4 Local Topology Building for Object A 

The object accumulator, denoted by A, is attached to the main stage. The 

relation of the object to the main stage is shown in Fig. 7.3. The geometry of the 

object A is described by a free-form surface. Its shape and position in physical 

space is depicted in Fig. 7.16. 

partial 
object tree 

main 
stage 

hydraulic 
accumulator 

Figure 7.16: The shape of the object A and its position in physical space. 

Object A is generated in original size and position in physical space. The local 

topology of this object is built as shown in Fig. 7.17. Due to its simple topology. 

a detailed description of the wireframe model building is omitted. 
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Figure 7.17: The local topology of object A. 

7.3.4 Object Building at Level 2 

The main stage, two boosters and their attachments DAV are defined as the 

meshing objects at level 2. The main stage and boosters have the largest sizes 

among all objects. The two DAVs are attachments between the main stage and 

booster. 

7.3.4.1 Local Topology Building for Object M 

The object main stage, denoted by M, is axisymmetric. The major requirement 

for topology building is to accurately model the sharp edges, since these 

geometric features are important for simulating flow separation. The complete 

geometry is described by a set of axisymmetric surfaces. The intersections 

between these surfaces give the sharp edges, as shown in Fig. 7.18. 

partial 
object tree 

main 
stage 

.-/ 
DAAR 

/ 
helium 
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" nozzle 

Figure 7.18: The object main stage M and its relations to other objects. 

The object, connected to the main stage on the same level, is DA \. V. Other 

objects connected to the main stage at lower levels are DA.-\R R, helium tank H. 

nozzle NM, and accumulator A, as shown in Fig. 7.3. The topology for object M 
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generated regarding the geometric shape of the object M, as well as its relations 

to other objects. 

The wireframe topology of object M must provide sufficient places (frameworks) 

for other objects to be connected. In addition, it should have a simple form to the 

environment of the background wire frame model. To meet these requirements, 

all local topologies of the relevant objects are placed in their respective positions. 

A coarse framework that encloses all objects is generated. This framework 

is refined, until all local topologies can be enclosed by their corresponding 

frameworks, as shown in Fig. 7.19. 
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Figure 7.19: The local topology of the object M. 

Through the refinement of the coarse framework, the locations where other 

objects are placed, are decomposed by the local frameworks that have the same 

topologies as the external topologies of the objects to be integrated. In this 

manner, all objects are assembled. 

7.3.4.2 Local Topology Building for Object B 

The major requirement for topology building of the object booster B is to model 

the sharp edges. The complete geometry is described by a set of rotational sweep 

and axisymmetric surfaces. Intersections between surfaces give the sharp edges. 

The orientation vector of the object B is expressed by VBl = [a, 0, 0, 0, 0, O]T. where 

the a denotes the distance between the z-axis and the main axis of the booster, 

as shown in Fig. 7.20. Another object B2 is obtained b!' rotating the object B1 

around the z-axis by 1800
• 

In topology building, the attachment components, such as GATT G, D.-\AR R. 
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DAV -------LU 
I 

nozzle 

Figure 7.20: The object B and its relations to other objects. 

nozzle Nb and DAV V, are placed in their positions. A framework for the object 

B is generated with respect to these objects, as shown in Fig. 7.21. 

£:::::: / 
r\ 

"'- 1/ 

Figure 7.21: The local topology of the object booster B. 

7.3.4.3 Local Topology Building for Object V 

The last object, DAV, on this level, denoted by V, attaches the main stage and 

booster. Its geometry is described by a set of parametric surfaces in the form of 

quadrilateral elements. The geometric shape of object V and its relation to other 

objects are depicted in Fig. 7.22. 

The orientation vector of the object V is expressed by Vvl = [a, 0, c, 0, 0, O]T, 

where the a and c denote the distances between the x- and z-coordinates of the 

geometry center of the object V and the x- and z-axes. Another object B2 is 

obtained by rotating the object B1 about the z-axis by 180°. The interface of 

the object V to other objects is generated as in Fig. 7.23. 
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Figure 7.22: The object DAV V and its relations to other objects. 
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Figure 7.23: The local topology of the object DAV V. 

7.3.5 Generation of the Final Grid 

To complete the meshing task, all objects are assembled into the background 

wireframe model. The method employed for the assembly process is that the 

objects are inserted into the background wireframe model in sequence. 

In general, an assembly process begins with inserting objects into the background 

wireframe model. It is desirable to obtain a grid after every assembly. However, 

attention should be paid to the sequence of object assembly. In the present 

example, the objects are divided into two groups according to their surface 

description. The main stage and boosters are described by closed surfaces. 

Inserting them into the background wireframe model, together with an outer 

boundary, the first type of meshing domain can be found (section 6.3.1). The 

objects, whose surface geometries are described by open surfaces, belong to the 

second group. Since an open surface does not define a subdomain. the objecb 

of the second group have to be assembled after the assembly of the first group. 

as shown in Fig. 7.24. 
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,..----------------------.-----------------------------------------------------------------------------------------.----------------------------

: Group 1 

Group 2 

Group 1: Objects are described by closed surfaces. 

Group 2: Objects are described by open surfaces. 

G, 6) i 
i 

Figure 7.24: The objects are assigned to two groups in order to specify 
a sequence of object assembly. 

7.3.5.1 The Sequence of Assembly 

The assembly sequence can be expressed by an assembly graph as well as by an 

assembly function. The assembly function is employed to represent the sequence 

of assembly, since it is expressed in a simple form. 

Object assembly of the group 1. The objects of the group 1 are assembled 

into the background wireframe model. 

I> 1. Assembly AI. The main stage M is assembled to the background wire-
frame model F, denoted by the assembly function 

I> 2. Assembly A2 . The boosters Bl and B2 are assembled to the background 
wireframe model F, denoted by the assembly function 

Object assembly of the group 2. Three objects of the group 2 are assembled 

into the background wireframe model. 

I> 3. Assembly A3 . The DAVs V1 and V2 are assembled into the background 
wireframe model. They build the attachment between the main stage M and 
boosters Bl and B2 , denoted by the assembly function 

A3 = {SI(V 1 , B1), S2(V1, M), S3(V2, B2), S4(V2, M)} 

I> 4. Assembly A4 . The nozzles NM, Nl and N2 are assembled into the back-
ground wireframe model F. They are connected to the main stage M. and 
boosters B1 , B2. It is expressed by 

A-! = {sl(NM, M). s2(N1 , Bd, s3(N2 , B2)} 
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[> 5. Assembly A5 · The DAARs Rl and R2 are assembled into the background 
wireframe model. They are connected to the main stage M and boosters B1 . 

B2• It is expressed by 

[> 6. Assembly A6 • The GATTs G1 and G2 are assembled into the background 
wireframe model. They are connected to the boosters Bl and B2. It is 
expressed by 

[> 7. Assembly A7 . The helium tank H is assembled into the background 
wireframe model, and is connected to the main stage M. It is expressed by 

[> 8. Assembly A8 • The accumulator A is assembled into the background 
wireframe model, and is connected to the main stage M. It is expressed by 

A8 = {81(A, M)} 

The assembly functions given above serve as a plan for completing the main 

meshing task. The assembly process, a so-called object-oriented sequence of 

assembly, provides the designer with a grid containing the objects already 

assembled. The method enables a step-by-step control of grid topology as well 

as grid quality. In the following the object assembly is explained. 

7.3.5.2 Assembly of Objects 

The main stage M is inserted into the background wireframe model F, denoted 

by the assembly function Al = {81 (M, F)}. First, the the background wireframe 

model is placed in its position. In the region, where the main stage is inserted, 

the framework is selected. Deleting all internal vertices of the framework, the 

hull box of the framework has the same topology as the external topology of the 

object main stage. Generating the one-to-one connection between them, the 

object main stage is assembled into the background wireframe modeL as shown 

in Fig. 7.25. 

The above example shows the principle of an assembly. Since all objects are 

generated in the same way, a detailed description of the complete assembly 

process is omitted. 
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Figure 7.25: The assembly of the main stage into the background wire-
frame model. 

7.4 Evaluation of Results 

Results of grid generation are evaluated by comparing the grids from each 

assembly with the requirements for geometric accuracy and grid quality. If 

these requirements are satisfied, the assembly process will be continued. In the 

following, the results of the example are given in the form of a series of grids. 

7.4.1 DAAR, GATT, and Hydraulic Accumulator 

Attachment struts DAAR. The grid quality of the attachment struts DAAR 

is evaluated by the following two major points. First, two struts build a Y -joint, 

where the cutter path must be accurately modeled. This region is considered as 

a sensible region, i.e., a reduced convergent behavior of grid lines may occur in 

this region, if block topology or surface description are of insufficient quality. 

Second, in region of the Y -joint, a high density of grid lines is required for 

resolving viscous flow. 

The strategy to prevent these problems is to optimize the local wireframe model. 

That means, before it is assembled into the global grid topology, vertices of the 

wireframe model are put in optimal positions, where a good initial solution is 

provided. Such a test of a local grid topology enables the designer to control grid 

quality at different levels. The result shows that both requirements are satisfied, 

as shown in Fig. 7.26. 

GATT. The local topology of the object GATT encapsulates it three com-

ponents. The test result of the local wireframe topology provides a high grid 

quality. The grid lines of surface grid are almost uniformly and orthogonally 
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distributed. In addition, the cutter path between the GATT and boo ter i 

exactly modeled, as shown in Fig. 7.26. 

Hydraulic accumulator. The grid quality of the object hydrauli c accumulator 

can be evaluated by the smoothness and uniform dist ribut ion of grid li nes on 

its surface. Since the object is attached on the main stage, where sharp edges 

exist, the trajectory of the intersection curve is the major diffi cul ty of grid 

topology building. Around the object, a boundary layer topology is generated, 

which ensures that the cutter path is clearly modeled. The resul t shows the 

satisfactory grid quality, as shown in Fig. 7.26. 

Figure 7.26: Local grid of the objects attachment struts, GATT , and 
hydraulic accumulator. 

7.4.2 Helium Tank 

The helium tank is an important component for simulating fl ow separation, 

and eventual the flow separation. Therefore, its size and geometry should be 

accurately modeled. The main diffi culty of meshing this object is to build an 

appropriate block topology for the complete object and its interface to the main 

stage. 

The result is shown in Fig. 7.27. The cutter path between the object and the 

main stage is modeled very clearl y. Gri d li nes on the urface of the helium 

tank are of high smoothness. This satisfies the requirement for an accurate fiO\\ ' 
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simulation in region of interest. 

Figure 7.27: Local grid of the object helium tank. 

7 .4.3 Nozzles 

It is required to build one-dimensional boundary layer topologies for three 

nozzles, such that an eventual enrichment of grid lines for N avier- Stokes 

computation can be generated using cluster tools. In addition, the sharp edges 

at nozzle exist are important for simulating flow separation. 

The result is shown in Fig. 7.28. Grid lines are almost uniformly and orthog-

onally distributed with the nozzles. The boundary layer topology enables a 

one- dimensional clustering of grid lines wrapped around nozzles. The geometric 

features are accurately meshed. 

7.4.4 GATT Attachment 

In order to simulate flow separation, caused by GATT attachment which ma\' , < 

have some influence on shock- shock interaction with other flov,' separation. the 

shape features should be modeled accurately. In topology design, the boundary 

layer topology is selected to wrap these attachment components. Thi prO\-ici ec 

the possibility to change grid density around the GATT surfaces. 
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Figure 7.28: Local grid of the object nozzle. 

The result is shown in Fig. 7.29. The geometric features of GATT attachments 

are sufficiently meshed. However, the distance of the first lines to GATT surface 

is much larger than it is required. This can be improved to use control functi ons, 

which force grid lines within a desirable range. 

Figure 7.29: Local grid of the object GATT Attachment. 

7.4.5 Complete Grid 

T he fin al grid is shown in Figs. 7.30 and 7.31. In order to examine the preci ion 

of t he meshing geometry, t he geometry surface of the Ariane 5 grid i \Oi ualized 
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in shaded view. The cut plane on the x-plane is given in the form of a me h. 

The grid consists of about 5000 blocks with about 700,000 grid points. 

Figure 7.30: The final grid of the Ariane 5 launcher (1). 

Figure 7.31: The final grid of the Ariane 5 launcher (2). 



CHAPTER 7. GRID EXAMPLE FOR A COMPLEX TOPOLOGY 102 

7.5 Chapter Summary 

The main contribution of the present chapter is to describe the practical appli-

cation of the object-oriented grid design method in complex cases. The Ariane 

5 launcher is chosen as the example. The complete grid generation process is 

explained in the following parts: 

[> 1. A complete meshing task is divided into a set of sub-tasks, termed 
meshing objects. 

[> 2. Relations among the main meshing tasks and meshing objects are rep-
resented in an object-tree. 

[> 3. A background wireframe model is generated for the complete solution 
domain, in which there are enough spaces for each meshing object. 

[> 4. Wireframe topologies for meshing objects are locally generated with 
respect to their neighboring relations to other objects and environments in 
the background wireframe model. 

[> 5. Meshing objects are inserted to the background wireframe model. 



Chapter 8 

Topology-Based Grid Adaptation 

There is no formula to determine the optimal grid density using, for instance, 

a quantity like cell number per unit volume. A requirement for the optimal cell 

number for a grid is likely to be an estimate based on the experience of the 

designer. 

A homogeneous distribution is advantageous to reduce numerical errors, it is, 

however, not economical in many cases. In general, a high grid point distribution 

is generated in regions of interest, where either large gradients of flow variables 

are observed, or a high grid point distribution to resolving flow discontinuities is 

required. 

A heterogeneous distribution is based on the efficient flow simulation with a 

reduced number of cells. It is sufficient to have a lower grid density in regions 

of less interest with respect to the flow physics. Usually, a heterogeneous 

distribution is obtained by using solution-oriented grid adaptation. 

A solution-independent approach to grid clustering is the change of local block 

structures to retain a high number of grid points with a marked region without 

employing a flow solution. This adaptation is a topology-based adaptation and 

thus is solution-independent. In the present thesis this type of grid adaptation 

is termed passive grid adaptation. 

Another important reason for introducing topology-based grid adaptation is 

the following. Grid generation for a highly complex configuration is often 

time-consuming. It is hoped that a modification of local grid structure, grid 

density, or grid line distribution does not substantially affect the existing grid 

structure and grid quality. Based on a rough estimate of a high grid densi 

103 
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in regions of interest, grid topology can be adapted in the manner that a fine 

block structure will improve grid density in these regions. The idea inspires 

the strategy development for a solution-independent grid adaptation, i.e., block 

topology-based grid adaptation. 

8.1 Strategy of Passive Grid Adaptation 

Passive grid adaptation as developed in this thesis consists of three main parts: 

block encapsulation, boundary layer enrichment and smart topology. All of these 

adaptations are accomplished by building special block structures. The termi-

nology passive adaptation is used, since a local grid density is increased without 

reasonably regarding accurate flow physics. Passive grid adaptation will be em-

ployed in the following cases. 

t> Block encapsulation. In order to separate a fine distribution of grid lines 
from a coarse one, the region of this fine distribution is encapsulated by a 
set of blocks. Their outer boundary, termed encapsulated surface restricts 
the degrees of freedom of grid points. The grid line distributions at both 
sides of the encapsulated surface are separated. 

t> Boundary layer enrichment. In case of generating a N-S grid, an ex-
tremely fine distribution of grid lines to resolving the boundary layer is 
required. A block structure, consisting of a set of blocks, builds a wrap 
around the fixed body, termed boundary layer topology. Grid line enrich-
ment can be carried out within this block layer. 

t> Smart topology Refinement of grid points is achieved by inserting a set of 
blocks into an existing grid. Through this block enrichment, termed smart 
topology, a high local grid density is generated [30]. 

The core of the above three adaptation methods is summarized as scaling 

line distribution (block encapsulation), separate generation of grid clustering 

(boundary layer enrichment), and block enrichment (smart topology). They 

are aimed at providing an optimal grid point distribution associated with 

requirements for flow simulation. 

8.2 Concept 1: Block Encapsulation 

A homogeneous grid line distribution may be generally regarded as an optimal 

domain decomposition. It is, however, neither rational nor economic for fiow 
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simulation in many cases. Consider the two-dimensional example of Fig. 1.8 in 

section 1.3.2 (see page 13). Suppose that the diameter of antenna is D and the , 
length of car is L, as shown in Fig. 8.1, and the ratio of D / L is some 1/2 x 10-3. 

