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SUMMARY

Metabolic flux is in part regulated by endogenous
small molecules that modulate the catalytic activity
of an enzyme, e.g., allosteric inhibition. In contrast
to transcriptional regulation of enzymes, technical
limitations have hindered the production of a
genome-scale atlas of small molecule-enzyme regu-
latory interactions. Here, we develop a framework
leveraging the vast, but fragmented, biochemical
literature to reconstruct and analyze the small mole-
cule regulatory network (SMRN) of the model organ-
ism Escherichia coli, including the primary metabo-
lite regulators and enzyme targets. Using metabolic
control analysis, we prove a fundamental trade-off
between regulation and enzymatic activity, and we
combine it with metabolomic measurements and
the SMRN to make inferences on the sensitivity of
enzymes to their regulators. Generalizing the anal-
ysis to other organisms, we identify highly conserved
regulatory interactions across evolutionarily diver-
gent species, further emphasizing a critical role for
small molecule interactions in the maintenance of
metabolic homeostasis.

INTRODUCTION

Despite nearly a century of accumulated experimental data on

the identity, biophysical nature, and structural basis of small

molecule regulation of enzymes, there has been little progress

in elucidating at genome-scale the regulation of enzymes by

small molecules. Such interactions, e.g., allosteric regulation or

competitive inhibition, play an essential role in homeostasis

and in fast adaptations to abrupt environmental changes. For

instance, feedback inhibition of amino acid biosynthesis path-
2666 Cell Reports 20, 2666–2677, September 12, 2017 ª 2017 The A
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ways by end products preserves anabolic resources when suffi-

cient levels of amino acids are available (Stryer et al., 2002).

In contrast, the ultrasensitive feedforward activation of PEP

carboxylase by fructose bisphosphate in glycolysis enables

Escherichia coli to rapidly import glucose following periods of

carbon starvation (Xu et al., 2012a).

Recently, it has been established that properly accounting for

the activation/inhibition of enzymes by endogenous small mole-

cules can lead to metabolic models that explain experimental

data better (Chandra et al., 2011; Hackett et al., 2016; Khodayari

and Maranas, 2016; Link et al., 2013; Xu et al., 2012a), facilitate

engineering of novel metabolic pathways (Chen et al., 2015; He

et al., 2016), and improve our understanding of metabolic

phenomena in health and disease (Christofk et al., 2008). So

far, high-throughput experimental assays for discovering small

molecule regulatory interactions have been technically limited

(Feng et al., 2014; Li et al., 2013; Nikolaev et al., 2016; Orsak

et al., 2012; Reinhard et al., 2015; Savitski et al., 2014), while

hybrid approaches that integrate experimental data with compu-

tational models are not scalable and typically focus on central

carbon metabolism (Hackett et al., 2016; Link et al., 2013,

2014; Schueler-Furman and Wodak, 2016).

An alternative strategy for studying small molecule regulation

is to leverage the vast record of biochemical studies to informati-

cally reconstruct a small molecule regulatory network (SMRN)

(Alam et al., 2017). Such an approach would produce a network

of interactions between enzymes and metabolites/small mole-

cules (terms we use interchangeably here) that mirrors the native

interactions of metabolites as substrates for enzymes and could

be naturally integrated with genome-scale metabolic models

(GSMMs, e.g., Biochemical, Genetic and Genomic [BiGG]

models; King et al., 2016), which are in wide use today. An infor-

matic approach would likely cover a larger swath of metabolism,

including peripheral and rarely studied pathways, by aggregating

experimental data from many reports. Furthermore, reports of

small molecule/enzyme regulation from separate publications

could provide additional, independent evidence for such an
uthors.
commons.org/licenses/by/4.0/).
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Figure 1. Framework for Reconstruction

and Analysis of the Small Molecule Regula-

tory Network

The BRENDA and BioCyc databaseweremined for

each reaction taking place in E. coli. The identified

entries (including data on EC numbers, enzyme

names, activating or inhibiting small molecule-

enzyme interactions, metabolite names, and KM

and KI values) were stored and then matched by

EC number to reactions in the most recent

genome-scale reconstruction of E. coli, iJO1366.

This dataset was searched and analyzed for reg-

ulatory small molecules, yielding a comprehensive

SMRN. The SMRN was used as the primary

resource for the remainder of the analysis. We

analyzed the topological properties of the SMRN,

evaluated the similarities and differences in the

kinetic properties of reactions and interactions,

and used published metabolite concentration data

in order to evaluate the functional role of inhibitory

small molecule-enzyme interactions.
interaction. Finally, an informatically reconstructed SMRNwould

also offer a window to distilling how the critical regulatory com-

ponents of the cell, i.e., the regulating metabolites and the regu-

lated enzymes, fit into the broader hierarchy of processes con-

trolling metabolic flux, from thermodynamics to transcriptional

regulation.

Here, we report a computational framework for investigating

small molecule regulation across the complete metabolism

of an organism. Using E. coli as a model, we assemble a

genome-scale SMRN by mining the Braunschweig Enzyme

Database (BRENDA) (Chang et al., 2009, 2015) and BioCyc data-

base (Caspi et al., 2016). The resulting atlas of small molecule

regulation captures widespread inhibition and activation of

metabolic enzymes by endogenous metabolites. Overlaying

this network onto a genome-scale metabolic model of E. coli en-

ables a direct comparison between the topology of metabolism

and its regulatory scaffolding. Integrating the SMRN with exper-

imentally determined metabolite concentrations and binding

affinities exposes how cells balance between the dual roles of

small molecules (i.e., as substrates or inhibitors) as well as their

condition-dependent contribution to metabolic flux regulation.

