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PYRUVATE KINASE M2 (PKM2), A GLYCOLYTIC ENZYME, IS REQUIRED 

TO MAINTAIN VASCULAR BARRIER FUNCTION 

HARITA DHARANEESWARAN  

ABSTRACT 

RATIONALE - Metabolic enzymes, like pyruvate kinase M2 (PKM2), play an essential 

role in altering endothelial cell (EC) phenotypes and behavior. Extensive research has 

elucidated the function of PKM2, a rate-limiting glycolytic enzyme, in the context of 

cancer cells and in activated immune cells, but its role in EC biology is only newly 

emerging. Recent findings show PKM2 acts as a key regulator of angiogenesis. Where 

exogenous circulating PKM2 induces EC cell proliferation leading to increased tumor 

angiogenesis and growth. Also, PKM2 deficient ECs exhibit decreased proliferation and 

migration. The relevance of PKM2 in modulating vascular barrier function is yet to be 

defined. 

 

OBJECTIVE -This study attempts to elucidate the role of PKM2 in regulating vascular 

barrier function. 

 

METHODS AND RESULTS -  In vivo, EC specific deletion of PKM2 promotes 

increased vascular permeability in pulmonary capillary vessels and increased VEGF-

induced acute vessel permeability in mouse dermal vessels. Similarly, in vitro, PKM2 

deficient ECs exhibit decreased electrical resistance, disrupted VE-cadherin junctions and 

gap formations (illustrated via florescent VE-cadherin staining and phosphorylation of 
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VE- cadherin protein at tyrosine residue Y658). Mechanistically, the deletion of PKM2 in 

ECs leads to increased angiopoietin-2 (Ang-2) expression, a well-known modulator of 

vascular permeability. Also, deletion of Ang-2 was sufficient to attenuate vascular 

leakage in PKM2 deficient endothelium, indicating that vascular leaky phenotype 

observed in PKM2 deficient endothelium is mediated by increased Ang-2 expression.  

 

CONCLUSIONS -  PKM2, by modulating Ang-2 expression, plays a vital role in 

maintaining vascular barrier function.  
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INTRODUCTION 

 1. Introduction 

An emerging concept is that endothelial metabolism can affect endothelial cell (EC) 

phenotypes and behavior. Metabolic regulation of angiogenesis is an example of how EC 

metabolism can induce changes in EC phenotype and behavior (Verdegem et al., 2014). 

For instance, phosphofructokinase-2/fructose-2,6-bisphosphatase3 (PFKFB3), a rate-

limiting glycolytic metabolic enzyme was recently shown to drive sprouting, migration 

and proliferation of angiogenic ECs (De Bock et al., 2013; Stapor et al., 2014). This 

brings up the question of what role do other metabolic enzymes, like pyruvate kinase, 

play in altering EC phenotypes and behavior. This study attempts to investigate the role 

of pyruvate kinase, another rate-limiting glycolytic enzyme, in endothelial biology. 

Although extensive research has elucidated the function of PKM2 in context of cancer 

cells and in activated immune cells, little is known about PKM2 in endothelial cells.  

 

2. Pyruvate Kinase  

2.1 Pyruvate Kinase Isoforms 

Pyruvate Kinase is a rate-limiting glycolytic enzyme that irreversibly catalyzes 

phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP) to pyruvate and adenosine 

triphosphate (ATP). In mammals, the PK family consists of four isozymes: PK liver 

(PKL), PK red blood cells (PKR), PK muscle 1 (PKM1), and muscle 2 (PKM2). The PK 

family of enzymes are encoded by two genes PKLR and PKM. (Israelsen and Vander 

Heiden, 2015, Dong et al., 2016; Alves-Filho and Pålsson-McDermott, 2016). 
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The four pyruvate kinase isozymes exhibit unique tissue expression and 

regulatory properties. All the isoenzymes have similar kinetic parameters with respect to 

ADP, but they differ in their kinetics with respect to PEP (Israelsen and Vander Heiden, 

2015).  

2.2 PKLR Gene, Expression and Regulation 

Under differential promoters, the PKLR gene encodes for: (1) PKL, enzyme 

found in liver, kidney, and intestine and (2) PKR, enzyme found in red blood cells. PKL 

has the lowest affinity to PEP and is under hormonal control. PKR is inhibited by 

glycolytic product ATP and thyroid hormone triiodo-l-thyronine (T3). Both PKL and 

PKR are activated by fructose-1,6-bisphophate (FBP), an earlier product of glycolysis 

(Israelsen and Vander Heiden, 2015, Dong et al., 2016; Alves-Filho and Pålsson-

McDermott, 2016). 

2.3 PKM Gene and Expression  

Through alternative splicing, the PKM gene encodes for both the M1 and M2 

isozymes (Israelsen and Vander Heiden, 2015). The inclusion of exon 9 generates the 

PKM1 isoenzyme. Expression of PKM2 isoenzyme requires both repression of exon 9 

through splicing factors PTB, hnRNPA1, and hnRNPA2 and inclusion of exon 10 

through splicing factor SRSF3 (Israelsen and Vander Heiden, 2015). Although PKM1 

and PKM2 have similar 3D structures, the isoform specific exons generate structural 

differences at the fructose-1,6-bisphophate (FBP) binding site and the dimer-dimer 

interface (Dong et al., 2016; Alves-Filho and Pålsson-McDermott, 2016). 



 

3 

The PKM1 form is a constitutively active isozyme that predominates in most 

terminally differentiated cell types and in cells with high catabolic demands (heart, 

muscle, brain). In contrast the PKM2 is the dominant isoform during development and in 

cells with more anabolic functions, such as regenerative tissue, cancer cells, and immortal 

cell lines (MCF10A). PKM2 is regulated by a variety of allosteric effectors (FBP) and 

post-translational modifications (Figure 1; Alves-Filho and Pålsson-McDermott, 2016). 

2.4 Regulation of PKM2 Activity. 

The PK enzyme is regulated by stabilizing and destabilizing its oligomeric 

configurations. The constitutively active PKM1 exists stably as a tetramer, allowing for 

optimal binding to substrate PEP. The stable tetramer form of PKM1 has higher PK 

activity than the dimeric or monomer forms. Unlike PKM1, PKM2 requires an activator 

to have high PK activity. In the presence of activators, PKM2 switches to a tetrameric 

form which exhibits high PK catalytic activity and is associated with catabolic 

metabolism. The high PK catalytic activity allows for conversion of PEP to pyruvate, 

which enter the TCA cycle to generate ATP via oxidative phosphorylation (OX-PHOS). 

