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Abstract: The uncertainty principle can be understood as a condition of joint indeterminacy of
classes of properties in quantum theory. The mathematical expressions most closely associated
with this principle have been the uncertainty relations, various inequalities exemplified by the well
known expression regarding position and momentum introduced by Heisenberg. Here, recent work
involving a new sort of “logical” indeterminacy principle and associated relations introduced by
Pitowsky, expressable directly in terms of probabilities of outcomes of measurements of sharp
quantum observables, is reviewed and its quantum nature is discussed. These novel relations are
derivable from Boolean “conditions of possible experience” of the quantum realm and have been
considered both as fundamentally logical and as fundamentally geometrical. This work focuses on the
relationship of indeterminacy to the propositions regarding the values of discrete, sharp observables
of quantum systems. Here, reasons for favoring each of these two positions are considered. Finally,
with an eye toward future research related to indeterminacy relations, further novel approaches
grounded in category theory and intended to capture and reconceptualize the complementarity
characteristics of quantum propositions are discussed in relation to the former.

Keywords: quantum mechanics; uncertainty relations; quantum logic; boolean
logic; complementarity

1. Introduction

Quantum mechanics is a theory supplying probabilities of outcomes of measurements on
physical systems and is most commonly employed at the atomic scale. These probabilities are
strictly less than one in cases where pairs of properties represented by noncommuting operators
are measured successively. In these cases, the quantities also cannot be measured simultaneously,
that is, are strictly complementary. Moreover, it has been shown that a formulation of the joint
indeterminacy hypothesis of Heisenberg [1] together with an axiomatic formulation of complementarity
rigorously imply the existence of incompatible observables [2] and so exclude the classical mechanical
description of a physical system within the quite general, (O, S, p) formulation of general physical
theory considered by Mackey [3,4].

In the (O, S, p) formulation, one assumes that, for each physical system, one can associate with
the set of all its observables O and the set of all its states S as a function p: O × S × B(R) →
[0, 1], where B(R) is the set of all Borel subsets of the real line that provides a probability connecting
theory with experience. Quantitative relations expressing the relationship between indeterminacy and
limitations on joint measurements are commonly referred to as uncertainty relations. The quantum
indeterminacy principle, also known as the “uncertainty principle” is a statement about the associated
indeterminacy of incompatible sharp properties (projection valued measures, PVMs) in quantum
mechanics rather than, say, merely the epistemic uncertainty regarding an independent quantity.
In particular, it is a statement to the effect that the associated properties, jointly considered, are
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objectively indefinite [5]. The indeterminacy principle can be contrasted to the determinacy principle,
that the magnitude of each continuous quantity is determined in reality by a real number, as is typically
assumed in classical mechanics [6].

The trade-off relationships between the definiteness of the preparation or measurement of
two quantities are consistent with the notion that simultaneous or sequential determination of
their values requires a nonzero amount of unsharpness in the quantum observables involved,
where unsharp observables are those represented by positive operator valued measures (POVMs)
that are not projection-valued, and unsharpness quantifies the extent to which such an observable
differs from the corresponding sharp one [7]. These relationships are thus more than simply formal
expressions of complementarity; they represent precise limits within which joint measurements can
be accomplished [8] and can be seen as consequences of the noncommutativity of these observables.
They are thus typically viewed as highlighting “an important nonclassical feature of quantum
mechanics” cf. [9].

Three forms of traditional uncertainty relations or, more precisely, indeterminacy relation related
to that introduced by Heisenberg [1] have been identified, namely state preparation indeterminacy,
joint-measurement inaccuracy and accuracy–disturbance trade-off, which have often been confused
or conflated [9]. It was the last that Heisenberg initially engaged, in the case of continuous position
and momentum observables, by considering a sequence of measurements in which a measurement of
sharp momentum is followed by an approximate position measurement that finally yields an unsharp
momentum, which, for clarity, can be written

δqDp ≥ h̄/2 (1)

where δq indicates the accuracy of the position measurement and Dp is a measure of the disturbance of
an initially sharp momentum value. More generally, the disturbance of the distribution of an observable
B through a measurement of observable A can be expressed as the change in the variance of B,
which could be arranged initially to be zero, after the selective measurement of A [10].

