
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2017

Prefrontal rhythms for cognitive
control

https://hdl.handle.net/2144/23562
Boston University



BOSTON UNIVERSITY 

 

SCHOOL OF MEDICINE 

 

 

 

 

 

Dissertation 

 

 

 

 

 

PREFRONTAL RHYTHMS FOR COGNITIVE CONTROL 
 

 

 

 

by 

 

 

 

 

JASON SHERFEY 
 

B.E., Vanderbilt University, 2006 

 

 

 

 

 

 

 

Submitted in partial fulfillment of the 

 

requirements for the degree of 

 

Doctor of Philosophy 

 

2017  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2017 

 JASON SHERFEY 

 All rights reserved  



Approved by 

 

 

First Reader _________________________________________________________ 

 Nancy Kopell, Ph.D. 

 Professor of Mathematics and Statistics 

 

 

Second Reader _________________________________________________________ 

 Daniel Bullock, Ph.D. 

 Professor of Psychological and Brain Sciences 

 

 

Third Reader _________________________________________________________ 

 Helen Barbas, Ph.D. 

 Professor of Anatomy and Neurobiology 

 

 

  



 

 

 

 

 

"Where I come from we say that rhythm is the soul of life, because the whole universe 

revolves around rhythm, and when we get out of rhythm, that’s when we get into trouble." 

- Babatunde Olatunji 

 

 

“Great minds are related to the brief span of time during which they live as great 

buildings are to a little square in which they stand: you cannot see them in all their 

magnitude because you are standing too close to them.” 

- Arthur Schopenhauer 
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ABSTRACT 

 Goal-directed behavior requires flexible selection among action plans and 

updating behavioral strategies when they fail to achieve desired goals. Lateral prefrontal 

cortex (LPFC) is implicated in the execution of behavior-guiding rule-based cognitive 

control while anterior cingulate cortex (ACC) is implicated in monitoring processes and 

updating rules. Rule-based cognitive control requires selective processing while process 

monitoring benefits from combinatorial processing. I used a combination of 

computational and experimental methods to investigate how network oscillations and 

neuronal heterogeneity contribute to cognitive control through their effects on selective 

versus combinatorial processing modes in LPFC and ACC.  

First, I adapted an existing LPFC model to explore input frequency- and 

coherence-based output selection mechanisms for flexible routing of rate-coded signals. I 

show that the oscillatory states of input encoding populations can exhibit a stronger 

influence over downstream competition than their activity levels. This enables an output 

driven by a weaker resonant input signal to suppress lower-frequency competing 

responses to stronger, less resonant (though possibly higher-frequency) input signals. 

While signals are encoded in population firing rates, output selection and signal routing 

can be governed independently by the frequency and coherence of oscillatory inputs and 
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their correspondence with output resonant properties. Flexible response selection and 

gating can be achieved by oscillatory state control mechanisms operating on input 

encoding populations. These dynamic mechanisms enable experimentally-observed 

LPFC beta and gamma oscillations to flexibly govern the selection and gating of rate-

coded signals for downstream read-out. Furthermore, I demonstrate how differential 

drives to distinct interneuron populations can switch working memory representations 

between asynchronous and oscillatory states that support rule-based selection.  

Next, I analyzed physiological data from the LeBeau laboratory and built a de 

novo model constrained by the biological data. Experimental data demonstrated that fast 

network oscillations at both the beta- and gamma frequency bands could be elicited in 

vitro in ACC and neurons exhibited a wide range of intrinsic properties. Computational 

modeling of the ACC network revealed that the frequency of network oscillation 

generated was dependent upon the time course of inhibition. Principal cell heterogeneity 

broadened the range of frequencies generated by the model network. In addition, with 

different frequency inputs to two neuronal assemblies, heterogeneity decreased 

competition and increased spike coherence between the networks thus conferring a 

combinatorial advantage to the network. 

These findings suggest that oscillating neuronal populations can support either 

response selection (routing), or combination, depending on the interplay between the 

kinetics of synaptic inhibition and the degree of heterogeneity of principal cell intrinsic 

conductances. Such differences may support functional differences between the roles of 

LPFC and ACC in cognitive control.  
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1 

CHAPTER 1 

INTRODUCTION 

 

“Experience without theory is blind, but  

theory without experience is mere intellectual play.”   

(Immanuel Kant) 

 

The mysteries of mind have intrigued and bewildered the most brilliant of 

thinkers through all ages. Scientific empiricism born of the enlightenment has deepened 

our appreciation for the complexity of those mysteries and at times, perhaps, brought us 

closer to understanding some limited aspects of them. We know the fluctuations of mind 

map onto processes in the brain and that the reproducibility of organized mental 

experience is supported by material mechanisms that all share by virtue of our common 

genome and developmental programs. The evolution of theories by dedicated researchers 

in psychology and neuroscience has provided those of us intrigued today with a 

conceptual framework for our modern inquiry, enabling us to go further and understand 

more with each generation. This dissertation is a modest attempt to contribute something 

to that profound body of work produced by thinkers seeking to understand thought. 

 Our limited understanding of the nature of mind and its relation to brain forces us 

to work with ideas from both domains and to make strong assumptions about their 

relation. A foundational assumption from cognitive neuroscience is that mental processes 

involve information processing and that information is encoded in neural activity. 
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Abundant evidence from the neurophysiology of sensory and motor systems suggests that 

the relevant activity encoding information is the rate of spiking in single or populations of 

neurons. At the same time, the neurophysiology of single neurons, networks of neurons, 

and large-scale neural systems reveals that neural processes at all scales exhibit periodic 

fluctuations indicative of oscillatory dynamics. Despite their ubiquity, the relationship 

between oscillatory dynamics and information processing remains a mystery. 

 My goal is to understand how rhythmic mechanisms in networks of neurons 

contribute to cognitively-important neural dynamics. In this dissertation, I will present a 

combination of experimental and computational modeling techniques to explore the 

effects of network oscillations on information processing during cognitive processes that 

direct behavior. In particular, I will describe how network oscillations affect microcircuit 

operations that select or combine information and map directly onto elementary cognitive 

operations. In one case, I will show how rhythms can facilitate the selective routing of 

information (Chapter 2). In a second case, I will show how neuronal heterogeneity 

disrupts that selectivity and can enable combinatorial processing of inputs from rhythmic 

networks (Chapter 3). The two cases will be related in terms of cognitive processes to 

which they contribute.  

 This chapter begins with an overview of the theories and experimental 

observations of cognitive control and neural oscillations that have motivated my work. 

That will be followed by a review of modeling traditions and particular models on which 

my work builds. The chapter will close with an overview of my approach, aims, and the 

remaining chapters of this dissertation. 
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1.1    Background 

1.1.1    Cognitive control and prefrontal cortex 

 It is a remarkable fact that humans are able to achieve goals in the presence of a 

sea of distracting stimuli and a large repertoire of learned procedures that one could 

employ. From a cognitive perspective, task-relevant transient sensory information is 

selected by attention and stored in a short-term working memory (WM) buffer (Atkinson 

and Shiffrin, 1968). In addition to active maintenance of relevant information, WM 

involves a so-called central executive sub-system (Baddeley and Hitch, 1974) that 

governs cognitive control: the process of manipulating information for task-relevant 

processing while suppressing task-irrelevant distractors. Cognitive control includes 

processes like updating WM buffers, response inhibition, and task switching.  

Dual process theories, in the conditioning literature, propose two processes 

compete to control our actions at all times (Evans, 2003; Evans, 2008; Gruber and 

McDonald, 2012): one that is automatic and based on well-learned habitual associations 

(Yin and Knowlton, 2006; Ashby et al., 2010) and another that is deliberative, goal-

directed, and requires cognitive control. The latter is thought to benefit from rules: 

context-dependent mappings between input conditions and output responses. Rules are 

like sets of if-then statements selectively engaged to provide appropriate input-output 

mappings given a particular context. They represent flexible sets of lower-level 

associations (e.g., stimulus-response, action-outcome) engaged in service of executing 

higher-level goal-directed actions (Miller and Cohen, 2001; Dayan, 2008) and are 
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potentially involved in directing the decision making process itself (Dayan, 2007; 

Schouwenburg et al., 2012).  

A wide range of neurophysiology, neuroimaging, and lesion studies have 

implicated lateral prefrontal cortex (LPFC) in maintenance (ventral LPFC) and cognitive 

control (dorsal LPFC) aspects of WM (Fuster, 1973; 1988; Funahashi et al., 1989; 

Goldman-Rakic, 1995). Active maintenance of WM representations is achieved in part 

through sustained activity (i.e., activity after stimulus offset) in LPFC neurons enabled by 

slow recurrent excitation among cells of encoding populations (Wang, 1999; Wang et al., 

2013). LPFC is thought to maintain information about goals and procedures to achieve 

those goals while exerting cognitive control by biasing the flow of information between 

sensory, executive, and motor areas (Miller and Cohen, 2001). Populations encoding 

rules have been found in DLPFC (Buschman et al., 2012) and are further hypothesized to 

guide the selection of the appropriate goal-achieving procedure based on present context 

and stimuli.  

The anterior cingulate cortex (ACC) is a structural and functional hub (Park and 

Friston, 2013) that has been hypothesized to monitor diverse signals (e.g., errors, 

conflicts, rewards, uncertainty) in order to perform a cost/benefit analysis regulating 

resource allocation for cognitive control (Shenhav et al., 2013; 2016). It has been shown 

to rhythmically synchronize with DLPFC during shifts in task demands (Womelsdorf et 

al., 2014; Vohol et al., 2015) and is thought to be involved in updating behavior-guiding 

rules. In this work, I will focus on neural mechanisms that serve the operations of rule-

based selection in LPFC and input combination for process monitoring in ACC. 
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1.1.2    Cognitive rhythms 

 Oscillatory dynamics in prefrontal cortex are ubiquitous, diverse, task-modulated, 

and correlated with performance; nevertheless, the ways in which such brain dynamics 

support cognition is only beginning to be addressed. It has been well-established that 

oscillations are involved in rule-based selection in LPFC and process monitoring in ACC. 

In LPFC, beta (12-30Hz) and gamma (30-100Hz) frequency rhythms have been observed 

in delayed-response tasks and tasks with rule-based action (Cho et al., 2006; Tzur and 

Berger, 2009; Buschman et al., 2012; Siegel et al., 2009). For instance, populations 

encoding items in DLPFC during a delay are temporally segregated by spiking at 

different phases of an underlying 32Hz oscillation (Siegel et al., 2009); and populations 

encoding rules synchronize with a similar high beta-frequency oscillation in DLPFC. 

Oscillations with widely varying frequencies have been observed in regions monitored by 

ACC; for instance, 25-35Hz in DLPFC (Buschman et al., 2012), 35-45Hz in amygdala 

(Popescu et al., 2009), 60Hz in orbitofrontal cortex (OFC) (Pennartz et al., 2011), and 30-

100Hz nested in 6-9Hz in hippocampus (Buzsaki, 2002; Csicsvari et al., 2003). 

The cellular and network generators of distinct network rhythms have been 

studied using in vitro techniques that isolate microcircuits and drive them using 

pharmacological agents (Whittington, 1995; Randall et al., 2011). These studies have 

shown that all regions of PFC are capable of generating fast network oscillations and that 

different layers within particular regions have intrinsic mechanisms capable of generating 

different beta and gamma-frequency network oscillations (see Fig. 1.1 and Table 1). This 

implies that PFC has evolved to produce a diversity of rhythms and that cognitive tasks 
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selectively engage those rhythmic mechanisms in task-relevant ways. Experimental and 

theoretical work has revealed functional roles that fast network oscillations can play in 

mediating communication and the routing of information (described below) (Cannon et 

al., 2014).  
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Table 1. Summary of region- and layer-specific in vitro oscillations in rat mPFC. 

 

                                                        
1 Unpublished data from LeBeau laboratory at Newcastle University. 
2 Data from Van Aerde et al., 2009. 
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1.1.3    Computational modeling traditions 

 Computational modeling coupled with experimentation has advanced 

understanding beyond what either approach could achieve alone. Two traditions of 

modeling dynamical systems in computational neuroscience have evolved since the mid-

20th century, one inspired by cognitive science and the other by neurophysiology. Both 

attempted to elucidate neural mechanisms that can account for observed phenomena, but 

their phenomena of interest differed and, consequently, so did the neural mechanisms 

they considered important for their purposes. One focused on representation, learning, 

and information processing while the other focused on intrinsic cell properties, 

neurotransmission, and neural rhythms. The cognitive tradition began by abstracting 

neural elements as much as possible in an effort to understand mind while the 

neurophysiological tradition focused on whatever biological details were relevant at the 

spatial and temporal scale of their phenomena of interest.  

In recent decades, the two traditions have converged increasingly as the more 

abstract models of mental processes incorporated greater physiological detail and the 

physiological models increased in spatial scale. One important point of convergence has 

occurred by virtue of a shared interest in microcircuit operations that govern the flow of 

information through specific structures in the brain. This dissertation is a result of that 

convergence in the context of prefrontal cortex and the dynamics it manifests during rule-

based cognitive control. Next, we will briefly review models from each tradition, 

including both foundational models to highlight their original differences as well as the 

more recent models on which my subsequent work builds. 
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1.2    Computational models for cognitive control 

 The first dynamical system models we will review are descendants of a tradition 

inspired by cognitive science. The tradition began with the advent of connectionism when 

it was discovered that abstract neural units based on threshold logic coupled into 

networks with adjustable connection weights could learn arbitrary mappings between 

input and output representations (McCulloch and Pitts, 1943; Rosenblatt, 1958). These 

artificial neural networks were viewed as performing computations by virtue of the 

learned input-output mapping stored in their connection weights; however, such models 

lack dynamics and biophysical realism. 

1.2.1    Attractor networks for working memory and rules 

 Research into models supporting associative content-addressable memory led to 

the development of networks with dynamics that represent memories as activity patterns 

that are stable fixed point attractors of the dynamical system (Amari, 1977; Hopfield, 

1982). Memory storage was still based on synaptic weights tuned by learning procedures 

except now all inputs that move the system to the same basin of attraction result in 

reactivation of the same memory (i.e., the inputs are associated). While early attractor 

networks used rate neurons, the development of appropriate mean-field theories (Fusi, 

1999) enabled the construction of attractor networks with spiking neurons. One model 

with special relevance to our work is a WM attractor network with principal cells and fast 

spiking interneurons constrained by physiological data from the deep layers of rat medial 

PFC (prelimbic cortex) (Durstewitz et al., 2000). This PFC model of working memory 

represents one point of convergence between the two traditions of dynamical system 
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modeling in computational neuroscience and will serve as the basis for some of our work 

described below. 

A more recent model with a hidden layer of mixed selectivity PFC neurons has 

been used to study rule-based transitions among stable attractors (persistent activity) 

representing cognitive states (Rigotti et al., 2010), but it only considered ungated actions 

(cognitive state transitions). While ungated cognitive actions are probably important for 

the steady flow of natural thought, gating is likely important for the reasons considered 

next. 

1.2.2    Gated working memory models 

 Maintenance versus updating of WM requires a tradeoff between stability and 

flexibility of representation (Frank and Badre, 2015). One solution involves using the 

basal ganglia (BG) to gate inputs to WM by mediating disinhibition of thalamic 

populations delivering inputs to PFC (Frank et al., 2001); when the gate is closed, 

representations are stable; when the gate is open, representations can be updated. 

Functionality of the PFC/BG WM system was hard-wired into the network structure of 

early models with dynamic BG-mediated input gating. More recently, reinforcement 

learning based on the midbrain dopaminergic system has been incorporated into 

subsequent versions of the model (O’Reilly and Frank, 2006). These learning 

mechanisms replaced the need for hard-wiring by the modeler with automated learning of 

what representations are task relevant and how to gate WM in service of task-specific 

goals.  
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In contrast, output gating is necessary for responding with the appropriate action 

at the appropriate time (Chatham et al., 2014). BG inhibitory gating has been proposed 

for gating motor outputs (i.e., action plans) among parallel pathways based on 

competitive dynamics among sources controlling the BG gate through convergent 

projections to striatum (Brown et al., 2004). Recent experimental work has provided 

evidence that a similar BG-mediated gating mechanism can gate outputs from WM 

through PFC/BG interactions (Chatham et al., 2014; Chatham and Badre, 2015). 

While these gated WM models incorporate aspects of anatomy and physiology, 

and have been successful at clarifying some of the challenges inherent in cognitive 

control, they are rate models and thus unable to account for effects that depend on precise 

spike timing (e.g., sensitivity to spike coherence); also, they lack oscillatory dynamics 

and thus cannot account for effects of resonance (e.g., sensitivity to oscillation 

frequency). I will show in Chapter 2 that these effects can have important consequences 

for WM output gating and rule-based action. 

1.3    Computational models for rhythms and routing 

 The second group of models we will review descends from a tradition inspired by 

neurophysiology. This tradition began with the formulation of a nonlinear system based 

on the dynamics of RC circuits that predicted voltage-dependent changes in 

transmembrane ionic conductance underlie electrical neurotransmission (Hodgkin and 

Huxley, 1952). That prediction and others (e.g., transmission speed) were later validated 

by experiments. Biophysically-detailed models to date employ the same conductance-

based framework developed by Hodgkin and Huxley (Traub et al., 2005; Markram et al., 
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2015). The physiologically-inspired tradition was further bolstered in the beginning by 

the discovery of a statistical model predicting that quantal release underlies chemical 

neurotransmission across synapses (Del Castillo and Katz, 1954); however, modern 

models often use deterministic mechanisms to approximate the postsynaptic effects of 

presynaptic events. 

1.3.1    Inhibition-paced network oscillations 

 Studying abstract, mass action models, Freeman (1975; 1979) proposed that local 

feedback inhibition between interacting populations underlies gamma-frequency EEG 

oscillations observed in olfactory cortex. Support for the model came later from in vivo 

experiments confirming predictions about the activity of populations involved in the 

oscillation (Eekman and Freeman, 1990). However, these studies did not prove that 

inhibitory synapses were necessary or that the duration of inhibition played a significant 

role. The physiology of inhibition-paced network oscillations was conclusively 

demonstrated first in the context of gamma-frequency oscillations in hippocampus 

(Whittington, 1995; 1997). It was found that hippocampal networks of mutually 

inhibitory fast spiking interneurons generated gamma oscillations under tonic drive while 

excitatory synapses were pharmacologically blocked (Whittington, 1995). This form of 

interneuron network gamma (ING) was subsequently simulated in a biophysically-

detailed hippocampal model (Wang and Buzsaki, 1996). Next, a second form of stimulus-

driven network gamma oscillation was identified that depended on pyramidal cells 

driving fast spiking interneurons through AMPA synapses and interneurons providing 

feedback inhibition onto the pyramidal cells through GABAA synapses. The oscillation 
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frequency of both ING and pyramidal-interneuron network gamma (PING) oscillations 

depended most strongly on the duration of GABAA-mediated inhibition (i.e., the 

oscillations were paced by inhibition). 

PING oscillations can exist in two forms: one where pyramidal cells spike on 

every cycle (strong PING) and one where pyramidal cells spike irregularly at low rates 

(weak PING). A considerable amount of theoretical work has investigated the properties 

of these gamma rhythms (Borgers et al., 2005; Borgers, 2008; Kopell, 2010). That work 

demonstrated that gamma rhythms are useful for binding activity into coherent 

assemblies, mediating inter-regional communication through coherence, and filtering 

signals using frequency and/or coherence selectivity (Cannon et al., 2014). In Chapter 2, I 

will demonstrate the importance of weak PING for routing rate-coded signals. In Chapter 

3, I will show through experiments and models that the same inhibitory-pacing 

mechanism underlies the generation of both beta- and gamma-frequency network 

oscillations in ACC, mediated by different populations of interneurons, and consider 

consequences relevant to the role of ACC in monitoring processes for the regulation of 

cognitive control. 

1.3.2    Oscillation-based output gating 

 A spiking model with an ING sub-network providing feedforward inhibition to 

principal cells creates a bandpass filter where principal cells respond selectively to 

gamma-frequency inputs (Akam and Kullmann, 2010). For asynchronous and oscillatory 

inputs at lower or higher frequencies, the ING sub-network spikes before the principal 

cells and prevents them from responding to simultaneous input. However, for inputs at 



 

 

13 

gamma frequencies, inhibitory cells spike at a later phase of the oscillatory input, 

enabling the principal cells to spike on each cycle of the input. Filter networks of this sort 

are able to selectively read-out gamma-frequency signals mixed among distractors in an 

upstream source network. This enables frequency-dependent output gating (de-

multiplexing) of rate-coded signals from oscillatory networks. In Chapter 2, I will 

demonstrate an alternative resonance mechanism by which weak PING networks enable 

more flexible frequency-dependent output gating of rate-coded signals. 

1.4    Approach and overview of dissertation 

 So far, we have discussed that cognitive control involves WM in LPFC using 

rules to bias the selection of input-output mappings governing behavior and ACC 

monitoring processes to update behavior-guiding rules. We also reviewed computational 

models demonstrating how rate-based mechanisms can gate (i.e., select) inputs and 

outputs from WM and how oscillations can be selectively read-out through filter 

networks. In this dissertation, I will advance ideas on how rate- and oscillation-based 

gating can coexist in service of selecting rule-based input-output mappings and how 

heterogeneity in ACC enables the combination of inputs that would otherwise be subject 

to selective input gating by the same mechanisms. More specifically, I will investigate 

the effects of inhibition-paced network oscillations in LPFC on output gating for rule-

based action and the effects of heterogeneity of intrinsic cell properties in ACC on the 

ability of ACC to monitor concurrent processes. This work will demonstrate how 

neurophysiological data can advance our mechanistic understanding of the contributions 

of oscillatory dynamics and heterogeneity to cognitive control processes. 
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In Chapter 2, we will address the question of how neural oscillations support 

output gating and rule-based selection. To do this, I will use computational modeling to 

explore how a purely feedforward output layer exhibiting physiologically-motivated 

weak PING dynamics can provide frequency- and coherence-based output gating of rate-

coded WM representations in LPFC. I will also demonstrate how differential drives to 

distinct interneuron populations can switch WM representations of the attractor network 

between asynchronous and oscillatory states that support rule-based selection of input-

output mappings. 

 In Chapter 3, we will address the question of how the selective mechanisms 

described in Chapter 2 can be overcome for combining inputs in ACC. To do this, I will 

use a combination of in vitro and computational modeling. First, in vitro techniques will 

be used to characterize the high degree of heterogeneity of intrinsic cell properties in rat 

ACC. I will then use modeling to explore the effects of observed heterogeneity on the 

ability of ACC microcircuits to integrate information from source networks in different 

dynamical states. Mechanistic models of ACC monitoring operations are less developed 

in the literature than the models of LPFC cognitive control operations reviewed earlier. 

