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ABSTRACT

Repeating a word or nonword requires a speaker to map auditory representations

of incoming sounds onto learned speech items, maintain those items in short-term

memory, interface that representation with the motor output system, and articulate

the target sounds. This dissertation seeks to clarify the nature and neuroanatomical

localization of speech sound representations in perception and production through

multivariate analysis of neuroimaging data.

The major portion of this dissertation describes two experiments using functional

magnetic resonance imaging (fMRI) to measure responses to the perception and overt

production of syllables and multivariate pattern analysis to localize brain areas con-

taining associated phonological/phonetic information. The first experiment used a

delayed repetition task to permit response estimation for auditory syllable presenta-

tion (input) and overt production (output) in individual trials. In input responses,

clusters sensitive to vowel identity were found in left inferior frontal sulcus (IFs), while

clusters responsive to syllable identity were found in left ventral premotor cortex and

left mid superior temporal sulcus (STs). Output-linked responses revealed clusters of

vowel information bilaterally in mid/posterior STs.

The second experiment was designed to dissociate the phonological content of
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the auditory stimulus and vocal target. Subjects were visually presented with two

(non)word syllables simultaneously, then aurally presented with one of the syllables.

A visual cue informed subjects either to repeat the heard syllable (repeat trials)

or produce the unheard, visually presented syllable (change trials). Results suggest

both IFs and STs represent heard syllables; on change trials, representations in frontal

areas, but not STs, are updated to reflect the vocal target.

Vowel identity covaries with formant frequencies, inviting the question of whether

lower-level, auditory representations can support vowel classification in fMRI. The fi-

nal portion of this work describes a simulation study, in which artificial fMRI datasets

were constructed to mimic the overall design of Experiment 1 with voxels assumed

to contain either discrete (categorical) or analog (frequency-based) vowel represen-

tations. The accuracy of classification models was characterized by type of rep-

resentation and the density and strength of responsive voxels. It was shown that

classification is more sensitive to sparse, discrete representations than dense analog

representations.
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Chapter 1

Introduction

In order to perform a seemingly simple task like repeating an auditory word or syllable,

our brains must rely on a series of neural representations and functional pathways. A

speaker must register an auditory representation of the incoming sound sequence, map

that onto learned speech items, maintain an accurate representation over any delay

between the input and required output, interface that working memory representation

with the motor output system, and fluently produce the target output sequence.

Accordingly, to carry out this complex series of computations, the brain relies on a

large, distributed set of cortical areas.

This dissertation seeks to clarify the nature and neuroanatomical localization of

speech sound representations in perception and production through multivariate anal-

ysis of neuroimaging data. While a large number of studies have sought to associate

cortical areas with specific component processes during speech, the studies presented

here ask to what extent their activation patterns reflect the specific speech sounds

heard, planned and produced. Multi-voxel pattern analysis is a technique well-suited

to probing for neural correlates of categorically defined cognitive states, and speech

is composed of categorically distinct sounds, or phonemes; these studies induce sub-

jects to perceive, prepare and produce speech sounds, permitting the use of MVPA

to probe for phonological content. The remainder of this chapter presents the theo-

retical, experimental, and methodological basis of this dissertation.
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1.1 Organization of speech processing

The classical breakdown of speech into perceptual (i.e., for processing auditory inputs)

and production (i.e., for preparing and executing motor outputs) related components

(Lichtheim, 1885) has been, in part, supported by differential effects of lesions to

the posterior or anterior portions of the left hemisphere, with perception localized to

posterior superior temporal cortex and production to inferior frontal cortex. There

remains considerable controversy, however, in how the brain encodes speech sounds;

while there are various accounts for deriving speech content from acoustic signals

through auditory and general cognitive processes (e.g., Hickok and Poeppel, 2004;

Diehl et al., 2004; Massaro and Chen, 2008; Stasenko et al., 2013, 2015), some sug-

gest, for example, that the premotor or motor cortices (traditionally associated with

speech output) are automatically engaged and serve an important role in perception

(Liberman et al., 1967; Fadiga and Craighero, 2003). In addition, a number of the-

oretical models suggest the activation of auditory cortical areas for directing speech

production (i.e., target readout; Guenther et al., 2006; Hickok et al., 2011). Thus, a

clean segregation of circuitry between these two components is unlikely and not well

supported by the existing evidence.

1.1.1 The dual streams model

The theoretical framework that guides this dissertation is based on a combination of

the dual streams speech processing model (Hickok and Poeppel, 2004, 2007; Raus-

checker and Scott, 2009) and the GODIVA neurocomputational model (Bohland et al.,

2010), which treats output-related processes of syllable sequence representation and

production. A unified theory requires the specification of how speech is represented

at a high level of detail across both receptive and expressive speech processes. The
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links between such input and output-related components are perhaps most apparent

in auditory repetition, variations on which form the core of the studies presented in

this work. Repetition tasks have been suggested to rely upon the so-called dorsal

stream (Hickok and Poeppel, 2007; Saur et al., 2008), a pathway which maps between

auditory and motor representations of speech sounds. The dorsal stream is consid-

ered to be left hemisphere dominant, projecting from the posterior superior temporal

gyrus (STg) and interconnecting the planum temporale (PT), including the region

at the posterior portion of the Sylvian fissure at the parietotemporal junction (Spt),

inferior parietal cortex, and premotor and inferior frontal areas. Damage to the dorsal

pathway – in particular to area Spt (Buchsbaum et al., 2011) and/or to left poste-

rior temporoparietal cortex (Baldo et al., 2012) – can result in conduction aphasia,

a language disorder characterized in part by impaired repetition and problems with

phonological short-term memory.

The ventral stream, in contrast, is proposed to map from auditory to conceptual-

semantic representations. This pathway is proposed to project from posterior STs

/ STg, and interconnect the temporo-parieto-occipital junction (Hickok and Poep-

pel, 2000, 2004), mid-MTg (Indefrey and Levelt, 2004), anterior STs and Broca’s

area (Friederici et al., 2000a,b), constructing progressively larger (lexical) and more

meaningful (semantic/grammatical) representations. For single syllable repetition,

any ventral stream access is likely to be limited to incidental or opportunistic repre-

sentation, in the absence of any explicit semantic or grammatical demands.

1.1.2 Speech perception and working memory

In most theoretical models of repetition, auditory inputs are mapped to motor out-

puts first via a phonological layer (e.g., Hartley and Houghton, 1996; Hanley et al.,
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2004; Nozari and Dell, 2013), and substantial work has focused on localizing such an

“input buffer.” At early stages of the cortical hierarchy, auditory / phonetic repre-

sentations of speech inputs are supported by the posterior superior temporal lobes

bilaterally (Hickok and Poeppel, 2000). Auditory association areas, which receive

these inputs, then can be considered candidates for more abstract or phonological

representations of a speech input sequence. The planum temporale (PT) has been

shown to be functionally subdivided, with lateral portions likely involved in general

auditory processing (see e.g., Binder et al., 1996) and medial portions important for

processing self-produced feedback (Tremblay et al., 2013b). Furthermore, responses

of anterior and middle PT have been shown to reflect the statistical structure and

phonological complexity of speech sequences (Tremblay and Small, 2011; Tremblay

et al., 2013a; Deschamps and Tremblay, 2014), leading to a suggested role in con-

verting auditory inputs into phonological representations (Deschamps and Tremblay,

2014). The posterior PT has been further subdivided into lateral and medial (area

Spt) portions, with the former shown to be sensitive to subsegmental manipulations

in a nonword repetition task, and the latter to the number of syllables used (McGet-

tigan et al., 2011). In their review of seven speech perception studies, Hickok and

Poeppel (2007) showed that the mid to posterior STg and superior temporal sulcus

(STs) respond preferentially to syllable (CV or CVC) stimuli over a variety of non-

speech acoustic controls, and argued that these regions support phonological-level

processes. Overt and covert speech production also induce responses in posterior STg,

STs and PT (Paus, 1996; Hickok et al., 2000; Okada et al., 2003; Okada and Hickok,

2006b); activation of these areas even during silent speech is consistent with a pos-

sible role in representing auditory targets for online correction of speech (Guenther

et al., 2006; Hickok et al., 2011). Similarly, posterior STs responds to both heard and

4



recalled words (Wise et al., 2001), possibly storing transient auditory representations

retrieved from sensory or long-term memory.

The inferior parietal cortex (IPC) is often considered part of the dorsal stream in

part due to its interconnections with superior temporal and inferior frontal regions

via the arcuate fasciculus (Catani et al., 2005). The IPC contains at least seven

cytoarchitectonically distinct areas (Caspers et al., 2006), but most previous studies

have focused on the roles of the macroanatomically defined supramarginal and angu-

lar gyri. The importance of IPC for auditory repetition is backed by a voxel-based

lesion symptom mapping (VLSM) study showing a strong association between left

supramarginal gyrus (SMg) integrity and performance on word and nonword repe-

tition tasks (Rogalsky et al., 2015). The left SMg has been commonly associated

with phonological working memory (PWM; Paulesu et al., 1993), but its activation

is not consistently found across speech studies (Buchsbaum and D’Esposito, 2008).

Pugh et al. (2001), in a review of previous literature, found both angular and supra-

marginal gyri to respond more to reading pseudowords than words, while a PET

working memory study requiring subjects to maintain lists of words or pseudowords

found no significant inferior parietal response (Fiez et al., 1996), indicating a possible

sensitivity to encoding demands rather than to short-term maintenance of linguistic

materials. Studies by Jonides et al. (1998) and Awh et al. (1996), on the other hand,

associated IPC engagement with storage, retrieval and memory load, but not encod-

ing, in visual language tasks. Ravizza et al. (2004) characterized dorsal and ventral

IPC as being sensitive to working memory load and encoding, respectively. While the

roles different IPC subregions play in PWM remain unclear, a syllable repetition task

with strong working memory demands might be expected to induce phoneme-specific

responses to in IPC.
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On the other hand, the existence of PWM as an independenty faculty with distinct

anatomical localization (Baddeley, 1992) has been called into question. Instead, the

phonological input and output buffers (Jacquemot et al., 2007) and the conversion

mechanisms between them (i.e., the dorsal stream) are proposed as sufficient substrate

for PWM (Jacquemot and Scott, 2006; Acheson and MacDonald, 2009; Hickok, 2009;

Perrachione et al., 2017).

1.1.3 Speech production

It is universally accepted that the frontal cortex is critical in directing the output of

speech during repetition. Rolandic cortex is activated strongly and bilaterally during

overt articulation, and with some degree of left lateralization when articulation is

covert (Wildgruber et al., 1996; Riecker et al., 2000), possibly reflecting prepared ar-

ticulatory commands and their predicted somatosensory consequences (Corfield et al.,

1999; Lotze et al., 2000). Left lateralized activation is also seen under passive speech

listening conditions with no distractor task (Wilson et al., 2004; Pulvermüller et al.,

2006), and TMS priming of left motor cortex has been shown to assist phoneme dis-

crimination in noise (D’Ausilio et al., 2009), suggesting a role for classically-defined

motor output areas in some aspects of speech perception and/or perceptual judg-

ments and their potential importance even in the input portions of repetition tasks.

(However, see Hickok (2010) for a critique of these views.

The adjacent ventral premotor cortex (vPMC) has been implicated in phonetic

encoding specifically at the level of syllables (Peeva et al., 2010), and may function

as a neural correlate of a mental syllabary (Levelt and Wheeldon, 1994) or Speech

Sound Map (Guenther et al., 2006), storing sensorimotor programs for well-practiced

sounds.
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1.1.4 Evidence for phonological encoding

A phonological output buffer is a commonly proposed component in speech planning

and production models (e.g., Dell et al., 1997; Roelofs, 1997; Goldrick and Rapp,

2007), and the existence of separate phonological representations for encoding speech

inputs and planned outputs is supported by clinical studies (Martin et al., 1999;

Jacquemot et al., 2007). The GODIVA model (Bohland et al., 2010) posits the ex-

istence of parallel phonological output buffers in the left inferior frontal sulcus (IFs)

and pre-supplementary motor area (pre-SMA), with the left IFs serving to encode

phonemic sequences and the pre-SMA representing abstract syllable frames (see also

MacNeilage, 1998). Activation of the IFs is sensitive to both the phonological com-

plexity of produced syllables and the complexity of planned syllable sequences (Boh-

land and Guenther, 2006). The IFs forms the dorsal boundary of the inferior frontal

gyrus (IFg). Papoutsi et al. (2009) observed a dorsal-ventral segregation of function

within IFg (see also Molnar-Szakacs et al., 2005), with the dorsal portion playing a

role in phonological encoding, and the ventral portion having a more motoric role in

phonetic encoding. Long et al. (2016), found a timing, but not articulatory, effect

when cooling IFg, supporting a role for IFg in sequencing over articulation. Activa-

tion of the pre-SMA and adjacent medial premotor areas is also frequently observed

in speech perception experiments without explicit production requirements, though

any causal role for their activation during perception remains unclear (see also Adank,

2012).

To what extent different brain areas are explicitly involved in the encoding or rep-

resentation of speech sounds is difficult to assess through traditional fMRI paradigms.

This is, in large part, due to the possibility that differences in activation could be

observed for a number of reasons other than a requirement to represent one or more
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speech sounds. Recent studies have begun to fill in existing knowledge gaps with pro-

tocols and analysis techniques that allow neural representations to be probed more

explicitly. Repetition suppression (RS) paradigms have been used as an indicator

that a neuronal population treats two stimuli (e.g., two instantiations of the same

syllable or phoneme) as the same or different, with the assumption that trial-to-trial

neuronal adaptation gives rise to suppression or enhancement of the BOLD signal.

Phonological RS has implicated left posterior STg (Graves et al., 2008) in an audi-

tory pseudoword repetition task and bilateral STs and IFg (Vaden et al., 2010) in a

task requiring listening to words of with varying degrees of phonological similarity.

Vaden and colleagues also reported increased activation in bilateral SMg in response

to word lists with repeated phonological content, compared to word lists with purely

novel phonological content (Vaden et al., 2010). Consistent with phonological rep-

resentations in dorsal IFg / IFs, Myers et al. (2009) found an increased response to

between-phoneme differences in voice onset time, with little sensitivity to changes

within a phonetic category, of perceived syllables in this region. This was in contrast

with left superior temporal regions, which showed both within- and across-category

changes in activation. Additionally, electrocorticography studies have shown reliable

phoneme identification in left STg (Chang et al., 2010), although this may be sup-

ported by a phonetic, feature-based representation (Mesgarani et al., 2014).

Although there is general agreement on the structures involved in speech percep-

tion and production, there remain questions as to the precise role of these regions

in the representation of speech sounds. Studies have used a variety of methods to

localize phonological sensitivity, but there is a scarcity of systematic studies of the

representational units of speech perception and production.
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1.2 fMRI methods

Functional magnetic resonance imaging (fMRI) depends on the blood-oxygenation-

level-dependent (BOLD) signal (Ogawa et al., 1990) as a proxy for neuronal activity.

This signal reflects changes in blood volume, blood flow and oxygen use (Mandeville

et al., 1999) associated with the vascular response to metabolic activity, and has been

shown to correlate with local field potentials (Logothetis et al., 2001). A hemody-

namic response function (HRF) is the model impulse response of the BOLD signal

to a metabolic event, characterized by a peak response lagging the event onset by

approximately 5s and an undershoot following the event offset (Friston et al., 1998).

This slow response temporally smooths neural activations, and is a common basis

for estimating neural responses from observed BOLD signals (Josephs et al., 1997;

Hinrichs et al., 2000).

1.2.1 Sparse Acquisition

Studying speech with fMRI presents two physical challenges to experimental design:

the noise of the MR scanner can interfere with subjects’ perception of speech stimuli

and the auditory feedback of their own voices, and overt speech during MR acquisition

has also been shown to induce speech-related head motion (Gracco et al., 2005) and

susceptibility artifacts resulting from changes in vocal tract configuration (Birn et al.,

1998). Further, there is evidence that speech perception makes different demands of

auditory (Du et al., 2014) and motor (Meister et al., 2007) systems under noisy

conditions. Sparse and clustered volume acquisition paradigms introduce delays in

volume acquisition (Eden et al., 1999; Edmister et al., 1999; Hall et al., 1999), which

can be exploited to allow subjects to hear and produce speech in relative quiet and

reduce the impact of motion and susceptibility artifacts.
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1.2.2 Univariate Contrasts

To a first approximation, most fMRI analyses begin by describing conditions of in-

terest as on-off time series, convolving these series with an HRF to form a design

matrix. The strength of response to each condition is estimated at each voxel by re-

gressing the voxel’s time series against the design matrix. These parameter estimate,

or beta, maps may be used to construct contrasts, for instance by subtracting betas

associated with control trials from betas associated with task trials, to identify voxels

that receive increased blood flow when engaged in the task than at rest. A standard

contrast analysis uses T or F tests to determine an uncorrected significance level. A

number of methods exist to account for multiple comparisons (Nichols and Hayasaka,

2003), including cluster-wise thresholding, in which a cluster-defining threshold is ap-

plied, and clusters (contiguous super-threshold regions) are further thresholded by a

cluster-size threshold to achieve the desired false positive rate.

1.2.3 Multivariate Pattern Analysis

An alternative approach to examining fMRI data is to treat a beta map as a feature

vector in a multivariate statistical test (commonly referred to as machine learning).

This class of analyses is known as multi-voxel or multivariate pattern analysis (Haxby

et al., 2001; Norman et al., 2006, MVPA). In contrast to univariate approaches, in

which a region is deemed significant if sufficiently many adjacent voxels (a cluster)

respond more strongly to one condition than another, a multivariate analysis takes

into account the covariance structure of multiple the responses of multiple voxels.

The earliest such studies identified a small number of regions of interest (ROIs), and

applied ad hoc classification techniques (see, e.g., Haxby et al., 2001) to characterize

the differentiability of trial conditions, such as visual stimulus category, based only
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on BOLD responses within each ROI.

An important development in multivariate techniques is the “searchlight” method

(Kriegeskorte et al., 2006; Chen et al., 2011), which defines one ROI per voxel: a

geometrically-defined neighborhood of constant extent centered around that voxel. A

figure of merit is calculated within each neighborhood, and mapped to the central

voxel. From a purely statistical perspective, searchlight analysis provides a solution to

the “double-dipping” problem (Kriegeskorte et al., 2009), in which ROI definition and

any subsequent statistical tests must be performed on independent datasets. From

an fMRI analytic perspective, searchlight provides whole-brain maps, which admits

spatial comparisons that are difficult to make in the absence of tiled ROIs of uniform

size. Searchlight analysis does, however, reintroduce the multiple-comparisons prob-

lem present in univariate analysis, though most family-wise error correction meth-

ods no longer apply. In particular, the distributions of figures of merit (such as

cross-validation accuracy (Stone, 1974; Kohavi, 1995)) are difficult to characterize,

rendering T and binomial tests against a theoretical chance accuracy unreliable. Ad-

ditionally, as MVPA is typically applied to un-smoothed data, and the smoothing

inherent to searchlight analysis – neighboring voxels have overlapping searchlights –

has not been well-characterized, parametric cluster thresholding methods cannot be

applied. Thus, there is little alternative to computationally-intensive non-parametric

significance tests (Stelzer et al., 2013).

The quantity that multi-voxel analyses measure is the degree to which a set of vox-

els correlates with stimulus category (or some other aspect of the study design), often

termed “information”1, and a significant result is said to be indicative of “informative

voxels”. Anderson and Oates (2010) argue against model inspection – attribution of
1Note that this is unrelated to any formal information theoretic term.
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weights to voxels or time points – as a strategy to impute information to specific

voxels, as the idiosyncracies of the model itself may have more influence on a voxel’s

selection than that voxel’s timecourse. They further demonstrate that different voxel

patterns may be discriminable only by certain classes of models. Searchlight analy-

ses present an additional set of interpretive challenges, as the spatial extent of the

searchlight must be considered in associating a region with a result found in that

region, as discussed in Etzel et al. (2013). For example, a small, highly informative

region may produce a large cluster of above-chance classification accuracies due to

the number of searchlights containing it, while a large, moderately informative region

may produce a small cluster of above-chance accuracy if most voxels are required to

accurately classify the stimulus, or fail to be detected if the searchlight is too small.

1.3 Organization of dissertation

The studies described here are somewhat exploratory works – rather than attempting

to address any one specific hypothesis or theory, we employed simple, repetition tasks,

motivated by current theories of speech perception and production that propose com-

plex, reciprocal interactions between the two processes (e.g., Guenther et al., 2006;

Jacquemot and Scott, 2006; Hickok et al., 2011; Majerus, 2013). Additionally, we

were motivated to determine to what extent the neural machinery used in perceiv-

ing and maintaining a representation of a heard syllable overlapped the substrates

necessary for holding and enacting a plan for motor output. These questions de-

rived theoretically both from case studies that showed dissociations in phonological

input and output processes (e.g. Jacquemot et al., 2007) and from the controversies

surrounding the use of frontal and motor circuitry in passive speech perception (Pul-

vermüller et al., 2006; Iacoboni, 2008; Hickok, 2010). Using stimuli designed to vary
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systematically across phonemic categories, we generated datasets with rich metadata,

that could be queried on multiple dimensions.

Chapter 2 describes a functional magnetic resonance imaging (fMRI) experiment

that uses a delayed syllable repetition task in order to engage input and output rep-

resentations - neural processes necessary to achieve accurate perception and produc-

tion - of the same speech token. Estimating responses to multiple temporally-spaced

events in individual trials, we apply searchlight multi-voxel pattern analysis (MVPA)

(Haxby et al., 2001; Norman et al., 2006; Kriegeskorte et al., 2006) techniques to

detect correlates of phonemes and syllables at the input and output stages of the

task.

Chapter 3 describes a second fMRI experiment, which extends the experimental

protocol developed in Chapter 2 to dissociate the phonological content of the auditory

stimulus and vocal target, and thus to disambiguate responses in areas traditionally

associated with motor output to perception from vocal preparation, and responses in

auditory cortex to production from auditory memory.

MVPA considers how information content across multiple voxels correlates with

discrete stimulus classes (Haxby et al., 2001; Norman et al., 2006; Kriegeskorte et al.,

2006). One barrier to assessing and interpreting neural representations of speech

sounds is the correlation of acoustic features and phonological sound categories. To

address this, Chapter 4 proposes a preliminary model of cognitive signals, which is

used to explore the properties of our multivariate analyses.
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Chapter 2

Mapping the cortical representation of

speech sounds in a syllable repetition task

This chapter has been published in modified form at NeuroImage (Markiewicz and

Bohland, 2016).

2.1 Introduction

Speech repetition relies on a series of distributed cortical representations and func-

tional pathways. A speaker must map auditory representations of incoming sounds

onto learned speech items, maintain an accurate representation of those items in

short-term memory, interface that representation with the motor output system, and

fluently articulate the target sequence. A “dorsal stream” consisting of posterior tem-

poral, inferior parietal and premotor regions is thought to mediate auditory-motor

representations and transformations, but the nature and activation of these repre-

sentations for different portions of speech repetition tasks remains unclear. Here we

mapped the correlates of phonetic and/or phonological information related to the

specific phonemes and syllables that were heard, remembered, and produced using

a series of cortical searchlight multi-voxel pattern analyses trained on estimates of

BOLD responses from individual trials.

Multi-voxel pattern analysis (MVPA) considers how information content across

multiple voxels correlates with discrete stimulus classes (Haxby et al., 2001; Nor-

man et al., 2006; Kriegeskorte et al., 2006). MVPA variants have been employed by
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a number of researchers to determine brain areas whose response patterns predict

some aspect of speech stimuli (Formisano et al., 2008; Kilian-Hütten et al., 2011; Lee

et al., 2012; Merrill et al., 2012; Abrams et al., 2013; Du et al., 2014; Arsenault and

Buchsbaum, 2015; Correia et al., 2015; Evans and Davis, 2015; Zhang et al., 2016).

Formisano et al. (2008) found responses able to discriminate between different vow-

els distributed bilaterally across the mid-posterior STg / STs, with responses able to

discriminate different speakers of those vowels more focal and right lateralized. Using

a /ba/-/da/ discrimination task, Lee et al. (2012) found that the patterns of activa-

tion in voxel clusters within the left IFg, pre-SMA, and STg were predictive of the

syllable that subjects perceived, though whether these areas discriminated phonemes

or syllables was unclear. In a simple listening experiment, Zhang et al. (2016) found

predictive patterns for consonants and vowels, across different syllables, along the

mid-STg bilaterally. Du et al. (2014) presented subjects with syllables that spanned

four consonant classes under different background noise conditions. Using a multi-

variate method, they found that the ability for responses in different brain regions to

predict the phoneme class in noise differed, with inferior frontal cortex most resilient

to noise, followed by ventral premotor and inferior parietal cortex, with no discernibil-

ity under any noise conditions in STg. In recent work using representational similarity

analysis (Kriegeskorte et al., 2008), to compare the differential response patterns of

local cortical areas to syllable and syllable-like acoustic inputs to those predicted

by simple theoretical models, Evans and Davis (2015) have proposed a hierarchical

organization of speech representations. In particular, traditional “output” areas (so-

matomotor cortex) appeared to have the most abstract representation of the syllable,

with early auditory areas retaining the most acoustic detail. The vast majority of

studies employing MVPA and related techniques have focused on speech perception
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rather than production; here we extend the approach to syllable repetition, which

allows analysis of both input and output related representations.

In this study, we used systematically constructed CVC syllable stimuli to identify

regions that correlate with phonological information at segmental and suprasegmen-

tal levels. We employed a delayed, single syllable repetition task to engage input,

working memory maintenance, and output-related representations of these syllables,

and a sparse fMRI paradigm to most effectively capture responses to stimulus and

vocalization events. Using MVPA, we sought to localize cortical areas whose response

patterns to either the input or output portions of the repetition task made signifi-

cant predictions about the linguistic class labels for each stimulus. We hypothesized

that MVPA analyses of the input-related responses to the auditory stimulus would

highlight phonemic representations in the left posterior superior temporal sulcus and

possibly Spt and/or the inferior parietal cortex. We anticipated that analyses of

output-related responses would reveal a phonemic output buffer in the left inferior

frontal sulcus and/or dorsal portion of the inferior frontal gyrus pars opercularis,

and a syllabic representation in the left ventral premotor cortex. Because Spt has

been proposed as a critical, bidirectional sensory-motor interface, we expected any

predictive information in this area would also be observed during output.

2.2 Materials and methods

2.2.1 Participants

15 right-handed native American English speakers participated in this study (9 fe-

males, 6 males, mean age = 25.0, SD = 5.5, range = 19-33). No participants reported

any history of speech, language, or hearing disorders. All participants gave informed

consent under the protocol approved by the Institutional Review Board of Boston
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University. The data from one female subject (S13) were removed from the analysis

due to an abnormally high error rate during the task (see Results). For two subjects,

one run (see description of sessions below) was omitted due to scanner technical prob-

lems, while two runs were omitted in a third subject. Thus, for each of 14 subjects,

from 6 to 8 runs of data were analyzed.

2.2.2 Task design

Each trial began with the presentation of an auditory stimulus (syllable; see details

below) and a gray fixation point, followed by an 8-9 second delay / maintenance

period, after which a GO signal (the fixation point changing from gray to green)

was presented, cueing participants to repeat the perceived syllable aloud. During the

delay, EPI scans were triggered at 2s and 5s after the beginning of the trial. These

volume acquisitions were timed to align with theoretical peak hemodynamic responses

to the GO signal of the previous trial, and the stimulus presentation of the current

trial, respectively (see Figure 2.1). The delay varied from 8 to 9s, in 0.1s increments,

to prevent participants from anticipating the GO signal.

