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Abstract

We consider a multi-awards generalization of King Solomon’s problem: k

identical and indivisible awards should be distributed among n agents, k < n,

with the top k valuation agents receiving the awards. Agents have complete

information about each others’ valuations. Glazer and Ma (1989) analyzed

the single-prize (i.e., k = 1) version of this problem. We show that in the

‘more than two agents’ problem the mechanism of Glazer and Ma admits

inefficient equilibria and thus fails to solve Solomon’s problem. So, first we

modify their mechanism to rule out inefficient equilibria and implement effi-

cient prize allocation in subgame perfect equilibrium when there are at least

three agents. Then it is shown that a simple repeated application of our

modified mechanism will distribute k (> 1) prizes efficiently in subgame per-

fect equilibria without any monetary transfers in equilibrium. Finally, in the

multi-awards case we relax the complete information assumption and achieve

implementation of efficient allocation by iterative elimination of weakly dom-

inated strategies, using a generalization of Olszewski’s (2003) mechanism.
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1 Introduction

Glazer and Ma (1989) had formally addressed King Solomon’s dilemma – the prob-

lem of giving a baby to the baby’s true mother with two women both claiming

to be the true mother. This problem, as Glazer and Ma had noted, is generically

equivalent to awarding an indivisible prize to one of several agents who valued the

prize most. While the agents knew each others’ valuations, the planner (or King

Solomon) had no such information. Glazer and Ma constructed extensive form

mechanisms implementing the award rule in subgame perfect equilibrium (SPE)

without any monetary transfers in equilibrium.1

More recently Perry and Reny (1999) have relaxed the complete information

assumption of Glazer and Ma: in the case of two contenders as in King Solomon’s

problem, each agent knows her own value and each agent knows which of them has

the higher value; however, neither agent knows the precise value of the other agent.2

The authors suggest a variant of the second-price sealed-bid all-pay auction that

implements the efficient allocation in iteratively undominated strategies. Latest,

Olszewski (2003) has constructed a ‘simpler’ mechanism that requires only two

rounds of elimination (of weakly dominated strategies) as opposed to Perry and

Reny’s (1999) four rounds of elimination.

Our primary objective is to generalize King Solomon’s problem in a different

direction, assuming complete information. We consider the problem of distributing

k identical and indivisible prizes among n agents where k < n.3 The objective of

the planner is to give the prizes (in equilibrium) to the top k valuation agents at

zero monetary costs to the planner and the agents.4 The top k valuation agents

need not be unique: corresponding to a decreasing order valuations u(1) ≥ u(2) ≥
. . . ≥ u(k) ≥ . . . ≥ u(n), there can be more than one ordering of the agent indexes

1Moore (1992) suggested a mechanism implementing Solomon’s choice function in undominated
Nash equilibrium, but criticized the mechanism for its use of an ‘integer game’ construction.
He also described an extensive form mechanism, similar to Glazer and Ma’s construction, for
implementation in SPE.

2In the case of more than two contenders, also considered by Perry and Reny, each agent knows
her own value and the identity of the highest value agent, and the highest value agent knows that
her value is strictly higher than all other agents’ values. In fact, only the highest value agent
might know that she has the highest value.

3k = 1 is the problem considered by Glazer and Ma.
4Bag (1996) considered a related prize distribution problem – the problem of dividing a given

amount of divisible resources among n agents. In the current paper, the prizes are indivisible.
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if there are ties in some of the valuations. Thus, the agents who receive the prizes

must have valuations among the top k ranks in at least one of the corresponding

ordering of agent indexes.

To generalize the result of Glazer and Ma (1989) in the case of multiple awards

requires a further analysis of their single-prize mechanism for three or more agents;

they formally prove the implementation result for the two-agents problem only

and in the appendix they outline a more elaborate mechanism claiming that it

implements efficient allocations when there are at least three agents. It turns out

that this latter claim of Glazer and Ma is not always true. There are two problems

with their mechanism, one trivial and a second problem more substantial due to

ties in agent valuations. As a result, Glazer–Ma mechanism results in multiple

equilibria involving inefficient allocations of the prize. So, first we modify Glazer–

Ma mechanism to complete the task of solving King Solomon’s problem for a single

prize and arbitrary number of agents (Theorem 1), then generalize the modified

mechanism for the multiple awards problem (Theorem 2).

We also adopt the informational generalizations of Perry and Reny and Ol-

szewski in our multiple awards case. Using a generalized version of Olszewski’s

(2003) mechanism efficient prize allocation is implemented when no two agents’

valuations are ever tied, by iterative elimination of weakly dominated strategies.