Finally, by a natural extension of our approach, we compare

the incidence of small molecule regulatory interactions across

phylogenetic taxa spanning all kingdoms of life, revealing a

handful of canonical regulatory interactions that permeate the

metabolism of widely divergent species.

RESULTS

Assembling an SMRN
In contrast to the proliferation (Orth et al., 2011; Thiele et al.,

2009) and automated reconstruction (Henry et al., 2010) of

genome-scale metabolic models, no analogous computational

pipeline is available for the analysis of enzyme regulation by

small molecules. Here we describe a pipeline for mining existing

data on small molecule regulation from public repositories and

computational tools for integrating it with a curated, genome-

scale metabolic model (Figure 1).
Our general approach relies on the BRENDA and BioCyc

database for data concerning the inhibition or activation of

enzymes by small molecules in a particular organism. To facili-

tate comparison across species, information in these data-

bases is organized along Enzyme Commission (EC) numbers,

which functionally classify enzymes according to the reaction

they catalyze. Thus, for every EC number, we obtained a list

of possible regulating small molecules, the type of interaction

(activation versus inhibition), and the interaction constant (KI),

if available. In addition to gathering data on the presence

of a small molecule interaction, we also compiled available in-

formation on the Michaelis-Menten constants for the substrates

of each metabolic reaction. The computational pipeline is

freely available for download at https://github.com/eladnoor/

small-molecule-regulation.

Because of its well-defined genome, highly curated metabolic

network, and heavily studied metabolism, we decided to focus

on the model bacterium E. coli. The assembled data described

above was mapped onto a genome-scale metabolic reconstruc-

tion of E. coli (Orth et al., 2011), producing an SMRN (Table S1).

Importantly, our computational framework can be extended

with minimal effort to reconstruct and analyze the SMRN of

other organisms besides E. coli, provided that a genome-scale

metabolic model is available and there is sufficient data in the

BRENDA and BioCyc database.

Landscape of Interactions in the E. coli SMRN
The computationally reconstructed E. coli SMRN contains 1,669

unique interactions between 321 unique endogenous metabo-

lites and 364 unique enzymes (EC numbers) (Figure 1). The

vast majority (83%) of these interactions are inhibitory. Of the

�700 unique EC numbers in the E. coli model, about half are

regulated by at least one native metabolite in E. coli. Similarly,

�320 distinct native metabolites (of the total �1,000) regulate

at least one enzyme (Figures 2A and 2B). Figure 1 provides a tally

of interactions and kinetic constants recovered from the

BRENDA and BioCyc database. We additionally found that 325

of the 1,669 interactions in the SMRN are supported by 2 or
Cell Reports 20, 2666–2677, September 12, 2017 2667

https://github.com/eladnoor/small-molecule-regulation
https://github.com/eladnoor/small-molecule-regulation


A B

C D

Figure 2. Overview of Small Molecule Inter-

actions from the BRENDA

(A and B) Statistics of the computationally re-

constructed E. coli SMRN, covering the pro-

portions (A) of 1,039 E. coli metabolites that are

inhibitors, activators, or both and (B) of 669 E. coli

enzymatic reactions that are inhibited, activated,

or both.

(C and D) Scatterplots depicting the number of

activating and inhibiting interactions in which (C)

each metabolite and (D) each reaction partici-

pates.
more independent literature references, which may be treated in

the future as an informatic surrogate for the likelihood that the

interaction is functionally relevant in vivo.

Certain metabolites and EC numbers participated in excep-

tionally high numbers of regulatory interactions (Figures 2C and

2D). In particular, the cofactors ATP, AMP, ADP, PI, PPI, NADPH,

and GTP together with the metabolites cysteine, pyruvate, and

phosphoenolpyruvate (PEP) were the most frequent metabolite

regulators, participating in at least 15 interactions (both inhibitory

and activating). Notably, ATP was found to regulate 57 different

reactions, reflecting its important role as a global reporter of the

energetic status of the cell (Atkinson, 1968). Although not strictly

molecules, metal ions were found to comprise a significant frac-

tion of the group of small molecule regulators. Interestingly, po-

tassiumwas themost frequently reported activator, likely reflect-

ing the ability of monovalent cations to activate a broad group of

enzymes (Page and Di Cera, 2006). Divalent cations, on the other

hand, were among the most recurrent inhibitors, with zinc having

more than 50 reported interactions and copper, calcium,manga-

nese, mercury, iron, and magnesium each reported to inhibit

more than 20 different reactions.

Small molecules can regulate enzymes for which they are not

native substrates or products, potentially as a mechanism for

long-distance signaling between metabolic pathways without

direct connection via their reactants. Therefore, we investigated

the distance covered by small molecule regulation (i.e., the

shortest graph-distance between each regulatory metabolite

and its targeted enzyme), using the genome-scale stoichiometric
2668 Cell Reports 20, 2666–2677, September 12, 2017
network of E. coli as a scaffold. As

described in the Experimental Proced-

ures, this distance corresponds to the

number of reactions a metabolite must

traverse in order to reach a target

enzyme.We found that enzymes are typi-

cally regulated by metabolites that are in

their close vicinity. Specifically, 17% of

inhibitory interactions are also reactants

of the corresponding enzyme, 25% are

only one enzymatic step away, and 35%

are two steps away. Activating interac-

tions tend to have slightly longer range in-

teractions, with only 8% of activators

regulating enzymes that utilize them as

substrates (Figure S1).
To obtain specific insight on how small molecule-enzyme

interactions operate across different metabolic pathways, we

used the genome-scale E. coli metabolic model (Orth et al.,

2010) to classify each reaction according to functional metabolic

subsystems.We found that most interactions in the E. coliSMRN

seem to target seven main subsystems/pathways: cofactor

biosynthesis, alternate carbon metabolism, nucleotide salvage

pathway, arginine/proline metabolism, nucleotide biosynthesis,

cell envelope biosynthesis, and glycolysis/gluconeogenesis

(Figure S2). Interestingly, some canonically high-flux pathways

(e.g., the tricarboxylic acid (TCA) cycle and the pentose phos-

phate pathway) were regulated by comparatively few metabo-

lites. It is possible that such pathways are sparsely regulated

by small molecules because they are mostly regulated transcrip-

tionally, as has been recently suggested for TCA cycle genes

(Chubukov et al., 2013; Gerosa et al., 2015).