Chapter 3 presents a first step toward applying neurophysiological constraints to a 

mechanistic investigation of ACC dynamics serving cognition. We recorded from single 

cells and network oscillations in rat dorsal ACC, quantified the extensive heterogeneity in 

intrinsic cell properties, and used computational modeling to explore the implications of 

heterogeneity on the ability of ACC to combine inputs from diverse sources in service of 

process monitoring. 
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1.4.1    Conceptual model of cognitive control-related ACC/LPFC rhythms 

 The work presented throughout this dissertation is organized around the 

conceptual model shown in Fig. 1.2. The model is based on the anatomy and physiology 

of ACC and LPFC and their distinct contributions to cognitive control. It will be 

introduced briefly here and described in more detail as needed in later chapters. The 

conceptual model consists of laminar networks in ACC and LPFC with cell types and 

connections based on primate anatomy. The ACC receives inputs from limbic structures 

and association cortex, with different natural frequencies, providing information to guide 

the regulation of cognitive control signals. The LPFC receives feedforward inputs from 

sensory cortices and modulatory feedback projections from ACC. Rule-related 

populations exhibit beta-frequency oscillations that enable the selection of context-

dependent input-output mappings. Functionally, ACC must combine inputs for 

monitoring diverse networks and triggering rule updating while LPFC mediates output 

selection for beta-rhythmic rule application. All task-relevant signals are assumed to be 

rate-coded and embedded in network oscillations. Importantly, while the conceptual 

model and example below make assumptions about the functions of specific regions, my 

results do not depend on those assumptions and will remain significant even if they are 

proven false. 

As an example, consider a person at a gym with the option to either bike or lift 

weights. If the person "feels like" lifting weights, a 60Hz oscillatory population in OFC 

may deliver to ACC a stronger value signal for the option to lift weights than a second 

60Hz population encoding the value for the option to bike (Pennartz et al., 2011; Holroyd 
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and Yeung, 2011). A straightforward rate-based comparison in ACC could then trigger 

the selection of weight lifting rules in DLPFC; a potential mechanism for rule selection 

will be presented in section 2.5. Rule-related input-output mappings in DLPFC then 

guide the execution of the weight lifting motor program. My model proposes that rules 

amplify the appropriate mappings by engaging their input populations in oscillations that 

are resonant in the output layer. Such oscillation-based gating enables the flexible 

selection of outputs (e.g., the action plan for lifting weights) without requiring changes in 

the activity levels of inputs (e.g., visual image or WM representation of the weights). 

If the person has sore muscles from a previous workout, a 40Hz amygdala 

population may deliver to ACC an emotional conflict signal associated with the affective 

dimension of pain (Neugebauer, 2015). The combination of information from 60Hz OFC 

and 40Hz amygdala populations in ACC should result in a combinatorial re-evaluation 

(i.e., cost/benefit analysis) of the available options (Shenhav et al., 2016). However, the 

difference in OFC and amygdala rhythm frequencies would preclude concurrent 

processing of the parallel information streams if oscillation-based gating was present in 

the ACC input layer. My model proposes that PC heterogeneity increases network 

bandwidth, enabling ACC to respond simultaneously to signals at different frequencies. 

Thus, heterogeneity could enable a new cost/benefit analysis in ACC to result in the 

selection of the option to bike and, subsequently, the adjustment of cognitive control by 

triggering DLPFC to engage the set of rules appropriate for biking.  
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Fig. 1.2. Conceptual model of cognitive control-related ACC/LPFC rhythms. 

ACC (left) receives monitoring signals from diverse regions (e.g., OFC, amygdala) with 

different natural frequencies (e.g., γlow=40Hz, γhigh=80Hz). Heterogeneous PC 

populations enable ACC to respond to concurrent inputs at different frequencies and 

perform combinatorial evaluation for regulating cognitive control. LPFC (right) receives 

sensory signals (stimuli; e.g., from LIP and STG) and maintains them in working 

memory (WM) in superficial layers and delivers goal-directed biases from deep layer 

PCs to subcortical structures that govern action (e.g., striatum, PMd, TRN/thalamus). 

Parallel interlaminar pathways represent learned input-output mappings (e.g., S1R1, 

S2R2). Superficial LTS cells are rule-selective (e.g., r1, r2) and induce β (e.g., 25Hz) 

rhythmicity in all PCs inhibited by them. In conjunction with deep layer β resonance, 

this setup enables rule signals driving select LTS cells to amplify all input-output 

mappings with inputs coupled to the driven LTS cells; the figure shows only one 

mapping per rule for simplicity. Resonance enables weaker rule-related inputs (thin 

arrow from S1R1) to produce greater output (thick arrow from R1). Regulatory signals 

from ACC update rules in LPFC by adjusting drives to LTS cells. PC, principal cell; IN, 

interneuron; FS, fast spiking; LTS, low threshold spiking. 
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1.4.2    The DynaSim toolbox 

DynaSim is a Matlab/Octave toolbox I developed for rapid prototyping of large 

neural models, batch simulation management, and efficient model sharing. It was 

designed to speed up and simplify the process of generating, sharing, and exploring 

network models similar to those described above. Models can be specified by listing 

equations or by specifying model composition using lists of predefined, mechanistically-

meaningful model objects. Its higher-level specification easily scales to arbitrarily 

complex population models and networks of interconnected populations.  

DynaSim also includes a unique set of features that simplify the processes of 

exploring model dynamics over parameter spaces, running simulations in parallel on a 

compute cluster, as well as parallel analysis and plotting of large numbers of simulated 

data sets. It includes a graphical user interface that supports full functionality without 

requiring user programming. The design of DynaSim incorporates a simulator-

independent model specification to facilitate interoperability with other specifications 

(e.g., NeuroML, SBML), simulators (e.g., NEURON, Brian), and web-based applications 

(e.g., Geppetto) outside Matlab. The hope is that this tool will reduce barriers to 

exploring dynamics in complicated neural models, facilitate collaborative modeling, and 

complement other tools being developed in the neuroinformatics community. All models 

in this dissertation were implemented in DynaSim. The details of the DynaSim software 

will be presented in Appendix A. 
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1.5    Final remarks 

 The work to follow builds on the concepts presented in this chapter. We are going 

to focus on biophysical and network properties that are not accounted for by most models 

of cognitive control. Specifically, we will focus on the effects of population oscillations 

and neuronal heterogeneity on microcircuit operations required for cognitive control. I 

will show that PFC population oscillations support on-demand frequency-based output 

selection for rule-based action (Chapter 2) and that ACC heterogeneity reduces 

selectivity and supports combining inputs from multiple sources (Chapter 3), enabling 

combinatorial information monitoring in service of regulating cognitive control.  
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CHAPTER 2 

PREFRONTAL RHYTHMS BIAS PATHWAYS FOR 

THOUGHT AND ACTION 

 

2.1    Introduction 

Adaptive behavior requires the ability to flexibly shift attention and behavioral 

strategies in response to a changing environment. For instance, when the phone rings 

while you are reading a paper you must quickly shift attention to the source of sound, 

engage the proper motor plan, and prepare the appropriate social program. Shifting 

attention among stimuli and engaging appropriate context-dependent actions involves re-

routing signals through select paths in cortex serving process-specific functions. Signals 

could be routed using dedicated circuits shaped by past experience, but flexible signal 

routing for adaptive cognition requires dynamic mechanisms that can route signals in 

different ways using the same underlying neural circuitry.  

Changes in oscillatory synchronization across rate-coding populations of neurons 

in prefrontal cortex (PFC) have been implicated in a variety of cognitive tasks that 

require flexible signal routing. For instance, in a task that required a Macaque monkey to 

saccade either left or right given the same visual stimulus depending on the active 

behavior-guiding rule, populations of cells in PFC exhibited task-modulated oscillations 

(20-35Hz) with greater synchrony (coherence) across populations whose firing rates 
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encoded the active rule (Buschman et al., 2012). Similarly, in premotor cortex of humans 

and nonhuman primates, behavior-guiding choice representations exhibited task-

modulated beta oscillations (20-30Hz) in a vibrotactile comparison task (Herding et al., 

2016); and in rodent PFC, behavior-guiding choices were correlated with beta-frequency 

oscillations (13-30Hz) in a T maze working memory task (Parnaudeau et al., 2013). In all 

of these cases, synchronous beta-frequency oscillations were present during response 

preparation in select populations of neurons encoding signals presumably routed 

downstream to guide action selection mechanisms; populations coding alternative rules or 

choices exhibited weaker or no beta synchrony. 

Routing signals involves selectively propagating activity to downstream 

populations and depends on both cell firing rates and the dynamical state of input 

populations. Networks of interacting excitatory (E) and inhibitory (I) cells can exhibit 

larger firing rate responses to oscillatory inputs with frequencies in a particular range, a 

phenomenon called firing rate resonance (Richardson et al., 2003). Modeling work has 

demonstrated that, with sufficient feedforward inhibition, this form of resonance 

produces a band-pass filter network that can perform selective frequency-based readout 

of a gamma-rhythmic (40Hz) signal mixed among asynchronous distractors in an input 

population (Akam and Kullmann, 2010). Similarly, feedback inhibition can suppress 

responses to less resonant and less coherent inputs delivered to the same output 

population (Cannon et al., 2014). However, it is not known how input oscillatory states 

affect output selection in a layer with competing output populations. 
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Rate-based models of competing populations without input firing-rate oscillations 

can exhibit winner-take-all dynamics whereby the output population receiving the 

strongest input tends to silence the more weakly-driven populations (Kaski and Kohonen, 

1994). Similar competitive dynamics have been demonstrated in spiking models between 

gamma-rhythmic populations (Borgers et al., 2005) and cells of a shared gamma-

rhythmic network (de Almeida et al., 2009). Specifically, when the competing 

populations exhibited inhibition-paced gamma oscillations, the larger input resulted in the 

selective activation of its target population and suppression of competing distractors 

(Borgers et al., 2005). When different cells of the same gamma-rhythmic population 

received inputs with different strengths, only those within some percentage of the most 

strongly driven cell fired (de Almeida et al., 2009). These studies examined the impact of 

variable-strength inputs approximating asynchronous signals on competition between 

populations exhibiting oscillatory dynamics at a particular frequency; consequently, they 

represent mechanisms for input firing rate-based selection of oscillatory outputs and 

require input firing rate changes to perform signal routing. It remains unknown how 

competition is affected by oscillatory inputs and how output selection can be performed 

without requiring input firing rate changes.  

In this work we used computational modeling to explore input frequency- and 

coherence-based output selection mechanisms for flexible routing that conserve rate-

coded signals. We show that the oscillatory states of input encoding populations can 

exhibit a stronger influence over downstream competition than their activity levels (firing 

rates). This enables an output driven by a weaker frequency-resonant input signal (i.e., a 
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signal maximizing output population frequency) to suppress lower-frequency competing 

responses to stronger, less resonant (though possibly higher-frequency) input signals. 

While signals are encoded in population firing rates, output selection and signal routing 

can be governed independently by the frequency and coherence of oscillatory inputs and 

their correspondence with output resonant properties. Flexible response selection and 

gating can be achieved by control mechanisms that change the oscillatory state of select 

input encoding populations. The oscillatory state that is preferentially output can be 

flexibly tuned by nonspecific synaptic inputs and neuromodulation that change resonant 

properties in the output layer. These dynamic mechanisms could enable the 

experimentally-observed PFC beta and gamma oscillations to flexibly govern the 

selection and gating of rate-coded signals for downstream read-out. 

This chapter begins with an overview of the modeling methods used and a 

technical account of how two E/I networks (a classic Hodgkin-Huxley model and a 

detailed PFC model) respond to population inputs with different dynamical states. Next, 

we investigate the conditions enabling input oscillatory states to govern selection among 

competing outputs. Finally, the chapter will close with a discussion of how frequency- 

and coherence-based output selection can serve flexible output gating from a working 

memory buffer (with discrete slot-like item encoding or high-dimensional reservoirs of 

cells with mixed selectivity) and rule-based action selection (stimulus-response mapping) 

with context-dependent oscillatory states. 
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2.2    Methods 

2.2.1    Network models 

The network model represents a cortical output layer with 20 excitatory principal 

cells (PCs) connected reciprocally to 5 inhibitory interneurons (INs). PC and IN models 

were taken from a computational representation of a deep layer PFC network consisting 

of two-compartment PCs (soma and dendrite) with ion channels producing 𝐼𝑁𝑎𝐹, 𝐼𝐾𝐷𝑅, 

𝐼𝑁𝑎𝑃, 𝐼𝐾𝑠, 𝐼𝐶𝑎, and 𝐼𝐾𝐶𝑎 currents (µA/cm2) and fast spiking INs with channels producing 

𝐼𝑁𝑎𝐹 and 𝐼𝐾𝐷𝑅 currents (Durstewitz and Seamans, 2002) (Fig. 2.1A; see figure caption for 

channel definitions). IN cells had spike-generating 𝐼𝑁𝑎𝐹  and 𝐼𝐾𝐷𝑅  currents with more 

hyperpolarized kinetics and faster sodium inactivation than PC cells, resulting in a more 

excitable interneuron with fast spiking behavior (Durstewitz and Seamans, 2002). In the 

control case, PC and IN cell models were identical to those in the original published work 

(Durstewitz and Seamans, 2002). Knockout experiments were simulated by removing 

intrinsic currents one at a time from the PC cell model. 

All cells were modeled using a conductance-based framework with passive and 

active electrical properties of the soma and dendrite constrained by experimental 

considerations (Durstewitz et al., 2000). Membrane potential V (mV) was governed by: 

                                          𝐶𝑚
𝑑𝑉

𝑑𝑡
= −𝐼𝑖𝑛𝑝(𝑡, 𝑉) − ∑ 𝐼𝑖𝑛𝑡 − ∑ 𝐼𝑠𝑦𝑛 

where 𝑡  is time (ms), 𝐶𝑚 =1 µF/cm2 is the membrane capacitance, 𝐼𝑖𝑛𝑡  denotes the 

intrinsic membrane currents (µA/cm2) listed above,  𝐼𝑖𝑛𝑝(𝑡, 𝑉) is an excitatory current 

(µA/cm2) reflecting inputs from external sources described below, and 𝐼𝑠𝑦𝑛  denotes 
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synaptic currents (µA/cm2) driven by PC and IN cells in the network. We also explored a 

simpler classic E/I network model for comparison consisting of one-compartment 

Hodgkin-Huxley neurons with spike-generating 𝐼𝑁𝑎  and 𝐼𝐾 currents (Hodgkin and 

Huxley, 1952) grouped into excitatory (E) and inhibitory (I) populations (Fig. 2.1B). See 

Appendix B for the complete list of model equations. 

 The output layer had either one or two populations of PC cells with each output 

population receiving either one or two input signals. Input frequency-dependent response 

profiles were characterized using a network with one input and one output (Fig. 2.1A-B). 

Competition between the outputs of parallel pathways was investigated using a network 

 
 

Fig. 2.1. Architecture of output networks.  

(A) Diagram showing feedforward excitation from external independent Poisson spike 

trains to the dendrites of 20 two-compartment (soma, dend) principal cells (PCs) 

receiving feedback inhibition from a population of 5 fast spiking interneurons (INs). All 

PC and IN cells have biophysics based on rat prelimbic cortex (Ion channel key: NaF = 

fast sodium channel; KDR = fast delayed rectifier potassium channel; NaP = persistent 

sodium channel; Ks = slow (M-type) potassium channel; Ca = high-threshold calcium 

channel; KCa = calcium-dependent potassium channel). (B) Diagram showing input to 

20 excitatory (E) Hodgkin-Huxley (HH) neurons receiving feedback inhibition from 5 

inhibitory (I) HH neurons. All HH neurons have identical biophysics based on the squid 

giant axon (Ion channel key: Na = sodium channel; K = potassium channel). (C) 

Diagram showing a rhythmically-driven target population of PC cells (PCT) competing 

with an asynchronously-driven distractor population (PCD) through a shared population 

of inhibitory IN cells. 
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with two homogeneous output populations receiving one input each while interacting 

through a shared population of inhibitory cells (Fig. 2.1C). Output gating of signals from 

convergent pathways was investigated using two input signals that converged on a single 

output population.  

2.2.2    Network connectivity 

PC cells provided excitation to all IN cells, mediated by α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) currents. IN cells in turn provided feedback 

inhibition mediated by γ-aminobutyric acid (GABAA) currents to all PC cells. AMPA 

currents were modelled by:  

                                              𝐼𝐴𝑀𝑃𝐴 = 𝑔𝐴𝑀𝑃𝐴𝑠(𝑉 − 𝐸𝐴𝑀𝑃𝐴) 

where 𝑉  is the postsynaptic membrane voltage, 𝑔𝐴𝑀𝑃𝐴  is the maximal synaptic 

conductance, 𝑠 is a synaptic gating variable, and 𝐸𝐴𝑀𝑃𝐴= 0 mV is the synaptic reversal 

potential. Synaptic gating was modeled using a first-order kinetics scheme:  

𝑑𝑠

𝑑𝑡
= 𝐻(𝑉𝑝𝑟𝑒)

(1 − 𝑠)

𝜏𝑟
−

𝑠

𝜏𝑑
 

where 𝑉𝑝𝑟𝑒  is the presynaptic membrane voltage, 𝜏𝑟 = .4ms and 𝜏𝑑 =  2 ms are time 

constants for neurotransmitter release and decay, respectively, and 𝐻(𝑉) = 1 +

tanh (𝑉/10)  is a sigmoidal approximation to the Heaviside step function.  GABAA 

currents are modeled in the same way with 𝐸𝐺𝐴𝐵𝐴 = -75mV and 𝜏𝑑 =  5 ms unless 

otherwise specified. Maximum synaptic conductances for PC-cells were (in mS/cm2): 

GABAA (.1); for IN-cells: AMPA (1).  
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Effects of recurrent excitation within each output population were investigated in 

select simulations. In those cases, PC-to-PC excitation was mediated by AMPA and N-

methyl-D-aspartate (NMDA) currents: 

𝐼𝑁𝑀𝐷𝐴 = 𝑔𝑁𝑀𝐷𝐴𝑀(𝑉)𝑠(𝑉 − 𝐸𝑁𝑀𝐷𝐴) 

where 𝑀(𝑉) =
1.50265

1+.33𝑒−𝑉/16  is a sigmoidal magnesium block (Durstewitz and Seamans, 

2000) and synaptic gating was governed by first-order kinetics with 𝐻(𝑉) =
1

1+𝑒−(𝑉−2)/5, 

𝜏𝑟 = 10.6 ms, 𝜏𝑑 = 285 ms, and 𝐸𝑁𝑀𝐷𝐴 = 0 mV. Maximum excitatory synaptic 

conductances for PC cells were (in mS/cm2): AMPA (.9), NMDA (.9). 

2.2.3    External inputs 

 Each PC cell received independent Poisson spike trains (Fig. 2.2) with time-

varying instantaneous rate 𝜆(𝑡) and time-averaged rate �̅�𝑖𝑛𝑝 = 〈𝜆〉; spikes were integrated 

in a synaptic gate 𝑠𝑖𝑛𝑝 with exponential AMPAergic decay contributing to an excitatory 

synaptic current 𝐼𝑖𝑛𝑝 = 𝑔𝑖𝑛𝑝𝑠𝑖𝑛𝑝(𝑉 − 𝐸𝐴𝑀𝑃𝐴) with maximal conductance 𝑔𝑖𝑛𝑝 (mS/cm2). 

Input signals were modeled by collections of spike trains with the same instantaneous 

rate-modulation while collectively encoding representations in their time-averaged rates 

on a slower time scale. A given input signal to a PC output population can be interpreted 

as conveying rate-coded information from a source population in a particular dynamical 

state.  
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Population rate-coding was incorporated into an input signal using a spatial 

pattern of time-averaged firing rates �̅�𝑖𝑛𝑝(𝑥) for spike trains driving an output with cells 

indexed by 𝑥 . Spatial profiles were either uniform or Gaussian bumps centered on 

different output neurons. Signals from sources in different dynamical states were 

generated by modulating instantaneous rates 𝜆(𝑡)  according to the activity patterns 

exhibited by populations in those states. Signals from source populations in an 

asynchronous state were modeled by Poisson spike trains with constant rate 𝜆(𝑡) = �̅�𝑖𝑛𝑝 

(Fig. 2.2A) whereas signals from sources in an oscillatory state were modeled using 

periodically-modulated instantaneous rates (Fig. 2.2B). Signals with sine wave 

modulation had 𝜆(𝑡) = �̅�𝑖𝑛𝑝(1 + sin(2𝜋𝑓𝑖𝑛𝑝𝑡))/2  parameterized by �̅�𝑖𝑛𝑝  and rate-

modulation frequency 𝑓𝑖𝑛𝑝. Sinusoidal modulation causes spike synchrony (the interval 

 
 

Fig. 2.2. Input network activity.  

(A) Asynchronous Poisson input with (i) constant instantaneous rate rinp and (ii) raster 

for 100 input cells with rinp = 10 sp/s (equivalent to 1 input cell with rinp = 1000 sp/s). 

(B) Poisson inputs with oscillatory instantaneous rate-modulation. (i) Instantaneous 

rate modulated by low synchrony square wave, parameterized by pulse width δinp and 

inter-pulse frequency finp. (ii) raster plot produced by square wave input. (iii) High 

synchrony, square wave rate-modulation. (iv) sine wave modulation, parameterized by 

frequency finp. 
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over which spikes are spread within each cycle) to covary with frequency as the same 

number of spikes become spread over a larger period as frequency decreases. Thus, we 

also investigated oscillatory inputs with square wave modulation in order to differentiate 

the effects of synchrony and frequency while maintaining the ability to compare our 

results with other work. Square wave rate-modulation results in periodic trains of spikes 

with fixed synchrony (pulse packets) parameterized by �̅�𝑖𝑛𝑝, inter-pulse frequency 𝑓𝑖𝑛𝑝, 

and pulse width 𝛿𝑖𝑛𝑝. 𝛿𝑖𝑛𝑝 reflects the synchrony of spikes in the source population with 

smaller values implying greater synchrony. 

 All cells in the output layer received additional asynchronous inputs representing 

uncorrelated background activity from 100 cells in other brain areas spiking at 1 sp/s. 

Notably feedforward inhibition was excluded from the present work so that asynchronous 

inputs were maximally effective at driving PC cells. The effects of adding feedforward 

inhibition and conditions under which each case holds are considered in the Discussion. 

Control values for input parameters were �̅�𝑖𝑛𝑝 = 1000 sp/s (corresponding to a source 

population with 1000 projection neurons spiking at 1 sp/s); 𝛿𝑖𝑛𝑝=1ms (high synchrony), 

10ms (medium synchrony), or 19ms (low synchrony), and 𝑔𝑖𝑛𝑝 = .0015mS/cm2.  