Sessions were broken into 8 runs, each consisting of 48 trials. In 44 trials of each

run, participants were presented with syllable stimuli, while control stimuli (noise)

were presented in two trials, and no stimulus (silence) was presented in two trials. As

a control for motor output on silence and noise trials, participants were instructed to

press a button with any finger on their right hand. For two subjects, there were four

noise trials and no silence trials per run.

Prior to the session, participants were informed that the stimuli they would hear

were constructed from the three chosen vowels and consonants and spoken by four

different talkers. They were instructed to naturally produce the syllables they heard
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without attempting to mimic detailed acoustic features of the specific stimulus.

2.2.3 MR-data acquisition

All measurements were performed using a 3T Philips Achieva MRI scanner with an

8 channel head coil at the Boston University Center for Biomedical Imaging. T1-

weighted anatomical images were acquired for anatomical reference and coregistra-

tion with functional data (0.98×0.98×1.2 mm3 voxels, 150 sagittal slices, 256 × 254

matrix, repetition time = 6.8 ms, echo time = 3.1 ms, P reduction (AP) SENSE

factor = 1.5, S reduction (RL) SENSE factor = 2). Functional volumes consisted of

40 echo-planar transverse slices (3mm thickness), acquired in ascending order, with

no gap (3.03×3.03×3 mm voxels, 76 × 75 matrix, acquisition time = 2500ms, echo

time = 35ms, flip angle = 90◦, P reduction SENSE factor = 2). Functional volumes

were acquired in a sparse acquisition paradigm (Figure 2.1), triggered externally by

a TTL pulse delivered from the stimulus delivery computer, mimicking a cardiac gat-

ing signal (Markiewicz, 2016). Two additional volumes were acquired at the end of

each run in order to capture residual hemodynamic activity in response to previous

experimental events.

Auditory stimuli were delivered through Sensimetrics S14 MRI-compatible insert

earphones, and were pre-filtered to equalize the frequency response at the earphones.

Subject vocalizations were recorded using an Optoacoustics FOMRI II fiber optic

microphone attached to the head coil and digitized for offline analysis.

2.2.4 Materials

Stimuli were consonant-vowel-consonant (CVC) syllables designed to permit indepen-

dent analysis of three segments, including a comparison of consonants in two distinct
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Figure 2.1: Specification of sparse event-related design. (A) Schema of
unevenly-spaced sparse acquisition paradigm. The solid blue curve indicates the
expected hemodynamic response function (HRF) associated with the presentation of
the stimulus at t = 0s. Scans, represented by black-outlined boxes, are acquired (with
TA = 2500ms) beginning at t = 2s (A) and t = 5s (B). The subject is cued to produce
the syllable at t = 8.5s± 0.5s, and the dashed blue curve indicates the expected re-
sponse associated with production, timed to the cue. Red curves are associated with
stimulus and production cues for a second trial. Horizontal lines indicate the mean
values of theoretical HRFs across the duration of a scan, which are used as regressors
in a general linear model. (B) Design matrix to estimate BOLD response amplitudes
to each event from the acquired scans. The blue columns depict the contributions of
each scan to trial 1 events, and the red columns depict contributions to trial 2 events.
See Figure 2.3 for further details on event estimation.
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syllable positions. Stimuli were constructed from the consonants /m/, /t/ and /l/

and the vowels /I/, /E/ and /2/ (Table 2.1). With the constraint that two differ-

ent consonants must be used in each syllable, this produced 18 unique syllables. To

select these phonemes, we parsed the CELEX English Frequency, Syllables corpus,

constructed predominantly from written sources (Baayen et al., 1993), and calculated

the distribution of frequencies of all 18 CVC syllables composed of any sets of three

consonants and three vowels. We chose this phoneme set to generate syllables with

a wide range of frequencies of occurrence, from very infrequent (<1 per million syl-

lables) to moderately frequent (584 per million). All syllables were phonotactically

legal in American English.

Two male and two female native English speakers recorded the stimuli, and five

recordings of each syllable per speaker were used to allow for additional acoustic

variations in the auditory tokens that subjects heard. On any given trial (see below),

subjects heard a randomly selected recording of the chosen syllable, and they heard

each recording from 1 to 7 times over the course of the experiment. Speech-shaped

control stimuli were generated by amplitude modulating pink noise by the Hilbert

envelopes of the original stimuli.

Mean formant frequencies were extracted from the approximate mid-points of

vowels in both the presented stimuli and recordings of subject vocalizations using

custom PRAAT (Boersma and Weenink) scripts (You et al., 2015), and random sub-

sets were hand-checked for accuracy. Trials with vocalization formants that could not

be extracted were excluded from acoustic analysis.
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/I/ /E/ /2/
/m/ /mIl/ (33) /mIt/ (248) /mEl/ (17) /mEt/ (298) /m2l/ (28/48) /m2t/ (133/0)
/l/ /lIm/ (32) /lIt/ (175) /lEm/ (2) /lEt/ (407) /l2m/ (95/9) /l2t/ (88/0)
/t/ /tIl/ (540) /tIm/ (120) /tEl/ (584) /tEm/ (308) /t2l/ (1/0) /t2m/ (185/17)

Table 2.1: The consonants /m/, /t/, /l/, and vowels /I/, /E/, /2/ were selected to
generate CVC stimuli that span a wide range of syllable frequencies (in parentheses,
per million syllables) in General American English. For the vowel /2/, the first
number indicates frequency of the reduced schwa vowel sound.

2.2.5 Behavioral assessment

All subjects’ vocalizations were verified against the presented stimuli. Due to at

times inconsistent recording quality (see Results), errors were marked only if the suc-

cessfully recorded portions of vocalization were inconsistent with the stimulus. For

instance, if only the sound sequence /It/ was audible, this vocalization would be

considered a match to either a target of /mIt/ or /lIt/. Incorrect vocalizations were

relabeled for analysis of output-related datasets (described below), but left unchanged

for input-related analyses. Unrecognizable vowels were excluded from acoustic analy-

sis. Verification was performed by one member of the research staff, with spot checks

for ambiguous vocalizations.

2.2.6 Preprocessing

We reconstructed cortical surfaces from the MPRAGE images with FreeSurfer (Dale

et al., 1999; Fischl, 2012) v5.3.0, which was also used to parcellate cortical surfaces

into regions of interest according to a custom speech-centric atlas (Tourville and

Guenther, 2012). All functional volumes from all runs were realigned to the first

volume of the first run using the FreeSurfer Functional Analysis Stream (FsFast). A

preliminary general linear model (GLM) was designed to remove linear trends and

motion-related variance (using Friston’s 24-parameter model Friston et al., 1996) in
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the BOLD signal. Regressors were entered separately for A and B scans, and a linear

ramp was sampled at the temporal mid-points of each scan for drift removal. Finally,

separate constant regressors were used to remove overall mean intensity differences

between A and B scans for each run. The first volume from each run (which was

not timed to a specific event of interest) in all subjects was modeled with a separate

parameter and discarded. Detrending was performed using custom Python scripts.

With the exception of the estimation of overall task effects (see Results), we

normalized (z-scored) the activation of each voxel relative to the mean and variance

of control conditions (silence and noise trials) across all runs, prior to analysis. Control

trials were thereafter excluded from analysis.

2.2.6.1 Uneven scan timing correction

To capture the peaks of both input- and output-related events, we used an unevenly-

spaced sparse acquisition protocol. As a result, A and B scans are influenced by dif-

ferent T1 saturation effects (Schmidt et al., 2008), which is problematic since events

are also intrinsically linked with different experimental conditions (i.e., input or out-

put). To correct for this, we modeled the ratio of gray-matter intensities between B

and A scans on a per-slice basis.

Scan timing correction was performed using the first 13 subjects recorded under

this protocol. We first applied FsFast motion correction to register all functional

images to the first volume of each session. We used the aseg FreeSurfer segmentation

to define gray-matter voxels in each subject. Figure 2.2 shows the effect of slice index

on the ratio of the mean gray-matter intensity in each B scan to the mean intensity

in the corresponding A scan.

We modeled the relation between slice index i and B/A ratio r as an exponential
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Figure 2.2: Scan timing effects by slice. The ratio of mean gray-matter intensities
from B scans to immediately preceding A scans varies by slice. Shown are 5000
randomly selected ratios, and an exponential curve of best fit (red) describing the
relation of all ratios to slice index.

function with free parameters a and b:

r = ae−bi + 1 (2.1)

Using the optimize.curve_fit function from the scipy (Jones et al., 2001–)

package, with initial estimates (a, b) = (−0.5, 0.1), we estimated a = −0.243 and

b = 0.0280. In each raw (non-motion-corrected) functional volume, each slice i of the

A scans was scaled by 1− 0.243e−0.0280i and copied into a new FsFast session, along

with unmodified B scans. The resulting sessions were again motion corrected.

These same parameters were used to correct intensities for the final two subjects.

2.2.6.2 Estimation of individual event responses

We defined an input-related event as the estimated hemodynamic response to the

auditory stimulus, and an output-related event as the estimated response to the

initiation of the motor act (i.e., the GO signal). The specification of regressors for

these events is illustrated in Figure 2.1. These regressors were used to construct

23



design matrices to estimate responses to individual events from the detrended scans

using a GLM as described by Perrachione and Ghosh (2013), with modifications

detailed below. Acquisitions in which there was at least a half-voxel (1.5mm) or

greater shift from the previous volume were treated as motion outliers. Events where

the magnitude of the theoretical HRF was greater than 10% of its maximum height

during one of these outlier volumes were excluded from analysis. A total of 124

input-related events and 126 output-related events were excluded across subjects.

Each individual event was modeled by a canonical HRF convolved with a delta

function, normalized to a maximum height of 1 (Figure 2.3A). For a scan that occurs

during the course of the hemodynamic response, its contribution to the event was

estimated as the mean of the HRF during its 2.5s duration. Because a volume was

captured in 40 slices, we used an HRF temporal resolution (Nipype’s spm_hrf()

parameter RT) of 2.5s / 40 = 0.0625s.

The GLM estimation was performed piecewise by condition (Figure 2.3B), using

custom Python scripts. A condition was defined as a (stimulus, event type) pair,

where stimulus is a specific syllable, silence, or noise, and event type is either input-

linked or output-linked. With 18 syllables used, this resulted in 40 conditions, between

which all events may be labeled (i.e., /mEl/in, /mEl/out, /mIl/in, . . .). When one of

these conditions was modeled, all events labeled with that condition were modeled as

individual events (with individual regressors), while all other events were collapsed

into a single column for each of the other conditions (Figure 2.3C). Only the esti-

mates of individual events were kept, while estimates of the collapsed conditions were

discarded.

An input-linked dataset for subsequent MVPA analysis was created from the HRF

estimates for each input-linked event, and an output-linked dataset was created like-
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Figure 2.3: Piecewise general linear model. To model each event individually,
events are grouped into conditions, two of which are shown in yellow and cyan in
these schematized design matrices. The raw design matrix (A) contains a regressor
for each event (stimulus/input or GO-signal/output), where each regressor is an im-
pulse function convolved with an HRF, sampled at each scan time. The condition
design matrix (B) contains a regressor for each condition, which is the sum of the
event-related regressors within that condition. Condition-specific design matrices (C)
contain one regressor for each event in the condition of interest and one for each
condition of non-interest. The estimates for the events for each condition of interest
are reconstructed to produce input- and output-related datasets with one estimate
per-trial.
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wise. These datasets were considered separately in further analyses.

2.2.7 Surface Searchlight

We implemented a cortical surface searchlight (e.g., Chen et al., 2011; Oosterhof et al.,

2011) within the PyMVPA framework (Hanke et al., 2009), using a geodesic radius

of 9mm centered on each vertex of interest, calculated using Dijkstra’s algorithm

(Dijkstra, 1959) on the FreeSurfer mesh halfway between the pial and white matter

surfaces (Chen et al.’s “graymid” surface). To avoid resampling or excess smoothing,

our analyses were performed on volumetric (voxel) data in subject-native space. At a

given voxel, the nearest surface vertex to the center of that voxel was selected as the

center of a 9mm disk, and all voxels intersecting that disk constituted the searchlight

at that voxel. The result of a searchlight analysis creates an accuracy map, a volume

in which each voxel contains a statistic for the searchlight centered at that voxel.

For group analyses, each subject’s accuracy map was projected onto their graymid

surface.

The statistic of interest in our analyses was leave-one-run-out cross validation

accuracy, and a linear C support vector machine (CSVM) was chosen as the classifier.

For input-related analyses, the class label for each volume was the identity of the

stimulus presented; for output-related datasets, the label was the identity of the

speech sound produced. We performed independent searchlight analyses with full

syllable (C1V C2 trigram), onset (C1), vowel (V ), and coda (C2) class labels.

The PyMVPA Balancermapper was used to ensure that, in each fold, the training

and validation sets each contained identical numbers of volumes in each class, to

reduce bias in SVM construction and validation. When input sets are unbalanced,

the Balancer produces two random, balanced sets, each of which is classified, and
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the results are averaged.

2.2.7.1 Nonparametric significance testing

For each classification result, each subject’s accuracy map was registered to the Free-

Surfer fsaverage template for group analysis. A map of relative accuracy was created

by subtracting the mean cross-validation accuracy across vertices from each vertex,

such that the resulting image had a mean of zero. One-tailed t-tests were used to

assess whether individual vertices had consistently high relative accuracy across sub-

jects (Lee et al., 2012). The map was subjected to a p < 0.05 (uncorrected) threshold,

and we defined clusters as connected subgraphs (of supra-threshold vertices) on the

surface, which were used for further inference.

To perform cluster-extent based thresholding, we generated a null distribution of

chance cluster sizes. For each subject, we permuted class labels 100 times and re-

trained classifiers to generate random accuracy maps (see Stelzer et al., 2013); each

such map was registered to the fsaverage template. Choosing one random accuracy

map from each subject and subjecting it to the thresholding process described above

produced a set of cluster sizes. In this way, we constructed 104 sets of empirical

chance cluster sizes, providing a null-distribution for assigning cluster-level signifi-

cance. Cluster-level thresholds of p < 0.01 were used for phoneme-level analyses. A

stricter threshold of p < 0.001 was used for syllable-level analyses; due to the lower

theoretical chance-level accuracy (1/18, or 0.05̄%) random fluctuations produce a

larger number of small clusters, with the effect of decreasing p-values for all clusters.

This threshold was used to result in a minimum cluster extent that was more similar

to that used for phoneme-level analysis.
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2.2.8 Acoustic Analysis

Classification accuracy is driven by correlations between class labels and patterns of

voxel activations. These patterns may, for instance, be consistent with a “categorical”

representation, in which a voxel responds identically (modulo noise) to all stimuli

drawn from the same class, or with a “continuous” representation, in which a voxel

responds to an acoustic feature, which in turn correlates with class labels. Vowels, for

instance, form clusters in the F1, F2 formant frequency space (Peterson and Barney,

1952); a handful of voxels whose responses correlate with formants, then, could drive

above-chance vowel classification.

To assess whether formant frequency related variance in the BOLD signal was

driving classification accuracies, we constructed alternative design matrices for the

event-estimation GLM. In these matrices, we added nuisance regressors for the first

and second formants, as well as the ratio F2/F1, convolved by the HRF. With the

resulting dataset, we performed an additional set of searchlight analyses, as above.

Mapping into the fsaverage template and subtracting the empirical chance classifica-

tion accuracy, we performed a two-sample t-test at each vertex between classification

accuracies, where one sample contains the accuracies from the original datasets, and

the other from this alternative dataset to determine if removing formant-related vari-

ance decreased classification accuracy (as would be expected if an ROI was “tracking”

formant values).
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2.3 Results

2.3.1 Behavioral results

One subject (S13) repeated syllables with an error rate of 20.74%. For all other sub-

jects, the mean error rate was 1.61% (σ = 1.35%), with minimum and maximum error

rates of 0 and 5.40%. S13 was excluded from all subsequent analyses. One subject’s

vocalizations were not recorded for one run; however, this subject made no errors

in the recorded runs, and was included in all further analyses with the assumption

that no errors were made in this first run. Inconsistent recording quality resulted

in 0-30 wholly or partially missing vocalizations, out of 352 total trials (mean=13.2,

std=8.8).

2.3.2 Overall task effects

To verify the effectiveness of individual event modeling with the piecewise general

linear model, we first calculated contrasts between task and control conditions for

input- and output-linked event estimates. Within each dataset, a condition is defined

here as the set of estimated coefficients (betas) associated with a particular stimulus

type. In this case, task-related (syllable responses linked to either input or output

events) betas and control-related (silence or noise) betas constituted the conditions.

The beta estimates for a condition were taken to be the mean of the betas for all

individual events in that condition.

We contrasted the average voxel-wise betas for the task and control conditions in

each subject’s native space, then mapped into their FreeSurfer surface representation

and onto the fsaverage template. At each vertex in the fsaverage space, we per-

formed a two-tailed, one-sample t-test across participants. Figure 2.4 shows positive

t-statistics that surpass an uncorrected threshold of p < 0.05. This liberal thresh-
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Figure 2.4: Overall task effects. Contrasts between mean estimates of individual
event responses for task and control (silence, noise) conditions in the (A) input- and
(B) output-linked hemodynamic responses. Shown are t-statistics (13 dof), thresh-
olded at p < 0.05 (uncorrected).

old was used due to the unconventional approach of using estimates from individual

events.

The input-related responses were primarily localized to bilateral superior temporal

gyrus, planum temporale, and ventral motor cortex. Output-related responses were

localized primarily to bilateral sensorimotor cortex, with fewer significant activations

in the auditory cortex.

2.3.3 Speech sound information mapping

An MVPA searchlight analysis identifies “informative” regions with regard to the

class labels assigned to a dataset, using cross-validation accuracy as the statistic of

interest. Here we present results for input- and output-related datasets, analyzed

with vowel, onset and coda labels, as well as with whole syllable labels. In Figures

2.5 and 2.9-2.11, the values rendered on inflated cortical surfaces are the mean raw

(i.e., not normalized by the voxel-wise average) cross-validation accuracies across

subjects, thresholded, using a nonparametric cluster-level significance test, with a

vertex-wise uncorrected threshold of p < 0.05 and cluster-wise thresholds of p < 0.01
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Figure 2.5: Vowel accuracy. Regions with significant cross-validation accuracy for
decoding of vowel identity based on input- (red) and output-related (green) hemody-
namic response estimates. Regions of overlap are shown in yellow, with greater input
accuracy appearing more toward red and greater output accuracy appearing more
toward green. For output-related analysis, the identity of the spoken vowel was used
as the classification target if the vocalization differed from the presented stimulus.
Results presented at p < 0.05 uncorrected, thresholded by cluster size (p < 0.01).

(for phoneme-level analyses) or p < 0.001 (for syllable-level analyses).

2.3.3.1 Vowels

Figure 2.5 shows the mean accuracies for classifiers trained on vowel identity, irre-

spective of the surrounding consonants, with a cluster-level threshold of p < 0.01.

This and other figures (except Figure 2.6) render, in different hues, areas with sig-

nificant information both based on input responses and output responses, allowing a

direct comparison across stages of the task. Empirical chance accuracies, indicated

in Figures 2.5, 2.9, 2.10 and 2.11, represent the across-subject average and standard

deviation of the spatial means of each accuracy map. For input-linked analyses, we

found a superior temporal cluster centered in right posterior superior temporal gyrus

(STg), in addition to inferior parietal clusters in left supramarginal gyrus (SMg), right

parietal operculum (PO), and angular gyrus (AG). In addition we found a prominent

31



1

0

2

3

-3

-2

-1

1

0

2
3

-3
-2

-1

4

-4

t t

A B

Figure 2.6: Differences in vowel accuracy with and without acoustic regres-
sors. Two-sample t-statistics between relative vowel classification accuracies using
event modeling with and without acoustic nuisance regressors, for (A) input- and
(B) output-related responses. Maps are thresholded by (p < 0.01) cluster thresh-
olds from the corresponding searchlight analyses (Figure 2.5). Positive (red) values
indicate superior relative classification without nuisance regressors; negative (blue)
values indicate superior classification with nuisance regressors. Color axes are scaled
quadratically to enhance visual separation.

cluster centered in left inferior frontal sulcus (IFs), and two smaller clusters in right

IFs and inferior frontal gyrus pars opercularis (IFo). For output-linked responses,

prominent clusters of predictive information were found bilaterally in posterior su-

perior temporal sulcus (STs) and in right PO, along with inferior frontal clusters in

right IFo, frontal operculum and ventral premotor cortex (vPMC). A strong, right-

lateralized ventral somatosensory cortical cluster also appears, as well as a large

cluster of predictive voxels in the left posterior pericallosal sulcus / cingulate gyrus.

Locations of peak classification rates for all such clusters are listed in Tables 2.2

and 2.3. Theoretical chance accuracy for classifying three vowels was 1/3 = 0.3̄, and

peak group mean accuracies ranged from 0.351 to 0.373. Note, however, that clusters

in the present analysis (and all classification analyses presented) were defined by

increases over the empirical chance accuracy rate.

In order to determine the extent to which formant frequency related information

was driving classification accuracy for vowels (the most acoustically salient segments),
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Input - Vowel
Coordinate (x, y, z) Accuracy p-value Extent Hemisphere aparc SLaparc17

-35 13 25 0.362 2.9× 10−4 561 lh caudalmiddlefrontal pIFs
-16 -87 31 0.366 1.1× 10−3 343 lh superiorparietal OC
-32 -80 29 0.362 1.2× 10−3 324 lh inferiorparietal AG
-26 14 43 0.361 1.9× 10−3 259 lh caudalmiddlefrontal pMFg
-58 -40 40 0.365 3.4× 10−3 185 lh supramarginal aSMg
-3 0 33 0.359 3.9× 10−3 170 lh posteriorcingulate midCG

-14 -42 70 0.359 3.9× 10−3 170 lh paracentral dSC
-6 -35 44 0.360 4.7× 10−3 151 lh posteriorcingulate pCG

-56 -26 -28 0.363 4.9× 10−3 148 lh inferiortemporal pITg
-15 48 -21 0.360 5.0× 10−3 145 lh lateralorbitofrontal FP
-40 -8 -14 0.357 5.2× 10−3 142 lh insula PP
-50 -57 37 0.364 5.3× 10−3 139 lh inferiorparietal AG
-41 -29 -23 0.359 6.9× 10−3 114 lh fusiform pTF
-26 -58 51 0.360 7.9× 10−3 103 lh superiorparietal SPL
-20 -99 9 0.356 8.8× 10−3 94 lh lateraloccipital OC
-7 8 52 0.362 9.3× 10−3 90 lh superiorfrontal preSMA

-27 -58 45 0.366 9.8× 10−3 86 lh superiorparietal SPL
33 -68 39 0.368 2.6× 10−4 588 rh inferiorparietal AG
44 -34 24 0.363 6.4× 10−4 422 rh supramarginal PO
29 -30 64 0.363 2.7× 10−3 212 rh postcentral dSC
43 -64 2 0.363 5.8× 10−3 130 rh lateraloccipital MTO
29 -36 57 0.361 7.5× 10−3 107 rh postcentral dSC
65 -32 2 0.358 7.8× 10−3 104 rh superiortemporal pdSTs
50 22 7 0.353 8.3× 10−3 99 rh parstriangularis vIFo
47 27 18 0.359 1.0× 10−2 85 rh parsopercularis pIFs
24 -11 54 0.360 1.0× 10−2 85 rh precentral mdPMC

Table 2.2: Significant clusters for vowel-classification in input-linked dataset.
Columns: (a) Coordinates of peak accuracy, in MNI305 space; (b) mean cross-
validation accuracy, across subjects; (c) empirical cluster-wise p-value; (d) extent
(# of contiguous vertices); (e) hemisphere; (f) Desikan et al. (2006) atlas label; (g)
Tourville and Guenther (2012) speech-related atlas label.

we trained classifiers on events modeled with and without acoustic nuisance regressors

specifying the first and second formant frequencies (and their ratio) of vowels heard

or produced. The formant values extracted for all stimuli as well as a random subset

of subjects’ productions are shown in Figures 2.7-2.8. Vertex-wise two-sample t-

tests were conducted between the relative vowel classification rates resulting from

searchlight analyses for these two models.
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Output - Vowel (vocalized)
Coordinate (x, y, z) Accuracy p-value Extent Hemisphere aparc SLaparc17

-54 -22 -5 0.373 6.4× 10−5 921 lh superiortemporal pdSTs
-4 -48 18 0.370 1.0× 10−4 801 lh isthmuscingulate pCG

-53 8 -20 0.363 3.6× 10−3 182 lh superiortemporal adSTs
-5 49 -24 0.366 4.4× 10−3 160 lh medialorbitofrontal FP
-8 62 -13 0.367 5.7× 10−3 134 lh frontalpole FP

-20 -51 -3 0.360 5.9× 10−3 130 lh lingual LG
-65 -33 -17 0.361 6.5× 10−3 121 lh middletemporal pMTg
-48 -18 50 0.363 6.5× 10−3 121 lh postcentral dSC
-34 51 15 0.361 7.3× 10−3 111 lh rostralmiddlefrontal FP
-52 -37 0 0.359 7.8× 10−3 105 lh bankssts pdSTs
-18 46 -16 0.363 8.1× 10−3 102 lh lateralorbitofrontal FP
-41 -43 -22 0.366 8.2× 10−3 101 lh fusiform pTF
47 -29 -2 0.367 5.1× 10−5 989 rh superiortemporal pdSTs
64 -14 25 0.369 1.8× 10−4 688 rh postcentral vSC
54 -31 30 0.362 5.2× 10−4 472 rh supramarginal PO
29 -53 -6 0.360 1.6× 10−3 290 rh lingual LG
29 -44 62 0.368 1.7× 10−3 279 rh superiorparietal SPL
59 -48 -20 0.365 2.0× 10−3 255 rh inferiortemporal pITg
39 9 10 0.361 5.6× 10−3 136 rh parsopercularis pFO
44 -14 20 0.359 6.7× 10−3 119 rh postcentral pCO
40 -67 -16 0.363 7.4× 10−3 110 rh fusiform TOF
46 8 18 0.357 7.9× 10−3 104 rh parsopercularis dIFo
44 19 7 0.362 9.2× 10−3 92 rh parsopercularis vIFo
64 -46 -6 0.356 9.4× 10−3 90 rh middletemporal pMTg
56 -54 -3 0.365 9.4× 10−3 90 rh middletemporal MTO

Table 2.3: Significant clusters for vowel-classification in output-linked dataset.
Columns: (a) Coordinates of peak accuracy, in MNI305 space; (b) mean cross-
validation accuracy, across subjects; (c) empirical cluster-wise p-value; (d) extent
(# of contiguous vertices); (e) hemisphere; (f) Desikan et al. (2006) atlas label; (g)
Tourville and Guenther (2012) speech-related atlas label.
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Figure 2.7: Formant frequencies of stimuli. Formant frequencies were estimated
from the approximate mid-points of vowels using custom PRAAT scripts (see Meth-
ods). Shown are the first two formant estimates from all 360 stimuli used, labeled
by vowel. Formants from syllables containing /I/ are shown in green; /E/ in red; and
/2/ in blue.
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Figure 2.8: Formant frequencies of subjects’ vocalizations. Subject syllable
productions were extracted and labeled manually. Formant frequencies were esti-
mated from the approximate mid-points of vowels using custom PRAAT scripts (see
Methods). Shown are the first two formants estimates from 300 vocalizations, ran-
domly selected from across all subjects. Formants from syllables containing the vowel
/I/ are shown in green; /E/ in red; and /2/ in blue.
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Figure 2.9: Onset consonant accuracy. Regions with significant cross-validation
accuracy for decoding onset consonant identity based on input- (red) and output-
related (green) hemodynamic response estimates. Regions of overlap are shown in
yellow, with greater input accuracy appearing more red and greater output accuracy
appearing more green. For output-related analysis, the identity of the spoken con-
sonant was used as the classification target, when the vocalization differed from the
presented stimulus. Results presented at p < 0.05 uncorrected, thresholded by cluster
size (p < 0.01).

