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1 Introduction

1.1 Stylized facts

By looking at the regional distribution of per-capita incomes in Europe one
can trace some clear spatial patterns along which richer and poorer regions
are lined. One such patterns has been identified as the ”blue banana”: a slice
of the continent where the most prosperous regions across different countries
are lined up. Often European regions display stronger per-capita income
similarities with their cross-border neighbours than with other regions of the
same country.

Dunford [5] analysed the temporal evolution of regional inequalities, within
European countries for the period 1977 -1989. He found:

• A positive relation between regional rates of growth of per capita GDP
with end1 of period GDP levels in the U.K., where Surrey, Sussex,
Cumbria and Greater London had the highest rates of growth and
highest GDP levels, while other regions, Leicester and Northampton,
Dorset and Somerset and Hereford, had high growth rates and lower
GDP levels, and South Yorkshire, Cleveland and Meyerside had both
low levels and low growth rates.

• In Italy, some of the poorest regions: Basilicata, Calabria and Campa-
nia, showed the lowest growth rates while regions with average levels of
per capita GDP such as: Molise, Abruzzi, Marche and Veneto achieved
the highest growth rates. The gap dividing these fast growing aver-
age income regions from the richest, Lombardia and Emilia Romagna,
remained however wide.

• In Spain, regions with average per capita incomes had high dispersion
in growth rates: the highest growth rates were in Canarias, Ceuta y
Melilla and Baleares, the lowest in Cantabria, Asturia, Galicia and Ri-
oja. Regions with higher per capita GDP levels like Madrid, Cataluña,

1In the economic literature the initial GDP level has generally been considered, rather
than the final period.
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Navarra and Pais Vasco, as well as the poorer Andalucia and Ex-
tremadura, showed close to average growth rates.

• Germany’s laenders showed no clear relation between levels and growth
rates.

• In France the Île de France, with the highest income level, had the
second highest growth rate after the Midi-Pyrenees, a much poorer
region.

Regional income dynamics in Europe show national specificities and rich
intra-distribution mobility. Relative ranking effects, non monotonic relations
between level and growth rates, neighbouring effects, regional market charac-
teristics, infrastructure and cost conditions might all be elements composing
the picture of inequality and its evolution in space and time. The relevance
of these elements has been emphasized by Quah [13, page 953]:

”...a region’s economic well-being can be predicted by that in the
surrounding regions and the host state... . More than does the
host country’s economic performance, that of surrounding regions
helps us understand the inequalities across European regions”.

Quah [13] found that the standard deviation of the per-capita income
distribution in the European regions in 1989 was reduced by 28% when nor-
malized for the effects of neighbouring regions. Even more interestingly, the
intra-distribution dynamics, expressed via a discretized transition probability
matrix, shows that neighbours-conditioned transition probabilities of exiting
the poorest income class (below 74% of the average European income) are
much higher than without conditioning. Armstrong [2], noticed that the con-
vergence of European region per capita incomes has been a slow and highly
variable process showing strong spatial auto correlation, with clustered fast
growing regions separated by slow growth ones.

1.2 Modelling intra-distribution mobility

Models analyzing intra-distribution mobility features - such as leapfrogging,
where a lagging nation overtakes a leading one, or forging ahead where the
existing gap is instead increased- focused on two main aspects:
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• the different roles played by invention and imitation of new technolo-
gies, and

• the geographical extent of technological spillovers in an endogenous
growth context.

Leaders and followers are often described as having different abilities or
costs of technological upgrading. If an innovation is a local public good so
that its externality is contained within a single country or region, long run
patterns of growth across countries will show hysteresis. Convergence2 is, on
the contrary, obtained through international imitation3 of the state of the
art technology [see Grossman and Helpman [9]].

Another intra-distribution feature, Club convergence, takes place when
initial conditions select one of the possibly multiple steady state paths. In
this case polarization, persistent poverty and clustering may take place, [see
Quah [13] and [14]]. A typical case of such multiplicity arises when imita-
tion, or knowledge spillovers, are locally delimited, in this setting Durlauf [6]
showed how localized productivity spillovers may generate, depending on the
strength of the neighboring linkages, multiple stochastic steady states [For
the implications of different theoretical models on the convergence issue see
Galor [7]].

We model the evolution of regional asymmetries, and the regions intra-
distribution mobility, as the equilibrium outcome of a technological adoption4

game played at different geographical locations. Firms have different ini-
tial technological conditions. Assume that a quality improving innovation is
ready for adoption at a fixed cost: for example a new computer processor is
on sale, some of the firm-locations have the last period state of the art pro-
cessor, while others have a more obsolete one. Firms first decide whether to
adopt the new technology and then compete in price against their immediate
neighbours.

2For a major contribution on the hypothesis of regional convergence, see Sala-i-
Martin[15].

3Imitation is often modeled as a cheaper way to adopt the state of the art technology.
In this case the growth rate of the lagging economies can be higher than that of the leading
ones and leapfrogging may occur. If instead the cost differential between innovative and
imitative research is a decreasing function of the technological gap, catching up is observed.

4We study the incentives for technological adoption as more evidence, see Jovanovich
[10], is suggesting its relevance in explaining growth performances compared to technolog-
ical invention.
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We characterize the geographical adoption patterns forming subgame per-
fect equilibria of the price and adoption game played by each firm against
its nearest neighbours. If the equilibria display partial adoption rates, we
look at the identity of the adopters5. Will adoption take place in the previ-
ously leading locations, or in the lagging ones? Symmetric adoption patterns
emerge either when nobody adopts, and the initial technological asymme-
try is preserved or when every location adopts. In this last case the initial
technological asymmetries disappear.

We define the following equilibria:

• Persistent asymmetry, as the equilibrium where nobody adopts,

• Leapfrogging, as the equilibrium where only low quality firms adopt,

• Forging ahead, as the equilibrium where only high quality firms adopt,
and

• Catching up, as the equilibrium where everybody adopts.

At each date one of these equilibria is determined by the existing product-
quality differences and the innovation available for adoption, given the model’s
parameters. These are: transport costs, the level of which is inversely related
to the degree of market integration, consumers’ preference for quality and
adoption costs,

Brezis, Tsiddon and Krugman [4] explained historical cases of leapfrog-
ging as the result of different learning capabilities about new technologies be-
tween leading and following nations, and Brezis and Krugman [3] described
the leapfrogging of leading cities by upstart metropolitan areas, by assuming
localized learning by doing and, again, the reluctance of the established cities
to learn about the new technology. Differently from this literature we assume
no asymmetric learning abilities between leaders and followers. The different
adoption behaviour is an endogenous equilibrium feature of the game played.

