
Boston University
OpenBU http://open.bu.edu
BU Open Access Articles BU Open Access Articles

2016-06

Necessity for research directed at
stimulant type and treatment-onset

age to access the impact...

This work was made openly accessible by BU Faculty. Please share how this access benefits you.
Your story matters.

Version
Citation (published version): Kathleen M. Kantak, Linda P. Dwoskin. "Necessity for research

directed at stimulant type and treatment-onset age to access the
impact of medication on drug abuse vulnerability in teenagers with
ADHD.." Pharmacol Biochem Behav, v. 145, pp. 24 - 26.

https://hdl.handle.net/2144/25612
Boston University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boston University Institutional Repository (OpenBU)

https://core.ac.uk/display/142083273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.bu.edu/disc/share-your-open-access-story/


Necessity for research directed at stimulant type and treatment-
onset age to access the impact of medication on drug abuse 
vulnerability in teenagers with ADHD

Kathleen M. Kantak1 and Linda P. Dwoskin2

1Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 
02215, USA

2Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 
Lexington, Kentucky 40536, USA

Keywords

Adolescence; d-Amphetamine; Atomoxetine; Attention Deficit Hyperactivity Disorder; Cocaine; 
Methylphenidate; Spontaneously Hypertensive Rats; Substance Use Disorders

Controversy continues regarding increased vulnerability for addiction to cocaine and other 

drugs of abuse in adulthood following the use of stimulant medications for the treatment of 

Attention Deficit Hyperactivity Disorder (ADHD). The results of recent research utilizing an 

animal model of ADHD strongly advocate for a closer look at this important issue in clinical 

populations, particularly where treatment is initiated in adolescence, and with certain ADHD 

medications.

The first meta-analysis examining the question of stimulant medication for ADHD and later 

substance use disorders (SUD) was conducted over a decade ago and concluded that 

stimulant medication in childhood is associated with a reduction in the risk for subsequent 

SUD during adolescence and young adulthood (Wilens et al., 2003). This stance regarding 

protective effects of stimulant medications has shifted over the years, with the most recent 

meta-analysis concluding that stimulant medication in childhood neither protects against nor 

increases the risk of later SUD beyond that associated with ADHD alone (Humphreys et al., 

2013). A longitudinal 8-year follow-up of a large cohort of children in the Multimodal 

Treatment Study of ADHD (MTA) evaluated this same question and confirmed that 

stimulant medication in childhood does not protect against or increase SUD during 
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adolescence (Molina et al., 2013). This is good news, but caution should be exercised in 

generalizing these findings beyond medication initiation in childhood.

A concern arises when ADHD treatment begins during adolescence. Some evidence that 

initiation of stimulant medication during adolescence may have different consequences for 

subsequent SUD than initiation in childhood is derived from research specifically analyzing 

age of treatment onset in ADHD patients. One study (Mannuzza et al., 2008) excluded 

participants with childhood conduct disorder (an uncontrolled variable in some earlier 

studies) and stratified children into age probands (8–12 vs. 6–7) for methylphenidate 

treatment initiation (treatment duration lasting 2–4 years). Lifetime rates of SUD (cocaine, 

amphetamines, marijuana, opiates) determined during late adolescence or young adulthood 

were significantly greater in the older ADHD proband (44%) compared to the younger 

ADHD proband (27%) and to non-ADHD comparison subjects (29%). The development of 

antisocial personality disorder also was positively associated with age at first 

methylphenidate exposure and mediated the relationship between age at first 

methylphenidate exposure and later SUD. In another study (Dalsgaard et al 2014), SUD risk 

in adulthood increased by a factor of 1.5 for every year older that childhood stimulant 

treatment began. Thus, initiation of stimulant medication (methylphenidate in particular) for 

ADHD during adolescence may have negative consequences with respect to later SUD.

There are several drawbacks to most clinical studies for understanding relationships between 

initiation of ADHD medication during adolescence and later SUD, such as inclusion of teens 

that began treatment in childhood and assessment of SUD while participants were still 

taking medication (e.g., Biederman et al 2008). Equally important, clinical studies tended to 

group ADHD drugs into a single medication variable and rarely evaluated the impact of 

individual medications on later SUD risk. Clearly, there is a critical gap in the clinical 

literature for analysis of SUD specifically in young adults that began treatment for ADHD as 

teenagers. To gain novel insights into this ongoing debate, we conducted a series of 

preclinical studies using Spontaneously Hypertensive Rats (SHR), the most widely studied 

animal model of ADHD (Russell, 2011).