In recent years, an additional perspective on joint indeterminacy has been explored that also
yields inequalities, which, in contrast to traditional uncertainty relations, directly involve probabilities
of sharp measurement outcomes. These inequalities have been shown to arise from what Boole called
“conditions on possible experience” [11]. They can be considered indeterminacy relations because,
among other things, they express quantitatively the complementarity of some pairs of alternatively
measurable quantities [12]. Their formulation depends by construction on the existence of classical
probability distributions [13] of the sort traditionally associated with a lack of information about
propositions regarding possible events [14] but are obtained for systems in pure states. This raises the
question of the basis of the quantum character of these inequalities, unlike the original indeterminacy
relations, which have always been seen as distinctly quantum in nature, no matter the form in which
they are presented.

In this brief review of recent work, it is seen that these novel indeterminacy inequalities are
nonclassical despite their relationship to Boole’s conditions of possible experience because the
propositions involved are restricted by the geometry of quantum physical state space, which can
be presented as a Hilbert space. Finally, recent work reconceptualizing quantum states spaces via
category theory is described that offers a promising new direction of research differing from the
quantum logical approach in which the indeterminacy inequalities, which are our main focus here,
were first presented.

2. Indeterminacy and Possible Experience

Although the indeterminacy relations have most often, though not exclusively, been considered
for continuous variables, as in the archetypical example, Inequality (1), here, we are concerned
primarily with discrete quantities.The newer quantum indeterminacy inequalities considered here are
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also ones naturally constructed for individual systems and are not violated by microscopic systems,
in contrast with Bell-type inequalities, which are of a classical character, involve extended compound
systems, and can be violated by the behavior of microscopic systems.

The novel sort of indeterminacy relation of interest here was first set out by Itimar Pitowsky who
sought to connect with quantum mechanics the result of Boole that identifies necessary and sufficient
conditions for a set of rational numbers p1, p2, ..., pn to represent properly the probabilities, considered
(relative) frequencies, of the occurrence of a set of n logically connected events E1, . . . , En [11]. Pitowsky
noted, in particular, that Boole [13] had identified necessary and sufficient conditions for his “conditions
of possible experience”

pi = prob(Ei) i = 1, 2, ..., n (2)

The most important characteristic of these conditions is that they are entirely of the form of linear
inequalities or equalities in p1, p2, . . . , pn. As others have, e.g., [15], Pitowsky also noted that the
(inherently classical) Bell-type inequalities, e.g., [16], can be shown to follow from such conditions
on joint probability distributions that are based entirely on basic elementary assumptions of classical
probability theory and/or propositional logic, presumably indicating their independence of some
or most of the particulars of physics [17,18]. Quantum mechanics cannot provide the classical
probability distributions for the expectation values of all quantum observables required for satisfaction
of Bell’s inequality for joint systems. This is one reason that these probabilities, considered as
relative frequencies of microphysical events and corresponding to distinct samples, sometimes violate
some of Boole’s conditions associated with these events [19]. In obtaining indeterminacy relations,
Pitowsky turned his attention also to the application of the result of Boole to single-component systems.

Boole had noted that, if the events under consideration are entirely independent, then the fractions
corresponding to probabilities might be constrained only by the conditions:

pi ≥ 0, pi ≤ 1 (3)

Boole showed, however, that the expression for sets within possible experience must take the
simple form:

a +
N

∑
i

ai pi ≥ 0 (4)

where a, ai are constants involving the logical relations that constrain them [13]. It is this set of classical
conditions on probabilities that were shown by Pitowsky, in the case of probabilities of correlation,
to lie within n-dimensional polytopes [17]. Recall that a polytope is the convex hull conv(v1, . . . , vn) of
a finite number of points in Rd, that is, the set of all convex combinations of its points. These polytopes
are of dimensions given by the number of the events involved and have facets determined by these
equations. Any violation of these conditions is manifested geometrically by the location of points
(corresponding to probabilities) outside of the polytope dictated by the conditions (4).