Further mining of this rich dataset revealed pathway-specific

preferences for the regulatory targets of certain small molecules.

Inparticular, PEP, citrate, andAMPeachactivated 3ormore reac-

tions in the glycolysis/gluconeogenesis pathway, suggesting that

these threemetabolites actascritical sensorscontrolling theover-

all rate and direction of glucose metabolism. Similarly, a group of

nucleoside triphosphates, deoxynucleoside triphosphates, and

adenosine appear to specifically inhibit enzymes in three path-

ways related to nucleotide metabolism (nucleotide salvage, pu-

rine/pyrimidine biosynthesis, and prosthetic group biosynthesis),

perhaps reflecting a negative feedback loop for the maintenance

of adequate levels of various nucleotides (Figure S2).
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Figure 3. Small Molecule Regulatory Network of E. coli Central

Carbon Metabolism

Depiction of the small molecule regulatory interactions in the central carbon

metabolism of E. coli. Redmetabolites are inhibitors and greenmetabolites are

activators of the indicated reactions. Another view of this SMRN is given in

Figure S3, showing clearly which reactions are inhibited, activated, or both.
Design Principles in the Regulation of Central Carbon
Metabolism
Central carbon metabolism, encompassing glycolysis, the

pentose phosphate pathway, and the TCA cycle, provides all

the energetic and biosynthetic precursors for the cell, and it is

known to be highly transcriptionally, post-translationally, and

allosterically regulated (Chubukov et al., 2014). The central meta-

bolism of E. coli is also one of the few parts of metabolism where

in vivo evidence is available to support the functional role of small

molecule regulation, e.g., in order to induce flux reversal (Link

et al., 2013). In silico efforts to model the response of central

metabolism to nutrient perturbations, combined with experi-

mental data, have highlighted the fact that our understanding

of the intricate regulation of central metabolism is incomplete

(Gerosa et al., 2015; Hackett et al., 2016; Kochanowski et al.,

2013; Link et al., 2013; Xu et al., 2012a).

Themajority of enzymes in E. coli’s central carbonmetabolism

are regulated (Figure 3; Figure S3), and they interact with more

small molecules than average in the SMRN (Figure S1), reflecting

the heavy research attention these pathways have historically
attracted. Interestingly, some of the enzymes in central meta-

bolism are very heavily regulated, specifically those in upper

glycolysis (e.g., fbpase, pfk, and fba), terminal glycolysis (pck,

ppc, pps, and pyk), and the branching reactions of the TCA cycle

(mae, aceA, and icd). Conversely, some metabolites seem to

have amore central role in certain regions of central metabolism;

PEP, for instance, regulates six reactions in glycolysis (pfk, pgi,

fbpase, fba, pps, and pyk).

A glance at the structure of small molecule regulation in

E. coli’s central metabolism strongly suggests that the distribu-

tion of regulatory interactions is non-random and has likely

been shaped by evolution. What are the pressures selecting

for regulatory interactions in E. coli’s SMRN? In this regard, the

theoretical and experimental literature has proposed a variety

of thermodynamic and economic arguments to explain patterns

of SMR interactions in central carbon metabolism. Below, we

evaluate the consistency of each hypothesis with data from the

E. coli SMRN.

One frequently cited hypothesis is that small molecule regula-

tion is concentrated in those reactions exhibiting a large drop

in free energy (Stryer et al., 2002). To evaluate this possibility,

we acquired thermodynamic data for most metabolic reactions

using the component contribution method (Noor et al., 2013).

Using reactions’ DGo together with reaction stoichiometry and

standard physiological metabolite concentrations of substrates

or products, we calculated a reversibility index (denoted G)

quantifying the extent to which each reaction is thermodynami-

cally reversible (Noor et al., 2012). Using two complementary

methods, we did not find the distributions of G values for regu-

lated/unregulated reactions in central carbon metabolism to be

statistically different (p value < 0.3, Mann-Whitney U test;

p value = 0.1, gene set enrichment analysis; Figure 4B). The

same result was observed when repeating the analysis on all

available reactions in E. coli (p value < 0.5, Mann-Whitney

U test; p value = 0.25, gene set enrichment analysis; Figure 4A;

Table S4). While many irreversible reactions in central carbon

metabolism were indeed regulated by small molecules, a similar

proportion of reversible reactions were also regulated. In partic-

ular, we found reactions, like 6-phosphogluconolactonase in the

PP pathway (EC 3.1.1.31, log10(G) = 4.17), that do not have any

reported small molecule interactions yet exhibit a large drop in

free energy. Similarly, many reversible reactions have several

regulators, as in the case of succinyl-CoA synthetase (EC

6.2.1.5, log10(G) = 0.09), which is inhibited by NADH and alpha-

ketoglutarate, or glucose-6-phosphate isomerase (EC 5.3.1.9,

log10(G) = 0.44), which is inhibited by PEP and 6PGC. Taken

together, our data do not support the hypothesis that thermody-

namically irreversible reactions aremore likely to be regulated by

a small molecule.

A second hypothesis is that cells use small molecule regula-

tion to conserve precious metabolic resources by preventing

futile cycling. We observed several examples of interactions in

the E. coli SMRN supporting this possibility. For example, fbpase

and pfk catalyze opposing reactions, and their simultaneous

operation leads to futile cycling (Daldal and Fraenkel, 1983).