In simulations probing resonant properties, the input modulation frequency 𝑓𝑖𝑛𝑝 

was varied from 1Hz to 50Hz (in 1Hz steps) across simulations. In simulations exploring 

output gating among parallel and convergent pathways, input signals had the same mean 

strength (i.e., �̅�𝑖𝑛𝑝) unless otherwise specified; this ensures that any difference between 

the ability of inputs to drive their targets resulted from differences in the dynamical states 

of the source populations and not differences in their activity levels.  
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Symbol Description 

𝜆(𝑡) Instantaneous input rate of Poisson process (kHz) 

�̅�𝑖𝑛𝑝 Time-averaged Poisson input rate, 〈𝜆〉𝑡 (kHz) 

𝑓𝑖𝑛𝑝 Frequency of Poisson input rate-modulation (Hz) 

𝛿𝑖𝑛𝑝 Pulse width of Poisson input with square wave rate-modulation (ms) 

iFR Instantaneous output firing rate averaged over principal cells (sp/s) 

�̅�𝑃𝐶 Time-averaged population firing of principal cells (sp/s) 

�̅�𝐼𝑁 Time-averaged population firing of interneurons (sp/s) 

𝑓𝑝𝑜𝑝 Frequency of output population activity (Hz); identical for PCs and INs 

𝑓𝑁 Natural frequency (Hz) (i.e., 𝑓𝑝𝑜𝑝 elicited by asynchronous input) 

𝑓𝑅
𝑃𝐶 �̅�𝑃𝐶-resonant frequency (Hz) (i.e., input 𝑓𝑖𝑛𝑝 maximizing output �̅�𝑃𝐶) 

𝑓𝑅
𝐼𝑁 �̅�𝐼𝑁-resonant frequency (Hz) (i.e., input 𝑓𝑖𝑛𝑝 maximizing output �̅�𝐼𝑁) 

𝑓𝑅
𝑝𝑜𝑝

 𝑓𝑝𝑜𝑝-resonant frequency (Hz) (i.e., input 𝑓𝑖𝑛𝑝 maximizing output 𝑓𝑝𝑜𝑝) 

𝑥𝑇 Property x in Target pathway 

𝑥𝐷 Property x in Distractor pathway 

𝑟𝑟ℎ𝑦𝑡ℎ𝑚 �̅�𝑖𝑛𝑝
𝑇  for oscillatory input to Target pathway 

𝑟𝑎𝑠𝑦𝑛𝑐 �̅�𝑖𝑛𝑝
𝐷  for asynchronous input to Distractor pathway 

∆�̅� Difference (Target-Distractor) in mean output firing rates, �̅�𝑃𝐶
𝑇 − �̅�𝑃𝐶

𝐷 . 

�̅�𝑖𝑛𝑝
𝐷∗  Maximum �̅�𝑖𝑛𝑝

𝐷  for which �̅�𝑃𝐶
𝑇 > �̅�𝑃𝐶

𝐷 , given fixed �̅�𝑖𝑛𝑝
𝑇 . 

Table 2. Meaning of symbols used in the study of resonance and gating. 
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2.2.4    Data analysis 

 For each simulation, instantaneous output firing rates, iFR, were computed with 

Gaussian kernel regression on population spike times using a kernel with 6ms width. 

Mean population firing rates, �̅�𝑃𝐶 and �̅�𝐼𝑁, were computed by averaging iFR over time for 

PC and IN populations, respectively; they index overall activity levels by the average 

firing rate of the average cell in the population. Multi-unit activity (MUA) was calculated 

by averaging voltages across PC populations. The frequency of an output population 

oscillation, fpop, was identified as the spectral frequency with peak power in Welch’s 

spectrum of the iFR. The natural frequency fN of the output network was identified as the 

population frequency fpop exhibited in response to an asynchronous input. 

 Across simulations varying input frequencies, statistics were plotted as the mean 

± standard deviation calculated across 10 realizations. Input frequency-dependent plots of 

mean firing rates and population frequencies will be called response profiles. The firing 

rate resonant frequencies, 𝑓𝑅
𝑃𝐶 and 𝑓𝑅

𝐼𝑁, are the input frequencies at which global maxima 

occurred in the �̅�𝑃𝐶 and �̅�𝐼𝑁 firing rate profiles, respectively. Similarly, the resonant input 

frequency 𝑓𝑅
𝑝𝑜𝑝

 maximizing output oscillation frequency was found from peaks in fpop 

population frequency profiles. In simulations with two outputs, statistics were calculated 

separately for each output population. The competitive interaction between output 

populations was quantified by the difference in their mean firing rates. 

2.2.5    Simulation tools 

All models were implemented in Matlab using the DynaSim toolbox 

(github.com/DynaSim) (see Appendix A) and are publicly available online at: 
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github.com/jsherfey/PFC_models. Numerical integration was performed using a 4th order 

Runge-Kutta method with a fixed time step of .01ms. Most network simulations were run 

for 2000ms and repeated 10 times. Simulations using rate-coded signals with Gaussian 

spatial profiles were run for 6500ms. The network was allowed to settle to steady-state 

before external signals were delivered at 400ms. Plots of instantaneous responses begin at 

signal onset. The first 500ms of response was excluded from analysis, although including 

the transient did not alter our results significantly. 

2.3    Results 

2.3.1    Strong feedback inhibition produces natural oscillation and inhibitory pacing in 

E/I networks 

 A network of interacting excitatory principal cells and inhibitory interneurons 

responded to asynchronous input driving E (or PC) cells (Fig. 2.3A) with asynchronous 

spiking when feedback inhibition was sufficiently weak (Fig. 2.3Bi); however, given 

strong feedback inhibition, the network became an interneuron-paced oscillator (Fig. 

2.3Bii-iii) with a natural frequency, 𝑓𝑁, that depended on the duration of inhibition. A 

population of asynchronous spike trains to E cells caused a subset to spike and recruit 

feedback inhibition, silencing the entire population until inhibition decayed sufficiently 

for the same or a different subset to spike on the next cycle. While the inputs in this study 

can be asynchronous, the outputs will always be oscillatory due to the natural oscillation 

produced by the synchronizing effect of strong feedback inhibition. Increasing the 

duration of inhibition 𝜏𝐺𝐴𝐵𝐴  increased the period of silence and decreased the natural 

https://github.com/jsherfey/PFC_models
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frequency 𝑓𝑁  (Fig. 2.4A, lower plot). This E/I network mechanism generated fast 

interneuron-paced gamma and beta oscillations in networks with both classic Hodgkin-

Huxley neurons (Hodgkin and Huxley, 1952) and more detailed PFC models (Durstewitz 

and Seamans, 2002).  

 

 
 

Fig. 2.3. Strong feedback inhibition produces natural oscillation in E/I network.  

(A) Diagram showing feedforward excitation from external (independent) Poisson spike 

inputs to 20 excitatory (E) Hodgkin-Huxley (HH) neurons receiving feedback inhibition 

from 5 inhibitory (I) HH neurons. See Fig. 2.1B for details. (B) Simulations showing the 

network switching from an asynchronous to oscillatory state with natural oscillation as 

the strength of feedback inhibition is increased. 
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2.3.2    Firing rate resonance in E/I networks 

 The response to a step input of asynchronous spiking (or noisy current) can be 

contrasted with the response to an oscillatory input with equal-strength (i.e., equal time-

averaged rate �̅�𝑖𝑛𝑝) and sinusoidal frequency 𝑓𝑖𝑛𝑝 (Fig. 2.4Ai, Bi). On each cycle of an 

oscillatory input only a fraction of PCs spiked before feedback inhibition silenced the 

entire population. Still, oscillatory inputs produced greater responses than asynchronous 

inputs because their more synchronous spike trains enabled a larger fraction of more 

correlated PCs to reach threshold before INs were sufficiently engaged to silence the 

entire population. The fraction that was able to spike before inhibition silenced the entire 

population increased for input frequencies around the natural frequency 𝑓𝑁 and peaked at 

𝑓𝑅
𝑃𝐶  slightly above 𝑓𝑁  (Fig. 2.4Aii, Bii). This increase in PC population response to 

oscillatory inputs with frequencies near 𝑓𝑁 depends on matching periodic drives with the 

rate-limiting time constants of the driven network (Serenevy and Kopell, 2013). The 

number of PC cells spiking per cycle decreased beyond 𝑓𝑅
𝑃𝐶. This behavior was the same 

for PC responses to oscillatory inputs with square wave modulation (Fig. 2.5A-B). In 

contrast to PC rates peaking near 𝑓𝑁 , IN firing rates continued to increase until input 

frequency reached 𝑓𝑅
𝐼𝑁 > 𝑓𝑅

𝑃𝐶  (Fig. 2.5B) where the decreasing number of PCs spiking 

per cycle reached the minimum necessary to induce IN spiking on each cycle. 

Interestingly, this shows that activity of INs driven exclusively by PCs can continue 

increasing with the frequency of an oscillatory drive to PCs even when PC activity is 

decreasing, and consequently, that firing rate resonant frequencies of PC and IN 

populations can differ. 
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Fig. 2.4. Firing rate resonance and neuromodulation in E/I networks.  

(A) (Ai) Diagram showing an oscillatory input to a classic Hodgkin-Huxley E/I 

network (see Fig. 2.1B for details). (Aii) Firing rate exhibits a resonant peak at a 

gamma frequency. (Aiii) Natural and resonant frequencies decrease with the duration 

of feedback inhibition. (B) (Bi) Diagram showing an external oscillatory Poisson 

input to the dendrites of 20 two-compartment principal cells (PCs) receiving feedback 

inhibition from a population of 5 fast spiking interneurons (INs). PC and IN models 

include additional conductances found in prefrontal neurons (see Fig. 2.1A for 

details). (Bii) Input frequency-dependent firing rate profile showing resonance at a 

beta2 frequency. (Biii) The effect of knocking out individual ion currents on the 

resonant input frequency maximizing firing rate outputs. Removing hyperpolarizing 

currents (-Ks, -KCa) increased the resonant frequency, while removing depolarizing 

currents (-NaP) decreased the resonant frequency or (-Ca) silenced the cell altogether 

(see Fig. 2.1A for ion channel key). (Biv) The effect of hyperpolarizing and 

depolarizing injected currents, Iapp, on the resonant frequency mirrored the effect of 

knockouts on excitability. 
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Fig. 2.5. Input frequency-dependent output response profiles.  

(A) Diagram of PFC network receiving high-synchrony oscillatory input. (B) Firing rate 

(FR) profile for PC (blue) and IN (red) populations. (C) Multi-unit activity (MUA) 

power spectra in response to inputs with different frequencies. Population frequency is 

quantified by the spectral frequency with peak power. Top and bottom traces show that 

the network has peak power at the natural frequency for both asynchronous and high-

frequency inputs. (D) Population frequency profile for PC and IN populations. Peak 

population frequency occurs at the input frequency maximizing IN activity (i.e., feedback 

inhibition). (E) Spike rasters and PC iFR responses to oscillatory inputs at the PC and IN 

firing rate resonant frequencies. (F) Spike rasters and PC iFR responses to inputs 

producing network responses paced by internal time constants: (left) asynchronous input, 

(right) high-frequency input. 
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2.3.3    Population frequency resonance in E/I networks 

 At the population level, outputs can be further described by the frequency of 

population oscillation, 𝑓𝑝𝑜𝑝  (Fig. 2.5C-D). 𝑓𝑝𝑜𝑝  profiles also exhibited a peak at a 

particular input frequency 𝑓𝑅
𝑝𝑜𝑝

, a phenomenon we will call population frequency 

resonance. In both our model networks, the population frequency followed the input up to 

𝑓𝑅
𝐼𝑁  then approached the natural frequency as the response became paced by the 

network’s internal time constants  (i.e., 𝑓𝑅
𝑝𝑜𝑝 = 𝑓𝑅

𝐼𝑁 ; 𝑓𝑝𝑜𝑝 = 𝑓𝑖𝑛𝑝  for 𝑓𝑖𝑛𝑝 < 𝑓𝑅
𝑝𝑜𝑝

, and 

𝑓𝑝𝑜𝑝 → 𝑓𝑁 as 𝑓𝑖𝑛𝑝 → ∞) (Fig. 2.5D). The population oscillation peaks at 𝑓𝑅
𝐼𝑁 because the 

PC population can follow inputs only as long as INs are able to synchronously silence the 

PC population on each cycle of the input. This yielded the counterintuitive result that the 

fastest output PC oscillation (but not the highest PC firing rate) occurred at the excitatory 

input frequency maximizing feedback inhibition. 

2.3.4    Firing rate resonance and neuromodulation in PFC networks 

 All of the qualitative features of the step and frequency responses discussed so far 

were present in both the classic Hodgkin-Huxley and the detailed PFC models of PC/IN 

networks with feedforward excitation, strong feedback inhibition, roughly regular spiking 

PC cells, and fast spiking INs. However, the two network models differed in quantitative 

details. Cells in different brain regions possess different intrinsic currents that may have 

different fast time scales for spike generation and alter the overall excitability of the cells. 

In networks with the Hodgkin-Huxley neurons based on the squid giant axon, the kinetics 
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and excitability resulted in natural and resonant frequencies well into the gamma-

frequency range (Fig. 2.4Aii). Slower sodium kinetics and stronger hyperpolarizing 

currents (e.g., slow potassium currents) based on rat medial prefrontal cortex resulted in 

beta-range frequencies ( 𝑓𝑁 ,  𝑓𝑅
𝑃𝐶 ,  𝑓𝑅

𝐼𝑁 ) for the same inputs (Fig. 2.4Bii). Knockout 

experiments (Fig. 2.4Biii) and injecting applied currents (Fig. 2.4Biv) in the PFC network 

showed that, in the beta/gamma range, non-spiking currents affected overall activity 

levels and resonant frequencies similar to tonic inputs that shift baseline excitability (see 

Discussion for ways modulatory currents might affect single cell responses from cycle to 

cycle and population responses to slower input frequencies). Thus, brain regions with 

different membrane conductances (e.g., produced by different ion channel expression 

profiles) likely differ in the precise frequency of their natural response to asynchronous 

inputs and the input frequencies at which they resonate, even if the pyramidal cells 

interact with the same population of interneurons; such profiles can be tuned by 

neuromodulation. 

2.3.5    Dependence of natural oscillations and resonance on mean input strength 

 Stronger inputs (i.e., higher time-averaged rate �̅�𝑖𝑛𝑝) (Fig. 2.6A), delivering larger 

mean drives to each PC cell, increased the mean output firing rate (Fig. 2.6Bi), natural 

and peak population frequencies (Fig. 2.6Bii), and input resonant frequencies (Fig. 2.6C). 

The dependence of 𝑓𝑁  on �̅�𝑖𝑛𝑝  implies the natural response is a variable-frequency 

network oscillation controlled by the strength of input. 𝑓𝑅
𝑃𝐶 equaled 𝑓𝑁 for weak inputs 

and increasingly exceeded it for inputs with increasing strength; in contrast, 𝑓𝑅
𝐼𝑁 and 𝑓𝑅

𝑝𝑜𝑝
 

exceeded  𝑓𝑁 for all input strengths (Fig. 2.6C). 
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Fig. 2.6. Dependence of response profiles on input strength.  

(A) Diagram of PFC network receiving variable-strength high-synchrony square 

wave input. (Bi) Firing rate profile for PC populations given oscillatory inputs with 

different strengths. (Bii) Population frequency profile for inputs with different 

strengths. Horizontal dashed lines mark the natural frequencies for each drive 

strength. (C) The effect of input strength on natural and resonant frequencies. (D) 

Spike rasters and PC iFR responses showing the typical case of stronger input driving 

more output: (left) weaker input, less output, (right) stronger input, more output. (E) 

Spike rasters and PC iFR responses showing special case of resonance at first 

harmonic enabling a weaker input to drive more output: (left) weaker input, more 

output, (right) stronger input, less output. 
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2.3.6    Dependence of resonance on spike synchrony of oscillatory inputs 

 More synchronous input oscillations (i.e., smaller 𝛿𝑖𝑛𝑝 ) (Fig. 2.7A) delivering 

more coincident spikes (i.e., larger instantaneous drives) to each PC cell drove larger 

fractions of the target population to spike on each cycle before feedback inhibition was 

recruited to silence it. This enhanced output firing rates �̅�𝑃𝐶 for all input frequencies and 

the strength of resonant response (Fig. 2.7Bi) without affecting the resonant input 

frequency 𝑓𝑅
𝑃𝐶  maximizing PC firing rates (Fig 2.7Bi; Fig. 2.7C) or the frequency of 

natural oscillation 𝑓𝑁   (Fig. 2.7Bii; Fig 2.7C). In contrast, 𝑓𝑅
𝐼𝑁  increased with input 

synchrony because �̅�𝑃𝐶  remained sufficiently large to engage interneurons for greater 

𝑓𝑖𝑛𝑝; and, since 𝑓𝑝𝑜𝑝 = 𝑓𝑅
𝐼𝑁, population frequency also increased with input synchrony 

(Fig 2.7C). Thus, output networks are able to achieve faster network oscillations, produce 

greater projection neuron output, and recruit more local inhibition when target signal 

inputs are more synchronous. 
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Fig. 2.7. Dependence of response profiles on input synchrony.  

(A) Diagram of PFC network receiving variable-synchrony square wave or sinusoidal 

inputs. (Bi) Firing rate profile for PC populations given oscillatory inputs with different 

degrees of synchrony. (Bii) Population frequency profile for inputs with different 

degrees of synchrony. Horizontal dashed line marks the natural frequencies for each 

degree of synchrony. (C) The effect of input synchrony on resonant frequencies. 

Maximum population frequency (at the IN firing rate res. freq.) increases with input 

synchrony. (D) Spike rasters and PC iFR responses showing the natural nesting of 

natural oscillations generated by a local network on the depolarizing phase of a lower-

frequency external driving oscillation with sine wave (left) or square wave (right) rate-

modulation. (E) Spike rasters and PC iFR responses showing that weaker firing rate 

resonance at the first harmonic (i.e., smaller bump at finp=44Hz in Bi, blue curve) 

occurs for high synchrony (left) but not low synchrony (right) oscillatory inputs. 
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2.3.7    Rhythm-mediated competition 

Now that we understand how a single output population responds to asynchronous 

and oscillatory inputs, we can investigate the conditions enabling input oscillatory states 

to govern selection among competing outputs in parallel pathways. Since outputs are 

always oscillatory, competition will depend on oscillatory states (i.e., the 𝑓𝑝𝑜𝑝 profile) in 

addition to the �̅�𝑃𝐶  profile. For that reason we will refer to the interneuron-mediated 

interaction between oscillatory output populations as rhythm-mediated competition. We 

will begin by considering the interaction between target and distractor pathways with a 

target output driven by an oscillatory input and a distractor output driven by an equal-

strength asynchronous input (Fig. 2.8A). Under these conditions, all differences between 

the output responses result from differences in the dynamical states of the source 

networks and depend on the frequency and synchrony of the oscillatory target input. The 

effect of competition on output responses will be assessed by comparing total target and 

distractor spike output levels with competition to their corresponding control responses 

without competition (i.e., comparing target output for different input frequencies to the 

input frequency-dependent �̅�𝑃𝐶  profile and comparing distractor output to the natural 

response expected given asynchronous input).  

Fig. 2.8B (i.e., Fig. 2.8Ci) shows the mean firing rate response (averaged over 

time, population, and 10 simulations) of each output (target and distractor; dashed lines 

mark control responses, i.e., without competition) as the target input frequency of a 

medium-synchrony (𝛿𝑖𝑛𝑝 = 10𝑚𝑠) square-wave oscillation is increased from 1-50Hz. 

First, we can see that whether output suppression occurs, relative to the control responses, 
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and which output is suppressed when it does occur depends on the frequency of the 

oscillatory target input (compare regions where the solid lines are below the dashed 

lines). The target output (solid blue line) is suppressed relative to its �̅�𝑃𝐶 profile (dashed 

 
 
Fig. 2.8. Feedback and lateral inhibition produce rhythm-mediated competition.  

(A) Diagram showing a rhythmically-driven target population of PC cells (PCT) 

competing with an asynchronously-driven distractor population (PCD) through a shared 

population of inhibitory IN cells. Shared INs cause target and distractor outputs to be 

rhythmic and enable competitive interaction. (B) Mean firing rate outputs for target and 

distractor as target input frequency is increased with high-synchrony, square wave rate-

modulation. (C) Mean firing rate outputs given target inputs with (i) high-synchrony 

(reproduced for comparison), (ii) medium synchrony and (iii) sine wave rate-modulation. 

(D) The amount of distractor suppression relative to the natural response plotted against 

the target control responses (i.e., firing rates and population frequencies expected in the 

target based on input frequency-dependent response profiles in Figs. 6-7). 
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blue line) when it receives beta-frequency inputs (12-22Hz) that are slower than the 

natural frequency of the distractor output (𝑓𝑁 = 22Hz). Despite being suppressed relative 

to its �̅�𝑃𝐶  profile, in absolute terms, the total number of spikes produced in the target 

output exceeds the total number produced by the distractor in the opposing pathway. At 

the same time, the total number of spikes produced by the distractor stays near its control 

response (i.e., its overall activity level is not disrupted by the output with more spikes).  

Instead, the distractor output is suppressed when the target output is driven by 

oscillatory inputs with a range of frequencies (22-35Hz) faster than the natural frequency 

of the distractor (22Hz). Fig. 2.8Di plots distractor suppression (i.e., deviation from the 

natural control response) versus target control responses (i.e., output population 

frequency and firing rates expected from the 𝑓𝑝𝑜𝑝- and �̅�𝑃𝐶-profiles, respectively). These 

plots show that distractor suppression occurs every time the target output is oscillating 

more quickly than the distractor output. These results hold for square wave target inputs 

with different degrees of synchrony (Fig. 2.8Ci-ii, 8Di-ii) and for sine wave inputs (Fig. 

2.8Ciii, 8Diii). Thus, output suppression is determined most strongly by the relative 

frequencies of the oscillating outputs: the output population oscillating more quickly 

tends to suppress the more slowly oscillating output relative to its control response. 

Since peak output frequency increased with input synchrony (Fig. 2.7C), 

synchrony also increased the range of input frequencies over which the target output 

oscillates faster than 𝑓𝑁  and suppresses the distractor (Fig. 2.8Cii). Furthermore, since 

local inhibition is maximal at the peak frequency, distractor suppression increases as 

target inputs approach the 𝑓𝑝𝑜𝑝-resonant frequency. Importantly, synchronous oscillatory 



 

 

45 

inputs near (and slightly below) the 𝑓𝑝𝑜𝑝-resonant frequency were able to drive their 

targets to fully suppress competing distractors; this complete distractor suppression 

enables resonant inputs to mediate frequency-based output selection even when 

asynchronous inputs would otherwise produce significant responses. This confirms that 

input oscillatory states can control flexible gating among competing outputs driven by 

equal-strength inputs.  

2.3.8    Four modes of rhythm-mediated competition 

 An examination of the instantaneous firing rates of the output populations (Fig. 