Our single- and multi-prize mechanisms for the complete information case contrast

with our multi-prize generalization of Olszewski’s incomplete information mecha-

nism. First, the solution concepts are different (SPE vs. iterative deletion). More-

over, in the first two mechanisms because agents move sequentially (and thus the

game has perfect information) backwards induction makes the equilibrium solution

(SPE) especially attractive, while there is no such nice feature in the incomplete in-

formation version as agents move simultaneously. Finally, the first two mechanisms

have the advantage of dealing with ties in agent valuations, whereas the incomplete

information mechanism does not deal with ties.5

Our generalized formulation of King Solomon’s problem will have the following

applications. The prizes can be a fixed number of research grants of equal worth to

be distributed based on the applicants’ productivity unknown to the grant author-

ity. A local government may want to award a limited number of commercial licenses

to enterprizing individuals in an attempt to give their careers a start; or it may

5In fact, when the valuations can be arbitrarily close, the mechanism suggested by Olszewski
and our generalization involve randomization.
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decide to distribute fixed grants for multipurpose development projects (children’s

park, schools, libraries, adult education etc.) among various councils who know

each others’ overall benefits that might result from the grants but which might be

unknown to the grant awarding committee.

In the next two sections, we focus on the complete information version of King

Solomon’s problem and its multi-awards generalization. In section 4, we relax the

informational restriction. The Appendix contains an equilibrium existence result.

2 Mechanisms and Results: Complete Informa-

tion

The planner wants to distribute a total of k ≥ 1 identical, indivisible prizes among

a set of agents, N , with cardinality n. Agents have complete information about

each others’ valuations. The planner does not know the agents’ valuations. Each

agent `’s valuation, u`, is from the interval [0, d] with at least one agent drawing a

positive valuation.6 The (net) utility from the award to agent ` is given by u` − χ

(or simply −χ if no award is given) where χ is the agent’s monetary payment to

the planner. Our implementation solution concept is subgame perfect equilibrium

(SPE), same as in Glazer and Ma (1989).

Initially, let us consider the mechanism proposed by Glazer and Ma for k = 1

and n > 2 (the single-prize mechanism for more than two contenders).

Glazer–Ma Mechanism. Fix any ordering of the agents and index the chosen order

as 1, 2, . . . , n, which is common knowledge.

Stage 0 : Each agent l, l = 2, 3, . . . , n, announces a real number εl from the interval

[0, d]. Let ε = min{εl, l = 2, . . . , n}. If ε = 0, the prize is given to agent 1.

Otherwise, proceed to Stage i, where i = 1.

Stage i: Agent i says the prize will be “mine” or “not mine.” If she says “not

mine,” then proceed to Stage i + 1, i = 1, . . . , n− 2. If she says “mine,” then

proceed to Stage i.i+ r, where r = 1. If at Stage n− 1, agent n− 1 says “not

mine,” then agent n gets the prize.

6In the extreme case of all agents having zero valuations for the prize, our mechanisms will
trivially implement efficient allocations both in the single-prize and multiple awards problem.
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Stage i.i + r: Agent i + r says “challenge” or “not challenge.” If agent i + r says

“not challenge” and i + r + 1 ≤ n, then proceed to Stage i.i + r + 1; if agent

i + r says “not challenge” and i + r = n, then agent i gets the prize. If agent

i+ r says “challenge,” agent i and agent i+ r each pays ε. Then they proceed

to game γ(i, i + r).

γ(i, i + r): Agent i bids ûi from [0, d] and pays ûi. Then agent i + r bids ûi+r

from [0, d] and pays ûi+r. The agent with the higher bid gets the prize. If

there is a tie, agent i + r gets the prize. ‖

There are two difficulties with Glazer–Ma mechanism. First, if at least one

agent (barring agent 1) announces zero at Stage 0 so that minl 6=1 εl = 0, positive

announcements by individual agents become inconsequential as the prize is given to

agent 1 without going through the challenge/no-challenge route. This can give rise

to inefficient equilibria with the prize not being awarded to the highest valuation

agent, as the following example shows.

Example 1. Suppose there are only three agents with ordering 1,2,3, valuations

v1 < v2 < v3 and a single prize to be allocated. Then announcements ε2 = ε3 = 0

will be an equilibrium, given any SPE in the continuation game for minl 6=1 εl > 0,

so that the prize goes to agent 1 who has the lowest valuation.

Second, in the case of ties in agent valuations, the agents in Glazer–Ma mechanism

can get stuck with all announcing the same high ‘epsilon’ in equilibrium where

the prize is inefficiently awarded, if lowering of ‘epsilon’ by one of the agents with

a higher valuation (than the inefficient winner’s valuation) triggers a subgame in

which some other agent gets to win the prize, as in the following example.

Example 2. Consider four agents with ordering 1,2,3,4, valuations v2 < v1 <

v3 = v4 and a single prize to be allocated. Suppose ε2 = ε3 = ε4 (= ε) ≥ v4 so

that minl 6=1 εl = ε, and agent 1 claims the prize. Clearly agents 2,3, or 4 will not

challenge. Now suppose agent 3 deviates to announce some ε̂3, 0 < ε̂3 < v4; instead

of minl 6=1 εl, now ε̂3 is the required initial payment for disagreement. Following agent

3’s deviation there will be two equilibria (by case (3) in Glazer and Ma’s proof of

Theorem 2), one of which will result in agent 4 receiving the prize and the other

resulting in agent 3 receiving the prize. Thus, depending on which continuation

equilibrium is expected to be played, agent 3 might not have an incentive to deviate

from ε. Similarly, agent 4 may not have an incentive to deviate from ε either. This

will sustain ε announcements in an SPE that results in the prize going to agent 1.
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Both examples 1 and 2 would hold whether agents announce ‘epsilon’ simulta-

neously or sequentially.

