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Abstract

This paper re-examines the panel unit root tests proposed by Chang
(2002). She establishes asymptotic independence of the t-statistics when
integrable functions of lagged dependent variable are used as instruments
even if the original series are cross sectionally dependent. From this rather
remarkable result she claims that her non-linear instrumental variable
(NIV) panel unit root test is valid under general error cross correlations for
any N (the cross section dimension) as T (the time dimension of the panel)
tends to infinity. We show that her claim is valid only if N lnT/

√
T → 0,

as N and T → ∞, and this condition is unlikely to hold in practice,
unless N is very small. The favourable simulation results reported by
Chang are largely due to her particular choice of the error correlation ma-
trix, which results in weak cross section dependence. Also, the asymptotic
independence property of the t-statistics disappears when Chang’s modi-
fied instruments are used. Using a common factor model with a sizeable
degree of cross section correlations, we are able to show that Chang’s NIV
panel unit root test suffers from gross size distortions, even when N is
small relative to T (for example N = 5, T = 100).
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1 Introduction

Recently Chang (2002) has proposed a new panel unit root test based on the
average of t-ratios computed from instrumental variable (IV) regressions using
as instruments non-linear transformations of the lagged levels of the series under
consideration. She shows that such non-linear IV t-ratios are asymptotically
pair-wise uncorrelated as the time dimension of the panel, T →∞, even in the
presence of cross section dependence, so long as the non-linear transformation
used as the instrument is regularly integrable. This is a remarkable result and
forms the basis of Chang’s claim of having found a simple panel unit root test
which is valid under quite general error cross correlations. In the abstract to
her paper Chang states

“We show in the paper that such standardized sum of individual IV t -ratios has
limit normal distribution so long as the panels have large individual time series ob-
servations and are asymptotically balanced in a very weak sense. We may have the
number of cross-sectional units arbitrary small or large.” (p. 261, emphasis added)

This paper re-examines this claim, particularly the part of the claim that
relates to the possibility of the cross section dimension (N), to be arbitrarily
large. There are two issues. First, although the t-ratios are asymptotically
independent as is shown in Chang (2002), asymptotic validity of panel unit root
test which is based on sums of these IV t-ratios requires a much more restrictive
condition to hold, namely

N lnT√
T

→ 0, as N, T →∞. (1)

This result follows because although the individual t-ratios in the panel unit
root test are asymptotically independent, the variance of the average of the t-
ratios tends to a non-zero limit as N and T →∞, which depends on nuisance
parameters. Therefore, in practice, Chang’s NIV panel unit root test could at
best be used only when N is very small relative to T .
Assuming our rebuttal of Chang’s claim is correct, we are left with the puzzle

of explaining the very favourable Monte Carlo results reported by Chang (2002)
for her proposed test. We first note that in her simulation experiments Chang
in fact uses a “calibrated” version of the integrable function of lagged levels. In
her theoretical discussion she focusses on

F (yi,t−1) = yi,t−1e−ci|yi,t−1|, (2)

as an example, where yit is the value of the ith cross section unit at time t,
and ci is a fixed constant. But in her simulations she seems to have calibrated
the choice of ci by experimenting with values that vary with the sample size,
namely

ciTi =
KT

−1/2
i

si
, s2i =

1

Ti

TiX
t=1

(∆yit)
2 , (3)
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where Ti is the time series dimension of the ith cross section, and K is a fixed
constant that she sets to 3. Her footnote 7 suggests that this particular choice of
K has been arrived at after consideration of certain simulation results. Also, us-
ing ciTi as defined in (2) results in a new instrument, to be denoted by G(yi,t−1),
with different limit properties as compared to F (yi,t−1) in which ci does not vary
with the sample size. Unlike F (yi,t−1), the modified (calibrated) instrument,
G(yi,t−1), is asymptotically non-integrable, since with K = 3, ciTi → 0, as
Ti →∞, and in the limit G(yi,t−1) and yi,t−1 would behave very similarly.
More importantly, the degree of cross section dependence in Chang’s sim-

ulations turns out to be very low, which is not sufficiently high to provide an
informative check on the small sample validity of her proposed test, in gen-
eral. This is investigated by Monte Carlo experiments using a residual common
factor structure where we show that even if the calibrated form of ci favoured
by Chang is used, the panel NIV test suffers from a significant degree of over
rejection even for moderate values of N .
To deal with the problem of cross section dependence other panel unit root

tests have also been proposed in the literature, for example, by Bai and Ng
(2002), Moon and Perron (2003), and Phillips and Sul (2002), and Pesaran
(2003). To provide a comparison with Chang’s test we consider Pesaran’s cross
section augmented panel unit root test which is simple to implement and hence
could be viewed as a reasonable alternative to NIV test. Small sample properties
of the two tests are compared by Monte Carlo experiments.
The plan of the remainder of the paper is as follows: Next section sets out the

model, briefly describes the NIV test and establishes the main theoretical results
of the paper. Section 3 reports the simulation results. Section 4 concludes.

