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ABSTRACT 

 Computational methods for predicting macromolecular complexes are useful tools 

for studying biological systems. They are used in areas such as drug design and for 

studying protein-protein interactions. While considerable progress has been made in this 

field over the decades, enhancing the speed and accuracy of these computational methods 

remains an important challenge. This work describes two different enhancements to the 

accuracy of ClusPro, a method for performing protein-protein docking, as well as an 

enhancement to the efficiency of global rigid body docking. SAXS is a high throughput 

technique collected for molecules in solution, and the data provides information about the 

shape and size of molecules. ClusPro was enhanced with the ability to SAXS data 

collected for protein complexes to guide docking by selecting conformations by how well 

they match the experimental data, which improved docking accuracy when such data is 

available. Various other experimental techniques, such as NMR, FRET, or chemical cross 

linking can provide information about protein-protein interfaces, and such information 

can be used to generate distance-based restraints between pairs of residues across the 

interface. A second enhancement to ClusPro enables the use of such distance restraints to 

improve docking accuracy. Finally, an enhancement to the efficiency of FFT based global 
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docking programs was developed. This enhancement allows for the efficient search of 

multiple sidechain conformations, and this improved program was applied to the flexible 

computational solvent mapping program FTFlex. 
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CHAPTER ONE: Background and Introduction 

1.1 Motivation 

Protein molecules are central to the functioning of a cell. They serve in roles from 

metabolism, to signal transduction, to DNA replication. In performing their functions in 

the cell, proteins often work together in complexes by interacting with other proteins or 

with nucleic acids. The three-dimensional structures of these complexes are frequently 

crucial for the mechanistic understanding of cell function. While techniques for 

determining the structures of these complexes have advanced significantly in recent 

years, it remains a challenging task, and the structure of complexes are still more 

challenging to obtain than the structures of unbound proteins. Thus, computational 

methods for predicting the structures of complexes are an important alternative method 

for studying proteins for many systems of interest. 

 Methods designed to predict the structures of protein complexes are not new. 

Since 2001, the CAPRI competition has been a way to evaluate the progress of protein 

docking methods. The results of CAPRI indicate substantial recent progress in 

methodology, including improved performance of automated docking methods (Lensink, 

Méndez, & Wodak, 2007; Lensink & Wodak, 2010, 2013). While such advances are very 

promising, it is still true that ab initio docking does not work well for some systems. In 

these cases, researchers often supplement the docking predictions generated by 

automated methods with knowledge about the system from other sources, such as 

chemical cross linking or NMR data. Automated methods that can use data from 

additional experimental sources can thus improve docking results. Chapters 2 and 3 
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describe extensions to an existing method to make use of additional experimental data to 

improve the accuracy of predictions. 

 In addition to the accuracy of docking methods, efficiency of these methods is 

another important consideration. While the constant growth of computational power has 

made many methods that used to be too expensive to run feasible, algorithmic advances 

that improve the scaling of running times are still important. Chapter 4 describes 

developments that improve the efficiency of rigid body sampling methods when multiple 

sidechain conformations are to be searched. 

1.2 Background Methods 

1.2.1 Global rigid-body docking using FFT 

Methods for predicting the structure of protein complexes can be generally described as 

energy minimization methods. Given the structures of two unbound molecules, the goal is 

to find the structure of the complex, which is understood to be the structure with lowest 

free energy. There exist many different methods that pursue different strategies for 

predicting the structure of the complex. Sequence based methods use the sequence of the 

two proteins to search for similar complexes where the structure is known. By leveraging 

the information from homologous proteins, such methods are usually fast and accurate, 

assuming there are complexes where the homologs are similar enough. On the other 

hand, MD methods explicitly simulate the atoms in the proteins, which make it possible 

to study novel systems where there are no homologs with known structure. However, 

these simulations are costly to run, even on modern hardware. 

 This work is based on the rigid-body global sampling program, PIPER, which has 
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been the object of much study (Brenke et al., 2012; Chuang, Kozakov, Brenke, Comeau, 

& Vajda, 2008; Kozakov, Brenke, Comeau, & Vajda, 2006). PIPER uses a FFT based 

approach to do a global rigid-body search of all possible relative orientations of one 

protein with respect to the other protein. It has been applied to both protein-protein 

systems and protein-small molecule systems. In FFT based methods, the scoring function 

is a sum of 𝑃 different correlation functions. For each rotation of one of the molecules, 

termed the ligand, the score of a relative translation (𝛼, 𝛽, 𝛾) is given by the equation 

𝐸(𝛼, 𝛽, 𝛾) = ∑ ∑ 𝑅𝑝(𝑙, 𝑚, 𝑛)𝐿𝑝(𝑙 + 𝛼, 𝑚 + 𝛽, 𝑛 + 𝛾)

𝑙,𝑚,𝑛

𝑃

𝑝=1

 

where 𝑅𝑝 and 𝐿𝑝 are the components of the scoring function defined for the receptor and 

ligand, respectively. If we choose these component functions carefully, we end up with a 

scoring function that represents a pseudo-energy value of the configuration of the 

molecular complex. 

 This sum of correlation functions can be efficiently calculated using 𝑃 forward 

Fourier transforms and one reverse transform, by rewriting the right-hand side of the 

previous equation as 𝐸(𝛼, 𝛽, 𝛾) = 𝐼𝐹𝑇{∑ 𝐹𝑇∗(𝑃
𝑝=1 𝑅𝑝)𝐹𝑇(𝐿𝑝)}(𝛼, 𝛽, 𝛾) (Katchalski-

Katzir et al., 1992). The component functions 𝑅𝑝 and 𝐿𝑝 are computed on a grid on size 

(𝑁1, 𝑁2, 𝑁3), but if we make the simplifying assumption that these three values are 

roughly the same, then efficiency of the naïve approach is 𝑂(𝑁6). The application of FFT 

reduces this to 𝑂(𝑁3 log(𝑁3)), which was a great algorithm advance, making global 

rigid body methods feasible. Chapter 4 describes a method for decomposing the scoring 

function used in PIPER in a such a way as to allow for efficient search of multiple 
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sidechain conformations. 

 PIPER takes as input a set of rotation matrices to apply to the ligand. For protein-

protein systems, we use a set of 70,000 rotations that are quasi-uniformly distributed over 

the set of all Euler rotations with a grid size of 1 Å. For protein-small molecule systems, 

we use a smaller set of 500 rotations with a grid size of 0.8 Å. PIPER then produces as 

output one or more relative translations of the ligand with respect to the receptor which 

minimizes the scoring function for each rotation. Thus, we obtain a set of conformations 

of the ligand, which produce low values for the scoring function. Depending on the type 

of system we are trying to dock, we take between 500 to 2000 of the lowest energy 

conformations and apply a greedy RMSD based clustering algorithm to obtain a final set 

of 30 to 50 predictions, each of which corresponds to a low energy basin of 

conformations of the complex. 

1.2.3 Computational Solvent Mapping 

Computational solvent mapping is a computational method inspired by an experimental 

technique called Multiple Solvent Crystal Structures (MSCS) (Allen et al., 1996; Mattos 

& Ringe, 1996). In this experimental technique, crystals of a protein of interest are 

soaked in various solutions of small probe compounds, after which X-ray structures of 

the soaked crystals are obtained. The multiple crystal structures are superimposed, and it 

has been shown that regions where multiple different molecular probes bind tend to be 

hotspot regions. By docking with multiple small molecular probes, we can perform a 

computational analog of this experimental technique, which has proven effective for 

predicting the binding hotspots on a variety of different types of macromolecules 
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(Dennis, Kortvelyesi, & Vajda, 2002; Kozakov, Grove, et al., 2015; Landon, Lancia, Yu, 

Thiel, & Vajda, 2007). One application of the work in Chapter 4 is improving the 

efficiency of this method while considering multiple sidechain conformations in a 

binding pocket. 