The difficulties highlighted in the two examples could not occur in the two-agents

problem analyzed by Glazer and Ma, but become relevant when there are at least

three agents. The first difficulty, a minor one, requires only a little modification

in the mechanism. The second difficulty is more serious: multiple equilibria in

continuation games due to ties among best two (or more) agents’ valuations leave

little incentives for any agent to deviate from an inefficient equilibrium. Some

careful modifications to Glazer–Ma mechanism are required mainly to break this

kind of multiplicity.

Our modification of Glazer–Ma mechanism is as follows.

The Mechanism Γ. Fix any ordering of the agents and index the chosen order as

1, 2, . . . , n, which is common knowledge.

Stage 0 : Agents 1, 2, . . . , n sequentially announce real numbers ε1, ε2, . . . , εn from

the interval [0, d]. Let

ε =

 min`{ε`|ε` > 0},
0,

if ε` > 0 for some ` ∈ {1, 2, . . . , n}
otherwise.

If ε = 0, give the prize to agent 1. Otherwise, define

ε̃` =

 ε`,

d,

if ε` > 0

if ε` = 0,

and proceed to Stage 1.

For any 1 ≤ i < n define the following:

Stage i: Agent i says the prize will be “mine” or “not mine.” If she says “not

mine,” then proceed to Stage i + 1, i = 1, . . . , n− 2. If she says “mine,” then

proceed to Stage i.i + r, where r = 1. If at Stage n− 1 agent n− 1 says “not

mine,” then agent n gets the prize.

Stage i.i + r: Agent i + r says “challenge” or “not challenge.” If agent i + r says

“not challenge” and i + r < n, then proceed to Stage i.i + r + 1; if i + r says

“not challenge” and i + r = n, then agent i gets the prize. If agent i + r says
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“challenge,” agent i and agent i + r each pays ε to the planner. Then they

proceed to play the disagreement game γ(i, i + r).

γ(i, i + r): Agent i bids ûi ∈ [0, d] and pays ûi to the planner. Then agent

i + r bids ûi+r ∈ [0, d] and pays ûi+r to the planner. The agent with the

higher bid gets the prize; if there is a tie, agent i + r gets the prize. Finally,

if agent i (agent i + r) is the winner, she pays ε̃i (resp. ε̃i+r) to the planner

and the loser pays nothing.7 ‖

The key points of difference between Glazer–Ma mechanism and our modifica-

tion can now be summarized as follows:

• in our mechanism agents announce ‘epsilon’ sequentially, whereas in Glazer

and Ma the nature of announcements is not clearly specified;8

• our definition of ε differs from that of Glazer and Ma;

• in the event of disagreement our mechanism requires the winner to pay addi-

tionally an ε̃` (on top of ε), unlike in Glazer and Ma.

The mechanism for multiple prizes is a simple extension of the single-award

mechanism and outlined next.

The Mechanism Γk. k identical prizes are distributed by at most k-rounds applica-

tion of the mechanism Γ. At the beginning, draw an agent ordering once-for-all.

Round 1. Allocate the first unit of the prizes applying the mechanism Γ. The

recipient of the prize, the challenger if there is a claim and a challenge, and

any agent who does not claim the prize when it is her turn to claim – all

leave(s) the game at the end of the first round. Proceed to the next round.

Round 2. Allocate the second unit of the prizes once again applying the mechanism

Γ for the order, inherited from the first round, with respect to the agents who

survived the first round. Similar to round 1, the recipient of the second prize,

the challenger if there is a claim and a challenge, and any agent not claiming

7The assumption that agents’ valuations are bounded is not essential in the construction of
the mechanism Γ. The only role of the upper bound, d, is in defining ε̃` when ε` = 0. If d is
unbounded, keep the mechanism Γ same as above except that whenever ε` = 0 agent ` is not
allowed to proceed beyond Stage 0 and the bids in the game, γ(i, i + r), can be any non-negative
real number.

8Since they do not formally analyze the case of many agents, the ambiguity about the nature
of announcements remained.
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the prize on her turn – all leave(s) the game at the end of the second round.

Proceed to the next round.

• • •

Follow this sequential-rounds procedure until all k units have been distributed. If

in the process the number of remaining agents becomes equal to the number

prizes left, give each agent a prize. ‖

The following definitions are in the context of any subgame at the beginning of

a round with τ more prizes left, 1 ≤ τ ≤ k.

Definition 1 An agent is deserving if she merits a place among top τ ranks for

at least one ordering of the remaining agents’ indexes arranged in a decreasing order

of valuations.

An agent is surely deserving if she merits a place among top τ ranks for all

ordering of the remaining agents’ indexes arranged in a decreasing order of valua-

tions.