2 NIV Unit Roots Tests

Consider a sample of N cross sections observed over T time periods. We suppose
that the stochastic process yit is generated by the first-order autoregressive
process:1

yit = φiyi,t−1 + εit, i = 1, ..., N ; t = 1, ..., T, (4)

with given initial values, yi0. For each i, the error terms, εit, are serially inde-
pendent with E(εit) = 0, V ar(εit) = σ2i for all t. But for each t, εit and εjt
could be correlated such that Cov(εit, εjt) = σij 6= 0, for all i, j and t. Equation
(4) can be expressed as

∆yit = βiyi,t−1 + εit, i = 1, ..., N ; t = 1, ..., T. (5)

where βi = 1 − φi, and ∆yit = yit − yi,t−1. Under the null hypothesis of unit
roots, we have

H0 : βi = 0, for all i. (6)
1Our analysis of Chang’s test also applies to more complicated panel data models with

intercepts, linear trends and serially correlated errors. But the simple model considered here
suffices for illustrating our point. Chang also considers unbalanced panels where the time
dimensions could differ over the cross section units.
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Under the alternative hypothesis,

HA : βi < 0, for some i. (7)

The NIV procedure estimates βi using F (yi,t−1) as an instrument for yi,t−1
in equation (5), where F (·) is an integrable function. Therefore, for the i-th
time series, we have the NIV estimator of βi and its corresponding t-ratio:

β̂NIV,i =

TP
t=1
F (yi,t−1)∆yit

TP
t=1
F (yi,t−1)yi,t−1

, tNIV,i =
β̂NIV,i

s
³
β̂NIV,i

´ =
TP
t=1
F (yi,t−1)∆yit

σ̂i

s
TP
t=1
[F (yi,t−1)]

2

,

(8)
where

σ̂2i = T
−1

TX
t=1

³
∆yit − β̂NIV,iyi,t−1

´2
.

Park and Phillips (1999, 2001) showed that for each i, tNIV,i approaches to
standard normal distribution under the null hypothesis as T →∞.
Chang’s NIV unit root test statistic is obtained as2

ZN =
1√
N

NX
i=1

tNIV,i. (9)

Given that tNIV,i is standard normal as T tends to infinity, it is then easily seen
that ZN also follows standard normal distribution for any N if the series are
cross-sectionally independent. Chang (2002) claims that this result holds even
when the individual series are cross sectionally correlated.
Her claim is based on the following stochastic order results which hold for

any positive definite matrix formed by σij3

TX
t=1

F (yi,t−1)εit = Op(T 1/4),
TX
t=1

[F (yi,t−1)]
2 = Op(T

1/2), (10)

and
TX
t=1

F (yi,t−1)F (yj,t−1) = Op(lnT ), for i 6= j. (11)

From these it is easily deduced that

Cov (tNIV,i, tNIV,j) = O

µ
lnT√
T

¶
, for all i 6= j, (12)

which establishes that even in the presence of cross section dependence (with
σij 6= 0) the individual NIV t-ratios, tNIV,i, will be asymptotically independent
as T →∞.

2 See equation (16) in Chang (2002).
3 See Kasahara and Kotani (1979) and Chang et al. (2001).
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This is a remarkable result which has led Chang to conclude that ZN will
also tends to N(0, 1) as T →∞ for any N .4 The proof offered by Chang (2002,
p. 288) simply states that the asymptotic independence of tNIV,i and tNIV,j as
T →∞ is sufficient for ZN →d N(0, 1) for any N . No formal proof of is offered,
however. Chang’s theoretical result clearly holds if N is fixed as T →∞. But,
for N and T sufficiently large, it is not sufficient that tNIV,i’s are asymptotically
uncorrelated. We also need to show that V ar (ZN)→ 1 as N and T →∞. But,

V ar (ZN) =
1

N

NX
i=1

V ar(tNIV,i) +
2

N

NX
j=i+1

NX
i=1

Cov (tNIV,i, tNIV,j) .