1.3 Contributions 

The work in Chapter 2 was done in collaboration with Artem Mamonov, who helped test 

parameters for optimizing the protocol for docking proteins using SAXS data. The work 

on efficient docking with flexible sidechains was based on previous work by David Hall 

and Laurie Grove, and the method for generating alternate conformers of each residue 

was developed by Dmitri Beglov. 
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CHAPTER TWO: SAXS Guided Protein Docking 

2.1 Background 

As previously discussed in the background, computational methods still have 

uncertainties in structure determination. Although docking programs, including ClusPro, 

generate several near-native structures for a large fraction of interacting proteins, current 

scoring functions are not reliable enough for selecting the best models. It was shown that 

using ClusPro it may be necessary to retain up to 30 of the lowest energy models to 

assure that the set includes a near-native structure. Thus, additional information can be 

very useful for correct structure determination. Many users of ClusPro are aware of this 

limitation, and combine computational docking with information from a variety of 

experimental techniques, including site-directed mutagenesis, cross-linking, and 

radiolytic protein foot-printing with mass spectrometry. 

Small Angle X-ray Scattering (SAXS) is emerging as an effective approach to 

obtaining low-resolution structural information that can increase the reliability of docking 

results (Graewert & Svergun, 2013). The basic idea of the method is observing the X-ray 

scattering of a macromolecule in solution as a function of the scattering angle. The results 

of the experiment are encoded in a one-dimensional scattering profile determined from 

the spherical averaging of random orientations that a biomolecule can adopt in aqueous 

solution, and contains information about the shape and size of the macromolecule (Yang, 

2014). Without the need for obtaining protein crystals or for labeling the protein, 

obtaining data using SAXS is relatively easy, and thus very appealing. SAXS 

experiments can be performed under a wide variety of solution conditions, including near 
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physiological conditions, and usually take only a few seconds per sample exposure time 

on a well-equipped synchrotron beam line.  However, the information content from 

scattering is much lower than the one that can be obtained by X-ray crystallography, 

which makes docking a natural complement to SAXS for the determination of complex 

structures. 

Recently, several groups reported combinations of SAXS with protein docking 

approaches. Pons et al. ranked docked structures by weighted docking energy and SAXS 

fit score as the combined scoring function. In the method developed by Sali and co-

workers (Schneidman-Duhovny, Hammel, & Sali, 2011) rigid body solutions were 

filtered by a coarse SAXS fit score, clustered, and ranked by a combined scoring 

function. Thus, both methods used combinations of docking and SAXS fit to facilitate 

model selection. Here we take a slightly different approach, and combine the docking 

method implemented in the ClusPro server with SAXS experimental data without 

modifying the scoring function. This is achieved by generating a very large number (at 

least 70,000) of docked structures by global sampling of the conformational space on a 

dense grid, and retaining a smaller but still large number (at least 2000) configurations 

that best agree with the observed SAXS profile. These structures are then ranked by the 

scoring function that was shown to perform well in ClusPro, clustered, and the centers of 

several of the largest clusters are considered as models of the complex, as ordinarily done 

in ClusPro. The main motivation for this approach is that it is based on a well-established 

docking method that for many proteins provides good accuracy docked models without 

the use of any additional information (Comeau et al., 2007; Kozakov et al., 2010, 2013). 
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We account for the SAXS data by focusing on the regions of the configurational space 

containing the structures that are most compatible with the scattering results, but 

otherwise perform the docking as usual. This approach has the advantage that we avoid 

overfitting to the SAXS data, and hence the docking results will not get worse even in 

cases where the SAXS experiment provides very limited additional information. In fact, 

the information content of SAXS profiles substantially depends on the shape of the 

complex considered, and it is generally higher for elongated complexes than for ones 

with more spherical shapes. The parameters of the method, primarily the number of 

structures that should be retained after SAXS filtering, will be selected by considering a 

training set of protein-protein interactions with simulated SAXS data, and the resulting 

algorithm will be applied to a validation set of proteins with experimental SAXS 

information available.  

Currently results of SAXS experiments can be found only for a few protein-

protein complexes.  Although the application of the method is simple, the main problem 

is that unless the binding is very strong, an experimental SAXS profile for a complex 

may be a mixture of values for the complex and the unbound component proteins, thus 

complicating the analysis. However, due to recent developments in the methodology, 

particularly the ability of obtaining more homogeneous samples using size exclusion 

chromatography, we expect that the popularity of SAXS for determining protein complex 

structures will substantially increase. Therefore, we believe that expanding the already 

well-tested docking server ClusPro by enabling it to account for SAXS data will be 

useful. The use of the server is free for academic and governmental research. 
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2.2 Methods 

The method presented here addresses the docking problem restrained by a SAXS profile. 

Thus, given two structures of molecules (referred to as a receptor and a ligand) and the 

SAXS profile of their complex, we use ClusPro to find the complex structure. We assume 

at most moderate conformational changes, primarily in the side chains and backbones 

that can accounted for by using a smooth scoring function and by performing local 

energy minimization. The docking protocol involves three steps as described below.  

 

Step 1: Generating docked structures.  

PIPER, the docking program implemented in ClusPro, is based on the fast Fourier 

transform correlation approach, and uses a pairwise interaction potential as part of its 

scoring function 𝐸 = 𝐸𝑎𝑡𝑡𝑟 + 𝑤1𝐸𝑟𝑒𝑝 + 𝑤2𝐸𝑒𝑙𝑒𝑐 + 𝑤3𝐸𝑝𝑎𝑖𝑟 (Kozakov et al., 2006). Here 

𝐸_𝑎𝑡𝑡𝑟 and 𝐸𝑟𝑒𝑝 denote the attractive and repulsive contributions to the van der Waals 

interaction energy 𝐸𝑣𝑑𝑤, 𝐸𝑒𝑙𝑒𝑐 is an electrostatic energy term, and the pairwise term 𝐸𝑝𝑎𝑖𝑟 

represents the desolvation contributions. The repulsive term is designed to not penalize 

small conformational clashes, thus resulting in a “smooth” scoring function. The 

coefficients 𝑤1, 𝑤2, and 𝑤3 specify the weights of the corresponding terms, and are 

optimally selected for different types of docking problems (Kozakov et al., 2013). Unless 

specified otherwise, ClusPro simultaneously generates four types of models using the 

scoring schemes called (1) balanced, (2) electrostatic-favored, (3) hydrophobic-favored, 

and (4) van der Waals + electrostatics. The balanced option works generally well for 

enzyme-inhibitor complexes, whereas options (2) and (3) are suggested for complexes 
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where the association is primarily driven by electrostatic and hydrophobic interactions, 

respectively. The fourth option, van der Waals + electrostatics, means that 𝑤3 = 0, that 

is, the pairwise potential 𝐸𝑝𝑎𝑖𝑟 is not used. For each parameter set, ClusPro explores 

70,000 rotations of the ligand on a translational grid with 1 Å spacing, and retains the 

best (i.e., lowest energy) translation for each rotation, thus resulting in 70,000 structures. 

In addition to the above modes, the “others mode” can be selected as an advanced option 

for the so-called “other” type of complexes that primarily occur in signal transduction 

pathways (Chen, Tong, Mintseris, Li, & Weng, 2003), and generally have substantially 

less perfect shape and electrostatic complementarity than the enzyme-inhibitor 

complexes. Due to the diverse nature implied by the “other” classification, this mode uses 

three different sets of weighting coefficients, generating 70,000 structures for each. 

 

Step 2: Calculation of the SAXS profile and SAXS based filtering of docked 

structures. 

We calculate the theoretical SAXS profile using the Debye formula 

𝐼(𝑞) = ∑ ∑ 𝑓𝑖(𝑞)𝑓𝑗(𝑞)

𝑗𝑖

sin(𝑞𝑑𝑖𝑗)

𝑞𝑑𝑖𝑗
 

where the scattering intensity 𝐼 is a function of the momentum transfer 𝑞 =
4𝜋 sin(𝜃)

𝜆
 at the 

scattering angle 𝜃, and 𝐼 computed by summing over all pairs of atoms (Debye, 1915). 