An agent is marginal if she is deserving but not surely deserving.

An agent is undeserving if she is not deserving.

Note that if m = τ where m is the number of deserving agents, then all the deserving

agents are also surely deserving.

Theorem 1 (Single-prize implementation) Suppose there are n ≥ 2 number of

contenders for a single prize. In every SPE of the mechanism Γ, the award goes

to the deserving agent placed ‘last’ in the agent order (‘last’ among all deserving

agents). Moreover, no agent pays any monetary transfers to the planner.

In the case of multiple awards problem, ΓA,τ denotes any subgame starting in

a round k − τ + 1 with remaining agents A ⊂ N and τ prizes to be distributed.9

Let ∫τ (0 ≤ ∫τ ≤ τ) be the number of surely deserving agents in this subgame.

Theorem 2 (Multiple awards implementation) Consider SPE. In any sub-

game ΓA,τ for any A and 1 ≤ τ ≤ k, τ prizes are distributed as follows:

Each surely deserving agent will receive a prize.

9Γk is simply a subgame ΓA,τ , where A the set of all n agents and τ = k.
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If more than τ agents have positive valuations then any remaining prizes will

be received by τ − ∫τ marginal agents strictly in the reverse order from the last; if

less than τ agents have positive valuations and thus the marginal agents have zero

valuations, the remaining prizes will be received by some τ − ∫τ marginal agents.10

Finally, no agent pays any monetary transfers.

In both Theorems 1 and 2, the recipient(s) of the prize(s) is (are) uniquely

determined by the order of agents.11 This implies, if the planner has some strict

preference ordering over who should receive the prize(s) when there are ties in

agent valuations, he would like to place the agents in an order exactly opposite to

his preferred ranking.

Theorems 1 and 2 may hold vacuously. In the Appendix we outline strategies

to ensure that an equilibrium exists.

3 Proofs of Theorems 1 and 2

For any strategy profile and any round, suppose ε` is announced in that round by

agent `. Denote agent `’s virtual valuation in that round (which is her net utility

in the challenge game if she wins the prize) by

ϑ` = u` − ε̃`.

By definition, ϑ` can be negative. Note that virtual valuation does not take into

account the initial ε > 0 that an agent will incur for entering into the challenge

game.

Lemma 1 Consider any SPE σ of Γk. For any subgame of Γk, the continuation

strategy profile given by σ is such that a claim will be challenged by an agent in any

round only if her virtual valuation in that round is positive and weakly exceeds the

claimant’s virtual valuation in that round.

Proof. The challenger’s virtual valuation must be positive for her to be willing to

pay a positive ε for entering into the challenge game.

10For any τ−∫τ marginal agents, there will be at least one SPE such that these marginal agents
each receive a prize.

11Except in the special situation of the multi-awards problem where less than k agents draw
positive valuations.
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To show the second result, suppose not. Suppose there is an equilibrium such

that in the j-th round subgame, agent i with virtual valuation ϑi claims a prize and

is challenged by some agent i + r whose virtual valuation is ϑi+r, and ϑi+r < ϑi.

As per mechanism rule, both i and i + r pay ε > 0 each and proceed to play

the game γ(i, i + r). Now, by a similar argument as in Glazer and Ma (see case

(1) in the proof of their Theorem 2) the claimant i will bid ûi = ϑi+r and the

challenger i + r will bid ûi+r = 0, and the prize will go to claimant i. But then

agent i + r would have been better off not to challenge agent i and save ε > 0, a

contradiction. Q.E.D.

Lemma 2 Fix any SPE σ of Γk. Then there does not exist a subgame such that

the continuation strategies of σ prescribe a claim to be followed by a challenge.

Proof. Suppose not. Then there is some equilibrium σ of Γk such that it results

in agent i claiming a prize to be later challenged by agent i + r in some subgame.

Then by Lemma 1, in that round ϑi+r ≥ ϑi and moreover ϑi+r > 0. As agent i + r

challenges, both i and i + r pay ε > 0 each and proceed to play γ(i, i + r).

Suppose ϑi+r > ϑi. But then by a similar argument as in case (2) of Theorem

2 of Glazer and Ma, in the disagreement subgame the claimant i would bid ûi = 0,

the challenger i + r would bid ûi+r = 0, and the prize will go to the challenger.

But then agent i would have been better off not to claim the prize and instead save

ε > 0, a contradiction.

Suppose ϑi+r = ϑi. By a similar argument as in case (3) of Theorem 2 of Glazer

and Ma, agent i will receive a payoff of zero in the bidding game γ(i, i + r). So

agent i will not make a claim to be challenged by agent i + r and pay ε > 0, a

contradiction. Q.E.D.

Proof of Theorem 1. Consider any SPE strategy profile σ = (σ1, . . . , σn). Denote

the deserving agent placed ‘last’ (among all deserving agents) by index j. By the

assumption that at least one agent draws a positive valuation, uj > 0. First, we

claim that agent j will win the prize.

Suppose not, so that agent j’s equilibrium payoff is non-positive. Denote the

equilibrium announcements at Stage 0 by (ε`).