There is a need for resolving the micro-aerodynamic flow phenomenon around 

the antenna with 4 points in each direction. If the number of cells needed for 

the area of the antenna tip amounts to N = 4 x 4, then the area of the solution 

domain An2 is approximated by 

U sing the relation 

An2 (3L) x (2.5L) - L x (0.5L)2 

7.25L2 

Nn2 7.25L2 (2000 2 
N D2 = 7.25 x -1-) 

2.9 x 107 

one can estimate the total number of cells III the solution domain to be 

Nn2 = N x 2.9 X 107 = 4.64 X 108. 

, ... ------- 3L -----___ 

2.SL 

/4---- L 

Figure 8.1: The sizes of the meshing objects can be significantly differ-
ent. A globally homogeneous grid density may cause a large number 
of grid points. 

Similar to solution-adaptive grid generation, it is desirable to obtain a 

heterogeneous grid line distribution. In order to retain high grid only 

in regions of physical interest, block encapsulation separates the region of the 

antenna from its environment. In section 6.3.1 (see page 69), two types of meshing 

domain are defined. The subdomain, enveloped by an internal boundary, is part 

of the meshing domain, but differs from a general subdomain. Therefore the 

following definition is employed to describe this type of subdomains. 
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Definition 8.1: The third type of meshing domain. A subdomain 
is continuous, and its boundary is represented by a set of closed surfaces 
53, which is used for reducing the degrees of freedom of grid points. Thi 
domain is defined as the third type of meshing domain, denoted by 0 3 , The 
boundary of the n3 is termed internal boundary. 

The idea of block encapsulation is to prevent free movement of grid points. 

On an internal boundary of n3 , also termed internal surface, grid points are 

restricted by its geometry. At both sides of the internal surface different aspect 

ratios of grid lines can be generated, as shown in Fig. 8.2. 

the 3. type of 
meshing domain 

Figure 8.2: The third type of meshing domain. 

8.2.1 Block Encapsulation Building 

A subdomain, represented by a set of blocks, is selected from an existing 

wireframe modeL The outer boundary of the sub domain is described by a set of 

closed surfaces. A sub domain of type n3 is bounded by its outer boundary 53' 

The grid elements (vertices, edges and faces) on the boundary of 0 3 boundary 

are assigned to the 53, 

Fig. 8.3 shows an example of block encapsulation. Let a solution domain be 

defined by the box 51 and the circle 52. Suppose that a large grid density i 

required at the both sides of the line y = 2x. Introducing the internal surfaces 

53, expressed by two parallel lines 

y = 2x ± lal 

They intersect the physical boundaries 51 and 52, respecti\'ely, and re ult in t\\·o 

0 3 subdomains. Two blocks are generated for both 0 3 subdomain . During gri d 
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generation, the grid density within the blocks encapsulated is separated from the 

O2 domains. 

/ I / . 
/ / y=2x±a 

/ / ! 

Figure 8.3: Block encapsulation is a method for separating grid density 
of a subdomain 03 from the O2 domain. 

The application of block encapsulation is aimed to improve local resolution. For 

instance, if a certain region is of special interest, it will be accurately simulated 

in two stages. First, the whole solution domain is computed until a stationary 

solution is obtained. Second, since the region is encapsulated by its local block 

topology, it can be extracted from the solution domain. Using the known 

stationary solution as boundary condition, a more accurate computation for this 

subdomain can be performed. 

8.3 Concept 2: Boundary Layer Enrichment 

A N avier-Stokes grid is considered as a special form of an Euler grid. Clustering 

grid lines on body surfaces of an Euler grid, a N avier-Stokes grid is generated. 

However, attention must be paid to boundary layer topology. An inadequate 

topology may lead to an extension of the fine grid line distribution into the far 

field. Unnecessary small cells will fill the solution domain where the boundary 

layer does not exist. 

Fig. 8.4 depicts a grid topology for an Euler computation. The enrichment of 

grid lines on the body surface of the cone yields a two-dimensional clustering. 

The area of the smallest cell is proportional to 
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2 3 

1 " 

( a) arbitrary grid 
topology 

5 

6 

7 

two-dimensional 
enrichment 

lJ / 
(b) grid enrichment 

off the body 

\ 
2 3 5 

.............. - ................................... ........... 

11 f \ " i 6 1 a 1 ............................. ti .... · .... · 
: 7 

Figure 8.4: This grid topology causes an extension of high grid density 
into regions where this large density is not wanted [40]. 

where and 8", denote the distances between the first and second lines of 

enriched surfaces in both and 1]-directions. Extremely small distances in both 

directions result in small cell sizes, which could cause problems like reduced 

convergence. Table 8.3 shows the extension of enrichment and its influence on 

cell size of the grid topology of the example in Fig. 8.4. 

Table 8.1: The influence of grid topology on enrichment extension of the example 

in Fig. 8.4. 

block # enrichment direction extension direction clustering dimension 

1 1 

2 1]min 2 

3 1]min 2 

4 1]min 2 

5 1]min 2 

6 1]min 2 

7 1 

The concept of one dimensional enrichment is developed to overcome the disad-

vantage of multi-dimensional enrichment. In many cases, a fine grid line distribu-

tion of a N avier-Stokes mesh is needed on the fixed boundary, and an extension 

of grid line enrichment into the far field should be prevented. 
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Definition 8.2: Boundary layer topology. A set of blocks is connected 
to each other. They completely cover a fixed boundary, on which an enrich-
ment of grid lines is required. If one and only one side (in two-dimensional 
case) or face (in three-dimensional case) of each of these blocks contacts 
the fixed boundary, this block topology is termed boundary layer topology. 

A boundary layer topology ensures one-dimensional enrichment and is therefore , 
termed boundary layer topology. 

8.3.1 Building for Boundary Layer Topology 

In two-dimensional cases, building a boundary layer topology contains the fol-

lowing steps, depicted in Fig. 8.5: 

t> Generate a start boundary. A set of vertices P = {Pi (x, y) Ii = 
1, 2, ... ,I} is selected around a body surface. They are connected in se-
quence in the manner that no more than two edges have an end in common. 
The sequence of vertices is topologically a one-dimensional line. It is used 
as a start boundary. 

t> Determine a sweep direction for vertices. In order to determine the 
sweep direction for an arbitrary vertex, the normal ni is calculated. This 
normal indicates the sweep direction. 

t> Generate an offset boundary. The offset boundary is generated by 
duplicating the start boundary in the sweep direction. The offset boundary 
consists of the same numbers of vertices and line segments. 

t> Generate block loop. A one-to-one connection of the corresponding 
vertices on both boundaries is generated. On the start boundary a 
one-dimensional enrichment can be generated when required. 

In three-dimensional cases, a start boundary must have a two-dimensional block 

topology. An algebraic method is employed to generated an offset boundary. In 

order to explain this method, the following terminologies are introduced. 

Definition 8.3: Dangling vertex. A vertex is defined as a dangling 
vertex, if it belongs to one edge only. 

Definition 8.4: Undirected vertex. A vertex is defined as a undirected 
vertex, if it belongs two edges in common. 

Definition 8.5: Junction vertex. A vertex is defined as a junction vertex, 
if it belongs to at least three edges. 
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extension to outer 
boundary 

/ 
(a) L-:r····r············-rJ 

(b) offset boundary (c) 

110 

Figure 8.5: Principle of building a one-dimensional enrichment topology. 

A dangling vertex has only one edge, and does no satisfy a tow-dimensional 

topology. Undirected and junction vertices are employed in building for bound-

ary layer topology. 

It is supposed that a start boundary is generated in three-dimensional space. 

It satisfies a two-dimensional block topology (see grid construction rule 3 

in section 6.3.3, page 74). Duplicating and projecting the vertices along 

certain directions, the two-dimensional block topology is converted into a 

three-dimensional one, as shown in Fig. 8.6. 

(a) (b) 

Figure 8.6: The principle of generating a spatial boundary layer topol-
ogy: ( a) generation of a start boundary with two-dimensional block 
topology; (b) calculation of the projection directions for all vertices; 
and (c) generate the new vertices and their connectivity. 

The algorithm to generate this topology contains the general steps: 
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f> Calculate the shortest length of edges lmin' The goal of finding the 

shortest edge length is to determine a measure for projection, termed pro-

jection radius r. A larger projection radius will substantially deform the 

geometric shape of an offset boundary. It is suggested that r is kept in the 

range 0 < r < O.3lmin. 

f> Calculate sweep direction for all vertices. This key step can be ac-

complished using a simple method, depicted in Fig. 8.7. Using a projection 

radius r, three intersection points Ql, Q2 and Q3 are found. The geometry 

center of these three points Qc is the position of the offset vertex of the 

junction vertex. Note, in cases that edges of a junction vertex are at one 

plane, or in case of a undirected vertex, the offset vertices are at the same 

plane as the plane of their junction or indirection vertices. The positions 

of the offset vertices should be inadequate in their adequate positions. 

f> Generate the offset boundary. All vertices are projected in their 

normal directions. The one-to-one vertex connectivity is generated for the 

start offset boundary . 

............ ... . ... 
n: PJ \Q 

: 2 
\ ... 

'. ... . ....•. 

r 
sweep-dulplicated 
position of PJ 

Figure 8.7: Using a projection radius r three intersection points Q2 
and Q3 are obtained at three non-planar edges. The sweep-duplIcated 
position is the geometric center of these points. 

As a summary, the construction rule for generating a boundary layer topology is 

given as follows. 



CHAPTER 8. TOPOLOGY-BASED GRID ADAPTATIOS 11:.2 

Grid construction rule 6: Boundary layer topology. A boundary 
layer topology is built by generating a start boundary and its sweep-
duplicative wireframe. The requirements of block topology for a start 
boundary are: (1) in two-dimensional cases, a start boundary topology is 
one-dimensional; (2) in three-dimensional cases, a start boundary topology 
is two-dimensional. 

8.4 Concept 3: Smart Topology 

It is expected that a local grid density can be varied without usmg a grid 

generator. This requires that blocks added to an existing grid are partially or 

totally merged or encapsulated by the blocks of the initial grid. This type of 

block topology used for local refinement of grid density is termed smart topology. 

Two types of smart topologies are explained as follows. 

Block-merged smart topology. A set of blocks employed to enrich local 

grid density is inserted into a chosen region. The outer block topology of the 

region, i.e., face and vertex numbers remain unchanged. That is, new blocks 

are completely merged into the interior of the selected region. This type of 

smart topology is termed block-merged smart topology. Fig. 8.8 (a) shows a 

two-dimensional example of a block-merged smart topology. The original grid 

topology consists of four blocks, which are added in order to provide a local 

block refinement. An increase of grid density is encapsulated within the region 

chosen. 

Side-merged smart topology. A local block refinement is generated by 

adding a set of blocks into the selected region. On the outer boundary of 

the region, the original block topology will be changed, since the new blocks 

are not completely merged into the interior of the region. That means, face 

and vertex numbers of the outer boundary of the selected region will be 

increased, shown in Fig. 8.8 (b). This topology is termed side-merged smart 

topology or face-merged topology for two- or three-dimensional cases, respectively. 

8.4.1 Topology Building of a Smart Topology 

The local wireframe topology, selected for a smart topology building, is termed 

parent-structure. A smart topology to be inserted into the parent-structure is 
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Figure 8.8: Two types of smart topologies: (a) block-merged smart 
topology, and (b) side-merged smart topology. 

termed child-structure. According to requirements of grid density, a block- or a 

side-merged topology generation has the following steps, as shown in Fig. 8.9: 

t> Select a local wireframe topology as parent-structure. A region is 
selected for block refinement. In the region all grid points are deleted. 

t> Generate a child-structure. A block refinement either with block-
merged or with face-merged type is generated. Both structures must have 
the same block topology. 

t> Link two topologies. Two block topologies are linked by generating one-
to-one vertex connectivity. 

t> Generate new blocks. New blocks are generated usmg the block 
topology resulted from the parent-and child-structures. 

select a 
parent-structure 

---+-+---I 

i --+-t---f : r-. 

i.r-.................. : 

"- ,., 
I I 

l/'" ...... 

merge child-structure 
into parent-structure 

generate a 
chlld-structure 

\. 

dl-+--+-+--1 

T 
I 
I 

local block 
generation 

Figure 8.9: A smart topology is constructed in four steps: (1) select :e-
gion of block refinement; (2) build internal block topology; (3) combIne 
two boundaries; (4) generate new blocks. 
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The following rule gives the topological relation between these two structures. 

Grid construction rule 7: Similarity of child-structure with 
parent-structure. A smart topology, termed child-structure is generated 
within an existing block topology, termed parent-structure. B;th structures 
must have the same block topology. 

A more useful application of a smart topology is to change a local grid topology 

for the increase of grid density. Fig. 8.10 shows two methods for the local 

refinement of block topology. 

topology 
building 1---_ 

re-building of 
block topology 

("mal flow 
soultion 

Figure 8.10: Two methods for the local refinement of block topology. 

8.5 Examples for Passive Grid Adaptation 

The examples are selected from the grid generation practices over several years. 

Although all grids are generated using GridPro [29] as well as Grid* [36], the 

strategy of passive grid adaptation can be used to generate structured multiblock 

grids independent of the grid generator. 

8.5.1 Block Encapsulation 

The grid generic car with micro-aerodynamic components is selected as an 

advanced example. Suppose that a fine resolution of the region of the antenna 

tip is required, shown in Fig. 8.11, and a fine distribution of grid lines has 

to be kept in this region. The topology encapsulation is generated according 

to the steps explained above. First, a region is selected from the coarse grid 

topology. The dimension of the region will be determined in accordance with 
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the requirements of flow simulation. Second, an ellipsoid which encapsulates a 

third type of meshing domain (see Definition 8.1 in section 8.2) is introduced to 

represent the boundary of the subdomain. In the last step, a fin e block topology 

is generated for the antenna tip . The grid elements on the subdomain boundary 

are assigned to the surface of ellipsoid. 

/ 
/ 

region to be 
encapsulated 

( c 
"J ..... 

/ 

(a) 

internal 
surface (c) 

......... 
, , , , , , , , , , , , 

1 
(b) 

Figure 8.11: Block encapsulation for the region of an antenna. 

Fig. 8.12 shows a close up of the grid generic car with micro- aerodynamic 

components. It can be seen that a high grid density is concentrated on region of 

the antenna tip. This is carried out by block encapsulation. 

Figure 8.12: Close up of the grid generic car compo-
nents. A high grid density near the antenna tIP IS reached USIng block 

encapsulation. 
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8.5.2 Boundary Layer Topology 

Fig. 8.13 shows the principle of constructing the boundary layer topology of 

the example shown in Fig 8.4. Four additional blocks are introduced into the 

solution domain, which build a closed channel for one-dimensional enrichment. 

This enrichment topology avoids the disadvantages of unnecessary extension 

of grid lines into the far field. Grid generation and grid enrichment processes 

can be treated separately. The idea stems from the work in application in 

unstructured grid generation [61]. In [7], [38], [40], [48] and [82], the concept for 

structured grid are presented in order to generate a N avier-Stokes grid using 

user defined enrichment parameter. The strategy to separate a Navier-Stokes 

grid generation from an Euler grid generation has a large potential especially in 

three-dimensional cases. 

2 3 

4 
1 

1 

(a) boundary layer topology 
built by blocks 8,9, 10, 11 

5 

6 

7 

2 3 5 

4 6 

---... ---..... -...................... 7 

(b) grid line course with the 
boundary layer topology 

Figure 8.13: A boundary layer topology is generated to enrich grid lines 
in one dimension [40]. 

8.5.3 Smart Topology 

In three-dimensional cases the block-wise refinement provides a high flexibility 

of local grid modification. A three-dimensional example stems from the joint-

project in cooperation with the European Space Agency. The European space 

shuttle model Halis is simulated with the body flap under a given reflection 

angle. It is important to simulate the thermodynamic behavior of the body 

surface under the body flap. The smart topology is generated for the region 

under the body flap. Fig. 8.14 shows the building of block enrichment. The 

block is selected as a parent-structure, whose one face is on the windward side 

of the flap. Its eight vertices are denoted by .4, B, C and D, The 

child-structure, built by one cube 8{a, b, c, d, a', b', c', d'}, has a face-merged 
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topology. Connecting the corresponding vertices, the smart topology of the 

region provides a local increase of grid density. 

body flap ch ild-structu re 

b' 
A' 

D 

B' 
parent - structu re 

B' 

Figure 8.14: Smart topology is generated on the windward side of the 
body flap in order to locally increase grid density in this region. 

Fig. 8.15 shows the local enrichment using a three- dimensional smart topology. 

Within the closed block loop, grid lines are clustered directly below the body 

flap where high numerical accuracy is required. 