Figure 2.6 shows the resulting t-statistics, masked by the clusters identified in

the input- and output-linked vowel searchlight analyses. In both input- and output-

related analyses, nearly all regions showed positive t-statistics, indicating that re-

moving systematic variations related to formants resulted in decreased classification

accuracy relative to empirical chance accuracy, in regions identified as containing in-

formation about vowel identities. However, no regions reached statistical significance

when applying a false discovery rate correction.

2.3.3.2 Consonants

Searchlight classification using consonants as class labels (performed separately for

onset and coda positions) revealed a pattern of areas largely distinct from that found

for vowels. Figure 2.9 shows mean cross-validation accuracies for classifiers trained
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on onset identity, with a cluster threshold of p < 0.01. The input-linked analy-

sis shows predominantly superior temporal clusters, bilaterally, in addition to a few

small clusters in inferior frontal regions. We found predictive information in right

inferior frontal gyrus (IFg) pars orbitalis and anterior STg. Clusters with informative

activation patterns were also found in left anterior planum polare (PP), as in the

vowel analysis. Further findings included superior temporal sensitivity centered in

STs bilaterally, in right-lateralized planum temporale (PT) and Heschl’s gyrus (H).

In inferior frontal regions, we found a left-lateralized cluster centered in IFs (anterior

to that observed for vowel identity) and right-lateralized vPMC.

For the corresponding output-linked analyses, ventral somatosensory and motor

cortices provided strong predictive information. In superior temporal regions, we

found a left posterior cluster spanning posterior STs/STg/PP and smaller clusters

centered in anterior STs, Heschl’s gyrus and posterior insula, as well as a cluster

spanning much of the right STg, into PT/H/PP. Finally, we found a left lateralized

cluster in ventral IFs/dorsal IFg pars triangularis (IFt).

Locations of peak classification rates for all such clusters are listed in Tables 2.4-

2.5. Theoretical chance accuracy for classifying three consonants was again 0.3̄, and

peak group mean accuracies ranged from 0.354 to 0.384.
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Input - Onset
Coordinate (x, y, z) Accuracy p-value Extent Hemisphere aparc SLaparc17

-10 -99 3 0.369 4.2× 10−4 495 lh pericalcarine OC
-50 -18 -12 0.365 6.8× 10−4 413 lh superiortemporal pdSTs
-56 -28 -31 0.365 1.7× 10−3 277 lh inferiortemporal pITg
-44 -3 -19 0.362 3.2× 10−3 192 lh superiortemporal PP
-43 34 26 0.362 3.5× 10−3 184 lh rostralmiddlefrontal aMFg
-43 -68 11 0.361 3.5× 10−3 183 lh inferiorparietal OC
-59 -2 12 0.356 3.7× 10−3 177 lh precentral vMC
-25 35 26 0.360 4.0× 10−3 167 lh rostralmiddlefrontal aMFg
-11 39 -22 0.365 4.6× 10−3 154 lh lateralorbitofrontal FP
-5 41 -4 0.359 5.0× 10−3 146 lh rostralanteriorcingulate aCG

-56 -35 0 0.360 5.0× 10−3 146 lh bankssts pdSTs
-60 -23 -4 0.365 5.0× 10−3 145 lh superiortemporal pdSTs
-25 38 -12 0.358 6.6× 10−3 118 lh lateralorbitofrontal FP
-27 -30 64 0.357 7.5× 10−3 107 lh postcentral dSC
-45 35 8 0.361 8.3× 10−3 99 lh parstriangularis aIFs
-3 45 -21 0.358 9.4× 10−3 89 lh medialorbitofrontal FMC
53 -33 -28 0.373 4.7× 10−4 475 rh inferiortemporal pITg
57 -13 3 0.371 1.2× 10−3 330 rh superiortemporal H
44 30 -7 0.367 1.4× 10−3 305 rh parstriangularis FOC
49 -7 -10 0.365 2.2× 10−3 240 rh superiortemporal PP
39 40 6 0.366 2.3× 10−3 235 rh rostralmiddlefrontal FP
60 -18 -3 0.364 2.5× 10−3 223 rh superiortemporal pdSTs
59 5 -9 0.360 3.0× 10−3 202 rh superiortemporal aSTg
18 49 -17 0.370 3.4× 10−3 185 rh lateralorbitofrontal FP
27 -43 -18 0.366 3.6× 10−3 180 rh fusiform pTF
14 20 -21 0.369 3.6× 10−3 179 rh lateralorbitofrontal FOC
17 15 -24 0.368 3.8× 10−3 175 rh lateralorbitofrontal FOC
21 32 44 0.362 4.0× 10−3 169 rh superiorfrontal SFg
53 -48 7 0.358 4.4× 10−3 157 rh bankssts MTO
58 -5 -22 0.361 4.7× 10−3 152 rh middletemporal avSTs
59 3 7 0.361 4.8× 10−3 149 rh precentral vPMC
60 -8 19 0.359 5.6× 10−3 133 rh postcentral vSC
23 54 26 0.362 5.7× 10−3 132 rh rostralmiddlefrontal FP
66 -30 1 0.367 7.5× 10−3 107 rh superiortemporal pdSTs
25 -3 -36 0.364 7.7× 10−3 105 rh entorhinal aPH
44 18 -28 0.363 7.8× 10−3 104 rh superiortemporal TP
52 -55 15 0.357 9.4× 10−3 89 rh inferiorparietal AG

Table 2.4: Peak classification accuracies for input-related beta estimates, classified
on the identity of the onset consonant of each stimulus.
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Output - Onset (vocalized)
Coordinate (x, y, z) Accuracy p-value Extent Hemisphere aparc SLaparc17

-57 -3 32 0.377 1.2× 10−7 3060 lh precentral vMC
-45 -58 12 0.379 3.6× 10−6 1780 lh inferiorparietal MTO
-58 -10 -6 0.373 9.3× 10−4 372 lh superiortemporal adSTs
-34 -41 40 0.368 2.4× 10−3 232 lh superiorparietal SPL
-33 -50 64 0.370 2.9× 10−3 208 lh superiorparietal SPL
-47 28 11 0.370 3.5× 10−3 186 lh parstriangularis aIFs
-55 -23 -27 0.369 3.6× 10−3 184 lh inferiortemporal pITg
-51 -60 28 0.374 4.5× 10−3 159 lh inferiorparietal AG
-44 -22 -2 0.374 4.5× 10−3 159 lh superiortemporal PP
-37 -45 49 0.364 4.9× 10−3 150 lh superiorparietal SPL
-41 40 27 0.366 5.0× 10−3 147 lh rostralmiddlefrontal aMFg
-6 10 57 0.368 5.2× 10−3 142 lh superiorfrontal preSMA

-54 -38 2 0.369 6.2× 10−3 125 lh bankssts pdSTs
-51 -37 0 0.363 6.4× 10−3 123 lh bankssts pdSTs
-6 51 -25 0.367 7.1× 10−3 113 lh medialorbitofrontal FP
-7 62 21 0.368 7.4× 10−3 109 lh superiorfrontal FP

-55 -61 -3 0.368 7.9× 10−3 104 lh middletemporal MTO
-37 -19 -4 0.365 8.6× 10−3 97 lh insula pINS
-48 -26 6 0.367 9.8× 10−3 87 lh transversetemporal H
62 -8 32 0.384 1.2× 10−7 3195 rh postcentral vSC
62 -38 10 0.382 1.2× 10−7 3826 rh bankssts pSTg
55 -36 -17 0.375 2.3× 10−5 1212 rh inferiortemporal pMTg
50 -58 0 0.373 3.6× 10−5 1075 rh middletemporal MTO
64 -42 -3 0.376 1.5× 10−4 721 rh middletemporal pvSTs
59 4 6 0.374 7.6× 10−4 405 rh precentral vPMC
48 -3 -32 0.372 1.6× 10−3 292 rh middletemporal aITg
40 -17 63 0.365 4.1× 10−3 169 rh precentral dMC
51 -62 24 0.368 5.7× 10−3 134 rh inferiorparietal AG
51 -1 49 0.368 6.4× 10−3 123 rh precentral midPMC
35 -36 62 0.366 8.2× 10−3 101 rh postcentral dSC

Table 2.5: Peak classification accuracies for input-related beta estimates, classified
on the identity of the onset consonant of each vocalization.
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Figure 2.10: Coda consonant accuracy. Regions with significant cross-validation
accuracy for decoding coda consonant identity based on input- (red) and output-
related (green) hemodynamic response estimates. Regions of overlap are shown in
yellow, with greater input accuracy appearing more red and greater output accuracy
appearing more green. For output-related analysis, the identity of the spoken con-
sonant was used as the classification target, when the vocalization differed from the
presented stimulus. Results presented at p < 0.05 uncorrected, thresholded by cluster
size (p < 0.01).

We next examined the information associated with prediction of coda consonant

identity. Mean cross-validation accuracies for classifiers trained on coda identity are

shown in Figure 2.10. For input-linked analyses, we found superior temporal sensi-

tivity in left Heschl’s gyrus and PP, a large right-hemisphere cluster spanning mid-

STs/STg, Heschl’s gyrus and PT, and a further cluster centered in right anterior

STg. Right lateralized inferior parietal clusters were found in AG and PO, and right-

lateralized inferior frontal clusters were found in IFt.

For the corresponding output-linked analyses, ventral sensorimotor cortices were

prominent, bilaterally, with especially high group mean classification accuracies. As

seen for classification of onsets, superior temporal lobe sensitivity was localized to

posterior STg in the left hemisphere, and in posterior and anterior STg in the right

hemisphere. Bilateral clusters were also found in SMg and IFt.
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Locations of peak classification rates for all such clusters are listed in Tables 2.6-

2.7. Theoretical chance accuracy for classifying three consonants was again 0.3̄. Peak

group mean accuracies for the input-linked analysis ranged from 0.363 to 0.377, while

those for the output-linked analysis ranged from 0.370 to 0.423.

Input - Coda
Coordinate (x, y, z) Accuracy p-value Extent Hemisphere aparc SLaparc17

-29 22 40 0.377 1.8× 10−4 654 lh caudalmiddlefrontal aMFg
-5 54 -16 0.375 1.2× 10−3 323 lh medialorbitofrontal FP

-51 -20 7 0.376 2.2× 10−3 241 lh transversetemporal H
-6 43 -24 0.370 2.6× 10−3 218 lh medialorbitofrontal FMC
-9 34 27 0.371 3.6× 10−3 181 lh superiorfrontal SFg

-52 -6 23 0.367 4.0× 10−3 168 lh precentral vMC
-38 -15 20 0.365 5.0× 10−3 146 lh insula pCO
-32 -32 69 0.367 5.3× 10−3 139 lh postcentral dSC
-58 -18 42 0.366 6.1× 10−3 126 lh postcentral vSC
-59 -12 -26 0.370 6.1× 10−3 125 lh middletemporal aMTg
-38 -29 13 0.371 6.3× 10−3 123 lh transversetemporal H
-45 -8 -14 0.369 6.8× 10−3 116 lh superiortemporal PP
-46 -10 12 0.366 6.9× 10−3 115 lh postcentral pCO
-7 60 6 0.367 7.2× 10−3 111 lh superiorfrontal FP

-39 51 9 0.373 7.4× 10−3 109 lh rostralmiddlefrontal FP
-56 -20 36 0.363 7.5× 10−3 107 lh postcentral vSC
-55 -21 -26 0.367 8.0× 10−3 102 lh middletemporal pITg
-36 52 -10 0.367 9.8× 10−3 86 lh parsorbitalis FP
52 -15 6 0.376 4.2× 10−6 1659 rh transversetemporal H
56 4 -16 0.375 7.1× 10−4 404 rh superiortemporal aSTg
8 51 -5 0.371 1.2× 10−3 320 rh medialorbitofrontal FP

48 40 -13 0.371 1.8× 10−3 269 rh parsorbitalis FP
36 -15 52 0.373 1.9× 10−3 262 rh precentral dMC
48 -19 -12 0.368 2.9× 10−3 206 rh superiortemporal pdSTs
12 -5 71 0.367 3.0× 10−3 201 rh superiorfrontal mdPMC
51 -6 -30 0.374 4.0× 10−3 169 rh middletemporal aMTg
56 -50 38 0.367 4.4× 10−3 157 rh inferiorparietal AG
54 -37 -19 0.367 5.2× 10−3 141 rh inferiortemporal pITg
46 -30 24 0.369 5.7× 10−3 132 rh supramarginal PO
43 19 -28 0.363 6.6× 10−3 118 rh superiortemporal TP
9 39 52 0.370 6.8× 10−3 116 rh superiorfrontal SFg

39 27 32 0.370 7.4× 10−3 108 rh rostralmiddlefrontal aMFg
8 67 -3 0.368 7.7× 10−3 105 rh frontalpole FP

26 29 -13 0.370 8.3× 10−3 99 rh lateralorbitofrontal FOC
43 39 3 0.365 8.7× 10−3 95 rh parstriangularis FP
43 16 47 0.373 8.8× 10−3 94 rh caudalmiddlefrontal pMFg
34 -51 64 0.371 9.0× 10−3 93 rh superiorparietal SPL
54 30 3 0.365 1.0× 10−2 85 rh parstriangularis dIFt

Table 2.6: Peak classification accuracies for input-related beta estimates, classified
on the identity of the coda consonant of each stimulus.
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Output - Coda (vocalized)
Coordinate (x, y, z) Accuracy p-value Extent Hemisphere aparc SLaparc17

-53 -12 30 0.414 < 1× 10−7 5813 lh postcentral vSC
-52 28 3 0.388 4.8× 10−7 2476 lh parstriangularis vIFt
-64 -17 -1 0.380 1.1× 10−5 1435 lh superiortemporal pSTg
-15 59 -8 0.381 2.5× 10−4 614 lh rostralmiddlefrontal FP
-10 66 12 0.380 2.8× 10−4 588 lh superiorfrontal FP
-60 -13 -25 0.385 3.5× 10−4 548 lh middletemporal aMTg
-27 48 15 0.377 1.0× 10−3 354 lh rostralmiddlefrontal FP
-46 14 -28 0.379 1.4× 10−3 308 lh superiortemporal TP
-40 -40 -24 0.381 1.6× 10−3 293 lh fusiform pTF
-47 -62 -8 0.377 1.8× 10−3 276 lh inferiortemporal ITO
-50 -8 -3 0.373 6.7× 10−3 119 lh superiortemporal PP
-38 31 16 0.378 7.2× 10−3 112 lh rostralmiddlefrontal aIFs
-57 -0 -26 0.371 8.0× 10−3 103 lh middletemporal aMTg
-62 -27 23 0.378 9.9× 10−3 86 lh supramarginal aSMg
53 -12 33 0.423 6.0× 10−8 4511 rh postcentral vSC
59 -16 4 0.401 1.2× 10−7 3387 rh superiortemporal PT
57 1 7 0.382 9.5× 10−5 823 rh precentral aCO
44 13 -32 0.393 8.3× 10−4 391 rh superiortemporal TP
55 -27 27 0.373 1.1× 10−3 346 rh supramarginal PO
34 -36 -19 0.381 1.5× 10−3 301 rh fusiform pTF
44 -33 12 0.376 1.8× 10−3 272 rh superiortemporal PT
44 -17 18 0.379 2.9× 10−3 211 rh supramarginal pCO
36 -9 11 0.375 4.9× 10−3 149 rh insula aINS
18 12 -17 0.387 5.9× 10−3 131 rh lateralorbitofrontal FOC
55 -53 -20 0.376 6.9× 10−3 116 rh inferiortemporal pITg
34 -36 39 0.373 7.2× 10−3 112 rh supramarginal dSC
52 28 13 0.384 7.4× 10−3 110 rh parstriangularis dIFt
37 6 -38 0.383 7.5× 10−3 108 rh inferiortemporal TP
35 -20 16 0.370 9.8× 10−3 87 rh insula pINS
43 -50 -20 0.374 9.9× 10−3 86 rh fusiform pTF

Table 2.7: Peak classification accuracies for input-related beta estimates, classified
on the identity of the coda consonant of each vocalization.
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Figure 2.11: Syllable accuracy. (A) Regions with significant cross-validation ac-
curacy for decoding of syllable identity based on input- (red) and output-related
(green) hemodynamic response estimates. Regions of overlap are shown in yellow,
with greater input accuracy appearing more red and greater output accuracy ap-
pearing more green. For output-related analysis, the identity of the spoken syllable
was used as the classification target, when this differed from the presented stimulus.
Results presented at p < 0.05 uncorrected, thresholded by cluster size (p < 0.001).
Medial surfaces reveal no significant results. (B) An additional mask has been applied,
hiding decoding results in vertices where significant decoding of constituent phonemes
was found. Phoneme-level clusters were thresholded at p < 0.01, as shown in Figures
2.5, 2.9 and 2.10. Input- and output-related masks were constructed separately.

2.3.3.3 Syllables

Finally, we examined the information associated with prediction of whole-syllable

identity. Figure 2.11A shows mean cross-validation accuracies for classifiers trained

on syllable identity, with a cluster-level threshold of p < 0.001. Input-linked response

estimates in left STs/STg, right anterior STg, posterior insula (pINS) and Heschl’s

gyrus provided significant predictive power for the syllable heard by the subject.

We also found inferior frontal clusters in the left vPMC and vMC, as well as right

frontal operculum and IFg pars orbitalis. For output-linked responses, predictive

voxel patterns were localized in the left posterior STg, mid-STs, and right hemisphere

Heschl’s gyrus and posterior STs. Bilaterally, we found large, ventral sensorimotor
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clusters and smaller anterior SMg clusters. No significant clusters were observed on

the medial surface (not shown).

Figure 2.11B shows the same values as in Figure 2.11A, masked to reveal signifi-

cant vertices that do not appear in onset, vowel, or coda results. Input-linked clusters

remain largely unaltered in left vPMC and right pINS, while anterior superior tem-

poral clusters bilaterally and left vMC were found to overlap with onset and coda

clusters, to greater or lesser extents. All large output-linked syllable clusters were

found to overlap with onset or coda clusters.

Locations of peak classification rates for all such clusters are listed in Tables 2.8-

2.9. Theoretical chance accuracy for an 18 class classification problem was 1/18 =

0.05̄, and peak group mean accuracies ranged from 0.07 to 0.083.

Input - Syllable
Coordinate (x, y, z) Accuracy p-value Extent Hemisphere aparc SLaparc17

-60 -13 -6 0.075 1.0× 10−6 507 lh superiortemporal adSTs
-14 56 25 0.074 1.1× 10−5 312 lh superiorfrontal FP
-43 -71 13 0.072 6.4× 10−5 194 lh inferiorparietal OC
-43 -12 30 0.072 8.2× 10−5 179 lh precentral vMC
-55 -5 22 0.074 8.2× 10−5 179 lh precentral vMC
-21 29 37 0.073 1.5× 10−4 146 lh superiorfrontal SFg
-38 -88 -16 0.072 1.9× 10−4 135 lh lateraloccipital OC
-41 -24 -23 0.072 3.0× 10−4 114 lh fusiform pTF
-37 -15 19 0.070 4.8× 10−4 96 lh insula pINS
-44 5 19 0.071 5.4× 10−4 91 lh parsopercularis vPMC
-40 -79 9 0.073 5.4× 10−4 91 lh lateraloccipital OC
-6 46 -24 0.071 5.9× 10−4 88 lh medialorbitofrontal FMC
44 -16 20 0.071 7.0× 10−5 188 rh postcentral pCO
35 -11 16 0.073 7.0× 10−5 188 rh insula pINS
23 50 -14 0.071 1.7× 10−4 142 rh rostralmiddlefrontal FP
54 8 -13 0.074 4.1× 10−4 102 rh superiortemporal TP
36 -19 5 0.071 5.9× 10−4 88 rh insula pINS
51 -10 1 0.070 6.2× 10−4 86 rh superiortemporal H
49 33 -13 0.071 7.7× 10−4 79 rh parsorbitalis FOC
42 12 6 0.071 7.7× 10−4 79 rh parsopercularis pFO
45 -19 5 0.071 7.7× 10−4 79 rh transversetemporal H

Table 2.8: Peak classification accuracies for output-related beta estimates, classified
on the identity of each presented syllable.
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Output - Syllable (vocalized)
Coordinate (x, y, z) Accuracy p-value Extent Hemisphere aparc SLaparc17

-48 -12 27 0.079 < 1× 10−7 1160 lh postcentral vSC
-59 -9 29 0.075 7.0× 10−6 352 lh postcentral vSC
-35 31 -15 0.074 8.5× 10−6 334 lh lateralorbitofrontal FOC
-31 47 -14 0.072 9.1× 10−5 173 lh lateralorbitofrontal FP
-60 -30 18 0.072 1.1× 10−4 163 lh supramarginal PO
-58 -32 -1 0.075 1.8× 10−4 137 lh superiortemporal pdSTs
-22 36 -14 0.077 2.1× 10−4 131 lh lateralorbitofrontal FP
-52 -19 -9 0.073 3.9× 10−4 103 lh superiortemporal pdSTs
-9 56 -23 0.072 4.3× 10−4 100 lh lateralorbitofrontal FP

-39 41 7 0.074 4.3× 10−4 100 lh rostralmiddlefrontal FP
-65 -32 -16 0.073 5.3× 10−4 92 lh middletemporal pMTg
-43 -47 -15 0.078 6.0× 10−4 87 lh fusiform ITO
-45 5 5 0.074 6.2× 10−4 86 lh parsopercularis aCO
-60 5 24 0.074 8.6× 10−4 75 lh precentral vPMC
47 -12 29 0.083 < 1× 10−7 1254 rh postcentral vSC
48 -22 9 0.078 1.2× 10−7 761 rh transversetemporal H
47 -37 4 0.077 1.1× 10−6 528 rh bankssts pdSTs
53 -40 11 0.077 9.9× 10−5 168 rh bankssts pdSTs
33 50 -13 0.075 1.2× 10−4 159 rh parsorbitalis FP
52 -50 -19 0.075 1.5× 10−4 147 rh inferiortemporal ITO
62 -38 9 0.076 1.6× 10−4 142 rh bankssts pSTg
61 -19 25 0.074 2.3× 10−4 127 rh supramarginal vSC
46 -2 -34 0.079 2.4× 10−4 125 rh inferiortemporal aITg
39 -6 17 0.071 5.1× 10−4 93 rh postcentral pCO
50 -7 47 0.076 6.2× 10−4 86 rh precentral midMC
47 -10 12 0.073 6.8× 10−4 83 rh postcentral pCO
47 30 -11 0.075 8.3× 10−4 76 rh parsorbitalis FOC
36 10 -39 0.078 8.9× 10−4 74 rh temporalpole TP

Table 2.9: Peak classification accuracies for output-related beta estimates, classified
on the identity of each vocalized syllable.
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2.4 Discussion

In this study, we applied cortical surface searchlight-based MVPA to estimated BOLD

responses during a simple syllable repetition task. We sought to determine brain

areas whose response patterns offered significant predictive power about the specific

speech sounds heard and repeated, and to dissociate responses that were linked to

the stimulus (i.e., input-linked) and those associated with the vocal response (i.e.,

output-linked). Below, we first discuss the overall pattern of results observed relative

to our initial hypotheses, comparing and contrasting areas that contained speech

sound related information related to the stimulus or to vocal output across phoneme

and syllable units. This is followed by a general summary and synthesis of results

and discussion of more technical aspects of the study.

2.4.1 Vowels

We anticipated that MVPA performed on vowel identity would provide the strongest

and most interpretable results. This is because vowels are more acoustically salient

and have longer durations than their consonant counterparts. In addition, the full

set of vowels that a listener must have the ability to represent is smaller than the set

of consonants. Although we used the same number of distinct vowels and consonants

(three each) in our study, the more limited vowel set in American English might be

expected to result in a higher signal-to-noise ratio in vowel-related activity patterns.

Therefore, we consider the results in Figure 2.5 to be the most indicative of the neural

representation of phonemes.

We hypothesized that left inferior frontal sulcus (IFs) would show sensitivity to

phonemes during the output phase of the task, based on previous work resulting in the

GODIVA neurocomputational model (Bohland et al., 2010), which proposed that this
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region serves as a site for planning and selecting abstract sequences of phonemes (i.e.,

a phonological output buffer, Jacquemot et al., 2007). This region, stretching into

dorsal inferior frontal gyrus (IFg) pars triangularis, has been shown to distinguish

between-phoneme, but not within-phoneme, differences in voice-onset time (VOT)

(Myers et al., 2009), as well as increase in activation in the planning of syllables of

increasing phonological/phonetic complexity (Bohland and Guenther, 2006). Some-

what surprisingly, we discovered a large cluster of sensitivity to vowel identity in left

IFs during the input phase of the task. We interpret this result as indicating that

participants accessed the articulatory rehearsal and speech output systems immedi-

ately upon hearing and encoding the syllable. This strategy makes sense because

participants were aware that they would need to remember and immediately speak

the heard syllable upon receiving a GO signal.

We also therefore feel that it is important to revise our characterization of the

“input-related” datasets to note that many responses may be more appropriately as-

sociated with working memory or the maintenance of a speech plan. Phonological

working memory has previously been proposed to depend on the left inferior parietal

lobule (IPL) (e.g., Paulesu et al., 1993; Celsis et al., 1999; Raizada and Poldrack,

2007; Buchsbaum and D’Esposito, 2008), and we discovered significant clusters in

supramarginal gyrus (SMg) and angular gyrus (AG) for predicting vowels based on

input-related responses. Raizada and Poldrack (2007) identified left SMg as perform-

ing categorical phonemic processing in a univariate analysis of responses to stimuli

along the /ba/-/da/ continuum. A multivariate analysis of the same dataset, in which

events were labeled with the subject’s perceived category, however, failed to detect

stimulus identity information in the same region (Lee et al., 2012). It is possible that

the working memory demands of the current study, in comparison to Lee et al. (2012),
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account for the appearance of vowel information in this analysis. An additional input-

related cluster in the left rostral supplementary motor area (pre-SMA) coincides with

a peak activation likelihood estimate (ALE) found in a meta-analysis contrasting 189

working memory tasks (a subset of which were phonological tasks) against control

conditions (Rottschy et al., 2012). The left IFs and SMg clusters observed here also

lie near peaks in the “working memory network” identified by that same contrast.

We also predicted that the left posterior superior temporal sulcus (STs) would pro-

vide phonological information during the input phase of the task, and instead found

bilateral posterior STs clusters during the output phase. A strong residual auditory

response to the stimulus is unlikely, as the “output-related” hemodynamic response

peaks approximately 13 seconds after stimulus presentation. This information, we

believe, is more likely to represent some form of auditory target (e.g., Guenther et al.,

2006; Tourville et al., 2008) for the acoustically salient vowel portion of the spoken

syllable. A lack of input-related information may indicate that any categorical vowel

representations are absent from or not strongly activated in the STs in the early stage

of this specific task, or such representations are insufficiently distinct at the spatial

resolution of this study. In contrast, Formisano et al. (2008) found significant vowel

classification in left STg and right STs in a passive listening task. In addition to

the demand to generate a motor program, this study has additional methodological

features that may explain the failure to replicate their result. First, a successful clas-

sification in this study requires that neighboring vowels in formant space be detected

across several consonant contexts, while their stimuli were pure vowels with highly

distinct formant profiles (/a/, /i/ and /u/). Second, we used a searchlight analysis

in contrast to the recursive feature elimination method employed by Formisano and

colleagues, which imposes a locality constraint on informative voxels.
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It is notable that clusters that had predictive vowel information for the input- and

output-linked response estimates are largely non-overlapping (see Figure 2.5). One

common cluster, however, was observed near the right hemisphere homolog of area

Spt, but not in the left hemisphere. Spt has been proposed to serve as a critical

auditory-motor interface (Hickok et al., 2011), so its role in predicting vowel identity

in both phases of the task supports this view. The present result is also consistent

with a proposed role of the right planum temporale in converting auditory inputs

into phonological representations (Deschamps and Tremblay, 2014). The rightward

lateralization of this cluster (and the bilateral localization of STs clusters) might

reflect a right-hemisphere preference for vowel processing (Britton et al., 2009).