The first term approaches unity as T → ∞ regardless of the magnitude of
N . But, the second term contains N(N − 1)/2 covariance terms, and although
according to (12) each of these covariances are individually of order lnT√

T
, the

sum of these covariances vanishes only if

N lnT√
T

→ 0, as both N and T →∞. (13)

This places restrictions on the rate at which N is allowed to rise relative to T
that are too restrictive to be relevant in practice where N is larger than T , or
are of the same orders of magnitude.5

2.1 Choice of the Non-Linear Instrument

The properties of the NIV approach also depends on the choice of the integrable
function, F (yi,t−1), to be used as the instrument. As an important example, in
the theoretical part of her paper Chang (2002) considers

F (yi,t−1) = yi,t−1e−ci|yi,t−1|, (14)

where ci is a fixed constant. But in her simulations she allows ci to vary with
T and uses the modified function

G(yi,t−1) = yi,t−1e
−K|yi,t−1|

σ̂i
√
T , (15)

where σ̂i is a consistent estimator of σi and K is a fixed constant which she sets
to 3 after some experimentation.6 As acknowledged by Chang (2002, p.277), her
theory requires ci in (14) to be fixed, otherwise the asymptotic independence re-
sults in (10) and (11) would not hold. UsingG(yi,t−1) in place of F (yi,t−1) which

allows ci to depend on T−1/2 impacts the asymptotics. The term e
−K|yi,t−1|

σ̂i
√
T in

G(yi,t−1) as the factor discounting yi,t−1 is bounded in probability and sums
4See Theorem 4.3 of Chang (2002).
5Unfortunately, the problem cannot be resolved by resorting to a different type of normal-

ization.
6 See Change (2002, p.277) and footnote 7.
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involving G(yi,t−1) or yi,t−1 will have the same orders asymptotically. Hence
tNIV,i and tNIV,j obtained using the calibrated transformation, G(.), will not
be asymptotically uncorrelated if the underlying series are cross-sectionally cor-
related.
Figure 1 illustrates the effect of using G(yi,t−1) instead of F (yi,t−1) on the

distribution of ti,NIV for T = 100, 1000, 10000. The chart at the top of the
figure relates to F (yi,t−1) and the one at the bottom to G(yi,t−1). When they
are compared to the standard normal density, it becomes clear that the density
of the NIV t-ratio based on the integrable function, F (yi,t−1), converges rapidly
to the standard normal density with T rising, as the theory predicts. But the
density of the NIV t-ratio obtained using the non-integrable function, G(yi,t−1),
remains flatter than standard normal density even at T = 10, 000.
A natural question now is, “Why is G(yi,t−1) used in place of F (yi,t−1)?”

In standard panel unit root tests, under cross section independence, where the
panel unit root is obtained as an average of the t-ratios of individual time
series, it is more important to ensure that the individual t-ratios are centered
appropriately under the null hypothesis. Shape of the density of the statistic is of
secondary importance. Incorrect centering of the statistics becomes increasingly
more problematic as N increases, and could result in substantial size distortions
as N grows. However, the distribution of the average statistic quickly converges
to normal, even if the density of individual t-ratios are quite different from that
of normal density. Therefore, appropriate centering of the average statistic is far
more important than the density of the underlying individual t-ratios. As is seen
in Figure 1, the mean of the t-ratio obtained from the calibrated instrument,
G(yi,t−1), is centered at zero more accurately, and is stable for different sample
sizes, while the density of ti,NIV obtained using F (yi,t−1) is more skewed to the
right, particularly when T is relatively small. Therefore, it is not surprising that
using G(yi,t−1) as an instrument performs better than F (yi,t−1) in testing for
unit root in panels. In fact, using F (yi,t−1) yields NIV panel unit root tests that
are grossly under-sized, with size being zero or very close to zero, and shows
little power. In the next section, where we consider the small sample properties
of the NIV test, we follow Chang and use G(yi,t−1) as the instrument. This also
ensures comparability of our simulation results with those reported by Chang.