Pitowsky first noted how the conditions on possible experience can be methodically constructed
from the logical relations among sets of possible events, thereby revealing the relationship
between Boole’s original problem concerning probabilities and propositional logic, as follows [11].
Pitowsky considered, as the simplest example, a pair of events E1, E2 having relative frequencies p1, p2,
taking p12 to denote the frequency of the joint event E1 ∩ E2. He showed that one can then find Boole’s
conditions on the numbers p1, p2 and p12, first seeing that these have the following relations:

p1 ≥ p12, p2 ≥ p12, p12 ≥ 0 (5)

The frequency of E1 ∪ E2 is then p1 + p2 − p12 with

p1 + p2 − p12 ≤ 1 (6)
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He then pointed out that the relations (5) and (6) together are also necessary and sufficient for
these numbers to be the frequencies of two events and their joint event, that is, Boole’s conditions of
possible experience there.

One has a corresponding three-dimensional space of vectors (p1, p2, p12) that can be viewed as
a convex polytope with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1) as well. This is so because every
convex polytope in a Euclidean space is describable via its facets; in such a description, a given vector
is an element of the polytope if and only if its coordinates satisfy a set of linear inequalities representing
the spaces the intersections of which defines the polytope. The connection with logic was made by
Pitowsky through the truth table for the two propositions corresponding to the two events, which has
rows corresponding to the vectors for these vertices [11].

The above is the simplest example of Pitowsky’s general algorithm for arriving at Boole’s
conditions in any given case; the algorithm for the general case is the following. Given the probabilities
of a number of logically connected events, for example, the relative frequencies as exemplified
above, one considers the logical connections of the propositional (that is, Boolean) formulas and
its corresponding truth table. The convex hull of the rows of this table provides a polytope for
which there are corresponding inequalities (possibly including equalities), which are exactly Boole’s
conditions of possible experience for the set of events considered. The existence of this method for
obtaining inequalities involving individual probabilities and correlations, because the inequalities
are derived beginning from basic principles of classical, that is, Boolean logic might suggest that the
resulting uncertainty-type relations are classical results. However, so long as the probabilities entering
into the conditions of possible experience derive from a common sample, the resulting expressions
will not conflict with the behavior of quantum systems [11]. These points regarding the nature of these
inequalities are discussed further below.

In order to provide a specific example of this new class of indeterminacy relation, Pitowksy considered
a scenario in which there is a set of measurements known to have as outcomes 0 and 1, such as the
practical example of measurements on a squared value S2

i of the component of spin along orthogonal
spatial directions (for a spin-1 system) [12]. In this case, the basic operators Si do not commute and so
cannot be precisely measured simultaneously while their squares S2

i do. Note that these observables
play a prominent role in the “free will theorems” of Conway and Kochen [20,21]—cf. [22], Chapter 4,
for an extended discussion of these theorems in relation to probability as indeterminacy. S2

i = 2I,
where I is the identity, so that in a simultaneous measurement of these spin-squared operators, one and
only one of these observables will have the value 0, while the others take value 1. To connect this with
experience, note that there is a measurement that can be performed in practice via the measurement
of the observable H = S2

x − S2
y using an electrostatic field with possible outcomes 1, 0, and −1; these

three values correspond to the values of S2
y, S2

z and S2
x, respectively, being 0.

This spin-squared measurement example is an illustration of the general situation corresponding
to measurements with a triple of possible outcome events; the possible results are:

〈E1, E2, F2〉 , 〈E1, E3, F3〉, 〈E2, E4, E6〉 (7)

〈E3, E5, E7〉 , 〈E6, E7, F〉 , 〈E4, E8, F4〉 (8)

〈E5, E8, F5〉 (9)

where the events that appear in more than one measurement are indicated by Ei and those that appear
in only one triple are indicated by Fi [12]. When an event Ej is shared, its complement Ēj in the set is
also implicitly shared from the logical point of view. Each of these situations corresponds to a Boolean
algebra. Recall that, in general, a Boolean algebra Bn is an algebraic structure given by the collection of
2n subsets of the set I = {1, 2, . . . , n} and three operations under which it is closed: the two binary
operations of union (∪) and intersection (∩), and a unary operation, complementation (¬). In addition
to there being complements (and hence the null set ∅ being an element), the following conditions
hold of a Boolean algebra: (i) commutativity: S ∪ T = T ∪ S and S ∩ T = T ∩ S; (ii) associativity:



Mathematics 2016, 4, 40 5 of 10

S ∪ (T ∪U) = (S ∪ T) ∪U and S ∩ (T ∩U) = (S ∩ T) ∩U; (iii) distributivity: S ∩ (T ∪U) = (S ∩
T) ∪ (S ∩U) and S ∪ (T ∩U) = (S ∪ T) ∩ (S ∪U); (iv) ¬∅ = I, ¬I = ∅, S ∩ ¬S = ∅, S ∩ ¬S =

I, ¬(¬S) = S, for all its elements S, T, U. In the current setting, ¬E corresponds to Ē, I corresponds to
1 and ∅ corresponds to 0. Thus, above, a logical complement, e.g., Ē1, within a triple, refers simply
to the disjunction of the remaining two possible outcomes in any triple in which the event occurs,
so that Ē1 = E2 ∪ F2, etc. To connect this situation with experience, note that if x′ and y′ are two
orthogonal directions such that x, y, z and x′, y′, z′ form two orthogonal triples having a common
z-direction, then operators H (above) and H′ = S2

x′ − S2
y′ will not commute, but the Hilbert-eigenspace

corresponding to the eigenvalues 0 of the two will be the same.
In accordance with the principle of noncontextuality of probability—the requirement that probability

assignments do not depend on the outcomes of measurements of other observables that might be
measured at the same time [23,24]—the same probability is to be assigned to each event above in all
cases it which it appears. Following Pitowsky, one notes that the sum of the probabilities in each triple
of possible outcomes must sum to unity, so that

p(E1) + p(E2) + p(F2) = 1 (10)

p(E1) + p(E3) + p(F3) = 1 (11)

p(E2) + p(E4) + p(E6) = 1 (12)

p(E3) + p(E5) + p(E7) = 1 (13)

p(E6) + p(E7) + p(F1) = 1 (14)

p(E4) + p(E8) + p(F4) = 1 (15)

p(E5) + p(E8) + p(F5) = 1 (16)

Then, given the requirements on probability shown above as the Inequalities (3), Equations (10)–(16)
imply, for example, the indeterminacy inequality [12]

p(E1) + p(E8) ≤ 3/2 (17)

As one of the outcomes E1 and E8—which cannot arise as alternative outcomes of the same
measurement—becomes more certain (as expressed by an increased probability of occurrence), the
other becomes less certain (as expressed by an decreased probability of occurrence). Inequality (17) is
seen to express an indeterminacy (uncertainty) relation; it expresses quantitatively that the alternative
measurements likelihoods are complementary [12].

Thus, one sees that an indeterminacy relation arises beginning from the consideration of
a collection of sets of alternative events in Boolean logic within single measurements with the
two events involved in the inequality resulting from a collection of such measurements as outcomes of
different measurements.

3. Logic and Experience in Quantum Mechanics

The novel type indeterminacy inequality given as Inequality (17) differs prima facie from the
traditional type shown in Inequality (1) in that it was derived beginning from rules of Boolean logic
applied to sets of measurements rather than, for example, a derivation involving the noncommutativity
of the Hermitian operators representing the observables of quantum mechanics. However, the mathematical
formalism of quantum mechanics has a natural translation into logic, as has been demonstrated
throughout the long development of logics in the quantum setting originating in the work of Birkhoff
and von Neumann [25], which follows from the fact that every one-dimensional subspace of the
Hilbert space of a system corresponds to an atomic proposition describing a physical possibility and
orthogonality in Hilbert space of subspaces corresponds to negation, cf. [26–31].



Mathematics 2016, 4, 40 6 of 10

The axiom used by the Birkhoff and von Neumann differing from those in classical logic is
irreducibility, that is, for some event z and all events x:

x = (x ∩ z) ∪ (x ∩ z⊥)⇒ z = 0 or z = 1 (18)

where ⊥ indicates negation; in contrast, in classical logic, it is assumed for all pairs of events x and
z that

x = (x ∩ z) ∪ (x ∩ z⊥) (19)

(reducibility).This difference can be seen as underlying quantum indeterminism, in that, intuitively,
irreducibility reflects the uncertainty relations: when x cannot be presented as the union of its
intersection with z and its intersection with the complement of z, then x and z cannot be assigned
definite values at the same time [32].