In the absence of activators, PKM2 primarily exist as a dimeric or monomer with low PK 

activity, facilitating the formation and accumulation of glycolytic intermediates. These 

glycolytic intermediates are shuttled into the glycolysis branch pathways, such as 

glycerol synthesis and pentose phosphate pathway, to generate nicotinamide adenine 

dinucleotide phosphate-oxidase (NADPH) for ROS suppression and nucleotides for 

anabolic metabolism. 
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Various endogenous regulators (glycolytic metabolites, non-glycolytic metabolites, 

amino acids and small molecules) control the switching of PKM2 configuration and 

activity by affecting the binding affinity of substrate PEP to the active site on PKM2 

enzyme (Dong et al., 2016; Alves-Filho and Pålsson-McDermott, 2016). Fructose-1,6-

bisphophate (FBP), an upstream glycolytic intermediate, is an activator of PKM2. FBP 

binds allosterically to PKM2, promoting stabilization of PKM2 tetramer complex and 

increases its binding affinity to PEP (Christofk et al., 2008). PKM1 and PKM2 bound to 

FBP exhibit similar kinetic properties. Small molecules, DASA58 and TEPP46 are also 

allosteric activators of PKM2. Like FBP, these small molecules promote tetramer 

stabilization and increase PEP binding affinity (Vander Heiden et al., 2010). 

Additionally, amino acids like serine (Chaneton et al., 2012) and a de novo purine 

synthesis intermediate, succinylaminoimidazolecarboxamide ribose-5′ phosphate 

(SAICAR), can activate PKM2 activity (Keller et al., 2012; Keller et al., 2014). PKM2 

activity can be inhibited by the absence of allosteric activators or the presence of 

allosteric inhibitors. Some known allosteric inhibitors of PKM2 are amino acids 

(phenylalanine and alanine), thyroid hormone triiodo-l-thyronine (T3) or via tyrosine 

phosphorylation (Ashiwaza et al., 1991; (Uebelhoer and Arispe 2016). 

2.5 Non-glycolytic PKM2 Activity. 

Since the dimeric isoform of PKM2 can translocate to the nucleus, it also exhibits 

non-glycolytic functions. The nuclear PKM2 interacts with transcription factors (HIF-1α, 

STAT3, histone H3 and JMJD5) to induce genes required for proliferation and glycolysis 

(Figure 1; Alves-Filho and Pålsson-McDermott, 2016).  
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PKM2 can function as a transcriptional coactivator. Under hypoxic conditions, PKM2 

translocates to the nucleus and interacts with hypoxia-inducible factor (HIF)-1α to induce 

glucose metabolism in cancer cells (Luo et al., 2011). PKM2 gene transcription is also 

activated by HIF-1α, which in turn further promotes HIF-1α transactivation in a positive 

feedback look. PKM2 binds to Jumonji domain-containing protein 5 (JMJD5) and 

prevents PKM2 tetramerization. The JMJD5-PKM2 interaction induces PKM2 to be 

translocated into the nucleus and promotes HIF-1α mediated glucose metabolism in 

cancer cells (Wang et al., 2014). Nuclear PKM2 can also bind to phosphorylated β-

catenin Tyr 333, leading to β-catenin transactivation and epidermal growth factor 

receptor (EGFR)-promoted tumor proliferation (Yang et al., 2011; Lu, 2012). 

PKM2 can act as a protein kinase to phosphorylate substrates involved in 

proliferation and glycolysis. PKM2, using PEP as a phosphate donor, phosphorylates 

signal transducer and activator of transcription 3 (STAT3) at tyrosine-705 and histone 

H3 at threonine-11, promoting cancer progression (Gao et al., 2012). 

 

3. PKM2 and the Warburg Effect 

3.1 PKM2 and the Warburg Effect in cancer and immune cells 

Typically, most cells utilize oxidative phosphorylation (OX-PHOS) as an 

energetically more efficient method for generating large amounts of ATP (32-36 ATPs 

per glucose vs 2 ATPs per glucose during glycolysis). However, many cancer cells 

primarily are dependent on glycolysis to meet their bioenergetic needs, regardless of 

oxygen levels (Israelsen and Vander Heiden, 2015, Dong et al., 2016; Alves-Filho and 
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Pålsson-McDermott, 2016). This increased rates of aerobic glycolysis in cancer cells was 

termed the Warburg effect and is necessary for tumor growth. The Warburg effect is not 

exclusive to cancer cells but is also present in normal cells that are rapidly proliferating. 

(DONG 2016, Uebelhoer and Arispe 2016). Increased aerobic glycolysis has also been 

observed in proliferating lymphocytes (20-30 fold induction), activated macrophages, 

proliferating thymocytes, proliferating fibroblasts, and regenerating skeletal muscle cells.  

(Uebelhoer and Arispe 2016).  

In cancer cells, a prominent driver of the Warburg effect is PKM2. In fact, 

proliferating cancer cells switch from PKM1 to PKM2 to increase glycolysis for biomass 

production (Verdegem et al., 2014). Also, PKM2 expression is elevated in many cancers 

and activated immune cells like macrophages (Uebelhoer and Arispe 2016). Thus, PKM2 

is a key regulator of the Warburg effect in both cancer and immune cells. 

3.1 PKM2 and the Warburg Effect in ECs 

The Warburg effect is not limited to only cancer and proliferating cells but is also 

observed in both proliferating and non-proliferating endothelial cells. Like cancers cells, 

ECs preferentially use glycolysis for energy production with only 15% of ATP being 

generated from OX-PHOS (Culic et al., 1997; De Bock et al., 2013). Correspondingly, 

ECs have decreased mitochondrial usage with only 5% volume fraction consisting of 

mitochondria versus up to 30% volume fraction in other oxidative promoting cells (e.g. 

oxidative hepatocytes; Groschner et al., 2012). This preference for aerobic glycolysis is 

surprising since ECs are in immediate contact with high oxygen and glucose levels in 

blood, which are favorable for oxidative phosphorylation. However, the preferential use 
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of aerobic glycolysis in ECs is hypothesized to be advantageous, since glycolysis can: (1) 

help ECs conserve oxygen for perivascular tissue, (2) protect ECs from oxidative stress 

unlike oxidative phosphorylation which generates reactive oxygen species (ROS), (3) 

allow ECs to migrate into hypoxic tissues, (4) generate ATP more rapidly, and (5) 

facilitate quick adaptations for increased biomass production during angiogenesis 

(Verdegem et al., 2014; Uebelhoer and Arispe 2016). While all ECs preferential use of 

aerobic glycolysis, varied amounts of glycolysis is observed in different vascular beds. 