We study SHR because this strain displays the same core behavioral characteristics as 

individuals with ADHD. Compared to controls, SHR are more hyperactive (Sagvolden et al., 

1992), inattentive (Jentsch, 2005; De Bruin et al., 2003), and impulsive (Hand et al., 2009; 

Somkuwar et al., 2016). SHR also have impaired working memory (Nakamura-Palacios et 

al., 1996; De Bruin et al., 2003; Kantak et al., 2008) and show behavioral flexibility and 

habit learning deficits (Kantak et al., 2008; Wells et al., 2010; Harvey et al., 2013; Gauthier 

et al., 2014; Jordan et al., 2016). Importantly, the ADHD-like phenotype of SHR is unrelated 

to hypertension (e.g., Gattu et al., 1997; Kantak et al., 2008; Wells et al., 2010). SHR also 

have several neurobiological abnormalities as observed in ADHD, such as greater striatal 

DAT density (Roessner et al 2010; Silva et al 2014). Relative to other rat models of ADHD, 

SHR is the only rat model that mimics ADHD combined subtype (Russell 2011), which is 

the most common subtype in children and teens (Nikolas & Nigg 2013).

ADHD is known to be comorbid with SUD. Meta-analysis of patients with non-medicated 

ADHD show 2–3 times greater use of cocaine, other stimulants, tobacco, and marijuana 
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during adolescence and adulthood compared to controls without ADHD (Lee et al., 2011). 

Studies showing similar results in SHR strengthen the predictive power of this rat model of 

ADHD. The SHR self-administer more cocaine (Harvey et al., 2011; Somkuwar et al., 2013; 

Jordan et al., 2014; Jordan et al., 2016) and other stimulants (Meyer et al., 2010; Marusich et 

al., 2011; dela Pena et al., 2011) compared to Wistar-Kyoto (WKY) and Wistar (WIS) 

controls. Nicotine self-administration and cannabinoid-induced conditioned place preference 

also are greater in SHR than WKY or WIS (Pandolfo et al., 2009; Chen et al., 2012). These 

findings show that SHR are a reliable animal model not only of ADHD, but also of 

comorbid ADHD and SUD.

We investigated adolescent treatment (from postnatal day 28 to 55) with stimulant and non-

stimulant ADHD medications. Low, clinically relevant doses (based on plasma drug levels 

and other factors) were used (1.5 mg/kg p.o. methylphenidate, 0.3 mg/kg i.p. atomoxetine, 

and 0.5 mg/kg i.p. d-amphetamine) to determine changes in cocaine abuse vulnerability 

during adulthood (from postnatal day 77 to ~150) after medications were discontinued. In all 

tests, male rats were used and the inbred SHR were compared to inbred WKY (controlling 

for the genetic homogeneity of the SHR) and outbred WIS (representing the genetic 

heterogeneity of the general population). To assess cocaine abuse vulnerability in adulthood, 

various schedules of drug delivery were used to determine the speed to acquire cocaine self-

administration (fixed ratio 1 schedule), the efficacy of cocaine reinforcement across a range 

of cocaine doses (fixed ratio 1 schedule), the motivating influence of cocaine reinforcement 

across a range of cocaine doses (progressive ratio schedule), and the strength of cocaine 

seeking/cocaine-cue reactivity under drug maintenance, extinction, and cue-reinstatement 

test conditions (second-order schedule). In addition, locomotor hyperactivity and 

sensitization induced by cocaine as well as inherent impulsive action were measured as 

possible factors contributing to elevated cocaine abuse in SHR.

Across studies, SHR exhibited greater cocaine abuse vulnerability than control strains. 

Cocaine self-administration was acquired faster in SHR than WKY and WIS, and cocaine 

was a more efficacious reinforcer and had a greater motivating influence in SHR than WKY 

and WIS (Harvey et al., 2011; Somkuwar et al., 2013; Jordan et al., submitted). In addition, 

SHR were more reactive to cocaine-paired cues and took longer to extinguish cocaine-

seeking responses than WKY and WIS (Jordan et al., 2014; Jordan et al., 2016). Moreover, 

SHR had heightened locomotor activity, cocaine sensitization, and impulsive action 

compared to WKY and WIS (Somkuwar et al., 2016).

Adolescent methylphenidate further enhanced cocaine abuse vulnerability in SHR during 

adulthood by producing an even faster speed of acquisition, a greater upward shift in the 

cocaine dose-response curve, a greater increase in progressive ratio breakpoints, and a 

greater increase in cocaine intake under the second-order schedule relative to vehicle 

treatment (Harvey et al., 2011; Jordan et al., 2014; Baskin et al 2015). Impulsive action, a 

symptom of antisocial personality disorder in people, also was further enhanced in adult 

SHR after discontinuing adolescent methylphenidate treatment (Somkuwar et al., 2016). 