Figure 8.15: Below the body flap a smart topology is generate.d to in-
crease local grid density. The smart topology does not consIderably 
change the original grid topology [40]. 
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8.6 Chapter Summary 

The main contribution of the present chapter is that a new strategy for 

topology-based grid adaptation is developed. This type of grid adaptation is 

independent of a flow solution, it is therefore termed passive grid adaptation. The 

passive grid adaptation consists of three methods. They are block encapsulation, 

boundary layer enrichment, and smart topology. All these methods are used for 

improvement of local grid density. 

Block encapsulation. A sub domain is encapsulated by a set of encapsulated 

surfaces. Grid points on these surfaces have reduced degrees of freedom. Grid 

line distributions are separated at both sides of the encapsulated surfaces. 

Boundary layer enrichment. On body surface, a block structure, consisting 

of a set of blocks wrapped around the body surface, ensures a one-dimensional 

enrichment of grid lines off the body surface. This grid topology is used for 

generating fine line distribution for a Navier-Stokes grid. 

Smart topology. Grid density is increased by local block refinement. Inserting 

blocks into an existing grid, grid density is improved. 



Chapter 9 

Solution-Based Grid Adaptation 

Solution-based grid generation is also known as solution adaptation [5], [57]. 

In comparison with topology-based grid adaptation, which is realized by block 

refinement, or grid line enrichment within a boundary layer topology, a grid is 

adapted using a flow solution. In this thesis, the term active grid generation 

is used for this kind of approach, in order to distinguish it from passive grid 

adaptation based on block topology. In general, there are two major schemes 

to actively adapt block-structured grids, namely refinement and redistribution 

schemes. 

The former is performed either by introducing new cells into an initial grid or 

by splitting existing cells in regions of large gradients of flow variables [18]. An 

essential advantage of grid refinement is that the primary positions of initial 

grid points are not changed during a refinement process. Problems such as 

slope discontinuity on block interfaces, geometric deformation of a physical 

boundary do not exist. However, a refinement scheme causes an increase in 

cell numbers. This requires a dynamic allocation of memory storage. The 

connectivity relations among cells, grid topology, as well as data structure of 

nodes and their linkage relations become more complex with the increasing 

number of cells. In addition, for a Navier-Stokes computation, an excessive 

number of grid points may be inserted by refinement tools in the boundary 

layers. The need for one-dimensional refinement in such regions necessitates 

the use of hexahedral elements in the boundary layer. Cell splitting in this 

region may not be more effective than grid line enrichment in a one-dimensional 

fashion [10]. 

The latter is performed by grid point redistribution. In companson to a 

refinement scheme, a redistribution scheme does not change grid topology or the 

119 
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total number of cells. After an adaptation process, an initial Bow solution can be 

updated with respect to the spatial relation between the original and adapti,"e 

positions of grid points, so that the computation can be quickly continued. since 

there is no need for generating a new block topology. 

In general, structured grids provide sophisticated means both for clustering and 

adaptation using redistribution or local refinement techniques. A comparison of 

these two approaches is given in [19] and [20], where local refinement gives some-

what better results. However, application of a refinement can be more expensive 

due to increasing memory demand and computing intensity. In case that a fine 

resolution for a bow shock or a shock reBection is required, the alignment of the 

grid through a redistribution can provide more accurate solution than refining 

the grid with an increasing large number of smaller and smaller cells. The choice 

of a redistribution scheme in this thesis is based on the following arguments. 

I> Since the computational grids used are block structured, and the solver 
developed is based on an object-oriented method, the emphasis of this 
research work is therefore focused on adaptation of structured grids. 

I> With increasing geometric complexity, a grid may have several thousands 
of blocks with millions of cells. A constant number of cells enables the 
user to estimate the available memory capacity, and to utilize his hardware 
resource more effectively. 

The present chapter describes the strategy for multi block adaptation using a 

redistribution scheme as well as the adaptation algorithm developed based on 

the previous papers of grid optimization [12], [50]. The core of the strategy is 

to adapt grid points with respect to their geometric and topological constraints. 

In extension of the algorithm for mono-block adaptation to multiblock case, the 

strategy concentrates on finding answers of the following two questions: 

and 

• How can we prevent CI-discontinuity on block interfaces? 

• How will grid points on a fixed boundary be moved without 

destroying its geometry? 

The basic idea of optimizing an adaptive grid is to establish an objective 

function, which describes the relationship between grid point redistributioIl 
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and weight functions. Grid points are redistributed by the minimization of 

objective functions. In an objective function for grid adaptation, some measures 

for grid quality are formulated as penalty functions. A combination of the 

penalty functions with the objective function improves adaptive grid quality and 

convergence behaviors of numerical solutions. 

9.1 Strategy Development for Grid Adaptation 

In order to successfully adapt multiblock grids, the general requirements for grid 

adaptation and the strategy developed in this thesis are summarized as follows: 

[> 1. Computational coordinate system. In practical applications, grids 
are generated for complex geometries using different block topologies. Grid 
sizes and shapes should not play a role in a grid adaptation process. 

To ensure that an algorithm for grid adaptation will work in a robust manner, 

and is available independent of grid sizes and shapes, grids should be trans-

formed into a computational space, where the computation for grid adaptation 

is performed in a dimensionless way. 

[> 2. Weight functions. Flow features are formulated in the form of some 
weight functions to adapt a grid. For a grid adaptation process, grid points 
are clustered according to flow gradients, while the magnitudes of flow 
variables should not playa role in a grid adaptation process. 

Flow variables used for weight functions should be dimensionless, such that 

an adaptation algorithm will work independently of the magnitudes of flow 

variables. To meet this requirement, it is reasonable to norm these quantities. 

[> 3. Adaptation of the internal grid points. To adapt a single grid point. 
influences of spatial positions as well as weight functions of neighboring grid 
points have to be considered in a grid adaptation computation. 

Grid points within a block are connected in a structured manner. Grid points 

should be moved with respect to their relations to neighboring points. This 

requirement can be met by building cell coupling, i.e., an internal grid point 

and its neighboring points and the corresponding weight functions should be 

formulated as independent variables in a stencil equation. Grid adaptation is 

performed by solving a set of these equations. 
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I> 4. Adaptation of grid points on block boundaries. There are some 
geometr.ic constraints of the grid points on physical boundary during grid 
adaptatIOn. They have to be adapted with respect to the surface geometry 
of the physical boundary. . 

It necessitates special treatment of these grid points. Grid adaptation should 

be performed in different stages with respect to degrees of the freedom of grid 

points on physical boundary. Moreover, it must ensure that a movement of grid 

points does not change the surface geometry of the fixed boundary. 

I> 5. Adaptation of grid points on block interfaces. Blocks are con-
nected to each other through their interfaces. That is, the grid points on 
block interfaces have some topological constraints during the adaptation 
process. 

It necessitates a data coupling of grid points among adjacent blocks to ensure 

that grid lines are CI-continuous on block interfaces. This can be improved by 

generating block overlaps, i.e., a block interface is extended using the grid points 

of its neighboring block. 

I> 6. Adaptive grid quality. In cases of complex geometries and block 
topologies, the quality of adaptive grids is unlikely to be visually evalu-
ated in an easy manner. An algorithm for grid adaptation is required in 
controlling grid quality. 

The strategy used in this thesis is to formulate the measures for grid quality 

control in the adaptation equation through penalty functions. The efficiency of 

an adaptation algorithm must be tested in different cases. 

I> 7. M ultiblock grid adaptation. The core of a successful adaptation of 
multi block grids is to design an adaptation procedure with different degrees 
of freedom have to be specified in this procedure. 

First, internal grid points, which have three degrees of freedom, are adapted. 

After this, all grid points on block interfaces are updated, so that all pairs of 

common grid points are placed in their corresponding unique positions. Second, 

grid points on a physical boundary are classified into two groups according to 

their degrees of freedom. Grid points with two degrees of freedom are adapted 

on the geometry surface. Third, grid points with one degree of freedom are 

adapted along edges. Last, it must be sure that the singularity points, haying 

zero degree of freedom, are not moved anywhere. 
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9.1.1 Description of a Solution Domain 

Grid adaptation is computed in parametric coordinate system. In three-

dimensional space, a grid in physical space, represented by P = {Pi,j,k(X) I i = 
1, ... , I; j = 1, ... , J; k = 1, ... , K} is transformed to a parametric space using 
the following relation 

t· . k Z,), 

Ui,j,k 

Vi,j,k = 

- Pi-l,j,k(X) I (I - 1) 
Ll=2IPl,j,k(X) - Pl-l,j,k(X) I 

- Pi,j-l,k(X) I (J _ 1) 
L m=2 IPi,m,k (x) - Pi,m-l,k (x) I 

L!=2IPi,j,k(X) - Pi,j,k-l(X) I (K _ 1) 
L n=2IPi,n,k(X) - Pi,n-l,k(X) I 

(9.1 ) 

where ti,j,k, Ui,j,k and Vi,j,k denote the coordinates in the parameter space. The 

grid in the parameter space is denoted by 

P = {Pi,j,k(t) I i = 1, ... ,I; j = 1, ... , J; k = 1, ... ,K} (9.2) 

where the symbol" A" denotes the parameter space, and t = (t, u, v). Specifying 

the index (i,j, k), the parameter coordinates are obtained from Eq. (9.1). The 

parameters give relations among grid spacings in a dimensionless manner. 

Solution domain of the objective function is described by 

P = {Pi,j,k(t) Ii = 2, ... , 1- 2;j = 2, ... , J - 2; k = 2, ... , K - 2} (9.3) 

Grid points on a block boundary are considered as stationary during an adaptive 

computation, i.e., the first and second partial derivatives with respect to weight 

functions and parameter coordinates at these grid points vanish. 

9.1.2 Determination of Flow Features 

Different methods can be employed to extract flow features from a flow solution. 

For instance, the van Albada limiter function is an efficient shock sensor to 

detecting the position of a shock wave [95]. It is mostly applied in time-accurate 

simulations or adaptation [5]. In case of a stationary solution, flow features can 

be determined by gradients of flow variables. 
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Scalar quantities such as Mach number, density, pressure, and temperature, 

selected as quantities to build a weight function, are termed weight variables. 

9.1.2.1 Norm of Weight Variables 

The values of the scalar quantities of a flow solution have different magnitudes. 

Their orders of magnitudes can be significantly different. This leads to a peak 

value in the weight function at a location of the flow discontinuity. In order 

to calculate weight functions within a reasonable range, weight variables are 

normalized by 

(b) = rPi,j,k ( b) - rPmin 
If/z,),k A. A. 

'Pmax - 'Pmin 
(9.4) 

where 'l/Ji,j,k (b) denotes the normalized weight variable at the node (i, j, k) of 

block b, rPi,j,k(b) is the weight variable to be normalized, and rPmin and rPmax 

are the global maximal and minimal values of the weight variable of the entire 

solution domain. Normalized weight variables are dimensionless, and their 

magnitudes are in the range O<'l/Ji,j,k(b)<l. 

Both the parametric coordinate system and the weight variables are dimen-

sionless. In the development of an adaptation algorithm, these dimensionless 

quantities for grid adaptation ensure that a grid adaptation is independent of 

the magnitudes of weight variables. 

9.1.2.2 Weight Functions 

Weight functions are the measure for grid point redistribution. Many different 

types of numerical weight functions are discussed in [57] and [92]. Theoretically, 

it is possible to construct a weight function using a smooth function to improve 

the quality of the weight function, i.e., to reduce the numerical noise near a 

shock wave [8]. However, the computational stability of the grid adaptation may 

be costly due to the algorithmic complexity. 

McRae suggested to formulate a weight function as a combination of the 

superposition of the first and second derivatives of flow variables [62]. The 

sensitivity and effectiveness of flow gradients and curvatures are controlled by 

means of filter functions. The most time consuming problem of implementing 
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this algorithm is the computation of the second derivatives of the flow solution. 

because this computation may require values from vertices in the diagonal 
direction outside a block. 

A more general and representative formulation of a weight function is a linear 

combination of a set of non-negative gradients in the following form [28], [36] 

(9.5) 

where x = x, y, z denotes the physical coordinates, ai and I I denote coefficients 

and gradients of weight variables, respectively. 

9.1.3 Adaptation of Internal Points 

The basic equation for grid adaptation was derived from the variational functional 

formulation in [25]. In the one-dimensional case, it has the following form 

(9.6) 

where w denotes a weight function, x(, the mesh spacing between two neighboring 

points in physical space, and c is a constant. This statement expresses the 

constant product of the mesh spacing and weight function one-dimensionally in 

physical space [1]. 

The computation using this formulation is performed in the physical space. The 

efficiency of an adaptation algorithm could be dependent upon sizes and shapes 

of grids. Moreover, there is no penalty function to limit movement of grid points 

within a restricted region, in which no cell skewness occurs. 

In [11], [12], [51], [66], [80] and [94], the quality of adaptive grids is controlled 

using variational or functional methods. The essence of grid quality control 

is to generate an adaptive grid using a measure for grid quality derived from 

flow features. Based on this idea, an optimization method is developed in 

this thesis. This method incorporates measures for grid quality into the basic 

adaptation equation and formulates the adaptation function in the form of an 

objective function. The results from the minimization of the objectin' function 

will give the local optimal grid adaptation. In the following. the met hod is 
('v C:,:.;.! . 
v' 

"'c, r-'" 
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derived in two-dimensions, while three-dimensional problems are considered as 

an extension of the two-dimensional equation to the third dimension. 

9.1.3.1 A General Equation for Grid Adaptation 

Eiseman presented the least-squares statement for grid adaptation using the mid-

point weights [28]. In one-dimensional case with N grid points, a grid is adapted 

by the minimization of the weighted sum of squares 

(9.7) 

where Pi(X) denotes the position of a grid point. Regarding the weights as con-

stants, the minimization of the equation gives the same statement as Eq. (9.6). 

Adaptive positions of grid points are obtained by solution of a tridiagonal 

equation system. 

In this thesis, the quadratic statement of Eq. (9.6) is used based on the following 

arguments. First, a grid point in space is connected to its neighboring grid 

points. Moving this grid point, the weight functions and grid spacings of 

its neighboring grid points should be considered. Second, grid points should 

be adapted in certain optimal positions, where grid clustering represent flow 

features, and cells are of good quality. It is required to add some control terms 

for grid quality to an adaptation statement. In a linear equation system, these 

additional control terms will change the linearity of the equation system. 

Based on the idea of the equidistribution statement of Eq. (9.6), we use its 

quadratic formulation as an objective function of grid adaptation, and apply it in 

multi-dimensional grid adaptation. The model equation for a general objective 

function has the following form 

(9.8) 

where Si denotes the length of a line segment. The control terms are constructed 

using the measures for grid quality, such as orthogonality, cell aspect ratio, and 

cell smoothness. 

Consider a simple one-dimensional problem. Grid points are ordered in sequence 

xo, Xl, X2 and X3, where Xo and X3 are fixed points. Line segments are \\'pightpd 
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by W and at the mid-points of three line segments, respectiYely, as 
shown in Fig. 9.1. 

____ 
Xo Xl X2 X3 

X 0 , X3: fixed grid points 

Figure 9.1: Example of one-dimensional grid adaptation. The points Xo 

and X3 are fixed points, while the new positions of Xl and X2 are to be 

determined. 

Neglecting control terms, the weighted sum of squares is expressed by 

(9.9) 

Let Wl = 1, WI+l = 1 and W2+1 = 1, Xo = 0, X3 = 1. Within the unit square, 
222 

function f describes a convex surface, as shown in Fig. 9.2. It is obvious that the 

minimum of Eq. (9.9) is reached, when the grid points Xl and X2 are distributed 

equidistantly. 

9.1.3.2 Objective Function for Grid Adaptation 

The model considered in this section for the derivation of the objective function 

is a part of the two-dimensional grid, as shown in Fig. 9.3, where solid circles 

denote grid points. It is assumed that weight functions are located at the 

mid-point of line segments, denoted by a square. A point Pi,j(X) is coupled to 

its four neighboring points, PHI,j (x), Pi,j+l (x), Pi-l,j(X), and Pi,j-l (x). This 

system is termed jive-point coupling. It is supposed that the coupling has a 

strong influence on the grid point Pi,j(X) and that the influences from other grid 

points on it is weak. Therefore neglected. 

The basic objective function for adapting the point Pi,j(X) is 
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---- ---

0.26 0.5 
X1 

Figure 9.2: Eq. 9.9 is expressed by a convex surface. In the x-y plane, 

two independent variables Xl and X2 are given, while the z-axis denotes 

the function values. 