(Uebelhoer and Arispe 2016). For example, in comparison to quiescent ECs, angiogenic 

ECs have double rates of glycolysis generating 80% of ATP via glycolysis and less than 

1% of ATP via OX-PHOS (Culic et al., 1997; De Bock et al., 2013). 

PKM2 also plays a prominent role in ECs. PKM2 is the predominant isoform 

expressed in ECs and recent findings show PKM2 as a key regulator of angiogenesis. 

Exogenous circulating PKM2 induces endothelial cell proliferation, migration, and cell-

extracellular matrix adhesion leading to increased tumor angiogenesis and growth (Li et 

al., 2014). In the Arany lab, we have shown that deletion of PKM2 in endothelial cells 

results in decreased proliferation and migration (data unpublished). Both PKM1 and 

PKM2 expression are found in the cytosol, nucleus and lamellipodia extensions of ECs 

(Figure 2A-F, Data generated by Dr. Boa Kim). 

 

4. Mechanisms Regulating Endothelial Permeability 

4.1 VE-cadherin junctions   



 

8 

In ECs, pathways involved in mediating changes in permeability affect VE-

cadherin expression, function and organization (Gavard et al., 2014). Extracellularly, VE-

cadherin mediates cell-cell adhesion by clustering together at cell-cell contacts and 

adhering to VE-cadherins of adjacent endothelial cells. Intracellularly, VE-cadherin 

associates with several proteins (p120, β-catenin, and plakoglobin) to form a complex 

with α-catenin allowing for interaction with the actin-containing cytoskeleton (Dejana et 

al., 2008; Dejana and Vestweber, 2013). When permeability is induced in ECs, 

expression and function of VE-cadherin at cell-cell contacts are altered in several ways: 

(1) phosphorylation of phopho-tyrosine sites on the cytosolic tail of VE-cadherin (2) 

phosphorylation of other components in the VE-cadherin/catenin complex (3) by cleaving 

extracellular domains of the VE-cadherin (4) internalization of VE-cadherin/catenin 

complex (5) or mechanical stresses (Potter et al., 2005; Turoswki et al., 2008; Orsenigo et 

al., 2012).  

4.2 The Angiopoietin -Tie- Signaling Pathway  

The secreted, multimeric angiopoietin ligands regulate vascular homeostasis via 

the endothelial Tie receptor tyrosine kinases, Tie-1 and Tie-2 (Thurston and Daly, 2012). 

Angiopoietin-1 (Ang-1) functions in a paracrine and agonist manner, promoting vascular 

stabilizing effects via Tie-2 phosphorylation and activation. Ang-1 is mainly expressed 

by perivascular cells. Angiopoietin-2 (Ang-2) functions in an autocrine and antagonist 

manner by inhibiting the constitutively active Ang-1/Tie-2 signaling, promoting 

pathological angiogenesis, increased vascular permeability and inflammation. Ang-2 

inhibition of Tie-2 activity results in Rho-kinase and endothelial myosin light chain 
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kinase (EC-MLCK) activation, leading to destabilization of the endothelial monolayer 

(Maisonpierre et al., 1997; Parikh et al., 2006; Hakanpaa et al., 2015). In cells, Ang-2 is 

stored in intracellular granules called Weibel-Palade bodies (WBP) with a half-life of 

more than 18 hours (Fiedler et al., 2004). Ang-2 can be rapidly released from WPBs by 

activated endothelium. In humans and mice, Ang-2 expression is elevated during vessel 

remodeling of tumor endothelium and in vascular permeability associated pathologies 

like sepsis and acute lung injury (Parikh et al., 2006; Thurston and Daly, 2012).  

 

5. Preliminary Data  

A shotgun approach via RNA sequencing (RNA-Seq) of the whole transcriptome 

reveals reduction of Ang-2 mRNA expression upon overexpression of mouse PKM2 in 

endothelial cells (Figure 2G, Data generated by Dr. Boa Kim). Correspondingly, PKM2 

deletion in the endothelium induces Ang-2 mRNA expression (Figure 2H, Data generated 

by Dr. Boa Kim).  Ang-2 is a well-known modulator of vascular permeability. Thus, 

based on this preliminary data, we hypothesized that PKM2 deficient endothelium may 

exhibit a vascular permeability phenotype.  
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Figure 1 

Figure 1: Diagram of PKM2 structure, function (nuclear and glycolytic) and 

regulation. The tetramer formation of PKM2 promotes glycolysis and the generation 

of pyruvate, which can enter the TCA cycle for oxidative phosphorylation. The more 

active tetramer conformation of PKM2 is allosterically regulated by SAICAR, serine, 

FBP, or small-molecule activators. Without allosteric activators, the less active dimeric 

form of PKM2 predominates leading to accumulation of glycolytic intermediates that 

are shuttled into glycolytic branch pathways. Also, the dimeric PKM2 can translocate 

to the nucleus where it interacts with transcription factors (Hif-1α, STAT3, histone H3 

and JMJD5) to induce genes required for proliferation and glycolysis. PKM2 is 

dominantly expressed in cancer cells, activated or proliferating cells and endothelial 

cells (modified from Alves-Filho and Pålsson-McDermott, 2016). 
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PKM1 

PKM2 

Phalloidin 

Phalloidin 

PKM1 

PKM2 

Phalloidin 

Phalloidin 

Figure 2 

A B C 

F E D 

G H 

Figure 2: PKM1 and PKM2 subcellular localization in endothelial cells and Ang-

2 mRNA expression in PKM2 deficient endothelium. Immunofluorescence staining 

of PKM1 (green, A-C) and PKM2 (green, D-F) reveals expression of both isoforms in 

the cytosol, nucleus and lamellipodia extensions. G, A shotgun approach via RNA 

sequencing (RNA-Seq) of the whole transcriptome in reveals reduction of Ang-2 

mRNA expression levels in human PKM2 deficient endothelium (si-27) that are 

overexpressing mouse PKM2 for 24hr and 48hrs (OE). H, Quantitative reverse 

transcription polymerase chain reaction analysis reveals induction of Ang-2 mRNA 

expression in PKM2 deficient endothelium.  
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METHODS 

Miles Assay 

Hair was shaved from the entire back of the mice one day prior to experiment. 

Mice were anesthetized with isoflurane and retro-orbitally injected with Evans blue dye 

(EBD, Sigma-Aldrich) at 50 mg/kg. After 10 minutes, recombinant human VEGF-A121 

or phosphate buffered saline (PBS) as a vehicle control was injected intradermally. After 

20 minutes, organs and skin were harvested and photographed. Tissues were incubated in 

1ml formamide at 56°C for 48 hours to extract extravasated dye. Absorbance of 

extravasated dye was measured at 620 nm with a standard curve of known dye 

concentrations and normalized to tissue weight.  