A number of areas that predicted vowel identity during either the input or output

portions of the task were not anticipated. Based on the GODIVA model (Bohland

et al., 2010), which builds upon the frame-content theory of speech production (Mac-

Neilage, 1998), the pre-SMA, which had input-linked vowel information, is suggested

to encode abstract syllabic frames without regard for phonemic content. Jonas (1981)

and Ziegler et al. (1997) each concluded, based primarily on clinical studies, that the

medial premotor areas are unlikely to code for specific speech sounds, but rather may

be involved more generally in the sequencing and initiation of speech. For the stim-

uli in our study, all CVC and sequencing demands were alike. However, a number

of studies have identified pre-SMA as a site of response selection in sentence, word

and nonspeech facial gestures (Alario et al., 2006; Tremblay and Gracco, 2006, 2009,

2010; Tremblay and Small, 2011), and Carreiras et al. (2006, 2009) previously found

differential pre-SMA response to high- and low-frequency words. Additionally, Adank

(2012) has shown, based on ALE meta-analyses, that pre-SMA activity increases with

the difficulty of speech comprehension tasks. If the difficulty of correctly perceiving,
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encoding, or selecting each syllable in phonological working memory differed across

vowel classes, then this could be driving the above-chance accuracy in pre-SMA. Fur-

ther study is warranted to more directly address these issues.

A surprisingly prominent right ventral angular gyrus (AG) cluster was also ob-

served in the input-linked analysis. Left AG has classically been associated with

grapheme-phoneme correspondences (Hynd and Hynd, 1984), and recent studies sug-

gest that right AG may have a role in orthographic comprehension (Mei et al., 2014)

and phonological / orthographic mappings (Bonte et al., 2014). We speculate that

if the right AG provides information about vowel identity, it may be supported by

orthographic associations with the vowels in the stimuli, although participants did

not report using visual strategies in this task. Based on a thorough review of neu-

roimaging literature, Price (2012) assigned bilateral angular gyrus a role in semantic

processing, but noted that descriptions of this region’s role in comprehension are still

necessarily vague and insufficient. We note here that the semantic content available

in syllables used was not uniform across vowels (6 of 6 /I/ syllables, 4 of 6 /E/ and

1 of 6 /2/ syllables could be perceived as words or names). It is conceivable that

semantically-related processes were selectively evoked for these stimuli, resulting in a

signal whose discriminability artifactually correlated with vowel identity.

The large locus for output-related vowel information observed in left posterior

cingulate (pCG) was unexpected since this region is not traditionally associated with

speech or language. Functional connectivity studies have associated both pCG and

bilateral STg with the default mode network (Martuzzi et al., 2010), which may

provide a functional pathway for speech sound related information. It should be noted,

however, that significant vowel-related information was detected in bilateral STs, but

not STg, for output-linked responses. Myers (2007) showed a posterior cingulate
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response to category-atypical VOT in a phonetic discrimination task, while Menenti

et al. (2012) found a repetition suppression effect for words, as opposed to semantic

or syntactic structure. Finally, working memory tasks using visually presented letters

have also yielded effects in the posterior cingulate, including decreased activation with

load (Tomasi et al., 2007) and activation while selecting an action among remembered

targets (Hester et al., 2007). Taken together, these findings suggest a somewhat

general role for posterior cingulate / precuneus in tasks requiring linguistic processing

and/or working memory; the specific role of this region in our task is unclear and

warrants for further investigation.

2.4.1.1 Acoustic analysis: phonetic or phonological representations?

Interpretation of MVPA studies remains an open problem, particularly because results

may diverge from traditional univariate analyses, and classification success may be

driven by many factors (Etzel et al., 2013; Davis and Poldrack, 2013; Todd et al., 2013;

Davis et al., 2014). Our efforts to localize information corresponding to phonemes

provides a window into this problem. In the case of vowels, there is a strong rela-

tionship between formant frequencies — acoustic properties of the speech sound that

can vary continuously — and the identity of the vowel. Classification rates provide

no obvious way to distinguish a classification based upon a neural representation

of formants (an acoustic-phonetic representation) or a more abstract (phonological)

representation of the vowel. We therefore tested the effect on vowel classification ac-

curacy of removing univariate, voxel-wise BOLD responses that covary with formant

frequencies specific to the sound heard or produced (see Figure 2.6). The idea was

that, if an area maintains an abstract, categorical code for speech sounds, its classi-

fication accuracy should not be reduced by removing formant-related variance. If an
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area’s response is instead sensitive to formant frequencies of the sound, then its basis

for classifying vowel sounds may be diminished by removing such variance.

While no results reached group-level statistical significance, our findings suggest

there may be a small decrease in classification performance when formant-related

information is removed from each voxel. In particular, the pre-SMA, cingulate and

posterior portion of the IFs clusters showed the strongest effects in our input-related

analysis, while left posterior cingulate and right posterior STs showed the strongest

effects in our output-related analysis. Areas that showed less reduction included

left anterior IFs, insula, SMg, right posterior STg and IFg in input-related analy-

sis, as well as left inferior temporal sulcus, central operculum, and right posterior

STg/area Spt. The relative lack of reduction in accuracy would indicate representa-

tions that may be more abstract or phonological, as opposed to areas tracking pho-

netic/acoustic/articulatory details. Further work using tools such as representational

similarity analysis (Kriegeskorte et al., 2008) may help to refine our understanding

of the nature of these representations (see, for example, its use by Evans and Davis,

2015, to test between different levels of representation in speech perception).

It may be also be that direct use of formant profiles is inappropriate, given that it

does not account for talker normalization (see, e.g., Johnson, 1990). Several subjects

spontaneously reported identifying a limited number of talkers during debriefing,

which may provide sufficient context for talker normalization to take place (Ladefoged

and Broadbent, 1957) and talker pitch has been shown to assist vowel classification

even in the absence of context (Halberstam and Raphael, 2004). An intermediate

auditory representation of vowels that is talker-independent but nonetheless reflects

acoustic variation cannot be ruled out by this analysis.
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2.4.2 Consonants

Consonants are acoustically and motorically dissimilar to vowels, and so provide an

opportunity to observe the classification of phonemes whose acoustic and phonetic

representations can be expected to substantially differ from those of vowels. Accord-

ingly, the accuracy maps produced by classifying trials by the consonants in each

stimulus (Figures 2.9 and 2.10) differ greatly from those produced by classifying by

vowels. It should be noted that, unlike other studies that used stimuli with the same

vowel but a consonant contrast (e.g., Myers et al., 2009; Lee et al., 2012), classifiers

here had to generalize across vowel contexts to be successful (see also Zhang et al.,

2016).

The accuracy maps for onset and coda consonants are broadly similar in both

input- and output-related responses. Most prominently, information predictive of

both onset and coda consonants was present bilaterally in large segments of the

ventral somatosensory (vSC) and motor cortices (vMC) in output-related responses.

The distinct articulations required for each consonant are the most likely source of

information detected here, consistent with descriptions of an articulatory somatotopic

map in ventral sensorimotor cortex (Bouchard et al., 2013; Conant et al., 2014).

Notably, we did not observe similar output-related results for vowels. Articulatory

(and incoming somatosensory) information corresponding to different vowels may be

more difficult to differentiate because vowels differ more subtly in precise tongue

placement (cf. different places of articulation for consonants). Such subtle variations

in articulations are likely to result in less distinguishable signals for vowels in primary

motor and somatosensory cortices, particularly with the current resolution of fMRI

data.

Input-related analyses revealed much smaller clusters of consonant-level informa-
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tion in bilateral motor and premotor cortices than the corresponding output-related

analyses. In the basic contrasts of both input and output event estimates vs. base-

line (Figure 2.4), each showed strong, bilateral responses in vMC, though, though

the output signal was stronger. Thus, it appears the motor / premotor cortex was

engaged in the input-portion of the task, but that activation patterns were overall less

predictive of consonant identity than during output, when explicit motor programs

were enacted. The overlap between input and output related consonant predictors

along the sensorimotor cortex is relatively small but notable. Though precise localiza-

tion differed slightly for onsets and codas, both input- and output-related responses

in small portions of the ventral precentral gyrus and/or sulcus, near the border of

motor and premotor cortices, predicted consonant identity. These clusters appear to

be consistent with the suggestion of an abstract, non-acoustic coding of consonant

sounds in the ventral somatomotor regions (Evans and Davis, 2015).

Consonant information was also found broadly in the temporal cortex, bilaterally,

where vowel information was more spatially confined, particularly to the superior

temporal sulcus (Figure 2.5). Predictive clusters based on input and output event

estimates overlapped mainly in the superior temporal gyrus, with left anterior STg

and right middle to posterior STg clusters for onsets, and bilateral mid STg clusters

for coda consonants. The wide profile of predictive responses across the superior

temporal areas does not suggest a single area in the STg that encodes consonants in

an abstract manner, consistent with recent work suggesting distributed, feature-based

representations in left STg (Mesgarani et al., 2014; Leonard and Chang, 2014).

Although the onset and coda accuracy maps are broadly similar, a number of

differences suggest that information relevant to consonant identity may not be rep-

resented independent of position within a syllable. However, it is not possible to
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distinguish between the effect of serial position on representation and the effects of

primacy/recency on BOLD response in this analysis. Additional experiments will be

required to elucidate important issues related to serial order within syllables, words,

and sentences.

We also note that, while we attempted to minimize head movements and included

regressors to account for motion in event estimates, it seems possible that some of the

large, diffuse output-related results for consonants (particularly in the inferior tempo-

ral and ventral frontal pole areas) might be artifactually related to small movements.

Since subjects were overtly articulating, it is possible that some consonants (especially

final consonants) led to small motion-related artifacts that drove the discrimination

of consonants.

2.4.3 Syllables

In addition to phoneme-level analyses, this study design permits us to discover regions

whose responses correlate with the identity of the whole syllable (see Figure 2.11).

Some findings, most obviously ventral Rolandic cortex in output-related responses,

recapitulate the findings of the consonant analyses. However, a number of clusters

are distinct from any of those found in the phoneme-level analyses (Figure 2.11B),

and may indicate a representation that cannot be decomposed into smaller units.

We hypothesized that the left ventral premotor cortex would encode a syllabic

representation at the time of speech output based on its proposed role as a Speech

Sound Map (Guenther et al., 2006). A cluster in this region was shown to significantly

predict the syllable heard, but clusters that predicted the syllable based on output-

related events were more posterior in and around the central sulcus (and overlapped

with consonant predictors). As was the case with left IFs for vowels, we suspect
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that the fact that this cluster was input-related is likely due to the specific task

requirements, which may have allowed subjects to activate a syllabic program for

speech output immediately upon hearing the stimulus. It is important to note that

left vPMC did not show phoneme-level predictive information for consonants or vowels

in the present study; furthermore this region was the only region suggested to encode

entire planned syllables in a repetition suppression study conducted by Peeva et al.

(2010).

Additional input-related clusters that predicted syllable identity but did not pre-

dict vowels or consonants were found in the left motor cortex along the ventral central

sulcus. Recent work by Evans and Davis (2015) found left vMC to be sensitive to

syllable identity, phonemic content and phoneme ordering (CV vs VC) in a speech

perception task, but not to acoustic variations, such as speaker identity and acous-

tic degradation. We can corroborate, but not fully replicate, this finding with the

vMC cluster found here; phoneme content and their order naturally support sylla-

ble classification, and the inter- and intra-speaker variations in our stimuli require

some degree of abstraction from acoustic detail, but we did not present acoustically

degraded stimuli.

Although additional small, distributed clusters remain for both input- and output-

related prediction of syllables (Figure 2.11B), due to their relative size and proximity

to phoneme-level clusters, we reserve the possibility that significant syllable classifi-

cations may be supported by phoneme-level information.

It is worth noting the absence of syllable-level information in the SMA/pre-SMA

(or on the medial surface altogether), in the context of frame-content theory (Mac-

Neilage, 1998) and the specific proposals of the GODIVA model (Bohland et al.,

2010). In GODIVA, for CVC syllables such as those in this task, the frame rep-
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resentation in pre-SMA would consist of “instructions” to select a consonant, then

a vowel, and then a consonant, while the phonemes themselves are encoded in left

IFs. Classification for syllable identity detects response patterns that are sufficiently

different between classes. If pre-SMA encodes abstract frames without content, then

we would not expect predictive information to be present. Thus, this lack of syllable-

level results is consistent with GODIVA predictions. Additionally, these results are

consistent with findings that left SMA has reduced activity when producing learned

words over phonotactically illegal words (Segawa et al., 2015), under the assumption

that all biphones in this study are sufficiently practiced to avoid differential demands

on abstract sequencing.

2.4.4 Summary of main hypotheses

One of our major hypotheses was that output-related responses in the left inferior

frontal sulcus would provide significant information about phonemic identity, based

on our suggestion that this region serves as a phonological output buffer. We found

that left IFs patterns predicted vowel (but not onset or coda consonant) identity

during the input portion of the syllable repetition task, suggesting perhaps the au-

tomatic recruitment of working memory and output-planning representations upon

hearing the stimulus. This area did not predict the whole syllable, and thus our

results support a role in phonological content at a sub-syllabic level. The lack of

predictive information for consonants was unexpected, but may reflect their reduced

salience, increased competition due to a larger consonant alphabet compared to vow-

els, or a finer-grained representation that could not be recovered at the present fMRI

resolution.

We also predicted that activity in the left ventral premotor cortex would pre-
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dict whole syllable identity, based on the idea that this region stores sensory-motor

programs for well-learned syllables or words. Indeed, a cluster in left vPMC con-

tained significant information about whole syllable identity but not about individual

phonemes. This cluster, like IFs however, appeared for input-linked rather than

output-linked responses.

On the other hand, bilateral superior temporal sulcus patterns were found to

be predictive for output-related classification of vowels. We had anticipated, based

on previous studies and the dual pathways model, that this region would encode

phonemic content related to the auditory stimulus, but no such effect was observed.

Instead, one interpretation of our results is that the strong STs clusters observed for

vowel prediction reflect the activation of speech sound targets for production.

Finally, based on the dual pathways model and previous related studies, we hy-

pothesized that area Spt and/or other portions of the planum temporale, would pre-

dict speech sounds during both input and output components of the task. This was,

to an extent, confirmed, by overlapping clusters that predicted vowel identity at the

two different task periods in the right hemisphere posterior Sylvian fissure.

Overall the pattern of results supported the main areas we hypothesized to be

involved in representation of speech content, though our assumptions about separation

of input- and output-related representations may need to be revised. A follow-up

study is in progress designed to better enable separation of these representations.

2.4.5 Methodological considerations

2.4.5.1 Delayed syllable repetition task

The design of the delayed repetition task used here afforded several key features for

this study. By using multiple recordings of multiple speakers, we increase ecological
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validity over synthesized stimuli, which are often used in categorization and discrim-

ination studies. The naturally-occurring variation in the presented speech sounds

required participants to map many acoustic stimuli onto their learned (and presum-

ably categorical / abstract) internal memory representations, and ultimately their

own motor programs for a given syllable. Further, a delayed repetition task is well-

suited for examining both input- and output-related responses to the same stimuli,

requiring both perception and production while allowing some temporal separation

between the task components. Most previous fMRI tasks have focused on either per-

ceptual or production processes, and our study represents, to our knowledge, the first

effort to map predictive information related to speech sounds across both types of

processes in the same experiment. The task shares some similarities with nonword

repetition (NWR) tasks that have been used in clinical neuropsychology to assess

phonological working memory in developing children and patients with aphasia (e.g.,

Gathercole, 1995; Jefferies et al., 2006), and to a lesser extent in neuroimaging studies

with healthy subjects (McGettigan et al., 2011). In contrast to NWR, which typically

uses multi-syllabic nonwords, our task used single syllable stimuli, which allowed for

clear identification of sounds of interest for classification on each trial.

2.4.5.2 Sparse design and hemodynamic modeling

The experimental protocol was designed to allow as many trials as possible in order

to provide sufficient training data for classifiers trained on multiple linguistic classes

of interest. For this reason, we used a fast, event-related design with sparse volume

acquisition (Perrachione and Ghosh, 2013), which allowed the subject to both hear

and produce the stimulus during periods of relative quiet (Eden et al., 1999; Edmister

et al., 1999; Hall et al., 1999). The decision to place both volume acquisitions during
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the maintenance phase of each trial, such that they were timed to capture the peak

response to the stimulus onset and the GO signal (from the previous trial), resulted

in a pattern of unevenly timed sparse acquisitions. As a result, the single-shot EPI

volumes were taken at different points on the T1 relaxation curve, and thus there

were distinct slice-timing effects between A scans and B scans.

In this sparse, aperiodic paradigm, each volume acquired is inherently linked to a

different event of interest, in contrast to clustered volume acquisition (CVA) designs

(e.g., Zaehle et al., 2007; Schmidt et al., 2008), in which multiple volumes are acquired

(sequentially) for each event of interest to reduce noise. As a consequence, HRF

modeling was necessary to separate the overlapping signals. The correction detailed

in the methods (Section 2.2.6.1) results in A scans with the same approximate slice-

timing effects as B scans, yielding similar mean amplitudes across all trials. This

permitted us to use both A and B scan data together in general linear models to

estimate response amplitudes for both input- and output-related events.

2.4.5.3 Input- and output-related response estimates

The piecewise-by-condition GLMs used to estimate individual event responses (fol-

lowing the modeling described above) drew inspiration from the method presented

by Mumford et al. (2012) to reduce collinearity in design matrices for rapid, event-

related designs. In their method, an n-column design matrix was converted into n

2-column design matrices, where the second column is the sum of all other columns of

the original matrix. One way to interpret this method is that all events are assumed

to have an equal mean response, and variation in individual responses is treated as

error; each GLM then estimates the variation attributable to the given individual

event. Here we required response estimates for individual events, which were used to
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train and test classifiers. Our approach was to constrain all but one condition at a

time (i.e., collapsing all events of each other type into single columns in the design

matrix), and let the parameter estimates for all individual events in the condition of

interest vary (see Figure 2.3).

The estimates of individual event responses were averaged and contrasted with

baseline response estimates to provide basic univariate speech contrasts (Figure 2.4).

These contrasts reveal increased hemodynamic responses primarily localized to supe-

rior temporal and ventral sensorimotor cortices, with a relative shift from auditory to

somatosensory cortex in the output-linked contrast (Figure 2.4B). In addition to ex-

pected activations in auditory cortex when hearing a syllable, listening to speech also

activates motor and premotor areas (Wilson et al., 2004; Pulvermüller et al., 2006;

Meister et al., 2007; D’Ausilio et al., 2009), as was observed here. It is noteworthy,

though, that despite the large cluster of input-related activation in this basic contrast,

only small portions of this cluster significantly predicted the identity of phonemes or

syllables, highlighting the differences between analytic approaches. Furthermore, as

is observed here, output-linked events could be expected to show an overall stronger

motor response and a moderate, self-induced suppression of the auditory responses

to hearing one’s own voice (Numminen et al., 1999; Houde et al., 2002; Flinker et al.,

2010). These overall task effect maps thus provide reason for confidence in the indi-

vidual event estimates, despite the fast temporal structure used in our protocol.

2.4.5.4 Multi-voxel response patterns

In turn, the individual event estimates form the basis for the multi-voxel pattern

analyses that formed the core of this study. The MVPA approach affords certain

advantages over univariate approaches. Because we were interested in responses that
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predict multiple features embedded within syllables, we expected that the noise in-

troduced by the features of non-interest (e.g., all combinations of vowel and coda

segments) would likely dominate the single-voxel responses to the feature of inter-

est (e.g., /t/ in the onset position) in the analyses presented here. Using multiple

voxels affords greater degrees of freedom for revealing associated response patterns.

Furthermore, we would not expect individually informative voxels to align precisely

across subjects; searchlight techniques introduce an implicit smoothing in the results

of the analysis, facilitating greater inter-subject alignment.

In contrast to using individual event estimates, many MVPA studies (e.g., Chen

et al., 2011; Oosterhof et al., 2011) use a single response estimate per-condition, per-

run as the basis of classification. In so doing, these studies treat the variation from

each trial as noise, and classification reflects the consistency of the mean response

across runs to classes of events. Per-event classification instead treats the variation

from each trial as signal, and classification reflects the generalization across distribu-

tions of responses to classes of events. This latter strategy produces cross-validation

accuracies that tend to center around theoretical chance (i.e. 0.33 for 3 classes or 0.056

for 18), which are lower than commonly reported (for many stimulus classes) for the

former strategy. To avoid assumptions about “chance” accuracy, and to account for

spatial variations in signal, we used computationally intensive non-parametric tests

to determine whether accuracies were significantly above empirical chance. It should

be noted that the goal of our approach is not to “read minds,” but to detect predic-

tive information about speech sounds. Therefore, while the neural representations of

speech sounds are almost certainly at a finer scale than fMRI currently affords, limit-

ing possible classifier accuracy, statistically significant (but otherwise unimpressive)

cross-validation accuracies provide such a measure of class-specific information.
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2.4.6 Limitations and future directions

It is important to note that although we focused our analyses on the cerebral cortex,

the cerebellum and other subcortical structures are likely to also play roles in the

representation of speech sounds and warrant further investigation. MVPA may be

applied volumetrically to probe these areas, though it is critical to constrain search-

lights anatomically (as was done here for the cortex) to ensure interpretability of the

roles of individual areas / nuclei.

In this study, the stimuli were discrete CVC syllables, with variation derived

from multiple recordings and speakers, which is in contrast with a number of studies

that instead used finely varying synthetic stimuli, which may more directly allow

addressing questions related to categorical processing of speech. However, such stimuli

could easily be employed within a repetition paradigm as used here, which might

allow refined testing of phonological vs. phonetic levels of representation. CVC

syllables were used to allow comparisons of classifiers trained on the same consonants

in different serial positions. We expect using the more common CV frame would

produce similar results, but varying syllable types might permit additional testing

related to the representation of abstract frames.

A substantial challenge in this and related work is the problem of disentangling

input- and output-linked responses during simple repetition, when the stimulus and

vocal production have the same class. This leads to difficulty, for instance, in inter-

preting if an input-linked response in frontal cortex is important for perception or if

it simply reflects preparation of the sound for production. In the following study, we

address this confound using a design that sometimes breaks the symmetry between

input and output (i.e., the subject produces a different syllable or word than the one

heard; see also Cogan et al., 2014).
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Chapter 3

Decoupling input and output representations

of words and nonwords in a speech

repetition task

3.1 Introduction

In the previous experiment, subjects listened to and reproduced a single syllable

during each trial, introducing ambiguity as to whether regions whose response profiles

correlate with the phonetic content are responding to the auditory stimulus or the

vocal target. Because temporal and frontal speech areas are engaged in both speech

perception and production, and representations in memory may evolve over time,

neither region nor the temporally defined input or output event is sufficient to resolve

this ambiguity.

In particular, activity in the left posterior inferior frontal sulcus (pIFs) correlated

with the perceived vowel at input, which may be either a necessary component of

speech perception or that of a rapidly generated motor plan. Similarly, activity in

the bilateral posterior superior temporal sulcus (pSTs) correlated with the vocalized

vowel at output, which we interpreted as an auditory target, but we cannot logically

eliminate auditory memory as an explanation. Mid-to-posterior STs (and STg) has

been shown to be responsive to both perceived and produced speech Paus (1996);

Hickok and Poeppel (2000); Okada and Hickok (2006b); Hickok and Poeppel (2007)

over a variety of non-speech controls, so we sought to clarify this activation.
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In this chapter, I present a study designed to dissociate the phonological content

of the auditory stimulus and vocal target in a subset of trials. In this study, subjects

were visually presented with two (non)word syllables simultaneously, then aurally

presented with one of the syllables. A visual cue then informed subjects either to

repeat the heard syllable (repeat trials) or produce the unheard, visually presented

syllable (change trials). Following a delay, a further visual cue instructed subjects

to produce the planned syllable. As in the previous task, described in Chapter 2,

in each trial subjects perceived an aurally presented syllable and spoke a planned

syllable after a delay. However, in half of all trials (pseudorandomly ordered), the

planned speech target was cued visually.

On any given trial, by presenting all linguistic materials (both visual and auditory)

before informing subjects of the trial type (repeat or change), we required subjects to

prepare to repeat either syllable. This guaranteed that the same auditory stimulus

would be processed the same under both conditions. Thus the task had three phases

of interest in which to detect the correlates of the auditory stimulus syllable or the

vocal target syllable: auditory perception, motor plan preparation (following the

cue informing the trial type), and the overt speech production. In change trials,

the mismatched phonological content of the auditory stimulus syllable and the vocal

target syllable served as a tag to indicate whether information detected in a brain

area derives from auditory processing or vocal preparation.

Half of all stimuli in this task were words, and half nonwords, balanced across

repeat and change trials for a 2 × 2 factorial design. In addition to dissociating

perceptual and vocal plan content, we were able to probe differences in processing

of words and nonwords, which have been shown to be processed differentially in

repetition tasks (Binder et al., 2005; Raettig and Kotz, 2008; Saur et al., 2008). Where
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word repetition may rely on lexical and semantic processing pathways (see Binder

et al., 2009), nonwords must be processed phonologically / phonetically (Hickok and

Poeppel, 2004; Jacquemot and Scott, 2006).

Finally, this design permitted us to perform principled contrasts of searchlight

analyses, building on the methods presented in Chapter 2. For example, by contrast-

ing classification accuracy of the auditory stimulus and the vocal target, we were able

to distinguish regions involved in perception and generating a speech motor plan; by

contrasting accuracy of the same analysis at two time points, we were able to identify

regions whose representations became more or less prominent over time. Thus, we

were able to reconstruct some of the dynamic processes engaged by the task.
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3.2 Materials and methods

3.2.1 Participants

21 right-handed native American English speakers participated in this study. Two

participants were excluded for excessive motion, and one chose to discontinue par-

ticipation in the study before a minimum number of runs were completed. Of the

remaining 18 subjects, 10 were female (ages 18-31; µ = 21.9, σ = 4.2) and 8 were

male (ages 21-36; µ = 27.6, σ = 5.6). No participants reported any history of speech,

language, or hearing disorders. All participants gave informed consent under the

protocol approved by the Institutional Review Board of Boston University. Two par-

ticipants chose to discontinue participation after 4 functional runs were completed.

In all other participants, 8 functional runs were completed.

3.2.2 Task design

The task was designed to require subjects to produce CVC syllables with and without

a direct acoustic model. To achieve this in an event-related design, each trial entailed

the visual presentation of two syllables, and the auditory presentation of one of those

syllables, followed by a cue indicating whether the subject was to prepare to repeat

the auditory stimulus or produce the unheard visual stimulus. Thus, throughout the

stimulus phase of each trial, subjects must be prepared to produce either syllable,

and cannot pre-commit to different strategies.

A trial began with the visual presentation of two words or two nonwords, contain-

ing two different vowels. After 2s, the (non)words were replaced with a white fixation

cross. At 2.25s, one of the two (non)words was presented aurally. At 3.25s, either a

green or yellow rectangle cue was presented around the fixation cross, which served

as the task instruction cue. At 9s, the fixation cross turned orange (the GO cue),

68



cueing subjects to produce a syllable. Each trial began 13.5s after the start of the

previous trial.