2.9; Fig. 2.9S) with targets driven by medium-synchrony square wave inputs (Fig. 2.9A) 

reveals that there are four patterns of interaction that can unfold over time: continuous 

suppression of one output, periodic suppression of one output, alternating suppression 

between two outputs, and no suppression of either output. Which form of interaction 

occurs over time depends on differences between inputs and differences between the 

abilities of outputs (PC populations) to drive their shared INs. The ability to drive an IN 

population depends on how frequently an output delivers a collective pulse of excitation 

(determined by the output population frequency) and the strength of each pulse 

(determined by the number of spikes across the output population per cycle and the 

synchrony of those spikes within a given cycle).  
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Fig. 2.9. Rhythm-mediated competition supports continuous and periodic 

suppression.  

(A) (left) Diagram showing target driven by medium-synchrony oscillatory input in 

competition with an asynchronously-driven distractor. (right) Same as plot 7Bii with 

markers at input frequencies with representative responses. (B) Example simulation 

with continuous suppression of the Distractor Pathway. Bottom plots show phase 

locking between feedforward excitation and feedback inhibition. (C) Example 

simulation with suppression alternating between target and distractor. Bottom plots 

show that the lower-frequency output (Target) becomes transiently active when 

feedforward excitation arrives sufficiently late in the cycle after the decay of 

lateral/feedback inhibition. 
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Fig. 2.9S. Instantaneous firing rates with and without lateral inhibition.  

(top) Diagrams of single and competing outputs receiving medium-synchrony inputs. 

(bottom-left) PC iFR response to oscillatory input. (bottom-right) PC iFR response to 

asynchronous input. (bottom-middle) Overlay of PC (blue) and IN (red) iFR responses 

for Target and Distractor Pathways with different frequency target inputs. Examples 

demonstrate different modes of rhythm-mediated competition: (async. vs. async.) no 

suppression in either output, (finp=20Hz vs. async.) alternating suppression, (finp=20Hz 

vs. async.) continuous suppression. 
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The only way to fully block the output of a pathway in our model (i.e., to achieve 

complete distractor suppression) is for an opposing output to drive its continuous 

suppression through interneuron-mediated lateral inhibition. As we have seen previously, 

without opposition, a single output always oscillates and delivers periodic pulses of 

excitation to INs at the population frequency. In contrast, when multiple outputs are 

coupled to the same INs, the output population with the highest frequency oscillation 

(i.e., the output receiving the most 𝑓𝑝𝑜𝑝-resonant input) most frequently drives IN cells, 

tends to phase lock with them, and suppresses spiking in output populations oscillating 

more slowly (i.e., outputs receiving less 𝑓𝑝𝑜𝑝 -resonant inputs). A rhythmically-driven 

output oscillating faster than the natural oscillation will always drive INs to continuously 

suppress responses to asynchronous distractors because the former recruits interneuron-

mediated lateral inhibition on each cycle of its oscillatory input with a period shorter than 

that required for the latter to reach threshold (Fig. 2.9C, see membrane potential plot). 

In contrast, when a more slowly-oscillating output is rhythmically-driven, it is 

capable of overcoming lateral inhibition transiently if it receives a sufficiently strong 

excitatory pulse after the decay of lateral inhibition and before the opposing population 

spikes again (Fig. 2.9D). If transient activation of a slower output is able to cause IN cells 

to spike and suppress the faster population, this dynamic gives rise to alternating 

suppression (switching between the two outputs); otherwise suppression is periodic and 

experienced only by the more slowly oscillating output. (Cannon and Kopell, 2015) 

There is no suppression in either output when their activities are statistically 

indistinguishable for driving the IN population. In such cases, the outputs respond as if 
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they belong to the same pathway. This occurs when both populations receive equal-

strength asynchronous inputs or at least one receives an oscillatory input with a frequency 

well above the natural frequency. When both output populations receive asynchronous 

inputs they respond as one population since there is nothing to distinguish their drives to 

INs in the output layer. Similarly, as the frequency of an oscillatory input becomes large 

and the output population becomes paced by its internal natural time constants, its 

population response becomes indistinguishable from other populations driven by high-

frequency or asynchronous inputs.  

Since we are interested in gating outputs from PFC in this work, we will focus on 

resonant beta/gamma inputs that support output selection with continuous (absolute) 

suppression of competing distractors. 

2.3.9    Resonant bias for frequency-based output selection 

 Fig. 2.10 shows how resonant biases can perform frequency-based output 

selection among parallel pathways. Two pathways are shown with source networks in 

different dynamical states delivering an equal number of spikes to distinct output 

populations. The source network in the Target Pathway has a low-synchrony oscillation 

while the source network in the Distractor Pathway has asynchronous spiking. The 

oscillatory target input has an approximately 𝑓𝑝𝑜𝑝 -resonant 25Hz frequency (i.e., a 

frequency that maximizes the output population frequency). The target output driven by a 

resonant input oscillates faster than the natural frequency and results in continuous 

suppression of the distractor output. This demonstrates that resonant inputs can 

selectively activate their outputs while achieving suppression of opposing outputs 
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through rhythm-mediated competition, even when the competing population is also 

rhythmic. 

 
 
Fig. 2.10. Resonant bias supports rule-based stimulus-response mapping.  

Example simulation showing two pathways (i.e., alternative stimulus-response mappings) 

with superficial layer inputs and deep layer outputs. One pathway has a resonant input that 

drives its output population while the other pathway has an asynchronous input and output 

that is suppressed by interneuron-mediated lateral inhibition. When both inputs represent 

different dimensions of the same stimulus (S) and outputs map onto alternative action plans 

(R1, R2), context-dependent rhythmicity in a select input population can provide adequate 

bias for rule-based selection of stimulus-response mapping. 
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2.3.10    Strength of resonant bias 

 A resonant bias is useful for frequency-based output selection to the extent that it 

can overcome input rate differences that would result in the selection of a different 

output. The selection mechanism can be called frequency-based as long as the output 

driven by a weaker input can be selected over a stronger input; otherwise selection is 

rate-based. To investigate the ability of resonant biases to overcome input rate 

differences, we compared the firing rates of two competing outputs, one driven by a 

weaker target oscillation and the other driven by a progressively stronger asynchronous 

distractor (Fig. 2.11A). We compared results for target inputs at the 𝑓𝑝𝑜𝑝 - and �̅�𝑃𝐶 -

resonant frequencies, 𝑓𝑅
𝑝𝑜𝑝(𝛿𝑖𝑛𝑝

𝑇 ) and 𝑓𝑅
𝑃𝐶 = 24Hz, respectively, for different degrees of 

input synchrony 𝛿𝑖𝑛𝑝
𝑇  (sine wave and square waves with high, medium, or low 

synchrony). In all cases, the mean target input rate �̅�𝑖𝑛𝑝
𝑇 = 𝑟𝑟ℎ𝑦𝑡ℎ𝑚  was held constant 

while the mean distractor input rate �̅�𝑖𝑛𝑝
𝐷 = 𝑟𝑎𝑠𝑦𝑛𝑐 was increased across simulations up to 

twice the strength. The strength of resonant bias was quantified in two ways: (1) by how 

much more target output is produced (i.e., ∆�̅� = �̅�𝑃𝐶
𝑇 − �̅�𝑃𝐶

𝐷 ) when target and distractor 

input strengths are equal (i.e., y-axis crossing in Fig. 2.11B-C), and (2) the strongest 

distractor input for which there was greater target output, �̅�𝑖𝑛𝑝
𝐷∗  (i.e., x-axis crossing in Fig. 

2.11B-C). 

In all cases, the target output had a higher mean firing rate any time it had a faster 

population frequency: 𝑓𝑝𝑜𝑝
𝑇 > 𝑓𝑝𝑜𝑝

𝐷 = 𝑓𝑁(�̅�𝑖𝑛𝑝
𝐷 ). The distractor advantage that could be 

overcome by a weaker resonant target input increased with the oscillation frequency of 
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the target output (compare responses for different degrees of target input synchrony in 

Fig. 2.11B). In contrast, the maximal distractor strength that could be overcome by a 

more weakly driven target depended only slightly on the �̅�𝑃𝐶 profile (i.e., �̅�𝑖𝑛𝑝
𝐷∗  increases 

less with PC firing rate in Fig. 2.11D than with pop. frequency in Fig. 2.11E). As target 

input synchrony increased from low to high (i.e., 𝛿𝑖𝑛𝑝
𝑇  from 19ms to 1ms) (Fig. 2.11B), 

the maximum target output frequency increased from approximately 26Hz to 30Hz, 

enabling 𝑓𝑝𝑜𝑝
𝑇 -resonance to confer an advantage overcoming distractor inputs that were 

30% to 70% stronger. On the other hand, the extent to which the target output exceeded 

the equal-strength distractor output (i.e., ∆�̅�) depended exclusively on the �̅�𝑃𝐶 profile (i.e., 

not the population frequency) and increased 4x as input synchrony increased (see ∆�̅� in 

Fig. 2.11D-E, first row; ∆�̅� is correlated with PC firing rate but not pop. frequency). 

In summary, as the strength of distractor input increased, both 𝑓𝑝𝑜𝑝- and �̅�𝑃𝐶 -

resonant inputs resulted in greater target output firing rates as long as the target output 

oscillated with a higher frequency than the distractor output. This enabled a highly 

synchronous 𝑓𝑝𝑜𝑝
𝑇 -resonant input to drive greater output than a 70% stronger 

asynchronous input to an opposing population. Thus, resonant biases provide a 

competitive advantage capable of overcoming significant input rate differences in service 

of frequency-based output selection. 
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Fig. 2.11. Resonant bias enables suppression of stronger distractor pathways.  

(A) Diagram showing target output (PCT) receiving variable-synchrony input in  
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2.3.11    Amplifying resonant bias for winner-take-all selection 

 Resonant biases fully suppressed competing responses driven by equal-strength 

distractors, but the response to progressively stronger distractors increased steadily until 

the output populations oscillated at the same frequency. Winner-take-all (WTA) 

dynamics are known to amplify rate differences and result from a combination of strong 

lateral inhibition and recurrent excitation (Kaski and Kohonen, 1994). We asked whether 

flexible frequency-based output biases could be amplified by within-population recurrent 

excitation to produce stable WTA output selection. To test this, we added strong AMPA 

and NMDA synapses (see Methods for details) between all cells within each output 

population and compared input cases that previously resulted in ∆�̅� > 0  and ∆�̅� < 0 . 

Specifically, we drove a target output with a 𝑓𝑝𝑜𝑝-resonant medium-synchrony oscillation 

and a distractor output with either 40% stronger or 60% asynchronous input. Fig. 2.12A 

compares results with and without recurrent excitation when the distractor receives a 40% 

stronger input. As expected, the small output rate difference favoring the target output  

competition with a distractor output (PCD) receiving variable-strength asynchronous input. 

(B) Differential output firing rates (target-distractor) as asynchronous input rate (i.e., 

output natural frequency) increases for target input frequencies maximizing output 

population frequency given different degrees of input synchrony. (C) Similar to (B) 

except target input frequencies are chosen to maximize output PC firing rate. (D) 

Measures of bias strength for results in (B) plotted against the firing rates expected in the 

target based on response profiles. (E) Measures of bias strength for results in (C) plotted 

against the firing rates and population frequencies expected in the target based on 

response profiles. ra* is the maximum asynchronous distractor input rate where target 

output exceeds distractor output. rT-rD is the differential output firing rate when target and 

distractor mean input rates are equal. 
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Fig. 2.12. Recurrent excitation amplifies output differences for winner-take-all 

selection.  

(A) (left) Without recurrent excitation, target output is greater despite the distractor 

receiving a 40% stronger input. (right) Recurrent excitation amplifies resonant bias 

producing winner-take-all dynamics that select the output driven by a weaker resonant 

input. (B) (left) Without recurrent excitation, distractor output is greater when it receives 

an asynchronous input that is 60% stronger than an opposing resonant input. (right) Target 

is suppressed when the asynchronous input drives greater output. 



 

 

56 

was amplified so that only the target output was active. In contrast, when the 

asynchronous input was 60% stronger, the rate difference was amplified in favor of the 

distractor (Fig. 2.12B). Thus, synaptic plasticity within output populations can amplify 

flexible resonance-mediated biases to produce robust frequency-based output selection. 

2.3.12    Pathway switching by flexibly tuning output resonance 

 The results so far suggest that the resonant properties of output populations 

determine the input frequency that is most effective at suppressing responses to opposing 

signals. We have shown suppression between target and distractor outputs driven by 

oscillatory and asynchronous inputs, respectively. We have also shown that resonant 

properties can be tuned by varying the overall level of excitation in an output population 

(Figs. 2.4B, 2.6C). Next we investigated whether suppression of the slower output 

oscillation occurs when both inputs are oscillatory and whether the frequency producing 

selective response can be modulated by tuning resonant properties. 

To test this, 25Hz beta- and 40Hz gamma-frequency medium-synchrony 

oscillations were input to two competing output populations (Fig. 2.13A). Given baseline 

excitation, individual outputs can follow a 25Hz oscillation but oscillate near the natural 

frequency in response to a 40Hz oscillation (Fig. 2.7D). As expected, in competition the 

output receiving the more 𝑓𝑝𝑜𝑝-resonant 25Hz input suppressed the competing population 

as if the latter was oscillating at the natural frequency in response to an asynchronous 

input. In a second simulation, the 𝑓𝑝𝑜𝑝-resonant frequency was increased to more than 

40Hz using an auxiliary asynchronous input (a nonspecific “switch” signal) with the 

appropriate strength (i.e., a mean rate of 1000 sp/s based on Fig. 2.6C) delivered to both 
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output populations. In this case, the population receiving the 40Hz input suppressed the 

competing output driven by a less resonant input (Fig. 2.13B). These simulations 

demonstrate that resonant biases can select outputs when both inputs are oscillatory and 

that nonspecific inputs can have specific effects on output selection by tuning which 

input frequencies are resonant and thus selectively propagated.  

 

 

 
 
 
Fig. 2.13. Nonspecific inputs can tune output resonance for switching between 

specific beta- and gamma-rhythmic pathways.  

(A) A resonant beta input suppresses the response to a less resonant gamma-frequency 

input. (B) A nonspecific asynchronous input to both output populations shifts their 

resonant frequency to the gamma-range, causing the output layer to select the gamma-

rhythmic input and suppress response to the less resonant beta input. 
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2.3.13    Resonant bias for selecting rate-coded signals among parallel pathways 

 A frequency-based output selection mechanism is useful for gating rate-coded 

signals only if a spatial pattern of firing rates across a source population can be reflected 

in the output. So far we have only considered input signals with uniform spatial profiles 

(i.e., spike trains with spatially uniform time-averaged rates). Next we examined whether 

resonant biases can gate rate-coded signals among parallel competing pathways with non-

uniform Gaussian spatial profiles. 

To make sure output resonant properties were the same as before, the maximum 

input rate (i.e., peak of the Gaussian bump) was set to the level that previously produced 

beta-resonance given a uniform profile. Inputs with the maximum rate were delivered to a 

sufficient number of PC cells to recruit inhibition like before. All other PC cells of a 

given output received input spike trains with lower mean rates but identical oscillatory 

state (either 25Hz or 40Hz medium-synchrony square waves) (Fig. 2.14).  

Two rate-coded signals with Gaussian profiles were approximately conserved in 

the spatial pattern of output firing rates in separate populations when both inputs were 

modulated at the resonant frequency (25Hz) (Fig. 2.14A). In contrast, when one input 

was modulated at a less resonant frequency (40Hz), the input with resonant modulation 

was conserved in its output population while the competing output was fully suppressed 

(Fig. 2.14B). This confirms that the prior results hold when input signals have non-

uniform population rate-codes; in other words, the resonance-mediated mechanism for 

frequency-based output selection supports gating of rate-coded signals.  
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Experimental work has demonstrated that rule-coding populations in a task with 

two rules both exhibit beta-frequency oscillations with greater synchrony in the 

population encoding the active rule (Buschman et al., 2012). Motivated by this 

experimental observation, we tested interactions between outputs driven by equal-

frequency oscillations differing only in synchrony. When the inputs were high- and 

medium-synchrony square waves with 25Hz resonant oscillations, the higher synchrony 

 

 
 
 
Fig. 2.14. Resonant bias supports frequency- and coherence-based gating of rate-

coded signals among parallel pathways.  

(A) Outputs of two pathways reflect the spatial pattern of firing rates across their inputs 

when both inputs are embedded in resonant oscillations.PC index represents linear 

indices of cells in a given output PC population. (B) Frequency-based output gating: 

More resonant rate-coded signals suppress less-resonant rate-coded signals. (C) 

Coherence-based output gating: Increasing input synchrony in one pathway suppresses 

response in a competing pathway driven by a less synchronous equal-frequency 

oscillation. 
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input drove its output while suppressing the response to the lower synchrony input (Fig. 

2.14C). This demonstrates that changes in input synchrony can bias output selection 

among parallel pathways with important implications for how task-related modulation of 

synchrony can direct rule-based action selection (see Discussion). 

2.3.14    Resonant bias for selecting rate-coded signals among convergent pathways 

The gating of outputs among parallel pathways can be contrasted with the gating 

of responses in a single output population receiving concurrent signals from convergent 

pathways. We have shown that lateral inhibition driven by a resonant output gives rise to 

periodic inhibition that blocks responses in opposing pathways. Next we tested the 

hypothesis that feedback inhibition can similarly block responses to less resonant rate-

coded signals when pathways converge on a single output population. Similar filtering 

has been demonstrated in simpler models with uniform input rates (Cannon et al., 2014). 

We repeated the previous simulations demonstrating frequency-based gating of 

rate-coded signals, except this time we delivered both inputs to the same population (Fig. 

2.15). In this case, two rate-coded signals with Gaussian profiles and resonant 25Hz 

modulation were approximately conserved in the spatial pattern of output firing rates in a 

single output population (Fig. 2.15A). In contrast, when one input was modulated at a 

less resonant gamma frequency (40Hz), the input with resonant modulation was 

conserved in the output while the response to the less resonant signal was blocked by 

feedback inhibition as hypothesized (Fig. 2.15B). Asynchronous rate-coded signals were 

similarly blocked when resonant inputs from a convergent pathway resulted in the target 

population phase-locking with local interneurons (Fig. 2.15C). In both cases, feedback 
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inhibition prevented mixing of signals in a common target of convergent pathways when 

one pathway carried a resonant signal. 

2.4    Discussion 

We have presented a novel mechanism for flexibly gating outputs to control 

functional connectivity between regions connected through parallel or convergent 

anatomical pathways. The mechanism relies on input oscillations and shared inhibitory 

cells producing resonance and competitive interactions in an output layer. Output 

 

 
 
 
Fig. 2.15. Resonant bias supports frequency-based gating of rate-coded signals 

among convergent pathways.  

(A) Similar to Fig 2.14A except both inputs converge on a single output population that 

reflects the approximate sum of the input signals in its spatial pattern of firing rates. (B) 

A less resonant gamma-frequency signal is blocked from the output population. (C) An 

asynchronous signal is blocked from the output population. 
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populations driven by source networks with resonant oscillations phase lock with 

inhibitory cells and continuously suppress the responses of competing populations among 

parallel pathways as well as responses to less resonant signals among convergent 

pathways. The mechanism supports frequency- and synchrony-based output selection of 

population rate-coded signals; it enables signals to be encoded in firing rates while signal 

routing is independently directed by the dynamical states of source networks and output 

resonant properties. However, it does not require bandpass filter networks and thus 

supports input rate-based output selection in the absence of oscillatory input signals. 

Together, these properties make resonant biases useful for mediating adaptive control of 

dynamic signal routing, available on demand with the ability to augment or constrain 

underlying rate-based processes. 

2.4.1    Frequency-based output selection with rhythm-mediated competition 

In the absence of oscillatory signals, competing populations driven by 

asynchronous inputs tend to oscillate at natural frequencies in proportion to their input 

firing rates (Fig. 2.6C). The faster output population engages shared interneurons more 

frequently and continuously suppresses the more weakly-driven output. This results in 

output selection among parallel pathways mediated by input firing rates (i.e., rate-based 

selection) (Borgers et al., 2008). In contrast, resonant oscillatory inputs can induce 

oscillatory responses with frequencies higher than the natural frequency given equal-

strength input. This enables outputs driven by weaker resonant target signals to suppress 

responses to stronger asynchronous distractors as long as the target frequency exceeds 

that of the distractor output. Our simulations demonstrated that high-synchrony resonant 
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target signals can produce greater output than distractors with 70% higher input firing 

rates. This resonant bias can be amplified for winner-take-all selection by plasticity of 

recurrent connections that strengthen output responses (e.g., across repeated trials of 

task). Such resonant biases result in output selection among parallel pathways mediated 

by input frequencies (i.e., frequency-based selection) (Fig. 2.16A). Furthermore, resonant 

biases support frequency-based output selection among converging pathways in a similar 

way. 

In principal, this same mechanism could operate on flexible sub-populations 

within a pathway if participation in a resonant oscillation could be controlled with sub-

population precision. For instance, given an input layer of pyramidal cells with different 

firing rates, an effective encoding population (i.e., the population of cells whose spikes 

activate downstream neurons) can be flexibly defined by selectively synchronizing 

subsets in a resonant oscillation; only the input layer cells with spikes contributing to the 

resonant oscillation will drive cells in the output layer, and only their firing rates will be 

reflected in the downstream output (Fig. 2.16B). The responses to other cells spiking in 

the input layer will be suppressed by rhythm-mediated competition in the output layer. In 

this way, synchronization of input cell ensembles can flexibly constrain encoding 

populations and the consequent signals read-out from an output layer. Such a mechanism 

requires a high degree of control over which cells are synchronous with the population 

oscillation. 
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Fig. 2.16. Utility of resonant gating among parallel pathways.  

(A) Resonant biases can flexibly gate signals among multiple parallel pathways. Ex index 

represents indices of excitatory cells (e.g., PCs) in pathway x. Pathways with resonant 

inputs transfer their rate-coded signals while suppressing responses to less resonant inputs 

in opposing pathways. Controlling input resonance at the population level can control 

which pathways have signals that are effectively transferred. (B) Similarly, resonant 

biases can determine which input cells have their activities reflected in the output layer of 

a single pathway. The effective representation that can be read-out from the output layer 

can be transformed by changing which cells in the input layer produce spikes that are 

coherent (i.e., synchronous) with the resonant oscillation. 
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2.4.2    Mechanisms for flexible routing using resonant bias 

 Output selection using resonant biases is based on establishing the proper 

correspondence between the dynamical state of source networks and the resonant 

properties of downstream outputs driven by them, both of which can be flexibly tuned 

without synaptic plasticity and without disrupting rate-coded signals. Signal routing can 

be flexibly controlled to the extent that input oscillatory states and output resonant 

properties can be flexibly tuned.  

