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The paper describes two aspects of a research project that focused on vocational science
students. The paper begins with a general description of vocational science in the UK, to
put the work in context. It then outlines an analysis of the ways in which these students
approach problems involving converting between units of measurement. Finally the
development and evaluation of computer-based activities designed to support students in
learning about unit conversion are described.

Introduction and background
Within this paper we discuss some of the results of a research project in which we analysed
the ways in which vocational science students approached problems involving converting
between units of measurement, in the context of science. The project also involved the
development and evaluation of computer-based activities written to support pupils in
learning about conversions. We started from the premise that learning to convert between
units of measurement is critical to a learners' development in the realm of science and that
having access to a general method would support students' efficiency in converting. Our
focus on the role of a general rule for converting arose out of a detailed observational
study of students working through their science courses (Molyneux and Sutherland, 1996).
As a backdrop to our research, we will first discuss the vocational education context in the
UK.

Vocational education in the UK has undergone quite substantial changes since the
beginning of the 1990s. One product has been the creation of school- and college-based
vocational qualifications (GNVQs) which are in some way equivalent to the more
traditional academic courses, in recognition of the different purposes of academic and
vocational learning (Dealing, 1996). The model for the new qualification was influenced by
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studies of the German, Austrian and Swiss education systems in which the academic and
vocational tracks are separate but where the vocational track has high status due, partially,
to its substantial content of general education (Hodgson and Spours, 1997).

It was hoped that the broad vocational route afforded by the new GNVQs would attract
some students away from the academic pathway in order to increase participation and
achievement at the vocational level and increase the numbers remaining in education.
Historically there have always been vocational awards in the UK but these have never been
attractive to the vast majority of post-16 students and have usually been taught in the post-
16 further education colleges and not in schools. The new school- and college-based
vocational qualifications, targeted at the 16-19 age group and equivalent to the academic
A levels, are called Advanced General National Vocational Qualifications. Today, the
number of 16-year-old students participating in Advanced GNVQs is greater than that in
other advanced vocational qualifications by three to one. However these students have not
been attracted away from the academic A levels but from the other existing vocational
courses such as the Business and Technical Education (BTEC) and City and Guilds awards
(Robinson, 1996; Spours, 1997).

The expansion of GNVQs at the expense of the more traditional vocational awards has not
been matched by student achievement (Spours, 1997). The GNVQ successful completion
rate of 55 per cent is lower than that of both the long-standing vocational and academic
awards where, for example, a successful completion rate of over 70 per cent is typical for
BTEC National awards and A-levels (Robinson, 1996; Spours, 1997).

GNVQs are available in fifteen subject areas including Leisure and Tourism, Business
Studies and Science. They are a broad vocational qualification requiring students at the
Advanced level to complete eight mandatory and four optional units of the specialist
subject, and three 'key skills' units of Communication, Application of Number and
Information Technology. Successful completion of an Advanced GNVQ, which takes two
years, is equivalent to two passes at A level and is a recognized qualification for entry into
university. Foundation and Intermediate GNVQs are also available. These require the
completion of fewer mandatory and optional units but still contain the compulsory three
key skills units.

Key skills have a fundamental role in the qualification but are not usually taught as
separate subjects; they are meant to be 'embedded' in vocational situations to appear more
relevant to the learner (Spours, 1997). Studies of the delivery of key skills in practice,
however, reveal a great deal of variation in the approach taken by schools and colleges,
with some favouring embedding but others adopting stand-alone strategies
(FEU/IOE/Nuffield, 1994). The embedded approach has been criticized by the UK
schools' inspectorate (OFSTED) for not allowing the systematic development of
mathematical and language skills and thus providing very few examples of good work
(OFSTED, 1994). This approach also contrasts with the stand-alone delivery practices of
European vocational systems, which provide greater levels of attainment in key skills areas
(Green and Steedman, 1993; Wolf, 1995).