The quantities 𝑓𝑖(𝑞) and 𝑑𝑖𝑗 are the scattering factor of atom 𝑖 and the distance between 

atoms 𝑖 and 𝑗, respectively. The scattering form factor is a function of the atom, as well as 

the displaced solvent and hydration layer, 𝑓(𝑞) = 𝑓𝑣(𝑞) − 𝑐1𝑓𝑠(𝑞) + 𝑐2𝑠𝑓𝑤(𝑞), where 
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𝑓𝑣 is the form factor in vacuo, 𝑓𝑠 is the form factor of a dummy atom of solvent, 𝑠 is the 

fraction of solvent accessible surface area, and 𝑓𝑤 is the form factor of water. The two 

constants 𝑐1 and 𝑐2 adjust the volume of the dummy atom and the difference in density 

between the hydration layer and bulk water, respectively. The default values of these 

parameters are 𝑐1 = 1.0 and 𝑐2 = 0, and since the deviations from these values are small, 

they are fixed at the default values to reduce computational efforts as proposed by Sali 

and co-workers (Schneidman-Duhovny, Hammel, Tainer, & Sali, 2013). This 

simplification can be used here because we utilize the approximate SAXS profile only to 

select the region of conformational space, and do not directly incorporate SAXS values 

into the scoring function. The SAXS profile 𝐼(𝑞) is calculated for each structure 

generated in Step 1, and the difference between the this and the experimental profile 

𝐼𝑒𝑥𝑝(𝑞) is measured in terms of the 𝜒 score, defined by  

χ =
√ 1

𝑀
∑ (𝐼𝑒𝑥𝑝(𝑞𝑖) − 𝐼(𝑞𝑖))

2
𝑀
𝑖

𝜎(𝑞𝑖)
 

where M is the number of points, and σ(q) is the error of the experimental profile. As 

described in Step 1, unless the “others mode” is used, 70,000 structures are saved for 

each of the four parameter sets used by ClusPro. The structures in each result file are 

ranked based on the χ score, and the 2000 structures that have the best fit to the 

experimental SAXS profile are retained. When the “others mode” is used, the structures 

are ranked based on the χ score in each of the three result files, resulting in 6,000 

structures.  
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Step 3. Rescoring and clustering.  

Unless the “others mode” is used, we have four result files from Step 2 for the different 

parameter sets, each containing 2000 structures.  In each file the structures are re-ranked 

based on the PIPER energy, and the 1000 lowest energy structures are clustered as 

described previously. The standard ClusPro output shows the centers and populations of 

the 10 largest clusters for each of the four different parameter sets. In contrast, using the 

“others mode” we re-rank the 2,000 structures in each of the three result files, and select 

the 500 lowest energy structures from each file. The retained 1500 structures are merged 

and clustered, and the centers and populations of the 10 largest clusters are shown. Model 

selection based on filtering by 𝜒 values, followed by the selection and clustering of 

several low energy structures has two advantages relative to methods that seek structures 

with the lowest values of scoring functions combining an energy score and a SAXS fit 

score. First, retaining many structures that give a good fit to the SAXS profile eliminates 

overweighting dependence on this type of measurements that may carry very limited 

information for roughly spherical protein complexes. Second, retaining the largest 

clusters of low energy structures rather than the ones with the lowest scores makes our 

results less sensitive both to the inherent errors in the SAXS data and to the 

conformational variation in the structures generated by docking. 

 

Training Data Set. The method was trained using simulated profiles generated from 

crystal structures of 49 "others type" complexes in the protein docking benchmark (Chen 

et al., 2003). The “others type” complexes, including cell surface receptors and signal 
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transduction proteins, were chosen since they generally are the most challenging for 

docking. Simulated SAXS profiles were generated using 𝑐1 = 1.0 and 𝑐2 = 0, for a range 

of the q parameter between 0.0 and 0.3, with a step size of 0.05 using the method for 

computing theoretical SAXS profiles as described in Step 2. As will be described, the 

main goal of training is the selection of the number of structures with good fit to the 

experimental SAXS profile that should be retained to optimally account for the 

information provided by the SAXS data. 

 

Experimental SAXS Data. The impact of accounting for SAXS information was 

demonstrated by applying the method to experimental data for a lysozyme-inhibitor 

complex, where the Protein Data Bank (PDB) code for the X-ray crystal structure of the 

complex is 4G9S, and for the inhibitor structure it is 4DY3. SAXS data for three 

homodimers suitable for use as tests cases were taken from the Bioisis database 

(http://bioisis.net) and from the SASBDB database (http://www.sasbdb.org/) (Error! 

Reference source not found.). The two dimers from Bioisis are a superoxide dismutase 

(Bioisis ID: APSODP) and the protein PYR1 (Bioisis ID: 1PYR1P). The dimer from 

SASBDB is a myomesin dimer (SASBDB ID: SASDAK5).  

 

Homology modeling.  Models were built using Modeller v9.0 (Sali & Blundell, 1993), 

using the templates shown in Table 1. Lys side chains that were not present in the 

template were not modeled since they have uncertain localization. Aromatic residues 

http://bioisis.net/
http://www.sasbdb.org/
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(Tyr, Phe, and Trp) that were not present in the template were placed in the most 

probable non-clashing rotamer positions. 

 

3.3 Results 

Results for the training set. Figure 1 shows the histogram of docking performance, as 

compared to the ab initio docking approach, for the 49 test complexes with simulated 

SAXS data in the training set. These results show that accounting for SAXS profiles 

almost doubles the number of systems (from 12 to 21) that have a near-native structure in 

the first (largest) cluster. The top 10 clusters include near-native structures for 39 of the 

49 systems if we use the SAXS-based filtering, but only for 30 if no SAXS data are 

considered. We have studied the performance of the method depending on the number of 

structures retained in the SAXS filtering step (Figure 4). As shown, the best performance 

occurs if 2000 structures with the best fit to the SAXS profile are selected. The detailed 

results show that in almost all cases, both the rank and the RMSD of the near-native 

structure is improved. In a few cases, we do not find any predictions within 10 Å RMSD 

from the native pose. However, in these cases the ab-initio prediction is also relatively far 

from the native pose, thus these predictions would have been filtered out during the 

SAXS filtering step. Retaining fewer structures, and thus putting more emphasis on 

SAXS data, results in worse performance for several complexes. The reason is that we 

use cluster size for model discrimination. Clustering requires many near-native structures 

that are close to each other in terms of the pairwise interface root mean square deviation 
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(RMSD). However, not all such structures have low SAXS scores, and thus we should 

retain enough structures within a SAXS score range for reliable clustering. On the other 

extreme, retaining too many structures in the SAXS filtering would yield results that are 

like those obtained by docking without considering the SAXS data. However, the results 

remain similar within the range of 500 to 5000 structures retained, demonstrating the 

robustness of the protocol. 

 

Figure 1. Validation using 49 complexes from the protein docking benchmark. Distribution 

of ranks of near-native models for ab initio docking shown in red, and SAXS docking in 

blue. 
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Figure 2. Top: SAXS profile of top ranked model, but which is far from native 

conformation, predicted by SAXS docking protocol (SAXS Fit score 𝝌 = 𝟎. 𝟖𝟕). Bottom: 

SAXS profile of near-native model (SAXS Fit score 𝛘 = 𝟎.78). This shows that the 

theoretical profile of an incorrect prediction can be fairly similar to the experimental profile. 

Thus, the SAXS fit score is not used to rank to the final outputs, but rather the cluster sizes 

are used. 
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Figure 3. RMSD versus SAXS fit score for cases with experimental data. 2A: Myomesin-1 

dimer (SASBDB ID: SASDAK5), 2B: superoxide dismutase dimer (Bioisis ID: APSODP), 

and 2C: PYR1 dimer (Bioisis ID: 1PYR1P). For each of the conformations predicted by 

PIPER, the SAXS 𝝌 score is plotted versus the RMSD to the native structure. While 

structures with low RMSD also tend to have low 𝝌 scores, there are also many structures 

with low 𝝌 score but high RMSD. This shows that the information content in SAXS is 

limited, as there are potentially many conformations with the same shape as the bound 

complex but with large RMSD to the native structure. 
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Table 1. 

Experimental Case Database ID 
Template 

PDB ID 

Sequence 

Identity 

Original 

Rank 

Final 

Rank 

PliG-Lysozyme N/A 1GBS 57.75% 6 3 

Superoxide dismutase 

dimer 
APSODP (Bioisis) 3F7K 62% 3 2 

PYR1 dimer 1PYR1P (Bioisis) 3K3K 100% 3 3 

Myomesin-1 dimer 
SASDAK5 

(SASBDB) 
2RL5 99% N/A 2 

 

Results for Complexes with Experimental SAXS Data. Despite the potential of 

combining protein-protein docking with SAXS, experimental SAXS data on protein 

complexes remains scarce. However, as mentioned, recent methodology development 

such as size exclusion chromatography (SEC) SAXS, which allows for obtaining much 

more homogenous samples, should increase usage of SAXS for complex structure 

determination. Here we demonstrate the approach on one case of protein complex and 3 

dimer test cases with experimental data (Error! Reference source not found.).  