Controlling which input has a resonant oscillatory state: We have seen for 

interneuron-paced PC oscillations that synchrony is a function of the strength of feedback 

inhibition (Fig. 2.3), and population frequency is a function of inhibition duration (Fig. 

2.4A). By having two competing interneuron populations that can alternately pace 

rhythms in the same PC population, differential drives to the interneuron populations 

could switch the same PC population between different frequencies and degrees of 

synchrony. For instance, this could be achieved in cortical layers (e.g., layers 2/3 in 

DLPFC) containing both parvalbumin-positive (PV+) and calbindin-positive (CB+) 

interneurons which are known to be driven by distinct inputs (Medalla and Barbas, 2009). 

While this mechanism allows rapid input oscillatory state switching, it is relatively 

nonspecific and would be limited to gating population signals. More precise mechanisms, 

presumably tuned by experience-dependent plasticity, would be required to control which 

cells participate in resonant oscillations. 

Controlling which oscillatory state is resonant: Flexible control of output 

resonant properties can be achieved in numerous ways including varying the overall level 
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of excitation in the target population through neuromodulation (Fig. 2.2B) (e.g., 

modulation of potassium currents in PFC by dopamine (Dong and White, 2003) and 

acetylcholine (Bloem et al., 2014)), external applied currents (Fig. 2.2B), or by varying 

the strength of the oscillatory input (Fig. 2.6C). 

Correspondence between input and output resonant frequencies might be facilitated by 

oscillation-pacing interneuron types (Sohal et al., 2009) that are present in both input and 

output layers and provide inhibition with the same time constants (e.g., PV+ fast spiking 

INs found in layers 3 and 5 of DLPFC (Povysheva et al., 2008; DeFelipe, 1997)). 

2.4.3    Prefrontal anatomy supports rhythm-mediated competition 

 Rhythm-mediated competition in neocortex occurs when PC populations are 

driven by different inputs while being connected to the same local interneurons. In 

prefrontal cortex, parallel feedforward and/or feedback inputs from different brain 

regions target the apical dendrites of layer 5 pyramidal output populations with inhibitory 

interactions mediated by fast spiking interneurons in the output layer. Parallel pathways 

have been traced from visual and auditory cortices to lateral PFC (Barbas et al., 2015), 

and different PFC subregions form parallel loops through different subregions of basal 

ganglia and thalamus (O’Reilly and Frank, 2006). Gating of flows through these parallel 

pathways could be governed by the oscillatory state of source networks distributed 

throughout the brain. Selecting different outputs from PFC using resonant biases could 

dynamically organize functional connectivity, for instance, linking conditions encoded in 

source networks to appropriate responses based on downstream target populations in 

subcortical structures biasing attention and action control. 
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2.4.4    Prefrontal rhythms can select outputs from a working memory buffer 

 In addition to serving functional connectivity between different regions of cortex, 

resonant biases could select outputs among interlaminar pathways. In general, signals in 

superficial layers of cortex send feedforward projections to deep layers with outputs 

projecting to subcortical structures. Superficial PFC networks exhibit both asynchronous 

and oscillatory activity during delay periods of working memory (WM) tasks and are 

widely believed to encode WM representations (Fuster, 1988; Wang, 1999). Beta-

rhythmic phase coding has been shown to segregate multiple items in a visual WM task 

(Siegel et al., 2009) while beta and gamma power increases have been observed in 

proportion to the number of items stored in WM (Roux et al., 2012) and with cognitive 

demand (Basar-Eroglu et al., 2007). By maintaining distinct item representations in a 

superficial layer (i.e., a WM buffer) that target PC populations in a deep output layer, 

resonant biases utilizing observed beta- and gamma-frequency oscillations could gate 

outputs from WM. Resonant oscillations could gate the output of select items even when 

other less-resonant items are stored with stronger activation (e.g., items stored in 

asynchronous rate-codes with 70% higher mean firing rates). The selected items would 

then be available in an oscillatory state for read-out in subcortical structures and 

participation in closed-loop processing. One way this could be controlled with 

appropriate temporal precision is through a basal ganglia-mediated input gate that 

selectively targets interneurons responsible for selective PC synchronization; a similar 

mechanism has been proposed for gating inputs to PCs in PFC (Frank et al., 2001).  
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Consistent with this hypothesized mechanism for dynamic routing of WM 

representations, beta-synchrony has been observed between PFC and higher-order 

thalamus during a WM task and was correlated with performance (Parnaudeau et al., 

2013). Our results suggest that beta-rhythmic synchrony may serve thalamocortical 

processing by effectively selecting the relevant pathways and suppressing distractors. 

Suppression of responses to asynchronous inputs has the additional benefit of suppressing 

uncorrelated background activity, which increases the signal-to-noise ratio in the output 

layer. The loss of this noise suppression mechanism when beta-synchrony was disrupted 

could underlie the increase in errors observed by Parnaudeau et al. (2013). Without 

rhythmicity, outputs are rate-based with asynchronous background noise potentially 

contributing as much to output selection as asynchronous rate-coded signals.  

A recent study by Lundquist et al. (2016) demonstrated increased gamma-

rhythmic activity late in the delay when WM needed to be decoded for directing action. 

By activity-dependent tuning of output resonance, event-driven increases in input 

strength to the output layer mediated by an auxiliary nonspecific “GO” signal could 

facilitate the resonant propagation and decoding of such gamma-rhythmic response-

related activity (Fig. 2.13). At the same time, the asynchronous and less resonant 

population signals in the superficial layer would be unaffected and held online for 

potential future read-out from WM. 

2.4.5    Prefrontal rhythms can select rule-based actions 

 Beta-rhythmic synchrony has been observed in populations coding task-specific 

rules (Buschman et al., 2012). We have shown that synchronous beta-frequency 
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oscillations can selectively gate the read-out of items from a WM buffer. To understand 

the implications of beta-rhythmicity in rule-coding populations, consider two input items 

in a WM buffer representing different dimensions (e.g., color and orientation) of the same 

stimulus (e.g., a colored bar) while the two output populations driven by them are 

pointers to different action plans (saccade left and saccade right). In this scenario, 

context-dependent mechanisms (e.g., inputs to superficial CB+ cells) selectively 

synchronizing the rule-specific stimulus dimension in a resonant beta oscillation could 

constrain the response to the appropriate context-dependent action plan (Fig. 2.10). This 

would enable rule-sensitive oscillatory state control mechanisms operating on items in 

the input layer to select stimulus-response mappings depending on the active context or 

rule (see Section 2.5 for demonstration). For instance, two input items could represent the 

categories “blue” and “horizontal” while separate control mechanisms selectively 

synchronize all items in the WM buffer representing color categories in the color context 

or all items representing orientation categories in the orientation context. The 

presentation of a horizontal red bar would then select different output actions depending 

on the context-dependent synchronization. Rule updating via oscillatory state control 

mechanisms operating in PFC could potentially be directed by contextual inputs from 

hippocampus (Komorowski et al., 2013), error signals from ACC (Kerns et al., 2004; 

Amiez et al., 2005), or BG gating mechanisms (Frank et al., 2001). 

2.4.6    Frequency-based gating mechanisms for convergent pathways 

Frequency-based gating through a single output population with strong feedback 

inhibition (Fig. 2.17A) investigated here differs from frequency-based gating through a 
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spiking filter network based on feedforward inhibition (Akam and Kullmann, 2010) (Fig. 

2.17B) in that the former allows responses to all inputs with preferential selectivity for 

those with resonant oscillatory states while the latter responds exclusively to firing rate 

resonant inputs. Therefore, gating with strong feedback inhibition allows for greater 

flexibility in the kind of signals that can be transmitted while still supporting the selective 

response to oscillatory inputs. Furthermore, gating with feedback inhibition supports rate-

based output selection of asynchronous rate-coded input signals that can be overridden by 

frequency-based selection with resonant biases when particular input populations are 

selectively synchronized at the appropriate resonant frequency.  

 

 
 
Fig. 2.17. Comparison of frequency-based gating mechanisms for convergent 

pathways.  

(A) Outputs with feedback inhibition enable resonant biases to gate which signals among 

convergent pathways are reflected in an output population. In the absence of input 

oscillations, convergent signals can be mixed in the output or selected based on 

differences in firing rates. (B) Outputs with strong feedforward inhibition from a 

resonant inhibitory population respond selectively to oscillatory inputs with frequencies 

in a particular range. Collectively, such a configuration functions as a spiking network 

filter that suppresses asynchronous activity and performs frequency-based output 

selection. 
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2.4.7    Limitations and future directions 

The most significant limitation of the current work is the exclusion of feedforward 

inhibition. PCs receiving feedforward (especially perisomatic) excitation may be coupled 

to local interneurons receiving collateral excitatory inputs from the same sources. When 

the collateral drives to INs balance the drives to PCs the PC/IN network functions as a 

bandpass filter with PCs remaining silent in response to asynchronous input (Akam and 

Kullmann, 2010). We have focused on a regime with strong feedback and lateral 

inhibition to investigate competition between local populations and excluded feedforward 

inhibition so that asynchronous inputs would have a maximal impact on PC spiking. As 

feedforward inhibition is increased, local populations become less influential over local 

interneurons and PC responses to asynchronous inputs are suppressed. In intermediate 

regimes, the firing rate response profile shifts downward with decreasing resonant 

frequencies as feedforward inhibition increases. More work is needed to explore the 

effects of intermediate levels of feedforward inhibition on output competition mediated 

by feedback and lateral inhibition. However, the mechanism reported here should hold to 

a degree as long as interneurons can be driven by local populations over external inputs 

and oscillatory output responses remain paced by local inhibition.  

 Another important limitation of the present work pertains to the role of 

modulatory intrinsic currents. We have focused on regimes where PCs are roughly 

regular spiking and INs are fast spiking. It is unclear how the mechanism reported here 

would be affected by PCs that are intrinsically bursting (as observed in deep layers of 

cortex and thalamus) and INs exhibiting low-threshold spiking. Furthermore, our account 
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of the effects of knocking out modulatory currents is limited to effects on overall activity 

levels across the PC population and responses to inputs in the beta and gamma frequency 

ranges. Preliminary simulations suggest that local maxima in the response profiles, 

especially in lower frequency ranges, may depend on these modulatory currents. 

Furthermore, work by Olufsen et al (2013) shows that modulatory currents can impact the 

cycle-to-cycle probability of individual cells participating in the population rhythm.  

2.4.8    Conclusions 

Resonance and interneuron-mediated competition enable network oscillations to 

select and route information through parallel and convergent pathways. This mechanism 

enables the dynamical state of network activity to mediate functional connectivity 

throughout the brain. Its dynamic nature makes it an ideal way for prefrontal systems to 

achieve flexible control of cognitively-relevant neural dynamics. 

 

2.5    Superficial LPFC dynamics for interneuron-mediated rule switching 

 Next, we sought to demonstrate the utility of this oscillation-based routing 

mechanism in a simulated rule-based task using a model motivated by the laminar 

structure of prefrontal cortex. We built on two ideas discussed above: (1) selection of 

input-output mappings using resonant biases, and (2) controlling context-dependent 

synchronization using distinct populations of interneurons with different strengths of 

feedback inhibition.  
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 Anatomically, LPFC is eulaminate cortex with well-differentiated superficial and 

deep layers separated by a granular layer (Barbas, 2015) with deep layer 5 pyramidal 

cells sending apical dendrites into the superficial layers and projecting axons to 

subcortical structures governing action. LPFC contains multiple interneuron types with 

more CB+ INs in superficial layers (e.g., layer 2) and PV+ INs in middle/deep layers 

(including layer 3) (DeFelipe, 1997). It receives feedforward inputs from sensory cortices 

projecting to middle layers and feedback inputs from ACC projecting to superficial 

layers, targeting more CB+ INs than PV+ INs (Medalla and Barbas, 2009). 

Physiologically, PV+ and CB+ INs in PFC can exhibit fast spiking (FS) and low 

threshold spiking (LTS) behavior (Kawaguchi, 1993; Kawaguchi et al., 1998). Pyramidal 

cells can show selectivity for stimuli, responses, and rules (Buschman et al., 2012). 

Motivated by these anatomical and physiological considerations, and the rule-based task 

of Buschman et al. (2012), we constructed a laminar model of LPFC capable of selecting 

rule-dependent input-output mappings using resonant biases.  

 The task involved visual presentation of a rule cue followed by a stimulus and a 

learned response. Depending on the rule (color (c) or orientation (o)), a given stimulus 

“S” (e.g., horizontal blue bar) can indicate to saccade left (L) or right (R). We simulated 

two trials with an incongruent stimulus that maps onto different responses depending on 

which stimulus dimension (color or orientation) is relevant according to the active rule. 

The model includes stimulus-selective populations (OSL and CSR) of PCs in superficial 

layers and response-selective populations (L and R) of PCs in deep layers (Fig. 2.18). 

Interlaminar feedforward projections define parallel channels representing stimulus-
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response mappings. OSL and CSR represent populations selective for different dimensions 

of the same stimulus and which map onto opposing responses, L and R, respectively. 

Independent of the rule, both populations will become active and tend to drive opposing 

responses. Given rule “o”, OSL should activate L more than CSR activates R (i.e., select 

input-output mapping SL). Given rule “c”, the opposite should occur (i.e., SR should 

be selected).  

 The oscillatory state of the superficial PC encoding populations (OSL and CSR) is 

controlled by PV+ FS and CB+ LTS interneurons providing weak and strong feedback 

inhibition, respectively. When LTS cells pace the PC population, activity is more 

synchronous (due to stronger inhibition) and rhythmic at a beta frequency (due to the 

time constant of LTS inhibition). In contrast, when FS cells pace the PC population, 

spiking is less synchronous, and the population oscillates at a faster frequency (due to the 

shorter time constant of FS inhibition). Given beta resonance in the output layer, PC 

populations paced by LTS cells drive their targets more effectively. Critically, we 

assumed that context signals bias rule-specific mappings by increasing the excitability of 

rule-selective LTS cells. PC populations are paced by LTS cells only when the LTS cells 

are more excitable, otherwise PCs are paced by FS cells. The active rule in this model is 

then determined by which LTS cells receive the context signal. The input-output 

mappings enhanced via resonant bias are those with inputs paced by the in-context LTS 

cells. 
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Fig. 2.18. Diagram of laminar LPFC model that performs a rule-based task. 

In the rule-based task, an oriented, colored bar (stimulus S) triggers a learned response 

(saccade left L or right R) based on which stimulus dimension is relevant for the active 

rule. In the color rule (c), a red bar (CSL) triggers L, and a blue bar (CSR) triggers R. In the 

orientation rule (o), a horizontal bar (OSL) triggers L. An incongruent stimulus (e.g., 

horizontal, blue bar) has dimensions that map to opposing responses, and the correct 

response depends on the rule. The laminar model of LPFC contains stimulus-selective 

superficial PC populations and response-selective deep layer PC populations. The 

interlaminar structure has four parallel pathways that represent learned input-output 

mappings (e.g., CSLL, CSRR, OSLL). The incongruent stimulus activates OSL and CSR, 

which drive opposing responses L and R, respectively. Layer 2 LTS and layer 3 FS 

interneuron populations provide strong and weak feedback inhibition, respectively. LTS 

cells are rule-selective and induce synchronous beta oscillations in specific PC inputs, 

enabling resonance to amplify their target responses through all pathways paced by LTS 

inhibition. When o-selective LTS cells pace OSL activity, the resulting resonant bias 

amplifies L activity over R. In this way, rule-dependent LTS inhibition can mediate the 

selection of rule-based input-output mappings using resonant biases. See Appendix B for 

model details. 

L R L R 

OSL OSR CSL CSR 

Rules 

(Stimulus) 

Categories 

Actions 

(OSL=horizontal/left, CSR=blue/right) 
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Fig. 2.19. Two trials with incongruent stimuli and different contexts.  

(A) The first of two trials of a rule-based task with a subthreshold context cue driving o-

selective LTS cells (orange box) and, .5s later, a suprathreshold stimulus driving superficial 

PC populations (OSL and CSR) and FS cells (blue box). LTS cells require both cue and 

PCLTS excitation to become active; their activity then suppresses FS cells. This results 

in OSL paced by LTS and CSR paced by FS. Stronger LTSPC inhibition produces lower 

rates and higher coherence in OSL compared to CSR paced by weaker FSPC inhibition. The 

time constant of LTS inhibition yields a beta-frequency rhythm in OSL that is resonant for 

the deep output layer. The resonant bias, then, enables the more coherent (.8>.6) encoding 

population OSL to drive greater L output despite having a lower mean firing rate 

(22sp/s<24sp/s) than the opposing pathway. When the rule switches, and c-selective LTS 

cells receive cue-related subthreshold drive, the dominant input-output mapping switches 

from OSLL to CSRR (not shown). (B-C) Differential output across two trials is predicted 

by input beta power, not input activity levels. (B) Differences in the instantaneous firing 

rate (iFR) outputs between the pathways (Left-Right) is not correlated with differences in 

the iFRs of the input encoding populations (OSL-CSR). (C) Differences in iFR between 

outputs is correlated with differences in the instantaneous levels of beta power (iPower) 

between the inputs. Beta power is more predictive because beta-frequency resonance 

overcomes the effects of small input rate differences.  
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 In the first simulated trial (Fig. 2.19A), the “o” cue at .5s provided a subthreshold 

drive to “o” selective LTS cells. The stimulus arrived at 1s and provided suprathreshold 

drives to both stimulus-coding PC populations. The in-context PC population, OSL, was 

paced by the more excited LTS cells and, due to their strong feedback inhibition, were 

made more coherent (coh=.8) and exhibited a lower mean firing rates (22 sp/s). In 

contrast, the out-of-context PC population, CSR, was paced by FS cells providing weak 

feedback inhibition and, consequently, had higher mean firing rates (24 sp/s) but lower 

spike coherence (coh=.6). The resonant bias provided by the more synchronous OSL 

population enabled it to activate its target (L) more than the higher rate CSR population 

activated R. On the second trial (not shown), the rule cue provided a subthreshold drive 

to “c”-selective LTS cells, resulting in a resonant advantage for CSR and more R output.  

 We analyzed the result in terms of instantaneous firing rates and the instantaneous 

beta power (calculated from the short-time Fourier transform averaged over 20-30Hz) of 

each stimulus-coding and response population. Plotting the difference in outputs (Fig. 

2.19B-C, Left-Right) versus the difference in input rates (Fig. 2.19B) and the difference 

in input beta power (Fig. 2.19C) showed that which input-output mapping was selected 

was predicted by differences in input beta power, not differences in input rate. This 

demonstrates that context-specific rhythmicity, mediated by distinct populations of 

interneurons, can enable resonant biases to overcome differences in activity. It also 

provides an anatomical and physiological hypothesis for how the rule-related beta 

rhythmicity observed in primate DLPFC could confer a rule-related advantage biasing 

action selection.  
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 The output bias demonstrated here is produced exclusively by resonance without 

competition. The earlier work in this chapter showed that the advantage provided by 

input rhythms can be increased beyond the effects of resonance alone when there is also 

lateral inhibition between outputs (Figs. 2.8-9) and output-specific recurrent excitation 

(Fig. 2.12). Thus, the anatomical details of LPFC layer 5 and effects of learning not 

captured by the model of Fig. 2.18 only increase the ability of input rhythms to mediate 

rule switching. 

 Our models do not utilize attractor states and, consequently, are not directly 

applicable to activation-based mechanisms for working memory (Durstewitz et al., 2000). 

However, work on achieving stable persistent activity in oscillatory populations of 

biophysically-detailed spiking neurons (Tegner et al., 2002) suggests the principles 

demonstrated here could operate equally well in the context of working memory attractor 

networks. Thus, resonant biases and synchronization mediated by distinct interneuron 

populations may support rule-based selection of read-out from working memory attractor 

networks..
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CHAPTER 3 

ANTERIOR CINGULATE HETEROGENEITY FOR 

COMBINATORIAL PROCESSING3 

 The anterior cingulate cortex (ACC) is vital for a range of brain functions 

requiring cognitive control and has highly divergent inputs and outputs, thus manifesting 

as a hub in connectomic analyses. Studies show diverse functional interactions within 

ACC are associated with network oscillations in the beta (20-30 Hz) and gamma (30-80 

Hz) frequency range. Chapter 2 showed that oscillations permit dynamic routing of 

information within cortex, a function that depends on resonance and band-pass filter-like 

behavior to selectively respond to specific inputs.  However, a putative hub region like 

ACC needs to be able to combine inputs from multiple sources rather than select a single 

input at the expense of others. Such a mechanism could serve process monitoring and the 

regulation of cognitive control, perhaps by driving thresholded outputs triggering switch 

mechanisms, mediated by superficial CB+ interneurons, that update the dynamical state 

of encoding populations in LPFC.  

To address this potential functional dichotomy we modeled local ACC network 

dynamics in the rat in vitro.  Modal peak oscillation frequencies in the beta- and gamma-

frequency band corresponded to GABAAergic synaptic kinetics as seen in other regions; 

                                                        
3 This chapter is an extension of the following reference: Natalie Adams*, Jason Sherfey*, Nancy 
Kopell, Miles Whittington, and Fiona LeBeau. Heterogeneity in Neuronal Intrinsic Properties: A 
Possible Mechanism for Hub-Like Properties of the Rat Anterior Cingulate Cortex During Network 
Activity. eNeuro 2017. * N.A. and J.S. contributed equally to the referenced manuscript. J.S. was 
trained in the experimental techniques, but N.A. obtained the data that was used in this work. J.S. 
analyzed the experimental data and performed all modeling and simulation. 
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however, the intrinsic properties of ACC principal neurons were highly diverse. 

Computational modeling predicted that this neuronal response diversity broadened the 

bandwidth for filtering rhythmic inputs and supported combination – rather than selection 

- of different frequencies within the canonical gamma and beta EEG bands. These 

findings suggest that oscillating neuronal populations can support either response 

selection (routing), or combination, depending on the interplay between the kinetics of 

synaptic inhibition and the degree of heterogeneity of principal cell intrinsic 

conductances. 

 

3.1    Introduction 

Anterior cingulate cortex (ACC) is a functionally distinct area of the prefrontal 

cortex (PFC) that in rats, primates and humans is associated with a broad range of 

functions including remote spatial memory (Teixeira et al., 2006; Wartman et al., 2014), 

attention and executive function (Kesner and Churchwell, 2011; Newman et al., 2014) 

adaptive control (Narayanan et al., 2013), error detection (Ito et al., 2003; Hyman et al., 

2013), and reward-based decision making (Walton et al., 2003; Hillman and Bilkey, 

2010). Such diversity of function, collectively referred to as ‘cognitive control’ (Shenhav 

et al., 2013) supports the idea that ACC may act as a general action-outcome-predictor 

(Hyman et al., 2013) and cognitive resource allocator performing a cost/benefit analysis 

on diverse signals (Botvinick 2016). 