Pre-existing quality leads can be increased, maintained, cancelled and
reversed in equilibrium. Whenever technology adoption costs do not exceed
transport costs, when integration, expressed by low transport costs, is not

5Findings from different innovation surveys point out at the co-existence in time of
innovating and non-innovating firms and at a highly concentrated geographical distribution
of the innovative activity.[1]
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too strong, there is an upper limit to the amount of neighbouring regions
asymmetry.

We study the effects of economic integration on the evolution of regional
asymmetries. Forging ahead, the equilibrium leading to increased local asym-
metries, is more likely with higher integration while Catching up is more dif-
ficult to be achieved. The effects of integration on Persistent asymmetry, the
equilibrium where nobody adopts, and Leapfrogging, the equilibrium revert-
ing pre-existing asymmetries, depend on the initial quality differences. When
these are large, economic integration helps maintaining the Persistent asym-
metry while for lower levels of initial quality differences, integration increases
the chances of Leapfrogging.

Motta, Thisse and Cabrales [11] analysed the effects of trade between two
countries having productive structures of different qualities. They character-
ized two equilibrium outcomes: one in which the quality leader maintains
its position and a second where leapfrogging occurs. This last outcome only
occurs when there are small initial quality asymmetries between the two
countries.

Contrary to Motta, Thisse and Cabrales [11], we find that the Leapfrog-
ging equilibrium is more likely with large initial asymmetry. On the other
hand wider initial asymmetry reduces the chances of both Forging ahead and
Persistent asymmetry.

Furthermore the maximum equilibrium asymmetry, between neighbour-
ing regions, depends, negatively, on integration and consumers preferences
for quality, and positively, on adoption costs.

We move on describing the evolution of the state of the art technology
as generated by an exogenous stochastic process and we derive the asso-
ciated evolution of local technological asymmetries as well as the regional
intra-distribution mobility. We do this by deriving the transition probability
matrices for both, local asymmetries and intra-distribution dynamics and we
show that both, these matrices, have a unique invariant distribution. The
economy, therefore, once settled on its equilibrium distribution will be fluc-
tuating between periods of leapfrogging, forging ahead and catching up with
time frequencies converging towards the values of the invariant distribution.

The remainder of the paper is organized as follows: in Section 2 we de-
scribe the model. Section 3 looks at the two stage game equilibria under
asymmetric initial conditions. In Section 4 we derive the transition prob-
ability matrices generating both regional asymmetry and intra-distribution
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dynamics. Section 5 concludes the paper. Appendix 1 contains results from
numerical simulations and studies the effects of some parameters changes on
the frequency distributions of local asymmetries. Appendix 2 considers an
extension to a generalized state space for the innovation shock, and proves ex-
istence and convergence of the derived Markov process on local asymmetries.
All the proofs are in Appendix 3.

2 The Model

2.1 Market geography

Let I firms be exogenously located at regular intervals along a circle. A
market is defined by the geographical space between two neighbouring firms.
Each firm can charge different prices for the same quality commodity in the
two adjacent markets where it operates .

Firms produce commodities which differ along two dimensions:

• Location, assumed as given, and

• quality, endogenously determined in the model.

2.2 Demand

Consumers, uniformly distributed on each market6, buy one unit of the com-
modity from one of the surrounding firms7, and face linear transportation
costs, t.

Consider the market between two firms i and i+18 which produce goods
of quality ni and ni+1 and charge prices pi,l and pi+1,r respectively(pi,l is the
price that firm i charges on the market defined on its left side and pi+1,r is the
price charged by firm i+ 1 on the market at its right side where it competes
with firm i). Then the left market demand function for firm i is given by9:

6The mass of the consumers located between any two firms is set to be equal to one.
7They can only buy in the market defined by the two firms located around them.
8We consider integers modulo I, i.e. if i = I, then i+ 1 = 1.
9For each price-quality configuration we obtain a cut-off location ỹi,l. A consumer

located at ỹi,l will be indifferent between buying from either of the two firms: i, or i+ 1.
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ỹi,l=




0 if pi,l − pi+1,r ≥ vdi,l + t
1

2t
[vdi,l + t+ pi+1,r − pi,l] if pi,l − pi+1,r ∈ (vdi,l − t, vdi,l + t)

1 if pi,l − pi+1,r ≤ vdi,l − t ,
(1)

where v is the surplus associated with the consumption of one unit of good
of quality n = 1, t is the linear transportation cost, and di,l ≡ ni − ni+1 is
the quality difference between the products of firms i and i + 1. The right
market demand for firm i+ 1 is:

ỹi+1,r = 1− ỹi,l. (2)

2.3 The two stages of the game

The game, describing the adoptions of the new technology, is as follows:

• In the first stage all firms simultaneously decide whether to adopt, at
a given fixed cost q, a quality improving10 innovation,

• in the second stage each firm competes, in separate markets, against
its two immediate neighbours by choosing a pair of prices, for its own
commodity, one for each market.

3 Prices and profits in the second stage

We assume constant and identical marginal costs of production and we set
them without loss of generality equal to zero. Given the symmetry of the
pricing problems11, in the following Lemma we consider the equilibrium prices
of a market between firm i and firm i+ 1.

Lemma 1

10We model quality as follows: one unit of good of quality n is equivalent to n times a
unit of a numeraire good of quality 1.

11Remember that each firm has the ability of charging different prices in different
markets.
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Given a distribution of product qualities, {ni, i ∈ I}, equilibrium
prices of the second stage of the game are:

p∗i,l =




0 if di,l ≤ −3t
v

t+
1

3
vdi,l if -

3t

v
< di,l <

3t

v

vdi,l − t if di,l ≥
3t

v
,

(3)

and

p∗i+1,r =




0 if di,l ≥
3t

v

t− 1

3
vdi,l if -

3t

v
< di,l <

3t

v

−vdi,l − t if di,l ≤ −3t
v
.