Let agent j deviate to another strategy σ′
j that is otherwise identical to the

equilibrium strategy σj except that:

(1) announce ε̂j such that
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(i) 0 < ε̂j < ε̃` ∀` < j,

(ii) ε̂j < uj − u` ∀` > j,12

(iii) 2ε̂j < uj;

(2) always challenge; and

(3) always claim.

Following agent j’s deviation to σ′
j, let ε̂ be the modified ε taking into account

any follow-up changes to ε`, ` > j. Clearly, 0 < ε̂ ≤ ε̂j. Next we check agent j’s

payoffs if she deviates, taking others’ strategies as given.

Since the mechanism Γ is same as Γ1, Lemma 2 rules out claim by any agent

` < j followed by challenge by another agent `′ < j. So if some agent ` claims

before agent j, by challenging agent j will win in the bidding game γ(`, j) because

ϑj = uj−ε̂j > u`−ε̃` = ϑ` (inequality follows from (1.i)) and case (2) of Theorem 2 of

Glazer and Ma would apply. Agent j’s overall payoff is then uj−ε̂j−ε̂ ≥ uj−2ε̂j > 0

(the last inequality follows from (1.iii)).

Next, check agent j’s payoff from claiming the prize (given that no agent ` < j

claims). For ` > j, condition (1.ii) implies uj − ε̂j > u` ≥ 0 so that j’s virtual

valuation is positive and exceeds the virtual valuation of every undeserving agent

to follow. Thus, if agent j is challenged, she will win in the bidding game γ(j, `) (by

case (1), Theorem 2, Glazer and Ma) and her overall payoff will be uj− ε̂j− ε̂, which

is already shown to be positive; otherwise agent j receives the prize unchallenged

and gets a positive payoff.

Thus, by deviating agent j will always receive positive payoffs, contradicting

that she will not win the prize.

Finally, since by Lemma 2 there can be no disagreement in equilibrium, neither

agent j nor any other agent pays any monetary transfers to the planner. Q.E.D.

Proof of Theorem 2. Suppose in any final round subgame ΓÃ,1 for any Ã ⊂ N
with only one prize left to be distributed, at least one agent in Ã has a positive

valuation. By Theorem 1, in any equilibrium of ΓÃ,1 the deserving agent placed

‘last’ (among all deserving agents) will win the prize without paying any monetary

transfers.

12Clearly, uj − u` > 0.
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Next, in any subgame ΓA,τ for any A ⊂ N , denote by W(A, τ) the union of ∫τ
surely deserving agents and the ‘last’ τ − ∫τ marginal agents in the agent order.

Now assume the following hypothesis is true: Fix any 1 ≤ τ ≤ k − 1. In any

subgame ΓA,τ for any A ⊂ N , of whom at least τ agents have positive valuations,

every member of W(A, τ) will win a prize without paying any monetary transfers.

Then consider any subgame ΓA′,τ+1 for any A′ ⊂ N , of whom at least τ + 1

agents have positive valuations. We will argue that every member of W(A′, τ + 1)

will win a prize without paying any monetary transfers.

Suppose not. Since by Lemma 2 there can be no disagreement in equilibrium,

our contraposition implies that for some A′ ⊂ N and some subgame ΓA′,τ+1, some

agent f 6∈ W(A′, τ + 1) will win a prize. This, in turn, implies some agent ρ ∈
W(A′, τ + 1) is not going to win any prize in this subgame so that her payoff must

be non-positive in the subgame. Consider the following strategy σ′
ρ by agent ρ in

subgame ΓA′,τ+1:

• σ′
ρ is otherwise the same as her equilibrium strategy if the number of prizes left

is less than or equal to τ ; and

• in the subgame with τ + 1 prizes, agent ρ’s strategy, σ′
ρ, is again otherwise the

same as her equilibrium strategy except that:

(1) at Stage 0 of the first round of the subgame agent ρ announces ε̂ρ such that

(i) 0 < ε̂ρ < ε̃` ∀` < ρ,

(ii) ε̂ρ < uρ − u` ∀` > ρ, ` 6∈ W(A′, τ + 1),13

(iii) 2ε̂ρ < uρ;
14

(2) challenge only claims by agents whose virtual valuations are strictly less than

her new virtual valuation uρ − ε̂ρ;

(3) always claim.

We now check agent ρ’s payoffs when σ′
ρ is chosen in the subgame.

No agent ` < ρ with virtual valuations below that of agent ρ will claim in the

initial round: agent ρ will challenge any such claim and win to receive a positive

payoff, by condition (1.iii). Given condition (1.i), any agent ` < ρ who would

13Such an ` must be undeserving so that uρ − u` > 0.
14uρ > 0 by the assumption that at least τ + 1 agents have positive valuations.
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possibly claim is one with a higher valuation than that of agent ρ,15 implying that

` is also surely deserving and therefore a member of W(A′, τ + 1). Since agent ρ

is not going to challenge any such claim, she will proceed to some subgame ΓA,τ

where A ⊂ A′ \ ` and be a member of W(A, τ). But then by our hypothesis agent

ρ will win a prize without paying any monetary transfers.