Table 1: The four validation cases using experimental data. The database ID can be used to 

find the SAXS data from the Bioisis or SASBDB databases. The template structures were 

used to build homology models of the ligand for the PliG-Lysozyme case, and of the 

monomer in the dimer cases. The ranks shown are the rank of the near native cluster as 

predicted by our method. 

To get insight on how the approach works, we show SAXS fit score versus the 

RMSD values in Figure 2 for the systematic docking of E. coli PliG with the model of 

Atlantic salmon g-type lysozyme, where SAXS experimental data was available (Leysen, 

Vanderkelen, Weeks, Michiels, & Strelkov, 2013). 
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Table 2. Ranks and RMSD of the near-native docked pose for all 49 training set 

cases. In the cases where there were no poses within 10.0 angstrom RMSD from the 

   CLUSPRO-SAXS CLUSPRO ONLY 

PDB Rank RMSD Rank RMSD 
1A2K 1 3.80 5 4.24 

1AKJ 9 4.02 6 6.05 

1ATN 2 6.66 N/A N/A 

1AZS 9 5.07 21 2.73 

1B6C 1 3.57 1 4.01 

1BUH 1 6.51 28 3.84 

1E96 1 9.86 5 4.70 

1EER 1 8.64 16 6.60 

1F51 N/A N/A N/A N/A 

1FFW 2 9.17 9 8.80 

1GLA 1 4.03 1 9.26 

1GPW 1 1.88 1 3.28 

1GRN 2 4.19 7 5.22 

1H9D N/A N/A N/A N/A 

1HE1 3 4.68 10 6.42 

1I2M 6 7.01 44 4.22 

1J2J 2 8.86 1 8.42 

1JK9 1 9.41 2 9.75 

1JWH 1 4.10 5 4.83 

1JZD 15 6.08 31 4.32 

1K5D 1 7.39 N/A N/A 

1K74 1 3.89 1 3.36 

1KXP 1 4.76 1 3.77 

1LFD 32 8.36 N/A N/A 

1ML0 1 6.89 1 4.97 

1OFU 1 3.66 1 4.04 

1R6Q 1 7.41 N/A N/A 

1RLB 19 4.70 8 6.45 

1RV6 8 9.19 N/A N/A 

1SYX 2 4.78 1 6.58 

1WQ1 8 9.16 10 8.03 

1XD3 N/A N/A 1 2.98 

1XQS 1 5.56 6 7.53 

1Z0K 15 2.51 26 3.40 

1Z5Y N/A N/A 2 4.08 

1ZHI 3 4.04 9 7.28 

2A5T 9 9.43 N/A N/A 

2AYO 1 5.76 4 5.74 

2BTF 1 5.29 14 8.22 

2CFH 7 6.45 3 4.72 

2G77 2 6.45 14 7.51 

2HLE N/A N/A 3 4.58 

2HRK 1 4.50 4 6.91 

2I9B 2 7.45 11 6.05 

2NZ8 4 7.70 1 9.78 

2OT3 N/A N/A 22 9.80 

3BP8 5 6.52 6 8.73 

3CPH 1 9.22 2 8.06 

3D5S 1 3.48 1 3.94 
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bound pose the rank and RMSD are reported as N/A. 

 

 

Figure 4: Distribution of ranks of near native models for docking with SAXS using different 

cutoff points for the SAXS filtering step. The best performance is found when we retain the 

top 2000 conformations by chi score. 
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2.4 Discussion 

Due to spherical averaging, the SAXS data frequently provide limited information for 

protein docking. In fact, two conformations can have equally low SAXS fit scores but 

very different RMSDs from the native structure. Plots for the other experimental cases 

are shown on the Figure S2. Like the lysozyme case, discrimination of the near-native 

conformations by SAXS chi-score is limited for the globular system PYR1. However, 

when the geometry of the complex is more elongated (myomesin-1 and superoxide 

dismutase), the SAXS chi-score becomes more discriminative and we can see sharper 

funnels in a neighborhood of the native structure (with 10Å RMSD for the myomesin-1 

dimer and 7Å RMSD for the superoxide dismutase dimer). In Figure 2 we show the 

SAXS profile of an incorrect model with a relatively low SAXS fit score, compared to 

near-native model to demonstrate that they both satisfy the SAXS constraints. 

Nevertheless, if we dock the PliG protein to lysozyme without the SAXS filtering step, 

the near native model is ranked 6th, whereas it is ranked 3rd if the SAXS data are 

considered. Improvement was also observed for two of the three dimers in Table 1. 

Although the improvement may be moderate, the docking did not yield any near-native 

structure for Myomesin-1 dimer without the SAXS constraints, and thus accounting for 

the additional information was crucial.
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CHAPTER THREE: Spatial Restraint Guided Protein Docking 

3.1 Background 

Despite the significant progress, docking methods generally cannot be fully trusted when 

used without any experimental validation. The main reason is that the current scoring 

functions are not accurate enough for finding the best models among the ones generated 

by the sampling. Thus, additional information can be very useful for improving the 

reliability of structure determination. Accordingly, in the scoring function used by 

ClusPro we have the option to apply extra attraction terms to residues that are a priori 

known to be the inter-face. Conversely, repulsion terms are applied to residues that are 

not expected to be in the interface. However, what ClusPro was lacking so far was the 

ability to define distance restraints between pairs of atoms or residues. Such restraints can 

be derived, e.g., from NMR Nuclear Overhauser effect (NOE) experiments, by FRET, or 

by chemical cross-linking, and are very useful as they provide information on the relative 

orientation of the two proteins. In fact, the use of restraints is central to the popular 

HADDOCK server. HADDOCK incorporates the interaction restraints into the scoring 

function to guide the search toward regions of the conformational space in which the 

restraints are satisfied. HADDOCK applications generally involve interaction restraints 

based on 10 to 25 residues on the two sides of the interface. 

 While the extra terms in the scoring function due to the restraints do not 

significantly increase the computational burden if the sampling is based on Monte Carlo 

or molecular dynamics algorithms, a similar approach is very costly when used with FFT 

based sampling. The problem is that each pairwise restraint in the scoring function 
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requires a new correlation function term, and thus an additional Fourier transform. Since 

the expression used for scoring generally includes only four or five correlation functions, 

representing the various energy contributions, adding just five distance constraints would 

double the computational burden. Thus, it is not surprising that none of the successful 

FFT based docking programs has the option of accounting for pairwise restraints. 

However, since FFT performs global sampling, there is no need for guiding the search 

toward feasible regions. Based on this observation we solve the problem by directly 

selecting low energy solutions that also satisfy the restraints. As will be shown, this 

implies that frequently only portions of configurational space need to be examined, and 

hence in some cases the computational efforts are reduced. A further advantage is that the 

scoring function is not affected, and thus we retain the favorable properties of the 

ClusPro server, validated in many rounds of the CAPRI docking experiment. In this note 

we consider pairs of proteins from the protein docking benchmark, and show that 

accounting for a varying number of simulated distance restraints significantly improves 

the results. Additional validation is presented for two systems with experimentally 

determined distance restraints. 

3.2 Methods 

A pairwise distance restraint can be defined by two sets of atoms, 𝑆1 and 𝑆2 and a 

distance range, 𝑑𝑚𝑖𝑛 to 𝑑𝑚𝑎𝑥. The restraint is considered satisfied if there is at least one 

atom in 𝑆1 and at least one atom in 𝑆2 such that the distance between them falls in this 

range. While the implementation allows for arbitrary sets of atoms to be used to define a 

restraint, most frequently these involve a single atom or residue on each side of the 
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interface. Given multiple restraints, users may wish to require a certain number of 

restraints out of a group to be satisfied. In addition, restraints may be based on sources 

with varying reliability, requiring different cutoff values. Our implementation allows for 

grouping restraints into restraint groups, and restraint groups into restraint sets. Restraint 

groups are considered satisfied when more than a user specified number of restraints in 

the group are satisfied, and a restraint set is satisfied when more than a user specified 

number of its groups are satisfied. This hierarchical definition is flexible enough to 

provide options that are like the ones used by HADDOCK. We have developed a JSON 

based file format for specifying groups of restraints used by our restraint library, as well a 

script for converting data in the NOE format into our JSON format. A full description of 

the file format is provided in Appendix 1. 