On a repeat trial, subjects were presented with a green rectangle cue, indicating

they were to produce the syllable they heard. On a change trial, subjects were

presented with a yellow rectangle cue, indicating they were to produce the syllable

they read but did not hear. Control trials were identical to task trials, except the

aurally-presented sound was a speech-shaped noise stimulus (see Section 3.2.3).

+

shug

+

+ +

nish

REPEAT

CHANGE
shug
nish

+

shug

+

t=2.25t=0s t=2

t=3.25 t=9 t=13.5

Figure 3.1: Stimulus paradigm. A schema of the progression of a task trial. At
t = 0s, two words or two nonwords are presented visually for 2s, then replaced by a
white fixation cross. At t = 2.25s, one of the two syllables is presented auditorially.
At t = 3.25s, a rectangular repeat/change (green/yellow) cue is presented, indicating
whether the subject is to repeat the auditory stimulus or change to the unheard,
visually presented stimulus. After a delay, at t = 9s, the fixation cross changes
color to orange, prompting subjects to speak the planned syllable. The trial ends at
t = 13.5s.

Figure 3.1 depicts the course of two example trials with the same visual and

auditory stimuli. The trials diverge at the presentation of the repeat/change cue

(rectangle).

Each run consisted of 36 task trials – each of 18 stimulus syllables, balanced across

repeat and change trials – and 6 control trials, half with a green task instruction cue

and half with a yellow. As half of stimuli were words, word and nonword trials were
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counter-balanced with repeat and change trials. A run lasted a total of 9 min. 34s.

3.2.3 Materials

Stimuli were consonant-vowel-consonant (CVC) syllables, including 9 words and 9

nonwords, 3 of each containing each of the vowels: /æ/, /I/, and /2/. The words fall

into three semantic categories – animal, body part, vehicle – balanced across vowels,

although this factor is not analyzed here. See Table 3.1 for a full list of syllables.

Vowel Animals Body parts Vehicles Nonwords

/æ/ yak back cab
yag
fath
tham

/I/ pig shin ship
nish
yig
thip

/2/ bug thumb bus
shug
fup
nus

Table 3.1: The vowels /æ/, /I/, and /2/ were selected to construct 18 word and
nonword CVC stimuli. The words were chosen to fall into three semantic categories:
animal, body part, and vehicle. Syllables are spelled as they were displayed to partic-
ipants. For nonwords, subjects were instructed to use phonetic pronunciations, and
that “th” was to be pronounced /T/ (see Appendix A.2).

All stimuli were selected from the corpus of 5,765 CVC syllables compiled by

Storkel (2013). Our overall goal was to choose syllables with phonotactic transi-

tion probabilities and phonological neighborhood densities (e.g., Vitevitch and Luce,

1999) that were close to the average across CVC syllables.

Specifically, we looked at the Z-scores for the positional segment sum, the biphone

sum, and the number of phonological neighbors, and chose syllables containing the

vowels /æ/, /I/, and /2/ with standardized values close to zero. Selection was con-

strained by several elements of the experimental design, including a desire to vary the
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neighboring consonants across syllables, and to choose three words (one using each

vowel) from each of three semantic categories (animals, body parts, and vehicles).

Thus, some variability in phonotactic probabilities and densities was present across

stimuli, but we attempted to manually minimize this variation.

A table showing the z-scores for these phonotactic variables (relative to the Storkel

(2013) corpus) for all stimuli used is shown in Table 3.2.

Syllable Segment sum Biphone sum Neighborhood density
yak -0.09 -0.13 -0.82
bug -0.81 -0.31 0.76
pig 1.18 0.38 -0.16
back 0.87 0.96 1.56
thumb -1.09 -0.19 -0.69
shin 1.26 0.82 -0.03
cab 1.18 1.66 0.23
bus 0.54 0.18 -0.03
ship -0.04 -0.09 -0.16
yag -0.08 0.01 0.60
fath 0.57 0.35 0.12
tham 0.62 0.59 0.28
shug -0.97 -0.37 0.92
fup 0.32 -0.26 -0.37
nus 0.76 0.62 0.92
yig 0.30 0.18 -0.37
nish 0.44 -0.02 0.12
thip 0.72 0.82 0.76

Table 3.2: Phonotactic variables (z-scored) for selected syllables Within the
design constraints of the experiment, CVC syllables were selected to have close-to-
average positional segment sum (HML_S_Sum), biphone sum (HML_B_Sum) and neigh-
borhood density (HML_N_Nbors), relative to the Storkel (2013) corpus. Shown are the
z-scored values for each of the selected syllables. Z-scores were calculated for word
and nonword datasets, separately.

Two male and two female native English speakers recorded the stimuli, and one to

five recordings of each syllable per speaker were used to allow for additional acoustic

variation in the auditory tokens that subjects heard. Speech-shaped control stim-
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uli were generated by amplitude modulating pink noise – noise with a 1/f power

spectrum – by the Hilbert envelopes of the original stimuli.

3.2.4 MR-data acquisition

All measurements were performed using a 3T Philips Achieva MRI scanner with a

32 channel head coil at the Boston University Center for Biomedical Imaging. T1-

weighted anatomical images were acquired for anatomical reference and coregistration

with functional data (0.98×0.98×1.2 mm3 voxels, 150 sagittal slices, 256 × 254 ma-

trix, repetition time = 6.8 ms, echo time = 3.1 ms, P reduction (AP) SENSE factor

= 1.5, S reduction (RL) SENSE factor = 2). Functional volumes consisted of 43

echo-planar transverse slices (3mm thickness), acquired in ascending order, with no

gap (3.03×3.14×3 mm voxels, 76 × 73 matrix, acquisition time = 2250ms, repetition

time = 3375ms, echo time = 35ms, flip angle = 90◦, P reduction SENSE factor = 3).

Functional volumes were acquired in a sparse acquisition paradigm (Figure 3.2). Two

additional volumes were acquired at the end of each run in order to capture residual

hemodynamic activity in response to previous experimental events.

3.2.5 Behavioral assessment

All subjects’ vocalizations were verified against the presented stimuli. 5 errors were

possible: (1) distractor errors, in which subjects repeated the wrong stimulus (see

Section 3.2.5.1); (2) speech errors, in which subjects produced a syllable that was not

presented; (3) timing errors, in which subjects produced speech partially or wholly

overlapping with a volume acquisition (see Section 3.2.5.2); (4) speech failure, in which

subjects incorrectly remained silent; (5) control failure, in which subjects produced a

syllable on a control trial.
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Figure 3.2: Schema of sparse acquisition paradigm. The solid blue, green, and
red curves indicate the expected hemodynamic response functions (HRFs) associated
with the presentation of the stimulus at t = 2.25s, the repeat/change cue at t = 3.25s,
and the GO signal at t = 9s, respectively. Scans, represented by gray boxes, are
acquired with TA = 2250ms, TR = 3375ms, and each 13.5s trial is indicated by
4 scans of the same shade. The dashed lines indicate the expected responses to
the events of a second trial, starting at t = 13.5s. Horizontal lines indicate the mean
values of theoretical HRFs across the duration of a scan, approximating the regressors
representing the three events in a general linear model.

Speech errors, speech failures, and control failures were excluded from multivariate

analyses. Trials with apparent speech failures were further examined to ensure that

subjects were not speaking at the wrong time, though timing errors cannot be ruled

out if vocalizations were entirely masked by scanner noise.

3.2.5.1 Recoding

If subjects produced the distractor syllable instead of the target, the the vocalized

syllable and trial type were recoded to match subject behavior. For example, if a

subject read nish and nus, heard nus, and repeated nus, the trial was coded as a

repeat trial with a vocalization class of nus.

Recoding was applied to MVPA analyses only, and not considered for univariate
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contrasts.

3.2.5.2 Timing errors

If a vocalization partially or wholly overlapped with a volume acquisition, as de-

termined by auditory inspection of recordings and/or visual inspection of acoustic

waveforms, that volume was marked as a motion outlier. See Section 3.2.6.2 for

handling of motion outliers.

If the discernible phonemes matched the target or distractor, then the vocalization

was coded as successful or recoded as a distractor error (see Section 3.2.5.1).

3.2.5.3 Class labels

We considered two class labelings for trials: aud - the vowel class of the auditorially

presented stimulus; voc - the vowel class of the actually spoken syllable. In the latter

case, a failure to speak was treated as an error, and not as a control trial.

3.2.6 Preprocessing

We reconstructed cortical surfaces from the T1-weighted structural images with Free-

Surfer (Dale et al., 1999; Fischl, 2012) v5.3.0. The preprocessing pipeline for func-

tional data, schematized in Figure 3.3, used the FreeSurfer Functional Analysis Stream

(FsFast) and the FMRIB Software Library (FSL) (Smith et al., 2004; Jenkinson et al.,

2012).

All functional volumes from all runs were realigned to the first volume of the first

run in FsFast. Further preprocessing of functional data splits into two streams: uni-

variate analyses and cortical multivariate analyses. For univariate analyses, FSFAST

was used to register functional volumes to the fsaverage template. For multivariate
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Figure 3.3: Preprocessing pipeline. (1) EPI volumes were imported into FsFast
directory structure and realigned to the first volume of the first run, in each subject’s
native space. (2) Realigned volumes were resampled into the fsaverage cortical sur-
face space, using 5mm FWHM smoothing. These datasets were used for univariate
analyses. (3) Datasets were constructed for events timed to the auditory stimulus
(input), repeat/change cue, and GO signal (output) in the subject-native space, using
FSL. These datasets were used for multivariate analyses.

analyses, responses to individual events were estimated in the subject-native space

with an FSL pipeline managed by Nipype (Gorgolewski et al., 2016).

3.2.6.1 Datasets for multivariate analyses

Response estimates for a given event type (i.e., input, cue or output) across all trials

were compiled into separate “datasets”, one volume per trial, with a corresponding

set of class labels (see Section 3.2.5.3). Input- and output-related datasets were

constructed by simultaneously modeling the responses to the auditory stimulus pre-

sentation and the GO cue of each trial. Cue-related datasets were constructed by
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modeling a single event per-trial, timed to the onset of the rectangular repeat or

change cue.

Events were modeled as impulses of 0s duration, using the SpecifySparseModel

(Perrachione and Ghosh, 2013) function of Nipype. Design matrices were constructed

using FSL’s feat_model and event estimation was performed with FSL’s film_gls.

3.2.6.2 Motion outliers

We detected motion motion and intensity artifacts using RapidArt (Gorgolewski et al.,

2016), with a norm threshold of 1.5mm and an intensity Z-threshold of 3. These arti-

facts were labeled as outlier volumes, in addition to volumes identified as overlapping

with speech (see Section 3.2.5.2).

Outlier volumes were not excluded from GLM estimation (c.f. Siegel et al., 2014).

Events where the magnitude of the theoretical HRF was >10% of its maximum height

during one of these outlier volumes were marked for exclusion from multivariate anal-

ysis.

3.2.7 Univariate analysis

Univariate analyses were performed using FsFast on the cortical surfaces, in the

fsaverage space. First-level analysis used 5mm FWHM smoothing. Second-level

analyses are performed with mri_glmfit, and thresholded with mri_glmfit-sim at

an uncorrected p < 0.01 and a cluster size threshold p < 0.05 (Bonferroni correction

factor of 3, for separate analysis of left hemisphere, right hemisphere and subcortical

responses (not presented here)).

Input- and output-related betas were estimated using the same GLM, and could

be compared to one another. Because cue-related events were more-closely timed to
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input-related than output-related events (see Figure 3.2) estimating cue-related betas

in the same GLM would reduce evident activation at input, harming comparison.

Therefore, cue-related responses were estimated separately, and could only be directly

compared to other cue-related responses.

3.2.8 Multivariate analyses

Cortical searchlight analyses (Chen et al., 2011; Oosterhof et al., 2011) were performed

within the PyMVPA (Hanke et al., 2009; Halchenko et al., 2015) framework. For each

voxel halfway between the pial and white matter surfaces, a searchlight wass formed

from the set of voxels intersecting the 9mm radius disk centered at the surface vertex

nearest to that voxel. Each searchlight formed a feature vector for a classification

analysis, and the result is a volume in which each voxel contains a statistic for the

searchlight centered at that voxel.

Classification was performed using C support vector machines in a leave-one-run-

out cross-validation configuration, and raw predictions were recorded for each run

and concatenated, for subsequent analysis. To account for training set imbalances,

each analysis was performed 10 times, down-sampling the training set of each fold so

that each class label was equally represented in training.

Table 3.3 describes the searchlight analyses we considered in this study. Classi-

fication accuracy may be calculated for all trials, or separately for subsets of trials

in which the stimuli were words or nonwords, or in which subjects repeated the au-

ditory stimulus or changed to the unheard visual stimulus. In all cases, classifiers

were trained on every trial. Each analysis may be described functionally; if a clas-

sifier was trained over the input, cue or output dataset, it was denoted as I(), Q(),

or O(), respectively, with a superscript a or v indicating whether it was trained on
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Dataset Class label Test sets Symbol

input aud
all Ia(all)

word Ia(word)
nonword Ia(nonword)

cue

aud
all Qa(all)

repeat Qa(repeat)
change Qa(change)

voc
all Qv(all)

repeat Qv(repeat)
change Qv(change)

output voc
all Ov(all)

word Ov(word)
nonword Ov(nonword)

Table 3.3: Searchlight analyses and sub-analyses. Searchlight analyses were
performed over input, cue and output datasets; input and cue datasets were analyzed
with the auditory stimulus class label, and cue and output datasets were analyzed with
the vocal target class label. Input and output classification accuracy was calculated
separately for trials with word and nonword stimuli; cue classification accuracies
were calculated separately for repeat and change trials. Each (sub-)analysis may be
described in functional notation (see text for details).

aud or voc class labels (reflecting the stimulus heard or produced, respectively; see

Section 3.2.5.3). The parameter indicates the subset of trials described by the accu-

racy statistic. So, Qa(change) would indicate classifiers trained on the cue dataset to

classify the vowel heard, with accuracy measured over the subset of change trials.

3.2.8.1 Multivariate contrasts

A pair of searchlight analyses may be contrasted in order to highlight a difference

in information when running the same analysis on two datasets or different analyses

on the same dataset. To perform each contrast, accuracy maps were subtracted

within each subject and the differences z-scored using the spatial mean and standard

deviation. A two-tailed t-test was used to determine regions which consistently show

greater accuracy in one analysis than the other, across subjects.
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Contrast Description

Ia(word)− Ia(nonword) Word and nonword specific responses to auditory
stimuli and vocal targetsOv(word)−Ov(nonword)

Qa(change)− Ia(change) Change in response to auditory stimulus following
change cue

Qa(change)−Qv(change) Distinct responses to auditory stimulus and vocal
target following change cue

Ov(all)−Qv(all) Distinct responses to motor plan and motor act

Table 3.4: Searchlight contrasts. Searchlight accuracy maps (see Table 3.3) were
contrasted to identify differences in information content across datasets, class labels,
or test subsets.

Table 3.4 lists a series of contrasts of interest between two separate searchlight

analyses.

3.2.8.2 Nonparametric significance testing

To perform cluster-extent based thresholding, we generated a null distribution of

chance cluster sizes, adapting the technique described in Section 2.2.7.1 to consider

testing on subsets of trials.

For each subject, class labels were permuted 100 times, and classifiers were re-

trained. Datasets were down-sampled to balance class labels in the training set, and

classification accuracy rates were stored separately for repeat and change testing sub-

sets. Trial types were not permuted. Classification accuracy for all trials is taken to be

an unweighted average of repeat and change accuracies. Pending separate computa-

tion of chance classification accuracies for word and nonword trials, in all cases repeat

accuracy is substituted for word and change accuracy is substituted for nonword.

Chance relative accuracy maps are computed by removing the spatial mean (see

Section 3.2.8.3) from a randomly selected permutation from each subject, and per-
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forming a one-sided t-test. A vertex-wise p-value threshold is applied to the resulting

map; cluster extents are defined to be the number of connected vertices on the corti-

cal surface. Null distributions are calculated from the cluster extents of 1000 chance

accuracy maps.

Searchlight contrasts Searchlight analyses are contrasted with a two-sided t-test

of differences of accuracies. For two analyses A and B, a random permutation of A is

selected for each subject, and a random permutation of B is subtracted from it. The

difference of spatial means of each (see Section 3.2.8.3) is subtracted, and the result

is divided by the spatial standard deviation, resulting in a random z-score map for

each subject. Applying a two-sided t-test to each vertex and thresholding at p < 0.05

(uncorrected), we constructed a set of chance cluster sizes. We repeat this method

1000 times to construct a null distribution.

3.2.8.3 A note on cortical spatial transformations

To minimize smoothing and oversampling, all classification analyses are performed

in the subject-native, volumetric space. Group-level analyses must be performed in

some common space, in this case the fsaverage surface. Although the spatial trans-

formation between these spaces is non-linear, the transformation of values is linear,

i.e., the value at each vertex is a linear combination of the values at its contribut-

ing voxels, and thus the transformed sum of two maps is equal to the sum of the

transformed maps.

Thus, it should be noted that summary statistics such as spatial means must be

calculated in the subject-native space to avoid distortion, but they may be added to

or multiplied by a map of values in fsaverage space without issue.
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3.3 Results

3.3.1 Behavioral results

All subjects’ vocalizations were manually inspected for correct task performance. Fig-

ure 3.4 shows the number of trials for each type of recoding (see Section 3.2.5). A

mean of 7.2 (σ = 5.6) trials were recoded for each subject. A “repeat” designation

indicates the subject repeated the auditory stimulus when instructed to produce the

unheard syllable; a “change” designation indicates the subject produced the unheard

syllable when instructed to repeat the auditory stimulus. Among subjects with “re-

peat” or “change” recodings, no preference was found for either recoding (two-sided

t-test; p = 0.84).

One subject’s (S20) vocalizations were not recorded for the final 35 trials of the

session. Due to the low error rate in recorded trials, correct responses were assumed.

Figure 3.5 shows the number of trials excluded from each dataset due to motion,

on account of motion artifacts detected in the data (“motion”) or manually detected

speech during a scan (“speech”). Trials affected by both are marked “motion”, and

not counted twice. See Section 3.2.6.2 for outlier attribution details.

3.3.2 Univariate results

Univariate contrasts were performed using two FsFast pipelines: the evenly-spaced

input- and output-linked responses could be estimated with a single GLM, while the

cue-linked response must be estimated separately. Each pipeline produced left and

right hemisphere datasets on the fsaverage surfaces. All results are thresholded

at p < 0.01, and the resulting clusters are subjected to size thresholding based on

non-parametric Monte Carlo simulations. All results presented here have an addi-

tional Bonferroni correction factor of 3, for two hemispheres and subcortical space
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Figure 3.4: Number of recoded trials, broken down by class. Error indicates subjects
produced an invalid syllable. Silence indicates subjects did not produce an audible syl-
lable. Repeat indicates subjects incorrectly repeated the auditory stimulus. Change
indicates subjects incorrectly produced the unheard, visually presented syllable. Tri-
als coded as “error” or “silence” are considered invalid and excluded from classification
analyses using vocal targets as labels; trials coded as “repeat” or “change” are used in
classification analyses with the actually spoken syllable.
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Figure 3.5: Number of trials excluded from each dataset (input, cue and output) due
to head motion. Trials excluded due to motion artifacts detected by RapidArt are
marked “motion”. Trials excluded due to speech during a scan are marked “speech”. A
trial excluded for both reasons is marked “motion”. Subjects S6 and S14 participated
in 176 total trials; all other subjects participated in 352 trials.
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Figure 3.6: Main effect of task. Contrasts between task trials (with syllable stimuli)
and control trials (with pink noise stimuli) in the (a) input- (b) cue- and (c) output-
linked hemodynamic responses. Shown are significance statistics, i.e. − log10 p, from
a one-tailed t-test (17 dof), thresholded at p < 0.01 and cluster-wise corrected at
p < 0.05. Cluster thresholds are Bonferroni corrected by a factor of 3, for separate
analyses of two hemispheres and sub-cortical regions.

(subcortical results not presented here).

Figure 3.6 contrasts beta estimates associated with task trials, in which subjects

heard a spokens syllable, and control trials, in which subjects heard a pink-noise stim-

ulus, timed to the stimulus onset (input-linked), cue onset (cue-linked) or GO signal

onset (output-linked). Responses at input and cue are very similar, predominantly

engaging superior temporal gyrus, somatosensory and motor (Rolandic) cortex and

visual cortex, bilaterally, as well as left ventral premotor cortex (vPMC), posterior

inferior frontal sulcus (pIFs) and superior parietal regions. At output, bilateral ven-
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Figure 3.7: Distinct responses to input and output. Contrasts between input-
and output-linked hemodynamic responses during all task trials. Shown are sig-
nificance statistics, i.e. − log10 p, from a two-tailed t-test (17 dof), thresholded at
p < 0.01 and cluster-wise corrected at p < 0.05. Cluster thresholds are Bonferroni
corrected by a factor of 3, for separate analyses of two hemispheres and sub-cortical
regions.

tral Rolandic cortex is significantly more active during task trials than control trials,

as is, to a lesser extent, bilateral superior temporal cortex.

Figure 3.7 contrasts input- and output-linked beta estimates during task trials

only. Input-linked responses are significantly stronger in the left hemisphere in the

superior temporal gyrus (STg) and posterior superior temporal sulculs (pSTs), as

well as inferior frontal sulcus (IFs), medial frontal gyrus/middle-dorsal premotor cor-

tex (MFg/mdPMC) and the anterior portion of the supplemental motor area (pre-

SMA). In addition, input-linked responses in occipital cortex, stretching bilaterally

into parietal and inferior temporal cortex, are stronger than output-linked responses.

Output-linked responses are significantly stronger, bilaterally, in ventral Rolandic

cortex, supramarginal gyrus (SMg), insula and cingulate gyrus.

Figure 3.8 contrasts beta estimates for repeat and change trials (averaged across

other experimental factors), for each of the input, cue and output datasets, with
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Figure 3.8: Response to repeat vs change trials. Contrasts between repeat
trials and change trials in the (a) input- (b) cue- and (c) output-linked hemodynamic
responses. Shown are significance statistics, i.e. − log10 p, from a two-tailed t-test
(17 dof), thresholded at p < 0.01 and cluster-wise corrected at p < 0.05. Cluster
thresholds are Bonferroni corrected by a factor of 3, for separate analyses of two
hemispheres and sub-cortical regions.
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regions appearing red where there is a greater response on repeat trials and blue

where there is a greater response on change trials. At input and cue, only regions

with stronger responses to change trials reach significance, predominantly left ventral

premotor cortex, inferior frontal sulcus and dorsal inferior frontal gyrus. Left posterior

STs, right dorsal IFg, bilateral intraparietal sulcus and bilateral medial prefrontal

areas show smaller significant clusters. In addition, the cue contrast reveals bilateral

orbitofrontal cortex responding more to change trials than repeat. At output, stronger

responses to repeat trials than change trials were found in right posterior angular

gyrus, right subparietal sulcus, and bilateral parieto-occiptal sulcus.

Figure 3.9 contrasts beta estimates for word and nonword trials (averaged across

other experimental factors), for each of the input, cue and output datasets. Regions

appear red where words induce a stronger response and blue where nonwords induce

a stronger response. At input, words cause a stronger response than nonwords in

bilateral posterior AG and left collateral sulcus, while nonwords produce a stronger

response in ventral premotor cortex, extending into posterior IFg. At cue, stronger

responses to words appear in bilateral posterior AG, right posterior surpamarginal

gyrus, and right posterior middle temporal gyrus. At output, a stronger response to

words appears in visual cortex.
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Figure 3.9: Response to word vs nonword trials. Contrasts between word trials
and nonword trials in the (a) input- (b) cue- and (c) output-linked hemodynamic
responses. Shown are significance statistics, i.e. − log10 p, from a two-tailed t-test
(17 dof), thresholded at p < 0.01 and cluster-wise corrected at p < 0.05. Cluster
thresholds are Bonferroni corrected by a factor of 3, for separate analyses of two
hemispheres and sub-cortical regions.
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3.3.3 Multivariate results

3.3.3.1 Vowel information in input datasets
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Figure 3.10: Auditory stimulus information in word/nonword contexts.
Mean classification accuracies across subjects for searchlight analyses trained on audi-
tory stimulus vowel identity over all input-related responses and tested on (a) all, (b)
word, and (c) nonword trials. (d) A two-tailed comparison of classification accuracy
over word and nonword trials. All figures are thresholded at a vertex-wise threshold
of p < 0.05 and a cluster-wise threshold of p < 0.01.

Figure 3.10a shows classification results for searchlight analyses trained on au-

ditory stimulus vowel identity over input-related datasets. In the left hemisphere,

we find correlates with stimulus identity in posterior IFs and inferior middle frontal

gyrus (pMFg), posterior STs, angular gyrus and the superior part of the precentral

sulcus. Calculating accuracy only across word trials (Figure 3.10b) results in a larger
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pSTs cluster with higher raw accuracy, but sub-threshold classification in pIFs, while

the pIFs and pMFg clusters remain significant on nonword trials (Figure 3.10c), but

the pSTs cluster disappears. Significant classification of nonwords is also found in

an additional ventral premotor cluster. Contrasting word and nonword accuracies

directly (Figure 3.10d) a significant preference for vowel identity in words is found in

pSTg/PT, posterior AG and ventral posterior insula, and a preference for nonwords

is found in pMFg, vPMC, vIFo and dorsal anterior insula.

In the right hemisphere, a large posterior central operculum cluster is found in

word and nonword trials. A right PT cluster appears in all subsets of trials, and it is

larger and with significantly higher accuracies in nonword trials than in word trials.

Larger nonword clusters are found in right inferior parietal and posterior temporal

regions, including posterior angular gyrus. A significant preference for words is found

in right pSTs and vIFo, while a significant preference for nonwords is found in PT

and AG.

3.3.3.2 Vowel information in output datasets

Figure 3.11a shows mean classification accuracies for searchlight analyses trained

on vocal target vowel identity over output-related estimates. We find correlates, in

bilateral PT/pSTg, insula, AG and posterior MFg, in addition to left-lateralized SMg

and right-lateralized planum polare/aSTg, aSTs, and vIFo. Testing classification only

on word trials (Figure 3.11b), larger clusters with higher mean accuracies are observed

in bilateral PT, as well as left SMg, inferior insula and posterior MFg; similar clusters

are found in right vPMC and IFg. Non-word specific accuracy (Figure 3.11c) shows

larger clusters in left superior insula, right SMg and PP/aSTg. Non-words are also

represented in left IFs.
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Figure 3.11: Vocal target information at output in word/nonword contexts.
Mean classification accuracies across subjects for searchlight analyses trained on vocal
target vowel identity over all output-related estimates and tested over (a) all, (b)
repeat, and (c) change estimates. All figures are thresholded at a vertex-wise threshold
of p < 0.05 and a cluster-wise threshold of p < 0.01.

Figure 3.11d contrasts classification accuracies on word (red) and nonword (blue)

trials. The separation of inferior/superior insula between word and nonword infor-

mation, respectively, is evident. Posterior PT/parietal operculum shows a bilateral

preference for words, and right SMg and pSTs show a preference for nonwords.

3.3.3.3 Vowel information in cue datasets

The cue informs subjects of the trial type (repeat or change), and thus which (non)-

word they will need to produce. Figure 3.12 shows average classification accuracies
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when training on the auditory stimulus vowel identity over all cue trials, and test-

ing over (a) all, (b) repeat, or (c) change trials. Notably, the left superior IFs/MFg

cluster appears when testing on repeat trials, but not change, and bilateral STs clus-

ters contain significant predictive information when testing on change trials, but not

repeat trials. Further, ventral motor cortex predicts the auditory stimulus in both

repeat and change trials. Other clusters are found in left superior BA6, angular

gyrus (AG) and pre-SMA across all trials and change trials, while a large medial

motor/somatosensory cluster appears for all trials and repeat trials. Right anterior

supramarginal gyrus (aSMg) predicts the auditory stimulus in repeat trials, and right

ventral somatosensory cortex predicts the auditory stimulus in change trials.