 

Cell Culture 

Human umbilical vein endothelial cells (HUVECs) and endothelial colony 

forming cells (ECFCs) were grown in endothelial basal medium (Lonza), supplemented 

with 10% FBS, 1% Pen/Strep and growth supplements (EGM-MV BulletKit, Lonza). All 

experiments with HUVECs were carried out between passage three and nine. All 

experiments with ECFCs were carried out between passage four and twenty.  

 

siRNA transfection 

HUVEC or ECFCs were seeded onto 0.1% gelatin-pretreated 10-cm or 6-cm 

plates. Cells were transfected with 10uM of siCTL (Sigma, SIC001), si-27 (Sigma, 

WDO5110433), si-87 (Sigma, WDO4615699), si-155 (Sigma, WDO4615697), si-Ang-2 
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(Sigma, WDO5975627), siPKM (Sigma, WDO5742340) in Opti-MEM (Fisher, cat no: 

31985-070) with Lipofectamine RNA iMAX (Invitrogen) for 6 hours. After 30-72 hours 

of transfection, cells were either fixed with 2% formalin for morphological examination 

or collected for mRNA, protein, or transendothelial electrical resistance (TER) analysis. 

 

Transendothelial Electrical Resistance (TER) Measurements  

Changes in transendothelial electrical resistance (TER) was measured in an 

endothelial monolayer using a 8-well gold microelectrode (8W10E+, 40 micro-electrodes 

per well, Applied Biosciences) pretreated with 10 mM L-cysteine and 1% gelatin. The 

8W1E+ electrode was connected to an electric cell-substrate impedance sensor (ECIS) 

system (Applied BioPhysics) in a chamber at 37°C with 5% CO2. Cells were reseeded 

from a 10cm plate to 8W1E+ electrode, 30 hours after transfection at a super confluent 

density of 250,000 per well. To measure endothelial permeability, resistance changes 

were measured for 14 hours at 4000Hz. Values from three to four wells were pooled and 

plotted as means ± SD.  

 

Quantitative real-time polymerase chain reaction (qPCR) assays 

Total RNA was isolated from cells using the TurboCapture 384 mRNA Kit 

(Qiagen, CA). RNA was reverse-transcribed using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, CA). qPCR reactions were performed using the 

SYBR Green Master Mix and the CFX384 Real-Time System (Bio-Rad). All protocols 

were performed according to the manufacturers’ instructions. The qPCR data was 
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normalized to actin and calculated per the 2−ΔCt method. The list of genes investigated by 

qPCR and their respective primers are listed in Table 1.  

 

 

 

Immunostaining 

Cells were fixed in 2% neutral buffered formalin for 10 minutes and briefly 

permeabilized with 0.5% PBS-T for 5 minutes. Cells were rinsed three times in PBS for 1 
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minute and blocked in Protein Block Serum-Free (Dako) for 1 hour. Cells were incubated 

with anti-goat VE-cadherin antibody (1:50, Santa Cruz, sc-8439) in a humidified 

chamber overnight at 4˚C. Cells were rinsed three times in PBS for 1 minute, and 

incubated with anti-phallodin 488 (1:200, Fisher) and donkey anti-goat Alexa fluor 594 

antibody (1:200, LifeTech, A11056) for 2 hours. Cells were rinsed three times in PBS for 

1 minute and mounted using Vectashield mounting medium (Vector Laboratories). Cells 

were examined using a Nikon Eclipse 80i microscope or an Olympus IX81 confocal 

microscope. All incubations were performed at room temperature unless otherwise noted.  

 

Westerns blots 

Cell lysates were collected using RIPA lysis buffer with protease and phosphatase 

inhibitors (Roche). Lysates was mixed with 6X SDS sample loading buffer (Bioworld), 

boiled for 5 minutes at 95 °C, and loaded onto 4–20% gradient Tris Glycine X-PAGE 

gels (Bio Rad). Separated proteins were wet transferred to a methanol activated PVDF 

membrane (Millipore). The membrane was blocked with 5% milk in TBS-T buffer for 1 

hour at room temperature and incubated with a primary antibody (1:5000) in 5% BSA in 

TBS-T buffer overnight at 4°C. The membrane was then washed and incubated with 

secondary HRP-linked antibody (1:10,000) in 5% milk in TBST buffer for 1 hour at room 

temperature. All washes were performed with TBS-T. Membranes were probed with the 

following antibodies: anti- Ang-2 (R&D systems, MAB0983-100), anti-phospho Y658-

VE-Cadherin (Thermo fisher, 44-1144G), anti-phospho Y685-VE-Cadherin (ECM 

Biosciences, CP1981), VE-CAD (Santa Cruz, sc-6458), pyruvate kinase M1 (Cell 
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signaling, 7067s), pyruvate kinase M2 (Cell signaling, 4053s), and actin (Cell signaling, 

4097s). The following HRP-line secondary antibodies were used: anti-mouse-HRP linked 

(Cell signaling, 7076s), anti-rabbit-HRP linked (Cell signaling, 7074s), or anti-goat-HRP 

linked (Thermo, 31400). The bands were visualized with a chemiluminescence detection 

kit (ECL, Amersham Biosciences) and imaged using (ImageQuant LAS 4000 series, GE 

Healthcare). 

 

Statistical Analysis. Data were expressed as means ± standard error of mean unless 

otherwise indicated. P values were calculated using the two-tailed Student's t-test or one-

way analysis of variance, followed by Bonferroni post hoc testing with p<0.05 as 

statistically significant. Data analysis and generation of all graphs were performed in 

PRISM5 software (Graphpad).  

 

  



 

17 

RESULTS 

Endothelial-specific PKM2 deletion in mice induces vessel permeability.  

To examine basal vascular permeability, Evans blue dye (EBD) was injected in 

control and PKM2 EC-specific KO mice, and various organs were assessed 30 minutes 

post injection. Compared to control mice, PKM2 EC-specific knockout (KO) mice 

exhibited increased extravasation of EBD into lung tissue (Figure 3A). No significant 

differences in EBD leakage were observed in kidney, liver and heart (Figure 3B-D) 

indicating that PKM2 deletion affects vessel permeability in an organ-specific manner. 

To examine acute vascular permeability, EBD was injected in control and PKM2 

KO mice and were subsequently injected intradermally with PBS and VEGF-A121.  