• grid point 

c weight 
function 

Figure 9.3: The point Pi,j(X) is directly coupled with its four neighboring 

points. 
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f?-· (x) t,] WL-t [(Xi,j-I - Xi,j)2 + (Yi,j-I - Yi,j)2] + 

[(Xi-I,j - Xi,j)2 + (Yi-I,j - Yi,j)2] + 

w;+t,j [(XHI,j - Xi,j)2 + (Yi+l,j - Yi,j)2] + 

W;,j+t [(Xi,j+1 - Xi,j)2 + (Yi,j+1 - Yi,j )2] 

129 

(9.10) 

where the superscript a denotes adaptation, and i and j denote the and ry-

directions, respectively. 

In three-dimensional cases, the point Pi,j,k(X) is coupled by its six neighboring 

points, namely, Pi-l,j,k(X), PHI,j,k(X) in Pi,j-l,k(X), Pi,j+l,k(X) in ry-

direction, and Pi,j,k-l (x), Pi,j,k+ 1 (X) in (-direction, termed seven -point coupling, 

as shown in Fig. 9.4. The new position of Pi,j,k(X) is determined by the minimiza-

tion of the following objective function 

[(Xi,j-I,k - Xi,j,k)2 + (Yi,j-I,k - Yi,j,k)2] + 

W;-t,j,k [(Xi-l,j,k - Xi,j,k)2 + (Yi-l,j,k - Yi,j,k)2] + 

w;+t,j,k [(XHl,j,k - Xi,j,k)2 + (YHl,j,k - Yi,j,k)2] + 

W;,j+t,k [(Xi,j+l,k - Xi,j,k)2 + (Yi,j+l,k - Yi,j,k)2] + 
w;]. k_l [(Xi,j,k-l - Xi,j,k)2 + (Yi,j,k-I - Yi,j,k)2] + 

" 2 

[(Xi,j,k+l - Xi,j,k)2 + (Yi,j,k+l - Yi,j,k)2] 

I; 

1 PI,j, k+1 Z 

P j _ 1 . k T\ 
,j, P. '+1 k I,J , 

P 
___ Pi+I, j, k 

"Ik --..... l,j- , 

P .. k I I, J, -

x y 

(9.11) 

Figure 9.4: The point Pi,j,k(X) is coupled with its six neighboring points, 

termed seven-point coupling. 
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Test case of the objective function. The first example is a single block grid 

with the dimension 3 x 3, as shown in Fig. 9.5. The coordinates of grid points 

and weight functions on grid points are given as follows 

Pi-I,j-I( -2, -3), 

Pi-I,j( -3, 0), 

Pi-l,j+I(-l, 3), 

Wi-I,j-I = 0.5, 

Wi-I,j = 0.0, 

Wi-l,j+1 = 0.0, 

Pi,j-l(l, -3), 

Pi,j(O, 0), 

Pi,j+1 (2, 3), 

Wi,j-I = 1.0, 

Wi,j = 1.0, 

Wi,j+l = 0.0, 

Pi+I,j-l (3, -3) 

Pi+l,j (3, -1) 

Pi+I,j+l (4, 2) 

Wi+I,j-1 = 1.0 

Wi+l,j = 1.0 

Wi+I,j+1 = 0.5 

aCiptive 
position 
of Pi,j 

Figure 9.5: A 3 x 3 grid is the first example to test the objective function 

of Eq. (9.10). 

Weight functions, linearly interpolated onto the mid-points, have the values 

Wi J"_! = 1.0, Wi_! J" = 0.5, Wi+! J" = 1.0, and Wi J+1 = 0.5. Four neighboring 
, 2 2' 2' , 2 

points are on the block boundary, and are therefore stationary during adapting 

the interior grid point Pi,j(X). The minimum of the objective function is itera-

tively found using Newton method [69] 

(9.12) 

where x = [x, yr, the superscript n denotes iteration number; H(x) denotes the 

square and symmetric Hessian matrix; the gradient vector V' fa (x) is the first 

partial derivatives of the objective function fa(x). Eq. (9.12) is rewritten 
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[ 
Xt;+l) ] [ xty ] -1 [ ] 
yin+1) = - 8ff,;'(x) 

,) l,) 8y(n) 8x(n) 8y(n) 8y(n) 8y(n) 
1.,) 7,,) t,) t,J t,) 

(9.13) 

The first and second partial derivatives of Eq. (9.10) with respect to variables 
Xi,j and Yi,j are obtained by 

where 

a· . t,) 

b .. (x) t,) 

bi,j (y) 

2a· .y . . - 2b· . (y) l,) t,) t,) 

2a· . t,) 

2a· . t,) 

o (9.14) 

Inserting the relations (9.15) into Eq. (9.14), and using them in Eq. (9.13), one 

obtains 

[ 

] 
t,) 

(n+l) 
Yi,j [ 

xlJ) ] _ [ 2ai,j 
(n) 0 

Yi,j ] 

-1 [ ( ) ] o 2a· ·x·n. - 2b· ·(x(n)) 
t,) t,) t,) (9.16) 

2a· . 2a· - 2b· .(y(n)) tJ tJ 2J ZJ 

In case of ai,j > 0, the Hessian of Eq. (9.16) is positive-definite. The objectiye 

function reaches the minimum by the stationary position of the grid point 

Pi,j (x). Since the Hessian is fixed for quadratic functions, this quadratic function 

exactly reaches the solution in one step from any starting search point. 

Inserting the known values into Eq. (9.15), one obtains ai.) = 2.0. bi.j(I) = 3.0. 

and bi,j(Y) = -2.5. The solution is obtained using the starting point x(O) = [0. O]T 
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[ 
1 ] 

x· . t,J 

Y;,j [ 
0.0 ] _ [5.0 0.0] -1 [ -7.0 ] 
0.0 0.0 5.0 5.0 

[ - ] 
However, there is no restriction in constraining the movement of point Pi,j (x) to 

a restricted region in the objective function. This may result in the cause of cell 

skewness where Pi,j(X) lies outside the marked area (dashed lines in Fig. 9.6). 

Control functions are required to prevent cell skewness or cell shear. 

restricted 
range for 

Pi,j 

Figure 9.6: The dashed line represents the available region for the move-

ment of the grid point Pi,j (x). 

In general, grid quality is measured by orthogonality, aspect ratio and smooth-

ness. Various methods for grid quality control were discussed in [26], [27], [58], 

[60], [66] and [94]. In the following, three control functions for orthogonality, cell 

aspect ratio and smoothness are used as penalty functions to improve adaptive 

grid quality. 

9.1.3.3 Control Function for Orthogonality 

The control function for orthogonality serves as a penalty function to avoid cell 

skewness. In two-dimensional case, four angles intersected by two families of grid 

lines through the point Pi,j(X) are denoted by 01, .• . ,04 , shown in Fig. 9.6. The 

control function for orthogonality is formulated by 

(9.17) 
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where the subscript 0 denotes orthogonality. This equation is rewritten as 

f? .(x) 
Z,) [

(Pi+1,j(X) - Pi,j(X))' (Pi,j+1(X) - Pi,j(X))]
2 + 

IPi+1,j (x) - Pi,j (x) I . IPi,j+1 (x) - Pi,j (x) I 

[
(Pi,j+1(X) - Pi,j(X)) . (Pi-1,j(X) - Pi,j(X))]

2 + 
IPi,j+1(X) - Pi,j(x)I·lpi-1,j(X) - Pi,j(X) I 

[ 
(Pi.-1,j.(X) -= Pi.,j(X)) (x) - Pi,j (X))]2 + 
IPz-1,) (x) PZ,) (x) I IPz,)-l (x) - Pi,j(X) I 

[
(Pi.'j.-1(X) -= Pi.'j(X)) : -
IPz,)-l (x) PZ,) (x) I IPz+1,) (x) - PZ,) (x) I 
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(9.18) 

In case of a control term with higher order, such as the control term for cell 

orthogonality, a search process using Newton method could be expensive due to 

the computation of an inverse Hessian matrix. 

The method used for minimization of an objective function contains the following 

steps: 

I> Step 1. Set a termination criterion E, for instance E = 10-13
, and select 

starting points x(O) for the first search. The gradient of the objective func-
tion f(x) is computed by 

(9.19) 

where g denotes gradient, and the superscript n denotes the iteration num-
ber. Let n = 0, and the direction of the negative gradient of the grid point 
at its initial position be the search direction, i.e. 

(9.20) 

where S denotes search direction. 

I> Step 2. Compute the Hessian matrix H[(x(n))] of the control function, and 
determine the optimal step length a(n) using the following equation 

(n) _ _ [V f(x(n))]Ts(n) 
a - [s(n))T[H(xn)]s(n) 

I> Step 3. A set of new points x(n+l) is calculated by 

(9.21 ) 

(9.:2:2) 
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t> Step 4. Calculate the gradient with the new points using Eq. (9.19), and 
check the termination criterion 

If this condition is satisfied, the search process is terminated. Else: 

t> Step 5. The search direction is corrected by 

(9.23) 

(9.2-J) 

where (3(n) is the correct factor for an optimal search direction in step n+ l. 

t> Step 6. The next search direction is determined by 

(9.25) 

The iteration turns to the Step 2, i.e., the next computation begins with 
determination of the search step. 

Step 5 computes a correct factor for the further search direction. This method is 

found in [32], termed conjugate gradient method. Both loops avoid to compute 

inverse Hessian matrix of an objective function. 

Test case for the control function for orthogonality. Using the initial 

guess estimates x(O) = [1.5, -0.25]T and x(O) = [1.2,OV, the minimization 

processes needs 5 and 8 search steps, respectively, as shown in Tables 9.1 to 9.2. 

From the initial guess x(O) = [104, 104]T, the minimum can not be found. 

Table 9.1: Numerical solution of the control function for orthogonality with the 
initial guess estimate x(O) = [1.5, -0.25V. 

n x(n) y(n) Bin) [ 0] [ 0] [ 0] Bin) [ 0] 
1 1.26868 -0.754816 87.0391 90.9936 93.2035 88.7638 
2 1.37904 -0.733368 89.8976 89.9361 90.0137 90.1526 
3 1.37878 -0.729715 90.0088 89.9951 89.9892 90.0070 
4 1.37838 -0.729707 90.0007 90.0003 89.9998 89.9992 
5 1.37838 -0.729730 90.0000 90.0000 90.0000 90.0000 
6 1.37838 -0.729730 90.0000 90.0000 90.0000 90.0000 
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Table 9.2: Numerical solution of the control function for orthogonality with the 
initial guess estimate x(O) = [1.2, of. 

n x(n) y(n) ein)[ 0] [ 0] [ 0] e\n)[O; I 
4 J I 

1 1.07072 -1.214830 71.2127 85.8169 104.348 98.6223 
2 1.36196 -1.118970 77.0406 84.4175 93.4958 105.046 
3 1.37231 -0.689526 91.1441 90.6932 89.8079 88.3548 
4 1.37595 -0.730754 89.9172 90.0155 90.0737 89.9936 
5 1.37803 -0.729406 90.0031 90.0094 90.0065 89.9810 

6 1.37836 -0.729739 89.9994 90.0001 90.0005 90.0001 

7 1.37837 -0.729728 90.0000 90.0001 90.0001 89.9999 

8 1.37838 -0.729730 90.0000 90.0000 90.0000 90.0000 

The test cases show that the initial guess influences the convergence of the 

numerical solutions. In order to ensure a convergent solution of objective 

functions, initial guess estimates can be chosen in their restricted ranges. To 

improve the convergence behavior, other control functions are needed. 

9.1.3.4 Control Function for Cell Aspect Ratio 

Consider an algebraic relation 

(9.26) 

where 81,82 > O. In case the sum of 81 and 82 is constant, the minimum is 

obtained by 81 = 82. This relation is extended to measuring the cell aspect ratio. 

Substituting 81 and 82 by two pieces of neighboring line segments (see Fig. 9.6), 

the control function for the cell aspect ratio is constructed as follows 

(9.27) 

where ai denotes the a8pect ratio, superscript I denotes length control, and 

IPi+I,j(X) - Pi,j(x)1 2 + IPi,j+I(X) - Pi,j(X) 12 
2Ipi+I,j(X) - Pi,j (x) 1 . IPi,j+I (x) - Pi,j (x) I 

IPi,j+I (x) - Pi,j (x) 12 + IPi-I,j (x) - Pi,j (x) 12 
2IPi,j+I(X) - Pi,j(x)I·lpi-I,j(X) - Pi,j(x)1 

IPi I,j (x) - Pi,j (x) 12 + Ipi,j-l (x) - Pi,j (x) 12 
2IPi-l,j(X) - Pi,j(x)I·lpi,j-l(X) - Pi,j(x)1 

Ipi,j 1 (x) - Pi,j (x) 12 + Ipi+l,j (x) - Pi,j (x) 12 
2IPi,j-l (x) - Pi,j (x) 1 . Ipi+l,j(X) - Pi,j (x) I 

(9.28) 



CHAPTER 9. SOLUTION-BASED GRID ADAPTATIOX 136 

Test case for the control function for cell aspect ratio. The same initial 

guess as in the previous example is selected to compare the efficiency of the 

control function. The results are shown in Tables 9.3 and 9.4. '\Iinimizing 

the control function requires a good initial solution. Using the initial guess 

x(O) = [104
, 104V, the minimum of the penalty function can not be found. 

Table 9.3: Numerical solution of the control function for cell aspect ratio using 
the initial guess x(O) = [1.5, -0.25]T. 

n x(n) yen) ARI AR2 AR3 AR4 
1 0.812292 0.123764 1.000000 1.097836 1.019649 1.029158 
2 0.244614 0.322348 1.000000 1.002095 1.000967 1.005911 
3 0.189239 0.296000 1.000000 1.000586 1.001683 1.004257 
4 0.195155 0.279429 1.000000 1.000784 1.001325 1.004148 
5 0.196160 0.279399 1.000000 1.000808 1.001305 1.004168 
6 0.196119 0.279459 1.000000 1.000807 1.001306 1.004168 
7 0.196127 0.279467 1.000000 1.000807 1.001306 1.004169 

Table 9.4: Numerical solution of the control function for cell aspect ratio using 
the initial guess x(O) = [0, O]T. 

n x(n) y(n) ARI AR2 AR3 AR4 
1 0.252320 0.189525 1.000000 1.003565 1.000015 1.004050 
2 0.207643 0.280827 1.000000 1.001104 1.001109 1.004429 
3 0.195715 0.281237 1.000000 1.000789 1.001338 1.004185 
4 0.196112 0.279531 1.000000 1.000806 1.001307 1.004169 
5 0.196132 0.279473 1.000000 1.000807 1.001306 1.004169 
6 0.196126 0.279468 1.000000 1.000807 1.001306 1.004169 

The results from both control functions satisfy the requirements for grid quality 

control. However, the critical selection of starting search points restricts their 

practical application. Therefore, an additional penalty function is introduced. 

9.1.3.5 Control Function of Cell Smoothness 

The property of grid smoothness is measured by the continuous changes of grid 

spacing along each computational coordinate direction [28]. In the present work, 

the numerical solution of the objective function is based on a five-point stencil 

for two-dimensional cases. Therefore, grid smoothness is locally eyaluated 

locally for the five-point stencil. 
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The derivation of the local smoothness of a five-point stencil is based on the 

following assumption. Suppose that five grid points have weights, holding them 

in an equilibrium. The central grid point Pi,j(X) has a negative weight while 

its four neighbors have the positive weights This configuration is stationary, 

because the sum of all weights is zero. The condition of the equilibrium for this 
five-point system is 

.(x) = (x) (x) -WPi,j(X) ( 'J ) 
Pt

,] 1 + 1-+ 1-+ 1-+- 9._9 -w -w -w -w W 4 444 

where pi,j denotes the equilibrium position of grid point Pi,j (x) in this system. 

Note that these weights are different from a weight function used for grid 
adaptation. 

The quadratic expression of the above equation is used as the control function 

for cell smoothness. It has the following form 

where superscript s denotes smoothness. The function serves as a penalty 

function to ensure that the minimum of the objective function will be found 

when the search is within the restricted region of grid point movement. 

Test case for the control function for cell smoothness. The same ini-

tial guess estimates as in the previous example are chosen. They are x(O) = 
[1.5, -0.25]T, x(O) = [0, O]T, and x(O) = [104, 104]T. The numerical solutions of the 

quadratic equation are obtained in one step, independent of the initial conditions, 

as shown in Tables 9.5 to 9.7. 