A wide range of inputs to ACC suggests that, from a connectomic point of view, 

this region can potentially monitor all modalities of primary sensory input, affective state, 
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motor state and associational processing (Hoover and Vertes, 2007; Park and Friston, 

2013; Vogt and Paxinos, 2014). Equally diverse outputs from ACC (Gabbott et al., 2005) 

would allow this area to function as a higher-order hub region, vital for multimodal 

integration (Bassett et al., 2008). 

A dynamic view of brain connectivity reveals a rich variation in the interplay 

between one brain region and others that change over timescales of less than tens of 

milliseconds (Kopell et al., 2014). Functional connectivity, with quantifiable behavioral 

consequences, involves specific phase relationships between activity in different areas 

organized over a spectral range including beta- (20-30 Hz) and gamma- (30-80 Hz) 

frequency EEG bands (Bastos et al., 2015). Within this frequency range, local neuronal 

networks can effectively ‘select’ which inputs to respond to on the basis of the relative 

peak frequency of concurrent inputs – with more resonant frequencies taking precedence 

(Chapter 2; see also Cannon et al., 2013). This selection of inputs can lead to ‘routing’ of 

information based on the relative strength of the oscillations present in the inputs 

(Chapter 2; see also Kopell et al., 2010; Akam and Kullmann, 2010, 2014). 

Network oscillations in the beta- and gamma frequency range in PFC subregions, 

including ACC, are associated with many cognitive functions (Buschman et al., 2012; 

Brincat and Miller, 2015).  This activity depends upon local network interactions between 

excitatory principal cells and fast-spiking, parvalbumin-containing (PV) interneurons 

(e.g. Fisahn et al., 1998; Whittington et al., 2011). Computational studies have predicted 

that the input selection and routing behaviors of gamma and beta rhythms are, at least in 

part, manifest through the establishment of ‘band-pass filter’ and rhythm-mediated 
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competitive behavior of local networks afforded by the kinetics of the synaptic inhibition 

provided by these PV neurons (Chapter 2; see also Akam and Kullmann, 2010; Cannon et 

al., 2013). In contrast, it can be argued that the function of hub-like regions like ACC 

should depend more on a combinatorial processing of inputs, with selection and routing 

processes more appropriate for regions critical for contextual disambiguation (Phillips et 

al., 2010). 

Using in vitro recordings in rat ACC, we investigated the network properties of 

beta- and gamma frequency oscillations generated locally and the diversity of intrinsic 

cellular properties of ACC principal cells. The experimental data in this chapter was 

collected by Natalie Adams in the LeBeau laboratory at Newcastle University. The data 

demonstrated that the generation of both beta- and gamma frequency oscillations was 

critically dependent on the kinetics of fast synaptic inhibition, as widely reported in other 

brain regions (Whittington et al., 2011).  Here we show that both passive and active 

intrinsic principal cell properties exhibited a great deal of heterogeneity. Computational 

studies, constrained by this biological data, showed that in response to rhythmic 

(sinusoidal) input the kinetics of slow (13 ms) and fast (5 ms) synaptic inhibition decay 

times determined the ‘center frequency’ of the band-pass filtering properties of the ACC 

network to within either the beta- or gamma-frequency range, respectively.  However, 

modeling the observed heterogeneity in the intrinsic properties of ACC neurons 

broadened the filter bandwidth at both beta- and gamma frequencies.  The main 

consequence of the broader filter bandwidths was to bias the local network behavior 
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away from input-selection, and towards a more combinatorial behavior, consistent with 

the proposed hub-like function of ACC. 

 

3.2    Methods 

3.2.1    Slice Preparation and solutions 

Coronal slices 450 µm thick containing the caudal regions of ACC (Cg1 and Cg2) 

were prepared from 2-3 month old male Lister Hooded rats.  Rats were anesthetized with 

inhaled isoflurane, followed by an intramuscular injection of ketamine (100 mg/kg; Fort 

Dodge Animal Health Ltd., Southampton, UK) and xylazine (10 mg/kg; Animalcare Ltd., 

York, UK).  When all response to noxious stimuli, such as pedal withdrawal reflex, had 

terminated, the animals were intracardially perfused with 50 ml of modified artificial 

cerebrospinal fluid (ACSF) that was composed of, in mM, 252 sucrose, 3.0 KCl, 1.25 

NaH2PO4, 24 NaHCO3, 2.0 MgSO4, 2.0 CaCl2 and 10 glucose. All procedures were in 

accordance with the UK Animals (Scientific Procedures) Act 1986 and the European 

Union Directive 2010/63/EU. 

Following brain removal, 450 m thick coronal PFC slices were cut using a Leica 

VT1000S vibratome.  Slices were then trimmed and transferred to a holding chamber at 

room temperature for ~1 hour, which allowed washout of all anaesthetic agents, before 

being transferred to a recording chamber where they were maintained at ~29-31C at the 

interface between normal ACSF (where sucrose was replaced with 126 mM NaCl and 

MgSO4 and CaCl2 were reduced to 1.2 and 1.76 mM respectively) and humidified 95% 
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O2/5% CO2.  Drugs used were as follows: kainic acid (800 nM) (Sigma-Aldrich); the 

AMPA/kainate receptor antagonist 2,3-Dioxo-6-nitro-1,2,3,4-

tetrahydrobenzo[f]quinoxaline-7-sulfonamide, (NBQX; 10 µM); the NMDA receptor 

antagonist D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5; 50 µM); the GABAB 

receptor antagonist 3-aminopropyl-diethoxy-methyl-phosphinic acid CGP 35348 (5 µM). 

3.2.2    Recording Techniques 

Extracellular recordings were performed with ACSF-filled glass microelectrodes 

(resistance <5 MΩ).  Only one extracellular electrode was positioned in each slice, which 

was moved across the laminae until a clearly detectable oscillation was recorded. 

Intracellular recordings used potassium acetate (2 M) filled glass microelectrodes 

(resistance 80 MΩ - 150 MΩ).  To assess the intrinsic membrane properties ACC cells 

were recorded with antagonists of glutamatergic transmission including NBQX (10 µM), 

D-AP5 (50 µM) and CGP 35348 (5 µM) in the ACSF. Slices were maintained in an 

interface recording chamber at 29-30°C. Data were recorded via an Axoclamp amplifier 

(Molecular Devices), using an InstruTECH ITC-16 (HEKA Electronic, Digitimer, 

Welwyn Garden City, Herts, UK) after live mains noise was removed using a Humbug 

(Quest Scientific, Digitimer, Welwyn Garden City, Herts, UK) and pre-amplification and 

bandpass filtering between 1.5 – 300 Hz (Neurolog, Digitimer, Welwyn Garden City, 

Herts, UK). Data were sampled at 5 kHz and band-pass filtered (1.5 Hz – 100 Hz). 



 

 

85 

3.2.3    Data Analysis  

All time-series analyses were performed in Matlab (MathWorks Inc., Natick, MA, 

USA).  Power spectra for all LFP and intracellular recordings were created using Welch’s 

estimate on traces between 20 seconds and 1 minute in length, using a window length of 

5 seconds and a 50% window overlap. During post-processing the LFP data were only 

processed up to a frequency of 80 Hz. 

3.2.4    Post-synaptic potentials  

Inhibitory post-synaptic potentials (IPSPs) were recorded with cells held at a 

membrane potential of -30 mV (Fig. 3.1). IPSPs were analyzed using a custom made 

Matlab script and were only included if the amplitude exceeded 0.5 mV. IPSP amplitude 

was calculated as the voltage difference between the trough of the IPSP and the preceding 

peak (start of the IPSP). Decay times of IPSPs were taken at 63% of the peak voltage 

deflection. Spike triggered averaging was performed by taking the mean of all spiking 

events above a threshold of -40 mV with the spike peak forming the center of the average 

and including 50 ms before and 200 ms following the peak. 

3.2.5    ACC cell intrinsic properties 

Numerical values for intrinsic parameters (IPs) were collated for each cell (Fig. 

3.2). The chosen IPs were as follows: IP1 Action potential (AP) amplitude (mV); IP2 Ih 

(cAMP-dependent hyperpolarization-activated current) estimate (the amplitude of the sag 

potential from the steady state of -200 nA step injection and the subsequent return to rest) 

(mV); IP3 after-hyperpolarization (AHP) amplitude (mV); IP4 AHP magnitude (voltage 
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integrated over 200 ms post AP; mV); IP5 AHP time to maximal deflection (ms); IP6 

Spike width at half-height (ms); IP7 Spontaneous spike rate at threshold (Hz); IP8 

Resting membrane potential (rmp; mV); IP9 Initial spike frequency (time between first 

and second spikes) on step depolarization (Hz); IP10 Ratio of 3rd to 2nd inter-stimulus 

interval on step depolarization-induced spike train (used as a measure of spike frequency 

adaptation; unitless). After within-parameter normalization, the normalized cross-

correlation coefficients between pairs of parameters were found. IPs that were correlated 

(or anti-correlated) above an absolute value of +/- 0.33 were considered significantly 

correlated and were discarded. The variance explained in the remaining IP dataset (IP3, 

IP5, IP6, IP7, IP8, IP9, IP10) was calculated for each property. 

3.2.6    Cell Clustering  

Clustering was performed using k-means and hierarchical methods (Fig. 3.3). 

One-way ANOVA analysis was used to compare parameter distributions across the 

clusters. After within-parameter normalization, the normalized cross-correlation 

coefficients between pairs of parameters were found, producing a correlation matrix of all 

pairs. Variables that were correlated (or anti-correlated) above an absolute value of +/- 

0.33 were classed as significantly correlated variables and were discarded.  MANOVA 

analyses of the remaining parameters were performed on all pairs of clusters to determine 

if cells could be clustered according to individual or combined parameters.  Hierarchical 

clustering utilized Ward’s minimum variance criterion.  The effectiveness of clustering 

was tested for 2 – 10 clusters using the Davies-Bouldin Index, which measures the ratio 

of intra-cluster scatter to inter-cluster separation, and the Dunn’s Index, which similarly 
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assesses intra-cluster distance versus inter-cluster distance. Maximization of the Davies-

Bouldin index and minimization of the Dunn’s Index provide internal measures of the 

effectiveness of the clustering (Davies and Bouldin, 1975; Maulik and Bandyopadhyay, 

2002). Data were shuffled by re-ordering the values for each intrinsic property via a 

random permutation in Matlab. 

3.2.7    Statistical Analysis  

Statistical analyses were performed in Sigmaplot 11.0 (Systat Software Inc., San 

Jose, California, USA) and data were presented as median 25-75% interquartile ranges 

(IQR) and significance chosen was P <0.05. 

 

Computational Modeling 

3.2.8    Pyramidal cell model 

We developed a single-compartment pyramidal cell model capable of producing 

the range of intrinsic membrane properties observed in ACC (Fig. 3.4). The conductance-

based model had a membrane potential V (mV) governed by: 

 

                                            

 

where t is time (ms),  = 1µF/cm2 is the membrane capacitance,  is Gaussian 

noise with  and amplitude tuned to match baseline fluctuations in membrane 

potential,  is an injected current (µA/cm2) simulating an in vitro experimental  



 

 

88 

 

 
 
Fig. 3.1. IPSPs suggest dual inhibitory inputs in ACC cells during gamma/beta 

network oscillations. 

Ai) Example power spectra and traces of KA-evoked oscillations showing 

representative local field potential oscillations from three different slices consisting of 

purely beta rhythms (left), purely gamma rhythms (middle) and a dual frequency 

oscillation (right); scale bar 50 V, 200 ms. Aii) Incidence plot for the modal peak 
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protocol, and  denotes intrinsic membrane currents (µA/cm2) produced by ionic 

conductances with Hodgkin-Huxley-like channel kinetics from published cell models: 

, , , and  from (Durstewitz and Seamans, 2002) for spike generation and 

adaptation; , , , and  from (Papoutsi et al., 2013) for calcium-dependent 

adaptation, slow afterhyperpolarization, and hyperpolarization-induced voltage sag; and 

 from (Yamada et al., 1998) (see legend of Fig. 3.4 for more details). Ionic currents 

from (Durstewitz and Seamans, 2002) and (Papoutsi et al., 2013) were chosen because 

their kinetics were constrained by experimental data from rat mPFC. Each active current 

was modeled as  where maximal conductance  (mS/cm2), 

reversal potential  (mV), p, q, and the kinetics of activation gate m and inactivation 

gate h were as published unless otherwise specified. All cells had a passive leak current 

 with conductance =.04 mS/cm2 and reversal potential  (mV). 

frequencies in spectra from 109 ACC slices showing a clear bimodal average spectrum.  

Bi) Example IPSP traces (scale bar 5 mV, 200 ms) and simultaneously recorded LFP 

(scale bar 50 V, 200 ms) with corresponding normalised power spectra (ii) showing the 

LFP power spectrum (shaded) and overlaid IPSP power spectrum (black line). Biii) 

Distribution of IPSP decay times. The inset shows IPSP-triggered averages of the LFP. B) 

Field oscillation and IPSP at beta frequency. C) Field oscillations at beta frequency but 

IPSPs at ~12 Hz.  D) Mixed gamma/beta frequency field oscillation and IPSPs.  E) Mixed 

gamma/beta field oscillations but IPSPs only at beta frequency. F) Mixed gamma/beta 

field oscillations but IPSPs only at gamma frequency. 
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Fig. 3.2. Manual classification and laminar distribution of cells in ACC.  

A) Each row shows the electrophysiological response properties of one example cell from 

each Group 1 - 5 to i) 400 ms hyperpolarizing steps at 0.1 – 0.4 nA;  ii) 400 ms 

depolarizing steps at 0.3 – 0.4 nA; (grey to black = smaller to larger current step; scale 

bar 20 mV, 100 ms).  iii) tonic activity at spike threshold (scale bar 20 mV, 200 ms).  
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The in vitro cell characterization experiment was simulated by a current injection, 

, delivering a series of hyperpolarizing and depolarizing pulses followed by a 

ramp to spike threshold then constant depolarization (compare Fig. 3.4A). Model IPs 

were calculated from the simulated data using the same analysis applied to the 

experimental recordings. A set of cell models capturing the diversity observed in ACC 

was obtained by manually varying biophysical parameters and comparing model IPs to 

the aggregate (all cells, all layers) experimental distributions (Fig. 3.4C). Specifically,  

and maximal values for 8 active conductances ( , , , , , , , 

) were varied across simulations to find a set of models with IPs spanning the ACC 

distributions for the 5 most discriminative IPs from the experimental IP data analysis 

(IP5, IP6, IP7, IP8, IP9; accounting for 85% of the total variance in ACC IPs; see Fig. 

3.4C). Parameter space was explored in two steps. First, each maximal conductance was 

logarithmically varied 1E-6 to 1E2 to determine the scales over which realistic IPs could 

be observed. Next, hypercube subspaces were explored around the identified scales for 

maximal conductance and a  range spanning the recorded RMP values. Only parameter 

sets producing IPs within the experimental ranges were considered viable models of the 

B) Values (medians and interquartile ranges) for 10 IPs plotted for each manually 

selected Group 1 - 5 (colours as in A). † significantly different from * (One-way 

ANOVA P <0.05). Central circle = median values; blue circles = outliers.  C) A 

schematic diagram of ACC (Cg1 and Cg2) with dots showing the location of cells found 

with different response properties. The colour of each dot corresponds to cells from 

Groups 1-5 recorded at each location. D) Plot shows the laminar distribution profile as a 

percentage of total cells in Groups 1-5. 
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pyramidal cells recorded in vitro in the presence of synaptic blockers. This procedure 

resulted in 2,810 viable cell models out of >100,000 simulated models. 

 

 
 
Fig. 3.3. Objective clustering analysis does not identify distinct clusters.  

Validity indices (A) Davies-Bouldin (B) Dunn’s index for the 3 clustering methods 

attempted; manual (black circles), k-means (olive circles), hierarchical (purple circles) 

and shuffled data (grey circles) for a range of cluster numbers (2-10 clusters). C) 2D 

canonical variable plots (unitless) from the multivariate analysis for the (i) manual, (ii) 

hierarchical, (iii) k-means and (iv) shuffled clusters when assuming 3, 4 and 5 clusters. 

Each plot shows the cells of each cluster as an arbitrary colour. 
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All viable cell models had biophysical parameters yielding intrinsic 

electrophysiological properties within the ranges observed experimentally. Across the set 

of viable models, each biophysical parameter had a distribution of values (Fig. 3.4C) and 

tended to co-vary with other biophysical parameters to some degree. We defined a 

homogeneous assembly of cells as a population of equivalent cell models with 

biophysical parameters set to medians computed across the full set of viable models; all 

cells belonging to a given assembly received similar inputs (see details below). 

Independent realizations of heterogeneous assemblies were generated by drawing 

biophysical parameters from a multivariate normal distribution using the co-variance 

matrix, including all pairs of biophysical parameters, computed across the full set of 

2,810 viable models. 

3.2.9    Biophysical network model 

We developed a computational representation of a generic ACC network 

including single-compartment excitatory (E) pyramidal cells and inhibitory (I) 

interneurons. E-cells were modeled as previously described with the addition of synaptic 

inputs and exclusion of the injected current: 

                                        

where  is an excitatory current (µA/cm2) reflecting inputs from external sources 

and  denotes synaptic currents (µA/cm2) driven by other E- and I-cells in the network. 

I-cells were modeled using the fast-spiking (FS) Wang-Buzsaki interneuron model 



 

 

94 

(Wang and Buzsaki, 1996). A more computationally demanding FS I-cell model based on 

PFC data (Durstewitz and Seamans, 2002) produced qualitatively similar results. 

All networks consisted of 80 E-cells split into one or two assemblies coupled 

reciprocally to a shared pool of 20 I-cells (see model architecture in Figs. 3.5A,B and 

3.6A). E-cells provided excitation to all I-cells, mediated by α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) currents. I-cells in turn provided inhibitory 

inputs γ-aminobutyric acid (GABAA) currents to all E-cells and I-cells. AMPA currents 

were modeled as: 

                                               

where  is the postsynaptic membrane voltage,   is the maximal synaptic 

conductance,  is a synaptic gating variable, and = 0 mV is the synaptic reversal 

potential. Synaptic gating was modeled by:  

 

where  is the presynaptic membrane voltage, ms and  2 ms are time 

constants for neurotransmitter release and decay, respectively, and 

 is a sigmoidal approximation to the Heaviside step function.  

GABAA currents are modeled in the same way with = -75mV and variable 

 (5 ms or 13 ms, reflecting inhibition from different interneuron classes). 

Maximum synaptic conductances for E-cells were (in mS/cm2): GABAA (.1); for I-cells: 

AMPA (1), GABAA (1). 
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E/I networks with one E-cell assembly were simulated to probe the natural and 

resonant frequencies of ACC networks with and without E-cell heterogeneity (Fig. 3.5). 

In these simulations, the input was a gated channel with excitatory AMPA current 

 
 
 
Fig. 3.4. Heterogeneous biophysical models reproduce the range of experimental 

intrinsic properties. 

A) Example of experiment and model cell responses to depolarising current steps (top 

traces) and hyperpolarising current steps (middle traces) and firing rate at r.m.p. (bottom 

trace).  Scale bars 20 mV/100 ms and 20mV/2sec. B) Shows ion channel conductance 

ranges (10-6 to 102) used in ACC cell model.  Values are based on model fits to 

experimental IP ranges. (Ion channel key: h = HCN channel; can = high-threshold (N-

type) calcium channel; cat = low-threshold (T-type) calcium channel; kca = calcium-

dependent potassium channel; ks = slow (M-type) potassium channel; AHP = slow 

afterhyperpolarizing potassium channel; kdr = fast delayed rectifier potassium channel; 

naf = fast sodium channel; pas = passive leak channel).  C) Model and experimental IP 

distributions for the 5 IPs (IP5-9) that explained most of the variance. 
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 where  is the synaptic reversal potential and  is a postsynaptic 

gating variable that integrates independent Poisson spike trains with time-varying rate 

function . In different simulations,  =  (background activity) was used to probe 

natural frequencies and 𝜆(𝑡) = 𝑟(1 + sin(2𝜋𝑓𝑡))/2 (rhythmic input) was used to probe 

resonant frequencies. Input spike trains represent background noise or rhythmic 

population activity originating from an arbitrary source network and are integrated in the 

synaptic gate  with exponential AMPAergic decay.   was tuned during the former 

simulations to produce firing rates observed in the in vitro experiments with kainate-

induced network oscillations. In the latter simulations,  was varied from 4 Hz to 60 Hz 

(2 Hz steps) across simulations. All single-assembly simulations were repeated for 

 ms and  ms based on experimentally observed IPSPs in the gamma- and 

beta-coherent cells, respectively. Parameters were set to , ,  

Hz. 

E/I networks with two identical E-cell assemblies, E1 and E2, were simulated to 

probe the effects of heterogeneity on synchrony (integration) and competition between 

assemblies receiving noise or rhythmic inputs at different frequencies,  and , 

respectively (Fig. 3.6). In these simulations, the excitatory input was a gated AMPAergic 

response to a Poisson spike train as before. However, assemblies E1 and E2 received 

inputs from distinct source networks. Source network frequencies ( , ) were varied 

over a grid ranging 7.5 Hz to 60 Hz (7.5 Hz steps) across simulations while the number 
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of spikes delivered to each assembly was fixed.  ms and  ms were both 

used for the results reported below. 

The diversity of cell intrinsic properties observed in ACC pyramidal cells was 

incorporated into heterogeneous E-cell assemblies as previously detailed. For a given 

simulation with two assemblies, the same cell models were used for both assemblies to 

ensure that differences in their activities resulted from differences in their inputs and not 

differences in their cell properties. 

All models were implemented in Matlab using the DynaSim toolbox 

(github.com/DynaSim) and are publicly available online at: 

github.com/jsherfey/ACd_model. Numerical integration was performed using a 4th order 

Runge-Kutta method with a fixed time step of .01ms. One- and two-assembly network 

simulations were run for 2000 ms and 5000 ms, respectively, and the first 500 ms was 

excluded from subsequent analysis. All network simulations were repeated 10 times. 

3.2.10    Model analysis 

Analysis of model networks with one assembly. The natural frequency of a 

network is the frequency of rhythmic population activity that emerges naturally given 

background activity. The natural frequency was identified as the frequency with peak 

power in Welch’s spectrum of the mean E-cell voltage (simulated LFP) given an external 

input with constant . The resonant frequency of a network is the frequency of a 

rhythmic input for which the network exhibits maximal spiking. The resonant frequency 
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was identified as the input frequency producing the maximum number of spikes in the E-

cell assembly given an external input with sinusoidal . 