A further distinguishing characteristic of the new vocational qualification is its emphasis
on independent learning through portfolio compilation. Students gain the award through
producing a portfolio of evidence which demonstrates they have fulfilled the performance
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criteria laid out for all of the units. The need for the students to plan their own work and
search for relevant information has led to a collaborative and active style of learning
recognized in inspection reports as the greatest strength of the new award (FEFQ1994;
OFSTED, 1994). It is, however, the failure of students to finish their portfolio that is the
major factor in the poor completion rates of GNVQ programmes (Spours, 1997). Students
find themselves embroiled in matching the contents of their portfolio with the complex
demands of the many performance criteria required for each unit. Spours (1997) suggests
that this concentration on the 'administration' of their learning has adversely affected
fundamental skill development and theoretical understanding amongst GNVQ students
and has contributed to the halting of GNVQ provision in some further education colleges
in favour of the traditional BTEC vocational awards.

The research project: introduction

Two of the defining characteristics of the new vocational qualifications, namely the
inclusion of embedded key skills and the emphasis on independent and active learning, are
seen as critical in the provision of a broad education leading either to further training
within employment or to further and higher education (NCVQ, 1995). The interaction of
these two features of practice is also one of the major concerns of our research project.
Working within the context of the Advanced GNVQ Science course we have been
prompted to ask whether an educational model which requires students to take
responsibility for their own learning and which embeds key skills in a vocational context is
likely to equip students with the key skills necessary for further training, education or
work. We shall attempt to answer this question in this paper by describing our research
project and the findings related to students' approaches to converting between units of
measurement in science. The aims of our work were:

• to characterize the mathematical competencies of vocational science students on entry
to the GNVQ (Advanced) Science course;

• to investigate the advantages and disadvantages of the GNVQ approach to
mathematics;

• to investigate the role of computer-based activities in the development of mathematical
competencies of vocational science students.

We had anticipated that the mathematical background of GNVQ students would be weak
and we conjectured that the use of computer-based activities might support students in
developing some of the mathematical skills essential to science learning.

Methods

The methodology incorporated several strands. The mathematical competencies and
practices of twenty-one Advanced GNVQ Science students from two further education
colleges were first characterized through a diagnostic test. (This test has also been
administered to a further sixty-seven vocational science students in five other colleges in
England.) We carried out extensive classroom observations during the vocational course
and conducted a series of interviews with students on observations of science, such as the
mathematical aspects of their assignments. The students from our two participating
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colleges then engaged in a set of computer (spreadsheet)-based activities, designed to teach
aspects of mathematics for science. Follow-up interviews and a repeat of the diagnostic test
were also conducted after the students had completed the spreadsheet work. The
mathematical areas investigated were: 'Conversions' (converting between units of
measurement) and 'Graphs' (fitting data to straight line graphs). In this paper we focus on
our findings from the 'Conversions' study.

Conversions are an integral part of much scientific practice, for example to allow for ease
of data processing, to enable comparison and standardization and to support the
understanding of physical quantities and processes (Molyneux and Sutherland, 1996). It is
therefore crucial for science students to become competent in converting between units.
For this reason, the area of 'Conversions' was selected as a research topic. Analysis of the
initial diagnostic test administered to seventy-nine students showed that:

• vocational science students used a range of informal methods to solve conversion
problems;

• the majority of students were successful at converting between 'simple' metric
quantities such as from grams to kilograms and from millilitres to litres (and vice
versa);

• no student could convert between centimetres squared and metres squared;

• the majority of students were unsuccessful at converting quantities expressed in
standard form or in units with indices;

• the diversity and informality of students converting methods on simple problems (e.g.
cm -> m) meant it was unlikely they would develop more generalized understandings of
converting which may have supported them in complex converting problems (such as
cm2 -> m2).

These findings influenced the design of the 'Conversions' spreadsheet activities, which
aimed to support students in learning to convert between units of measurement and to
construct a formal general conversion relationship. Students worked through three
'teaching scenarios' in consecutive weeks, with each scenario lasting one and a half hours.
In Scenario 1 the students worked in pairs to solve four conversion tasks presented as
spreadsheet activities. The activities were designed to develop spreadsheet skills as well as
offer a tool towards development of more formal converting strategies. Scenario 2 was less
prescriptive and asked the students to use the spreadsheet to support the determination of
the density of different cubes of material; they were provided with materials, rulers and
weighing scales and had to present density calculations in the units of kgnr3 although they
had measured mass in grams and length in centimetres. Scenario 3 consisted of three
pencil-and-paper activities designed to develop further students' understanding of
conversions.