Table 9.5: Minimum solution of the control function for cell smoothness using 
the initial guess x(O) = [1.5 - 0.25]T. 

n x(n) yen) Bin) [ 0] [ 0] [ 0] Bin) [ 0] 
1 0.75 -0.25 87.3974 107.223 99.0085 66.3706 

Table 9.6: Minimum solution for the control function of cell smoothness using 
the initial guess x(O) = [0, O]T. 

n x(n) yen) Bin) [ 0] [ 0] B1n) [ 0] Bin )[ 0] 
1 0.75 -0.25 87.3974 107.223 99.0085 66.3706 
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Table 9.7: Minimum solution for the control function of cell smoothness using 
the initial guess x(O) = [104, 104]T. 

n x(n) y(n) Bin) [ 0] [ 0] [ 0] Bin) [ 0] 
1 0.75 -0.25 87.3974 107.223 99.0085 66.3706 

9.1.3.6 Objective Function for Grid Quality Control 

It is assumed that the final objective function for grid adaptation by control func-

tions is a combination of all control functions fO, p, and fS. In two-dimensional 

cases, the final objective function for adapting an internal point Pi,j(X) has the 
following form 

(9.31 ) 

where 1'1, 1'2, and 1'3 are penalty factors. In grid adaptation process, the values 

of these factors are increased with iteration number, i.e., 1';0) < I'P), ... , < 'YIn). 

This slows down the search, when a grid point is close to the minimum. 

In the previous sections, the objective function fa(x) and the three control 

functions fO(x), P(x), and fS(x) are separately tested. The same example is 

used to test the final objective function. Four intersection angles are listed, 

because the adaptive grid quality can be more intuitively evaluated by this 

measure than by other measures. 

Test case for the final objective function. Using the initial guess estimates 

x(O) = [1.5, -0.25]T, x(O) = [O,O]T and x(O) = [1013, _1013]T, the final objective 

function is minimized. The results are shown in Tables 9.8 to 9.10. 

Table 9.8: Minimum solution for the final objective function using the initial 
guess x(O) = [1.5, -0.25]T. 

n x(n) y(n) Bin) [ 0] [ 0] [ 0] Bin) [ 0] 
1 1.22514 -0.832209 83.9697 90.2882 95.2133 90.5288 
2 1.24167 -0.820501 84.6022 90.2787 94.6206 90.4985 
3 1.24116 -0.820125 84.6042 90.2908 94.6314 90.4737 
4 1.24116 -0.820142 84.6036 90.2905 94.6317 90.4742 
5 1.24116 -0.820142 84.6036 90.2905 94.6316 90.4742 

In the final objective function, initial guess estimates do not play an important 

role in convergence of solution. This property enables an implementation for 
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Table 9.9: Minimum solution for the final objective function using the initial 
guess x(O) = [0, O]T. 

n x(n) y(n) einl[ 0] [ 0] [ 0] ein) [ 0] 
1 1.29604 -0.851293 84.6292 89.1501 93.3637 92.8570 
2 1.24078 -0.820154 84.5965 90.2949 94.6426 90.4660 
3 1.24116 -0.820147 84.6035 90.2904 94.6316 90.4745 
4 1.24116 -0.820142 84.6036 90.2905 94.6317 90.4742 
5 1.24116 -0.820142 84.6036 90.2905 94.6316 90.4742 

Table 9.10: Minimum solution for the final objective function using the initial 
guess x(O) = [1013 , _1013]T. 

n x(n) y(n) ein) [ 0] [ 0] [ 0] ein) [ 0] 
1 1.29722 -0.880554 83.7474 88.6849 93.5976 93.9702 
2 1.24019 -0.820529 84.5751 90.2959 94.6631 90.4659 
3 1.24117 -0.820145 84.6037 90.2904 94.6313 90.4746 
4 1.24116 -0.820142 84.6036 90.2905 94.6316 90.4742 

5 1.24116 -0.820142 84.6036 90.2905 94.6316 90.4742 

grid adaptation of single blocks. 

9.1.3.7 Single-Block Grid Adaptation 

In the derivation of the objective function for multi-dimensional grid adaptation, 

the physical space is used, since the coordinate transformation in this stage is 

not regarded. Later on, the computation is performed in parameter space in 

a dimensionless manner. In the following, two-dimensional grid adaptation is 

explained. 

In parameter space, a grid is given by 

P = {Pi,j(U) I i = 1, ... ,I; j = 1, ... , J} (9.32) 

where the symbol " denotes the parameter space, and u = (u, v). Specifying 

the index (i,j), the parameter coordinates are obtained from Eq. (9.1). 

Grid points in the solution domain are represented by 

P = {Pi,j (u) I i = 2, ... , I - 2; j = 2, ... , J - 2} (9.33) 

Grid points on block boundaries are considered stationary. The first and '-

ond partial derivatives with respect to the coordinates at these grid points 
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The objective function is written in stencil form for each interior grid point. :-\ 

stencil objective function can be written in the following forms: 

[> Stencil objective function of the first type. In this case, the central 
grid point Pi,j(U) is adapted with regard to the influences of the weight func-
tions of its four neighboring points. The first and second partial deriyati,'es 
of an objective function with respect to the coordinates of these four grid 
points vanish. 

[> Stencil objective function of the second type. In this case, the 
central grid point Pi,j(U) is adapted regarding the influences of both weight 
functions and coordinates of its four neighboring points. 

In the solution domain, there are (/ - 2) x (J - 2) objective functions to be 

minimized in total. The grid is adapted in the parameter space using 

(9.34) 

Solution of the objective function is obtained explicitly in a successive manner. 

For instance, after one search process at a grid point Pi,) (u), the search process 

turns to the next grid point. The second search process starts, when the first 

search process is finished for all interior grid points in the solution domain. 

After one search process, the grid point Pi,j(U) changes to its new position Pi,j(U) 

in parameter space. The new position influences the search direction as well as 

the search step of the next iteration. In order to prevent a large jump of grid 

point movement from one search step to the next one, the adaptive position is 

relaxed by 

(9.35) 

where the relaxation factor is chosen by 0 < w < 1. 

The actual state (i.e. position and associated weight functions) of the grid point 

b . . .. 1 ·t· (k) () d in the physical space can not be represented y Its Imtia POSI IOn Pi,j x an 

weight function (x). It is necessary to use the updated values for the next 

iteration. Using the differential relations, one obtains the new values 



CHAPTER 9. SOLUTION-BASED GRID ADAPTATION 

where 

(k+l) 
X· . 

t,) 

(k+l) 
Yi,j 

(k+l) 
W· . t,) 

. t,) 

. t,) 

. t,) 

. t,) 

t,) 

. t,) 

. t,) 

. t,) 

. t,) 

. t,) 

t,) 

. t,) 

X+I . - X· I . t,) t- ,) 

U·+I . - U· I . t,) t- ,) 

Yi+I,j - Yi-I,j 

Ui+l,j - Ui-I,j 

Wi+l,j - Wi-I,j 

U·+I . - U· I . t,) t- ,) 

Xi,j+1 - Xi,j-I 

Vi,j+1 - Vi,j-I 

Yi,j+1 - Yi,j-I 

Vi,j+1 - Vi,j-I 

Wi,j+1 - Xi,j-I 

Vi,j+1 - Vi,j-I 

1-11 

(9.36) 

(9.37) 

A stencil objective function of the first type does not describe the relations of 

coordinate coupling among a five-point system. The equation system can be 

solved using the Newton method. A stencil objective function of the second 

type describes the coupling relations among five grid points. The methods for 

solution of this equation system are explained in the following. 

The first method for the solution of objective functions. Objective func-

tions are solved in parameter space. An objective function for point Pi,j(U) has 

the form 

(9.38) 

In a two-dimensional solution domain, the interior grid points are ordered in 

a natural sequence, i.e., (P2,2(U), .. PI-2,2(U),P2,3(U), ··PI-2,J-2(U)). as shown in 

Fig. 9.7. Using the notation s, W, e and n for the south, west. east. and north 

neighboring points of an interior grid point Pi,j (u). the second partial 
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of an objective function is ordered in a Hessian matrix in the form shov.'n In 

Fig. 9.7. 

o stationary 
point 

j 

Pn 

P i,j Pe 

i 

Figure 9.7: Using the first method for solution of an objective function, 

the second derivatives can be ordered in the Hessian matrix as shown. 

The search direction and step are determined using all interior grid points, 

Therefore, this method belongs to an implicit method. However, there are some 

unsolved issues using this solution method. First, the search step a(k) of the k-th 

iteration for this system is computed by Eq. (9.21). It is denoted as global step, 

and is used for all interior grid points. A global search step as well as a global 

search direction are dependent upon the number of grid points. Second, this 

method is expensive because of its large memory demand. Having M x N inte-

rior grid points, about 5 x (2 x M x N) elements are stored in the Hessian matrix. 

Test case using the first method. The test grid has 41 x 41 points and 

represents a square. The analytical weight function describes a circle in the 

square. The solution domain has 39 x 39 grid points. Eq. (9.8) with a control 

term for cell smoothness is used. A global search step is computed by 

ag = Cl number of grid points 
(9.39) 

where a and a g denote local and global search steps, respectively, and Cl is the 

coefficient to vary the magnitude of the search step. In this example, Cl = 50 is 

chosen. In practice, the relation between search step and number of grid points 

is more complicated. Therefore, this solution method is not used in t he later 
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examples. Fig. 9.8 shows the result after one search step. 

i I 

I I 

Figure 9.8: The objective function with control term for cell smoothness 

is minimized in one step. 

The second method for the solution of objective functions. An arbitrary 

interior point Pi,j(U) is coupled with its four neighboring points l\J-l(U), 

Pi-I,j (u) , Pi+1,j (u ) and Pi ,j+1 (u). To simplif y the derivation, these fiv e points 

are numbered and denoted by P1(U) , P2(U) , P3(U), P4(U), and P5(U) for the grid 

points Pi,j -1 (u) , Pi-I,j (u) , Pi,j (u) , PHI ,j (u) and Pi,j+1 (u ), respectively, as shown 

in Fig. 9.3. Neglecting the influences of grid points that are not coupled with 

the grid point Pi,j (u) , search directions and steps are determined locall y for a 

five- point stencil. 

In computation of a local search direction and step for an interior grid point, 

its four neighbors are considered as stationary points. Therefore, this method 

belongs to an explicit method. 

In the test examples using control functions for both orthogonality and cell aspect 

ratio (see section 9.1.3.6, page 138), four neighboring grid points are stationary. 

In this case, the control functions for cell orthogonality and aspect ratio are ex-

pressed by Eq. (9.17) (only for one angle) and Eq. (9.26). The objective function 

has the form 

where e, 31 and 32 are dependent variables, and are expressed by 

(9.-10 ) 
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and 

81 = IPi,j(U) - Pi-1,j(U) I + Ipi+1,j(U) - Pi,j(U) I 

82 = IPi,j(U) - Pi,j-1(U) I + IPi,j+1(U) - Pi,j(U) I 

These relations are depicted in Fig. 9.9. 

A 

P. 1 j 1- , 
A 

P i,j 

A 

P i,j-l 

144 

(9.-H) 

A 
P. . 
1+1,J 

Figure 9.9: Cell orthogonality and aspect ratio are measured by the 

intersection () and length relation of 81 and 82. 

Example of solution of the system of equations. This example explains 

the solution process of the objective function with smoothness control. The first 

partial derivatives of the objective function with respect to parameter coordinates 

are written in the form of a row vector 

(9.42) 

The second partial derivatives of the objective function with respect to parameter 

coordinates are written in a 10 x 10 Hessian matrix 
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H(u)= (9.43) 

In three-dimensional cases, the 21 x 21 Hessian matrix is for a seven-point 

stencil. A search is explicitly determined for an interior grid point. 

Validation of the method for single-block grid adaptation. An adapta-

tion algorithm is available, if two fundamental requirements are satisfied. First, 

grid size (range of solution domain in physical space), grid dimension (number 

of grid points), and grid shape (Cartesian or curvilinear form) do not play a role 

in an adaptation process. Second, magnitudes of weight variables (pressure or 

density chosen as weight variables) does not playa role in an adaptation process. 

In the following, some test examples are given for the purpose of validating the 

adaptation algorithm. 

Test case 1. Consider the example III section 9.1.3.7. The question to be 

answered is 

• Can one obtain the satisfactory results, if part of the solu-

tion domain will be adapted? 

Two subdomains are extracted from this example. They have 20 x 20 and 

27 x 27 grid points, respectively, as shown in Fig. 9.10. Using the same objf'ctin> 

function with control term for cell smoothness, grids are adapted separately with 

five iterations, respectively. The relaxation factor is w = 1.0. 
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Figure 9.10: Independent of block dimensions and number of grid points, 

both adaptive grids represent the features of weight functions. 

The objective functions are solved using the explicit method, i.e., search direction 

and step for an interior grid point are locally determined by a five- point stencil. 

Although these two blocks have different dimensions, the adaptive grids show 

the satisfactory quality. In both cases, grid points are clustered towards the 

weight functions, as shown in Fig. 9.10. 

Test case 2. To implement an adaptation algorithm for multiblock grid 

adaptation, it should be ensured that block number and block size do not playa 

role in an adaptation process. For this purpose, this test example is constructed. 

The grid of the example of Fig. 9.8 (see page 143) is divided into four blocks with 

different block sizes, as shown in Fig. 9.11. Four blocks have the dimensions with 

27 x 27, 27 x 17, 17 x 17, and 27 x 17 grid points, respectively. The objective 

function with smoothness control is minimized using the expli cit method. 

Four blocks are adapted separately, as shown in Fig. 9.12 (see page 147). Locall y, 

blocks are adapted with satisfactory grid quality. Globally, the problem is the 

CI- discontinuity on block interfaces. The reason for this discontinui ty is the 

lack of data coupling among blocks. 

Test case 3 . The next validation is aimed at answering the followin g que ti on 

• Can one obtain the satisfactory results, if a soluti on domain 

is meshed by curvilinear grid? 
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block 4 
1=17 
J=27 

block 1 
1=27 
J=27 

o weight 
function D 

D 

block 3 
1=17 
J=17 

block 2 
1=27 
J=17 

1--11 

Figure 9.11: A 41 x 41 grid is divided into four blocks having different 

block sizes. The test with sub domains decomposed is important for 

validation of an adaptation algorithm being implemented for multi-

block cases. 

I 

I 
I I I I 

I 

I 

Figure 9.12: Four blocks are adapted separately in one search step. Due 

to the lack of data coupling among block boundaries, grid lines are no 

longer C1-continuous across block boundaries. 
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The adapted grid is generated using the following analy ti cal equation 

P = {Pi ,j(X , y) Ii = -20, .. . ,20;) = - 20, .... 20} 

where 

x (2i + S) + l) cos[(i + Ii - 1)e] 

Y (2i + S) + l) sin[(i + Ii - 1)8], 8 = 3° 

Weight functions are generated in computational space using the same analyt ical 

equation as that in previous example. 

The result from one search step is shown in Fig. 9.13, where a small square 

represents the grid boundary of the first test case. This grid is much larger 

than the one in the example in section 9.l.3.7 (see Fig. 9.S, page 143), and the 

grid lines are curved. It can be seen that the size and shape of grids do not 

substantially affect the efficiency of the adaptation process. 

·200 ·100 0 

Figure 9.13: The objective function with smoothness control is mIn-

imized in one search step. The small square represents the block 

boundary of the test example in section 9.1.3.7. 

Test case 4 . In the above three test cases, weight variables are generated ana-

lyticall y. The next question to be answered is 

• Can one obtain the satisfactory results, if a weight function 

is generated using a flow solution? 
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The examples is chosen from a flow simulation case forward facing step. Shock 

reflection is simulated under a supersonic fl ow condit ion. The goal of thi 

example is to test the efficiency of the algorithm for real appli cations. 

The result is shown in Fig. 9.14. Along the shock refl ection, grid point are 

clustered. In this test case, there is no special t reatment of fl ow vari ables. uch 

as filtering of flow variables. The normalized weight variables are direct ly used 

as weight variables. 

Figure 9.14: Part of forward facing step is selected in order to test 

efficiency of adaptation algorithm in real cases. 

The next question to be answered is 

• Can one obtain the satisfactory results, if the algori thm is 

used in three-dimensional cases? 

Test cases 5. A single block grid with 41 x 41 x 41 gri d points is generated. It 

represents a cube in the range x , y , z E [- 20, 20]. Weight variables are analyt -

ically generated in computational space, and descri be a sphere in the cube. In 

parameter space, an internal grid point Pi,j, k(t ) is coupled with it six neighboring 

grid points Pi, j- l ,k(t ), Pi-l ,j,k(t ), Pi+ l,j,k(t ), Pi,j+l, k(t ), Pi,J,k-l(t ) and Pl.J.k-l( t ) . 