(4)

and,

Corollary 1

Equilibrium profits for firm i are given by the sum of profits in
the right market where it competes against firm i− 1,

π∗i,r =




0 if di,r ≤ −3t
v[

1

3
vdi,r + t

]2

2t

if -
3t

v
< di,r <

3t

v

vdi,r − t if di,r ≥
3t

v
,

(5)

and the profits in its left market where firm i competes against
firm i+ 1,

π∗i,l=




0 if di,l ≤ −3t
v[

1

3
vdi,l + t

]2

2t

if -
3t

v
< di,l <

3t

v

vdi,l − t if di,l ≥
3t

v
.
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4 The first stage: Adoption under asymmet-

ric initial conditions

Since we want to study the conditions governing the evolution of regional
technological asymmetries, and evaluate the effects of economic integration
and the level of preexisting asymmetry on such process, we assume asym-
metric initial conditions:

Assumption 3.1

• There are high quality firms and low quality ones:

ni ∈ {nh, nl} and nh > nl,

and

• each low quality firm is surrounded12 by two high quality ones and vice
versa:

ni = nh ⇒ ni+1 = ni−1, = nl, and
ni = nl ⇒ ni+1 = ni−1, = nh.

Let n∗ be the new product quality available for adoption and define the
innovation size, x∗, as the difference between the state of the art quality,
available for adoption, and the existing high quality of the product of the
leaders:

x∗ ≡ n∗ − nh.

Any firm can adopt this innovation by incurring a fixed cost, q.
Finally let firm i’s decision, whether to adopt the new technology, be

represented by the binary variable:

ωi ∈ {0, 1} .
12Given this alternating technology pattern, the existing product quality asymmetry be-

tween one location and its two neighbours coincide:

di,l = di,r = di = ni − ni±1.
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After the adoption decision, the product quality of a previously lagging firm,
is represented by:

n̂i,l = (1− ωi,l)ni,l + ωi,ln
∗,

while the product quality of a previously leading (high quality) firm is:

n̂i,h = (1− ωi,h)ni,h + ωi,hn
∗.

The associated adoption cost for both previously high and low quality
firms are:

q̂i = qωi.

We consider adoption strategies decisions {ω∗
i,l, ω

∗
i,h} which form a sub-

game perfect equilibrium of the two stage game defined by the payoffs:

π∗i,l (n̂i,l, n̂i+1,h, n̂i−1,h)− q̂i;

and
π∗i,h (n̂i,h, n̂i+1,l, n̂i−1,l)− q̂i;

and by the strategies

ωi,l, ωi,h,∈ {0, 1} , i ∈ I.

We intend to capture the intra-distribution dynamics of different locations
by characterizing the following pure strategies equilibria:

• Persistent asymmetry, where nobody adopts and asymmetry remains
unchanged: ωi,h = ωi,l = 0;

• Leapfrogging, where the lagging firms adopt while the high quality ones
do not adopt: ωi,l = 1, and ωi,h = 0;

• Forging ahead, where the leading firms adopt while the low quality ones
do not adopt: ωi,l = 0 and ωi,h = 1; and,

• Catching up, where everybody adopts: ωi,h = ωi,l = 1.

In studying the equilibria of this game we maintain, unless otherwise
stated, the following assumption:
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Assumption 3.2.

a) The initial quality difference between neighbouring firms is bounded
from above:

d ≡ nh − nl <
3t

v

(which implies that all firms make positive profits given the initial conditions)
and,

b) adoption costs are lower than or equal to unit transportation costs:
q ≤ t.

We first want to ask:
“under what conditions will the existing asymmetry be preserved?”
We find that, given the parameters representing: adoption costs, q, trans-

port costs, t and consumers’ preference for quality, v, the persistence of exist-
ing asymmetry will jointly depend upon the initial quality difference between
leaders and followers, d, and the innovation size x∗.

Proposition 1: Persistent asymmetry

Let assumptions (3.1) and (3.2) hold, then Persistent Asymmetry
is an equilibrium if and only if :

x∗ <

√
9qt+ (3t− dv)2 − 3t

v
and 0 ≤ d <

3t− 3
√
t2 − tq
v

(6)

�

It is easy to see13 that the Persistent asymmetry equilibrium region is
decreasing in the amount of preexisting asymmetry: with higher d , it is
less likely that nobody will adopt the new available technology providing the
superior quality n∗.

The effects of economic integration on the Persistent asymmetry equilib-
rium region, expressed by a reduction in transport costs, t, are not linear;
the sign of their effect depends on the degree of the preexisting asymmetry,
d. If

13The partial derivatives are available from the Author on request.
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0 ≤ d < 3q

4v
,

decreasing transport costs reduce the chances of observing the Persistent
asymmetry equilibrium. If, on the contrary,

3q

4v
≤ d < 3t− 3

√
t2 − tq
v

,

a reduction in transport costs will increase the Persistent asymmetry equi-
librium region.

When finally existing asymmetry belongs to the interval

3t− 3
√
t2 − tq
v

≤ d < 3t

v

Persistent asymmetry ceases to be an equilibrium.
The next proposition studies the conditions under which a spatial adop-

tion pattern where only the lagging locations adopt the new technology, and
by so doing leapfrog the leading ones, is an equilibrium.

Proposition 2: Leapfrogging

Let assumptions (3.1) and (3.2) hold, then Leapfrogging is an equi-
librium if and only if:√

9qt+ (3t− dv)2 − 3t

v
≤ x∗ < 3t− 3

√
t2 − tq
v

(7)

�

Leapfrogging becomes an equilibrium as soon as the innovation, x∗, over-
takes the upper bound of Persistent asymmetry. From (7) it is easy to see
that the initial quality difference, d, has a positive effect on the size of the
Leapfrogging equilibrium region.

The effects of economic integration, on the lower bound of this equilibrium
region, are again nonlinear: for small values of the preexisting asymmetry,
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increasing transport costs raise the lower bound of the leapfrogging equilib-
rium region, for intermediate values of d, higher transport costs reduce the
lower bound. Finally, for even higher values of the preexisting asymmetry,
the lower bound for leapfrogging goes to zero independently of transport
costs.

The upper bound of the leapfrogging region is independent of d, and
decreasing in transport costs. For higher values of the innovation size, x∗,
economic integration has the effect of increasing the chances of a reversal of
existing asymmetry via leapfrogging.