When compared with PBS, both control and PKM2 EC-specific KO mice exhibited 

increased extravasation of EBD vascular in response to VEGF-A121 (Figure 4A-B). But 

PKM2 EC-specific KO mice exhibited significantly more EBD extravasation than control 

mice in response to VEGF-A121 (Figure 4A-B), indicating that PKM2 EC-specific KO 

mice are more sensitive to VEGF-induced vascular permeability 

Endothelial-specific PKM2 deletion reduces endothelial monolayer integrity 

To evaluate whether PKM2 deletion in ECs alters endothelial barrier integrity, we 

measured transendothelial electrical resistance (TEER) using electrical cell impedance 

sensing (ECIS). Statistical analysis at a 14-hour end time point showed PKM2 deletion 

(si-27 and si-87) in human umbilical vein endothelial cells (HUVECs) significantly 

reduced TEER levels in the endothelial monolayers compared to control (Figure 5A-B). 

Interestingly, deletion of both PKM1 and PKM2 (si-PKM) did not alter TEER levels in 
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the endothelial monolayers compared to control (Figure 5A-B). Significant knockdown 

of both PKM1 (si-PKM) and PKM2 (si-27, si-87 and si-PKM) was verified via mRNA 

expression (Figure 5C-D). Upon knockdown of PKM2 with si-27, there is an induction of 

both mRNA (Figure 5D) and protein (Figure 7B) PKM1expression. This was not 

observed with the other PKM2 si-87 (Figure 5D).  

Endothelial-specific PKM2 deletion reduces VE-cadherin localization at cell-cell 

contacts 

To study the molecular organization of the adherent junctions that play an 

important role in maintaining endothelial barrier integrity, VE-cadherin localization was 

visualized by immunofluorescence. Endothelial colonizing forming cells (ECFCs) 

transfected with sRNA against PKM2 (si-27, si-155 and si-87) and a negative control 

scrambled sequence (si-CTL), were assessed at 1 hour, 4 hours, and 24 hours after 

reseeding and 48-72 hours after transfection. Knockdown of PKM1 (si-PKM) and PKM2 

(si-27, si-87 and si-PKM) was verified via mRNA expression (Figure 5C-D). Both 

control and PKM2 deficient endothelial cells show endogenous VE-cadherin expression 

in the perinuclear region 1 hour after of reseeding (Appendix A1). 4 hours after of 

reseeding, both control and PKM2 deficient endothelial cells began to exhibit VE-

cadherin localization at plasma membrane in regions where cell-to-cell contacts occur 

(Appendix A2). Highest expression of VE-cadherin was observed 24 hours after of 

reseeding in a confluent monolayer (Figure 6 and Appendix A3). VE-cadherin staining in 

confluent monolayer (Si-CTL) show continuous and narrow lining at cell-cell borders 

reflecting stable junctions (Figure 6A-C and Appendix A3, A-D). In PKM2 deficient 
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endothelial cells, VE-cadherin staining was discontinuous, a pattern typical for unstable 

junctions and the generation of intercellular gaps (Figure 6D-L and Appendix A3, E-P). 

Quantification of percent of cell membrane attached to adjacent cells revealed PKM2 

deficient endothelial cells have significantly less attachment to adjacent cells compared to 

control (Figure 6M).  

Interestingly, when PKM2 deficient endothelial cells are assayed without 

reseeding, VE-cadherin junctions are not disrupted (Appendix A4). Control cells show 

the characteristic differential pattern in VE-cadherin staining typically found in an 

endothelia monolayer (Appendix A4, A-C). In contrast, PKM2 deficient endothelial cells 

show a robust and uniform expression pattern of VE-cadherin (Appendix A4, D-I) 

indicating a loss in differential VE-cadherin expression pattern.  

Endothelial-specific PKM2 deletion induces phosphorylation of VE-cadherin at 

Y658  

Vessel permeability is accompanied by phosphorylation, disruption and 

internalization of VE-cadherin/catenin complex leading to weak cell–cell junctions. Thus, 

we evaluated both total VE-cadherin levels and phosphorylation of VE-cadherin at 

tyrosine residues 685 and 658. Deletion of PKM2 in ECs do not alter either total VE-

cadherin mRNA expression (Figure 7A) or total VE-cadherin protein levels (Figure 7B). 

But deletion of PKM2 in ECs increased VE-cadherin phosphorylation at tyrosine residues 

658 but not 685 compared to control (Figure 7B). Deletion of both PKM1 and PKM2 

deletion (si-PKM) decreased VE-cadherin phosphorylation at tyrosine residues 658 but 

not 685 compared to control (Figure 7B).  
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Endothelial-specific PKM2 deletion induces Ang-2 expression.  

The Ang-2 is a well-known modulator of vascular permeability. Based on our 

preliminary data of Ang-2 induction from qPCR and RNA-seq analysis, we further 

assessed Ang-2 expression in ECs. Compared to control, PKM2 deficient endothelium 

significantly induces Ang-2 mRNA expression with one of the PKM2 siRNAs (si-27 but 

not in si-87; Figure 8A). However, PKM2 deficient endothelium significantly induces 

Ang-2 protein expression with the both the PKM2 siRNAs (si-27 and si-87) compared to 

control (Figure 8B). Deletion of both PKM1 and PKM2 (si-PKM) reduced Ang-2 protein 

expression compared to control (Figure 8B).  

Loss of Ang-2 is sufficient to attenuate vascular leakage in PKM2 deficient 

endothelium 

We knocked down Ang-2 along with PKM2 to evaluate whether removal of Ang-2 

attenuated the effect of PKM2 deletion on leaky barrier function. Statistical analysis at 

14-hour end time point showed PKM2 deletion (si-87) in human umbilical vein 

endothelial cells (HUVECs) significantly reduced TEER of the endothelial monolayers 

compared to control (Figure 9A-B). Knockdown of Ang-2 (si-Ang-2) along with PKM2 

rescued TEER of the endothelial monolayers compared to control (Figure 9A-B). Thus, 

indicating that Ang-2 deletion is sufficient to attenuate vascular leakage in PKM2 

deficient endothelium. Knockdown of Ang-2 and PKM2 was verified via mRNA 

expression (Figure 9C-D). Similar to the preliminary data, PKM2 deficient endothelium 

induced Ang-2 mRNA expression (Figure 9D). Interestingly Ang-2 knockdown also 
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induces PKM2 expression (Figure 9C) suggesting that PKM2 and Ang-2 may 

reciprocally regulate each other.  