Ordering these grid points Pi(t ), i = 1, .. . , 6, the 7 x 7 Hessian matri x of the 

objective function for grid adaptation is in the form 
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w2 
1 0 0 0 0 0 -W2 

1 

0 W 2 
2 0 0 0 0 -W2 
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5 5 

0 0 0 0 0 W2 
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6 

-W2 
1 -W2 

2 -W2 
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4 -W2 
5 -W2 
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where the superscript a denotes the objective function for adaptation. The I x 7 

Hessian matrix of the control function for cell smoothness is in the form 

1 1 1 1 1 1 -6 

1 1 1 1 1 1 -6 

1 1 1 1 1 1 -6 

HS(t) = ;2 1 1 1 1 1 1 -6 (9.45) 

1 1 1 1 1 1 -6 

1 1 1 1 1 1 -6 

-6 -6 -6 -6 -6 -6 36 

where the superscript s denotes the control function for smoothness. After one 

search step, the result is shown in Fig. 9.15. 

Both objective and control functions for smoothness are quadratic, the mini-

mization of the objective function could be finished in few search steps. 

Test case 6. A hollow sphere with radii rl = 1 and r2 = 2, is generated using a 

6-block topology. Each block has 41 x 41 x 41 grid points. One of the blocks is 

chosen as test case. Weight variables are analytically generated in computational 

space. It describes a sphere in the solution domain. 

The size of solution domain of this example is much smaller in comparison with 

the previous test case. The complete solution domain possesses about eight 

voxels of the previous example. After one search step, the result is visualized in 

Fig. 9.16. 

Above two test cases show that this adaptation method is ayailable for both 

Cartesian and curvilinear grids. Although two grids are different in size and 



CHAPTER 9. SOLUTION-BASED GRID ADAPTATION 

-20 

-10 

>< 

10 

20 
-20 

20 

20 -20 

151 

Figure 9.15: The grid represents a cube. Weight functions are generated 

using analytical equation. The objective function with smoothness 

control is minimized in one step. 

>< 
1 

Figure 9.16: Part of a hollow sphere is meshed with 41 x 41 x41 grid points. 

In parameter space, weight variables are generated in the same way as 

the previous example. The objective function with smoothness control 

is minimized in one step. 
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shape, the adaptation results are satisfactorily obtained. 

Termination criterion of block adaptation. The termination cri teri on used 

in test cases is to compare the rate of gradients of objective functions fr om two 

search steps. It is locally available for a single grid point P i ,j (t ). 

In the following example, the termination criterion E = 10-13 is specifi ed for 

all grid points. The search is terminated for an interior grid point, when this 

condition is met at this point. The search process is iteratively continued, until 

this condition is met at all interior grid points. 

However, this condition is globally specified. A bad solution at any interior grid 

point leads to the next search throughout the entire block. Fig. 9.17 shows three 

solutions. Although the minimization of objective function amounts to 500 steps 

in total, the global termination condition is still not satisfied. 

1 iteration 10 iterations 500 iterations 

Figure 9.17: The minimization process will continue, when a global ter-

mination condition is not satisfied at any interior grid point. Although 

a large number of iterations, the global termination condition is not 

met. 

Algorithm for minimization of objective function . The algorit hm describes 
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the process of single-block grid adaptation in two-dimensional cases. The exten-

sion of the algorithm to three-dimensions, stencil equations are in the form of a 

seven-point system instead. The main steps are as follows: 

1> Step 1. Read a single block, and allocate grid points Pi,j(X) and weight vari-
ables cPi,j(X) in two-dimensional arrays with i = 1, ... , I, and j = 1, ... ,J. 
respecti vely. 

1> Step 2. For all grid points: normalize the weight variables using Eq. (9.-1), 
and save the normalized values 'l/Ji,j in a two-dimensional array; build weight 
functions for all grid points in parameter space Wi,j, and save them in a 
two-dimensional array. 

1> Step 3. For all grid points: transform the physical coordinates into pa-
rameter coordinates using Eq. (9.1), and save the grid points Pi,j(U) in a 
two-dimensional array, where i = 1, ... , I - 1 and j = 1, ... , J - 1. The 
interior grid points P = {Pi,j (u) I i = 2, ... , I - 2; j = 2, ... , J - 2} describe 
the solution domain. 

1> Step 4. For all interior grid points: weight functions are interpolated onto 
the mid-points of line segments. For instance, at the grid point Pi,j(U), four 
weights are calculated by 

1 
Ws = 2(Wi,j-l + Wi,j), 

1 
Ww = 2(Wi-l,j + Wi,j) 

1 
We = 2 (Wi+l,j + Wi,j) , 

1 
Wn = 2 (Wi,j+l + Wi,j) (9.46) 

1> Step 5. For all interior grid points: calculate first partial and second 
derivatives of the objective function for all five-point stencil. Generate the 
Hessian matrix using Eq. (9.43), and set the values of the first and second 
derivatives at the boundary points by zero. 

1> Step 6. For all interior grid points: choose the directions of the negative 
gradients as search directions; calculate the search steps using Eq. (9.21). 

1> Step 7. For all interior grid points: select their actual positions as sta.rt-
ing search points, and adapt them using Eq. (9.22); correct the adaptIve 
position using Eq. (9.35), where the relaxation factor is in range 0 < w < 1. 

1> Step 8. For all interior grid points: update their position and weight 
functions in physical space using Eq. (9.36). 

After each iteration, penalty factors will be increased. The computation 
repeats Step 3 to Step 8, until the termination condition is met. 
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9.1.4 Grid Points with Geometric Constraints 

In grid adaptation process, internal grid points are moving in three-dimensional 

space, while the movement of external grid points is subject to specific geometric 

constraints, as shown in Fig. 9.18. Based on the degrees of freedom of their 

movement, geometric constraints of grid points fall into the following categories: 

[> Face constraint. Grid points on a physical boundary, which can be moved 
in a two-dimensional parametric net r( u, v) = {x( u, v), y( u, v), z( u, v)}. The 
geometric constraints of these points are termed face constraint. 

[> Edge constraint. Grid points on a physical boundary, which are movable 
along a curve P={p( x (t), y (t), z (t) ) }. Geometric constraints of these points 
are termed edge constraint. 

[> Vertex constraint. Grid points on a physical boundary, which are fixed. 
Geometric constraints of these points are termed vertex constraint. 

o vertex 

• fixed point 

c:::::::::J detector 

c=J algorithm 

vI 

e3 e4 
____ v4 

Figure 9.18: Grid points are moved with respect to their geometric 

constraints. They are represented by the degrees of freedom. 

In order to retain the geometric features on a physical boundary, grid points 

with these geometric constraints must be adapted using different methods. 

9.1.4.1 Adaptation of Grid Points with Face Constraints 

Movement of these points is subject to the geometric surface. The adaptive 

computation is performed in parameter space. Grid points are adapted using 

two-dimensional objective functions with control functions. In order to find the 

positions of the new grid points in physical space, the following differential rela-

tions are used 
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dx xudu + xvdv 

dy yudu + yvdv 

dz (9.-17) 

In practice, the surface of a solid boundary is most often given in discrete form. 

The positions of the adapted points in physical space are therefore approximated 

by the following discrete form 

(k+l) x· . Z,] 

(k+l) 
Yi,j 

(k+l) z· . Z,] 

where the superscripts k denote iteration numbers. 

9.1.4.2 Adaptation of Grid Points with Edge Constraints 

(9.48) 

In parametric space, grid points moving along a sharp edge are expressed in a 

one-dimensional manner, P = {Pi(t) I i = 1, ... ,I}. The objective function is of 

the following form 

where a control term is constructed to prevent that the middle grid point Pi(t) 

is moved to its neighboring grid points. This occurs, in case one of the weight 

functions vanishes. 

The control function for cell orthogonality does not exist. The control function 

for cell smoothness is used as control term. This is 

(9.49) 

The objective function is therefore in the form 
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(9.50) 

Another method for grid point adaptation with one degree of freedom employs 

a spline function. It is derived from a mechanical model, as shown in Fig. 9.19. 

W' l Wi+l 1-

1 1 • 0 

t 
1 

Figure 9.19: A simple mechanical model of moment equilibrium at the 

pivot. 

In computational space, the line is represented by a strut, neglecting its own 

weight. It is supposed that weights Wi-l of point and Wi+l of point 

attract point For Wi-l < Wi+b point is moved towards direction, and 

vice versa. Initially, the weight Wi of point is ignored. 

Suppose that a weight wf of point is to counter-balance the attractions from 

Wi-l and Wi+l, where superscript b denotes balance. The equilibrium conditions 

for the system with respect to the point are expressed by 

(9.51 ) 

and 

(9.52) 

One obtains the balance position from above equations: 

(9.53) 

The displacement of point with respect to point is calculated by 
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-c = 
+ (9.5-1) 

where c is a measure for the relative displacement of point 6 in the computational 

space. Suppose that the curve in the physical space is described through three 

neighboring points by a spline function. Three points Pi-l (x), Pi (x), and Pi+ 1 (x) 

are used to determine the new position of the in the physical space [-l-1] 

= (1 - c)2Wi_lPi_l(X) + 2c(1 - C)WiPi(X) + c2Wi+lPi+l(X) 
z (1 - c )2Wi _1 + 2c(1 - c )Wi + c2Wi+l (9.55 ) 

9.1.5 Vertices of a Block 

Block connectivity can be very complicated in three dimensional cases. Because 

of high complexity of block connectivity, it is difficult to find a desirable method 

for adapting the common vertices shared by different blocks. It could be happen 

that a vertex has no unique position in the space after an adaptation process. 

In order to avoid the problem, the positions of all vertices are checked after grid 

adaptation. In case of different positions of a vertex, they are replaced to the 

point resulted from the mean value of their coordinates. 

9.2 Multiblock Grid Adaptation 

The extension of above algorithms for a single block to multiblock cases requires 

regarding topological specialty of multiblock grids. The major problems are sum-

marized as follows. 

[> Data coupling of block interfaces. Most multiblock grids can not be 
merged into a single superblock, in which points are arranged in the manner 
of a three-dimensional array. Multiblock grid adaptation is therefore per-
formed on a block by block basis. In order to retain of grid 
lines across block boundaries, a data coupling among blocks must exist. 

[> Design of adaptation procedure. Multiblock grid adaptation must be 
performed automatically. This requires a logical sequence of data computa-
tion and updating for weight variables, since each movement of grid points 
will change the weight variables of these points. 

Extending single block adaptation to multiblock cases, the major focus is OIl 

answering two questions: 
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• How can one build a coupling among blocks, such that the 
algorithm for a single block can be extended into multiblock 
cases? 

• Which sequence of data processing is required, such that a 
multiblock grid adaptation can be performed automatically? 

9.2.1 Data Coupling among Blocks 

158 

Grid data of different blocks is coupled by generating overlap layers. According 

to the degrees of freedom of grid points, the overlap is divided into two types: 

[> Block overlap in solution domain. This type of overlap layers is gener-
ated among neighboring blocks. Due to data coupling among neighboring 
blocks, CI-continuity of grid lines is retained during grid adaptation. 

[> Face overlap on physical boundary. This type of overlap layers 
is generated among neighboring faces on physical boundary. This data 
coupling allows to move grid points over common edges. 

9.2.1.1 Block Overlap 

Suppose that two blocks are connected to each other, as shown in Fig. 9.20. Face 

4 (j = J) of block 1 and face 5 (i = J) of block 2 build the block interface to 

each other. Blocks are overlapped in the following manner: 

[> For block 1: block dimension in j-direction is extended to J + 1, and grid 
points for J + 1 plane are copied by the J - 1 plane of block 2 with respect 
to the matching orientation. 

[> For block 2: block dimension in i-direction is extended to J + 1, and grid 
points for J + 1 plane are copied by the J - 1 plane of block 1 with respect 
to the matching orientation. 

This extension of block boundaries is termed block overlap. In generation of block 

overlap, a special memory storage is allocated for changing matching orientation 

and data exchange among blocks. The memory is termed intermediate memory. 

Using the above example, the method developed for overlap generation is ex-

plained in the following: 

[> Read the block topology file. The information about face 
and matching orientation is obtained from a block topology file. 
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1'\ = J-l 

1'\ 

1'\ 

Figure 9.20: A block interface is overlapped by extending a plane from 
a neighboring block. 

I> Allocate intermediate storage. Intermediate storage is allocated for 
every face. The intermediate storage of a face contains information about 
block number, face number, and the size of the two-dimensional array. 

I> Export an overlap plane to the intermediate storage. Consider face 
5 of block 2. The plane 'rJ = J - 1 is exported to the intermediate storage 
that is addressed for face 4 of block 1, where the points are saved in sequence 
matched to plane = I of block 1. 

I> Import an overlap plane from the intermediate storage. Consider 
face 4 of block 1. To extend its boundary on face 4, the data can be 
obtained from the intermediate storage, addressed by face 4 of block 1, 
directly, without regarding its face matching. 

9.2.1.2 Face Overlap 

The faces on a physical boundary are connected to each other through their 

edges. Grid points along a common edge can have a face or an edge constraint. 

In case (a), grid points along the common edge have two degrees of freedom. 

Movement of these points necessitates a data coupling between two neighboring 

faces. This coupling is built by generating face overlap. 

In a face connectivity file, the information about face connectivity and its 

matching orientation is given. Based on this information, the face overlap 

will be generated. Since the face boundaries are extended through a face 

overlap, the grid points along common edges are converted into the interior of 

faces. Fig. 9.21 shows an example of face overlap. Circles denote points on 

a common edge. The face boundary of block 2 is extended by face overlap, 

and its new boundary is described by points denoted by hollow squares. A.n 

arbitrary point, denoted by a hollow circle, is coupled by points marked by a 
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Figure 9.21: Data coupling on block boundary is realized by face overlap. 

9.2.1.3 Example of CI-Continuity on Block Interfaces 

The attempt to giving a two-dimensional example is to examine whether the 

problem of the CI-discontinuity on block interfaces can be solved using the 

method for data exchange on block interfaces. 

The complete grid of the exam pIe in section 9.1. 3.7 (see Fig. 9.8, page 143) 

is divided into four blocks, which have different dimensions and their own 

orientations of local coordinate systems, as shown in Fig. 9.22. The orientations 

of the local coordinate systems are ordered as given in Table 9.11. 

block 4 
1=16 
J=26 

t 1 . 1 
J=26 

weight 
function 

block 3 
1=16 D + J-IO 

TI 

1 .11 
TI J=16 

Figure 9.22: Two-dimensional 4 blocks test case for active grid adapta-
tion. 

Based on a block connectivity file, generated by the algorithm explained ill 
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Table 9.11: Block dimensions and coordinate system, 
v 

block # I J direction 7] direction 

1 26 26 east north 

2 26 16 north west 

3 16 26 south south 

4 16 16 west east 

sections 5.1.2 (page 49) and 5.1.3 (page 52), the information about neighboring 

blocks as well as the matching orientation is used for overlapping block inter-

faces. Block extension through overlap rows or columns ensures the continuity 

of weight functions on block interfaces. This guarantees C1- continuity for grid 

lines during an adaptation process, as shown in Fig. 9.23, 

--+-- r--,. 
L 

....... -----l..I 
---"- ' 

Figure 9.23: Using P - Q control functions [8] , [36] , a four block grid is 
adapted by elliptic grid generation. Since the strategy for multiblock 
grid adaptation is implemented in this test case, C1-continuity of grid 

lines across block boundaries is guaranteed. 

9.2.2 Design of an Adaptation Procedure 

In [9], two major problems are addressed. First, when adaptation i employed 

on one grid block, all neighboring blocks have to be adapted in order to pre en'e 

continuity across block interfaces. This can be expensi\'e if adaptation i only 

necessary for some blocks, but all neighboring block ha\'e to be adapted to 
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ensure connectivity. Second, the adaptation of one block according to a solution 

may be impeded by the constraint of boundary point connectiyity. Adjacent 

blocks may have very different point density requirements. 

In this thesis, adaptive computation is performed successively from one block 

to another. Due to the complexity of the grid topology, a multiblock grid can 

not be merged into a super-block. Therefore, block interfaces are coupled by 

overlap rows or columns. This coupling provides the information of flow variables 

and grid point positions of the neighboring blocks, needed for C1-continuity of 

grid lines across block interfaces. Using this type of data coupling, the grid 

adaptation process can be performed in sequence. The core strategy for adapting 

a multiblock grid is explained as follows: 

I> 1. Adapt grid points with three degrees of freedom. Internal points 
are adapted. During adaptation of the internal points, external points are 
considered as fixed points, providing the necessary boundary conditions, e.g., 
weights, arc lengths etc .. After this, all points with three degrees of freedom 
are frozen. 

I> 2. Adapt grid points with two degrees of freedom. External points 
with a face constraint are adapted subject to the geometric surface of the 
physical boundary. It is supposed that points along edges are fixed, pro-
viding the boundary conditions for the computation. After this, all points 
with two degrees of freedom are frozen. 