No agent ` > ρ will challenge ρ’s claim in the first round of the subgame. Why?

If ` 6∈ W(A′, τ +1) then it must be that uρ > u`, which, by condition (1.ii), implies

that agent ` will lose in the bidding game to follow (ϑρ > ϑ`). Therefore agent

` will not challenge. On the other hand, if ` ∈ W(A′, τ + 1) then agent ` knows

that by not challenging agent ρ and thus proceeding to any subgame ΓA,τ , where

A ⊂ A′ \ ρ, she will be a member of W(A, τ) and therefore receive a prize without

paying any monetary transfers (by hypothesis). So, by not challenging, agent `

additionally saves ε > 0.

Thus, by deviating agent ρ will receive positive payoffs, contradicting that f

will win a prize.

Our hypothesis is true for τ = 1 and any Ã (with at least one of them having

a positive valuation), so use induction to conclude that in any game ΓA,τ with at

least τ agents having positive valuations, every member of W(A, τ), i.e. ∫τ surely

deserving agents and τ −∫τ marginal agents in the reverse order from the last, will

win a prize without paying any monetary transfers. Since by Lemma 2 there can be

no disagreement in equilibrium, agents outside W(A, τ) do not pay any monetary

transfers. Thus, Theorem 2 is established in the special case when at least τ agents

have positive valuations.

Next, consider for any A and any τ the case when less than τ agents have

positive valuations. These agents are surely deserving, while rest of the agents who

all have zero valuations are marginal agents. Now each surely deserving agent will

win a prize by applying the same argument as in the previous case, by defining

W(A, τ) (for all τ) to consist of only the surely deserving agents, and modifying

the induction hypothesis as follows:16 Fix any 1 ≤ τ ≤ k− 1. In any subgame ΓA,τ

for any A ⊂ N with less than τ agents having positive valuations, every member of

W(A, τ) will win a prize without paying any monetary transfers. The rest of the

15Otherwise agent ρ’s virtual valuation will be higher.
16If a surely deserving agent does not win a prize then equate her deviation strategy with the

deviation strategy σ′
ρ of agent ρ, defined above, to obtain a contradiction.
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prizes will be received by some τ − ∫τ marginal agents. Finally, Lemma 2 ensures

that no agent pays any monetary transfers to the planner. Q.E.D.

4 Relaxing Informational Restriction

In this section, we analyze the multiple awards problem but under less than com-

plete information assumption: Each agent knows her own valuation plus the identity

of the top k valuation agents but not their exact valuations (with the exception of

her own valuation, if she happens to be one of them). As before, the planner wants

to give k prizes to the top k valuation agents. This is a further generalization of

the single-prize problem studied by Perry and Reny (1999), and Olszewski (2003).

Our analysis below will be based on Olszewski’s paper.

Let us start with the following preliminary assumption:

Assumption 1 It is commonly known that there exists some δ > 0 such that

∀i, j ∈ {1, . . . , n}, i 6= j, |ui − uj| > δ.

Assumption 1 would be valid if, for example, each agent’s valuation is drawn from

a finite set and no two sets have nonempty intersection. Clearly, the assumption

will hold in other situations as well.17 Later on this assumption is relaxed.

The following mechanism, which is a generalization of Olszewski’s single-prize

mechanism, will distribute k prizes efficiently.

The Mechanism M.

Each agent says “mine” or “not mine.”

If exactly k agents say “mine” then each such agent is awarded a prize and the

rest get zero payoffs.

If more than k agents say “mine,” each agent gets a zero payoff.

If less than k agents say “mine” then all agents participate in a (k + 1)th-price

sealed-bid auction, defined as follows. Arrange the bids in a descending order:

b(1) ≥ · · · ≥ b(k) ≥ · · · ≥ b(n). If top k bidders are unique according to any ordering,

give each such bidder a prize for which they individually pay the (k + 1)th highest

bid, b(k+1), and n− k losers pay nothing. If top k bidders are not unique, give each

17While there may still exist a commonly known (finite) upper bound, d, to agents’ valuations,
clearly the upper bound is never attained for more than one agent. This will be true even when
Assumption 1 is replaced by Assumption 2.
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agent bidding higher than b(k+1) a prize, no agent bidding lower than b(k+1) gets any

prize, and the remaining prizes are randomly distributed among the agents who all

bid the same value b(k+1); those receiving a prize all pay b(k+1), and the losers pay

nothing. Finally, the planner makes extra payments to all agents as follows: each

of the k winners receive b(k+1) − δ while the remaining n− k agents receive b(k) − δ

each. ||

By standard arguments, truthful bidding is a weakly dominant strategy for each

bidder in the (k + 1)th-price auction defined above. Moreover, by Assumption 1,

any two agents’ bids will differ by at least δ, thus there will be no ties. So the

agents’ payoffs can be described by the following matrices.