  Figure 3 
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Figure 3: Endothelial-specific PKM2 knockout mice show increased basal 

pulmonary microvascular permeability. Basal vascular permeability was assessed 

in various organs 30 minutes after retroorbital injection of EBD. A-D, Quantification 

of extracted EBD from lung (A), Kidney (B), liver (C), and heart (D). EBD values 

were normalized to tissue weight (μg of EBD/g of tissue). Only the lung from EC-

specific PKM2 KO mice showed significantly increased EBD leakage compared with 

control mice. Data are presented as mean± SEM. *P<0.05. n = 5 per experimental 

group.  
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Figure 4: Endothelial-specific PKM2 knockout mice are more sensitive to VEGF-

induced vascular permeability. Acute vascular hyperpermeability was assessed 

through miles assay. Mice were injected retro-orbitally with EBD and were 

subsequently injected intradermally with PBS and VEGF-121 (100ng). A, 

Representative skin images in response to PBS or VEGF-A121 intradermal injections. 

B, Quantification of extracted EBD normalized to tissue weight (μg of EBD/g of 

tissue). EC-specific PKM2 KO mice showed significantly increased leakage compared 

with control mice when treated with VEGF-A121. Data are representative of two 

independent experiments and are presented as mean± SEM. *P<0.05, ***P<0.001. n = 

10 per experimental group.  
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Figure 5: Loss of PKM2 expression results in decreased transendothelial 

electrical resistance (TEER). Human umbilical vein endothelial cells (HUVECs) 

were transfected with small interfering RNA (siRNA) targeted to PKM2 alone (si-27 

and si-87), to both PKM1+PKM2 (si-PKM) and to a scrambled sequence (si-CTL) as 

a negative control. A, Changes in electrical resistance in HUVEC monolayer were 

measured for 14 hours on an electric cell-substrate impedance sensor (ECIS) in 

8W1E+ plates at 4000Hz. Cells were reseeded from a 10cm plate to 8W1E+ plate 30 

hours after transfection. Data are presented as means ± SD (n = 3-4). B, End point 

electrical resistance was normalized to negative control group at 14 hours. EC-specific 

deletion of PKM2 (si-27 and si-87) results in decreased TEER. While EC-specific 

deletion of both PKM1 and PKM2 did not alter TEER. Data are presented as mean ± 

SEM (n = 3-4). ****P<0.0001. C and D, mRNA expression was assessed using 

quantitative reverse transcription polymerase chain reaction. There was significant 

knockdown of PKM1 (si-PKM) and PKM2 (si-27, si-87 and si-PKM) mRNA 

expression compared to control. mRNA expression was normalized to actin expression 

using the 2
−ΔCt

 method. Data are presented as mean ± SEM (n = 3). **P<0.01, 

***P<0.001 ****P<0.0001.  
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Figure 6: Loss of PKM2 expression results in disrupted VE-cadherin adherent 

junctions and gap formations. Endothelial colonizing forming cells (ECFCs) were 

transfected with small interfering RNA (siRNA) targeted to PKM2 (si-27, si-155, si-

87) and to a scrambled sequence (si-CTL) as a negative control. Cells were assessed 

24 hours after reseeding and 72 hours after transfection A-L, Representative images of 

a ECFC monolayer immunolabeled for VE-cadherin (Red), phalloidin (Green) and 

DAPI (Blue). In confluent endothelial cells, VE-cadherin staining was continuous, 

linear and distributed around the entire periphery of the cells reflecting stable 

junctions (A-C, arrow). In PKM2 deficient endothelial cells, VE-cadherin staining 

was discontinuous reflecting unstable junctions and formation of intercellular gaps (D-

L, open arrow head = discontinuous junctions and gap formations). M, Quantification 

of cell membrane (%) attached to adjacent cells. PKM2 deficient endothelial cells 

showed significantly less attachment to adjacent cells compared to control. Scale bars: 

50 μm. Data are presented as mean ± SEM (n = 3 random fields). ****P<0.0001. 
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Figure 7: PKM2 deficient endothelium induces VE-cadherin tyrosine 

phosphorylation at residues Y658. Human umbilical vein endothelial cells 

(HUVECs) were transfected with small interfering RNA (siRNA) targeted to PKM2 

alone (si-27 or si-87), both PKM1+PKM2 (si-PKM) and a scrambled sequence (si-

CTL) as a negative control. A, Quantitative analysis of total VE-Cadherin (VE-CAD) 

mRNA expression normalized to actin. Deletion of PKM2 in ECs do not alter VE-

cadherin mRNA expression. Data are presented as mean ± SEM (n = 3). B, Western 

blot analysis of phospho Y658-VE-Cadherin (p-VE-CAD-Y658), phospho Y685-VE-

Cadherin (p-VE-CAD-Y685), VE-CAD, pyruvate kinase M1 (PKM1), pyruvate 

kinase M2 (PKM2), and actin (as loading control). PKM2 deficient endothelium 

induces VE-cadherin tyrosine phosphorylation at Y658 without altering total VE-

cadherin protein levels. 
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Figure 8: PKM2 deficient endothelium induces Ang-2 expression. Human 

umbilical vein endothelial cells (HUVECs) were transfected with small interfering 

RNA (siRNA) targeted to PKM2 alone (si-27 and si-87), both PKM1+PKM2 (si-

PKM) and a scrambled sequence (si-CTL) as a negative control. A, Quantitative 

analysis of angiopoietin-2 (Ang-2) mRNA expression normalized to actin. Deletion of 

PKM2 in ECs induces Ang-2 mRNA expression. Data are presented as mean ± SEM 

(n = 3). ***P<0.001. B, Western blot analysis of Ang-2, pyruvate kinase M1 (PKM1), 

pyruvate kinase M2 (PKM2), and actin (as loading control). Deletion of PKM2 in ECs 

induces Ang-2 protein expression.  
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Figure 9: Knockdown of Ang-2 in PKM2-deficient cells is sufficient to rescue 

decreased transendothelial electrical resistance (TEER). Human umbilical vein 

endothelial cells (HUVECs) were transfected with small interfering RNA (siRNA) 

targeted to PKM2 (si-87), angiopoietin 2 (si-Ang-2) or a scrambled sequence (si-CTL) 

as a negative control. A, Changes in electrical resistance in HUVEC monolayer were 

measured for 14 hours on an electric cell-substrate impedance sensor (ECIS) in 

8W1E+ plates at 4000Hz. Cells were reseeded from a 10cm plate to 8W1E+ plate 30 

hours after transfection. Data are presented as means ± SD (n = 3-4). B, End point 

electrical resistance was normalized to negative control group at 14 hours. Loss of 

Ang-2 is sufficient to attenuate vascular leakage in PKM2 deficient endothelium. Data 

are presented as mean ± SEM (n = 3-4). ****P<0.0001. C-D, mRNA expression of 

PKM2 and angiopoietin 2 were assessed using RT-PCR. PKM2 deficient endothelium 

induces Ang-2 mRNA expression and interestingly Ang-2 knockdown also induces 

PKM2 expression. mRNA expression was normalized to actin expression using the 

2
−ΔCt

 method. Data are presented as mean ± SEM (n = 3). ***P<0.001, 

****P<0.0001.  
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DISCUSSION 

 Impairment in vessel stability and subsequent vascular permeability is the 

hallmark of many pathological diseases like cancer and sepsis. Thus, the control of the 

endothelial barrier function is essential for maintaining vascular homeostasis. Here we 

demonstrate using both in-vivo and in-vitro models, that pyruvate kinase M2 is required 

to preserve endothelial barrier function. 