As the students worked through the spreadsheet' activities of Scenarios 1 and 2 and the
paper-based exercises of Scenario 3, we recorded their conversations and problem-solving
strategies by video-recording one pair of students, audio-recording a second pair of
students and taking detailed observation notes of a third pair of students. The spreadsheet
work of all the students was also saved to disk and all written responses on the students'
worksheets gathered in at the end of each scenario. Whilst one or two members of the
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research team acted as researchers one member took on the role of teacher, being available
to respond to students' requests for help and to intervene when they deemed appropriate.

This paper describes student responses to the last of four spreadsheet activities presented
in Scenario 1. This task was designed to present students with one method of working
which would provide them with information for use in the solution to a second part of the
task. This corresponds to Vygotsky's 'functional method of double stimulation' in which
an individual is faced with a task beyond his or her present capabilities and then given
additional ('auxiliary') stimuli to incorporate into their problem-solving (Vygotsky, 1978).
A micro-analysis of two students, Heidi and Ruth, at work is described and discussed,
followed by a summary and discussion of the range of strategies used by all students
during this activity. Finally, we attempt to draw inferences from this analysis with regard to
the role of teacher and computer in the students' acquisition of appropriate formal rules.

Case study: Heidi and Ruth converting between simple metric units

Introduction
In the following sections we present the case of two students solving a conversion problem
using a spreadsheet. We describe their activity before discussing the implications of this on
their learning.

Method A Find the cross-sectional areas of a collection of wires in m2.The diameters are shown below.

diameter (mm)

0.27

1.106

7E-2

8.3E-I

13.45

radius (mm)

0.135

radius (m) x-sectional area (m2)

cross-sectional area of a wire = rcr2 V = radius of the wire

Method B. Another way of finding cross-sectional area is shown below for you to try:

diameter (mm)

0.27

1.106
7E-2

8.3E-I

13.45

radius (mm)

0.135

x-sectional area (mm2) x-sectional area (m2)

Figure I:The spreadsheet task from Scenario I - presented on paper - designed to help students learn

to convert from mm2 to m2.
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In the final question (Figure 1) from the spreadsheet activities of Scenario 1 students were
presented with two different methods for calculating the cross-sectional area of a wire in
m2. In method A, for given diameter of wire (in mm), students needed to divide by 2 (to
give radius in mm); convert from radius in mm to radius in metres (-̂ 1000), then use this
value to calculate the area of the wire (KI2). In method B, students first calculate area in
mm2 and must then convert to m2. Comparing the cross-sectional areas obtained from the
two methods was intended to provoke the students into realizing that to convert from mm2

to m2 requires a division of 10002. We had assumed (from the analysis of the initial
diagnostic test) that Method A would pose few problems but that to convert from mm2 to
m2 in Method B would be difficult for the students. We predicted that students would
divide by 1000 instead of 10002 when converting from mm2 to m2 in Method B and that by
comparing the results with those of Method A would work out that the conversion from
mm2 to m2 required in Method B is a division of 10002.

In terms of the Vygotskian idea of the zone of proximal development, the conversion from
mm2 to m2 in the final step of Method B was the task we considered to be beyond the
students' present capabilities. The expected correct values for 'cross-sectional area (m2)' in
Method A were intended to provide the additional stimuli for students to solve the final
conversion step in Method B. As we will describe however, this process was not so simple in
practice.

Heidi and Ruth's work, Method A
Using the first method, Heidi and Ruth enter the five diameters correctly into column A of
the spreadsheet. They next obtain a correct set of radii (mm) in column B by entering the
formulae =A2/2, =A3/2 etc. into cells B2 to B6 (Figure 2). When converting the radius of
0.135mm into metres, in cell C2, Heidi and Ruth type in an incorrect formula of B2*1000
(instead of the correct B2/1000). That is, they convert from millimetres to metres by
multiplying by 1000 instead of dividing by 1000. When the incorrect value of 135 (rather
than the correct value of 0.000135) appears in cell C2 as the radius (m), Ruth knows that
something is wrong. Their spreadsheet at this point appears as shown in Figure 2.

1

2
3
4
5
6

A
diameter (mm)

0.27
1.106
7.00E-02
8.30E-0I
13.45

B

radius (mm)

0.135
0.553
0.035
0.415
6.725

C

radius (m)

135

Bgure 2: Ruth and Heidi's spreadsheet after correctly converting from diameter (mm) to radius (mm)

but mistakenly converting the radius ofO. 135mm to a radius of 135m.