3 Finite Sample Properties: Monte Carlo Ex-
periments

As was discussed in the previous section, NIV test is not robust to the presence
of cross-sectional correlations, and therefore we may expect the size of NIV
test to be different from the nominal size in the case where the errors are cross-
sectionally dependent. However, the simulation results reported in Chang (2002)
which are based on the modified instrumental variables, G(yi,t−1) exhibit little
size distortions. This seems to contradict our argument. But it turns out that
the favourable Monte Carlo results reported by Chang are largely due to the
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particular way that she generates correlations across errors.
She draws the errors from anN dimensional multivariate normal distribution

with a covariance matrix whose elements are randomly drawn, such that some
cross sectional units are positively correlated and others are negatively corre-
lated. The average of the correlations in Chang’s covariance matrix depends
on N , and tend to be quite small. For example, the average of the covariance
terms is about 0.07 when N = 10.7 It is therefore also important to check the
validity of Chang’s test in cases where the cross section dependence of the er-
rors is relatively large. Therefore, in addition to Chang’s covariance structure
we shall also consider a simple one-factor residual specification with an average
cross correlations of around 0.2.8 Otherwise, for comparability we shall follow
Chang’s simulation design closely. We consider the sample size combinations: N
= 5, 15, 25, 50, 100, and T = 25, 50, 100, and use the following data generating
(DGP) process

xit = φixi,t−1 + uit, uit = ρiui,t−1 + εit, i = 1, ...N ; t = 1, ..., T½
zit = αi, for the time series with no time trend.
zit = αi + βit, for the time series with linear time trend.

yit = xit + zit, i = 1, ...N ; t = 1, ..., T.

The error terms follow AR(1) processes with the coefficient, ρi, drawn from
the uniform distribution [0.2, 0.4], and the serial correlations are controlled
by augmenting the NIV regressions with ∆yi,t−1. Under the null hypothesis,
φi = 1 for all i , and under the alternative hypothesis, φi ∼ iidU [0.8, 1.0]. We
set αi = 20 and βi = 0.3, for all i, and use 10,000 replications for each of the
experiments.
The cross section dependence is introduced in two ways: (i) the covariance

matrix used in Chang, which we denote by Ωc, and (ii) by generating εit using
the following single-factor model

εit = γift + vit,

where ft and vit are generated as iidN(0, 1), and γi ∼ iidU [−1, 3]. This spec-
ification generates the average cross section correlation coefficient of around
0.18.9 Under Chang’s covariance specification, we generate an N × 1 vector of
independent standard normal random numbers for each time period first, then
pre-multiply them by Ω1/2c to generate εit, i = 1, 2, . . . , N.

7 See Chang (2002, p. 276) for further details.
8This set up has also been utilized by Bai and Ng (2002), Moon and Perron (2003), and

Phillips and Sul (2002), and Pesaran (2003) in their Monte Carlo experiments.
9For given values of γi, the cross section correlation coefficient of εit and εjt is given by

γiγjq
(1 + γ2i )(1 + γ

2
j )
, for i 6= j.

Due to the independence of γi and γj the average of these correlation coefficients across i and

j is given by
h
E
³
γi/

q
1 + γ2i

´i2
, where γi ∼ iidU [−1, 3]. Using stochastic simulations the

average correlation coefficient is around 0.18 which is much smaller than 0.50, the value that
obtains in the homogeneous case where γi = 1.
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3.1 Small Sample Results for NIV Test

Tables 1-2 report the results for Chang’s error covariance matrix, Ωc. Table
1 gives the results for models with an intercept only, and Table 2 for models
with a linear trend. The results in Table 1 confirm Chang’s findings for this
case. These tables also give the corresponding results for Im, Pesaran, and Shin
(2003, IPS) test which also show satisfactory size properties despite the cross
section dependence. Note, however, that the IPS size results reported in Table
1 are closer to the nominal 5% value than in the simulations reported by Chang.
This discrepancy seems to be primarily due to the demeaning procedure used by
Chang. When she computed IPS statistic, Chang demeaned the observations on
the whole series first, and then run Augmented Dickey-Fuller regression without
an intercept. This should be fine when one works with a single time series,
but could distort the mean adjustment needed for properly centering the IPS
statistic in the case of panels where T is small relative to N.10

The power of Chang’s test critically depends on whether the model contains
a linear trend. It performs better than the IPS test when the model contains
an intercept only, but shows little power when a linear trend is included. This
is puzzling and could be due to the calibration of the instrument parameters
(K/

√
T , with K = 3) in the former case. Chang does not report Monte Carlo

results for the models with a linear trend.
The results for the single-factor covariance structure are given in Tables 3

and 4, and clearly show that both tests (NIV and IPS) are grossly over-sized,
with the size increasing with N, as predicted by the arguments in the previous
section. The size distortions could not have been seen in the earlier experiments
simply because the cross correlations generated under Chang’s design had been
very weak.