Pitowsky viewed the basis of the novel type of indeterminacy relation as involving logic in the
quantum setting in the following way. The starting point of his broad view of the foundations of
quantum mechanics was to connect the axioms of Birkhoff and von Neumann axioms with probability
via Gleason’s theorem. This theorem is the result that the only probability measure that can be defined
noncontextually on a Hilbert space of dimension three or greater yields precisely Born’s probability
rule [33]. For the three-dimensional case, the generalized probability measures considered in relation
to the closed linear subspaces of Hilbert space involve a map, f , from the closed linear subspaces of
H3 to the closed unit interval, satisfying the conditions:

f a + f b ≤ 1 (20)

when a ⊥ b and
f a + f b + f c = 1 (21)

when the rays a, b, c are all mutually orthogonal. A generalized two-valued measure takes values
in {0, 1}; such measures can be interpreted as probability measures when the rays are taken to represent
propositions, which, if 0 and 1 are interpreted as false and true, respectively, provide a generalized
truth-value assignment. Pitowsky argued that because “quantum ‘logic’ dictates the probabilistic
structure of quantum mechanics” so that the structure of quantum states can be viewed as determined
by the algebraic structure of the closed subspaces of Hilbert space, the relationship between the truth
values of one proposition and those of another depends on it.

In this picture, quantum states correspond to probability distributions over the set of atomic
propositions that appear in indeterminacy inequalities as described above. Thus, the indeterminacy
inequalities of Pitowsky are to be viewed as examples of a quantum “logical indeterminacy principle” in
that they depend on the negation relation between propositions on which quantum logic is developed,
whatever the logical novelties accompanying it. Pitowsky also noted that Gleason’s construction can
be considered in terms of orthogonality graphs, which allowed him to demonstrate that Gleason’s
theorem can be considered combinatorial in nature. Recall that a graph, in the sense relevant here,
is an ordered pair G = (V, E) comprising a set V of vertices, nodes or points together with a set E of
edges, arcs or lines, which are two-element subsets of V. Pitowsky showed, in particular, that Gleason’s
demonstration depends only on a finite graph structure [34].

Given any two distinct nonorthogonal rays, one can construct a finite set of rays that contains
them and is such that no probability distribution on that set assigns to both of them probability zero or
one unless they are both false. Pitowsky formalized the corresponding logical indeterminacy principle
as follows:

The Indeterminacy Principle: Let a and b be two distinct nonorthogonal unit vectors.
Then, any quantum state f must satisfy f a + f b ∈ {0, 1} only if f a = f b = 0.
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This indicates that no quantum state can determine two propositions corresponding to different
Hilbert space eigenbases unless they are both attributed probability 0. For the cases of Hilbert space
dimension greater than 2, this principle is a corollary of Gleason’s theorem [34]. This shows that the
principle of indeterminacy, a relationship between probabilities, can also be converted into a theorem
of propositional logic in the above quantum setting, often called quantum logic.

William Demopoulos criticized Pitowsky’s fundamentally logic-based approach to possible
experience by focusing on explanation. Demopolous argued that, in the case of quantum mechanics,
it is not the state as a collection of true propositions about a quantum system that explains its
statistical predictions but, instead, “the systematic representation of the ‘distribution’ of the propositions
formulable about the system” that does the explanation [35], so that it is the latter that is of primary
importance. Accordingly, his view of Pitowsky’s indeterminacy principle is that its real significance
lies in its showing that quantum states yield precise knowledge of the truth values of complementary
propositions only when we can know neither proposition. Demopoulos argues that this is so because
the quantum probability assignments depend on the geometry of the propositions. His interpretative
position thus differs from the quantum logical sort of interpretation of quantum mechanics, a central
idea of which is to explain the statistical relations of the theory via a logical structure as a possibility
structure on the basis of which the totality of all possible statistical states is given, justified by Gleason’s
theorem. For Demopoulos, the “mixing of geometry and logic is a feature that sets quantum mechanics
apart from classical mechanics,” with an emphasis on the geometrical properties of quantum theory.