Ruth (R), sensing that the value of 135 is not correct, discusses with Heidi (H) what they
should do about this.

R: A hundred and thirty five metres? (Looking at the answer in cell C2).
H: You're out by a point, aren't you?
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Heidi's response reflects a view, uncovered during student interviews, that converting
between metric units involves moving the decimal point backwards or forwards (but with
no conviction about which way this should be).

R: How can it be a hundred and thirty five metres? Times by a thousand? [Looking at
the formula =B2*1000 in the formula bar]. Nought point one three five
millimetres by what?

Heidi then offers that perhaps it is times by a 100 instead of 1000.

H: Yeah, it's times, times, it's times a hundred.

Heidi then works out the conversion on her calculator to help her think through the
problem. The students often use the calculator in this way.

At this point the teacher/researcher intervenes:

Int: What were you checking on the calculator?
R: That! [Pointing at the 135 in cell C2]. 'Cos that ain't right.
Int: How do you know it's not right?
R: It can't be a hundred and thirty five metres from that.

[Pointing at 0.135 in cell B2].
No chance. No chance of that, I'll try a hundred.

Ruth is obviously convinced that their answer is wrong but her strategy for debugging is to
change to a multiple of 100 instead of 1000. When they carry out an incorrect conversion
Ruth often knows if it is wrong, indicating some sense of appropriate values. At this stage,
however, they both use a 'trial and error' technique to find the correct conversion. They do
not have any other type of knowledge which will allow them to decide whether to
'multiply' or 'divide'. Ruth replaces the formula of B2*1000 in cell C2 with a new but still
incorrect formula of B2*100. She has recognized 135 as being too large and has agreed
with Heidi that the solution may be to multiply 0.135 by a hundred instead of by a
thousand. The (still incorrect) answer of 13.5 appears in cell C2.

R: That works!
H: Yeah, we'll have that.
R: We can live with that.

Again we intervene:

Int: How do you know that's right?
R: 'Cos it looks right.
Int: Have you any way of checking?
R: Not on the computer, no.
Int: So you reckon that point one three five millimetres is thirteen point five metres?

How big's thirteen point five metres?
R: Something's wrong here.
Int: Show me how big you think point one of a millimetre is.
R: Cor blimey. It's minuscule innit?
H: Yeah. Tinee!

This intervention has convinced Ruth that their answer is still incorrect and she then
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decides to try multiplying by 10 instead of 100. Her strategy seems to be 'decide if a
conversion is too big or too small then adjust accordingly by decreasing the factor', that is,
'to make it smaller, multiply by a smaller number'.

Ruth changes the spreadsheet formula in the formula bar from B2*100 to B2*10. When the
still incorrect answer of 1.35 appears in cell C2 the conversation proceeds as follows:

R: That still doesn't seem right. Nought point one three five millimetres, would b e . . .
what would it be, what would it be, what would it be, what would it be? [scratching
her head in concentration]. It would beeee . . . Ten millimetres to a centimetre so
. . . nought point one millimetre is less than one millimetre, so it would be
minuscule to centimetres, so . . .

H: Thirteen point five, cos you're moving the decimal point aren't you? That's
[pointing with her pencil between the 3 and 5 of 0.135 in cell B2] tocentimetres
and that [pointing with her pencil to the end of 0.135 in cell B2] would be to
metres 'cos you're moving the decimal point aren't you? So it is thirteen point five.

Ruth is still convinced that their conversion is incorrect. It is important to note that both
students are repeatedly, and thoughtfully, considering whether their answers are sensible or
not.

R: It can't be. [Adamantly and correctly]
H: No, but we had a hundred and thirty five, didn't we?
R: Yeah, but thirteen point five isn't right, either. How can point one three five be

thirteen point five? Think about it, yeh? [Starts to write down the workings at the
side of the table (Figure 1) on the worksheet. Mumbles the workings out loud as
she does this]. Ten millimetres equals one centimetre . . . We're dealing with less
than a millimetre...

H: Exactly.

Ruth continues to write and draw on the provided worksheet, using a form of 'unitary'
method to work out the conversion, combined with a qualitative approach involving order
of magnitude. Her completed drawing, which she uses as she talks through the problem, is
shown in Figure 3.