Docking is performed using PIPER, which samples all translations and rotations 

of a ligand protein with respect to a receptor protein. When a restraint set is provided, 

PIPER will only report solutions that satisfy the restraints. To do this efficiently, we first 

generate the set of translations that satisfy each individual restraint, called the feasible 

translation set for that restraint. We then consider the intersection of feasible translation 

sets for the restraints in each restraint group, and select the translation that appears more 

often than the cutoff for the restraint group. The selected feasible translation sets for each 

restraint group are merged in a similar way to generate the feasible translation set for an 

entire restraint set.  

We note that providing restraints can decrease the running times by using the 

restraint set to generate a feasible translation set for each rotation. For each feasible 
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translation, the van der Waals interaction energy is computed and is used to filter out 

translations that result in unacceptable clashes. If there are no feasible translations 

leading to an acceptable van der Waals energy, the rotation is skipped and no other 

energy terms are evaluated. In practice, this often results in skipping many rotations. 

When the cost of generating the feasible translations is less than the cost of evaluating the 

additional energy terms, fast rotation skipping results in an overall speedup. After 

selecting the solutions that satisfy the restraints, 1000 structures with the lowest PIPER 

energies are clustered and minimized as customary in ClusPro. 

Data Preparation 

E2A-Hpr complex. For this test case we considered the restraints based on NMR 

experimental data (Garrett, et al., 1997).  An AIR restraints file was generated for the 

application of HADDOCK to this problem (Dominguez, et al., 2003). The AIR restraints 

file was converted to a JSON file using a Python script, which added 1.5 Å to the top end 

of the distance range, for a range of 0 to 4.5 Å for each restraint. In addition, since the 

domains to be docked are defined as chain A in both E2A and Hpr, we set the ligand 

chain in the restraint file to A for every restraint.  

 

Nucleosome complex. The docking of the UbcH5c subunit of the PRC1 complex to 

histone H2A of nucleosome was target 95 of the CAPRI docking experiment. Restraints 

were generated after examining the evidence available from the literature. Based on 

Bently et al. (2011) we knew that there is an interaction between Lys119 of histone H2A 

and Cys85 of the UbcH5c subunit, and hence we created one restraint that had to be 
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satisfied between these two residues. The required range, 0 to 8 Å, was fairly large, 

because these residues were located in flexible tail regions of the proteins. To assure that 

Lys97 and Arg98 interact with the histone in the nucleosome, we created a second 

restraint group with multiple restraints, from Lys97 to the set of surface residues on the 

histone. In this second group, we only require one of the restraints to be satisfied, since it 

is not known which of the residues on the surface of the histone interact with Lys97. 

While these restraints were generated manually within an interactive Python 

session, we have created an interactive web application that can aid in the creation of 

similar JSON restraint files for other users. This tool can be found at 

https://cluspro.bu.edu/generate_restraints.html. Using the web form there, users can 

easily create complex restraint sets. 

For example, the restraints used for the nucleosome test case could have been created 

using the web application as follows: 

• Set “Required percent of groups” to 100. We want both the specific restraint and 

the Lys97 to surface restraint group to be satisfied. 

• Create the Lys119 to Cys85 restraint. Set “Required percentage of restraints” to 

100 for the first restraint group, and add a restraint from “G 118” to “A 85” (these 

are the residue identifiers from the PDB files). 

• Create the Lys97 to surface restraints. Click “Add Group” to add a new restraint 

group, then add 46 restraints from ligand residue “C 97” to the following list of 

receptor residues: "E 73", "E 76", "E 77", "E 80", "E 134", "F 25", "F 27", "F 52", 

"F 56", "F 59", "F 67", "F 74", "G 14", "G 19", "G 22", "G 61", "G 64", "G 65", 

https://cluspro.bu.edu/generate_restraints.html
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"G 68", "G 71", "H 44", "H 47", "H 48", "H 89", "H 96", "H 102", "H 105", "H 

106", "H 109", "H 113", "H 116", "H 117", "H 120", "I 5", "I 6", "I 15", "I 46", "I 

47", "I 56", "I 57", "J -52", "J -51", "J -42", "J -41", "J -11", and "J -10". Set the 

required percentage to 2, which should result in only 1 restraint being required in 

this group. 

Click “Create Restraints”. A JSON formatted restraint set should appear below the form. 

The user can then copy and paste this into a text file, or click the “Save As…” button to 

save the file to disk. 

 

Benchmark for docking with simulated restraints 

Receptor and ligand PDB files were acquired from the ZLAB Benchmark 4, a curated set 

of protein-protein complexes with known structure (Hwang, Vreven, Janin, & Weng, 

2010). Using the structures super-imposed into the bound pose, we ordered pairs of 

residues across the interface by their C-alpha distance, and chose the top 20 residue pairs 

with minimum distance to use in restraint set.  

 

3.3 Results 

We tested the impact of restraints on the ClusPro results for 101 rigid enzyme-

inhibitor and “other” type complexes from version 4 of the protein docking benchmark. 

For 55 out of these 101 cases, ClusPro without restraints did not produce a near native 

structure in the top 5 predictions. Near-native structures were defined as the ones with 

less than 10.0 Å interface root mean square deviation (IRMSD) between X-ray and 
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predicted ligand positions after superimposing the receptor structures. For each of these 

55 cases a set of restraints was generated by selecting the 20 closest residue pairs across 

the known interface for creating a restraint group. For each restraint, 𝑑𝑚𝑎𝑥  was set to the 

actual Cto C distance plus 2.0 Å, and 𝑑𝑚𝑖𝑛 to half the distance. To test the effectiveness 

of adding restraints, we ran docking calculations using different requirements for the 

number of restraints to be satisfied.  With the addition of restraint sets, even at a 

relatively non-stringent requirement of 50% of the restraints satisfied, we start to see near 

native poses ranked within the top 5 clusters (Figure 5).  For the chosen test set, using 20 

restraints across the interface and requiring all restraints to be satisfied was sufficient to 

produce near- native conformations within the top 5 predictions for all cases, and as the 

top prediction for 53 of the 55 complexes. 
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Figure 5. Ranking of clusters that include the first near-native structure when satisfying 

varying fraction of the restraints in docking the test set with simulated restraints. 

E2A-Hpr complex. Our first test case with restraints based on experimental data is the 

E2A-Hpr complex, also studied using HADDOCK. The Ambiguous Interaction 

Restraints (AIRs) were converted into a restraint set (see Data Preparation Section 

above). We compared docking without any restraint to docking using the restraint set 

(Figure 6). ClusPro works very well for this complex even without restraints, as the 

second ranked cluster includes a near-native structure. Accounting for the restraints 

further improves the result, and the first near-native solution is contained in the top 

ranked cluster. 
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Figure 6. iRMSD vs. energy plots for pre-clustering results for the E2A-Hpr test case. 

iRMSD is calculated using alpha carbon in the interface of the complex. Each docking 

result is shown as a dot, and the cluster centers are shown as open triangles. Docking with 

restraints shifts the distribution to the left, but also increases the range of the energies 

observed for the lowest 1000 results. The cluster center of the near-native funnel is shifted 

from 3.78 Å iRMSD down to 2.88 Å iRMSD. 

Nucleosome complex. The Polycomb repressive complex (PRC1) binds and 

ubiquitinates the nucleosome in histone H2A on Lys119. Cys85 in the UbcH5c subunit of 

the PRC1 complex was known to interact with Lys119 of H2A during the ubiquitination 
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reaction. In addition, Lys97 and Arg98 of the PRC1 complex were shown to be required 

for activity, although it was not known where on the nucleosome these residues 

interacted. Based on this experimental data, we constructed a restraint, which required 

Cys85 to be within 5 Å of Lys119, and supplemented it with restraints that required 

Lys97 to be close to the surface of the nucleosome complex (see Data Preparation 

Section above). Docking using this restraint set produced the native pose ranked 2 with a 

C𝛼 RMSD of 6.8 Å (Figure 7). 