In more general terms, Demopoulos holds that quantum mechanics is to be viewed as a minimally
a priori theory: elementary propositions are characterized by the minimal logical space (the free
partial Boolean algebra) and the criterion of application for the property each contains. The criterion is
an operational procedure indicating perfectly whether the property is present or absent [35]. Recall that
a partial Boolean algebra is the union of a family of Boolean algebras having a common null and unit
and obeys the following conditions: (i) the intersection of two algebras of the family is an algebra
of the family; and (ii) if every pair of elements in {P1, ..., Pn} belongs to an algebra of the family,
then there is an algebra containing all the Pi, for i = 1, . . . n. It can be viewed in this way as a sort
of “pasting together” of Boolean algebras. He singles out for special attention the partial Boolean
algebra consisting of a family of four-element Boolean algebras with a continuum number of free
generators such that any pair of algebras of the family share only their unit and null, precisely because
its elementary propositions are logically independent and minimal nonzero elements of the algebra,
and can be viewed as representing the possibility structure of quantum propositions, in contrast with
classical ones. This is the partial Boolean algebra isomorphic to the partial Boolean algebra of rays
through a point of the Euclidean plane having the following correspondences: the intersection of
subspaces is the Boolean meet and the Boolean is the span of subspaces, with the complement being
the orthogonal complement. Freeness is the property that every function on a free set of generators is
uniquely extendible to a homomorphism into an arbitrary partial Boolean algebra.

Demopolous uses the notion of freeness to connect knowledge and information with this geometry,
invoking the following temporal “analogy”. A quantum system is to be to be thought of as starting
from a state that admits the possibility of possession of complete information of it and then to evolve
into a state of information given by some higher dimensional partial Boolean algebra of propositions
provided by the Hilbert-space formalism of the theory. That is, the initial state of information is given
by a partial Boolean algebra that represents all the elementary propositions as being independent in
the same way as algebra of subspaces of the two-dimensional case. He argues that, in the general case,
the quantum probability assignments depend on the “geometry” of the propositions given by their
representation in B(Hn) because “complete knowledge of the truth values of possible propositions
regarding a system is not possible”; the information about one proposition regarding a quantum
system that is relevant to that of another has a special geometric dependence which is encoded in
the theory. Although this is logical, in that it has a mathematical representation that can be viewed
formally as a generalization of the Boolean algebraic structures, Demopoulos is arguing that the new
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indeterminacy relations depend on the underlying geometry of quantum probability and involve more
than logic.

The new sort of indeterminacy relation produced by Pitowsky can then be considered quantum
in character fundamentally because its instances are derived on the basis of orthogonality relations of
Hilbert space, and this space differs geometrically from classical state space. Demopoulos considers the
true significance of these relations to be as illustrations of the nature of the distribution of information
about the properties of the world constituted by quantum systems that is reflected in this geometry.
Returning then to the question first considered far above, namely that of why the logical uncertainty
relations are always obeyed in the quantum domain, whereas the Bell inequalities can be violated there,
one can see an answer in the fact that the Bell inequalities are fully classically derived and involve
neither the relationship between propositions nor the constraints imposed on quantum mechanical
probabilities by the geometry of the complex Hilbert space: Bell-type inequalities allow for the existence
of probability distributions that are automatically precluded by the orthogonality relations of Hilbert
space that enter into the quantum probabilities appearing in Pitowsky’s relations.

Finally, let us look beyond the main topic of this review toward newer, related mathematical
work, noting that Demopoulos’ reaction to Pitowsky’s new indeterminacy relations can be seen as part
of an emerging re-engagement of the relationship between logic and experience at the fundamental
level and noting that it is not the only manner of doing so. Most recently, others have explored this
mathematical situation along two other, differing avenues by involving category theory.