Figure 3: Ruth's unitary drawing as an aid to
visualizing the problem.
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R: We're dealing with like nought point one . . . I've got all the millimetres there . . .
[pointing at her drawing on the worksheet]... but we're dealing with like a single
one o'those [pointing at a mm line on her drawing].

H: Yeh. That then is nought point nought one centimetres. Right?
[pointing at the circled mm line on their drawing on the worksheet].

R: Yeh. So what would nought point nought one centimetres (0.01cm) be in metres?
H: You move the decimal point. . .
R: 'Cos fifty centimetres is nought point five . . . ten centimetres is nought point one

. . . so one centimetre (lcm) would be nought point. . . nought... one of a metre
(0.01m) [writes this down on worksheet as she speaks through it].

R: And what we're dealing with is less than a centimetre. [Pause] So that's point
nought one millimetres [pointing at the 0.135 in cell B2 but reading it out wrongly]
. . . we're dealing with less than a metre, so it can't be that can it? [pointing at the
1.35 in cell C2] So it can't be times, it'll have to be divide. Let's try that.

Ruth has convinced herself that it should be 'divide' instead of 'multiply' (correctly).
Heidi's response is,

H: Divide it by what?

They begin to negotiate whether the dividing factor is 1000 or 100.

R: Let's divide it by a hundred for a start. . . see how we go.

This is done and the still incorrect answer of 0.00135 appears in cell C2. At this point they
have not realized that the correct division is by 1000 and not by 100. Through her
discussion with Heidi, Ruth realizes that the division is by 1000.

R: That works!
H: That'll do [chuckles].
R: What? [asking what H is laughing at] That looks more reasonable at least. But why

have we divided it by a hundred?
H: Is it a hundred or a thousand now?
R: What have you done... when you convert centimetres to metres... you divide it by...?
H: A hundred.
R: Yeh, so why have we got a hundred, it should be a thousand. I'll put the other

nought in.

Ruth changes the formula in the formula bar from B2/100 to B2/1000. The correct answer
of 0.000135 appears at last in cell C2.

R: Right. That works [coolly].
H: Yeh.
R: Right. Now we've solved the problem [both laugh].

The students then correctly copy down the formula in the remaining cells of column C of
the spreadsheet to obtain a correct set of radii in metres (see column C in Figure 4 below).
To begin converting the values in column C to the cross-sectional areas in m2 required in
column D, the students correctly enter the formula =3.141*C2*C2 into cell D2 to obtain
the correct answer of 5.72477E-08. They copy down the relative formula correctly from cell
D2 into the remaining cells of column D to complete the exercise successfully.
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1

2
3
4
5
6

A

diameter (mm)

0.27
1.106
7.00E-02
8.30E-0I
13.45

B

radius (mm)

0.135
0.553
0.035
0.415
6.725

C

radius (m)

0.000135
0.000553
0.000035
0.000415
0.006725

D

x-sectional area (m2)

5.72447E-08
9.60546E-07
3.84773E-09
5.40959E-07
0.000142054

Figure 4: Heidi and Ruth's successful completion of Method A.

Heidi and Ruth's work, Method B
Having correctly completed Method A, Heidi and Ruth continue with the second method
(Method B) presented in the question. They begin by entering the diameter (mm) values
correctly in column A and then typing in the radii (mm) in column B by copying the values
obtained in Method A (Figure 5). The correct cross-sectional areas are also obtained in
column C by using the basic formula of nr2 in cell C10 (=3.141*B10*B10) and changing it
accordingly in cells Cll to C14 (e.g. to =3.141*B11*B11 in cell Cll).

In the final step, that of converting cross-sectional area (mm2) in column C to cross-
sectional area (m2) in column D, Ruth and Heidi multiply the values in column C by 1000
instead of dividing them by 10002. Their spreadsheet thus appears as shown in Figure 5.

9

10
II
12
13
14

A

diameter (mm)

0.27
1.106
7.00E-02
8.30E-0I
13.45

B

radius (mm)

0.135
0.553
0.035
0.415
6.725

C

x-sectional area (mm2)

0.057244725
0.960546069
0.003847725
0.540958725
142.0536881

D

x-sectional area (m2)

57.244725
960.546069
3.847725
540.958725
142053.6881

Figure 5: Heidi and Ruth's spreadsheet on completion of Method 8.