Two metabolites (citrate and PEP) serve as activators for fbpase

and as inhibitors for pfk, thus curbing this futile cycle (Figure 3). A

similar regulatory architecture can be found in the regulation of
Cell Reports 20, 2666–2677, September 12, 2017 2669
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Figure 4. Thermodynamics, Saturation, and

Elasticity of Small Molecule Regulatory

Interactions in E. coli

(A and B) Comparison of reversibility indices (G)

(Noor et al., 2012) between regulated and un-

regulated reactions. jlog10(G)j reflects how much

freedom the reactants’ concentrations need for

reversing the flux. For instance, a reaction whose

jlog10(G)j > 3 would require a concentration range

of at least 1:103 (e.g., 30 mM–30 mM) in order to

reverse its direction. Physiological constraints

typically limit this range to 103–104. (A) shows

the cumulative distribution of jlog10(G)j for all re-

actions in the E. colimodel for which an equilibrium

constant could be computed using component

contributions (Noor et al., 2013). This means that

60%–70% of reactions are reversible, with virtually

no regard to whether they are regulated or not.

The difference between the distribution of jlog10(G)j
for regulated and unregulated reactions is not

significant (Mann-Whitney U test, p value < 0.5).

In (B), we focus only on reactions in central carbon

metabolism, where the difference is not significant

either (p value < 0.3).

(C) The distribution of measured metabolite con-

centrations, where the peak value is slightly below

�1 mM.

(D) The histograms of KM and KI values are signifi-

cantly different (Mann-Whitney U test, p value <

0.005). For a more detailed comparison on a

single-metabolite basis, see Figure S6.

(E and F) Conversion of measured binding con-

stants to saturation levels using measurements

of metabolite concentrations across 13 conditions

further highlights the difference between sub-

strates (KM values) and inhibitors (KI values) (Mann-

Whitney U test, p value < 10�72). When comparing

the distributions of scaled elasticities (F), we

find that inhibitors have significantly higher values

(p value < 10�44), and they seem to have a bimodal

distribution that is split exactly at 0.5. Note that

the absolute elasticity value for inhibitors is exactly

equal to the saturation, therefore, the blue histo-

gram is the same in (E) and (F). For substrates,

however, the elasticity is equal to 1 minus the

saturation, so the red histogram in (F) is the mirror

image of the one in (E).
the four reactions metabolizing PEP: PEP itself activates pyru-

vate kinase but inhibits the reverse reaction PEP synthase. Mov-

ing beyond anecdotal observations, we used a genome-scale

metabolic model (iJO1366; Orth and Palsson, 2012) to detect

reactions that can lead to futile cycling. We identified 58 non-

overlapping futile cycles, the majority of which comprise only

two reactions. Combining this information with the SMRN, we

found no statistically significant overrepresentation of small

molecule regulation in reactions that take part in futile cycling

(see the Supplemental Experimental Procedures). Our finding

here needs careful interpretation: the fact that futile cycle reac-
2670 Cell Reports 20, 2666–2677, September 12, 2017
tions are not more likely to be regulated

does not necessarily mean that conserva-

tion of resources is not important for
fitness. For example, it might be that many futile cycles are not

regulated because they are in the periphery of metabolism and

do not carry high flux, thus making their lack of regulation not

very costly for the cell; or, perhaps, most of these futile cycles

are avoided by preventing the co-expression of all cycle en-

zymes simultaneously. Indeed, the fact that fbpase and pfk are

often co-expressed in E. coli might be a rare case due to the

importance of glycolysis and the need for rapid adaptation of

its flux direction.

Besides the prevention of futile cycles, conservation of re-

sources also can be achieved by avoiding wasteful biosynthetic



overproduction. This could be implemented by control of supply

and demand of amino acids or nucleotides. In particular, SMR in-

teractions can prevent large fluctuations/instability in the con-

centrations of biosynthetic end products via feedback inhibition.

It is, therefore, often hypothesized that allosteric regulation of the

branching reactions from central metabolism leading to amino

acid biosynthesis may achieve accurate supply/demand control

(Hofmeyr and Rohwer, 2011; Hofmeyr and Cornish-Bowden,

2000) and, thus, prevent unnecessary waste. Interactions in

the E. coli SMRN are consistent with this hypothesis: analysis

of the SMRN revealed that 16 of the 20 amino acids regulate their

own biosynthesis using a negative feedback loop, i.e., by inhib-

iting the first enzyme of their biosynthetic pathway (Figure S4).

The remaining non-feedback-inhibitory amino acids (glycine,

alanine, aspartate, and glutamate) are 4 of the 5 cheapest ones

in terms of the energetic investment required to produce them

(Akashi and Gojobori, 2002; Link et al., 2015).

In summary, we found that one of the common (thermody-

namic) hypotheses regarding the incidence of small molecule

regulation is not supported by data from the E. coli SMRN, and

we found only anecdotal evidence for an enrichment of regula-

tion in futile cycles. We did, however, find compelling support

for an economic role of SMR interactions via feedback inhibition

of biosynthesis pathways, at least for 16 of the 20 amino acids.

The four exceptions to this rule, however, might prove to be

interesting cases where having a regulatory interaction is more

costly than the benefit it provides to the cell. In the following

sections, we elaborate on this cost, and we quantify it using

metabolic control analysis.