I> 3. Adapt grid points with one degree of freedom. External points 
with edge constraints are adapted along a parametric curve. Points with 
vertex constraint are fixed, and provide boundary conditions. After this, all 
points with one degrees of freedom are frozen and the adaptation process 
is either finished or continued at step 1. 

Fig. 9.24 depicts the strategy for grid adaptation based on the principle reduction 

of degrees of freedom. However, implementation of this strategy requires a strict 

logic. The implemented procedure designed contains the following steps. 

1. Generation of grid topology. Suppose that a three-block grid has to be 

adapted, as shown in Fig. 9.25. The requirements for grid topology generation 

are as follows: 

I> (a) Local coordinate system. All blocks should have th: right-hande.d 
local coordinate systems. The identification of local coordmate system 1S 

found in section 5.1.1 (page 46). 
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Figure 9.24: The flow chart diagram shows the process of adapting grid 
points with different degrees of freedom. The rectangles with rounded 
off vertices denote processes, which the rectangles are grid data. 
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[> (b) Block connectivity. Neighboring relations among blocks are deter-
mined by comparing positions of grid points on block boundaries of different 
blocks. The method is found in section 5.1.2 (page 49). 

[> (c) Matching orientation. Grid point coordinates of neighboring blocks 
must be matched, such that blocks will correctly overlap. The method is 
found in section 5.1.3 (page 52). 

[> (d) Geometry features on physical boundaries. Based on these fea-
tures, degrees of freedom of grid points on physical boundaries are deter-
mined. The method is found in section 5.3 (page 53). 

2. Extension of block boundaries. Block boundaries are extended, such that 

the grid points of a block boundary become the interior grid points of a solution 

domain, as shown in Fig. 9.25. 

over lap 
- --

, 
I 

7 -
overlap 

/ 
mirror/ 

Figure 9.25: Boundaries are extended by overlap. Grid points on block 
boundaries are interior points of the neighboring solution domain. 

[> (a) Overlap row or column. In case that neighboring blocks exist, 
overlap rows are generated. 

3. Weight function. To generate a weight function, scalar quantities of a flow 

solution are chosen as weight variables. 

[> (a) Norm of weight variables. Weight variables are normalized 
Eq. (9.4). 

[> (b) Generation of weight functions. A weight function may be gener-
ated using high order filter. 

[> (c) Half-point weights. Weight functions are onto the mid-
points of grid line segments. For a grid point, the weIghts can be generated 
by Eq. (9.46). 
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After block extension and weighting grid line segments, a block has the form. 

4. Parameter coordinate system. Adaptation computation is performed 

in parameter space. The transformation of physical coordinates into parameter 
space is given by Eq. (9.1). 

5. Grid adaptation. Grid points with three degrees of freedom are adapted 

successively by solution of objective function with grid quality control. 

[> (a) Governing equation. The governing equation of grid adaptation is 
formulated in the form of a stencil equation for an interior grid point. 

[> (b) Adapt interior grid points. Computation of new grid coordinates 
in parameter space using an algorithm for grid adaptation. 

[> (c ) Update grid points on block interfaces. The process of updating 
grid points on block interfaces ensure CI-continuity across block interfaces. 
A grid point will be updated using its two neighboring points, shown in 
Fig. 9.26. 

/ 
update grid points 
n block interfaces 0 

Figure 9.26: Grid points on a block boundary are updated using one 
neighboring point. 

[> (d) Adapt grid points on a fixed boundary. In. the step (b), 
grid points at a fixed boundary are treated as intenor pomt.s. These 
grid points are adapted with respect to their geometnc constramts, and 
the new adapted positions overwrite their positions from step (b), shown 
in Fig. 9.27. 

6. Generation of physical coordinates. Using the differential relations 

between parameter and physical space, the physical coordinates as well as ne\\" 

weight functions are computed. 

7. Update singularity. Singularity points are not movable. They remain at 

their original positions, as shown in Fig. 9.27. 
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Figure 9.27: Grid points on block boundaries are adapted with respect to 
geometric constraints, while vertices remain at their original positions. 

9.2.3 Results of Multiblock Grid Adaptation 

The strategy and adaptation algorithm is implemented and tested by different 

examples. It should be noted that the major objective of the test example focuses 

on the efficiency of a strategy for multiblock grid adaptation with reduction of 

degree of freedom, while the algorithm for block adaptation is secondary. The 

adaptation tests should provide the following results. 

First, the objective functions with smoothness and cell aspect ratio control 

should constrain the movement of grid points within the restricted region. 

Furthermore, the control functions are not only penalty functions, but their 

contribution should improve the robustness of an adaptation algorithm as well 

as high grid quality. 

Second, a very important step to ensuring a successful multiblock grid adaptation 

is to generate data coupling on block interfaces. The method used for generating 

data coupling is the block overlap technique [36], [41] and [99]. The test cases 

should show CI-continuity of grid lines across block interfaces. 

Finally, grid points on a physical boundary have geometric constraints. These 

must be identified and specified in grid topology files. The test cases should 

show the effectiveness of grid point movement with constraints. 

Requirements for grids and weight functions of test cases are as follows: 

I> Cartesian grid. A Cartesian multiblock grid is needed to test the 
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metry property of an adaptive grid in case of a axis\'mmetric distribution 
of weight functions. < 

t> Curvilinear grid. A curvilinear multiblock grid is needed to test the 
efficiency of the algorithm in case of non-uniform grid spacings and non-
symmetric weight function. 

t> Large number of blocks/complex block topology. :-\ grid with a 
large number of blocks and topology complexity is needed to test block 
overlap, as well as the grid adaptation strategy. 

9.2.3.1 Three-Dimensional Example 1 

The solution domain of this example is represented by a cube in range x, y, z E 

[-20,20]' meshed by 41 x41 x41 points. Grid lines are uniformly and orthogonally 

distributed with constant increments and = 1 in Tj-, and (-

directions. An analytical weight variable is generated using the following tangent 

hyperbolic equation 

[ (
X2 y2 Z2)] 

w(x, y, z) = tanh 1 - a2 + b2 + c2 ' - 20 < x, y, z < 20 (9.56) 

where a, band c denote half-axes of the ellipsoid. The complete solution domain 

is decomposed into eight blocks with same dimensions, i.e., each block has 21 x 

21 x 21 points. Four test cases are designed to examine the adaptation strategy 

and the algorithm described above. The example contains the following serial 

tests: 

t> 7-block case. Three faces are on the physical boundary, on which gradi-
ents of weight variable can be calculated. Both face and edge constraints 
have to be regarded during grid adaptation. 

t> 6-block case. Four faces are on the physical boundary, on which gradients 
of weight variable can be calculated. Both face and edge constraints have 
to be regarded during grid adaptation. 

t> 5-block case. Five faces are on the physical boundary, on which gradients 
of weight variable can be calculated. Both face and edge constraints han> 

to be regarded during grid adaptation. 

t> 4-block case. Four faces are on the physical boundary, on which gradients 
of weight variable can be calculated. Only face constraints haye to be 
regarded during grid adaptation, as shown in Fig. 9.28. 
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Figure 9.28: The serial test consists of four cases with different block 
numbers: (a) 7-block case, (b) 6-block case, (c) 5-block case, and (d) 
4-block case. 

The goal of the serial tests is to prove that the algorithm is capable of identifying 

fixed boundaries and sharp edges, and adapting grid points with respect to their 

geometric constraints. Block number should not influence the adaptive grid 

quality. 

Using the same half-axes for the ellipsoids, weight variables are generated. The 

stencil objective functions of the first type with smoothness control are written 

for all interior grid points. For an interior grid point, the stencil equation 

describes a seven-point system, where six neighboring grid points of the central 

point are considered as stationary. Since these functions are quadratic, the 

Newton method is used for the solution of the system of equations. At each grid 

point, the search direction and step are locally determined. The results in one 

step are shown Figs. 9.29 to 9.32. 

The change of block numbers alms at detecting the errors in the algorithm 

implementation, e.g., logical or computational errors. In four cases, grid points 

on fixed boundaries as well as on edges are clustered along the circle described 

by gradients of weight variables. There is no jump or slope discontinuity of 

grid lines on block interfaces. Moreover, the symmetry of weight variable's is 

represented by grid point clustering. 

Comparing the test examples in section 9.1.3.7 (page 139), it can be seen that 

the grid density in regions of clustering in this case is higher. The reason is 

that the contributions of six neighboring grid points on their central point is not 

contained in this solution method. 
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Figure 9.29: 7- block test case of the first three- dimensional example. 

Figure 9.30: 6- block test case of the first three-dimensional example. 
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Figure 9.31: 5- block test case of the first three- dimensional example. 

Figure 9.32: 4- block test case of the first three-dimensional example. 

In the second test, different values of the half-axes are chosen. The eight- block 

grid is adapted by the objective function with smoothness control. The contour 

of weight variables is represented by grid point clustering symmetricall y in three 

orthogonal planes, as shown in Fig. 9.33. 

9.2.3.2 Three-Dimensional Example 2 

Solution domain of the example is a part of hollow sphere. The grid con i ts of 

eight blocks with the dimension 15 x 15 x 15 grid points in Tj- . and - directi on:. 



CHAPTER 9. SOLUTION- BASED GRID ADAPTATIOS 171 

z 
z 

L , 

z 

L x 

Figure 9.33: The second test using different half-axes. The solution 
domain is represented by eight blocks. The result is visuali zed in four 
different views. 
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respectively. Three grid points on outer boundary are arbitraril y cho en. The,' 

are used for generation of analyt ical weight vari ables. Using the foll O\\'ing analytic 
equation 

x y z 
- + - + -= 1 
a b c (9.5 7) 

a, b, and c are determined by three chosen points. Using the foll owing tangent 
hyperbolic equat ion 

= Hank [1- + n 1 (9.58 ) 

analytical weight variables are generated on a plane in computational space, 

where the coeffi cient k is employed to vary the magnitudes of weight vari able. In 

physical space, weight vari ables descri be a curved surface, as shown in Fig. 9.3--1. 

- \ 

Figure 9.34: A segment of a sphere is chosen as the solut ion 
of the present example. From three points, marked by bold CIrcles, 
a cut plane is built. Weight variables are put onto t he cut p lane In 
computational space. 

The grid is divided into eight blocks with same dimensions, 8 x 8 x 

direction. The block topology is shown in Fig. 9.35. 

m ach 

To automat icall y identify sharp edges on a physical boundary, the mea 'ure for 

. ' . '1 e < 10° (s('e a sharp edge is specifi ed by the maxImal mtersectlOn ang e mar _ . 
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Figure 9.35: The solution domain, a part of a hollow sphere, consists 
of eight blocks. Weight variables describe a curved surface in seven 
blocks. 

section 5.3.1, page 53). 

The objective function with smoothness control is minimized by the 0Jewton 

method in one search step. The result is shown in Fig. 9.36. Grid points on phys-

ical boundary are clustered corresponding to the gradients of weight variables. 

The sharp edges of solution domain are retained unchanged aft er gri d adaptation. 

y 

Figure 9.36: The adaptive grid is visualized in shaded v iew in order to 
depict grid quality on the physical boundary. 

The methods for moving grid points on a fixed boundary or along an rc\gr 

approximate the new posit ions either using partial differential equation' or a 
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spline function. The new positions are, however, not exactly on the geometric 

surface. The tolerances between the geometric surface and adapti,"e points can 

be seen in the shaded view of Fig. 9.36. 

9.2.3.3 Three-Dimensional Example 3 

A generic wing placed in a large box is chosen as the next example. The trailing 

edge of the wing is rounded off, because the treatment of the trailing edge using 

a redistribution scheme is a special task, and it is beyond the intention of the 

present work. The outer boundary of the solution domain is represented by a 

large box. 

The C-H-type topology is used for blocking the entire solution domain. The 

internal C-type block loop builds a boundary layer topology, wrapped by a 

H-type block topology. At the two-dimensional level, the grid consists of 16 

blocks. This block topology is extended into the third dimension. In the third 

dimension, the grid is split into two parts, that is, the volume grid has 32 blocks 

in total, as shown in Fig. 9.37. 

Three points on physical boundary are arbitrarily chosen to generate analytical 

weight variables. Using the same method as in the previous example, three 

parameters a, b, and c are determined by Eq. (9.57). Weight variables are 

generated in physical space, i.e., instead of using computational coordinates, 

physical coordinates are used in Eq. (9.58). 

Block number is increased by splitting the volume grid into two parts in the 

third dimension. The topological complexity is increased by using a C-H block 

structure. It requires that block number and topological complexity should not 

playa role in grid adaptation. 

The result is visualized in Fig. 9.38. Although the analytical weight variables lie 

on a plane that intersects both windward and leeward sides, as well as the outer 

boundary, CI-continuity on the fixed boundary, which requires face overlap. 

well as CI-continuity across block interfaces, which requires block oyerlap, are 

retained. 

After an adaptation process, the common vertices may haye different 
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block split 

Figure 9.37: The grid of the test example is generated using a two-
dimensional C-H topology with 16 blocks. The grid is split in the 
third dimension. The block number is doubled, while block topology 
is unchanged in this dimension. 

in space. Calculating the mean values of their positions, the common vertices 

are moved to the position resulting from these mean values. In this example, the 

weight function goes through the common vertices. The result shows that the 

position of the common vertices is unique, as shown in Fig. 9.39. 

9.3 Chapter Summary 

The main contribution of the present chapter is that the method for grid adapta-

tion is developed. The core of this method is that the grid point redistribution is 

formulated in the form of an objective function with control terms. The control 

terms are constructed using the measures for grid quality, such as orthogonality, 

cell aspect ratio, and cell smoothness. Different iterative methods for solution of 

objective functions for single-block grid adaptation are presented. 

Furthermore, the strategy for extending the single-block case to the multiblock 

case is described. In order to adapt multiblock grids with complex geometry and 

block topology, grid points are classified according to their degrees of freedom of 

movement. In grid adaptation, they are treated sequentially by decreasing order 

of degrees of freedom. The sequence of grid adaptation follows the principle 

t> Adapt interior grid points of all blocks; 

t> Update all grid points on block interfaces; 

t> Adapt external grid points with face constraint; 
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Figure 9.38: Weight variables lie on a plane obtained by three arbitrarily 
chosen points. This plane intersects both the windward and leeward 
sides of the wing, as well as the outer boundary of the solution domain. 
The adaptation result shows C1-continuity of grid lines across these 
boundaries. 
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Figure 9.39: A close up of the example of F ig. 9.38. The weight function 
goes through a common vertex. It ca n be seen that the adaptation at 
this point is undisturbed. 
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c> Adapt external grid points with edge constraints; 

c> Update all common vertices. 



Chapter 10 

Grid Adaptation Using Smart 

Cell Strategy 

The essential core of a smart topology, presented in Chapter 8, is to control the 

local grid density using some special block structures. However, grid adaptation 

using the smart topology is usually performed during a grid generation process, 

and it is solution-independent. 

The combination of a smart topology with cell refinement results in the concept 

of a smart cell adaptation [73]. This concept takes the advantage of a refinement 

scheme, namely, keeping an initial grid points fixed, and introducing new cells 

into an existing grid, but preserves a one-to-more connectivity among cells. 

The method is initially developed for structured Cartesian grids and can easily 

be extended to body fitted grids in multiblock mode. 

10.1 Concept of Smart Cells 

The idea of a smart cell adaptation is based on the principle of cell splitting. In 

comparison with a traditional refinement scheme, new cells have a one-to-one 

connectivity on cell boundaries to each other. 

10.1.1 Definition of a Smart Cell 

Supposed that a two-dimensional structured grid is used as the initial grid. It 

represented by 

179 
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P = {Pi,j(X) I i = 1, ... ,I; j = 1, ... , J} (10.1) 

Grid points are ordered in a natural sequence shown in Fig. 10.1 

P 

j 
J 

J 

) 

- ) 

Figure 10.1: Grid points of a structured mesh are ordered in a natural 
sequence indicated by arrows. 

Cells of the grid are denoted by 

= {Pi,j (x), Pi+l,j(X), Pi,j+l (x), Pi+l,j+l (x)} (10.2) 

where the i = 1, ... , I - 1 and j = 1, ... , J - 1, and smart cells are indexed by 

mid-points of the initial grid. 

An arbitrary cell is chosen for describing the concept of smart cell, as shown in 

Fig. 10.2. 

Definition 10.1: Smart cell. A smart cell consists of five small cells with 
a defined cell connectivity. Four cells are placed around the boundary of an 
initial cell. Each of them has a common side connected to four sides of the 
initial cell. The boundary of the central cell is connected to the four cells. 
The five small cells are termed child-cells. 