Figure 3.13 shows the same classification, when responses were labeled with the

vocal target. The ventral motor cortex cluster is absent when testing on any subset

of trials, while the superior IFs/MFg cluster is present when testing on any subset.

Additionally, testing only on change trials reveals clusters in left vPMC and posterior

PT, and the STs cluster is absent.

Right inferior parietal cortex, particularly supramarginal gyrus (SMg) and angular

gyrus (AG) contains clusters predictive of vocalized vowels in repeat trials, and to

a lesser extent in change trials, while right ventral somatosensory cortex contains

clusters predictive of the auditory stimulus in change trials. Additionally, a large

cluster in the dorsal postcentral gyrus predicted vocalized vowels across any subset

of trials.

3.3.3.4 Informational contrasts

We next consider differences that occur specifically in change trials, in which subjects

are required to speak a different syllable than the one they heard. Figure 3.14a shows
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Figure 3.12: Auditory stimulus information at cue in repeat and change
trials. Mean classification accuracies across subjects for searchlight analyses trained
on auditory stimulus vowel identity over all cue-related estimates and tested over (a)
all, (b) repeat, and (c) change estimates. All figures are thresholded at a vertex-wise
threshold of p < 0.05 and a cluster-wise threshold of p < 0.01.
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Figure 3.13: Vocal target information at cue in repeat and change trials.
Mean classification accuracies across subjects for searchlight analyses trained on vocal
target vowel identity over all cue-related estimates and tested over (a) all, (b) repeat,
and (c) change estimates. All figures are thresholded at a vertex-wise threshold of
p < 0.05 and a cluster-wise threshold of p < 0.01.
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Figure 3.14: MVPA Contrasts: Auditory stimuli and vocal targets at cue.
(a) A contrast of classification of auditory stimulus vowel identity over cue and input
estimates, testing only on change estimates. (b) A contrast of classification of auditory
stimulus and vocal target vowel identities over cue estimates, tesitng only on change
estimates. Shown are significance statistics, i.e., − log10(p), from a two-tailed t-test
(17 dof). All figures are thresholded at a vertex-wise threshold of p < 0.05 and a
cluster-wise threshold of p < 0.01.

differences in classification accuracy of auditory stimulus vowel identity at input (blue)

and at cue (red), testing only on change trials. Following the change cue, subjects

know they may discard the auditory stimulus and prepare to speak the syllable that

was read but not heard. Most notably, right hemisphere clusters in pSTs, pIFs, SMg

and pCO are found to have higher accuracy at the time of auditory input than at

the time of the cue. In contrast, left PT and AG, and bilateral orbitofrontal cortex

show stronger predictive information about the vowel heard at cue than at input.

Figure 3.14b shows differences in classification accuracies at the time of the cue for

trials labeled with the auditory stimulus vowel identity (red) compared to the vocal

target vowel identity (blue), testing again only on change trials. Auditory stimuli are

significantly better classified in bilateral pSTs and motor cortex, as well as left IFo

and AG. Vowel vocal targets are better classified in left vPMC and pMTg, and right

SMg and vIFt.
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Figure 3.15: MVPA Contrast: Vocal targets at output and cue. Comparisons
of classification accuracies for searchlight analyses trained on vocal target vowel iden-
tity for output (red) and cue (blue) datasets. Shown are significance statistics, i.e.,
− log10(p), from a two-tailed t-test (17 dof), thresholded at a vertex-wise threshold
of p < 0.05 and a cluster-wise threshold of p < 0.01.

Finally, we consider the evolution of responses corresponding with the vocal plan

between the times at which subjects know (cue) and produce (output) the vocal

target. Figure 3.15 shows difference in classification of vocal target vowel identity

over output- (red) and cue-related responses (blue). More reliable correlates of the

vocal target are found at cue in left posterior MFg (adjacent to the inferior frontal

sulcus), pMTg and dorsal somatosensory cortex, and in right angular gyrus and middle

occipital gyrus. At output, more reliable correlates are found in bilateral PT, IFo,

and Rolandic cortex, as well as left insula and anterior STs.
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3.4 Discussion

In this study, we applied cortical surface searchlight-based MVPA to estimated BOLD

responses during a delayed repetition task in which subjects selected a response from

visually and aurally presented (non)words. We estimated hemodynamic responses

to individual events, timed to three stages of the task: aural stimulus presentation

(input), task-selection cue (cue), and GO signal presentation (output). We analyzed

these datasets for correlates of the phonological content of the auditory stimulus

and vocal target, namely the vowel identity, in order to dissociate the processing

of auditory inputs and planned speech outputs. Below, we first discuss the input

and output stages of the task, with a focus on the differential response to word

and nonword syllables. We then consider the cue event, and the process of selecting a

response from two items in working memory. This is followed by a broader synthesis of

results in the context of current theories of speech repetition and verbal / phonological

working memory.

3.4.1 Input-related responses

Within each trial, subjects were presented visually with two (non)words at t = 0s,

and aurally with one of these (non)words at t = 2.25s. The input event of each trial

was timed to this aural presentation. Which syllable was to be spoken was unknown

at this point in the trial, and thus estimated responses were expected to be most

reflective of hearing a particular syllable.

Figure 3.6a shows significant task-related activation at input in bilateral superior

temporal gyrus (STg) and Rolandic cortex, and left posterior superior temporal sul-

cus (pSTs), posterior inferior frontal sulcus (pIFs), as well as the anterior portion of

the supplementary motor area (pre-SMA). Contrasting with task-related responses at
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output (Figure 3.7), these responses are comparatively strong in left pSTs/pSTg and

pIFs into middle frontal gyrus (MFg), and in pre-SMA. Note that these frontal re-

gions, typically associated with speech planning and production (e.g., Bohland et al.,

2010), are active in the absence of definitive knowledge of the syllable to be spoken,

suggesting either a role in sensory perception or an automatic activation of the speech

output system after hearing the syllable (although, see Section 3.4.6).

Further, contrasting responses when the stimuli are both words to those when

the stimuli are both nonwords (Figure 3.9a) reveals a stronger response to nonwords

in left mid-/ventral premotor cortex. At a relaxed threshold (p < 0.05 uncorrected;

cluster-wise threshold p < 0.05), left anterior supramarginal gyrus (SMg) also shows

a stronger response to nonwords. Overall, this is consistent with the view that read-

ing and listening to nonwords makes greater demands of the dorsal stream (Saur

et al., 2008). Additionally, stronger responses to words than nonwords were found

in bilateral angular gyrus (AG), which has been implicated in lexical and semantic

processing of written and spoken words (Binder et al., 2005; Raettig and Kotz, 2008;

Binder et al., 2009).

Clusters in pIFs and pSTs were found to be significantly predictive of the au-

ditory vowel identity, across all trials (Figure 3.10a), suggesting their involvement

directly in perceiving the auditory stimulus or in encoding the speech sounds heard

in short-term memory to enable the subject to successfully complete the remainder

of the task. Testing classification accuracy on specific subsets of trials (words vs.

nonwords; Figure 3.10b,c) provided additional insight into the differential roles of

these areas for lexical and non-lexical stimuli. Accuracy across subsets of trials shows

that pSTs remains significantly predictive in words, while pIFs remains significantly

predictive in nonwords, but not vice versa. Figure 3.10d shows neither difference
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reaches significance when contrasting accuracies directly, though posterior middle

frontal gyrus (pMFg) and vPMC clusters show a nonword preference, corroborating a

greater frontal representation for nonwords, while a right pSTs cluster homologous to

the left pSTs cluster is found to have a preference for encoding vowels within words.

3.4.2 Output-related responses

Within each trial, subjects were cued to speak at t = 9s, and output events were

timed to this visual cue. At this point in the trial, subjects had prepared to produce

a single syllable, and there was no requirement to actively maintain a trace of the

other syllable.

Figure 3.6c shows significant task-related activation at output in bilateral pSTg

and Rolandic cortex; contrasting with task-related responses at input (Figure 3.7),

these responses are comparatively strong in bilateral Rolandic cortex, extending pos-

teriorly into the supramarginal gyri / parietal opercula, and medially into the insula.

Additionally, superior orbitofrontal cortex (slightly right lateralized) and medial re-

gions – most notably cingulate cortex – have increased activation at output over

input. There were no major differences in word or nonword trials at the output stage

of the task (Figure 3.9c), consistent with expectations, as the motor execution of

phonotactically legal syllables is unlikely to be affected by their lexical status.

Regions predictive of vocal target vowel identity at output (Figure 3.11) are pri-

marily superior temporal, inferior parietal and insular, although a pMFg cluster ap-

pears for words and a slightly more ventral pIFs cluster appears for nonwords. Bilat-

eral posterior PT (area Spt) is strongly predictive of words, while nonwords induce

small, bilateral clusters in pSTg. A cluster in mid-motor cortex is found not far from

the articulatory maps for lip, tongue and respiration (Takai et al., 2010; Bouchard
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et al., 2013).

The bilateral superior temporal clusters are statistically significant when classifi-

cation accuracy is assessed in change trials alone (not shown), for which no auditory

memory of the vocalized syllable is available. Thus, the right aSTg/PP cluster and the

bilateral pSTg clusters are most likely to represent auditory targets or expectations

of the speech act or auditory responses to self-produced speech.

The emergence of an inferior/superior preference within left insula for words and

nonwords, respectively, is worth noting and, to our knowledge, not previously re-

ported. A recent structural connectivity analysis of the insula suggests that the an-

terior inferior portion of the insula is highly connected in the ipsilateral hemisphere

with both anterior superior temporal lobe and frontal regions including IFg pars tri-

angularis (Ghaziri et al., 2015), and thus may sit at the interface of the temporal and

frontal portions of the ventral stream, though no functional significance is proposed.

The superior region is highly connected with ipsilateral motor and premotor cortex,

and anterior insula has been previously implicated in apraxia of speech (Dronkers,

1996). Additionally, anterior insula has been suggested to be engaged by novel or

complex utterances (Ackermann and Riecker, 2004; Sörös et al., 2006; Baldo et al.,

2011). While nonwords have increased novelty in comparison to words, we did not

see a greater univariate response to nonwords (Figure 3.9c).

3.4.3 Cue-related responses

Within each trial, subjects were presented with a green or yellow rectangular cue at

t = 3.25s, informing them which syllable was to be spoken. A green cue indicated

subjects were to repeat the auditory stimulus (repeat trial), while a yellow cue indi-

cated subjects were to repeat the unheard, visually presented stimulus (change trial).
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The cue event of each trial was timed to this visual presentation.

Figure 3.8b shows a generally stronger response at cue for change trials than

repeat trials, reflecting a greater cognitive demand during change trials. Although

repeat and change trials were evenly balanced, and subjects would not have benefited

by using an active strategy of “pre-loading” the heard stimulus into a speech motor

plan, this suggests that, prior to the cue, frontal speech areas nonetheless load the

auditory stimulus instead of the unheard visual stimulus. In particular, bilateral

vMC, vPMC, IFs and anterior insula were engaged more in response to a change cue

than a repeat cue, as were left posterior STs and SMg/PT, likely reflecting processes

involved in replacing the target vocal plan from the auditory stimulus to the unheard

visual stimulus. Interestingly, the strongly left lateralized pSTs cluster that shows

greater activation on change trials overlaps with the posterior peak of a cluster in

Figure 3.7, where the estimated response was significantly greater to input than to

output, indicating that it is preferentially re-activated on change trials; this response

was also left lateralized.

If it is the case that, following a change cue, subjects extinguish representations

related to the auditory stimulus from frontal cortex and load a speech motor plan for

the visual stimulus, we should expect to find statistically significant representations

of both the auditory stimulus and the vocal target at this stage of the task. Regions

predictive of the auditory stimulus at the cue may either be slower to refresh their

representation or more explicitly involved in auditory perception than in generating

a speech motor plan.

Multivariate pattern analysis results help us to understand how the observed acti-

vations relate to the two relevant syllables presented in the trial. Let us first consider

classification accuracies for cue events labeled with auditory stimulus vowel identity
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(Figure 3.12). Left ventral motor cortex (vMC) predicts the auditory stimulus with

relatively high accuracy in both repeat and change trials. This region likely reflects

the articulatory configuration of the tongue (Takai et al., 2010; Bouchard et al., 2013),

one of the primary determinants of vowel sounds. An early, motoric representation

of the identity of the perceived vowel identity is consistent with proposals that motor

engagement is a necessary component of speech perception (D’Ausilio et al., 2009;

Pulvermüller and Fadiga, 2010). In contrast to the cluster in vMC, the pMFg cluster

evident across all trials (Figure 3.12a) reaches significance in repeat, but not change,

trials, and the left anterior AG and right mid-/aSTs clusters are found in change, but

not repeat trials. A left pSTs cluster found specifically in change trials (Figure 3.12c)

is in the same location that showed significant auditory vowel prediction at the input

stage of the task (Figure 3.10a). These results would suggest that, when cued to

repeat the auditory stimulus, there is little need to access auditory cortical repre-

sentations of the heard syllable, relying instead on frontal representations that have

already (and perhaps automatically) been engaged by hearing the syllable; when cued

to change to the unheard stimulus, auditory representations of the auditory stimulus

appear to be reactivated.

Next, consider classification accuracies for cue events labeled with vocal target

vowel identity (Figure 3.13). The vMC cluster that predicted the heard vowel is

entirely absent, but a vPMC cluster has replaced it, which is more apparent during

change trials. Figure 3.14b, which directly contrasts the classification accuracy maps,

confirms both clusters to have significant differences in accuracy for classifiers trained

on the two class labels. Near the inferior frontal sulcus, the cluster in pMFg across

trial types is consistent with that seen in Figure 3.12b, suggesting either that this

region codes for a planned vocal target, or otherwise has an activation pattern that
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covaries with the vocal target, and is quickly refreshed when the required speech out-

put changes. It is also worth noting the large cluster in dorsal postcentral gyrus that

significantly predicts the vocal target vowel across all trials, although no functional

significance to speech is known for this region.

These results, together, lead to the hypothesis that the superior pIFs/pMFg cluster

is involved in the preparation or maintenance of a planned speech act, while vPMC,

found in Chapter 2 to predict the identity of a repeated syllable at input, is here in-

volved in the preparation of a new vocal target. The observation that vMC maintains

a stronger representation of the auditory stimulus may indicate that, at this stage in

the task, this area has not refreshed its representation to encode the vocal target, or

that this region is engaged by perception (as described in the motor theory of speech

perception; Liberman et al., 1967; Wilson et al., 2004; Pulvermüller et al., 2006); the

absence of such a cluster at input (Figure 3.10) permits either interpretation.

3.4.4 Reliance on the dorsal stream for words and nonwords

The task described in this study was designed to contrast the treatment of word and

nonword speech sounds during the required perception and production components of

a repetition task in healthy adults, as well as dissociate the content of the perceived

and produced speech sounds. Speech repetition is thought to rely on the dorsal

stream, which provides a sensorimotor interface for translating between auditory and

articulatory representations of speech sounds (via area Spt, which is proposed to link

posterior temporal lobe areas and posterior frontal lobe areas; Hickok and Poeppel,

2004; Buchsbaum and D’Esposito, 2008; Buchsbaum et al., 2011). Additionally, the

dorsal stream is obligatorily engaged by the repetition of nonword speech sounds, due

to the lexico-semantic specificity of the ventral stream. This hypothesis is supported
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by evidence showing preferential usage of dorsal stream areas in sublexical repetition

tasks, while ventral stream areas are preferentially used in tasks requiring compre-

hension (e.g., Saur et al., 2008). In the present study, univariate analysis (Figure 3.9)

confirms an increased engagement of the posterior frontal areas considered to be part

of the dorsal stream at the input portion of the trial when the task required repetition

of a nonword rather than a word. Further, a multivariate contrast (Figure 3.10b-d)

suggests that the phonological content – specifically, the vowel identity – of non-

words may be more prominently encoded in mid- and ventral premotor regions at

the input portion of the task than for words. Whether nonwords are preferentially or

differentially represented is unclear from these results, but as there is no theoretical

reason (such as inter-stream competition) for words to be handled more slowly or

less ably by the dorsal stream, this may be an effect of chunking, or the abstraction

of common sequences of phonemes into their own phonological units. The increased

activation of premotor cortex for nonwords may thus reflect a larger number of chunks

needed to process a nonword. This increase in premotor engagement may also result

from a greater dependency on phonological working memory for nonwords than words

(Baddeley, 1992), which has been argued to be supported by speech perception and

production areas (Jacquemot and Scott, 2006; Perrachione et al., 2017).

When a change cue is presented, it is unclear to what extent the dorsal stream

should be expected to be engaged. On the one hand, the vocal target on change trials

corresponds to a visually presented (non)word, and nonword reading may be spared in

persons with conduction aphasia, in whom nonword repetition is profoundly impaired

(e.g., Jacquemot et al., 2007). However, delayed nonword production relies on phono-

logical working memory, which may in turn rely on the dorsal stream (Jacquemot and

Scott, 2006, also see below). In addition to vPMC and IFg, univariate contrasts show
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left pSTs more active at the input and cue during change trials than repeat trials

(Figure 3.8a,b). pSTs is considered to be the auditory phonological input to the

dorsal stream (Hickok and Poeppel, 2007). Although Spt does not show enhanced

activation for change trials (though note nearby activation clusters in left pSTg in

Figure 3.8b), it does appear to contain information predictive of the vocal target

(Figure 3.13c), along with vPMC (BA6). This series of regions (pSTs-Spt-vPMC)

is consistent with dorsal stream models, which would suggest a role in preparing an

articulatory representation of the unheard syllable from a phonological representa-

tion in pSTs (Hickok, 2012). Our overall hypothesis, based on these data, is that the

dorsal stream is automatically engaged in translating the heard syllable to a frontal

representation appropriate for speech motor output; when the change cue is received,

additional circuitry is engaged to reactivate the phonological representation of the

heard syllable in pSTs, and refresh the frontal representation in order to encode the

other (non-heard) syllable.

At output, the dorsal stream would be expected to play a modulatory role, gen-

erating an auditory expectation for error detection based on frontal speech motor

output representations (Guenther, 1994; Guenther et al., 2006; Hickok et al., 2011;

Hickok, 2012). There was no expected difference in the overall response to words

or nonwords, which was consistent with the results of our univariate analysis (Fig-

ure 3.9c). Interestingly, however, bilateral area Spt / parietal operculum shows a

cluster with significantly better prediction of vowel identity in words over nonwords

at output. This suggests the articulatory-auditory transformation is more consistent

or more relied-upon for words than nonwords with the same vowel. A worthwhile

follow-up analysis would be to compare the consistency of subjects’ vocalizations

between words and nonwords.
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3.4.5 Phonological working memory

One goal of this task paradigm was to preempt, if possible, the automatic loading

of a motor plan for the aurally presented syllable by providing a visually presented

distractor syllable and a 50% probability that the task would require producing that

distractor, rather than the heard syllable (which would always be the case in a simple

repetition paradigm, such as that presented in Chapter 2). That is, two (non)words

were visually presented simultaneously in order to instantiate two items in working

memory; when one was presented aurally, it was “tagged”, but not known to be the

vocal target. However, it is clear from the observed increased neural demands, as

well as the ability to decode the vowel heard from frontal structures, even based

on the earliest response estimates following a change cue that the auditory stimulus

was loaded in spite of this design, consistent with Correia et al. (2015), who showed

activation of bilateral inferior frontal areas even in a passive listening task, finding

clusters predictive of consonant features. Recent conceptions of phonological working

memory (pWM), in contrast to the “phonological store” of Baddeley (1992), propose

that pWM is supported directly by the processes and structures of speech perception

and production systems (Jacquemot and Scott, 2006; Buchsbaum and D’Esposito,

2008; Majerus, 2013). From this perspective, if the two visually presented syllables

were in phonological working memory, they were being cycled between an auditory

phonological representation in posterior superior temporal cortex and an articulatory

phonological representation in posterior inferior frontal cortex. Thus, while simulta-

neous visual presentation was intended to have an inhibitory effect, preventing either

motor plan from being loaded, it may instead have had a reinforcing effect on the

aurally presented syllable.
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Majerus (2013) proposes that the phonological input/output buffers may be sup-

plemented with a bilateral fronto-parietal network including BA6/9 frontally and

BA7/40 parietally when multiple (non)words need to be maintained, with the left

hemisphere network responsible for attentionally-mediated maintenance. In these re-

gions, we see two interesting pieces of evidence. The first is the increased engagement

of the intraparietal sulci in change trials over repeat trials at the time of the cue (Fig-

ure 3.8b), which is consistent with the use of this fronto-parietal network to select the

target syllable from working memory. Majerus proposes that this maintenance con-

trol network sustains frontal and temporal representations, which may help explain

the previously noted presence of pSTs activation and absence of Spt activation. The

second piece of evidence is the recurring cluster(s) at the boundary of pIFs, pMFg

and the precentral sulcus (e.g., as observed in Figures 3.10a,c, 3.11a, 3.12a,b, and

3.13a-c). These clusters are seen at input, predictive of the auditory stimulus; at cue,

predictive of the vocal target; and again at output, predictive of the vocal target. If

these clusters can be considered a unit, despite some spatial inconsistency, they might

be indicative of an abstract speech plan, which by default represents the heard speech

sound, but may be quickly replaced with an alternative speech sound. However, they

are inconsistent with an attentional working memory interpretation. Attentional pro-

cesses are not expected to directly represent the objects of attention, and there is no

task-imposed need for multiple-item working memory to remain engaged beyond the

cue stage. Further work is required to establish the specific functions of these regions

in speech and phonological working memory tasks.
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3.4.6 A caveat on interpreting input- and cue-related responses

Recall that the input event (auditory presentation onset) occurs at t = 2.25s after

trial start, and the cue event (task instruction cue presentation) occurs at t = 3.25s.

In single trial estimation, distinguishing events 1s apart is statistically difficult. As

is visible in Figure 3.6a and b, the main effect of task over control trials is highly

similar in both datasets. Thus, it may be that some apparently input-related effects

are processes initiated at cue, while some apparently cue-related effects are continuing

responses to the input event. This is not, however, to say that no distinctions may

be drawn. In particular, differences between repeat and change trials can only make

sense after the cue, prior to which trials are indistinguishable to the subject.

3.4.7 Limitations and future directions

A limitation of the task design is the difficulty of directly comparing cue-related re-

sponses to those at input and output because they had to be modeled separately in

order to obtain stable, robust event estimates. A potential modification of the task

design would be to evenly space visual cues, as well as speech perception and produc-

tion cues, e.g., visual word presentation, auditory word presentation, repeat/change

cue presentation, and GO signal presentation at even intervals, immediately follow-

ing a volume acquisition. This preserves the relative quiet for speech perception and

production and permits responses corresponding to reading and performing the cog-

nitive switch to be factored out of the responses to input and output. Note, however,

that this would decrease the number of scans per modeled event, and reduce the time

available for subjects to store the vocal target without a distractor.

In this task, we observed that frontal areas appeared to encode a motor output plan

for the syllable heard in all trials. In order to inhibit automatic preparation of a motor
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plan, consider an otherwise identical paradigm in which the aurally presented syllable

is not first presented visually may prove more effective; this would give the unheard

syllable exclusive access to the speech production system prior to the preferentially

treated auditory stimulus (again, see Correia et al., 2015), as well as eliminate any

priming effects. Decreasing the probability of repeating the auditory stimulus may

be an additional tool to decrease the utility of automatic loading.

In addition to dissociating the auditory stimulus from the vocal target to distin-

guish frontal responses to speech perception and planned production, it would be

useful to distinguish, in temporal cortex, the auditory consequences of self-produced

speech from an auditory target, for on-line error correction (Guenther et al., 2006;

Hickok et al., 2011). One possible modification to this task is to (on some trials) use

an auditory mask to interfere with subjects’ self-perception.

Notwithstanding its limitations, this study provides a rich dataset that invites a

number of questions not explored in this dissertation. In addition to testing classifiers

on subsets of the training data, it is possible also to train classifiers on subsets of each

dataset; one may then ask how well a classifier trained over repeat trials predicts

vowels in change trials, or vice versa. Another question invited by these data is

whether words and nonwords are treated differently under repeat and change contexts;

an ANOVA adapted to MVPA classification accuracy would provide valuable insight

into questions of dorsal stream access during change trials. Finally, the words in this

study were counter-balanced by vowel and semantic category; classification analyses

on semantic categories may provide insight into an alternative, non-phonological word

representation.
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Chapter 4

Modeling categorical and analog signals in

fMRI datasets

4.1 Introduction

Multivariate pattern analysis is a relatively young class of analytical techniques, and

interpretation of its results remains notoriously problematic (Anderson and Oates,

2010; Coutanche, 2013; Etzel et al., 2013). One obstacle to interpretation is the

opacity of models constructed from the training data, such that determining specific

“informative” voxels and what relation they have with the classification labels is non-

trivial. This problem is compounded by searchlight techniques (Kriegeskorte et al.,

2006; Oosterhof et al., 2011; Chen et al., 2011), which generate thousands of models to

produce their results, and also by any attempt to compare or combine results across

subjects, rendering model inspection an intractable avenue for resolving questions of

interpretation.

A more fundamental issue is that of attribution. In this work, classification of

vowel identity in a CVC syllable context is considered to be evidence of a potential

phonological representation of vowels. However, a vowel may be straightforwardly

represented as a discrete class or as a pair of formants (Peterson and Barney, 1952);

linear classifiers would have little trouble matching a categorical class label to either

underlying representation (Hillenbrand et al., 1995). One approach for resolving am-

biguous classifications is simply to test alternative class labels (Naselaris and Kay,

2015). This treats the labeling itself as the interpretation, and the relative perfor-
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mance of classification on different label sets provides a measure of plausibility.

This strategy is comparable to that employed by representational similarity anal-

ysis (RSA; Kriegeskorte et al., 2008; Nili et al., 2014), another multivariate method

aimed at comparing models, and used in Evans and Davis (2015) to detect a regional

preference for phonological representations of consonants. RSA entails computation

of “representational dissimilarity matrices” (RDMs), stimulus-stimulus distance ma-

trices encoding some measure of difference of response to every pair of stimuli. For

example, in Evans and Davis (2015), at each searchlight ROI, a 36 × 36 RDM was

constructed from correlation distances between mean responses to six syllables under

six acoustic conditions. Model RDMs were binary similar-dissimilar indicators under

different assumptions, e.g. one RDM indicated same/different syllable identity while

another indicated same/different consonants. By correlating each searchlight RDM

with each model RDM, the similarity of neural responses to simple correlative models

may be compared to establish more likely representations in different regions. The

RSA technique has also been used to compare BOLD responses to computational

models, most notably comparing human inferior temporal responses to a battery of

pictures to a large number of neuroscientifically motivated models of image processing

(Kriegeskorte, 2009).

While these model selection methods are useful in interpreting measured data,

little work has aimed to understand how different hypothetical neural signals give

rise to BOLD patterns, and how specific classifiers perform on these patterns.

This chapter approaches the question from a signal-processing perspective: given

a known representation, to what extent can measures of a generic (and ill-defined)

notion of “information” detect it? This approach does not try to recover a represen-

tation, but seeks to characterize limits on detection for different representations.
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4.1.1 neuRosim

neuRosim (Welvaert et al., 2011) is an fMRI simulation framework intended to stan-

dardize simulations, and facilitate the replication and comparison of simulation stud-

ies. In particular, neuRosim is designed to generate datasets that mimic the spatial

and temporal properties of signals of interest and noise sources in fMRI data. An

fMRI dataset is a time-series of three-dimensional volumes, or grids of voxels; the

temporal profile of a modeled signal is convolved temporally with a hemodynamic re-

sponse function and across voxels according to a spatial kernel. Following is a partial

overview of the functions provided, their properties, and their use in this analysis.