How Is a Metabolite’s Role as Regulator and Substrate
Balanced?
Small molecule metabolites serve two fundamentally distinct

roles in the cell: one, as substrates for metabolic reactions,

and another, as regulatory molecules affecting the activity of en-

zymes and transcription factors (Gerosa and Sauer, 2011). How

does the cell balance these two responsibilities, especially in

bacteria that have no intracellular compartments that could offer

spatial separation (Alam et al., 2017)? More specifically, are the

cellular concentrations of these metabolites and the affinities

of their interactions with the different enzymes in E. coli tuned

such that they can inhibit some reactions while efficiently serving

as substrates for others? To address this question, we gathered

all reported Michaelis-Menten constants (KM) and inhibitory

half-saturation constants (KI). We decided to use these KM and

KI values as approximate indicators of a small molecule’s

metabolic operating point and regulatory operating point,

respectively.

We first evaluated whether KM and KI values were quantita-

tively similar to each other (KA values, or binding constants asso-

ciated with activating interactions, were not available in the

BRENDA and were thus excluded). As reported by others (Park

et al., 2016), in general, KI values tend to be higher than KM

values (Figure 4D; Mann-Whitney U test, p value < 0.005). A

more informative approach to evaluating differences in KM and

KI values is by a direct comparison with physiological metabolite

concentrations. For example, if a metabolite’s concentration is

much higher than all of its associated KM and KI values, then
all interactions related to this metabolite are approximately fully

saturated and any differences between KM and KI are not phys-

iologically meaningful. Here, we quantify the level of saturation

using the formula s=ðs+KSÞ, where KS is a binding constant

(either KM or KI) and s is the concentration of the substrate or in-

hibitor. For a substrate, the saturation represents the relative ac-

tivity of an enzyme compared to a case where s is very high and

the enzyme is fully activated (assuming all other parameters are

kept constant and the reaction obeys irreversible, mono-sub-

strate kinetics). We use this definition to identify physiologically

relevant differences between substrate and inhibitor affinities.

To apply the notion of saturation to our data, we obtained pre-

viously published metabolite concentrations in exponentially

growing E. coli cultures on 13 different carbon sources (Kocha-

nowski et al., 2017). For each unique binding constant/metabo-

lite concentration pair, we calculated the saturation level (332

enzyme-inhibitor-condition triplets and 798 enzyme-substrate-

condition triplets; Figure 4E). A comparison between substrate

and inhibitor saturation levels yielded a significant difference in

the saturation of inhibitor- and substrate-binding sites (Mann-

Whitney U test, p value < 10�72). This suggests that, at physio-

logically relevant concentrations of metabolites, the majority of

substrate binding sites are at or near saturation, while inhibitor

sites are occupied but largely far from being saturated, as was

reported in the past (Bennett et al., 2009; Park et al., 2016).

Quantifying the Metabolic Response to Small Molecules
across Different Conditions and the Trade-Off between
Regulation and Enzymatic Activity
The results presented in Figure 4E indicate that approximately

one-third of the inhibitory interactions involved metabolites

whose concentrations were higher than the associated KI (satu-

ration level at least 0.5). This suggests that many enzymes are

operating below their maximal catalytic potential. Why would

metabolic enzymes be poised at such a point, well below

maximal activity? As we show below and in the Supplemental

Experimental Procedures, one possible explanation is a funda-

mental trade-off that enzymes face: in order to be responsive

to the abundance of metabolite regulators, enzymes must sacri-

fice some of their catalytic activity. Put another way, there is an

inherent cost associated with small molecule regulation; to

effectively regulate enzyme activity, an inhibitor must be at a suf-

ficiently high concentration. Using theoretical arguments from

metabolic control analysis (MCA), we prove that this trade-off

between activity and regulation is valid for a general class of

kinetic rate laws (e.g., competitive, noncompetitive, and uncom-

petitive inhibition), applying both to inhibitors and activators (see

the Supplemental Experimental Procedures).

The relevant quantity in MCA that leads to the finding above

is the scaled elasticity ε
v
s , which quantifies how fluctuations

in the concentration of a metabolite S affect the rate of

reaction v. For substrates of reactions described by irreversible

Michaelis-Menten kinetics, the scaled elasticity is given by

ε
v
s = ðvv=vsÞ,ðs=vÞ= 1� s=ðs+KMÞ, i.e., it is maximized (equal

to 1) when the substrate-binding site is unsaturated ðS � KMÞ.
In this regime, a fluctuation in the concentration of substrate

leads to a linearly proportional change in the flux of the enzyme

(for an isolated enzyme, like in an in vitro assay). On the other
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A

B

Figure 5. Functional Role of Small Molecule-Enzyme Interactions in Central Metabolism
(A) The opposing relationship between elasticity and concentration for a prototypical substrate or inhibitor. In general, substrates have high elasticity at low

concentrations, while inhibitors have high elasticity at high concentrations.

(B) A heatmap of the median values of each metabolite’s elasticity values across all enzymes that utilize it as a substrate (left-hand side) and across all enzymes

inhibited by it (right-hand side). The different columns correspond to different growth conditions (batch growth on minimal media with single carbon sources,

samples in mid-exponential phase). Saturation levels were calculated using the formula [S]/([S] + KS), where KS is either the Michaelis-Menten coefficient (KM) or

the inhibition constant (KI), and, in turn, elasticities were calculated as described in the text. The numbers next to each metabolite in parentheses count the

number of different KM or KI values, respectively, that a metabolite has in our database (for different reactions). If a metabolite has more than one KM or KI value

(i.e., for more than one enzyme), the median of all elasticities is shown.