Next we look at the conditions leading to a spatial pattern of adoptions
where only the leading locations adopt the new technology (thereby increas-
ing the preexisting technological asymmetry).

Proposition 3: Forging ahead

Let assumption (3.1) and (3.2) hold, then Forging ahead is an
equilibrium if and only if :√

9qt+ (3t+ dv)2 − 3t

v
− d ≤ x∗ < 3t− 3

√
t2 − tq
v

− d. (8)

�

First notice that, by comparing (7)and (8) , when Forging ahead is an
equilibrium Leapfrogging is an equilibrium too.

The amount of preexisting technological asymmetry, d, reduces the set of
values of the innovation size, x∗, for which Forging ahead is an equilibrium 14.
Indeed asymmetry cumulation through forging ahead cannot go on beyond
the upper bound of the equilibrium region given by:

d =
3t− 3

√
t2 − tq
v

, (9)

14Notice that for d = 0 Forging Ahead and Leapfrogging equilibrium regions coincide.
This makes sense, given that for d = 0 there are neither leaders nor followers, and the two
equilibria concepts coincide, describing a state that, from symmetric initial conditions,
leads to a new alternating pattern of adoptions in space.
For a full analysis of the symmetric initial conditions case see Giovannetti [8].
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after which Forging ahead can longer be an equilibrium. Notice that (9)
also defines the maximum technological asymmetry between neighbouring
locations, 15 and no adoption pattern may lead to higher asymmetry16.

Finally, economic integration, by lowering transport costs, t,raises the
possibility of Forging ahead being an equilibrium.

The last configuration of spatial adoption decisions that we analyse is
one in which there is global adoption of the new technology. In the following
proposition we derive the necessary and sufficient conditions for Catching up
to be an equilibrium of the game.

Proposition 4: Catching up

Let assumption (3.1) and (3.2) hold, then Catching Up is an equi-
librium if and only if:

x∗ ≥ 3t− 3
√
t2 − tq
v

(10)

�

The Catching up equilibrium region17 is independent of the previous level
of asymmetry, d. This implies that, even under symmetric initial conditions,
if the innovation size, x∗, belongs to (10) every location will adopt the new
technology.

Integration, by reducing transport costs, raises the lower bound of Catch-
ing up and, consequently, the maximum potential level of asymmetry. This
is due to an increase in the strength of competition caused by lower transport
costs which makes the global adoption of the new technology more unlikely.
Higher adoption costs also increase the potential maximum level of asymme-
try and lower the chances of global adoption.

Finally consumers’ preference for quality also play an important role. The
more consumers value quality, the higher is v, the lower is the maximum level
of asymmetry and the more likely is Catching Up.

15In facts it coincides with the maximum innovation size leading to leapfrogging and it
defines the level of existing asymmetry after which Forging ahead disappears.

16Moreover such maximum asymmetry falls within the limit assumed in assumption
(3.2).

17Notice that the Catching up lower bound (10) also coincide with the maximum level
of technological asymmetry in the system, discussed in equation (9).
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In concluding this section notice that if the effects of integration are so
strong that transport costs are below the level of adoption costs, q > t, if
assumption (3.2) does not hold, Catching up is never an equilibrium and
asymmetry is self replicating: starting from asymmetric initial conditions,
there is no possible equilibrium outcome where all the firms upgrade their
product quality.

5 The evolution of regional asymmetries

In this section we focus on the temporal evolution of the regional technolog-
ical asymmetries. We consider an exogenous process driving the evolution
of the state of the art technology. This process, together with the previous
period asymmetries, determines today’s quality differences between neigh-
bouring locations, as described in the equilibria analysed in the previous
section. We derive the evolution of local technological asymmetries and the
intra distribution mobility of the single firms-locations by characterizing the
transition probability matrices generating such processes.

Let the evolution of the ”state of the art” technology be described by the
additive process:

n∗t = n
∗
t−1 + x

∗
t

where x∗t represents the innovation size at period t
18.

Given that initial conditions are described by an alternating pattern of
low and high quality levels where:

ni,t = ni±2,t

every equilibrium studied in the previous section maintains such an alter-
nating pattern of low and high qualities19. This implies that the evolution
of the local asymmetries is captured by the evolution of the product quality
asymmetry between neighbouring firms, dt, where dt = |ni,t − n1±1,t| .

In the following we focus on sequences of innovations which lead to, at
least partial, adoption of the state of the art technology ruling out small

18At time t − 1 each firm, i,in the industry is characterized by a product quality corre-
sponding to the highest available quality at the date in which the firm last adopted.

19In the Catching up equilibrium, both low and high quality coincide with the state of
the art technology.
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innovation leading to the Persistent asymmetry equilibrium region for any
given value of the existing asymmetry, d20. Furthermore, having seen in the
previous section that Forging ahead (8) and the Leapfrogging (7)equilibrium
conditions overlap, we assume that, when multiplicity arises, Forging ahead
prevails due to extra-model factors.

Assumption 4.1

• The innovation process x∗t = {n∗t − n∗t−1} has a lower bound21 given
by:

x∗t ≥ 3
√
t (q + t)− 3t

v
. (11)

• Leapfrogging only occurs in the parameters’ region where it is the unique
equilibrium.

Consider the transition law

g : Dt−1 ×Xt → Dt, (12)

which maps a pre-existing asymmetry dt−1 and the actual innovation shock,
x∗t , into the present asymmetry level , dt.

• Assumption (4.1) excludes the possibility of Persistent asymmetry be-
ing an equilibrium such that the quality asymmetry between neigh-
bouring firms, remains unchanged.

20This restriction is nothing more than assuming a lower bound for the innovation shock
and implies that the following analysis applies when, at each date, an innovation arises
for which at least some firms in the industry adopt in equilibrium (half of them given the
self replicating pattern of the industry).

21Notice that if the innovation process, has the lower bound given by (11) then it
coincides with the difference between the latest available quality and the highest one in
the industry:

x∗
t = n∗

t − n∗
t−1 = n∗

t − nh,t−1.

This is clear because n∗
t−1 has been adopted by some firms, being x∗

t outside the persistent
asymmetry region for any value of dt−1.

17



• Under Forging ahead only the leaders adopt. So the new product qual-
ity difference between neighbouring firms, dt, will be:

dt = g (x
∗
t , dt−1) = x

∗
t + dt−1.