 

Figure 7. iRMSD vs energy plots for pre-clustering results for the nucleosome test case. 

iRMSD is calculated using alpha carbon in the interface of the complex. Each docking 
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result is shown as a dot, and the cluster centers are shown as open triangles. In this test case 

docking with restraints drastically shifts the distribution to the left, with the iRMSD of the 

best cluster center moving from 38.68 Å to 4.53 Å.  
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 NO 

RESTRAINTS 

25% 

SATISFIED 

50% 

SATISFIED 

75% 

SATISFIED 

100% 

SATISFIED 

ID Rank RMSD 

(Å) 

Rank RMSD 

(Å) 

Rank RMSD 

(Å) 

Rank RMSD 

(Å) 

Rank RMSD 

(Å) 

1A2K 5 4.13         

1AK4   21 9.83 11 6.3 1 4.34 1 4.65 

1AKJ 6 6.06 5 3.73 4 4.19 3 5.24 1 3.23 

1AZS 21 2.56 5 2.44 5 2.44 1 2.89 1 1.46 

1B6C 1 2.96         

1BUH 27 9.36 1 5.51 1 5.19 1 4.29 1 1.66 

1E96 7 4.98 1 5.08 1 6.3 1 3.99 1 2.36 

1EFN     12 6.54 3 5.97 1 2.49 

1F51   7 2.35 6 2.5 1 5.35 1 2.99 

1FC2   4 8.88 1 9.18 2 9 1 6.26 

1FCC   28 9.2 4 6.05 1 4.7 1 3.36 

1FFW 1 9.68         

1FQJ   15 4.74 3 5.49 1 2.96 1 2.54 

1GCQ     11 7.43 1 3.86 1 3.14 

1GHQ   19 8.6 15 7.1 12 7.42 1 1.61 

1GLA 1 8.9         

1GPW 1 5.48         

1H9D 19 9.92 14 9.37 6 5.57 3 5.02 1 3.54 

1HCF   9 8.33 12 4.9 3 3.14 1 1.15 

1HE1 10 6.24 5 3.57 1 4.43 1 3.75 1 2.32 

1I4D   19 9.9 6 7.98 3 6.39 1 4.7 

1J2J 1 8.17         

1JWH 5 4.02         

1K74 1 3.26         

1KAC   8 4.79 1 2.15 1 1.86 1 1.17 

1KLU     15 9.95 5 3.77 1 3.28 

1KTZ   8 5.49 4 5.87 1 5.56 1 1.73 

1KXP 1 2.97         

1ML0 1 4.49         

1OFU 1 3.98         

1PVH   7 9.2 7 8.74 7 8.07 1 2.62 

1QA9   8 4.22 2 5.02 1 1.96 1 4.55 

1RLB 7 6.14 17 3.87 6 6.28 6 4.2 1 2.75 

1RV6   7 6.52 4 4.71 1 3.35 1 1.07 

1S1Q   7 5.07 5 5.89 1 2.75 1 2.97 

1SBB     15 2.17 5 5.45 1 2.66 

1T6B   6 5.3 1 4.22 1 2.27 1 2.96 



 

 

34 

1US7   25 6.69 6 6.56 10 5.01 2 5.45 

1WDW 1 6.23         

1XD3 1 2.96         

1XU1   6 3.04 1 2.34 1 2.23 1 1.63 

1Z0K 2 9.26         

1Z5Y 2 3.77         

1ZHH   7 6.85 5 6.22 1 4.74 1 2.46 

1ZHI 9 7.34 1 2.81 3 5.19 2 4.66 1 1.41 

2A5T   22 5.96 13 6.29 3 6.04 1 3.54 

2A9K   1 4.53 8 4.08 1 3.47 1 2.83 

2AJF   25 5.16 14 6.47 2 2.05 1 4.18 

2AYO 4 5.45         

2B4J     1 8.05 6 7.3 1 4.26 

2BTF 18 8.15 1 4.64 1 2.54 1 2.54 1 4.16 

2FJU   24 5.96 9 3.48 1 5.39 1 3.82 

2G77 13 6.89 2 3.59 1 3.7 1 4.4 1 3.18 

2HLE 3 8.36         

2HQS   2 4.79 1 3.22 1 2.66 1 3.85 

2OOB   5 7.28 6 3.49 2 5.94 2 5.46 

2OOR   3 5.3 2 5.3 1 3 1 3.71 

2VDB   3 7.02 1 5.01 1 4.89 1 1.44 

3BP8 6 8.46 1 6.92 3 6.85 1 5.43 1 4.89 

3D5S 1 3.3         

1AVX 1 3.3         

1AY7 3 6.14         

1BVN 1 6.01         

1CGI 2 9.13         

1CLV 1 5.05         

1D6R 18 7.62 8 6.06 8 5.07 4 2.66 1 2.77 

1DFJ 2 3.79         

1E6E 1 3.42         

1EAW 2 5.71         

1EWY 4 7.26         

1EZU 8 3.2 5 3.18 1 3.63 1 3.75 1 3.34 

1F34 13 5.99 2 6.01 2 5.11 1 5.01 1 2.22 

1FLE 2 5.04         

1GL1 1 9.22         

1GXD   1 8.13 1 7.23 2 5.62 1 3.73 

1HIA 7 8.01 8 7.99 3 5.22 1 5.31 1 3.07 

1JTG 1 3.75         



 

 

35 

1MAH 2 6.68         

1N8O 1 6.11         

1OC0 3 7.99         

1OPH 8 8.67 6 7.72 3 7.13 7 4.36 1 3.88 

BOYV   22 4.06 7 7.08 2 4.03 1 1.79 

1OYV 1 3.3         

1PPE 1 2.33         

1R0R 4 1.65         

1TMQ 7 2.87 1 3.61 1 2.95 1 3.49 1 3.27 

1UDI 1 2.54         

1YVB 3 3.81         

2ABZ 19 5.51 6 5.52 1 5.67 1 2.69 1 2.74 

2B42 2 4.97         

2J0T 1 9.6         

2MTA 3 6.05         

2O8V 13 5.55 6 6.46 4 5.16 1 5.38 1 5.48 

2OUL 1 2.93         

2PCC 6 5.76 12 6.01 16 9.61 1 5.07 1 2.79 

2SIC 1 4.26         

2SNI 1 3.81         

2UUY 7 7.14 1 6.5 1 5.15 1 6.17 1 3.61 

3SGQ 4 9.96         

4CPA 6 2.95 1 4.35 1 3.43 1 2.64 1 1.9 

7CEI 3 4.89         

Table 3. Rank and RMSD values for all benchmark cases. For cases where ClusPro without 

restraints already produced a near native prediction with rank less than or equal to 5, we 

did not test the docking with restraints. For the other 55 cases where ClusPro did not 

produce a highly ranked near native prediction, we tested our restraints method with 

different restraint sets. Using the most stringent restraints produces the best ranking results 

overall. The ID is the taken from the protein benchmark in a few cases different chains 

from the same PDB entity were used for docking, so these have a different ID than found in 

the PDB (for example, BOYV which corresponds to 1OYV). Using the most stringent 

synthetic restraints results in the near native pose in either rank 1 or 2. While the restraints 
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in all these cases were the same, we can clearly see that requiring fewer of the restraints to 

be satisfied does not sufficiently constrain the ligand to the native pose. 

3.4 Discussion 

We describe implementation of pairwise restraints to the FFT sampling approach. Unlike 

other approaches which bias the energy function to steer the docking results towards 

satisfying the restraints, we leave the energy function intact and restrain the search space. 

Our implementation allows the user to vary the confidence in the restraints by varying the 

number of restraints to be satisfied, as well as specifying restraints in multiple groups to 

account for multiple possible interfaces. Accounting for restraints we demonstrate that 

this approach improves results even with spurious restraints. This was shown by using 

simulated restraints on a well-known docking benchmark, as well as in applications with 

restraints based on experimental data. The method is freely available as part of ClusPro 

protein docking server.
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CHAPTER FOUR: Efficient Global Sampling of Flexible Sidechains 

4.1 Background 

While FFT based methods have proven very effective for protein docking, they are still 

limited by the rigid body nature of the global sampling. While this limitation does not 

prevent the method from working for many systems, we can still obtain better results 

when taking flexibility into account. This is seen in the way we implement the shape 

complementarity term in the scoring function, where we “soften” the surface layer of the 

proteins so that clashes at the surface are not as heavily penalized. This results in the 

surfaces of the initial predicted structures overlapping slightly, which is afterwards 

corrected by minimizing using a more precise energy function. 