In the following, four points of the central child-cell are denoted by ql (x). q2 (x), 

q3(X) and Q4(X), while the boundary of the smart cell is given the four POillb 

Ql(X), Q2(X), Q3(X) and Q4(X), respectively, as shown in Fig. 10.2. 
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Q4 Q3 

smart cell 

Figure 10.2: In two-dimensional cases, a smart cell consists of five child 
cells. They have the defined cell connectivity as depicted. 

10.1.2 Generation of a Smart Cell 

In order to avoid skewness of child-cells, the points q1 (x) and q3 ( x), as well as 

q2(X) and q4(X) are generated over the diagonals Q1Q3 and Q2Q4, respectively. 

The ratio of the diagonal lengths of the initial and the central cells A is a measure 

for the sizes of the five child cells. It is expressed by 

A = Iq3(X) - q1 (x) I 
IQ3(X) - Q1 (x) I 

(10.3) 

The size of child cells can be varied by specifying a A value (0 < A < 1). The 

points q1 (x) and q3 (x) are obtained by 

I-A 
Q1 (x) + 2 [Q3(X) - Q1 (x)] 

I-A 
Q3(X) + 2 [Q1(X) - Q3(X)] (10.4) 

The points Q1(X) and Q3(X) are obtained in the similar manner. 

10.2 Grid Adaptation Using Smart Cells 

This type of cell refinement is applied in Cartesian grids. Computation IS 

performed without coordinate transformation. In grid generation process, the 

main computational demands are the determination of flow features and the 

generation of smart cells. 
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10.2.1 Determination of Flow Features 

Gradients or curvatures of flow variables are used for determination of flow fea-

tures. Flow variables, chosen for this purpose, are normalized using Eq. (9.--1) in 

section 9.1.2.1 (page 124). Instead of using weight functions, gradients of flow 

variables are used as measures for cell adaptation. Since smart cells are generated 

based on Cartesian grids, there is no need for coordinate transformation. Change 

of flow variables along cell boundaries are computed by 

a¢· Jmin ¢i+l,j - ¢i,j 

ax· . Z,J Xi+l,j - Xi,j 

O¢jmax ¢i+l,j+l - ¢i,j+l 

ax' . Z,J Xi+l,j+l - Xi,j+l 

a¢· Zmin ¢i,j+l - ¢i,j 

ay .. Z,J Yi,j+l - Yi,j 

a¢imax ¢i+l,j+l - ¢i+l,j 
(10.5) 

ay .. Yi+l,j+l - Yi+l,j Z,J 

where the subscripts jmin, jmax, imin and imax denote four boundaries of a cell. 

This can be seen that any small change of flow variables can be captured. 

An immediate determination of flow features is to compare the flow variables 

normalized over two diagonals of a cell. It is expressed by 

(10.6) 

where ai is specified as a measure for generating smart cells. In cases when 

al > 0 or a2 > 0, smart cells will be generated. 

10.2.2 Adaptation Process 

The smart cell scheme does not require data coupling on a block interface. There-

fore, grid adaptation can be performed block-by-block. The adaptation 

contains the following steps: 

I> Step 1. Read a grid and flow variables. Cartesian and block structured 
grids are read. Scalar quantities ¢ from flow solutions are chosen as flow 

variables. 

I> Step 2. Normalize flow variables. Flow variables are normalized using 
Eq. (9.--1), so that they are dimensionless for computation. 
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I> Step 3. the flow feature. Changes of flow variables along 
cell boundanes are computed, e.g., using Eq. (10.5). 

I> Step 4. Smart cell generation. Comparing gradient values with the 
measure for smart cell generation specified, cells will be generated using 
Eq. (10.4). 

I> Step 5. Smart cell data. Nodes of the smart cell and its link relations 
are generated and saved in a list. 

10.3 Results of Grid Adaptation Using Smart 

Cells 

Shapes of smart cells considerably depend on those of their parent-cells. There-

fore, three Cartesian grids with uniform grid line distribution are generated as 

test examples. The first and the third examples are two- and three-dimensional 

single block grids. Flow variables of both examples are generated analytically. 

The second example is selected from a real flow simulation. 

10.3.1 Test Case 1: A Circle Weight Function 

A single block grid is generated with 41 x 41 points in i- and j-directions, respec-

tively. Solution domain is in the range x, y E [-20, 20]. Grid lines are uniformly 

generated with the constant increments = 1 and = 1. Analytical flow 

variables are generated using the following equation 

where i,j 

domain. 

(10.7) 

-20, ... ,20. The flow variables describe a circle in the solution 

Flow features are determined by Eq. (10.6), i.e., differences of flow variables over 

cell diagonals are computed, and they are compared with a a value specified as 

the measure for smart cell adaptation. Sizes of smart cells are scaled >. = 0.3. 

As result, 81 smart cells are generated during the adaptation process. as shown 

in Fig. 10.3. 
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Figure 10.3: First test example of smart cell adaptation. Analytical fl ow 
variables describe a circle in the solution domain. 81 smart cell s are 
generated. The cells, within which large changes of flow variables are 
computed, are adapted by generated smart cells. 

10.3.2 Test Case 2: Multi-Block Forward Facing Step 

Solution domain of t he forward facing step is meshed by three blocks with 

31 x lI , 31 x 41 and 121 x 41 grid points, respectively. Using the fr ee stream 

condition Moo = 3, the fl ow is simulated. 

The objecti ve of the test is twofold. Firstly, the test case is chosen from a real 

flow simulation. The main interest focuses on shock wave reflection in the chan-

nel. Smart cell s should be generated to increase grid density in region, where the 

shock wave is detected . Secondly, t here is no process for block overlap, i.e., data 

coupling on block interfaces does not exist. The test should prove that there i 

no abrupt zone of smart cell s on block interface can be retained using thi scheme. 

Using Eq. (10.6) , t he diff erences of normed flow variables over both diagonal 

of a cell are taken as t he measure for generating smart cell . Re tri cting thi. 

measure within a small range, t he grid is adapted, as shown in Fig. 10.--±. There 

is no additional computation for identifying the position of hock \\,a\'e or ot her 

fl ow phenomena. Besides the shock reflection, in other regions, \\'here large flO\\ ' 

gradients exist, smart cells are generated. 
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Figure 10.4: Shock reflection of a forward facing step as adapted uSIng 
the smart cell scheme. 

Fig. 10.5 shows smart cells on block interfaces. It is obvious that block boundary 

does not interfere in the process of smart cell generation. 
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Figure 10.5: Close up of smart cell adaptation of example forward facing 

step. 
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10.3.3 Test Case 3: A Sphere in a Box 

The grid is generated with 41 x 41 x 41 grid points in t he i. j and k- directi ons. 

respectively. T he solution domain is in the range x , y. z E - 20. 20]. Grid 

lines are uniformly generated with constant increments .6.x = 1, = 1 and 

= 1, respectively. Similar t o t he fir st example, fl ow vari ables are generated 

using analytical equation 

<Pi ,j,> = 1 + tanh [1 - (liO) 2 _ (;0) 2 _ (lkO) 2] (10.8) 

where i, j , k = - 20, ... ,20. Flow variables represent a sphere in the solu ti on 

domain. Flow features are computed by comparing the change of fl ovv vari ables 

a over four diagonals. Scaling t he cell size with A = 0.3, and restri cting (J wit hin 

an adequate range, smart cell s are generated, as shown in Fig. 10.6. 

Figure 10.6: A three-dimensional example of gr id generation uSIng 

smart cells. 

10.4 Discussion 

Alt hough t he smart cell approach is exemplifi ed using a Cartesian type me h. 

t he approach can be easily extended to non- uniform me hes in Carte ian or 

mult iblock body fitt ed meshes. 

However , t he limitati on of this scheme is that the quali ty of mart cell depend,' 

considerably on the shapes of the init ial cell s. Therefore. it i propo'ed that 

its appli cation should be restri cted to Cartesian grid wi th uniform grid liIl l' 
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distribution. 

10.5 Chapter Summary 

The main contribution of the present chapter is that a new concept of smart 

cell adaptation is developed based on the idea of cell refinement with smart 

topology, namely block refinement. A smart cell consists of five cells, and they 

are generated with an initial cell. Five cells have defined connectivity relations. 

The measure for a smart cell generation is gradients of flow variables along a 

cell boundary. Different from a traditional refinement scheme, the smart cell 

refinement keeps a one-to-one connectivity at cell boundaries. 
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Conclusions and Future Work 

The present thesis develops a strategy for object-oriented grid generation and 

its application to complex geometries. Two major topics are addressed in this 

thesis: 

t> the method for grid generation for highly complex geometries, 

t> the method for multiblock grid adaptation. 

The objective of this thesis is to answer some general questions in grid generation. 

A summary of the thesis is given below. 

11.1 Surface Description for Grid Generation 

Data generation for surfaces used to define the boundary of a meshing domain 

is termed surface description in this thesis. The first question arising in dealing 

with creating a surface description is: 

• Which properties must a geometric configuration have, such 
that a meshing domain can be defined for it? 

In order to define the meshing domain, a geometric configuration must haye 

several properties. In this thesis, these properties are summarized as rigidity 

of the meshing object, boundary determinism of its surface and homogeneity of 

surface description (see section 2.1.1 and [78]). 

A geometric configuration may have a complex form with certain shape fea-

tures. In most cases, the complete configuration is decomposed into a set of 

sub-components. Their boundaries will be described or discretely in 

188 
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a piecewise manner. The second question arising in dealing with decomposlll'l a 
complex configuration is: -

• What the measures for the decomposition of a complex 
configuration? 

A complex configuration is decomposed with respect to the following points: 

I> engineering features, and 

I> shape features. 

Decomposition of a complex geometric configuration into a set of components 

aims at reducing the geometric complexity of a configuration. and generating its 

surface geometry data in a simplified manner. 

11.2 Grid Construction Rules 

The principle of the object-oriented method for grid generation can be summa-

rized as: 

I> Domain decomposition for local wireframe building followed by integration 
of all local wireframe models. 

The essential core of this method is to divide a complete meshing task of highly 

geometric complexity into a set of sub-tasks. Their block topologies are built 

at a lower level of geometric and topological complexity. The question arising in 

block topology building for complex geometries is 

• Is it possible to establish a set of grid construction rules, 

such that a structured grid will be efficiently generated? 

Based on the experience in practical grid generation. several general 

are summarized as Grid Construction Rules. They deal with the tasks such 

domain decomposition, surface description. topology building. A very complex 

example of an Ariane 5 launcher is given in order to explain the strategy of 

object-oriented grid generation. ;\lore examples are presented in [103] and [104:1. 
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11.3 Grid Adaptation 

Instead of a homogeneous grid line distribution, grid density should be generated 

in a heterogenous manner in order to save memory. The question anslllg in 

dealing with grid adaptation is: 

• How does one generate a grid whose grid density is globally 
heterogenous? 

A heterogeneous distribution of grid points can be achieved in t\yO ways. Firstly. 

local grid density is controlled by block topology, termed passive grid adaptation. 

Secondly, grid density is changed with respect to flow features, termed actillf' 

grid adaptation. 

11.3.1 Passive Grid Adaptation 

Using three forms of block topologies, local grid density can be improved when it 

is required. These forms of grid line control do not depend upon flow solutions. 

and are therefore termed passive grid adaptation. 

Boundary layer topology. A boundary layer topology builds a closed loop 

of blocks, which can provide a one-dimensional enrichment for grid lines on 

body surfaces. In three-dimensional cases of complex geometries, this type of 

grid provides the advantage of one block topology for generating both Euler and 

N avier-Stokes grids. 

Block encapsulation. The boundary of a region in solution domain is fixed 

on a closed internal surface. At both sides of the closed surface, different grid 

spacings are possible. A local clustering of grid points can be encapsulated 

within this region. 

Smart topology. A set of blocks is added to an existing grid through local 

refinement of the existing grid topology. The block refinement high local 

grid density. 

The passive grid adaptation is solution-independent. Howeyer. ib g<,jHTation 

manual. Future research topics are: 

[> 1. Automatic generation of a boundary layer topology. 
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On a fixed boundary, block topology is two-dimensional (see grid constructIOn 

rule 3 in section 6.3.3.1). Extending this block topology in the third dimension. 

a boundary layer topology can be obtained. This principle can be implemented 

for an automatic generation of a boundary layer topology. 

[> 2. Automatic generation of smart topology, i.e., automatic block 
refinement. 

A possible extension of smart topology is to automatically refine blocks with 

respect to flow features. For instance, gradients of flow variables on block 

boundaries can be considered as measures for block refinement [31]. 

11.3.2 Active Grid Adaptation 

In the present thesis, solution-based grid adaptation is termed active grid 

adaptation. The method for adapting a grid is to formulate the relations 

between grid spacings and weight functions in the form of objective functions. 

The measures for grid quality, such as cell smoothness, cell aspect ratio, and 

grid line orthogonality are used as penalty functions incorporated in the objec-

tive functions. An iterative method is used for solution of the objective functions. 

In applying an algorithm in multiblock grid adaptation, the first question arising 

in dealing with C1-continuity on block interfaces is: 

• How can one ensure CI-continuity on block interfaces? 

Instead of merging blocks together, a block overlap technique is employed tu 

retain C1-continuity of grid lines on block interfaces. This type of block coupling 

necessitates data coupling among neighboring blocks. 

The second question arising in dealing with active grid adaptation is: 

• How can one move grid points on a fixed boundary without 

destroying its geometry? 

Adaptation of these points is performed on t,,·o-dimensional parametric :-;urfac(':--

or along one-dimensional parametric curves. which describe the surface 
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or sharp edge of the fixed boundary. 

In a multiblock problem, adaptation of grid points with different geometric 

constraints requires more complex algorithms. 

The third question dealing with multiblock grid adaptation is: 

• How can one design a procedure for adapting grid points 
with various degrees of freedom? 

The strategy for adapting a multiblock grid follows the principle: 

reduction of degrees of freedom. 

Firstly, internal grid points, which have three degrees of freedom, are adapted. 

Then grid points on physical boundaries, which have reduced degrees of freedom 

are adapted. 

11.3.3 Needs for Improvement of Adaptation Algorithm 

In the test examples, the iteration number for minimization of the objecti\'e 

functions is manually specified. In practical application, the computation should 

be automatically terminated, when a global termination criterion for the search 

process is met. 

The first unsolved question is 

• How can one define a global termination criterion for a 

grid adaptation process? 

In addition, the values of penalty functions are proportionally increased with 

iteration numbers, such that search steps become smaller. when the minimum of 

an objective function will be reached. 

The second unsolved question is 

• How can one find a relation to increase penalty junction,.:;, 

such that a search step will vanish at the minimum of (l n 

objective function? 



CHAPTER 11. CONCLUSIONS ASD Fl-Tl-RE "-ORK 

In two-dimensional test cases, the control functions for orthogonality and aspect 

ratio are considered as the functions of the independent variables e. 81' and,,] in 

the form f (u, e, 31,32), A more precise description of orthogonality and aspect 

ratio is to use the independent variables in the physical space. Future ,':ork 

to implement measures for cell orthogonality and aspect ratio in the form of f(x). 

11.4 Grid Adaptation Using Smart Cells 

The concept of smart cell is applied in adapting Cartesian grids both in t,,'o-

and three-dimensional cases. A problem with CI-continuity on block interfaces 

does not exist. Since cell boundaries are connected in a one-to-one manner, it 

is possible to implement this scheme in a flow solver for dynamic grid adaptation. 

In test examples, there is a large proportion of sheared cells. Their shapes and 

reduced alignment with flow directions may have an influence on the 

of flow simulations [62]. Future work will focus on the improvement of the 

adaptation algorithm in two aspects. 

1. Reduction of shear cells. In two-dimensional cases, a smart cell will bp 

generated within an initial cell. Four child-cells may be sheared. In order to 

reduce shear, smart cells are generated in the following manner: 

I> Target the initial cells to be adapted. Suppose that the cells to be 
adapted are determined, and they are targeted, as shown in Fig. ll.l(a). 

I> Merge the targeted cells. The neighboring relations among smart cells 
will be determined, such that they can be merged together, as shown in 

Fig. ll.l(b). 

I> Generate smart cells. Smart cells are linked to their neighboring smart 
cells or connected to the boundaries of their initial cells. shown in 

Fig. ll.l(c). 

2. Restriction of cell increment. A maximal percentage of cell size increment 

is specified. During grid adaptation, smart cells can be added to the :-i()luri()]l 

domain as well as deleted from the solution domain. Smart cells will be gelwrated 

interactively, so that the user can choose the region to be adapted in accordancr 

with flow development, and specify the amount of cell increment. 
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Figure 11.1: A modification of smart cell concept. 
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