• Under Leapfrogging, only the followers adopt the new quality n∗t . This
implies a leadership reversal and a new quality difference equal to:

dt = g (x
∗
t , dt−1) = x

∗
t .

Finally,

• under Catching up, every firm adopts the new quality, n∗t , and the
quality difference between neighbouring firms disappears:

dt = g (x
∗
t , dt−1) = 0.

Notice that, whenever the innovation shock falls in the Catching up equi-
librium region, the game starts again from symmetric initial conditions main-
taining no memory of the past asymmetry. In this case we have seen that
the Forging ahead and the Leapfrogging equilibrium regions coincide produc-
ing an alternating pattern of technological qualities in space. When on the
contrary there is no initial asymmetry, dt = 0, and the innovation, x∗, falls
within the Catching up region, initial conditions remain symmetric, and all
the technological levels are upgraded.

The next step is to derive the transition probability matrices generating
both these processes.

We assume that the innovation shock has a discrete support22. This is
defined so that different values of the realization of the shock, associated with
the pre existing asymmetry, will define, through the equilibrium correspon-
dence (12), the new levels of local asymmetries.

Assumption 4.2

22In Appendix 1 we derive the transition probability function generating the process of
evolution of local asymmetries for a continuum state space, and we prove its ergodicity.
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• The innovation shock {x∗t = n∗t − n∗t−1}∞t=0 is generated by a sequence
of i.i.d. random variables defined on a discrete support:

Supp (xt) ≡ {x1, x2, x3}
where:

x1 ∈
[
3
√
t (q + t)− 3t

v
,
3t− 3

√
t2 − tq

2v

)
; (13)

x2 ∈
[
3t− 3

√
t2 − tq

2v
,
3t− 3

√
t2 − tq
v

)
; (14)

and

x3 ∈
[
3t− 3

√
t2 − tq
v

,
3t

v

)
. (15)

with probabilities:
p (x1) , p (x2) , p (x3)

Note that, given the equilibrium correspondence (12) , Assumption (4.2)
implies that:

• Persistent asymmetry does not occur, given that the lower bound of x1

is above the upper bound of the Persistent asymmetry equilibrium for
any initial d.

• if xt = x1 and dt = x1 then dt+1 = g (x1, dt) = 2x1, while if dt ∈
{0, 2x1, x2} then dt+1 = g (x1, dt) = x1;

• if xt = x2 and dt ∈ {0, x1, 2x1, x2} then dt+1 = g (x2, dt) = x2, and

• if xt = x3 and dt ∈ {0, x1, 2x1, x2} then dt+1 = g (x3, dt) = 0.

From assumption (4.2) and the equilibrium correspondence (12) it is easy
to derive the transition probability matrix for the local asymmetries of the
discretized process:

dt+1

dt
0 x1 2x1 x2

0 p (x3) p (x1) 0 p (x2)
x1 p (x3) 0 p (x1) p (x2)
2x1 p (x3) p (x1) 0 p (x2)
x2 p (x3) p (x1) 0 p (x2)

(16)
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This matrix maps probability distributions on local technological asym-
metries, dt, from one period into the next one, dt+1, and summarizes the in-
teraction between the exogenous innovation process and the two stage game
of adoption described before. These distributional changes represent the pe-
riod by period, short-term evolution of technological asymmetries between
neighbouring firms-locations.

Once the transition matrix has been derived, it is possible to analyse the
long run behaviour of the distribution of local technological asymmetries.
In the next proposition we see that this can be described by an invariant
distribution of the process generated by the transition probability matrix(16).

Proposition 5

The transition probability matrix (16) has a unique invariant dis-
tribution.

�

We now focus on intra-distribution dynamics, or the probabilistic evolu-
tion of the ranking of a single firm-location conditional on its present location
and product-quality. We want to characterise the long-term probabilities by
which individual firms, with a given geographical location, interchange their
position of leaders or followers.

Let us define the set of states describing what can happen to the single
firms. Let:

• IA1 be the state where, starting from symmetric initial conditions, half
of the firms adopt the innovation x1;

• IA2 be the state where, from symmetric initial conditions, half of the
firms adopt the innovation x2;

• FA be the state where, given the initial local asymmetry dt = x1, only
the leaders adopt the innovation x1;

• LF1 be the state where, given the initial local asymmetry dt ∈ {x2, 2x1}
only the followers adopt the innovation x1;

• LF2 be the state where, given the initial local asymmetry dt ∈ {x1, x2, 2x1}
only the followers adopt the innovation x2; and finally,
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• CU be the state where, given any initial value of local asymmetry,
everybody adopts the innovation x3.

The intra-distribution mobility transition matrix is now easily
derived:

t+ 1

t
IA1 IA2 FA LF1 LF2 CU

IA1 0 0 p (x1) 0 p (x2) p (x3)
IA2 0 0 0 p (x1) p (x2) p (x3)
FA 0 0 0 p (x1) p (x2) p (x3)
LF1 0 0 p (x1) 0 p (x2) p (x3)
LF2 0 0 0 p (x1) p (x2) p (x3)
CU p (x1) p (x2) 0 0 0 p (x3)

(17)

Proposition 6

The transition probability matrix (17) has a unique invariant dis-
tribution.

�

Discussion
The previous proposition implies that in the long term the industry will

be fluctuating between periods of Leapfrogging, Forging Ahead and Catching
up, with frequencies described by the probabilities of the invariant distribu-
tion. Once the parameters of the exogenous innovation process are specified,
one can study the effects of their changes both on the equilibrium distri-
bution and on the transition probability matrices. Moreover the ergodicity
of both: the local asymmetry and the intra-distribution mobility processes
reinforce the meaning of numerical simulations performed in Appendix 1.

6 Conclusions

In this paper we studied the transitions of a cross-section distribution of
product qualities.
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We have seen that every transition can be supported as a subgame per-
fect equilibrium, depending on the values of the relevant parameters of the
economy. These are: the pre-existing level of neighbours asymmetry, the size
of the innovation shock, transport costs, preferences for quality and adoption
costs.

The resulting local asymmetries refer to a geography composed by a se-
quence of spatially linked markets where all the firms have the same access
to the state of the art technology. In this framework Forging ahead, the
equilibrium where only the leaders adopt the new technology, stops after the
level of cumulated asymmetry has reached a given threshold. Leapfrogging,
the equilibrium with leadership reversal, on the contrary, can go on forever.