Any deserving agent `’s payoff (` placed along the Row and ‘other agents’ placed

along the Column) is:18

k or more say mine k − 1 say mine less than k − 1 say mine

mine 0 u` u` − δ

not mine 0 u` − δ u` − δ

Any undeserving agent `’s payoff (` placed along the Row and ‘other agents’

placed along the Column) is:

k or more say mine k − 1 say mine less than k − 1 say mine

mine 0 u` u(k) − δ

not mine 0 u(k) − δ u(k) − δ

When ` is deserving (i.e., among top k valuation agents), clearly saying “mine” is a

weakly dominant strategy. When ` is undeserving (i.e., not among top k valuation

agents), saying “not mine” is a weakly dominant strategy because u(k)− δ > u` (by

Assumption 1 and the fact that ` is undeserving). Thus, the top k valuation agents

will say “mine,” the rest say “not mine,” and the prizes go to the top k valuation

agents.

Similar to Olszewski we now relax the assumption of common knowledge lower

bound on the difference in valuations, by using some real-valued random variable

C such that the probability of C > r is positive for every real number r.

18Any agent knows whether she is deserving or undeserving because she knows the identity of
the top k valuation agents.
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Assumption 2 It is commonly known that ∀i, j ∈ {1, . . . , n}, i 6= j, ui 6= uj.

Modify the mechanism M by changing specifications only when less than k

agents say “mine” (leaving the rest unchanged), as follows.

Agents take part in the following modified (k + 1)th-price sealed-bid auction.

Arrange the bids once again as b(1) ≥ · · · ≥ b(k) ≥ · · · ≥ b(n).

If b(k) > C then distribute the prizes as follows:

if top k bidders are unique according to any ordering, then each ` ≤ k gets a

prize and pays max{b(k+1), C}, and no ` > k gets a prize nor pays anything;

if top k bidders are not unique, then each agent bidding higher than b(k+1) gets

a prize, no agent bidding lower than b(k+1) gets any prize, and the remaining prizes

are randomly distributed among the agents who all bid the same value b(k+1); those

receiving a prize all pay max{b(k+1), C}, and the losers pay nothing.

If b(k) < C then no one gets any prize.

Finally, irrespective of whether any prize is given or not, the planner pays b(k+1)

to each ` ≤ k, and pays b(k) to each ` > k. ||

Again, truthful bidding is a weakly dominant strategy for each bidder in the

above modified (k + 1)th-price auction. Below we show that the top k valuation

agents will say “mine” and the rest of the agents will say “not mine”.

Since agents bid truthfully, the actual bids can be ordered as u(1) > u(2) > · · · >
u(k) > u(k+1) > · · · > u(n).

19

Consider the payoffs to any deserving agent ` ≤ k:

If C ≤ u(k+1) then ` gets a prize and her payoff is u` − u(k+1) + u(k+1) = u`;

If u(k+1) < C < u(k) then ` gets a prize and her payoff is u`−C +u(k+1) < u`;

If u(k+1) < u(k) < C then ` does not get any prize and her payoff is u(k+1) < u`.

Denote the expected payoff to agent ` ≤ k in the bidding game (plus the receipt

from the planner) by E`(B). Clearly E`(B) < u`. Now we can summarize agent `’s

payoff in the modified mechanism in the following matrix:

k or more say mine k − 1 say mine less than k − 1 say mine

mine 0 u` E`(B)

not mine 0 E`(B) E`(B)

19Note that because of Assumption 2 there will be no ties.
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Next, consider any undeserving agent ` > k. Agent ` will not win any prize in

the bidding game, so her payoffs in the modified mechanism can be summarized as

follows:

k or more say mine k − 1 say mine less than k − 1 say mine

mine 0 u` u(k)

not mine 0 u(k) u(k)

For ` ≤ k (i.e., ` deserving), clearly saying “mine” is a weakly dominant strat-

egy. On the other hand, for ` > k (i.e., ` undeserving), saying “not mine” is a

weakly dominant strategy. Thus, the modified mechanism will implement efficient

allocation of k prizes.

The implementation result in this section under weaker assumption about agents’

information depends crucially on the basic assumption that there is no possibility

of a tie in any two (or more) agents’ valuations. The same is also true of Olszewski

(2003), and Perry and Reny (1999). In contrast, our results in section 2 allow for

possible ties.

5 Appendix

Theorems 1 and 2 are about equilibrium characterizations. Below we outline strate-

gies to guarantee that an equilibrium exists.

Let Ω` = {l > `|ul < u`}.
Recall, ΓA,τ is the subgame with only τ more prizes left, 1 ≤ τ ≤ k, for any

set of remaining agents A. Also, let W(A, τ) be the union of ∫τ surely deserving

agents and the ‘last’ τ − ∫τ marginal agents in the agent order, as defined in the

proof of Theorem 2.