 Previous work in the lab showed that considering multiple conformations of the 

sidechains of key residues in the binding pocket can improve the quality of mapping 

results (Grove, Hall, Beglov, Vajda, & Kozakov, 2013). However, the method was 

implemented by repeating the global rigid body docking stage for all conformations of 

the key sidechains, which proved to be computationally expensive. In addition to this use 

case, there are other types of systems where the ability to efficiently sample multiple 

sidechain conformations while still performing global systematic search would be useful. 

For example, there exist protein-protein interactions where an anchor residue must exist 

in a specific conformation for binding (Rajamani, Thiel, Vajda, & Camacho, 2004). For 

these types of interactions, a systematic search of the conformations of the anchor residue 

may lead to improved docking accuracy. 
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4.2 Methods 

Previous work has shown how to efficiently calculate energy-like scoring functions using 

the FFT if the functions are in the form of a correlation functions. This insight 

significantly improved the efficiency of exhaustive global sampling from 𝑂(𝑁6) to 

𝑂(𝑁3 ln 𝑁). Using this technique, it becomes possible to perform an exhaustive global 

search for energy minima in the docking of two macromolecules. This method has been 

effectively used in computational solvent mapping (Kozakov, Grove, et al., 2015). By 

performing multiple mappings with different sidechain conformations, we can simulate 

sidechain flexibility. However, there is significant redundant work being done using this 

approach. When altering sidechain conformations, most of the atoms in a protein stay 

fixed. We can use this insight to greatly improve the efficiency of sidechain sampling 

when using the FFT method.  

We term the fixed portion of each macromolecule being docked the template, and 

the moving sidechains the key sidechains. Thus, we have the receptor template, key 

receptor sidechains, ligand template, and key ligand sidechains. We can then decompose 

the scoring function used in rigid body global docking: 

𝐸(𝛼, 𝛽, 𝛾) = ∑ 𝑅(𝑖, 𝑗, 𝑘)𝐿(𝑖 + 𝛼, 𝑗 + 𝛽, 𝑘 + 𝛾)

𝑖,𝑗,𝑘

 

The above equation can be rewritten after breaking up 𝑅(𝑖, 𝑗, 𝑘) = 𝑅𝑇(𝑖, 𝑗, 𝑘) +

∑ 𝑅𝑢(𝑖, 𝑗, 𝑘)𝑢   and 𝐿(𝑖, 𝑗, 𝑘) = 𝐿𝑇(𝑖, 𝑗, 𝑘) + ∑ 𝐿𝑣(𝑖, 𝑗, 𝑘)𝑣 . 𝑅𝑇 and 𝐿𝑇 are contributions to 

the scoring function from just the template portions of the receptor and ligand 
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respectively, and 𝑅𝑢 and 𝐿𝑣 are the contributions of the movable sidechains of the 

receptor and ligand. We can then rewrite the first equation as below:   

𝐸(𝛼, 𝛽, 𝛾) = ∑ 𝑅(𝑖, 𝑗, 𝑘)𝐿(𝑖 + 𝛼, 𝑗 + 𝛽, 𝑘 + 𝛾)

𝑖,𝑗,𝑘

= ∑ (𝑅𝑇(𝑖, 𝑗, 𝑘) + ∑ 𝑅𝑢(𝑖, 𝑗, 𝑘)

𝑢

) (𝐿𝑇(𝑖 + 𝛼, 𝑗 + 𝛽, 𝑘 + 𝛾) + ∑ 𝐿𝑣(𝑖 + 𝛼, 𝑗 + 𝛽, 𝑘 + 𝛾)

𝑣

)

𝑖,𝑗,𝑘

= 𝐸𝑅𝑡𝐿𝑡
(𝛼, 𝛽, 𝛾) + ∑ 𝐸𝑅𝑖𝐿𝑡

(𝛼, 𝛽, 𝛾)

𝑖

+ ∑ 𝐸𝑅𝑡𝐿𝑗
(𝛼, 𝛽, 𝛾)

𝑗

+ ∑ ∑ 𝐸𝑅𝑖𝐿𝑗
(𝛼, 𝛽, 𝛾)

𝑗𝑖

 

In the case of mapping small molecular probes, there are no movable ligand sidechains so 

the second and third summation terms in Equation 2 drop out, and we are left with just 

the following: 

𝐸(𝛼, 𝛽, 𝛾) = 𝐸𝑅𝑡𝐿𝑡
(𝛼, 𝛽, 𝛾) + ∑ 𝐸𝑅𝑖𝐿𝑡

(𝛼, 𝛽, 𝛾)

𝑖

 

This final expression contains one term for correlation between the non-moving template 

portions of the receptor and ligand (𝐸𝑅𝑡𝐿𝑡
(𝛼, 𝛽, 𝛾)), and one term for each of the movable 

sidechains (𝐸𝑅𝑖𝐿𝑡
(𝛼, 𝛽, 𝛾)). This formulation allows us to greatly reduce the amount of 

redundant calculations made, and is illustrated by the conceptual Figure 8. Without the 

decomposition described, to evaluate the energy of 𝑀 variants of a protein we would 

need to compute 𝑀 correlation functions of a 𝑁3 sized grid. Using the decomposition, we 

need only compute one 𝑁3 grid and 𝑀 𝑛3 grids, where 𝑛 will typically be much smaller 

than 𝑁 as each subgrid only needs to be big enough to cover one sidechain of a protein. 

The global rigid body docking program, PIPER, was modified to incorporate this faster 

grid calculation technique when run with a template structure and multiple rotamers of 

movable sidechains.  
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Figure 8. Conceptual figure of the decomposition of FFT grids. As depicted in (A), without 

decomposition of the grid we are forced to recompute the scoring function on the full grid of 

size 𝑵×𝑵. When we decompose the grid as in (B), we can compute the scoring function for 

the template on the full 𝑵×𝑵 grid, and compute the scoring function for each sidechain 

conformation on a smaller 𝒏×𝒏 grid.  

 

A 

B 
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Sidechain Selection 

Selection of movable chains is performed using the method described in (Grove et al., 

2013). First, the unliganded structure of each case is initially mapped using FTMap to 

determine the binding pocket. In the general case, a user would select one or more 

consensus clusters in a region of interest. These selected clusters define a pocket of 

interest, which are all residues within 6 angstroms of the selected clusters. From this 

pocket, residues of the amino acids Lys, Arg, Tyr, Phe, Trp, His, Met, Gln, Asn, and Asp 

which satisfies cavity and hydrophobicity cutoffs are selected for rotamer generation. 

Rotamer generation is performed using an end group library minimization method 

(EGLM), which starts with a library of pre-generated sidechain conformations and uses 

minimization to generate an ensemble of sidechain conformations, or rotamers (Beglov et 

al., 2012). Clusters with both high population and low energy are selected as the rotamer 

set for each residue.  

 

Final Rotamer Selection 

In the original FTFlex protocol, a separate mapping was done for each rotamer of each of 

the movable sidechains. That is, for each movable sidechain, each of the rotamers for that 

sidechain is placed into the original unbound structure to obtain a structure that is 

different in structure for only that residue. Each of these modified structures is submitted 

to FTMap. The final conformation for each of the movable sidechains is selected by 

counting the number of consensus clusters within 6 angstroms of the selected pocket, and 

choosing the rotamer that has the highest count. This could be the original unbound 



 

 

42 

rotamer, in which case no change is made for that residue. The final structure is obtained 

by using the best rotamer for each of the movable sidechains. 

Using the fast PIPER program, we can generate the same results for all rotamers 

at once. The initial mapping and selection of movable sidechains is performed the same 

way as in FTFlex. Instead of running an additional FTMap step for each rotamer, we use 

the enhanced PIPER program to generate rigid body docking results for all rotamers of all 

the movable sidechains in one step. Using these docking results, we count the number of 

probe atoms within 6 angstroms of the pocket residues. The rotamer with the highest 

number of probe atoms contacts is chosen, and the final structure is obtained by using the 

chosen rotamer for all movable sidechains. In both versions of the FTFlex protocol, the 

final structure is mapped one last time using FTMap to get the final consensus clusters. 