Catching up, when global adoption takes place, which would not occur
under pure, undifferentiated, Bertrand competition, stops being an equilib-
rium when transport costs, expressing the degree of horizontal differentiation,
fall below adoption costs.

We then analised the effects of economic integration on the evolution
of regional asymmetries. Forging ahead becomes more likely with higher
integration while Catching up becomes more difficult. The effects of inte-
gration on Persistent asymmetry and Leapfrogging depend on the amount of
preexisting asymmetry: for intermediate initial asymmetry levels economic
integration helps maintaining it, for lower levels it increases the chances of
Leapfrogging.

By assuming an exogenous discrete probability distribution describing
the evolution of the state of the art technology, we derived the transition
probability matrices describing both the evolution of the local asymmetries
and intra-distribution mobility.

Having proved that such matrices have a unique invariant distribution,
provides a description of a long term stochastic equilibrium characterized by
intra-distribution mobility.
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7 Appendices

7.1 Appendix 1

In this Appendix we display the results derived from numerical simulations23

of the process generating the sequence of local asymmetries: {dt}. The
innovation process follows a uniform distribution on a bounded interval, the
size of which is specified in the different simulations 24.

We start by studying statistics of the frequency distribution of local asym-
metries, dt, and analyse the effects of some relevant parameter changes.

We start from a base case with the following values of the parameters:
transport costs, t = 4,
adoption costs, q = 3,
consumers’ preference for quality, v = 2,
the innovation shock is uniformly distributed on the interval:

x ∈ X = [0, 6]

In this case more than 70% of the times local asymmetries disappear.
The following table gives: mean, standard deviation and maximum value of
the local asymmetries for this base case.

mean(dt) 0.54
std (dt) 0.99
max (dt) 2.99

Next we consider the effects of lowering the value of the consumers’ preference
for quality, v, while maintaining the other parameters unchanged. Let:

t = 4, q = 3, v = 1,

and
x ∈ X = [0, 6]

An increase in the preference for quality, v, leads to higher local asymme-
tries. Under these parametric conditions we observe local asymmetries equal

23Numerical simulations have been performed with Simulink, a simulation package of
Matlab.

24We allowed the equilibrium of persistent asymmetry, i.e., we did not assume the lower
bound introduced before for analytical convenience.
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to zero in less than 2% of the simulation runs. The following table gives
again mean, standard deviation and maximum value of the local asymme-
tries, reflecting the increment in local asymmetries dt.

mean (dt) 3.77
std (dt) 1.64
max (dt) 5.99

Consider now the effects of higher adoption costs, q, on the frequency
distribution of local asymmetries, dt. Let:

t = 4, q = 4, v = 2,

and
x ∈ X = [0, 6] .

Higher local asymmetries are now much more frequent than before. This
is reflected in the mean of local asymmetries given in the following table
together with the standard deviation and maximum value:

mean(dt) 3.95
std (dt) 1.48
max (dt) 5.99

Finally we consider the effects of an higher support for the innovation
shock on the distribution of local asymmetries, for the case in which adoption
and transport costs were equal to transport costs. Let:

t = 4, q = 4, v = 2,

and
x ∈ X = [0, 12] .

Doubling the upper bound of the innovation shock leads to higher sym-
metry. The following table gives mean, standard deviation and maximum
value of the local asymmetries:

mean(dt) 1.31
std (dt) 2.05
max (dt) 5.99

.
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7.2 Appendix 2

7.2.1 The transition probability function

In this appendix we study the existence and the asymptotic behavior of
the stochastic process of equilibrium sequences of neighbouring firms quality
asymmetries, generated by the interaction of the equilibrium correspondence
(12) and an exogenous Markov process on the innovation size.

Assumption 7.1

• The sequence {x∗t = n∗t−n∗t−1}∞t=0 of innovation shocks follows a Markov
process generated by a stationary transition probability: Q(x,A). Where
x ∈ X defined in (11) and A ∈ B (X) , the Borel σ−algebra on X.25

Assumption 7.2 (Equilibrium selection)

• We consider the selection of the equilibrium correspondence such that
if:

g (xt, dt−1) ∈ {xt, dt−1 + xt}
g (xt, dt−1) = dt−1 + xt.

is selected.

We are now ready to derive the transition probability function for the
endogenous state variable,

dt ∈ D =

[
0,
3t− 3

√
t2 − tq
v

]
.

Lemma A 1

For any dt ∈ D and B∈ B(D) the transition probability function
on dt is given by:

P (dt, B) = Q (xt, {xt+1 ∈ X : g (xt+1, dt) ∈ B}) (18)

25This means that for every x ∈ X and every A ∈ B (X) the value of the transition
probability Q(x, A) ∈ [0, 1] gives the probability that the innovation shock x∗

t+1, belongs to
the set A at date t+1 if its value at date t is x∗

t . By fixing x ∈ X, the transition probability
function, Q (x, .) defines a probability measure on B (X) while given A ∈ B (X) , Q (., A)
defines a measurable function of X into [0, 1].
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where g is the equilibrium selection and Q (xt, A) is the transition prob-
ability function for the exogenous innovation shock. The sequence of period
equilibrium asymmetries in the industry

{dt, t ≥ 0}

follows a Markov process generated by the transition probability function
(18) .

7.2.2 Asymptotic behaviour

In this section we study the asymptotic behaviour of the process generated
by the transition probability function (18) . The questions we want to answer
are:

• will the limit of the iteration of the transition probability function, start-
ing from any initial distribution over the sate space D, settle down to a
fixed point, invariant probability distribution, over the same state space
?

• will this limit be unique? and

• at which rate will the process converge to such a limit if it exists?

To study the period transitions over the set of possible local asymmetries
we need to define the following operator:

Definition

For any probability measure λ defined on (D,B (D)) , define T ∗λ
by

(T ∗λ) (A) =

∫
P (dt, A)λ (ddt) , ∀A ∈ B (D)

T ∗λ is a mapping from the space of probability measures on (D,B (D))
into itself and represents the probability that the equilibrium asymmetry,
dt+1, will be in a set A, if the current equilibrium asymmetry , dt, is drawn
accordingly to the probability measure λ.