3.2 A Comparison of CADF and NIV Tests

It is important that panel unit root tests are robust to high as well as low
degrees of cross section dependence. As noted in the introduction a number of
such tests have been recently proposed in the literature. In Table 5 we compare
the size and power of the NIV test with that of the cross section augmented
test recently proposed by Pesaran (2003). This test is based on Dickey-Fuller
regressions further augmented with the cross section averages ȳt−1, and ∆ȳt:

∆yit = ai + biyi,t−1 + ciȳt−1 + di∆ȳt + eit, i = 1, 2, ..., N.

In the case of serially correlated errors the above cross sectionally augmented
Dickey-Fuller (CADF) regressions need to be further augmented with the lagged
changes ∆yi,t−1, ∆yi,t−2,..;∆ȳt−1,∆ȳt−2, ... The cross section averages act as
asymptotically perfect proxies for the common factor generating the cross cor-
relations. The test statistic proposed by Pesaran (2003) is defined by the simple
10We are grateful to Chang for providing us with her Gauss program that enabled us to

identify the source of the discrepancy between the IPS results that she reports and the ones
that we obtain.
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average of the CADF statistics, given by the OLS t-ratios of bi, i = 1, 2, ..., N .
Appropriate critical values for this test is provided in Tables 3a-3c of Pesaran
(2003). A truncated version of the test, referred to as CIPS*, is also proposed
which is shown to have better size properties when T is very small, say less than
15. The results in Table 5 once again clearly show the substantial size distortion
of the NIV test for moderate degrees of error cross correlations. It also shows
that in the same setting, the size of the CIPS* test is close to its nominal value
even for very small sample sizes, and its power rises quite rapidly with increases
in N and T . See Pesaran (2003) for a more detailed discussion of the CADF
test and its small sample performance in more general set ups, including when
the errors are serially correlated.

4 Concluding Remarks

We review the Chang’s NIV panel unit root test; its asymptotics as well as the
small sample properties. Unlike the author’s claim, NIV test is not robust to
the presence of cross-sectional correlations. The test is valid when the data are
cross-sectionally independent, and seems to have satisfactory power properties
when the model contains an intercept only. However, when time series are
trended, power of NIV test declines significantly. This could be due to the
choice of the calibrated non-linear instruments used by Chang (2002). In cases
where cross section dependence is not too weak it is advisable that other panel
unit root tests proposed in the literature are considered.
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Table 1: CHANG’S CROSS CORRELATIONS: With an Intercept Only 
 

 
    T=25 T=50 T=100 
    SIZE POWER SIZE POWER SIZE POWER 

N=5               
  IPS 0.070 0.188 0.063 0.241 0.066 0.715 
  NIV 0.055 0.410 0.063 0.458 0.065 0.925 

N=15               
  IPS 0.059 0.314 0.060 0.834 0.060 1.000 
  NIV 0.050 0.692 0.049 0.994 0.053 1.000 
N=25               

  IPS 0.070 0.557 0.062 0.942 0.066 1.000 
  NIV 0.046 0.942 0.054 1.000 0.056 1.000 
N=50               

  IPS 0.067 0.707 0.067 1.000 0.065 1.000 
  NIV 0.042 0.992 0.044 1.000 0.050 1.000 
N=100               
  IPS 0.065 0.934 0.061 1.000 0.060 1.000 
  NIV 0.035 1.000 0.032 1.000 0.036 1.000 

 
 
 

Table 2: CHANG’S CROSS CORRELATIONS: With a Linear Trend 
 

 
    T=25 T=50 T=100 
    SIZE POWER SIZE POWER SIZE POWER 

N=5               
  IPS 0.072 0.108 0.071 0.174 0.070 0.323 

  NIV 0.049 0.047 0.067 0.090 0.086 0.157 

N=15         
  IPS 0.067 0.115 0.064 0.541 0.067 0.895 

  NIV 0.041 0.041 0.058 0.152 0.074 0.419 

N=25         
  IPS 0.071 0.173 0.071 0.526 0.074 0.999 
  NIV 0.043 0.043 0.060 0.141 0.082 0.889 

N=50         
  IPS 0.077 0.213 0.069 0.771 0.072 1.000 
  NIV 0.035 0.037 0.059 0.197 0.072 0.965 

N=100         
  IPS 0.069 0.351 0.064 0.962 0.070 1.000 
  NIV 0.034 0.035 0.050 0.282 0.071 0.999 

 



Table 3: CROSS SECTION CORRELATIONS GENERATED BY  
A COMMON FACTOR MODEL: With an Intercept Only 

 
     