 

Calculation of Profile Correlation 

To quantitatively measure the quality of a mapping, we turn to mapping fingerprints, a 

metric previously developed to assess the similarity of mapping results (Bohnuud, 

Kozakov, & Vajda, 2014). We first count the number of non-bonded contacts each 

residue in a mapped structure makes with the consensus clusters. This number is 

normalized by the total number of contacts made to get a vector of the fraction of non-

bonded contacts for each residue in the protein being mapped. For a protein with 𝑛 

residues, this vector of length 𝑛 is termed the mapping fingerprint. From a fingerprint, we 

select the terms for each of the residues in the pocket of interest to obtain a pocket 

fingerprint, which is illustrated in Figure 9. Finally, we compare how similar two pocket 
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fingerprints are by computing the Pearson correlation between them, which is a 

quantitative measure of mapping similarity. The correlation measured between mapping 

results for the bound structure and a variant is defined as the bound-state similarity 

coefficient (BSSC). The BSSC ranges from 0 to 1, with values closer to 1 representing 

results more similar to the bound mapping. 

 

Figure 9: An example of pocket fingerprints for mapping of the bound and unliganded 

structures. These pocket fingerprints are for the Bcl-xl case, and the BSSC for the 

unliganded mapping is 0.498. 

 

4.3 Results 

To test and validate our method, 17 systems were selected from (Grove et al., 2013) and 

(Kozakov, Hall, et al., 2015), listed in Table 4. To highlight the efficiency increases for 

multiple rotamers, these 17 systems were chosen based on significant number of alternate 
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sidechain conformations for movable sidechains within the binding pocket. Each of these 

17 systems have both a bound and unliganded structure available. We selected pockets of 

interest on each system using mapping results of the unliganded structure. After selection 

of movable sidechains as described above, alternate conformers for each movable 

sidechain were generated using the EGLM method. The optimal rotamer for each 

movable sidechain were then selected using the enhanced PIPER program. The BSSC 

results for the unliganded and optimized structures are presented in Table 4 and Figure 

11. Our results show moderate improvement on many systems, and large improvements 

on a few systems. For example, the Bcl-xl system goes from a BSSC of 0.5 to 0.67. We 

can see in Figure 12 that by optimizing the rotamers, the pocket becomes more open on 

the right side and allows for FTMap to find a consensus cluster that could not be found 

on the unliganded structure. 

 

Speed 

Our algorithm achieves a speedup of between 5 to 20 times faster for the global rigid 

body sampling step. The amount of time spent on mapping is displayed in Table 4. The 

mapping program can take advantage of multiple cores by using one thread per core. 

Timings are total time spent across all threads. The runs were performed on machines 

with 16 core Xeon chips. The decrease in computation time achieved is dependent on the 

number of rotamers as well as the size of the system, and we see a greater speedup for 

systems with more rotamers to search, as expected. This is shown graphically below in 

Figure 10. 
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Figure 10: Graph of the relative speed up using the fast PIPER program for rigid docking 

versus repeated application of classic PIPER. As expected, we see a near linear speed up 

depending on the number of rotamers searched.  
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  Correlations Timings in seconds 

PDB 
Total 

rotamers 
Unliganded 

Fast 

FTflex 

Fast FTFlex 

Time 

Single PIPER 

TIme 

Total PIPER 

Time 

Fold 

Speedup 

1ai9 7 0.81 0.93 18,906 11,519 80,632 4.26 

1e15 18 0.91 0.93 11,615 8,954 161,163 13.87 

1ea5 16 0.43 0.84 14,896 10,840 173,447 11.64 

1jcz 4 0.91 0.82 44,007 28,142 112,569 2.56 

1nsb 4 0.95 0.98 27,972 19,424 77,697 2.78 

1ob3 25 0.98 0.97 8,781 7,418 185,440 21.12 

1pdb 10 0.93 0.84 19,835 19,761 197,609 9.96 

1pfq 15 0.98 0.88 30,234 18,834 282,510 9.34 

1pud 11 0.99 0.99 11,147 9,151 100,662 9.03 

1pw2 11 0.89 0.93 16,250 16,344 179,785 11.06 

2bls 6 0.80 0.77 21,350 12,026 72,154 3.38 

2nxr 5 0.98 0.98 9,665 7,750 38,749 4.01 

1phc 5 0.92 0.92 16,965 16,040 80,199 4.73 

1zvi 4 0.96 0.95 15,169 13,004 52,016 3.43 

1r2d 11 0.50 0.67 6,722 5,515 60,670 9.03 

1r6k 21 0.81 0.80 12,851 7,835 164,531 12.8 

1cqr 10 0.67 0.57 8,696 6,819 68,191 7.84 

Table 4. Summary of test cases and their results. The timings shown are the best of three 

runs, and the fold speedup is the ratio of total PIPER time versus fast FTFlex time. 

  



 

 

47 

 

Figure 11: Mapping profile correlations for test cases in Table 4. We can see that the 

application of the FTFlex algorithm with fast sidechain search generally does not decrease 

the correlation when it was already high. In a few cases, such as 1ea5 and 1r2d, the 

correlation increases quite significantly, signifying that the mapping results are much more 

similar to the mapping results of the bound structure. 
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Figure 12: Comparison of mapping results for the Bcl-xl system (PDB ID: 1R2D). The 

protein is shown as a surface in the background, while the ligand from the bound structure 

is show in white. Results from FTmap are shown in colored sticks. We can see that the 

unliganded mapping is missing a consensus cluster on the right side of the molecule that 

FTmap is able to find when using the bound structure. We recover this consensus cluster 

after using the structure with sidechain conformers predicted by the FTflex method.  

 

4.4 Discussion 

These results clearly show the new algorithm is faster than multiple applications of the 

old algorithm, while obtaining results of similar quality. We note that the results are not 

identical to use of the previous algorithm. One possible reason may be because the 

decomposition of the scoring function to use smaller grids for the sidechains prevents us 

unliganded bound 

optimized 
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from smoothing the energy grid as we normally do when applying PIPER. However, this 

is unlikely to have a large effect on the quality of results. Another limitation of using 

decomposed energy grids is the inability to use scoring functions which are computed 

using the global state of the entire protein, as is done for electrostatic component of the 

scoring function in certain systems. However, in such cases we can use a slightly less 

accurate Coulombic model for the electrostatic energy function, and still obtain 

meaningful results. Even with such limitations, the speed of the new program will make it 

a useful tool for studying many types of systems where the ability to quickly test out 

many conformers of interface residues is required.
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CHAPTER FIVE: Conclusion and Future Directions 

This work has increased the accuracy of protein-protein docking, as well as increasing the 

efficiency of global rigid body sampling with flexible sidechains. Protein-protein docking 

for many systems is already quite accurate, but is improved when additional experimental 

data is available and can be incorporated into docking algorithms. The existing ClusPro 

protein-protein docking algorithm was enhanced by using SAXS data when available to 

filter rigid body docking results by their fit to the SAXS data, which selects for 

conformations that better match the shape and size of the complex as determined by 

SAXS. In addition, ClusPro can now also make use of distance restraints for a protein 

complex, which can be generated from various types of experimental data. These 

restraints are used to restrict the region of the global space of rotations and translations 

which are searched for energy minima.  Finally, a novel decomposition of the correlation 

functions used in PIPER into separate grids for rigid and moving parts of the protein led 

to significant increases in the efficiency when sampling multiple sidechain 

conformations. This enhanced method was applied to the existing FTFlex method as a 

proof of concept. In the future, we hope to use this new fast PIPER program in other 

applications, such as fragment docking and protein-protein docking. 
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APPENDIX 1 

Description of Restraint JSON File Format 

A restraint set is composed of one or more restraint groups, which is composed on one or 

more restraints. At both the level of the restraint set and restraint group, users can specify 

how many restraints groups or restraints are required to be satisfied, respectively. Each 

restraint specifies a residue on both the receptor and the ligand, and specifies a maximum 

and minimum distance. If the minimum distance between any pair of atoms in the 

receptor residue and ligand residue is more than the specified minimum, and the 

maximum distance between any pair of atoms in receptor and ligand residue, then the 

restraint is considered satisfied. A restraint file would like this example: 

{ 
  “required”: 1, 
  “groups”: [ 
    { 

  “required”: 1 
  “restraints”: [ 
    { 
      “type”: “residue”, 

          “dmax”: 1.0, 
          “dmin”: 1.0, 
          “rec_chain”: “A”, 
          “rec_resid”: “1”, 
          “lig_chain”: “B”, 
          “lig_resid”: “1” 
        } 
      ] 

} 
  ] 
} 
 

Additional groups and restraints may be added by following the template above. 
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