In the following we will focus on the convergence26 of the sequence of
probability measures over the state variable induced by the iteration of T ∗λ.

26We are looking at Strong Convergence, formally we have that:
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Proposition A1

Given a sequence {x∗t = n∗t −n∗t−1}∞t=0 of innovation shocks which
follows a Markov process generated by a stationary, regular tran-
sition probability: Q (x,A), where

x ∈ X =

[
3
√
t (q + t)− 3t

v
,∞

)

and A ∈ B (X) , the Borel σ−algebra on X, if q ≤ t, and λ0 is
an initial probability distribution on

d0 ∈
[
0,
3t

v

)

there exists a unique invariant probability measure, λ∗,on

D =

[
0,
3t− 3

√
t2 − tq
v

]

such that the sequence of probability measures λt+1 = T
∗ (λt) gen-

erated by the operator T ∗ associated to the transition probability
function (18) , strongly converges to λ∗ at a geometric rate inde-
pendently of the initial probability measure λ0.

�

Proof of Proposition A1
The proof is in two steps: first we state a necessary and sufficient con-

dition on Markov transition functions to generate a process which converges

The sequence of probability measures {λt} converges in the total variation norm to the
probability measure λ if

lim
t→∞

‖λt − λ‖ = 0

Let (D, B (D)) be the measurable space for the process on local asymmetries and let
{λt} and λ be measures on (D, B (D)) . Then we say that {λt} converges strongly to λ if

lim
t→∞

∫
fdλt =

∫
fdλ, ∀f ∈ B (D, B (D))

for all f such that ‖f‖ = supd∈D |f (d)| ≤ 1
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strongly, second we show that the transition probability function (18) satisfies
this condition.
�

Definition(condition M) 27

There exists ε > 0 and an integer N ≥ 1 such that for any A ∈
B (D) , either PN (d, A) ≥ ε, or PN (d, Ac) ≥ ε, all d ∈ B (D) .
Lemma A.2

If q ≤ t, and Q(xt, .), the transition probability for the shock xt+1,
is a regular Markov transition probability, the transition probabil-
ity function (18) satisfies condition M .

�

Proof
Consider the point in the state space where dt+1 = {0}. The transition

probability function gives the probability of reaching {0} from a given dt

as the probability of the set defined as the anti-image of the equilibrium
selection when it takes value {0} :

P 1 (dt, {0}) = Q
(
xt, {xt+1 ∈ X : g (xt+1, dt) = {0}}) = µ

(
g−1

dt
({0})

))
from (12) we know that if q ≤ t, for any given dt, the probability of having
the shock driving the system to the catching up region, where dt+1 = 0, is
always positive, greater than ε.

Furthermore ∀A ∈ B (D) either A ⊃ {0} or Ac ⊃ {0} which implies that
either PN (d, A) ≥ ε, or PN (d, Ac) ≥ ε, all d ∈ B (D).

Having proved that (18) satisfies condition M , we refer to the theorem
proving that this condition is a necessary and sufficient for the strong con-
vergence of a Markov process28, i.e. for the existence of a unique invariant
probability distribution generated by the iteration of the transition proba-
bility function defined in (18) .
�

27See Stokey Lucas[16, pages 348-349].
28See Stokey Lucas [16, pages 349-350]. They show that if condition M holds the adjoint

operator T ∗ associated with the transition function P, is a contraction mapping on the
space of probability measures in (D, B (D)) and that the converse is also true.
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Corollary A.1

The time average of the realization of the process of quality asym-
metries, generated by the transition function (18) converges to the
invariant distribution of the process

lim
N→∞

1

N

N∑
n=1

T ∗nλ0 = λ
∗,

∀λ0 ∈ Λ (D,B (D))

�

Proof of Corollary A.1
Stokey and Lucas [16] refer to Neveu [12, sec.V.3] for the Proof of the

Corollary.
�
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7.3 Appendix 3

Proofs
Proof of Lemma 1
From (1) we can see that firm i best reply on its left side market to pi+1,r

will lie in the interval:

pi,l ∈ [pi+1,r + vdi,l − t, pi+1,r + vdi,l + t] .

This is the case because a price higher than the upper bound, pi+1,r +
vdi,l+ t, induces firms’ i demand to zero. Similarly firm i captures the entire
market at a price equal to: pi+1,r + vdi,l − t which defines the lower bound.
By the same reasoning, firm i+ 1 chooses pi+1,r in the interval:

pi+1,r ∈ [pi,l − vdi,l − t, pi,l − vdi,l + t]

The problem faced by each firm in the second stage of the game is:

maxpi,l, pi,r

{
pi,l

1

2t
[vdi,l + t+ pi+1,r − pi,l] +

+pi,r
1

2t
[vdi,r + t+ pi−1,l − pi,r]

} (19)

subject to:

pi,l ∈ [pi+1,r + vdi,l − t, pi+1,r + vdi,l + t]
and

pi,r ∈ [pi−1,l + vdi,r − t, pi−1,l + vdi,r + t]

The Kuhn-Tucker, necessary and sufficient conditions for a solution of
(19) give us the best reply function for firm i on its left market in which it
competes against firm i+ 1:

pi,l (pi+1,r) =




0 if pi+1,r ≤ −vdi,l − t
1

2
(vdi,l + t+ pi+1,r ) if pi+1,r ∈ (−vdi,l − t ,− vdi,l + 3t)

pi+1,r + vdi,l − t if pi+1,r ≥ −vdi,l + 3t
(20)

In a similar way we obtain the reaction function for firm i+1 on its right
market.
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pi+1,r (pi,l) =




0 if pi,l ≤ vdi,l − t
1

2
(−vdi,l + t+ pi+1,r ) if pi,l ∈ (vdi,l − t,+vdi,l + 3t )

pi,l − vdi,l − t if pi,l ≥ vdi,l + 3t
(21)

From (20) and (21) we obtain the equilibrium prices on the market (
between firms i and i+1) as the solution of the system of reaction functions
of two adjacent firms.
�
Proof of Corollary 1
Equilibrium profits are obtained by substitution.
�

Proof of Propositions 1, 2, 3 and 4.
In the first stage of the game each firm chooses a best reply to the adoption

decisions of its neighbours.
These will depend on whether the firm is originally a low or a high quality

one. In the next Lemma B1, that we use to prove Propositions 1, 2, 3 and
4, we show the parameter regions for which different adoption decisions are
best replies to their local environment.