   T=25 T=50 T=100 
   SIZE POWER SIZE POWER SIZE POWER 

N = 5        
 IPS 0.098 0.204 0.097 0.336 0.095 0.654 
 NIV 0.083 0.412 0.091 0.591 0.094 0.893 

N =15        
 IPS 0.180 0.370 0.181 0.733 0.180 0.998 
 NIV 0.157 0.591 0.164 0.922 0.163 1 

N = 25        
 IPS 0.234 0.526 0.238 0.672 0.239 0.955 
 NIV 0.195 0.787 0.214 0.887 0.218 0.995 

N = 50        
 IPS 0.308 0.625 0.312 0.851 0.326 0.992 
 NIV 0.271 0.833 0.279 0.967 0.293 1 

N = 100        
 IPS 0.378 0.683 0.390 0.900 0.384 0.997 
 NIV 0.332 0.863 0.342 0.985 0.353 1 

 
 

Table 4: CROSS SECTION CORRELATIONS GENERATED BY  
A COMMON FACTOR MODEL: With a Linear Trend 

 
     
  T=25 T=50 T=100 
  SIZE POWER SIZE POWER SIZE POWER 

N=5        
  IPS 0.106 0.139 0.100 0.217 0.114 0.382 
  NIV 0.087 0.072 0.095 0.12 0.132 0.180 

N=15        
  IPS 0.188 0.242 0.190 0.477 0.185 0.968 
  NIV 0.164 0.155 0.191 0.277 0.203 0.809 

N=25        
  IPS 0.24 0.330 0.248 0.435 0.236 0.794 
  NIV 0.205 0.211 0.228 0.277 0.247 0.548 

N=50        
  IPS 0.305 0.410 0.32 0.625 0.312 0.932 
  NIV 0.276 0.277 0.311 0.400 0.315 0.727 

N=100        
 IPS 0.366 0.469 0.371 0.695 0.387 0.953 
 NIV 0.326 0.336 0.353 0.473 0.373 0.789 

 



Table 5: The Size and Power of Panel Unit Root tests: No Serial Correlation, 
High Cross Section Dependence, Intercept Case1 

 
   T=25 T=50 T=100 
  SIZE POWER SIZE POWER SIZE POWER 

N=5           
 CIPS* 0.054 0.087 0.049 0.233 0.073 0.681 
 NIV 0.138 0.392 0.131 0.679 0.150 0.963 

N=15        
 CIPS* 0.055 0.142 0.059 0.507 0.040 0.991 
 NIV 0.259 0.642 0.223 0.870 0.226 0.998 

N=25        
 CIPS* 0.050 0.141 0.042 0.658 0.054 1.00 
 NIV 0.295 0.718 0.28 0.934 0.246 1.00 

N=50        
 CIPS* 0.043 0.218 0.046 0.849 0.051 1.00 
 NIV 0.379 0.762 0.381 0.960 0.378 1.00 

N=100        
 CIPS* 0.037 0.242 0.061 0.963 0.044 1.00 
 NIV 0.485 0.808 0.420 0.976 0.418 1.00 

           
 
 
Notes: 1 The results in this Table are based on the Monte Carlo design used in Pesaran (2003). The 

underlying data is generated by TtNiuyy ittiiiiit ,...,50,51,,..,2,1,)1( 1, −−==++−= −φµφ , and 

ittiit fu εγ +=  where ]3,1[~ −iidUiγ , iµ  and tf ~ iidN(0,1), and ),0(~ 2
iit iidN σε  with 

]5.1,5.0[~2 iidUiσ . The Size ( under the null )1=iφ  of the CIPS* test is computed at the 5% nominal 

level, based on cross section augmented Dickey-Fuller (CADF) regressions: 

ittititiiiit uydycybay +∆+++=∆ −− 011,  ,  TtNi ,...,2,1,,..,2,1 ==  where  ∑ =
−= N

i itt yNy
1

1 . 

The power of the test is computed at the 5% nominal level based on the same regression under the 

heterogeneous alternative of ]95.0,85.0[~ iidUiφ . ∑ =
−= N

i
iCADFNCIPS

1

*1* , where iCADF *  

is the OLS t-ratio of ib  truncated to lie in the interval [-6.19,2.16]. Chang’s NIV statistic is computed 

based on Chang (2002) under the model with a non-zero mean and no linear trend (cf. Chang (2002)’s 
Eq.(18)) and the time lag of order one. The size of the Chang’s NIV test is computed at the one-sided 5% 
nominal level, using the standard normal distribution. The simulation results reported in this table are based 
on 1,000 replications. 