This latter outcome may reflect an endophenotype contributing to the further enhancement 

of cocaine abuse (Phillips & Di Ciano, 1996). Adolescent methylphenidate did not alter any 

Kantak and Dwoskin Page 3

Pharmacol Biochem Behav. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measure of cocaine abuse in WKY and WIS during adulthood, except for a slower speed of 

acquisition in WIS (Harvey et al., 2011).

In contrast to methylphenidate, treatment with atomoxetine, a non-stimulant medication, 

during adolescence did not further increase any measure of cocaine abuse in SHR during 

adulthood (Somkuwar et al., 2013). Although extinction of cocaine-seeking responses took 

longer, cue-induced reinstatement of cocaine-seeking responses was reduced in adult SHR 

by adolescent atomoxetine across the seven test sessions (Jordan et al., 2014). Adolescent 

atomoxetine did not alter any measure of cocaine abuse in WKY and WIS during adulthood, 

except for a faster speed of acquisition in WKY (Somkuwar et al., 2013).

Although both methylphenidate and d-amphetamine are medications from the stimulant 

class that increase extracellular concentrations of dopamine and norepinephrine, our 

behavioral findings showed that adolescent d-amphetamine, unlike methylphenidate, did not 

further increase cocaine abuse vulnerability in adult SHR and was preventative of cocaine 

abuse vulnerability in adult WIS relative to vehicle treatment. In adult SHR, adolescent d-

amphetamine reduced some aspects of cocaine abuse by decreasing cocaine intake at 

acquisition and decreasing cue-induced reinstatement of cocaine-seeking responses during 

the first of seven test sessions (Jordan et al., 2016; Jordan et al., submitted). In adult WIS, 

adolescent d-amphetamine slowed the speed of acquisition, decreased cocaine intake at 

acquisition, produced a downward shift in the cocaine dose-response curve, and decreased 

progressive ratio breakpoints (Jordan et al., submitted). Adolescent d-amphetamine did not 

alter any measure of cocaine abuse in WKY, except for a faster speed of acquisition (Jordan 

et al., submitted). The dissimilar effects of adolescent d-amphetamine and methylphenidate 

on cocaine abuse vulnerability in adult SHR may relate to differences in the primary 

mechanisms of action of these medications, leading to distinctive long-term neural 

consequences for transporter function, particularly in SHR. Whereas methylphenidate is a 

dopamine transporter (DAT) and norepinephrine transporter (NET) inhibitor that reduces 

neurotransmitter uptake at DAT and NET, d-amphetamine is a DAT and NET substrate that 

reverses neurotransmitter transport at DAT and NET (Robertson et al., 2009; Zahniser & 

Sorkin, 2009). In comparison, atomoxetine is a selective NET inhibitor (Bymaster et al., 

2002).

Given the high translational relevance of the SHR model of ADHD, these preclinical 

findings suggest that by precluding a further increase in cocaine abuse vulnerability, 

atomoxetine and d-amphetamine may be safer alternatives to methylphenidate for treating 

teens newly diagnosed or newly medicated for ADHD. Currently, ~20% of teens with 

ADHD in the United States receive a first time diagnosis of ADHD between ages 11–17, 

representing an estimated 700,000 people (National Survey of Children’s Health Database, 

2011/2012) and making this an understudied public health concern. In our opinion, the 

preclinical findings in SHR advocate for sufficiently powered prospective and retrospective 

clinical investigations of teens newly diagnosed or newly medicated for ADHD and for 

whom the impact of medications on subsequent SUD is determined in young adulthood after 

medication is discontinued. Our preclinical findings strongly support the view that the 

grouping of stimulant and other ADHD drugs into a single medication variable should be 

abandoned in all future clinical studies and that proper diagnosis is critical. It is important to 
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determine whether initiation of methylphenidate treatment for ADHD during adolescence is 

uniquely associated with harmful long-term consequences for SUD risk, as found in SHR 

but not in WKY or WIS self-administering cocaine. Furthermore, the interactions between 

ADHD medications and other drugs of abuse bear scrutiny in preclinical and clinical 

investigations, as ADHD is comorbid with the use of a range of drugs in addition to cocaine 

(Lee et al., 2011). Evaluation of sex differences also is crucial. If armed with evidenced-

based guidelines, physicians and parents can make informed and personalized medical 

decisions regarding the best choice and time course of ADHD medication for their children 

and teenagers.
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