Analysis of model networks with two assemblies. Two E-cell assemblies coupled 

to a shared pool of I-cells may differ in their amount of spiking (i.e., they may compete) 

and/or exhibit synchronous spiking to varying degrees (i.e., they may or may not support 

integration). The degree of competition between two assemblies, E1 and E2, was 

quantified by: 

 

                                                       

 

where  is the number of spikes in assembly E1,  is the number of spikes in assembly 

E2, and  is the number of spikes in the more active assembly.  indicates how much 

more active a dominant assembly is compared to a less active assembly; it varies between 

0 (equal activity levels) and 1 (total suppression of the nondominant assembly). The 

degree of spike synchrony between two assemblies was quantified using the percentage 

of 10 ms time bins for which spiking occurred in both assemblies. Competition and 

synchrony were compared between homogeneous and heterogeneous networks using a 

two-sample t-test and were considered significant if P <0.05. 



 

 

99 

 

 
 
 
Fig. 3.5. Cell diversity broadens intrinsic (local) oscillations and network tuning in 

ACC model. 

A-B) Network models were constructed by coupling the heterogeneous E-cell 

population to I-cells with time constants of inhibition based on the IPSP durations 

observed in cells rhythmic with the network beta or gamma rhythm in the LFP. The 

resulting E/I networks with fast (5 ms) and slow (13 ms) inhibition produced (A) 

gamma frequency and (B) beta frequency network oscillations whether the E-cell 

population had homogeneous or heterogeneous IPs. C) Effect of cell diversity on the 

intrinsic (local) frequency of network oscillations: Poisson noise input was applied to 

different 80-cell subsets of network E-cells on different realizations. Box plots show 

range of network frequencies for homogeneous and heterogeneous networks with 

different inhibition time constants at beta and gamma frequencies. (D) Effect of cell 

diversity on network tuning (resonant frequency): a sinusoidal input was applied to 

different subsets of E-cells on different realizations, independently for each input 

frequency 4 Hz to 60 Hz (in 2 Hz steps). Box plots show range of resonant frequencies 

of the homogeneous and heterogeneous networks. 
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Fig. 3.6. Heterogeneity increases synchrony and decreases competition between cell 

assemblies. 
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3.3    Results 

3.3.1    Kainate-evoked network oscillations in ACC. 

Glutamatergic excitation via bath application of the kainate receptor agonist 

kainic acid (KA; 800 nM) was the sole pharmacological manipulation necessary to 

produce a range of network oscillatory activity. Example power spectra with the 

Ai) Model schematic showing two excitatory assemblies, E1 and E2, receiving rhythmic 

AMPAergic inputs with equal spike counts and time-varying Poisson rates modulated at 

frequencies  and , respectively. The assemblies compete through a shared pool of 

inhibitory interneurons (I-cells) and  ms and   ms was used for these 

results. Bi) For homogeneous assemblies (left raster plots) driven by external rhythms, 

the assembly with a more resonant input (e.g., 20 Hz) suppresses spiking in the 

assembly driven by a less resonant input (e.g., 50 Hz). Heterogeneity of cell intrinsic 

properties decreases this competition (right raster plots) and increases synchrony 

between the two assemblies (i.e., the fraction of 10 ms bins with spiking in both E1 and 

E2). Ci) Heterogeneity decreases competition ( ) across all pairs of input frequencies 

and increases synchrony for inputs separated by more than 30 Hz. Solid lines represent 

the  -  shown in the above raster plots.  Di) and Ei) show similar raster plots, and 

plots of competition and synchrony for  ms. Again heterogeneity decreases 

competition across all pairs of input frequencies and increases synchrony for inputs 

separated by more than 30 Hz. Aii) Model schematic showing two assemblies, E1 and 

E2, receiving external rhythmic and background noise inputs, respectively, with the 

latter driving a local rhythm at the natural frequency of E2 (as in Fig. 5A). Bii) The less 

resonant input from (Bi) strongly suppresses an assembly driven by a non-rhythmic 

Poisson input with equal spike count and constant rate. Heterogeneity decreases 

competition and increases synchrony. Cii) Heterogeneity again decreases competition 

for all input frequencies and increases synchrony for frequencies greater than 20 Hz. 

Dii) and Eii) show similar raster plots and plots of competition and synchrony for 

 ms, again heterogeneity decreases competition and increases synchrony in a 

very similar manner to  ms.  Solid lines represent the  shown in the above raster 

plots. F) Plots show differences (heterogeneous – homogeneous) in mean competition 

and synchrony for tau = 5 ms plotted as f1 against f2 on separate axes. G) Same as (F) 

except tau = 13ms. 
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associated local field potential (LFP) traces from three different experiments showed that 

the ACC oscillations could consist of either a single peak at beta frequencies (n = 81/109; 

74%), a single peak at gamma frequencies (n = 16/109; 15%) or dual peaks at both beta 

and gamma frequencies (n = 12/109; 11%), (Fig. 3.1aAi).  Oscillations at gamma and 

beta frequency could be observed in both deep and superficial layers. LFP recordings 

from all layers of ACC were combined and the frequency of the oscillation evoked varied 

from 18 Hz to 44 Hz (n = 109 slices) but resulted in a bimodal distribution with peaks at 

beta frequencies (~24 Hz) and gamma frequencies (~34 Hz) (Fig. 3.1Aii). The slightly 

higher body temperatures present in vivo likely shift the distribution to slightly higher 

natural frequencies.  

3.3.2    Local network inhibition 

IPSPs were recorded during KA-evoked field oscillations from morphologically 

unidentified cells in ACC (n = 10) and a variety of different IPSP properties were 

observed. When a beta frequency oscillation was recorded in the LFP the IPSPs recorded 

intracellularly were either rhythmic with the recorded LFP (Fig. 3.1Bi) or non-rhythmic 

with the concurrently recorded LFP (Fig. 3.1Ci). If the IPSPs were non-rhythmic at the 

LFP frequency (Fig. 3.1Ci), they still exhibited rhythmicity, but with a peak power below 

~12 Hz. When dual beta-gamma oscillations were recorded in the LFP, the IPSPs were 

either rhythmic at both frequencies (Fig. 3.1Di) or at only beta (Fig. 3.1Ei), or gamma 

(Fig. 3.1Fi), frequency.  

The decay times for the IPSPs that were rhythmic with the beta frequency field 

oscillation were slower (modal peak 15 ± 3.5 ms; Fig. 3.1Bi) than IPSPs found to be 
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rhythmic with the gamma frequency field oscillation (modal peak was 6 ± 1.8 ms; Fig. 

3.1Fi).  In total 8/10 cells were rhythmic with the field at either beta or gamma 

frequencies. Overall the results demonstrated that network inhibitory inputs mostly 

correlated with the bimodal nature of peak spectral frequencies seen in local field 

potentials such that IPSPs were largely either at beta or gamma frequency only. A 

correlation between field and IPSP frequency has been reported many times for network 

oscillations in primary sensory and polymodal association areas, reflecting the critical 

role of synaptic inhibition in shaping fast network dynamics (Whittington et al., 2011). 

The above results revealed nothing unique in the profile of synaptic inhibition in 

ACC that could reflect the proposed hub-specific dynamic behavior that we predicted 

should be present in this region. We therefore switched our attention to examining the 

intrinsic principal neuronal properties that are known to be diverse in both rat (Yang et 

al., 1996; van Aerde and Feldmeyer, 2015) and primate PFC (Ardid et al., 2015). 

3.3.3    ACC intrinsic cell properties 

We recorded from a total of 61 cells in the ACC in the presence of excitatory 

transmitter blockers (see Methods) and found a wide variety of intrinsic properties (IPs) 

as has been previously reported in the prelimbic and infralimbic regions of the PFC 

(Yang et al., 1996; Dembrow et al., 2010; Gee et al., 2012; van Aerde and Feldmeyer, 

2015; Glykos et al., 2015). 

Initially, cells were characterized manually, segregating cells according to their 

AHP shape and firing characteristics from step and tonic depolarizations. Figure 2A 

illustrates the variety of electrophysiological characteristics, we organized into manually 
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created categories (Groups 1-5). The presence of a distinct fast AHP was evident in some 

cells, either with or without, an after-depolarization (ADP) potential. Tonic injected 

current at the threshold for spiking showed some cells fired continually, while others 

fired less frequently, with a low frequency intrinsic sub-threshold oscillation (ISO) 

evident between spikes. Other cells did not fire at all upon depolarization, or required 

rapid acceleration of depolarizing current to produce any spikes. Some cells had very 

little spike accommodation while others had very fast adapting properties. The five 

manually classified Groups were defined as follows (Fig. 3.2A): Group 1 (11/61 18% of 

cells) had an AHP duration (~ 200 ms), usually with a small ADP, little spike adaptation 

and a spiking frequency of ~5 Hz at threshold.  Group 2 (27/61 44% of cells) had similar 

properties to Group 1 with respect to spike adaptation, but the AHP had a more variable 

duration (~100-500 ms), and firing rates at threshold were less regular. Group 3 (3/61 5% 

of cells) had a sharp AHP, clear spike adaptation and irregular firing rates at threshold. 

Group 4 (14/61 23% of cells) had very strong spike adaptation, rounded, short AHPs and 

little or no firing after the initial spikes at threshold. Group 5 (6/61 10% of cells) always 

had a characteristic fast AHP, interrupted by an ADP, then a long AHP and exhibited 

strong spike adaptation. Without morphologically identifying cells we could not 

determine if any of these groups corresponded to classes of interneurons, rather than 

putative pyramidal cells, but no distinct fast-spiking (FS) interneurons were recorded in 

this study. 

In all cells we measured 10 intrinsic properties (IP1 - IP10) (Fig. 3.2B) which 

were as follows: IP1, action potential amplitude; IP2, Ih estimate; IP3, AHP amplitude; 
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IP4, total AHP magnitude; IP5, AHP time to maximal deflection; IP6, spike width at 

half-height; IP7, spontaneous spike rate at threshold; IP8, resting membrane potential; 

IP9, initial spike frequency on step depolarization; IP10, ratio of 3rd to 2nd inter-stimulus 

interval on step depolarization-induced spike train (see Methods). Each of these IPs 

reflects the presence and magnitude of intrinsic conductances that are known to influence 

neuronal resonance (input-filtering) properties (see Discussion). The IPs of all cells were 

compared across each of the manually selected groups (Groups 1 - 5), but very few 

significant differences were found, and those that were identified did not show any 

obvious pattern (Fig. 3.2B).  In addition, the distribution of cells in Group 1 - 5 across the 

laminar structure of ACC was diffuse as most cell types could be found in all layers (Fig. 

3.2C,D). These data demonstrate that in the ACC different cell classes could not be 

defined either by a unique expression of ion channel properties or by laminar position. 

In order to assess whether ACC cells could be separated into discrete clusters both 

hierarchical and k-means clustering were used in an attempt to segregate the cells, 

assuming between 2 and 10 clusters. The Davies-Bouldin Index and the Dunn’s Index for 

a range of clusters from 2 to 10 for all clustering methods used in this study are plotted 

(Fig. 3.3A,B). In the Davies-Bouldin plot (Fig. 3.3A), the lower the index value, the 

better the cluster separation. Using the Dunn’s Index (Fig. 3.3B), the higher the index 

value, the better the cluster separation. K-means performed the best overall at various 

cluster sizes, followed by manual clustering and finally the shuffled data gave the worst 

performance. The hierarchical cluster analysis performed best at the 2 cluster level but 

other values on, or close, to the zero line suggest this analysis failed at higher cluster 
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numbers. However, although these data show our manually selected clusters performed 

better than the shuffled data, the clusters were still not clearly separated by any method 

used here. All clustering of cells found using the different methods are shown for 3, 4 and 

5 assumed clusters on 2D plots (Fig. 3.3C) of the first two canonical variables from the 

MANOVA analysis. For k-means clustering, at the 3-cluster level (Fig. 3.3Ciii, left 

graph), all three clusters were significantly different from each other in the first canonical 

variable dimension (x-axis; P <0.05). However, although the k-means method performed 

optimally out of the chosen methods in terms of the validity tests (Dunn’s and Davies-

Bouldin indicies) as described above, two of the clusters (green and blue) can be seen to 

lie along a continuum, with no clear space separating them. In addition, relating these 

clusters individually back to the original electrophysiological characteristics yielded few 

significant differences, similarly to the manually selected clusters. At the 3-cluster level 

using k-means, one cluster was separable (P <0.05) in terms of spike rate at threshold, 

and one other cluster was separable (P <0.05) in terms of resting membrane potential.  

3.3.4    Biophysical diversity reproduces IP diversity in computational cell models 

The above analyses strongly suggested a broad continuum of intrinsic ACC 

principal cell properties. To understand how such a situation may influence local network 

behavior, we first modeled this diversity computationally. A set of biophysical 

computational ACC cell models was generated to capture the above spread of IP values. 

Cells in this model could reproduce the firing properties of cells observed experimentally 

(Fig. 3.4A). A range of ion channel conductances was identified for each of 8 different 

ion channels that reproduced the distribution of IP values recorded experimentally (Fig. 
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3.4B). Notably, this method did not explicitly constrain IP distribution shapes, yet the 

simulated IPs distributed similarly to the experimental IPs in most cases (Fig. 3.4C). Five 

IPs explained >85% of the total variance in the experimental data (IP5 AHP duration; IP6 

spike width; IP7 spike rate at threshold; IP8 resting membrane potential; IP9 

instantaneous spike frequency), and were included in the model. In addition, we also 

compared the correlations between z-scored IP values recorded in each cell, with those 

from all model cells. This analysis showed that each experimental cell had at least one 

model cell with a value of R2 >0.85, and 90% of experimental cells had at least one model 

cell with R2 >0.9, indicating a very high correlation between the experimental and 

modeled IP values. 

3.3.5    Beta and gamma frequency rhythms were generated by different inhibitory decay 

constants in an ACC network model 

In order to predict a possible role for the observed heterogeneity of IPs the range 

of E-cells modeled above were combined with local circuit interneurons and inserted into 

an ACC network model (Fig. 3.5). Results from this model were compared with a model 

containing homogeneous E-cell populations in which the intrinsic properties were the 

same for all cells in the population (see Methods). Heterogeneity was based on model 

parameters drawn from a multivariate distribution that preserves the correlation between 

the biophysical parameters producing cell responses constrained by experimental IPs (see 

Methods). 

The different beta- and gamma frequencies observed experimentally could be 

replicated in both the heterogeneous and homogeneous E-cell-containing models by 
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switching the interneuron population inhibitory decay time constant (τ) from 5 ms to 13 

ms (Fig. 3.5) consistent with experimentally observed values in cells with activity locked 

to gamma- and beta-rhythms, respectively (see above). Simulation of all the 

heterogeneous E-cell models resulted in a broad distribution of oscillation frequencies, 

predominantly within either the beta or gamma frequency band, depending on the set 

inhibitory decay time constant (Fig. 3.5). This effect was similar regardless of whether 

the E-I assembly was driven by background activity (Poisson noise) or a rhythmic input. 

In both cases cell diversity broadened the range of frequencies generated by the networks, 

but with different inhibition time constants resulting in largely separable frequency 

ranges at beta and gamma frequency (Fig. 3.5C,D). 

3.3.6    Network heterogeneity decreases competition and increases synchrony among 

multiple assemblies. 

The above simulations led us to hypothesize that the experimentally observed 

heterogeneity in ACC might confer a computational advantage to a region that may have 

to combine multiple inputs at different peak frequencies within a given EEG band. To 

compare the effects of two different inputs on both the homogeneous and heterogeneous 

E-cell networks, we ran simulations with two E-cell assemblies connected to the same I-

cells both receiving external rhythmic inputs (Figure 6A). With this model configuration 

we then assessed whether heterogeneity of cell properties in the model altered the 

network’s response to multiple different inputs. Competition and synchrony were 

compared between the networks with homogeneous and heterogeneous E-cell assemblies 

with a shared pool of inhibitory interneurons (I-cells) and  ms and   ms 
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(Fig. 3.6A-Ei). Figure 6B shows example raster plots for two assemblies driven by 

rhythmic inputs at 20 Hz and 50 Hz. In the homogeneous network, assembly E2, driven 

by an input at 20 Hz dominated overall activity, even though assembly E1 was being 

driven by an input with faster 50 Hz modulation across the population. When spiking 

occurred in the less active assembly (E1), it had a moderate degree of synchrony with the 

dominant assembly (E2).  In contrast, in the heterogeneous network, receiving the same 

20 Hz and 50 Hz inputs, both assemblies were now able to sustain more equal activity 

levels throughout the simulation, and with a greater degree of overlap in spike timing. 

Very similar results were obtained with interneuron population inhibitory decay time 

constants at both   ms and   ms. These examples emphasize how, a wider 

diversity of cell properties within assemblies, can increase the spike synchrony and 

decrease competition among multiple assemblies.  Over a range of input frequencies  

and , the degrees of competition and synchrony between target assemblies E1 and E2 

were related to the proximity of their input frequencies. Competition in the heterogeneous 

network was reduced across all values of  and . Furthermore, for assemblies driven 

by inputs separated by more than 30 Hz (i.e., across EEG beta and gamma frequency 

bands), heterogeneity significantly increased spike synchrony.  

Similarly, in separate simulations where only one cell assembly (E1) received an 

external rhythmic input and the other assembly (E2) received an equal rate Poisson noise, 

the degree of competition and synchrony between target assemblies E1 and E2 were 

related to the frequency  of the external rhythm (Fig. 3.6A-Eii).  However, in this 

condition the interaction involved E1 following an external rhythm and E2 exhibiting a 



 

 

110 

noise-driven local rhythm at its natural frequency (as in Fig. 3.5A). Given this interaction 

between external and local rhythms, heterogeneity reduced competition across all values 

of to a greater extent than occurred for two assemblies driven by external rhythms. 

Furthermore, a wider diversity of cell properties increased spike synchrony between 

externally-driven and locally-generated rhythmic assemblies to a greater extent for beta- 

and gamma-rhythmic inputs. Again, very similar results were obtained with interneuron 

population inhibitory decay time constants at both   ms and   ms (Fig. 

3.6A-Eii). Reploting the data as f1 versus f2 along separate axes for both  ms and  

 ms shows the largest reduction in competition and increase in synchrony within 

the beta and gamma frequency bands (Fig. 3.6F,G). 

 

3.4    Discussion 

The present findings support the evidence that ACC generates gamma and beta 

frequency oscillations as a consequence of local circuit interactions between principal 

cells and interneurons. This type of local circuit behavior is near-ubiquitous in cortex (see 

Whittington et al., 2011 for review). The generation of beta- and gamma frequency 

activity does not, alone, therefore present any clues as to the proposed hub-like role of 

ACC in combining multiple inputs required for its general role in cognitive control 

(Lapish et al., 2008; Durstewitz et al., 2010; Shenhav et al., 2013; Ma et al., 2014). 

However, in ACC we found that this fundamental, inhibition-based mechanism of rhythm 

generation was present, along with considerable heterogeneity of principal cell intrinsic 
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properties. Computational modeling predicted that an inhibition-based oscillation, 

combined with such heterogeneity, would have a limited effect on the locally-generated 

rhythm, but a potent effect on the network’s response to diverse oscillatory inputs.  

Neuronal response heterogeneity caused a transition from a network behavior in which 

frequency-selected single inputs generated a single local ACC network output, to a 

combinatorial behavior in which the network could combine oscillating inputs of 

different frequency. 

3.4.1    Local generation of gamma and beta oscillations 

We have demonstrated that gamma- and beta frequency oscillations can be 

evoked in the ACC in vitro with application of KA alone. This is consistent with data in 

vitro from the hippocampus (Hajos et al., 2000; Hormuzdi et al., 2001; Fisahn, 2004) and 

neocortex (Roopun et al., 2008a; Anver et al., 2010; Ainsworth et al., 2012) where KA 

application has also been shown to evoke fast network oscillations in the 20-80 Hz 

frequency range.  Network oscillations in the beta- and gamma frequency range in ACC 

are dependent upon GABAA and AMPA receptors (Steullet et al., 2014). With the 

exception of beta rhythms in parietal association areas (Roopun et al., 2006), this 

pharmacological profile is consistent with other local cortical gamma and beta 

oscillations that are an emergent property of the network, and reflect the activation by 

KA of a reciprocally connected pyramidal-fast spiking interneuron network (Whittington 

et al., 2011). 

The distinction between gamma- and beta frequency oscillations corresponded to 

the presence of IPSPs with different decay kinetics recorded from morphologically 
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unidentified cells in ACC. The IPSP values obtained were consistent with the kinetics of 

GABAA receptor-mediated events associated with gamma oscillations in hippocampus 

and neocortex and beta oscillations in auditory cortex (Whittington et al., 1995; 

Ainsworth et al., 2011). The most parsimonious explanation for these two different 

frequencies of network activity, and two different inhibitory decay times, would be that 

distinct interneuron subtypes differentially contributed to the beta- and gamma frequency 

oscillations (Roopun et al., 2008a). The kinetics of GABAA receptor-mediated inhibition 

is known to be slower at receptors containing the ϵ “modulatory” subunit (Wagner et al., 

2005) and at synapses on distal dendrites (Harney and Jones, 2002). Thus, the different 

IPSP kinetics observed could result from interneuron subtypes providing inhibition 

through synapses at different postsynaptic sites or involving GABAA receptors with 

different molecular composition. PV- and somatostatin (SOM)-expressing interneurons in 

the PFC have been shown to provide somatic versus dendritic inhibition (DeFelipe, 1997) 

and to contribute to distinct behavioral functions (Kvitsiani et al., 2013; Pinto and Dan, 

2015). Such interneuron subtype-specific functions might therefore correlate with the 

distinct network activities at beta frequencies, paced by the PV+ subtype, and gamma 

frequencies, paced by the SOM+ subtype.  Beta frequency oscillations have been 

proposed to play a role in establishing functional long-range connections, while gamma 

frequency oscillations are thought to be more important for local interactions (Donner 

and Siegel, 2011; Kopell et al., 2010).  In addition, gamma frequency activity may 

mediate feed-forward interactions while beta frequency activity has been proposed to 

mediate feedback interactions (Bastos et al., 2012; Bastos et al., 2015), but see below. 
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3.4.2    Variability of oscillatory inputs to ACC  

A principal underlying the role of oscillations in determining functional 

connectivity between brain areas is that, within a classical EEG frequency band, they 

provide a mechanism by which neurons generate outputs at times appropriate for 

optimizing their mutual influence (Ainsworth et al., 2012). In order for this so-called 

“communication through coherence” to occur, matching the phase and frequency of 

oscillations in the connected areas is important (Fries, 2005). However, even within a 

classical EEG band the network oscillation frequencies can vary enormously. In the case 

of gamma oscillations, frequency can vary as much as 20 Hz depending on the region of 

origin (Herrmann et al., 2010; Middleton et al., 2008) and the properties of the sensory 

input that generates them (Perry et al., 2015; Orekhova et al., 2015). Similarly, beta 

oscillations in different brain regions may vary in peak frequency by up to 10 Hz (e.g., 

Roopun et al., 2008b; van Burik et al., 1998). 