4.1.1.1 Signal generation

neuRosim provides functions for defining the time course of signals and their spatial

extents. Here we list the functions used in this study.

Spatial extent definition neuRosim::simprepSpatial defines the spatial extent

of modeled signals. For manually or programmatically selected voxels, the needed

parameters are the number of voxels (regions) and a list of voxel coordinates (coord).

Time course definition neuRosim::simprepTemporal allows the definition of

multiple related time-courses, to correspond to the activation of multiple regions

of interest, or to define a single time course for all regions. This function is param-

eterized by run length (totaltime), a list of event onsets, a corresponding list of

durations (a single value, if no variation), and TR, all in seconds. effectsize is

a list (or single value) of maximum heights of HRF responses, hrf selects the HRF

model from a single gamma (Boynton et al., 1996), double gamma (Friston et al.,

1998), or balloon (Buxton et al., 1998), and model sampling resolution in seconds
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(accuracy).

Volume construction neuRosim::simVOLfmri accepts the output of simprep-

Spatial and simprepTemporal, as well as spatial (dim) and temporal (nscan) di-

mensions to produce 4D time-series. Repetition time (TR) must be specified, and

noise may be added (see below).

4.1.1.2 Noise generation

Noise refers to both measurement error and signals of non-interest. Spurious correla-

tions of noise with signals of interest can lead to systematic errors; hence, much effort

has gone into characterizing prominent sources of noise in fMRI data, and neuRosim

provides functions to account for measurement, physiological, and temporally and

spatially auto-correlated noise.

Each noise generator used in this study is described below along with its R func-

tion name and an equation describing its behavior. All R functions take dim and

nscan parameters, describing its dimensions and the number of volumes to generate;

functions with temporal dependence take a TR parameter. Each equation describes

the noise generator as a function of time and space – here only two dimensions (x

and y) – and is parameterized with arguments exposed by neuRosim.

A parameter common to all noise generators is σ, or standard deviation, which

in all cases is applied when generating the noise series; after generation and any

resampling, the standard deviation of the series is calculated and adjusted to match

σ, if necessary.

The right-hand side of each equation has a pseudorandom component and may

may include additional structure. The pseudorandom component is denoted χ, and

represents a number generated from the standard normal distribution (N (0, 1)) at
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each voxel, at each time point. The most common stochastic component, σχ, is

equivalent to sampling from N (0, σ2).

In this section, ∆t is used instead of TR to indicate the time step for noise gener-

ation, while TR is reserved for the repetition time of an acquisition paradigm. This

distinction reflects a distinction to be drawn in this particular simulation, in which

data is generated at 2.5s intervals and then subsampled to a 5s TR.

White noise neuRosim::systemnoise represents measurement noise, fluctuations

inherent to MRI acquisition. Noise in MRI is magnitude-dependent, following a

Rician distribution, but for signal-to-noise ratios > 2, a Gaussian approximation

suffices (Gudbjartsson and Patz, 1995).

ε(t, x, y|σ) = σχ (4.1)

Physiological noise neuRosim::physnoise models respiratory and cardiac sig-

nals, which are the dominant sources of noise generated by subjects’ bodies; given

the sampling rate (1/TR) of fMRI (< 1Hz), aliasing can result (Biswal et al., 1996).

These signals are modeled as sine-waves, with default frequencies of fResp = 0.2Hz

and fHR = 1.17Hz (∼70 bpm). In this case, the sigma parameter applies to the stan-

dard deviation of the physiological signal, and the stochastic component has variance

of 1.

φ(t, x, y|fHR, fResp, σ) ≈ χ+ σ (sin(2πfHRt) + cos(2πfRespt)) (4.2)

φ(t, x, y) is scaled so that the standard deviation of the sum of sines equals σ,

sampled at intervals of ∆t. The above approximation reflects that, as ∆t → 0, the
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sum of two independent sine waves has standard deviation of 1.

Note that the random variate contributes 1/(σ2 + 1) of the variance in φ, and is

negligible for large σ.

Temporal noise neuRosim::temporalnoise induces temporal autocorrelations,

shown by Purdon and Weisskoff (1998) to result in misestimated false positive rates

unless “whitened”. Temporal noise reflects the nature of fMRI as a repeated measure,

as well as modeling the effects of physiological events of non-interest on the BOLD

signal. A simple autoregressive model (AR(p)) is used, with parameters ρ1, ...ρp.

τ(t, x, y|~ρ, σ) = σχ+

p∑
i=1

ρiτ(t− i∆t, x, y|~ρ, σ) (4.3)

Spatial noise neuRosim::spatialnoise simulates spatial dependencies in BOLD

responses, which occur due to both the spatial spread of the hemodynamic response

resulting from neural connectivity and shared vascular resources (Engel et al., 1997)

and the limits of fMRI spatial resolution (Robson et al., 1997). Spatial noise may be

generated using an AR(1) autoregressive model with parameter ρ or a Gaussian or

Gamma random field model. In this study we will consider only the 2-D autoregressive

model:

ς(t, x, y|ρ) = σχ+
√

1− ρ2(ς(t, x−∆x, y|ρ) + ς(t, x, y −∆y|ρ)+

ς(t, x+ ∆x, y|ρ) + ς(t, x, y + ∆y|ρ)) (4.4)

Task-related noise neuRosim::tasknoise adds additional Gaussian (or Rician)

noise only when a voxel is considered active. This has the effect of increasing variance

during the task, and the authors suggest that it may be interpreted as residual head
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motion-related noise or spontaneous neural activity due to the task.

Mixture neuRosim::simVOLfmri permits a weighted combination of noise sources

to be generated, given a baseline activation b, a signal-to-noise ratio R and a weight

vector
∑
~ω = 1. Letting σ = b/R, a noise series:

N(t, x, y|~ω, b, R) =
~ω • (ε(t|σ), τ(t|σ), φ(t|σ), ς(t|σ))

RSS(~ω)
(4.5)

Task-related noise and low frequency drift (neuRosim::lowfreqdrift) are not

shown for simplicity, but are accessible via this same interface.

Summary The noise models described above capture a range of sources of vari-

ance. Assigning these models realistic relative weights is non-trivial, and spatial and

temporal dependencies are unlikely to be easily separated. Nonetheless, these sources

of noise represent the major sources of systematic error that must be accounted for

in standard preprocessing and deconvolution.

4.1.2 Approach

In this study, we simulated a perception-only version of the syllable repetition task

from Chapter 2, and constructed artificial fMRI datasets containing representations of

the perceived syllable. We defined a representation as a set of distinct receptive fields,

or functions mapping a stimulus onto a response magnitude (for simplicity, ranging in

[0, 1]), that voxels might be assigned. Using stimulus data from the study Chapter 2,

we constructed discrete (all-or-nothing) representations of vowels and syllables, and

a continuous representation based on the (F1, F2) formant frequency values of each

stimulus.
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By constructing noisy datasets with known underlying representations, we sought

to characterize the performance of searchlight classification algorithms, parametrically

by strength and density of information (which are defined precisely in Section 4.2).

Classification analyses are performed using both vowel and syllable class labels, to

test for a classification performance boost when the label matches the underlying

representation (an assumption of Naselaris and Kay, 2015), as well as differential

performance on discrete vs. continuous representations.

4.1.3 General hypotheses

We hypothesized that classification detects the presence of information, and not rep-

resentation, or, put another way, there is no advantage to classification for an input

representation that matches the chosen class label so long as knowledge of the input

representation implies knowledge of the class label. Because the syllable contains the

vowel, we hypothesized that vowel classification will be high in datasets constructed

from vowel receptive fields and syllable receptive fields, alike. On the other hand,

multiple syllables share a vowel, so we predicted that syllable classification will be

high only in datasets constructed from syllable receptive fields.

Vowels are well-characterized by the first two formant frequencies (Peterson and

Barney, 1952), making them ideal targets for comparing discrete and analog rep-

resentations. We compared the performance of classification with vowel labels on

both the discrete (vowel) and analog (formant) datasets. Although vowels cluster

in the F1 × F2 frequency space, no discriminant can perfectly divide the stimuli in

Figure 2.7. We therefore hypothesized that, although a classification analysis that at-

tempts to classify vowels on datasets constructed from formant-based receptive fields

will succeed, such an analysis will be outperformed by classifying vowels on a dataset
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constructed from vowel receptive fields. Specifically, we predicted lower classification

accuracies on formant-based datasets than on vowel-based datasets, for any given

density/amplitude combination.

118



4.2 Materials and methods

This simulation study sought to generate hypothetical speech sound representations

in realistic fMRI noise and, using individual event estimation and searchlight classi-

fication analysis, assess the comparative performance of different representations on

different classification labels. The simulated task was based on the syllable repetition

task used in Chapter 2, with stimuli selected from the same set of recordings as in that

study. The task itself was reduced to a single, auditory perception event in each trial,

as no behavioral requirements were needed to ensure and verify subject engagement.

Datasets were constructed as a single slice, mimicking the two-dimensional geom-

etry of the cortical sheet, and contained independently generated noise and signal

components. Simulated signals were generated according to a set of receptive field

models in which a given voxel may respond to phonological or auditory phonetic

properties of the speech stimulus.

4.2.1 Modeled paradigm

A simulated session consists of 8 runs of 48 trials of 10s duration, with an auditory

stimulus presentation at t = 0s in each trial. Two volumes are acquired per trial,

with acquisition time (TA) of 2.5s and repetition time (TR) of 5s, starting at t = 0s.

In contrast to the unevenly timed sparse paradigm of Chapter 2, a constant TR of

2×TA simplifies simulation and eliminates the need for scan-timing correction (see

Section 2.2.6.1). Each volume is a single 64× 64× 1 voxel slice.

Stimuli mimicked those used in Chapter 2: 18 CVC syllables were constructed

from the consonants /m/, /t/ and /l/, and the vowels /I/, /E/ and /2/ (Table 2.1).

Two male and two female native English speakers recorded the stimuli, and five

recordings of each syllable per speaker were collected, to allow for acoustic variation
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among recordings of each syllable. Mean formant frequencies (see Figure 2.7) were

extracted from approximate midpoints of vowels in the stimuli using custom PRAAT

(Boersma and Weenink) scripts (You et al., 2015).

Each run consisted of 43 task trials, with syllable presentations, and 5 control

trials, which were treated as containing no stimulus.

4.2.2 Receptive field types

Three classes of representations were considered: vowel, syllable, and formant, cor-

responding to possible underlying neural representations that subjects may use or

activate during the task. The term receptive field (RF) is used here to refer to the

strength of response of a voxel to each stimulus; each representation can be charac-

terized by a set of RFs, and a responsive voxel is assigned one such RF.

Discrete: Vowel The simplest assumed representation of vowels is for a responsive

unit to respond to the presentation of a specific vowel, and not to respond in its

absence.

Figure 4.1 shows receptive field time series for a single run of 48 trials, constructed

from the first run of subject S1 in Chapter 2. Figure 4.1a shows impulse responses

corresponding to stimulus onset times for stimuli within each receptive field (blue:

/E/; green: /I/; red: /2/). Figure 4.1b shows the expected hemodynamic response to

each stimulus series in a responsive voxel for each class, modeled at TR of 5s and TA

of 2.5s.

Discrete: Syllable A syllable-responsive receptive field is one in which a responsive

voxel responds to the presentation of an entire, specific syllable, and not at all to any

other syllable, regardless of phonetic or phonological similarity. In the current case,
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Figure 4.1: Three category discrete vowel signal. Time series for a single run
of 48 trials, with voxels responsive to vowel identity. (a) Impulse responses of each
receptive field to onset of a stimulus containing the preferred vowel identity. (b)
Estimated hemodynamic response of corresponding responsive voxels. Each curve is
an impulse response train, convolved with a canonical HRF (TA=2.5s), and down-
sampled (TR=5s) to model a sparse acquisition paradigm.

we consider 18 syllables, 6 of which contain each vowel.

Figure 4.2 shows receptive field time series for a single run of 48 trials, constructed

from the first run of subject S1 in Chapter 2. Figure 4.2a shows impulse responses

corresponding to stimulus onset times for stimuli within each receptive field (i.e.,

each syllable identity). Figure 4.2b shows the expected hemodynamic response to

each stimulus series in a responsive voxel for each class, modeled at TR of 5s and TA

of 2.5s.

Figure 4.2a shows stimulus onset times for each syllable identity, and Figure 4.2b

shows the expected hemodynamic response to each stimulus series, modeled at TR

of 5s and TA of 2.5s.

Acoustic: Formant Frequency-Based Receptive Fields A biologically plausi-

ble model of acoustic sensitivity is a receptive field with a preferred frequency band.

To normalize for frequency discrimination thresholds, frequencies were defined in the
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Figure 4.2: Eighteen category discrete syllable signal. Time series for a single
run of 48 trials, with voxels responsive to syllable identity. (a) Impulse responses of
each receptive field to onset of a stimulus containing the preferred syllable identity.
(b) Estimated hemodynamic response of corresponding responsive voxels. Each curve
is an impulse response train, convolved with a canonical HRF (TA=2.5s), and down-
sampled (TR=5s) to model a sparse acquisition paradigm.

mel scale (Stevens et al., 1937). Each receptive field was constructed with a Gaussian

fall-off to the distance between its preferred frequency and those of both formants

present. No other spectral energy is assumed to activate these units; hence, this

model assumes access to formant frequencies and suppression of less salient acoustic

markers.

response = exp

(
−
(
fpref − F1

σ

)2
)

+ exp

(
−
(
fpref − F2

σ

)2
)

(4.6)

We considered a set of 9 receptive fields, evenly spaced between 500 and 1500 mels.

Figure 4.3(a,b) shows formant values and receptive field responses to each trial in

a single run. Unlike in Figures 4.1 and 4.2, multiple receptive fields may be active in

a given trial, and their response is proportional to the proximity of the two formants

to their preferred frequency. Figure 4.3(c,d) shows the time series of these responses

at stimulus onset (c) and convolved with a canonical HRF (d), sampled at TR=5s,
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Figure 4.3: Formant receptive fields. (a) Estimated F1 and F2 frequencies are
plotted for each trial (1-48) in a sample run. Missing values are for control trials,
with no stimulus. (b) Response of each receptive field (fpref plotted on y-axis; σ =
60mel) at each trial. The height of each curve takes values in [0, 1], according to
Equation 4.6. (c) Impulse responses of each receptive field to the onset of each
stimulus; the magnitude of responses are shown in (b). (d) Estimated hemodynamic
response of corresponding responsive voxels. Each curve is an impulse response train,
convolved with a canonical HRF (TA=2.5s), and down-sampled (TR=5s) to model a
sparse acquisition paradigm.
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TA=2.5s.

4.2.3 Implementation

Datasets were constructed as a single slice of 64 × 64 voxels, mimicking the two-

dimensional geometry of the cortical sheet. Each voxel was assigned one (or no)

receptive field. Sparse acquistion was simulated by generating data with a 2.5s TR

and discarding the second and fourth volumes of each trial. Hence, a 48 trial run of

10s trials requires the generation of 4 volumes per trial, or 192 volumes per run, but

only 96 volumes are used.

Dataset construction was performed using the R package neuRosim (Welvaert

et al., 2011) version 0.2-121. See Section 4.1.1 for a brief description of the relevant

components.

4.2.3.1 Noise

A noise session was constructed from 8 independently generated runs, each using the

following model:

simVOLfmri(base = b, SNR = R, weights = ~ω,

dim = c(64, 64, 1), nscan = 192, TR = 2.5,

noise = "mixture")

10 sessions of noise were generated.

In addition to the free parameters, b, R and ~ω, the default and derived parame-

ters used in the noise model are summarized in Table 4.1. The combined standard
1Minor bugfixes were submitted to the authors, and the fixed version used in this study. All

described data may be generated in the unaltered version, however, if with slightly greater inconve-
nience.

124



deviation of all noise components σ = b/R. ~ω is constrained to sum to 1.

Component Parameter Value/formula
systemnoise sigma ω1σ
systemnoise type "gaussian"
temporalnoise sigma ω2σ
temporalnoise rho (0.2)
physnoise sigma ω4σ
physnoise freq.heart 1.17
physnoise freq.resp 0.2
spatial sigma ω6σ
spatial method "corr"
spatial type "gaussian"
spatial rho 0.75

Table 4.1: Parameters for generated noise datasets

Estimating free parameters Free parameters were estimated using the motion-

corrected functional volumes for subjects in Project 1. Estimates were based on all

time points at all voxels on the graymid surface (see Section 2.2.7). For a given

subject, baseline activation was estimated as the mean value of graymid time points,

and SNR was estimated as the mean divided by the standard deviation.

In the absence of clear data on relative strengths of noise components, we let

~ω =
(
1
4
, 1
4
, 0, 1

4
, 0, 1

4

)
.

4.2.3.2 Signals

Signal datasets were constructed from session metadata from the task in Chapter 2,

with the proportion of simulated voxels responsive to some stimulus controlled by a

density parameter δ ∈ [0, 1]. Density captures a notion of redundancy, and may be

thought of as a measure of how many voxels’ responses can be distinguished across

stimuli.
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Voxels were chosen to respond to one of K receptive fields – K = 3 for vowels, 18

for syllables, 9 for formant receptive fields – with probability δ/K; that is, the prob-

ability that a voxel was responsive to some receptive field was δ, and the probability

that a responsive voxel was responsive to a given receptive field was 1/K.

To achieve these properties at each location (i, j), a variate Xij was sampled from

a uniform distribution and thresholded as follows to assign a response class k to voxel

vij:

Xij ∼ U

(
1, 1 +

K

δ

)

vij =


bXijc if bXijc ≤ K

0 otherwise

U(a, b) indicates a uniform distribution with support [a, b). Noting that P (bXijc =

k) = δ
K

for k ∈ {1..bK/δc}, the desired probabilities may be trivially derived:

P (vij > 0) = δ

P (vij = k|vij > 0) =
1

K
∀k ∈ {1..K}

The procedures for simulating a single run of signals for discrete and continuous

cases are given in Algorithm 4.1 and Algorithm 4.2, respectively.

Discrete signals In the discrete case, the number of (non-control) stimulus classes

K was derived from a metadata file describing the stimulus sequence from one subject

(S1) from Project 1. In all simulations, a discrete signal tracked either a vowel (K = 3)

or a syllable (K = 18). A voxel is assumed to respond specifically to a single stimulus

class, with an effectsize of 1% of baseline activation (of the noise sessions), and SNR
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of 5, using task-related noise to provide spatial and temporal variation to voxels

responding to the same stimulus.

Algorithm 4.1 Discrete signal generator (single run)
Require: voxels - Volume of voxel class sensitivities
Require: stims - Stimulus class sequence in {0..K}
Ensure: effectsize - 1% of noise baseline
vol← 0
totaltime← NTRIALS ∗ TRIAL_LENGTH
for k ← {1..K} do
onsets← (which(stims == k)− 1) ∗ TRIAL_LENGTH
design← simprepTemporal(totaltime, onsets = onsets, durations = 0.5,

effectsize = effectsize, TR = TA)
image← simprepSpatial(sum(voxels == k), listcoords(voxels == k),

form = ”manual”)
vol← vol + simVOLfmri(design = design, image = image,

nscan = dNTRIALS ∗ TRIAL_LENGTH/TAe, TR = TA,
noise = "task-related", SNR = 5,
dim = c(64, 64, 1))

end for
return vol

Continuous signals In the continuous case, all responsive voxels may respond to

all stimuli, with the strength of response to each stimulus (effectsize) defining a

preference, or receptive field. Here, K refers to the number of distinct receptive fields

to be represented. Because a responsive voxel responded to every stimulus, additional

task-related noise would simply be white noise, and was thus omitted.

4.2.3.3 Datasets

Datasets were constructed by selecting a noise dataset as a baseline and adding a

signal dataset with an amplification factor indicating the peak response amplitude as

a percentage of baseline activation.
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Algorithm 4.2 Continuous signal generator (single run)
Require: voxels - Volume of voxel RF sensitivities
Require: stims - Stimulus class sequence
Require: effectsizes - RF responses to stimulus sequence
Ensure: K = Number of receptive fields (RFs)
Ensure: max(effectsizes) = 1% of noise baseline
vol← 0
totaltime← NTRIALS ∗ TRIAL_LENGTH
onsets← (which(stims 6= 0)− 1) ∗ TRIAL_LENGTH
for k ← {1..K} do
design← simprepTemporal(totaltime, onsets = onsets, durations = 0.5,

effectsize = effectsizes[k], TR = TA)
image← simprepSpatial(sum(voxels == k), listcoords(voxels == k),

form = ”manual”)
vol← vol + simVOLfmri(design = design, image = image,

nscan = dNTRIALS ∗ TRIAL_LENGTH/TAe, TR = TA,
dim = c(64, 64, 1))

end for
return vol

4.2.4 Analyses

After a session was simulated, it was treated as a series of motion-corrected runs,

ready for event response estimation. Individual events were estimated using Nipype

(Gorgolewski et al., 2016) and FSL (Smith et al., 2004; Jenkinson et al., 2012), in the

same configuration as in Section 3.2.6, modified to fit a single event (stimulus onset)

per 10s trial. Classification was performed using linear C-SVMs, as in Chapters 2 and

3, in a 3-voxel radius, volumetric searchlight configuration using a leave-one-run-out

cross-validation scheme (Halchenko et al., 2015).

All datasets were classified with both vowel and syllable identities as labels. To

allow for searchlight-induced edge effects, all statistics were taken from voxels at least

three voxels from the edge of the image.

In order to establish null distributions of classification accuracy, searchlight anal-

yses were first performed on noise datasets, with no signal added. Results from all
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ten noise datasets were combined to establish global percentile thresholds.

For a given analysis, in addition to mean accuracy across voxels, we report the

proportion of voxels exceeding the 99 percentile accuracy threshold. For analyses

with a defined signal density, we also report the proportion of voxels exceeding the

threshold, divided by the proportion of voxels with signal added.

A CVC syllable may be characterized by the identity of the whole syllable or those

of its constituent phonemes, such as the vowel, both in its neural representation and

in selecting class labels for searchlight analysis. We therefore assessed classification

performance for both vowel and syllable identity on datasets constructed from both

vowel and syllable information, independently, as well as datasets constructed from

formant-based representations, in order to assess relative classification on discrete and

continuous representations of vowel sounds.
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4.3 Results

4.3.1 Parameter estimates

The baseline and SNR parameters were estimated from the data collected in Project

1, scan-timing corrected and motion corrected, to ensure estimates were taken from

gray-matter voxels. To estimate baseline, the mean of middle-gray-matter voxels

across all trials was calculated for each subject, and the SNR parameter by dividing

each subject’s mean by their standard deviation (see Section 4.2.3.1). Table 4.2

shows the mean and standard deviation across subjects, and the chosen values for the

simulations presented here.

Parameter Value µ̂ σ̂
baseline 700 694.15 83.48
SNR 2.9 2.90 0.17
Std. Dev. 241.38 240.23 31.39

Table 4.2: Simulation parameters estimated from data. The baseline and SNR
parameters were estimated from collected subject data, and their distribution across
subjects are described in µ̂ and σ̂ columns. The “Value” column contains the values
selected for simulation. The distribution of standard deviations is also included for
reference. Its value value is simply baseline/SNR.

4.3.2 Chance classification accuracy

Performing classifications on noise sessions, with no added signal, permits the charac-

terization of chance classification accuracy. Figure 4.4 shows cumulative distribution

functions (CDFs) for classification accuracy rates across 10 separate noise distribu-

tions, classified on syllables (green) or vowels (blue). To account for edge effects

induced by 3-voxel radius searchlights, only voxels at least three voxels from the edge

of the image are counted. Median classification rates are at theoretical chance accu-

racies: 1/18 = 0.05̄ for syllables and 1/3 = 0.3̄ for vowels. The 99th percentiles are
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Figure 4.4: Chance classification accuracy distributions. Cumulative distri-
bution functions for syllable and vowel classifications are shown in green and blue,
respectively. Syllable classifications (1 in 18) have a median of 5.56% and a 99 per-
centile of 8.69%. Vowel classifications (1 in 3) have a median of 33.3% and a 99
percentile of 40.4%.

0.0869 and 0.404, respectively. From these values we can characterize an analysis by

the percentage of voxels exceeding the chance 99th percentile.

Consider simulations for which vowel or syllable signals are introduced. Let the

signal amplitude, the peak HRF value in generated signals, vary from 0% to 200% of

the baseline activation (700; unitless), and let the density, the proportion of voxels

responsive to some stimulus, vary from 0% to 100% of all voxels. Together, amplitude

and density represent the availability of information for a classifier.

Figure 4.5 examines the behavior of classifiers constructed on congruent trial labels

(i.e., vowel labels for datasets with vowel signals added; syllable labels for datasets

with syllable signals added). Sub-figures (a) and (b) show mean classification accura-

cies, scaled from chance (1/3 for vowels, 1/18 for syllables) to 2× chance. For vowels,

the mean accuracy exceeds the 99th percentile chance accuracy (0.404) as density

approaches 100% for low amplitudes (5% of baseline) and at any density ≥ 2% for
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Figure 4.5: Classification accuracy relative to chance. Performance of search-
light classification of vowels and syllables on datasets containing vowel (left) and
syllable-derived (right) signals. (a) and (b) show mean accuracy across all voxels,
scaled between chance and 2× chance. (c) and (d) show the proportion of voxels
exceeding the empirical 99-percentile chance classification accuracy. (e) and (f) show
the proportion exceeding that value, normalized by the density, or proportion of voxels
containing signal.

132



high amplitudes (50% of baseline). For syllables, the mean accuracy exceeds the 99th

percentile chance accuracy (0.0869) as density approaches 100% for an amplitude of

20% of baseline, as density exceeds 10% for an amplitude of 50% of baseline, and for

densities ≥ 5% for amplitudes ≥ 100%.

Sub-figures (c) and (d) show the proportion of voxels exceeding the 99th percentile

of chance classification accuracies, following roughly similar patterns for 50% of voxels

exceeding this strict threshold. Finally, sub-figures (e) and (f) normalize these pro-

portions by density, giving a measure of what proportion of voxels exceed a chance

threshold, relative to the proportion of voxels containing a signal. For vowels, this

shows that, for signal amplitudes ≤ 10%, the proportion of super-threshold voxels

roughly tracks the number of voxels containing signal. For syllables, this is true for

signal amplitudes ≤ 20%.

4.3.3 Label / Sublabel Interchangeability

Next we consider the question of whether searchlight MVPA performance can help

distinguish between different levels of categorical representation.

Figures 4.6 and 4.7 show the results of classifying datasets created using signals

encoding vowel (left) and syllable (right) categories, with vowel (4.6) and syllable

(4.7) class labels.

Figure 4.6 shows a strong effect of underlying signal, with classification gains in

the syllable simulation requiring half of an order of magnitude higher amplitude,

for a given density, or an order of magnitude higher density, for a given amplitude,

than for simulations using a signal tracking vowel identity. This disparity in vowel

classifications is most likely due to a difference in the number of voxels active on each

trial, for a given density. In contrast, Figure 4.7 shows both simulations produce
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Figure 4.6: Vowel classification accuracy on datasets with vowel- and
syllable-related signals added. Performance of searchlight-classification of vowels
based on datasets with vowel (left) and syllable-derived (right) signals.
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Figure 4.7: Syllable classification accuracy on datasets with vowel- and
syllable-related signals added. Performance of searchlight-classification of syl-
lables based on datasets with vowel (left) and syllable-derived (right) signals.
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similar classification accuracy profiles when classifying on syllable identity, and both

are, in turn, similar to classification of a vowel-based dataset on vowel identity. Thus,

if classifying the same dataset on vowels and syllables produces similar maps, when

normalizing by chance classification measures, then the underlying representation

would appear to be vowel-level; if syllable classification is relatively improved over

vowel classification, a syllable-level representation is more likely.