The students realize that something is wrong when they notice the values in column D
differ between the two methods (see column D, Figures 4 and 5). Recall that it was this
event that had been anticipated by the researchers and designed to provide feedback to
provoke further student action. They reformat the values in cells D10-D14 into standard
form, as shown in Figure 6.
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9

10
II
12
13
14

D

x-sectional area (m2)

5.72E+0I
9.6IE+02
3.85E+00
5.4IE+02
I.42E+05

Figure 6: Heidi and Ruth's values for x-sectional area (ml) when reformatted into standard form.

R: We've got the same numbers but different powers [pointing at column D and
noting the different values from the two methods].

H: So they're not the same numbers are they?
R: No, but you've got the five seven two [pointing at D2] and the five seven two 'e'

[pointing at D10]. And you've got the nine sixty [pointing at D3] and the nine six
1 one [pointing at D11].
H: Yeh, but look... [pointing at the powers in cells D2-D6].
R: Yeh, that's what I mean.. . they've got different powers. OK, I'm confused... 'cos

those are all the same [pointing to the values in columns A and B and referring to
the fact that they are the same in both methods].

H: I know.
R: It must be that [pointing at cells C9-C14]... 'cos we got it right now.

Heidi moves through cells C10-C11-C12-C13-C14 and then D2-D3-D4-D5-D6 to
check if the formulae in the formula bar are correct. At this point they appear to have
exhausted their checking mechanisms and do not know how to resolve the problem of the
different powers:

R: There! They're all all right. Let's just save it.

The spreadsheet session draws to a close and they do not resolve the discrepancy between
the values for cross-sectional area (m2) produced by the two methods.

Discussion
Heidi and Ruth encountered no problems in Method A when converting diameter into
radius. Nor did they have any difficulty in using 7tr2 to obtain the cross-sectional area in m2

once they had finally obtained the radius in metres. It is therefore likely that these students
are competent in using formulae such as Tir2 in calculations where the units required at the
conclusion of the task are produced by the calculation itself. (In this case, substituting a
radius already in metres into rcr2 automatically gives a cross-sectional area in the required
units of m2). It is also clear that Heidi and Ruth knew and could apply the fact that radius
is equal to half the diameter.

We conclude, however, judging from the time-consuming technique adopted by Heidi and
Ruth in Method A to convert the radius from millimetres to metres, that they did not
know, or could not remember in this context, that the general rule for converting from
millimetres to metres is to divide by a thousand. Without recourse to this general rule,
arriving at the correct conversion factor and its operation proved to be a great problem for

—



Anne Butterfield et al Learning conversions in science: the case of vocational students in the UK

them; to convert the radius of 0.135mm to metres they tried five different operations, (1)
xlOOO; (2) xlOO; (3) xlO; (4) +100 and, finally, (5) +1000.

The case of Heidi and Ruth illustrates the inefficient strategies used by many of the science
students who did not have access to a 'general' approach to everyday science conversion
problems. Without a general rule to solve the problem, Heidi and Ruth tackled the
conversion from millimetres to metres as if it were an investigation. Having no thorough
knowledge of the correct conversion strategy they used a 'trial and refinement' process of
successively reducing the conversion factor, relying on a qualitative sense of whether to
accept it or not. The trial and refinment method is grossly inefficient when compared with
the immediate use of a general rule. This case does illustrate however students' ability to
draw upon their own resources in problem-solving when more formal resources are weakly
understood or have never been learned. For example, Ruth created a visual image (see
Figure 3) to support her work on the problem.

After the laborious construction of the correct method (dividing by a thousand) to convert
from millimetres to metres in Method A, Heidi and Ruth did not embark on a similar
process to derive the appropriate general rule for the conversion between mm2 and m2 in
Method B. Instead of dividing by 10002 as required, Heidi and Ruth multiplyied the cross-
sectional area (mm2) by 1000 to obtain the cross-sectional area (m2) (see Figure 5). The
students noticed immediately that the set of values for the cross-sectional area (m2) differed
in Method B (Figure 5) from those of Method A (Figure 4). Knowing that they should
have been the same, Heidi and Ruth reformatted the values in Method B into standard
form (Figure 6), which, when compared with the results from Method A clearly show that
Method B's results were too great (by a magnitude of lxlO9). The students indicate from
their conversation that they recognize a discrepancy in the 'powers' but are not able to
'unpack' the reason for this discrepancy. For these two students the nature of the
spreadsheet-based task did not provide sufficient resources for them to 'work out' that
converting from mm2 to m2 requires a division of 10002. The correct values in Method A
did not provoke them to recognize the general rule for converting between mm2 and m2,
almost certainly because the intended confrontational situation had become too complex
due to the students' error of multiplying the cross-sectional area (mm2) by 1000.