Within the topos approach begun by Chris Isham and Jeremy Butterfield and continued with
Andreas Doering and others, it was noted that there is an associated intuitionist logic that can be
used that has the potential to avoid difficulties encountered in the quantum logical approach, one
considering the formal language of quantum theory via the notion of Boolean contexts [36,37]. A topos
is a category that can be considered a generalized universe of sets with an internal intuitionist logic
offering the possibility of distributivity that promises greater structural similarity with classical theory.
For example, one can proceed by defining an arrow from the state object (state space) to a quantity-value
object generalizing the real line that parallels the traditional functions that map states to real values and
introducing contexts as follows. One considers noncommutative spaces, for exampleA, a noncommutative,
unital C∗-algebra (or von Neumann algebra) of physical quantities of system S and the set V(A) of
nontrivial counital commutative C∗ (or von Neumann) subalgebras, partially ordered under inclusion
having elements that are the contexts, with V(A) being the context category. It has been shown that it is
possible to provide further structures such that, for each context, one has a local state space (a compact,
Hausdorff space) on which all physical quantities can be given as continuous, real-valued functions.
These local state spaces are then arranged so as to constitute a single global object, the spectral presheaf,
which is a noncommutative space that serves as the full state space of the quantum system which,
however, has no global elements, as one would expect given the Kochen–Specker theorem [38].

The second of these two new approaches is the categorial semantics approach engaged by Elias
Zafiris and Vassilios Karakostas, where one considers Boolean frames: Boolean algebras are pasted
together so as to reconstruct geometrically structures associated with quantum logic [39]. The main
idea of this approach is the introduction of a topological covering scheme of a quantum event algebra
of families of local Boolean logical frames; these frames provide local covers of a quantum event
algebra via complete Boolean algebras. The local Boolean covers capture individually complementary
features of a quantum algebra of events and collectively provide its categorical local decomposition
in the terms of Boolean logical frames while requiring compatibility between overlapping local
Boolean covers. In particular, one sets up a categorical adjunction between sheaves of variable local
Boolean frames, which constitute a topos, and the category of quantum event algebras. It was shown
by these investigators that the quantum event algebras can be provided object of truth values with
which to assign truth values to propositions describing quantum systems [40].
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4. Conclusions

The introduction of quantum indeterminacy relations derived from conditions of possible
experience is a significant step in the exploration of fundamental notions of quantum mechanics
and their relationships to experience, logic and geometry. These “logical indeterminacy relations” were
grounded by Pitowsky in such conditions, which were first formulated by Boole. Differently from the
sort of reciprocity first captured by the Heisenberg-type uncertainty relations, and later explored by
others in relation to unsharp measurement, the latter are used to find inequalities directly between
probabilities of various outcomes of sharp measurements.

It was seen here that these novel inequalities are always obeyed, even though the Bell-type
inequalities, also derivable via Boolean conditions of possible experience, can be violated by virtue
of the relationship of the propositions involved in the former to Hilbert space geometry. It was also
seen that, although these novel indeterminacy relations might be thought to be, in some sense, more
classical than the Heisenberg relations due to the Boolean elements of their deriviation, this is not so;
again, the logical and geometrical properties of the Hilbert space formalism, within which quantum
states and observables are definable, differ from those of classical states and properties sufficiently to
provide the indeterminacy relations a nonclassical character.

Finally, with an eye toward future developments related to these indeterminacy relations,
two novel approaches intended to capture and reconceptualize the complementarity between quantum
propositions, grounded in category theory, were pointed out. These are the topos approach, which involves
intuitionist logic, offering the possibility of distributivity and bearing greater structural similarity with
classical theory, and the categorical semantical approach, which invokes Boolean frames with Boolean
algebras being used to reconstruct geometrically structures associated with quantum logic.

Acknowledgments: I thank Paul Busch for his valuable assistance during the preparation of this article.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Heisenberg, W. The Physical Principles of Quantum Theory; University of Chicago Press: Chicago, IL, USA, 1930.
2. Lahti, P. Uncertainty principle and complementarity in axiomatic quantum mechanics. Rep. Math. Phys.

1980, 17, 287–298.
3. Mackey, G.W. Mathematical Foundations of Quantum Mechanics; W.A. Benjamin, Inc.: New York, NY, USA, 1968.
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