Let us define:

• ω∗
i,l (ωi±1,h = 0) , as the best reply for a low quality firm i, surrounded by

two high quality firms, which decided not to adopt the new technology,

• ω∗
i,l (ωi±1,h = 1) ,as the best reply for a low quality firm i, surrounded

by two high quality firms, which decided to adopt the new technology,

• ω∗
i,h (ωi±1,l = 0) ,as the best reply for a high quality firm i, surrounded

by two low quality firms, which decided not to adopt the new technol-
ogy, and finally

• ω∗
i,h (ωi±1,l = 1) ,as the best reply for a high quality firm i, surrounded

by two low quality firms, which decided to adopt the new technology.

Then:

LemmaB1
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Let assumptions (3.1) and (3.2) hold, then:

ω∗
i,l (ωi±1,h = 0) (22)

=


 0 x∗ <

√
9qt+ (3t− dv)2 − 3t

v
and 0 ≤ d < 3t− 3

√
t2 − tq
v

1 otherwise

ω∗
i,l (ωi±1,h = 1) (23)

=


 0 x∗ <

3t− 3
√
t2 − tq
v

− d and d <
3t− 3

√
t2 − tq
v

1 otherwise

ω∗
i,h (ωi±1,l = 0) (24)

=




0 x∗ <

√
9qt+ (3t+ dv)2 − 3t

v
− d and 0 ≤ d ≤ −3t+ 3

√
4t2 − tq
v

or

0 x∗ <
vd2

18t
+
3t

2v
− 2

3
d+

q

2v
and

−3t+ 3
√
4t2 − tq
v

< d <
3t

v
1 otherwise

ω∗
i,h (ωi±1,l = 1)=


 0 x∗ <

3t− 3
√
t2 − tq
v

1 otherwise
(25)

�
Proof of Lemma B1

• To prove (22) we need to look at the two following cases:

– For x∗ <
3t

v
, from Corollary 1 the follower does not adopt, given

that the leader does not adopt if and only if:[
−v
3
d+ t

]2

t
>

[v
3
x∗ + t

]2

t
− q. (26)
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or:

x∗ <

√
9qt+ (3t− dv)2 − 3t

v
(27)

– For x∗ ≥ 3t

v
the follower, by adopting when the leader is not

adopting, will capture the entire market therefore,from Corollary
1 we know that it does not adopt if and only if:[

−v
3
d+ t

]2

t
> 2 [vx∗ − t]− q (28)

or

x∗ <
vd2

18t
+
3t

2v
− d
3
+
q

2v
. (29)

Condition (27) is binding, i.e.√
9qt+ (3t− dv)2 − 3t

v
≤ 3t

v
(30)

for any d ≥ 0

in facts (30) holds if and only if:

d >
3t− 3

√
4t2 − tq
v

but given that q ≤ t we have that

3t− 3
√
4t2 − tq
v

< 0

Furthermore √
9qt+ (3t− dv)2 − 3t

v
≥ 0

if and only if

d <
3t− 3

√
t2 − tq
v

.
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Condition (29) is never binding, in facts:

vd2

18t
+
3t

2v
− d
3
+
q

2v
≥ 3t

v

if and only if:

d <
3t− 3

√
4t2 − tq
v

< 0

which proves (22) .

�

• To prove (23) we look at the incentives to adoption for the follower
when the leader is adopting.

– For x∗ <
3t

v
− d , the follower does not adopt if and only if:

[
−v
3
(d+ x∗) + t

]2

t
> t− q (31)

or

x∗ <
3t− 3

√
t2 − tq
v

− d. (32)

– For x∗ ≥ 3t

v
− d the follower will not adopt if and only if

0 > t− q

which is never binding under assumptions (3.1) and (3.2) .

�

• To prove (24) we look at the incentives to adoption for the leader when
the follower is not adopting:
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– For x∗ <
3t

v
− d, we know from Corollary 1 that the leader does

not adopt if and only if[v
3
d+ t

]2

t
>

[v
3
(x∗ + d) + t

]2

t
− q (33)

or

x∗ <

√
9qt+ (3t+ dv)2 − 3t

v
− d. (34)

and condition (34) is binding, i.e.√
9qt+ (3t+ dv)2 − 3t

v
− d < 3t

v
− d,

for d <
−3t+ 3

√
4t2 − tq
v

.

– For x∗ ≥ 3t

v
−d the leader, by adopting when the follower does not,

monopolizes the market because the quality difference becomes:

x∗+ d ≥ 3t

v
. We know from Corollary 1 that he does not adopt if

and only if: [v
3
d+ t

]2

t
> 2 [v (x∗ + d)− t]− q (35)

or

x∗ <
vd2

18t
+
3t

2v
− 2

3
d+

q

2v
(36)

and condition (36) is binding, i.e.

vd2

18t
+
3t

2v
− 2

3
d+

q

2v
≥ 3t

v
− d

for d ≥ −3t+ 3
√
4t2 − tq
v

.

�
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• Finally to prove (25) we look at the incentives to adoption for the leader
when the follower is adopting, we need to consider two cases:

– For x∗ <
3t

v
, we know from Corollary 1 that the leader does not

adopt if and only if: [
−v
3
x∗ + t

]2

t
> t− q (37)

or

x∗ <
3t− 3

√
t2 − tq
v

(38)

– For x∗ ≥ 3t

v
by non adopting the leader will lose the entire market,

so he does not adopt if and only if:

0 > t− q

Clearly, given assumptions (3.1) , and (3.2) (38) gives us the condition
for adoption to be the best reply for the leader when the follower adopts.

�

Propositions 1,2,3 and 4 are just proved by combining the equilibrium
regions of their best replies characterized in Lemma B1.
Proof of Proposition 5
It is easy to see that the states of the process are all part of a communi-

cating class and this is a necessary and sufficient condition for existence and
uniqueness of the invariant distribution, given by the normalized eigenvector
associated to its first eigenvalue.
�
Proof of Proposition 6
As before it is easy to see that the states of the process are all part of a

communicating class and this is a necessary and sufficient condition for exis-
tence and uniqueness of the invariant distribution, given by the normalized
eigenvector associated to its first eigenvalue.
�
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