Endothelial PKM2 deficient mice display increased basal vessel permeability in 

pulmonary capillary vessels, demonstrating that lung vascular permeability is regulated 

by PKM2. Due to its enormous surface area, the pulmonary vasculature is known to be 

particularly sensitive to barrier dysregulation (Xing and Birukova, et al. 2009). However, 

the kidney, heart and liver vasculature remained intact in EC-specific PKM2 deficient 

mice. Thus, PKM2 deletion affects vessel permeability in an organ-specific manner. This 

is not surprising as permeability of capillaries varies considerably from organ to organ 

due to their heterogenous morphologies and function (Aird et al., 2015). Also, endothelial 

PKM2 deficient mice display increased VEGF-induced acute vessel permeability in 

dermal vessels, suggesting that VEGF-induced vascular permeability is mediated by 

PKM2.  

Similar to in-vivo results, PKM2 deficient endothelium exhibited decreased 

transendothelial electrical resistance (TEER), indicative of reduced tightness of junctions 

in endothelial cell monolayer. PKM2 deficient endothelial cells have disrupted 

localization of VE-cadherin at the intercellular junctions and significantly less attachment 

to adjacent cells, but total VE-cadherin protein expression was conserved. This altered 
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VE-cadherin localization is consistent with the observed leaky phenotype given that 

previous studies have shown VE-cadherin adherent junctions play a crucial role in 

maintaining barrier integrity in ECs. Where loss of VE-cadherin at cell–cell contacts 

produces unstable junctions, intercellular gaps (Lampugnani et al., 2012) resulting in 

increased permeability.  

Modulation of VE-cadherin is mediated by several mechanisms one of which is 

by phosphorylation of VE-cadherin (Turowski et al., 2008). The cytoplasmic domain of 

VE-Cadherin has several phospho-tyrosine sites, but only three (Y658, Y685 and Y731) 

are involved in the regulation of barrier function (Adam, 2015). Thus, we evaluated 

phosphorylation of VE-cadherin at two of three tyrosine residues (Y685 and Y658). Loss 

of PKM2 in endothelial cells induces phosphorylation of VE-cadherin at residue Y658 

but not Y685.  Studies have shown phosphorylation at Y658, mediated by Src, has been 

implicated as a mechanism for loss of barrier function (Garrett et al., 2017). Specifically, 

phosphorylation at Y658 disrupts p120 binding to VE-cadherin, leading to internalization 

of VE-Cadherin. VEGF also is known to alter endothelial barrier function via 

phosphorylation of VE-Cadherin at residue Y658 (Potter et al., 2005; Gavard and 

Gutkind, 2006). Taken together, phosphorylation of VE-cadherin and the subsequent loss 

of VE-cadherin at cell-cell contacts suggests a mechanism by which PKM2 alters 

intercellular junctions leading to a leaky endothelium.  

Surprisingly, PKM2 deletion in an established endothelial monolayer (without 

reseeding) did not affect VE-cadherin localization at the cell-cell contacts. Instead, 

PKM2 deletion in an established endothelial monolayer led to a loss of differential VE-
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cadherin expression. Recent studies have linked loss of differential VE-cadherin 

junctional regulation to abnormal vascular phenotypes (Bentley et al., 2014).  

In this study, we observed a significant increase in the expression of Ang-2 

mRNA and protein in PKM2 deficient endothelium. The upregulation of Ang-2 mRNA 

and protein levels is consistent with the observed leaky phenotype given that previous 

studies have shown overexpression of Ang-2 leads to destabilization of vessels. Ang-2 is 

as an antagonist of the constitutively active Ang-1/Tie-2 signaling which participates in 

vessel stabilization (Maisonpierre et al., 1997; Fiedler et al., 2004). Specifically, Ang-2 

inhibits Tie-2 phosphorylation, resulting in Rho-kinase and endothelial myosin light 

chain kinase (EC-MLCK) activation and destabilization of the endothelial monolayer  

(Parikh et al., 2006). We also performed rescue experiments using TEER measurements 

to verify if leaky barrier function observed upon PKM2 deletion was specifically due to 

Ang-2 induction. Indeed, removal of Ang-2 was sufficient to attenuate the effect of 

PKM2 deletion on leaky barrier function. Therefore, in the endothelium PKM2 effects 

are mediated in part by altering Ang-2 expression. Furthermore, PKM2 and Ang-2 seem 

to reciprocally regulate each other, since knockdown of either PKM2 or Ang-2 induces 

mRNA expression of Ang-2 or PKM2, respectively.  

In PKM2 deficient endothelium, there is greater induction of PKM1 than in basal 

conditions. Thus, it is possible that PKM1 induction, rather than PKM2 loss, is mediating 

the leaky phenotype through VE-cadherin phosphorylation and Ang-2 induction. This 

matches our observation that upon double knockdown of PKM2 and PKM1, we see an 

intact vascular barrier function and concurrent reduction of VE-cadherin phosphorylation 
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and Ang-2 protein expression. In tumor cells a similar mechanism is observed, where 

PKM1 expression, rather than PKM2 loss, is responsible for proliferation arrest (Lunt et 

al., 2015). However, it is noted that we do not see a consistent induction of PKM1 among 

the different PKM2 siRNAs, but we do see a consistent induction in Ang-2 expression. 

Thus, it is not clear if PKM1 is indeed mediating the leaky phenotype. To resolve this 

question, looking at barrier function in PKM1 overexpressing ECs would elucidate if 

PKM1 expression, rather than PKM2 loss, is responsible for leaky vascular barrier.  