4.3.4 Discrete and Analog Representations

Finally, we consider relative classification performance of discrete and analog repre-

sentations of vowels. As described above, the chosen analog representation is a series

of receptive fields in perceptual frequency space, i.e., the mel scale. A sensitive voxel

responds proportional to the proximity of either formant to the preferred frequency

of its receptive field.

Figure 4.8 compares the performance of searchlight classification of vowel iden-

tity in datasets constructed with a discrete vowel representation (left) and analog,

formant-based representation (right). By all measures, the analog representation re-

quires higher density or higher signal amplitude to achieve the same classification

performance as the discrete representation.

For completeness, Figure 4.9 compares the performance of searchlight classification

of syllable identity in datasets constructed with a discrete syllable representation

(left) and analog, formant-based representation (right). By all measures, the analog

representation requires higher density or higher signal amplitude to achieve the same

classification performance as the discrete representation.
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Figure 4.8: Vowel classification accuracy on datasets with vowel- and
formant-related signals added. Performance of searchlight-classification of vowels
based on datasets with vowel (left) and formant-derived (right) signals.
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Figure 4.9: Syllable classification accuracy on datasets with syllable- and
formant-related signals added. Performance of searchlight-classification of sylla-
bles based on datasets with syllables (left) and formant-derived (right) signals.
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4.4 Discussion

This simulation study begins to address issues of representation and interpretation

raised by the speech fMRI experiments described in Chapters 2 and 3. The simulated

task was a perception-only version of the syllable-repetition task from Chapter 2,

with trial length modified to easily simulate a constant TR sparse paradigm, and

the simulated signals (i.e., underlying neural codes for the stimuli) were distributed

uniformly and randomly across a synthetic time series for a single image slice in order

to characterize results by density (proportion of responsive voxels) and magnitude

(relative strength of response compared to baseline, or mean gray-matter activation).

Three receptive field models were considered: a vowel receptive field had an all-

or-nothing impulse response to the presentation of a syllable containing the preferred

vowel; a syllable receptive field had an all-or-nothing impulse response to the presen-

tation of the preferred syllable; and a formant receptive field had an impulse response

whose magnitude was modulated by the proximity of the stimulus vowel formants (F1

and F2 only) to a preferred frequency. Following construction of artificial datasets

parameterized by density and signal amplitude, responses to individual stimulus pre-

sentations were modeled using techniques that mirrored those used with actual data

in Chapters 2 and 3, to be classified according to the identity either of the vowel or

the syllable presented.

In all cases, we found that high classification accuracies (≥ 2× chance) could be

achieved, regardless of the underlying receptive field representation, but the necessary

densities and signal amplitudes required to achieve a constant level of accuracy varied

across analyses. For datasets containing vowel or syllable receptive fields, classifying

the vowel identity required markedly lower density and amplitude in the vowel-based

dataset (Figure 4.6). On the other hand, classifying the syllable identity had com-
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parable performance between the two representations, with somewhat improved per-

formance on vowels (Figure 4.7). For datasets containing vowel or formant-based

receptive fields, classifying the vowel identity again required lower density and ampli-

tude in the vowel based dataset (Figure 4.8). Similarly, classifying the syllable identity

on datasets containing syllable and formant-based RFs showed improved performance

on the discrete, syllable representation over the analog, formant-based representation

(Figure 4.9).

4.4.1 Summary of main hypotheses

Two specific hypotheses were proposed. The first was stated classification detects the

presence of information, and not representation, and produced the expectation that

vowel classification would be insensitive to whether the underlying receptive fields

were tuned to vowel or syllable identity, while syllable classification would perform

well only on datasets constructed from syllable receptive fields. In fact we observed

the opposite trend, with syllable classification proving relatively insensitive to rep-

resentational bases. Thus, if one assumes that, in a region of interest, a subset of

voxels may be responding categorically to either a vowel or syllable identity, a signif-

icant result for both vowel and syllable classifications could be indicative of a vowel

representation, while a syllable-only classification more likely reflects an underlying

syllable representation. Rather than outright disconfirming the hypothesis, though,

this pattern prompts a more nuanced notion of information, in terms of density and

conditional probability. Density was defined as a parameter (δ) for constructing

datasets (Section 4.2.3.2) and refers to the proportion of voxels that respond to some

stimulus; for discrete all-or-nothing RFs considered here, the proportion of voxels

active on any given trial was δ/K, where K was the number of distinct RFs. Normal-
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izing with respect to this proportion, instead of δ, would likely result in the originally

proposed performance patterns, though whether this is a more realistic density crite-

rion is non-obvious. Additionally, in the formulation of the hypothesis, “information”

was implicitly used in the sense of a Boolean conditional: knowledge of the syllable

identity implies knowledge of the vowel identity. However, by Bayes’ rule it is triv-

ially shown that likelihood of correctly guessing the syllable is 1/6 the likelihood of

correctly guessing the vowel. It was thus incorrect to pose one condition (in which

the underlying representation was vowel-based) as lacking information about sylla-

ble identity. In particular, classification performance supported by partial knowledge

must be considered in the terms of “relative accuracy” that MVPA classification re-

sults are cast in. We have shown our results from chance to 2× chance because, in

our experimental studies, results below chance are not of interest, and positive results

typically do not approach the maximum possible value 1. The low chance accuracy

for a high K classification problem means that even partial information is sufficient

to produce a significant positive result. Thus, by revising the notion of “information”,

this hypothesis stands with the following result: a syllable may be classified above

chance on the basis of its constituent phonemes alone. From the perspective of natural

language, the number of possible syllables grows combinatorially with the number of

phonemes in a language. The disparity in density of discrete representations (in the

sense of the all-or-nothing receptive fields proposed here) of syllables and phonemes

in a human brain would be correspondingly more stark; given that phoneme-level

representations can support syllable classification, it appears more likely that syllable

classification reflects phoneme-level representations.

The second hypothesis was that vowel classification would be better supported by

datasets constructed from discrete vowel receptive fields than by datasets constructed
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from continuous, formant-based receptive fields. In the case of this specific analog

representation, the hypothesis was clearly confirmed: high classification rates for

vowel identity are achievable based on a formant-based receptive field representation,

but require substantially higher density or signal amplitude, in comparison with a

phoneme-based representation, to achieve. In general, we expect this pattern to hold

for “phonological” (abstract /categorical) vs. phonetic (continuous) representations

of phonemes.

These preliminary results demonstrate the utility of this model-based approach in

assessing the effects of assumed discrete and analog representations on the behavior

of searchlight classification.

4.4.2 Future directions

Beyond exploring the interpretive questions posed by the analyses in this dissertation,

the aim of this work is to begin to address outstanding questions in the field of speech

neuroscience with regard to the representational units of speech sounds. Contempo-

rary models of speech production and processing suggest separate representations

of speech in different brain areas, at various linguistic levels. For example, Hickok

(2012) suggests different areas may represent speech sounds at syllabic (BA44 for mo-

tor syllable programs, STg/STs for auditory syllable targets) and somato-phonemic

(i.e., vocal tract constriction; BA6 for motor phoneme programs, aSMg for somatic

phoneme targets) levels. Bohland et al. (2010) suggest a phonemic representation for

planning a forthcoming speech sequence in left IFs and a syllabic representation in left

ventral premotor cortex. Similar proposals are found in models of speech perception,

where there is evidence, for example, that the lexicon can be accessed via an abstract,

phoneme-based representation or via a more acoustic, less categorical representation
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(Hickok and Poeppel, 2007). Recent electrocorticography studies have demonstrated

evidence for distributed, feature-based representation of phonemes in STg (Mesgarani

et al., 2014) and articulatory-motor representations in ventral motor/somatosensory

cortex (Bouchard et al., 2013; Conant et al., 2014; Arsenault and Buchsbaum, 2015).

In this analysis, we considered a formant frequency-based representation of vowels.

Because formant frequencies covary with vowel identity, a hypothetical formant-based

representation would represent an abstracted, phonetic version of the acoustics for a

vowel, but not a fully categorical model. Such an intermediate representation is often

assumed in neurocomputational models of aspects of speech perception (e.g., Guen-

ther and Gjaja, 1996) and production (Guenther et al., 2006; Kröger et al., 2009).

Functional MRI, although a coarse measure of neural activity, is an irreplaceable tool

for studying the neural processing underlying speech in healthy subjects. In order to

understand how fMRI and MVPA can best make contact with theoretical models, it

is essential to characterize the behavior of these analysis techniques, given “ground

truth” simulated neural signals that match hypothetical representations.

The comparison of computational models and neuroimaging data was also an

explicit design goal in representational similarity analysis (RSA Kriegeskorte et al.,

2008; Kriegeskorte and Kievit, 2013; Nili et al., 2014). The central idea in RSA is that

representations are reflected in a notion of “distance”, or dissimilarity between objects

to be represented. The more similar a model’s pattern of dissimilarity (encoded in a

representational dissimilarity matrix; RDM) is to the response pattern observed for a

set of voxels, the more those voxels are deemed likely to have a representational basis

that mirrors that found in the model. This approach was used by Evans and Davis

(2015) to identify regions that respond more or less consistently to phonological or

acoustic properties of CV stimuli. While this is a valuable approach, classification-
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based MVPA remains a popular analysis technique, and it is necessary to enhance our

ability to interpret such opaque measures as classification accuracy. Further, RSA

does not use a simulated BOLD signal, instead assuming the dissimilarity between

conditions should directly reflect differences observed in BOLD patterns. Beyond the

MVPA techniques analyzed here, artificial datasets can be subjected to new analyses

– including RSA – to gauge their appropriateness for detecting or distinguishing

different representations.

4.4.3 Limitations and improvements

A full analysis of the analytic methods used in this dissertation is beyond the scope

of this initial study. This simulation considers only a single subject, under multiple

noise conditions, with voxel activation patterns that are unchanged across analyses.

To more directly address the summary statistics presented in Chapters 2 and 3, mul-

tiple subjects need to be simulated, with some degree of functional variation, and

the analysis pipeline will need to extend to group-level analyses, including voxel- and

cluster-level thresholding. In practice, this will require spatially-varying representa-

tions (i.e., regions of greater or lesser density of responsive voxels), which will allow

the spatial variation of functional representations across subjects, and the construc-

tion of data-driven, voxel-wise thresholds.

In addition to a more complete exploration of the analytical techniques used in

the analysis of actual fMRI data, the simulation model leaves considerable room for

more realistic dynamics and alternative signal implementations.

Two distinct, but related, representational considerations omitted from this anal-

ysis are the effects of multiple sensitivity and signal spread. It is unrealistic that

single voxels, containing many thousands of neurons, would respond collectively to
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one stimulus attribute or another, or that a neural sub-population that does respond

to a single stimulus would exhibit hemodynamic effects confined to a single voxel. A

neural population that responds to speech sounds is much more likely to appear at the

voxel level as a graded response to different speech sounds than as an all-or-nothing

response to subsets of speech sounds. Such a graded response may be induced by

signal spread alone, at a sufficiently high density of responsive voxels; while this may

be a useful technique for generating sensitivity to multiple stimulus classes, it may

also be worth considering separately signal spread due to tissue connectivity and the

vascular/measurement spread (which has here been modeled as spatially-correlated

noise).

The representations modeled here are extremely simple, but have very limited

connection to existing proposals of neural representations of speech sounds. A num-

ber of theoretical representations were discussed in Section 4.4.2, the implementation

and analysis of which would be a valuable contribution in itself. However, simpler

acoustic models are also worth considering, because lower-level representations nec-

essarily contain the basis for deriving higher-level representations, and our analysis

of a formant-based representation showed this is sufficient to drive classification of

phonemes, if less strongly than a pure categorical phoneme-based representation.

Tonotopic maps have been observed in primary auditory cortex (e.g., Talavage et al.,

2003); extending this technique to generate and analyze tonotopic or somatotopic

maps to determine whether or not they would provide a basis for classifying speech

at different levels of analysis would be a worthwhile exploration of the acoustic and

motoric end-points of the speech processing systems.

In both the dataset construction and analysis presented here, a central metric is

the density of voxels containing some simulated receptive field. Although a useful
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parameter in the creation of datasets, it does not have a clear interpretation in neural

data. As noted when discussing signal spread, if a voxel is responsive to speech

sounds, it is more likely to have a graded response to different sounds, and all voxels

in a responsive region are likely to have some response, even if not preferential to

any given stimulus. As this framework is expanded to incorporate signal spread, a

more relevant parameter may be the number of contributory signals to a given voxel,

reflecting a sub-voxel density of responsive neural populations. Even in this limited,

preliminary framework, density is not the only, nor perhaps the best, axis for making

comparisons between receptive field models. To illustrate the issue, consider as an

alternative the density of voxels responsive to a given stimulus: By this measure,

for parity (i.e., so that the same number of units respond to a given stimulus) with

vowel RFs – in which 1 in 3 RFs responds to each stimulus – syllable RFs ought to

be six times more dense than currently constructed. For an analog model such as

the formant RFs proposed here, if one assumes two receptive fields respond to each

formant, then four of nine receptive fields are active in any trial and thus should be

made 75% as dense to achieve parity with vowel RFs. Other metrics may be devised,

and care must be taken to understand the assumptions being imposed.

As a final point, it is worth considering the limitations imposed by neuRosim. The

mutual independence of spatial and temporal noise is difficult to justify; a noise signal

arising from neurophysiological processes should have both a spatial and temporal

component, whereas neuRosim adds two independently generated signals. Spatial

convolution of temporal noise with a point-spread function, or temporal convolution

of spatial noise with a hemodynamic response function may prove to be more realistic

noise models. Additionally, the signal generation is decidedly coarse, intended to

simulate studies that will use traditional univariate analyses. These facilities could
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be expanded to include the generation of local regions with stimulus-correlated spatial

means or patterns of variation (see Coutanche, 2013).

In summary, the work presented here constitutes the first steps in a larger explo-

ration of multivariate pattern analysis. We have shown that simple models of vowel,

syllable, and formant-based receptive fields can support successful classification in a

searchlight analysis, and that these models result in differential performance, permit-

ting comparisons between hypothetical representations. At present, the model makes

no provision for spatial inhomogeneity, a necessary precondition for topographic maps.

Multi-subject, group level analyses are also not fully developed, preventing an analysis

of “clusters of predictive information”, the standard reporting unit of MVPA studies.

Additionally, it is important to carefully consider the evaluation criteria used to com-

pare the different models and analyses; in this preliminary effort, we focused on the

density and amplitude of responsive voxels, but these metrics assume that density

and amplitude are independent considerations from model specification. As work

progresses, these assumptions may need to be revisited. Further work will permit

more detailed and realistic models of speech sounds to be assessed and compared,

contributing to our ability to interpret MVPA results in light of theoretical models

of speech perception and production.
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Chapter 5

Conclusion

The repetition of a novel word requires a person to translate an acoustic pattern

into a series of articulatory gestures, a process that relies on a series of neural rep-

resentations. The speaker must abstract linguistically-relevant features from their

specific acoustic context, maintain a working memory representation, and generate a

speech motor plan, before fluently producing the target output sequence. This dis-

sertation describes efforts to systematically map the neural correlates of perception

and production during speech repetition.

The fMRI study discussed in Chapter 2 sought to capture BOLD responses to

speech items at distinct input and output stages of a simple syllable repetition task,

and to use multivariate analysis to discover informational correlates of the repeated

speech sounds. Our approach utilized a fast, event-related design, which allowed us

to separately estimate input- and output-related BOLD responses. These individ-

ual trial response estimates allowed for the localization of clusters of cortical vertices

that, across subjects, predicted the sounds heard or produced at above chance lev-

els. Multivariate pattern analyses revealed informational correlates of speech items

predominantly in areas traditionally associated with the speech network (superior

temporal, inferior frontal, pre-SMA, motor and somatosensory cortices). Of partic-

ular interest, the perceived vowel (the most acoustically salient sound available on

a trial) could be predicted in responses linked to the input portion of the task at

above chance levels in the left inferior frontal sulcus, an area suggested previously to

code for individual planned phonemes (Bohland and Guenther, 2006; Bohland et al.,
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2010). Likewise, the produced vowel could be detected from output-related responses

in bilateral posterior STs, which indicate a target sound representation for produc-

tion that is activated following the stimulus input, or auditory input of the speaker’s

own voice used for speech monitoring. Efforts to disentangle phonological (categori-

cal) representations from phonetic (continuous) representations were limited in their

utility, failing to reveal any significant dependence of classifiers on responses linearly

related to formant frequencies.

Building on these results, Chapter 3 describes a further fMRI experiment designed

to dissociate the representations of speech sounds involved in auditory syllable per-

ception from those involved in preparing and overtly producing a syllable, as well as to

systematically compare the responses to and representations of words and nonwords

in a novel speech repetition task. In this repetition task, subjects were informed of

the syllable to be spoken after they listened to an aurally presented syllable, isolating

the processes of auditory syllable perception, preparation to produce a syllable, and

overt production of a selected syllable. In half of trials, the auditory stimulus was to

be repeated, while, in the remaining trials, subjects instead were instructed to speak

a (previously) visually-presented syllable. In addition to confirming a greater engage-

ment of so-called dorsal stream areas in perception and motor planning for nonwords

than words (Saur et al., 2008), our results suggested that subjects automatically

generated motor plans upon listening to the auditory stimulus, regardless of which

syllable was to be spoken, relying on a posterior temporal and inferior frontal network

(i.e., the dorsal stream) to refresh the speech motor plan, when cued to produce the

unheard syllable. Multivariate analysis showed early representations of the auditory

stimulus in inferior frontal sulcus, superior temporal sulcus and even motor cortex,

while the vocal target (once known to the subject) was consistently represented near
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the junction of IFs, the precentral sulcus, and middle frontal gyrus. Interestingly, al-

though trials with words and nonwords did not show differences in overall activation

levels during overt production, multivariate analyses indicate differences in represen-

tations in bilateral Spt (word preference), posterior superior temporal gyrus (nonword

preference), and left insula, which revealed an inferior/superior division in preference

for words and nonwords, respectively.

These two studies yielded a pattern of results and interpretation that are consistent

in broad terms, but with many specific discrepancies. In Chapter 2, the large IFs

cluster found at the input phase of the task was taken to indicate that subjects

construct a speech motor plan immediately on perception, and this conclusion was

corroborated and elaborated in Chapter 3, demonstrating that this process is difficult

(potentially impossible, in a strict interpretation based on the Motor Theory of speech

perception) to preempt and generates a decodable representation in left ventral motor

cortex. This finding in vMC is one apparent discrepancy: while consonants and

syllables could be detected in ventral motor and somatosensory cortices in the first

study, vowel information was not found near these regions. Similarly, the IFs cluster

itself became drastically smaller in the second study, while the large, bilateral pSTs

clusters observed at output entirely failed to reproduce in the second study. Instead,

we saw relatively strong evidence that the pSTs represented the vowel in the syllable

that was heard in both the input and cue datasets. Based on the evidence that

the vocalized syllable was planned for production at the start of the delay period, the

output portion of the task can be expected to engage similar processes, particularly in

trials in which the auditory stimulus was repeated. Thus, this difference in pSTs might

instead be an effect of stimulus choice, which differed, for example, in the balance

of words and nonwords across vowels (Okada and Hickok, 2006a). Alternatively, the
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absence of a delay in the second task between the previous scan and the production

cue (compared to 0.5-1.5s delay in the first) may altered the response to the auditory

processing of self-produced speech, resulting in reduced ability to decode the vowel

in pSTs at output.

Together, through multivariate pattern analysis of multiple events within indi-

vidual trials, these studies have begun to clarify the within-trial dynamics of speech

repetition, a seemingly simple task that appears to rely on multiple distinct represen-

tations linked through a series of complex neural pathways. They have also demon-

strated the utility of classification of phonological content in tracking representations

of syllables in the different stages of the task. As these techniques mature, a natural

extension of this task is the repetition and/or construction of syllable sequences to

further clarify the preparation phase of the task and expose ordering information to

multivariate analysis. Consider, for example, a stimulus sequence of visual syllable

– auditory syllable – ordering cue – production cue, where the subject produces two

syllables, and the ordering cue indicates whether one of the syllables is to be repeated

twice, or one before the other. Building on the multivariate contrast technique of the

second study, it should be possible to distinguish between representations that reflect

motor plan contents and ordering, which have been proposed to have anatomically

distinct representations by Majerus (2013).

Additionally, it is clear that the phoneme itself is not (always) the neural rep-

resentation being tracked, and room remains for further exploration of the effect of

stimulus choices and their interactions with theoretical underlying neural represen-

tations on identified patterns. Chapter 4 approached this problem from the other

direction, developing a framework for comparing the behavior of MVPA techniques

on hypothetical representations of stimuli. Here, we considered searchlight classifi-
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cation over simulated datasets containing discrete and continuous representations of

the stimuli from Chapter 2. These datasets were constructed based on a simplified

variation (listening) of the task from Chapter 2, and the simulated representations

were based on acoustic parameters of stimulus sequences from the original task. Rep-

resentations were defined in terms of simple, theoretically motivated receptive fields

for a voxel, that were sensitive either to vowel identity, syllable identity, or formant

frequency. Following construction of artificial datasets, parameterized by density and

strength (amplitude) of receptive fields (responsive voxels), responses to individual

trials were modeled using standard fMRI processing tools, to be classified according to

the identity either of the vowel or the syllable presented. It was shown that accurate

classification of vowels was possible on any of the given representations, but required

a higher density and/or amplitude in order to achieve similar levels of performance

on syllable- or formant-based representations than on vowel-based representations.

Surprisingly, classification of syllables showed little difference in performance over

datasets constructed with vowel- or syllable-based representations, demonstrating

that incomplete information (i.e., the knowledge of the syllable implies knowledge of

the vowel, but not vice versa) is sufficient to boost classification rates significantly

above chance.

Chapter 4 demonstrated the viability of the method using simple, idealized repre-

sentations, and confirms that the detection of representation (or information) is not

equivalent to the identification of the underlying neural representation. One of the

most important extensions to this research will be to work on constructing and analyz-

ing representations hypothesized in the literature, including acoustic and articulatory

feature-based representations of phonemes (Bouchard et al., 2013; Mesgarani et al.,

2014), tono- and somatotopic maps (Talavage et al., 2003; Takai et al., 2010; Conant
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et al., 2014), and phoneme-position maps (Bohland et al., 2010). Self-organizing maps

are popular models of vowel categorization effects (e.g. Guenther and Gjaja, 1996;

Kröger et al., 2009); translations of these models into voxel response patterns, along

with the specific formant-based input representations they presuppose, would allow

us to assess the plausibility of these representations, or identify the analysis technique

most likely to find such representations, if they exist.

In conclusion, this work has built on a theoretical framework that understands

speech perception and production as processes that are deeply intertwined. Using

variations on delayed speech repetition tasks to separate these processes temporally,

and multivariate pattern analysis to identify neural correlates of stimulus phonology,

we have identified patterns of responses that are consistent with a largely dorsal-

stream mediated process of speech plan preparation. Finally, we introduced a simu-

lation framework for assessing performance of MVPA techniques on simulated fMRI

datasets containing hypothetical representations, which will aid in the design and

interpretation of MVPA-based studies to evaluate theoretical models of speech pro-

cesses.
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Appendix A

Experiment 2 Protocol

Following is the protocol followed prior to the fMRI session.

A.1 Protocol checklist

Consent and safety

1. Provide subject with:

• 2239E fMRI consent form

• BU MRI Safety form

• Edinburgh Handedness Inventory

• If subject is female, provide a pregnancy test strip

2. Quickly summarize the consent form, noting that the subject can withdraw

from the study (i.e., stop the scanning session) at any time though we would

like them to try to complete 8 functional runs if possible. Note that our contact

information is provided, and that they can have a copy of the consent form.

Ask them if they have any questions.

3. If there are any MRI safety concerns, talk with Andy

4. Ask the subject to remove any metal, and offer a locker for belongings (inside

the restroom)
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5. While one researcher is going over the protocol with the (next) subject, another

should work in the control room

Subject training

1. Read over the resting state instructions (see Appendix A.2), and ask if the

subject has any questions.

2. Then, tell the subject they will get a demo of the task, and read out the in-

structions, making sure the subject seems to be following along.

3. Provide the demo, and “guide the subject” through the first couple trials, espe-

cially noting that he/she should speak immediately after the cross turns orange.

Also note that the orange cross will immediately appear at the end of one scan,

so it can be anticipated somewhat. Be sure to also include an example of and

discussion of the control trials in the demo.

Equipment / protocol setup

• Generate stimulus files (.npy) for subject(s) and add to Git repository

• Plug VGA cable to projector into presentation laptop

• Plug USB from scanner (for apostrophe triggers) into presentation laptop

• Make sure presentation laptop has power

• Turn on earphone amplifier

• Attach earphones and canal tips
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• Set up to record optical microphone signal using Audacity (device should default

to USB microphone, but this can be changed); input volume should be set to

max.

• Make sure fiber optic mic box is switched on

• Check audio levels for earphones (investigator should do first check of the day,

then check each subject before starting scan)

• Check microphone levels in Audacity

A.2 Subject instructions

Resting-State Instructions

During this scan, which will last a little over 9 minutes, we would like you to relax

with your eyes open and comfortably focused on the cross in the middle of the screen.

It is important that you do not fall asleep, but you will not have to perform any tasks,

and we ask that you just let thoughts wander.

Task Instructions

In this task, you will be asked to read, listen to, and say some syllables out loud.

Some of the syllables will be words and some will be non-words. In order to accurately

perform the task, you will need to pay close attention to the display screen and to

sounds presented over your earphones, so we ask for you to do your best to remain

attentive throughout. In the scanner, we will give you short breaks to rest between

runs.

On every trial, the task will proceed as follows:
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1. You’ll see two syllables spelled out on the screen, which will remain visible for

only a short time. We would like you to remember both of those syllables.

2. When the syllables disappear, a cross will appear, which you should keep your

eyes focused on.

3. You will then hear one of the syllables that you just read over the headphones.

4. After you hear the syllable, a green or yellow rectangle will appear, which will

provide instructions for what you will do next. If the green rectangle appears,

your task will be to repeat the syllable that you heard, and you can now forget

about the other syllable. If the yellow rectangle appears, your task will be to

speak the syllable that you read but did not hear, and you can now forget about

the syllable that you heard.

5. You are not to speak immediately after the rectangle cue. Instead, you need to

remember the syllable you are going to produce until the cross changes color to

orange. When this happens, you are to speak out loud the syllable as clearly as

possible without moving your head. You should start speaking as soon as you

can after the cross changes color.

6. To help minimize movements, you should always return your mouth to a com-

fortable position with lips closed and tongue relaxed after speaking and remain

that way until the next trial.

7. On some trials, the sound you will hear will not be a syllable, but rather a noise

that sounds somewhat like static. On trials when you hear the static noise, you

are not to speak either syllable, but rather to press a button on the button box

with your right index finger when the cross changes to orange.
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8. While you are performing this task, you will hear regular, intermittent scanner

noise. As you hear this noise, try to keep as still as possible. If the scanner noise

starts while you are speaking, you should stop and return to the resting mouth

position. If this happens frequently during any run, please notify us between

runs.

9. Each of the syllables will contain one of three vowels – "a" as in "hat", "i" as

in "hit", or "u" as in "hut." You should do your best to always pronounce them

this way when you speak. The consonants contained in the syllables should have

obvious pronunciations, with the possible exception of "th," which we would like

you to produce as in "thin" rather than "then."
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