For more details, see Figure S5 and Tables S5, S6, S7, and S8.
hand, the elasticity of non-cooperative, non-competitive inhibi-

tors I is described by ε
v
I = ðvv=vIÞ,ðI=vÞ= � I=ðI+KIÞ (see Fig-

ure S5). Counterintuitively, this means that a reaction is most

sensitive to an inhibitor I when I is at high concentration and

the enzyme is strongly inhibited ðI[KIÞ. Conversely, when the

inhibitor concentration is low, its elasticity approaches zero
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and the flux cannot respond to changes in I. Therefore, sub-

strates and inhibitors are subject to opposite quantitative rela-

tionships describing their potential to regulate reactions (Fig-

ure 5A). Therefore, the saturation level has two complementary

consequences: first, it affects the elasticity (how sensitive the

reaction rate is to changes of the regulator level), and second,



Figure 6. Small Molecule Regulation across Kingdoms of Life

The BRENDA was mined for all reports of small molecule regulatory in-

teractions across all species. These interactions were aggregated by unique

metabolite-reaction pairs. For each interaction evident in at least 10 different

organisms and supported by evidence from at least 10 different published

studies, manual curation of the results followed. We identified the broad

phylogenetic taxon within which the interaction was present. Nearly all

conserved interactions are inhibitory, with three exceptions: the activation of

phosphofructokinase by three metabolites (AMP, ADP, and fructose-2,6-bi-

sphosphate), the activation of PEP carboxylase by G6P, and the activation of

pyruvate kinase by FDP.
it determines the necessary amount of enzyme (because enzyme

that is not used at its full capacity needs to be compensated by

higher enzyme levels).

Thus, an alternative way of examining the difference between

KM and KI data is by translating estimates of saturation into elas-

ticities (which we treat as proxies for the metabolic response co-

efficient; see the Discussion and the Supplemental Experimental

Procedures). To simplify the calculation and avoid dependencies

betweenmultiple parameters andmetabolite concentrations, we

assumed that all reactions follow irreversible Michaelis-Menten

kinetics and all inhibitors are non-competitive. A detailed exam-

ination of elasticities, across the 13 different growth conditions,

further revealed the regulatory contribution of a set of central
metabolites as substrates and inhibitors (Figures 4F and 5;

Tables S5, S6, S7, and S8). Interestingly, metabolites like IMP,

ATP, and ADP have very low elasticities as substrates (since

they are typically at saturating levels), whereas others (GMP

and AKG) have high substrate elasticities spanning from 0.7

to 0.9. As inhibitors, many metabolites are poised between

elasticities of 0.2 and 0.5, whereas some metabolites (e.g.,

GDP and ADP) have high elasticities across all conditions. A

higher elasticity could increase the flux response to changes in

these metabolites, which is supported by prior work, e.g., it

has been reported that ADP strongly regulates PRPP synthase

(prpps, EC 2.7.6.1) as a form of biosynthetic feedback inhibition

(Willemoës et al., 2000), as well as fructose-1-phosphate kinase

(fruk, EC 2.7.1.56) as a mediator of end product inhibition

(Buschmeier et al., 1985).

Notably, the elasticity of several highly connected metabolites

in the SMRN (i.e., PEP and FDP) changes substantially between

environmental conditions. FDP has high inhibitory elasticities

when cells grow in a glycolytic mode (e.g., growth on glucose,

fructose, and mannitol), consistent with the proposed role of

FDP as a flux sensor in glycolytic conditions (Kochanowski

et al., 2013). Interestingly, PEP as an inhibitor has high (absolute)

elasticities on gluconeogenic carbon sources (e.g., pyruvate, ac-

etate, and succinate), operating antisymmetrically to FDP. This

regulatory design is critical for the adaptation to environmental

conditions, for example, for the control of the flux through phos-

phofructokinase (pfk), which PEP is known to inhibit (Fenton and

Reinhart, 2009). This inhibition is not needed though when cells

grow on glycolytic carbon sources like glucose. Interestingly, we

found that, on glycolytic carbons that can only support a slow

growth rate, PEP still has high elasticities (e.g., �0.38 and �0.36

for pfk when cells grow on galactose or mannose, respectively).

Small Molecule Regulation across Kingdoms of Life
While some central pathways of metabolism are nearly ubiqui-

tous, whole-cell metabolism varies substantially among different

organisms. At the coarsest resolution, some phylogenetic taxa

(e.g., bacteria and plants) can fix inorganic carbon while others

(e.g., animals) cannot. On the other hand, the architecture of cen-

tral carbon metabolism is broadly conserved across all king-

doms of life (Peregrı́n-Alvarez et al., 2003, 2009). However, there

is little understanding of the extent to which small molecule reg-

ulatory interactions are conserved across evolutionarily distant

taxa. Therefore, we analyzed all available data on small molecule

activators and inhibitors available in the BRENDA, stratifying

by the species in which the interaction was reported. We mined

these data for recurrence of a regulatory interaction between

a small molecule and EC number across different species. We

then focused on analyzing interactions that were (1) evident

in at least 10 different species and (2) supported by at least

10 different reports in the literature. A full list describing the

253 such interactions is available as Table S3.

Because of the high interest in modeling and understanding

of flux through central carbon metabolism, we focused our ef-

forts on understanding recurrent regulatory interactions in this

pathway (Figure 6). After excluding small ions and non-endoge-

nous metabolites, we identified 18 small molecule regulatory

interactions evident broadly across several phylogenetic taxa,
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Figure 7. Combined Architecture of Direct Small Molecule and