• The strategy of any ` ∈ A such that u` > 0 in the first round of any subgame

ΓA,τ is as follows, where throughout l ∈ A:

(A.1) announce ε` in that round to satisfy

(i) 0 < ε` < ε̃l ∀l < `,

(ii) ε` < u` − ul ∀l ∈ Ω`,

(iii) 2ε` < u`;
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(A.2) if τ = 1 then claim iff ∀l > `,

either ϑ` > ϑl or {ϑ` = ϑl and ϑl − ε < 0}; (1)

if τ > 1 then claim iff ∀l > `, either l ∈ W(A \ `, τ − 1) or (1) holds;

(A.3) in the case τ = 1, if some l < ` claims then challenge her iff

ϑ` ≥ ϑl (2)

and

ϑ` − ε ≥ 0; (3)

in the case τ > 1, if some l < ` claims then challenge her iff ` 6∈ W(A \ l, τ − 1),

and (2) and (3) hold;

(A.4) in the challenge game γ(i, i + r) where ` = i or i + r, if ϑi 6= ϑi+r, play the

unique SPE defined in Glazer and Ma (for their single-prize, two-bidders challenge

game) in their Theorem 2 proof;20 if ϑi = ϑi+r, play the SPE of Glazer and Ma

such that i + r wins with probability 1;

• The strategy of any ` ∈ A with u` = 0, in any round is:

(B.1) announce arbitrary ε` > 0 in that round;

(B.2) never claim;

(B.3) never challenge any claim;

(B.4) play the challenge game as in (A.4).

This completes the description of an equilibrium. ||

Existence Proof. We provide a sketch of the proof that the above strategies

constitute an SPE of Γk, by showing that for any ` ∈ A such that u` > 0 the

choices specified in the first round of any subgame ΓA,τ by the strategy described

by (A.1)-(A.4) are optimal for `, given that in the continuation game all players

follow the strategies described by (A.1)–(A.4) or (B.1)–(B.4). (For the case of a

player ` ∈ A such that u` = 0 the strategy described by (B.1)–(B.4) is clearly

optimal in any subgame.)

20Except that now virtual valuations play the role of valuations. Even if an agent’s virtual
valuation can be negative, the fact that the only permissible bids in the challenge game are from
the interval [0, d] makes it straightforward to apply, with minor modification, Glazer and Ma’s
analysis of the challenge game (for non-negative valuations) to our setting.
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We shall sketch this proof by considering the choices of ` in the first round of

ΓA,τ backwards starting with the choices in the challenge game of this round.

Before outlining the sketch, note that if the above strategies are implemented,

then in any subgame ΓA′,τ ′
the set of agents who receive the prizes is W(A′, τ ′). In

our arguments below, throughout l ∈ A.

• In the challenge game, the specified strategies will be optimal as in Glazer and

Ma.

• Let us check whether agent ` will enter the challenge game or not, assuming that

in the continuation game everyone else follows the above strategies.

For τ = 1, clearly the strategy of when to challenge is optimal. So consider

τ > 1. Suppose that some agent l < ` claims.

If either (2) or (3) does not hold then clearly it is optimal for agent ` not to

challenge, and hence not to enter the challenge game. Next suppose ` ∈ W(A \
l, τ−1). Given the order of agents in A, label the agents in W(A\l, τ−1) in reverse

order z1, z2, . . . up to agent `. The last agent, z1, will not challenge l, because then

either l remains unchallenged or is challenged by some k > z1, k 6∈ W(A \ l, τ − 1)

and in either case z1 will receive a prize in a later round without paying monetary

transfers (note that W(A \ l, τ − 1) = W(A \ {l, k}, τ − 1)). Agent z2 will not

challenge l either, because after her only a member outside W(A \ l, τ − 1) (such

as k) might challenge l, and z2 will then receive a prize without paying monetary

transfers. Repeating this argument backwards, ` ∈ W(A\l, τ−1) will not challenge

l. Therefore ` will not enter the challenge game.

Next, suppose ` 6∈ W(A \ l, τ − 1), and (2) and (3) hold. It is not difficult to

see that ` 6∈ W(A\ {l, k}, τ − 1) for any k > ` who challenges l in the continuation

game, because then k 6∈ W(A\l, τ−1) so that W(A\l, τ−1) = W(A\{l, k}, τ−1).

But then because ` is not a member of W(A\ l, τ−1), by letting go the opportunity

to challenge the claim by l agent ` will receive zero payoff. But by conditions (2)

and (3), agent ` can obtain a non-negative payoff by challenging l. So it is optimal

for agent ` to challenge.

• Next we check whether it is optimal for agent ` to claim, assuming that in the

continuation game everyone else follows the above strategies.

For τ = 1, clearly the strategy of when to claim is optimal. So consider τ > 1.

Suppose for some l > `, l 6∈ W(A \ `, τ − 1), both ϑl ≥ ϑ` and ϑl − ε ≥ 0. By

definition of (A.3), agent l will challenge a claim by agent ` and l will win in the

18



challenge game. Therefore agent ` will not claim.

On the other hand, if ∀l > `, either l ∈ W(A \ `, τ − 1) or (1) holds then no

such l will challenge (by definition of (A.3)). So it is optimal for agent ` to claim.

• The optimality of the announcement strategy (A.1) can be demonstrated using

similar arguments to that in Theorem 2 proof. Q.E.D.
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