Conclusions 

Collectively, the data reported here suggests that pyruvate kinase M2 is required 

for maintaining vessel integrity and barrier function in endothelial cells. Specifically, the 

observed vascular leakiness of PKM2 deficient endothelium is mediated by increased 

Ang-2 expression and disrupted VE-cadherin junctions at cell-cell contacts. Recent 

studies have described the PKM2’s role in tumorigenesis and angiogenesis (Christofk et 

al., 2008; Azoitei et al., 2016), but this is the first study to describe PKM2’s role in 

barrier function. 

Future Directions 

Our results suggest that PKM2 regulates Ang-2 expression. However, it is unclear 

how and through which mechanism PKM2 mediates the leaky phenotypes via ANG-2 

modulation.   

PKM2 may alter other components of the angiopoietin-Tie-2 signaling axis and 

the downstream pathways. Ang-1/Tie-2 phosphorylation and activation leads to Rac1 

activation and RhoA inactivation, mediated by PI3K/Akt. Ultimately, increasing 
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accumulation VE-cadherin at the adherent junctions and preserving vascular barrier 

function (Milam and Parikh et al., 2015). By looking at protein activity of Tie-2, Rac1 

and RhoA, we clarify where PKM2 loss leads to changes in the angiopoietin-Tie-2 

signaling axis. Also, since Ang-1 is an agonist of the Tie-2 receptor and opposes the 

antagonistic action of Ang-2 (Maisonpierre et al., 1997; Fiedler et al., 2004), Ang-1 

treatment may possibly rescue the leaky phenotype of PKM2 deficient endothelium. 

Together this would further validate if and how PKM2 acts on the angiopoietin-Tie-2 

signaling axis.  

PKM2 may act more upstream by regulating both packaging and release of Ang-2 

from Weibel-Palade bodies (WBP). In lung microvascular endothelial cells, Ang-2 

release is regulated by the PTEN/PI3-kinase/Akt pathway. PTEN is a positive modulator 

of Ang-2 release, while activation of PI3-K/Akt pathway downregulates Ang-2 (Tsigkos 

et al., 2006; Parikh et al., 2006). By looking at protein activity of PTEN, PI3K and AKT, 

we can clarify if PKM2 loss alters both packaging and release of Ang-2. Studies have 

shown elevated serum Ang-2 levels elicit leaks in pulmonary endothelium of septic 

patients and mice (Hashimoto and Pittet, 2006, Parikh et al., 2006). Since we observe a 

similar leaky lung phenotype upon PKM2 deletion in mice, it would be valuable to assess 

if PKM2 deficient mice have a corresponding increase in circulating Ang-2. Thus, 

revealing if PKM2 deletion stimulates release of Ang-2 from WBP.  

Also, it is important to delineate the role of PKM2 in the context of a pathological 

disease like sepsis, which is associated with abnormally increased vascular permeability. 

Will PKM2 deletion in the endothelium sensitize the mice to septic shock? Or will 
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overexpression of PKM1 or PKM2 mitigate and rescue the effects of septic shock? 

Ultimately, if PKM2 is relevant in sepsis or other permeability associated pathological 

diseases, regulation of PKM2 could open up possible new therapeutic targets.  
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Appendix A1: 1 hour after of reseeding, endogenous VE-cadherin expression 

localizes to the perinuclear region. Endothelial colonizing forming cells (ECFCs) 

were transfected with small interfering RNA (siRNA) targeted to PKM2 (si-27, si-

155, si-87) and to a scrambled sequence (si-CTL) as a negative control. Cells were 

assessed 1 hour after reseeding and 24 hours after transfection A-L, Representative 

images of a ECFC monolayer immunolabeled for VE-cadherin (Red), phalloidin 

(Green) and DAPI (Blue). Scale bars: 50 μm.  
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Appendix A2: 4 hours after of reseeding, VE-cadherin localizes at plasma 

membranes where cell-to-cell contacts occur. Endothelial colonizing forming cells 

(ECFCs) were transfected with small interfering RNA (siRNA) targeted to PKM2 (si-

27, si-155, si-87) and a scrambled sequence (si-CTL) as a negative control. Cells were 

assessed 4 hours after reseeding and 24 hours after transfection. A-L, Representative 

images of a ECFC monolayer immunolabeled for VE-cadherin (Red), phalloidin 

(Green) and DAPI (Blue). Arrow heads indicate VE-cadherin localization at plasma 

membranes. Scale bars: 50 μm.  



 

36 

 
 
 

  
Appendix A3 

S
iC

T
L

 
si

2
7
  

si
2
7
  

S
iC

T
L

 

P
K

M
2
 k

n
o
ck

d
o
w

n
 

A 

E 

I 

M 

B 

F 

J 

N 

C 

G 

K 

O 

VE-Cadherin Phalloidin DAPI Merged 

D 

H 

L 

P 

4
0
X

 
4
0
X

 
1
0
0
X

 
1
0
0
X

 
Appendix A3: 24 hours after reseeding, loss of PKM2 expression results in 

disrupted VE-cadherin adherent junctions and gap formations. Endothelial 

colonizing forming cells (ECFCs) were transfected with small interfering RNA 

(siRNA) targeted to PKM2 (si-27) and a scrambled sequence (si-CTL) as a negative 

control. Cells were assessed 24 hours after reseeding and 72 hours after transfection 

A-P, Representative images of a ECFC monolayer immunolabeled for VE-cadherin 

(Red), phalloidin (Green) and DAPI (Blue). Confocal imaging of confluent 

endothelial cells show VE-cadherin staining as continuous, linear and distributed 

around the entire periphery of the cells reflecting stable junctions (A-H, arrow). In 

PKM2 deficient endothelial cells, VE-cadherin staining was discontinuous reflecting 

unstable junctions and formation of intercellular gaps (I-P, open arrow head = 

discontinuous junctions and gap formations). Scale bars: 40x = 50μm, 100x = 20μm.   
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Appendix A4: PKM2 deficient endothelium lack differential VE-cadherin 

expression. Endothelial colonizing forming cells (ECFCs) were transfected with small 

interfering RNA (siRNA) targeted to PKM2 (si-27 and si-87) and a scrambled 

sequence (si-CTL) as a negative control. Cells were assessed 48 hours after 

transfection with no reseeding. A-I, Representative images of a ECFC monolayer 

immunolabeled for VE-cadherin (Red), phalloidin (Green) and DAPI (Blue). Cells 

transfected with a si-CTL show the characteristic differential pattern in VE-cadherin 

staining in an endothelia monolayer (A-C). In contrast, PKM2 deficient endothelial 

cells show a robust and uniform expression pattern for VE-cadherin (D-I). Scale bars: 

50 μm.  
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