The repeated use of multiplication to convert from millimetres to metres is probably based
on a knowledge that as metres are 'bigger' than millimetres , the correct operation is to
multiply in order to obtain a 'bigger'value.

The intervention from the teacher/researcher when Heidi and Ruth were working on
Method A seems to have been critical in provoking them to reconsider their work and
without this intervention they may not have successfully completed this part of the
problem. With respect to Method B it is also possible that an appropriate intervention
would have helped them to move forward.

The range of strategies used by the whole group
Through analysis of the whole cohorts' spreadsheet work, we have been able to distil
student responses to the conversion task into three distinct categories, 1, 2 and 3. Data
from 18 students (9 pairs) that we observed in the two participating colleges, 6 pairs from
College A and 3 pairs from College B, has been drawn upon to distinguish those cases in
which the intended problem-solving scenario was accessed by students successfully or not!
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Response Category I, problem-solving scenario established
Students in this category completed correctly the three conversion steps in Method A to
obtain the correct value for 'x-sectional area (m2)' in the final column. They also completed
correctly the first two conversion steps in Method B but made an error-in the final step
when converting from 'x-sectional area (mm2)' to 'x-sectional area (m2)'. The situation we
had intended to provoke was therefore established, as the students were left to resolve the
difference between two sets of results for 'x-sectional area (m2)', one correct (Method A)
and one incorrect (Method B). The values for 'x-sectional area (m2)' should, of course,
have been the same in both methods.

Five pairs (ten students) fell into this category. Instead of dividing correctly by 10002 in the
final step of Method B, four pairs converted area in mm2 into m2 by dividing by 1000 (as
we had predicted) whilst one pair multiplied by 1000 (Heidi and Ruth, discussed above). Of
these, three pairs were able to correct their final calculation in Method B but two pairs were
not. The three pairs who solved the problem (all of whom had initially divided by 1000
instead of by 10002) received teacher intervention at the point of observing the two
different sets of answers in the final column of Method A and Method B. The two pairs
who were unable to correct their answers did not receive any teacher intervention at this
point.

Intervention was typically in the form of the teacher/researcher prompting the students to
notice 'how big' the difference was between the numbers. The successful student pairs were
then able to see that Method B's answers for 'x-sectional area (m2)' were too large by a
magnitude of 1000 (see Figure 7).

A

Method A

1
2
3
4
5
6

9

10
II
12
13
14

diameter (mm)
0.27
1.106
7.00E-02
8.30E-0I
13.45

Method 8
diameter (mm)

0.27
1.106
7.00E-02
8.30E-0I •
13.45

B

radius (mm)
0.135
0.553
0.035
0.415
6.725

Radius (mm)

0.135
0.553
0.035
0.415
6.725

C

radius (m)
0.000135
0.000553
0.000035
0.000415
0.006725

x-sectional area mm2)

0.057244725
0.960546069
0.003847725
0.540958725
142.0536881

D

x-sectional area (m2)
5.72447E-08
9.60546E-07
3.84773E-09
5.40959E-07
0.000142054

x-sectional area (m2)

5.72447E-05
9.60546E-04
3.84773E-06
5.40959E-O4
0.142054

Figure 7: Values of cross-sectional area which are correct for method A and incorrect for Method 8. Note

how Method B's values for cross-sectional area are too small by a magnitude of a 1000 due to dividing

by WOO rather than 10002.
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Response Category 2, problem-solving scenario not established
Students in this category made errors in both Method A and in the final step of Method B.
This meant that the values obtained for 'x-sectional area (m2)' in the final column were
incorrect in both cases. The confrontation we had intended was therefore not established
because although students were left to compare two sets of different values for 'x-sectional
area (m2)', both sets were incorrect. Thus it was not possible to intervene in the same way
as for those students in Reponse category 1. None of the three pairs (six students) of
students who fell into this category successfully completed the task.