Indirect Transcriptional Regulation via Endogenous Metabolites in

E. coli

Amap of the reactions in central carbonmetabolism that are regulated directly

or indirectly bymetabolite(s). On the left are reactions that are reported to have

at least one metabolite-enzyme interaction. The middle diagram indicates

reactions that are indirectly regulated by metabolites via transcription; in each

case, the reaction is regulated by transcription factors that are recipients

of metabolic signals (i.e., Cra-FDP and Crp-cAMP), as reported in Kocha-

nowski et al. (2017). Some reactions, e.g., those in intermediate glycolysis, are

regulated exclusively by transcription. The map on the right overlays small

molecule and transcriptional regulation.
which converged on the regulation of a small number of

enzymes: four nodes in glycolysis, phosphofructokinase (6 recur-

rent regulators), fructose bisphosphatase (2 recurrent regula-

tors), PEP carboxylase (3 recurrent regulators), and pyruvate

kinase (3 recurrent regulators). Surprisingly, we found few

conserved interactions in the TCA cycle, glyoxylate shunt, and

the nonoxidative branch of the PP pathway. In line with its role

as a committing step in glycolysis, phosphofructokinase was

subject to negative feedback control by two metabolites far

downstream in glucose catabolism, citrate and PEP, as well as

regulation by energy-related cofactors ATP, ADP, and AMP. In

contrast, pyruvate kinase was negatively regulated by ATP, but

also it was subject to feedforward activation by fructose-1,6

diphosphate (FDP). The counterintuitive activation of pyruvate

kinase by FDP has been shown (Xu et al., 2012b) to be important

for the rapid response of yeast to changes in environmental

glucose levels, by driving the accumulation of PEP for future

phosphorylation of glucose in glucose-depleted conditions.

Similarly, the inhibition of phosphofructokinase by PEP also

has been shown to be of critical importance in dynamic perturba-

tions in E. coli (Link et al., 2013).

Interestingly, several of the recurrent regulatory interactions

we identified were evident in only a subset of phylogenetic

taxa. In some cases, this was due to the absence of the enzyme

in a taxon (e.g., PEP carboxylase is only present in archaea, bac-

teria, and plants and the pentose phosphate pathway is not pre-
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sent in archaea). In other cases, small molecule regulation was

simply different across taxa, with potentially interesting implica-

tions. For example, pyruvate kinase was inhibited by L-alanine

in animals, but not in other phyla. In humans, this differential

regulation plays a role in disease: the inhibition of one splice iso-

form of pyruvate kinase (PKM2) by L-alanine (but not the other,

PKM1) contributes to the cancer-associated shift to aerobic

glycolysis by promoting the shunting of glucose-derived carbon

into biosynthetic pathways (Morgan et al., 2013).

DISCUSSION

The regulatory action of small molecules on enzymes and

other proteins ensures robust operation of metabolism upon dy-

namic changes. For central carbonmetabolism, metabolites can

directly (acting as effectors) or indirectly (acting as signals to

transcription factors) regulate the flux of almost all enzymatic re-

actions (Figure 7). While our understanding of transcriptional and

post-translational regulation of metabolism has benefited from

advances in sequencing and mass spectrometric technologies,

experimental challenges have hindered similar breakthroughs

in our understanding of the regulation of enzyme activity by small

molecule metabolites (Lindsley and Rutter, 2006). Our approach

here has been to leverage the fragmented wealth of published

biochemical data to generate an atlas of small molecule regula-

tion informatically, i.e., without performing additional laboratory

experiments. Our findings illustrate the dual architecture of small

molecule regulation and the underlying metabolic network, allow

us to test a common hypothesis about the connection between

regulation and thermodynamics, and enable us to compare

between metabolite concentrations and their respective binding

affinities to target enzymes.

Here we report a resource of experimentally evaluated inter-

actions between endogenous metabolites and enzymes. Impor-

tantly, the computational framework we developed is freely avail-

able (https://github.com/eladnoor/small-molecule-regulation),

and it can be readily applied to reconstruct the SMRN of an

arbitrary organism of choice, given a suitable genome-scale

metabolic model and adequate data in the BRENDA and BioCyc

database. Such a resource may guide future implementations of

kinetic models and also guide experiments designed to identify

novel and functionally relevant in vivo metabolite-protein interac-

tions. Most implementations of kinetic models so far do not ac-

count for all known small molecule enzyme interactions but rather

a subset of them (Khodayari and Maranas, 2016; Millard et al.,

2017). Using our SMRN, such kinetic models could be expanded

to include all relevant interactions, allowing for system-level eval-

uation of the topological properties of the system. Our SMRN

could also be instrumental in the understanding of the functional

role of different small molecule enzyme interactions, in combina-

tion with kinetic models. For example, an SMRN may prioritize

metabolite-enzyme pairs to be included in a kinetic model based

on the number of independent literature reports supporting their

existence or based on the elasticity of the interactions in different

conditions. Inaddition, theSMRNand itsassociated inhibitor con-

stants can be used as prior information to parameterize dynamic

models of metabolism, an approach that has proven to be suc-

cessful in E. coli and yeast (Hackett et al., 2016; Link et al., 2013).

https://github.com/eladnoor/small-molecule-regulation


A critical shortcoming of our approach is the inherent biases

of the BRENDA and Ecocyc data, i.e., the tendency for well-stud-

ied enzymes, pathways, and organisms to be overrepresented

in these databases. Indeed, one factor in selecting E. coli as

the organism of choice for reconstruction was the breadth of

studies conducted on its metabolism. One approach we took

to resolving this issue was identifying putatively high-confidence

edges in the SMRN, i.e., those with at least 2 independent liter-

ature reports supporting the interaction (Table S2; Figure S7).

This portion of the SMRN retains 325 (20%) of the total edges,

a figure an order of magnitude larger than the number of edges

included in typical kinetic models of metabolism. Furthermore,

wherever possible, we performed our analyses on the exhaus-

tively explored sub-network of central carbon metabolism, as

well as on the full genome-scale network. For example, in the

thermodynamic analysis, we indeed find a weak but statistically

significant signal when testing for enrichment of small molecule

regulation in irreversible reactions. However, when the analysis

is expanded to the full network, we no longer find a statistically

significant difference in small molecule regulation between

reversible and irreversible reactions. This might suggest that

the thermodynamic principle is most relevant for reactions with

high fluxes like those in central carbon metabolism and does

not apply more generally to the entire metabolic network.