Response Category 3, problem-solving scenario redundant
Only one pair of students, Monica and Bev, fell into this category by completing all the
conversion steps in Method A and Method B correctly. These two students were able to
utilize prior knowledge and use the correct conversion factor of -HIOOO2 in the final step of
Method B without teacher intervention or recourse to Method A's correct values for 'x-
sectional area (m2)'.

Discussion
It seems that where the problem-solving situation was established as we had intended
(Response Category 1), the spreadsheet-based task supported the students in learning a
previously unknown general rule but required researcher intervention in addition to
spreadsheet feedback. Thus, although the correct values for cross-sectional area (m2) in
Method A served as the auxiliary stimulus necessary to solve the final step of Method B (in
accordance with Vygotsky's functional method of double stimulation) the students were
not able to respond to this additional stimulus without assistance from a more
knowledgeable other.

Out of nine pairs of students, six pairs were aware of the general rule to convert from
millimetres to metres; one pair (Heidi and Ruth) possessed the common sense knowledge
to 'discover' the general rule anew, and two pairs did not have access to sufficient resources
(computer or otherwise) to construct it for themselves.

Vygotsky (1978) proposed that in any domain each child has an 'actual developmental level'
(determined by the individual problem-solving) and an immediate potential for development
(determined by the problem-solving process under guidance). In some sense, the distance
between the two levels is the 'zone of proximal development'. The extent to which individuals
are able to use auxiliary stimuli as a 'sign' pointing to a problem's solution can act as an
indicator of their 'zone of proximal development'. We designed the spreadsheet activities
based on an analysis of classroom observations, written test data and students' interviews in
an attempt to ensure we were starting from the perspective of the students. Our analysis
suggests that the activity we had designed was within the zone of proximal development of
only six pairs of students - the five pairs belonging to Response Category 1 and the single
pair belonging to Response Category 3. The task's design was, however, outside the zone of
proximal development of the six students in Response Category 2, who knew few general
rules and could not resort to alternative strategies to construct appropriate ones.

Conclusions

In line with the GNVQ philosophy of independent learning, the spreadsheet tasks were
designed with the intention that students would learn mathematical ideas essential to
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science. Our premiss was that students would work with minimal intervention from a
teacher. However through the analysis presented here, we have become aware of the
difficulties faced by these science students when attempting to solve mathematical
problems. We were overly reliant on student discussion, computer feedback and the nature
of the activities themselves. The case of Heidi and Ruth illustrates how inefficient student
strategies can be during independent work supported by too little background knowledge;
students must work much harder if they have not formalized common operational
procedures. We still conjecture that an appropriately designed spreadsheet conversion
activity, which allowed for more teacher direction and emphasis on a general method for
converting between units, could offer students a basis for developing an understanding of
the power of the general conversion relationship.

The results of this study are beginning to suggest that the practice of teaching key skills
within the vocational context is not likely to redress the generally weak understanding of
mathematics demonstrated by vocational sience students. We feel that, although
independent learning is a central tenet of the new vocational award, it does, in fact,
contribute to the difficulties reported (NCVQ, 1995) in teaching and assessing key skills in
an effective way. Our findings which suggest that students need guidance from a teacher
when working within their zone of proximal development support this view. It is also
inevitable, as we have found, that some vocational science students with insufficient
background knowledge will be working well outside their zones of proximal development
in the mathematical aspects of their course. These students, in particular, are likely to have
great difficulties grasping mathematical principles through independent learning in the
vocational context.

It is evident that a way has to be found to empower vocational science students with more
efficient mathematical strategies in order that they are not disadvantaged in the future in
higher education or in the workplace. We have seen that students actively think through
problems and seek solutions for themselves, endlessly making sense of their actions. The
evidence of Heidi and Ruth suggests that students do work hard to produce a calculation
which fits with their intuitive sense of what is sensible in a science situation. However, on
their own they do not always have the resources to sort out the discrepancy between what
they produce themselves and what they sense that a calculation should actually look like.
Here a teacher is absolutely crucial, otherwise students like Heidi and Ruth are unlikely to
develop the mathematical knowledge which that very much need for their work in science.
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