Our theoretical analysis of a wide class of inhibiting and acti-

vating small molecules shows that, in general, there is a direct

trade-off between the elasticity of an effector and the reduction

in activity that is caused by its interaction with the enzyme.

Mathematically, if q is the relative activity of the enzyme (e.g.,

q= 1� x=ðx +KIÞ in the case of non-competitive inhibition), then

the absolute scaled elasticity is equal to
�
�
ε
v
x

�
� = 1� q (see the

Supplemental Experimental Procedures). We show that this

relationship between activity and elasticity holds for activators

and inhibitors alike. Therefore, using a small molecule effector

to regulate a flux always comes with the cost of effectively

lowering the activity of the enzyme. This cost of regulation might

be the reason why E. coli does not have end product inhibition

for 4 of its amino acid biosynthesis pathways. Perhaps, the

cost of regulation for these metabolically cheap amino acids is

larger than the energetic cost of overproduction.

To estimate the level of control imposed by a small molecule,

we made several simplifications. First, we assumed that all sub-

strates and inhibitors bind non-cooperatively and that inhibition

is not competitive. Second, because a detailed and accurate

representation of the kinetic form of each reaction rate law in

E. coli was unavailable, we estimated elasticities assuming irre-

versible, mono-substrate kinetics. In the Supplemental Experi-

mental Procedures, we explore the consequences of these

assumptions. In particular, we find that substrate elasticities

assuming irreversibility are generically upper bounds on revers-

ible substrate elasticities. Furthermore, we show that the elastic-

ity of a substrate in a bi-substrate reaction is (assuming identical

kinetic rate constants where applicable) generically a lower

bound on the corresponding elasticity, assuming a mono-sub-

strate rate law. Relaxing these assumptions can both strengthen

and weaken some of our conclusions, depending on the magni-

tude of their effect (which itself depends on detailed rate laws

and parameters), such as those in Figure 4.
Perhaps more importantly, our results regarding elasticities

must be treated carefully when making inferences on metabolic

control. According to MCA, a high elasticity is a necessary

but not sufficient condition for high control of a flux by a metab-

olite. We treat interactions with high elasticity as cases where

high regulatory capacity is possible; in contrast, interactions

with low elasticity are likely to have little regulatory capacity.

A trade-off between enzyme activity and elasticity will therefore

translate to a trade-off between activity and regulation. To be

fully consistent with MCA, one would have to calculate all con-

trol coefficients for the inhibited reactions and apply MCA to

calculate response coefficients, which quantify the level of flux

control of a metabolite, something that is not in the scope of

our work. A tractable path forward for decoding the control of

flux by the SMRN is to integrate data on changes in in vivo

metabolite abundance across conditions/perturbations. As we

showed in Figure 5, doing so creates a map of the condition-

dependent regulatory capacity (i.e., the elasticity) of small mole-

cules, and it prioritizes interactions that appear particularly rele-

vant in a subset of conditions. For canonical interactions with

available data on binding affinities, this kind of analysis can be

used as a first step in understanding the importance of a regula-

tory interaction, perhaps by focusing on those interactions with

a particularly large change in elasticity between two conditions.

For instance, we found that certain metabolites (e.g., fructose

bisphosphate) may have a substantially higher inhibition capac-

ity in a subset of conditions. Doing so will likely add to the

rich composition of transcriptional, post-translational, and small

molecule regulatory interactions that we know to control meta-

bolic flux.

EXPERIMENTAL PROCEDURES

Assembly of the SMRN

Raw data were obtained from the BRENDA and BioCyc database. Scripts

for parsing the obtained data; filtering unwanted values (i.e., for mutants

or negative results); and mapping among BRENDA ligand IDs, Kyoto Ency-

clopedia of Genes and Genomes (KEGG) identifiers, and BiGG metabolite

IDs were written in Python and can all be found on GitHub (https://github.

com/eladnoor/small-molecule-regulation, available under an MIT license).

Likewise, all computations and analyses done for this paper can be found in

the same repository.

Genome-Scale Metabolic Model

All calculations involving the metabolic network of E. coli (i.e., distance

calculations, thermodynamics of regulated and unregulated reactions, and

such) were done using the iJO1366 metabolic model downloaded from the

BiGG website (http://bigg.ucsd.edu/models/iJO1366) (Orth and Palsson,

2012) and with the help of the cobrapy toolbox (https://opencobra.github.io/

cobrapy/) (Ebrahim et al., 2013).

Distance Calculations in the SMRN

First, we removed all the rows corresponding to cofactors from the genome-

scale stoichiometric matrix of E. coli (the full list of cofactors is provided in

the captions of Figure S1). Then, the matrix was converted into an undirected

bipartite graphwhere nodeswere eithermetabolites or reactions. An edge was

added between every reaction and all of its substrates and products. Then, the

distance between each metabolite and enzyme was calculated by first finding

the shortest path between the two on the bipartite graph and counting the

number of enzyme nodes along that path (i.e., excluding the metabolite nodes

and the target enzyme itself). For example, the distance between an enzyme

and one of its substrates is 0.
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Cross-Species Analysis of Small Molecule Regulation

All data regarding activation or inhibition were extracted from the BRENDA.

The R package taxize (Chamberlain and Szöcs, 2013) was used to recover

taxonomic information using the species name provided in the BRENDA.

Activating/inhibiting interactions with the same ligand ID (regulating metabo-

lite) and EC number (target enzyme) were aggregated, and the number of

such unique entries for each taxonomic group was calculated. Additionally,

the number of unique literature references supporting each interaction was

recorded, in order to preclude cases where a single interaction reported

across multiple species was supported by a small number of independent

sources.
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