Within brain regions, receiving concurrent oscillating inputs in the gamma or beta 

EEG bands, even subtle frequency differences have been predicted to have dramatic 

effects. In networks where the dominant time-constant governing rhythmicity is that of 

synaptic inhibition, one input driving a slightly faster frequency than another can 

effectively abolish any influence the slower frequency has on local spike generation 

(Chapter 2; Cannon et al., 2013). Similarly, synchronous inputs can be readily separated 

from asynchronous inputs (Chapter 2; Akam and Kullmann, 2010), but if multiple inputs 

arrive at similar frequencies they can become mutually distracting (Akam and Kullmann, 

2014). Therefore, if a local network such as the ACC is to combine multiple oscillating 
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inputs, a network property additional to the rhythmicity afforded by local inhibition must 

be present. Data and computational modeling presented here strongly suggest that 

heterogeneity in intrinsic neuronal electrophysiological properties may provide such a 

combinatorial advantage to the network. 

3.4.3    Intrinsic electrophysiological properties of neurons in ACC. 

Neurons recorded in this study could be subjectively divided into five broad 

groups similar to those described in other PFC regions (Yang et al., 1996; Dembrow et 

al., 2010; Gee et al., 2012; Lee et al., 2014; van Aerde and Feldmeyer, 2015; Glykos et 

al., 2015). However, using a range of established clustering algorithms, that have been 

used successfully in other cortical areas to identify distinct neuronal clusters based on 

electrophysiological properties (Sosulina et al., 2006; Keshavarzi et al., 2014; Ferrante et 

al., 2016), we did not identify distinct clusters. Three significantly different clusters could 

be distinguished using k-means clustering, but the clusters were not well separated and 

they could not be replicated using hierarchical clustering.  Our data, therefore, suggest 

there is in fact a broad continuum of electrophysiological properties present in ACC 

neurons with this heterogeneity mediated by the relative density of intrinsic 

conductances, including passive and voltage-gated potassium channels, persistent sodium 

channels and HCN channels. These channels have overt effects on intrinsic neuronal 

properties (He et al., 2014), and are vital for controlling the resonance and thus dynamic 

input-filtering properties of neurons (Chapter 2; Hutcheon and Yarom, 2000). In turn, 

band-pass and competitive input filtering are vital for input selection and routing of 

oscillatory inputs (Kopell et al., 2010; Akam and Kullmann, 2010, 2014). 
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Neocortical areas can also exhibit considerable heterogeneity in 

electrophysiological properties as evidenced by the recent extensive documentation of 

neuronal circuits within the somatosensory cortex (Markram et al., 2015).  As discussed 

by Markram and colleagues, in addition to intrinsic properties, there can also be 

heterogeneity of synaptic properties such as decay times, synaptic depression and 

facilitation, which can vary between cell types (Thomson et al., 1996).  However, 

Markram et al., (2015) describes electrically stimulated and spontaneous activity in the 

neocortex, and not the properties of neurons during an emergent network rhythm, such as 

beta and gamma frequency activity.  Our data demonstrate there is little variability in, for 

example, decay times of the IPSPs which correlated with either the beta- or gamma 

frequency field oscillation. 

One interesting feature we observed was the lack of any clear laminar segregation 

in the generation of either beta or gamma frequency activity within the ACC. This is in 

marked contrast to other neocortical areas where several studies in vitro have shown that 

gamma frequency activity is generated in the superficial layers (II/III), while beta 

frequency activity arises from deep (V/VI) layers (Roopun et al., 2008a; Ainsworth et al., 

2012).  No such obvious laminar distinction was seen in this study, and both beta- and 

gamma frequency activity could be recorded from all layers.  This difference in 

organization may reflect the absence of a functional layer IV in ACC, or may in fact 

reflect the integrative function of ACC, such that oscillations of different frequencies 

occur across all the laminae. 
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3.4.4    Consequences for ACC functionality in a dynamic network 

The data and model presented here suggested that the modal peak frequency of an 

oscillation in ACC was predominantly governed by the time course of synaptic 

inhibition. This was the case, both when the observed diversity of intrinsic properties was 

used, and when principal neuron properties were homogeneous. The biggest difference 

made by the observed intrinsic heterogeneity was a broadening of the input filtering 

characteristics of the model ACC network, and a resulting ability of the network to 

respond to multiple inputs of differing frequencies concurrently within either the gamma 

or beta EEG bands. This is consistent with the ideas of Seamans’ and colleagues who 

consider ACC as consisting of “overlapping cell assemblies encoding various cognitive 

events involved in a decision making process” (Lapish et al., 2008; Durstewitz et al., 

2010; Ma et al., 2014). The emergence of a broader range of local and resonant 

frequencies, afforded by cellular diversity, would promote diverse inputs to equally 

influence the same target (ACC). 

Interestingly, with the degree of model heterogeneity constrained by the 

biological data gathered, the broadening of input filter characteristics predicted a decrease 

in competition and increased synchrony between ACC regions receiving or generating 

both gamma and beta frequencies. This seems antagonistic to proposed functions of 

discrete frequency bands such as hierarchical organization of signals (Lakatos et al., 

2005), concatenation (Roopun et al., 2008b) and segregation of top-down and bottom-up 

signals (Bastos et al., 2015). However, with ACC sitting at the top of the functional 

connectivity hierarchy in the cortex these ‘rules’ need not apply, e.g. there is no overt 
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‘top-down’ input to ACC. In addition, broader filter characteristics were predicted to 

powerfully reduce competition and increase synchrony when comparing a discrete input 

frequency with noise alone. This may be seen as a negative property – allowing ACC to 

generate associations where there are none (e.g. when they are “cognitively false’ 

(Straube et al., 2011)). However, it may also underlie the observed role of ACC in the 

formation of novel ‘intuitive’ associations (Jung-Beeman et al., 2004; Mai et al., 2004). 

3.4.5    Conclusions 

A dynamic approach to understanding functional brain connectivity has 

previously shown that information held in neuronal oscillations can be selected and 

routed through the cortex on the basis of frequency- and coherence-related competition. 

Here we present an additional dynamic process whereby different frequencies of 

oscillation can be combined together. The phenomenon is facilitated by the interplay 

between the kinetics of fast synaptic inhibition (which sets the ‘center frequency’ for a 

given oscillation band) and the degree of heterogeneity in intrinsic electrophysiological 

properties of principal cells (which sets the bandwidth). Although this study has focused 

on ACC, it is possible similar mechanisms could be used in other hub regions, where 

diverse inputs are integrated.  A synergistic interplay between synaptic inhibition and 

intrinsic electrophysiology would provide a rich functional network structure that would 

be highly labile to neuromodulatory substances such as acetylcholine, dopamine and 

noradrenaline (Carr et al., 2007; Hasselmo and Sarter, 2011; Gee et al., 2012; Dembrow 

and Johnson, 2014). We suggest that neuromodulators may modulate the degree of hub-
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like or input-selective functionality of higher brain structures to influence cognitive 

functions (Deco and Rolls, 2003). 
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CHAPTER 4 

CONCLUSION 

Decades of research have highlighted the importance of prefrontal cortex for 

cognitive control as well as the ubiquity of neural oscillations throughout the brain. 

Recent work has begun to elucidate the ways in which network oscillations can 

contribute to cognitive processing; for instance, cortical networks can perform frequency- 

and coherence-based filtering of signals among convergent pathways based on resonance 

with feedforward inhibition (Akam and Kullman, 2010) and feedback inhibition (Cannon 

et al., 2014). The work presented in this dissertation builds on these previous findings in 

two important ways. First, in Chapter 2, I explored how interneuron-mediated lateral 

inhibition supports frequency- and coherence-based selection among parallel pathways 

(i.e., rhythm-mediated competitive gating). Second, in Chapter 3, we found that principal 

cell heterogeneity can switch a network from a selective mode where only one input is 

processed to a combinatorial mode where multiple inputs can be processed 

simultaneously.  

These microcircuit properties have important consequences for cognitive control 

operations mediated by LPFC and ACC. Rhythm-mediated competitive gating supports 

selective gating of outputs from a LPFC working memory (WM) buffer. Given a WM 

attractor network with persistent activity in some set of spiking cells, synchronization of a 

subset in a resonant oscillation can determine which of the persistently active cells will 

have their activities reflected in a feedforward output layer, and thus constrain the subset 

of WM-coding cells available for downstream read-out. If the feedforward projections 
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from the WM buffer to the output layer have parallel channels representing alternative 

input-output mappings, then synchronization of select inputs in a resonant oscillation can 

constrain the input-output mapping that is selected given a particular stimulus. 

Furthermore, given context-dependent synchronization, this mechanism supports rule-

based selection of input-output mappings. Outputs, in turn, could provide biases directing 

action selection (through projections to premotor cortex, ventral thalamus, or striatum) or 

attentional control mechanisms (through projections to thalamic reticular nucleus or 

posterior association cortex). Changes in the active rule could be caused by ACC-induced 

changes in synchronization, possibly mediated by CB+ interneurons in the superficial 

layers of LPFC. 

In contrast, the extensive heterogeneity of principal cell intrinsic properties 

characterized in Chapter 3 endows ACC with the ability to respond non-selectively to 

multiple inputs from source networks in different dynamical states. Source networks in 

regions with different natural frequencies, for instance, OFC, amygdala, and 

hippocampus, could deliver signals related to the outcomes of present actions and be 

integrated in ACC for monitoring performance based on multiple lines of evidence. This 

combinatorial processing could support rate-based evidence accumulation, for instance, 

in superficial ACC, driving rate-thresholded response gates, for instance, in deep ACC, 

that output control signals governing resource allocation. Deep layer control signals from 

ACC could potentially trigger rule updating through their projections to superficial CB+ 

cells in LPFC as described above. The ACC control signal could either directly select the 

rule through specific projections or trigger a nonspecific update mechanism with rule-
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specificity provided by contextual inputs from other regions (e.g., ventral hippocampus). 

These mechanisms could be coordinated with other mechanisms for routing signals 

through LPFC (e.g., BG-mediated inhibitory gating for updating WM buffers). 

This perspective on ACC/LPFC dynamics for process monitoring, rule updating, and 

rule application represents a hypothesis based on the mechanisms we have identified and 

what is known about neural anatomy and the localization of cognitive operations. 

However, the rhythm-mediated competitive gating and processing mode control 

mechanisms we have reported are general features of neural networks with interacting 

principal cells and interneurons providing strong feedback inhibition. Thus, they may 

find application in various cognitive processes involving regions throughout the brain. 

While much has been learned about the link between mind and brain over the last 

century, new technologies and a growing community of increasingly connected 

researchers are sure to make the next century even more enlightening. Close 

collaboration between experimentalists and modelers will remain essential for distilling 

the mechanistic principles that underlie information processing and neural function. 

Whatever concepts and metaphors prove to be useful, a deeper understanding of neural 

mechanism (i.e., how the brain works) will open the future to boundless opportunities for 

enhancing, healing when dysfunctional, and more greatly appreciating the mental 

experience with which we so deeply identify. 
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APPENDIX A: The DynaSim Toolbox 

Introduction 

DynaSim is a Matlab/Octave toolbox I developed for rapid prototyping of large 

neural models, batch simulation management, and efficient model sharing. It is designed 

to speed up and simplify the process of generating, sharing, and exploring network 

models of neurons with a few compartments. Its aim is to enable researchers to focus on 

model details instead of implementation. It facilitates rapid prototyping by enabling 

models to be specified using equations with conventional mathematical notation (Fig. 

A.1-2), similar to XPP (Ermentrout, 2002) and Brian (Goodman and Brette, 2008), built-

in Matlab functions, and predefined, mechanistically-meaningful model objects (Fig. 

A.3-4), similar to objects in Brian and mechanisms in NEURON (Hines and Carnevale, 

1997). DynaSim’s high-level specification, described below, easily scales to arbitrarily 

complicated population models and networks of interconnected populations (Fig. A.4). It 

is most similar to the Brian simulator in spirit, scope, and its ability to simulate models 

based on equations as well as libraries of preexisting model objects (Goodman and 

Brette, 2009). The software has been implemented in Matlab because Matlab lacks 

advanced tools for neural modeling, despite its popularity and a growing interest in 

modeling neural systems. DynaSim incorporates the best features of existing simulators 

to fill the niche for neural modeling in Matlab. 

DynaSim also includes a unique set of features to simplify the processes of 

exploring model dynamics over parameter spaces (Fig. A.5), running separate 
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simulations in parallel on a compute cluster, as well as parallel analysis and plotting of 

large numbers of simulated data sets. It increases simulation speed, compared to common 

Matlab implementations, using a combination of optimized vector computation, C 

compilation, and parallel simulation. It includes a graphical user interface (DynaSim 

GUI) that supports full functionality without requiring user programming (Fig. A.6). The 

GUI can be used as a powerful aid for teaching about the dynamics of neural systems. 

The design of DynaSim incorporates a simulator-independent model specification to 

facilitate interoperability with other tools outside Matlab including other simulator-

independent specifications (e.g., NeuroML, SBML), simulators (e.g., NEURON, Brian), 

model repositories (e.g., Open Source Brain), and web-based applications (e.g., 

Geppetto). The hope is that DynaSim will reduce barriers to exploring dynamics in 

complicated neural models, facilitate collaborative modeling, and complement other tools 

being developed in the neuroinformatics community. 

This Appendix will begin with examples demonstrating the simplicity and power 

of DynaSim for rapid prototyping and model exploration. That will be followed by 

technical details on the mechanics of how DynaSim works. Then an associated model 

repository, InfiniteBrain, will be introduced. The Appendix will end with an overview of 

progress at community development and available resources, including a tutorial on using 

the DynaSim toolbox. 
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Worked examples 

Example 1: Lorenz equations 

Any system of ordinary differential equations (ODEs) can be modeled in 

DynaSim by listing equations using conventional mathematical notation. Equations can 

be listed in a single string or a cell array of strings and may contain parameters, functions, 

conditional statements, ODEs and their initial conditions (ICs). To demonstrate the 

generality of this approach, the Lorenz equations (Lorenz, 1963) are defined in the cell 

array eqns in Fig. A.1A, and the system is numerically integrated by passing the user 

specification (i.e., eqns) to the DynaSim function SimulateModel. Integration in 

DynaSim is described in the Technical details. The results are plotted in Fig. A.1B. The 

same approach could be applied to simulate ODE-based rate models of neural systems. 

Fig. A.1. Simulating a simple system of ordinary differential equations in DynaSim. 

(A) Matlab code using the DynaSim toolbox. Simulation is achieved by passing a model 

specification to the DynaSim SimulateModel function. Simulated data are returned in 

a DynaSim data structure. (B) (x,z) phase plane of Lorenz system. 

 

 

Example 2: Izhikevich spiking neuron model 

The Izhikevich neuron (Izhikevich, 2003) is a system of differential equations 

with a conditional reset. Fig. A.2A demonstrates the specification of an Izhikevich model 

x 

z
 

Lorenz system 

eqns={ 
  's=10; r=27; b=2.666'; 
  'dx/dt=s*(y-x);   x(0)=1'; 
  'dy/dt=r*x-y-x*z; y(0)=2'; 
  'dz/dt=-b*z+x*y;  z(0)=.5'; 
}; 
data=SimulateModel(eqns); 
plot(data.pop1_x,data.pop1_z) 

A B 
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using a cell array of strings and a noisy time-varying input function that leverages the 

built-in Matlab function rand. See the tutorial for details on incorporating conditionals: 

if(condition)(actions). Input and simulated output are plotted in Fig. A.2B. 

Fig. A.2. Simulating an ODE system with conditional reset and stochastic drive. 

(A) Matlab code using the DynaSim toolbox. The model is specified using a cell array of 

strings, eqns, listing equations defining parameters, an input function I(t), ODEs with 

ICs, and a conditional reset. The stochastic input uses the built-in Matlab function rand. 

(B) Plot of the time-varying input and simulated output. 

 

Example 3: Hodgkin-Huxley-type spiking neuron models 

 The construction of large models with many equations can be greatly simplified 

by utilizing components from a library of preexisting model objects. For instance, 

conductance-based neuron models often include component ion currents (i.e., ionic 

mechanisms) that may be used in models of different neuron types. A regular spiking 

(RS) neuron may include fast spike-generating sodium (e.g., iNaF) and potassium (e.g., 

iKDR) currents, while an intrinsically bursting (IB) neuron includes the same spike-

generating currents plus a slower potassium current (e.g., iM) providing a second time 

eqns={ 
  'a=.03; b=-2; c=-50; d=100; vpeak=35; vr=-60'; 
  'I(t)=70*(t>200&t<800)*(1+.5*rand)'; 
  'dv/dt=.01*(.7*(v-vr)*(v+40)-u+I(t)); v(0)=vr'; 
  'du/dt=a*(b*(v-vr)-u); u(0)=0'; 
  'if(v>vpeak)(v=c; u=u+d)'; 
}; 

 
data=SimulateModel(eqns,'time_limits',[0 1000]); 
figure 
subplot(2,1,1); plot(data.time,data.pop1_v); 
subplot(2,1,2); plot(data.time,data.pop1_I); 
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scale separating bursts of spikes. Both models rely on the same iNaF and iKDR currents 

while the IB model incorporates an additional iM current.  

DynaSim expedites the construction of such models by leveraging preexisting 

mechanism sub-models (e.g., iNaF, iKDR, iM). In the case of one or a population of cells 

with dynamics shaped by the same mechanisms, models can be specified using strings 

listing equations with two additional features: (1) an ODE (e.g., voltage dynamics) 

containing a placeholder for terms defined in external model objects and (2) a list of 

objects (e.g., ionic mechanisms) contributing to the dynamics. Fig. A.2A demonstrates 

the specification of a biophysically-detailed IB neuron using a placeholder, @current, 

in the voltage dynamics, dV/dt, and a list of ionic mechanisms, {iNaF,iKDR,iM}, 

affecting the dynamics. Fig. A.2B plots the simulated response to a tonic injected current. 

The IB neuron could be rapidly converted into a RS neuron simply by reducing the list of 

mechanisms to {iNaF,iKDR}. Alternatively, the neuron model could be made 

arbitrarily more complicated by adding to the mechanism list as many ion currents as 

desired. This method is described further in the Technical details section below. 

Fig. A.3. Simulating a biophysically-detailed neuron model using mechanisms. 

(A) DynaSim model leveraging existing model objects for iNaF, iKDR, and iM currents 

to simplify the specification of a detailed neuron model. (B) IB response to tonic current. 

eqns='dV/dt=5+@current; {iNaF, iKDR, iM}; V(0)=-70'; 
data=SimulateModel(eqns,'time_limits',[0 200]); 
figure; plot(data.time,data.pop1_v)) 
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Example 4: Weak PING spiking network model 

 The construction of complicated network models can be greatly simplified by 

introducing an additional higher-level model object, the population, with connections 

between populations and dynamics dependent on lower-level mechanisms. Fig. A.4A 

demonstrates an object-based network architecture with two populations (E and I), each 

with dynamics shaped by ionic mechanisms. Voltage dynamics of the E population is 

shaped by intrinsic ion currents (ina, ik) and an inhibitory synaptic current (iGABAa) that 

depends on the state of the presynaptic I population. Similarly, the I population has 

voltage dynamics shaped by the same intrinsic currents (ina, ik) and an excitatory 

synaptic current (iAMPA) that depends on the E population. Given the kinetics of the 

predefined ionic mechanisms and the parameters used in this example, this network 

generates a weak pyramidal-interneuron network gamma (PING) rhythm (see Chapter 1 

for more details on neural systems exhibiting weak PING dynamics). 

DynaSim expedites the process of specifying object-based network models using 

a high-level DynaSim specification structure that organizes information about the 

population-level equations and the mechanisms on which they depend. To facilitate the 

computational implementation of an object-based conceptual network model (like the 

example in Fig. A.4A), information is organized into two fields of the specification 

structure: populations and connections. Patterns of connectivity between source 

and target populations are specified using connectivity matrices that appear in the 

equations of their connection mechanisms (e..g, synaptic currents). Fig. A.4B 

demonstrates the DynaSim specification of the weak PING model shown in Fig. A.4A as 
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well as raster plots and an overlay of voltage traces showing a 40Hz network oscillation 

in response to a tonic drive. Similar to the mechanism-based specification of the IB 

neuron in Example 3, the network model can be rapidly adjusted and made as 

complicated as desired by simply updating mechanism lists for each population and for 

the connections between populations. This method is also described further in the 

Technical details section below. It is worth noting that any network model specified using 

a specification structure could be equivalently specified using the more tedious 

method of explicitly listing all equations as described in Examples 1-2.  

Fig. A.4. Simulating weak PING rhythms using a model specification structure. 

(A) The conceptual object-based architecture of a biophysically-detailed E/I network. (B) 

Mapping the object-based architecture onto a DynaSim specification structure that 

contains all the high-level information necessary to construct the complete system of 

equations for the full model using objects from a library of preexisting ionic mechanisms. 

master_equations='dV/dt=Iapp+@current+randn(1,N_pop); {ina,ik}'; 

s.populations(1).name='E'; 
s.populations(1).size=80; 
s.populations(1).equations=master_equations; 
s.populations(2).name='I'; 
s.populations(2).size=20; 
s.populations(2).equations=master_equations; 
s.connections(1).direction='I->E'; 
s.connections(1).mechanism_list={'iGABAa'}; 
s.connections(2).direction='E->I'; 
s.connections(2).mechanism_list={'iAMPA'}; 
data=SimulateModel(s); 
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Example 5: Exploring parameter space of the weak PING model 

 One of the strengths of DynaSim is its support for exploring how system behavior 

changes as a model is systematically varied. In the simplest case, exploration involves 

running sets of simulations varying model parameters and performing analysis and 

visualization of the results over parameter space. This can be achieved easily in DynaSim  

by setting the vary option of SimulateModel using a compact specification of the 

parameter space to explore. For instance, the space can be specified using a set of triplets 

(as in Fig. A.5A) with each element indicating the values to use for parameters of 

populations and/or connections; the space to explore is then constructed from the 

Cartesian product of the parameter values from the set of triplets. DynaSim offers 

multiple forms of specification to accommodate different patterns in parameter space. 

Exploring the weak PING model is demonstrated in Fig. A.5A where 9 

simulations are specified with three values for each of two parameters: the amplitude of 

the current injected into cells of the E population (Iapp) and the inhibition time constant 

of the inhibitory synapse onto E cells (tauD). DynaSim provides multiple functions for 

visualizing results over parameter space. For instance, Fig. A.5B shows raster plots 

produced by the DynaSim PlotData function called in Fig. A.5A, while Fig. A.5C, 

produced by the DynaSim PlotFR function, shows the dependence of average firing 

rates on varied parameters. See the tutorial below and online documentation for 

additional details. 
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Fig. A.5. Searching parameter space using the DynaSim toolbox. 

(A) Matlab code using the DynaSim SimulateModel function with the vary option 

to specify a set of 9 simulations varying two parameters (Iapp in population E and 

tauD of the connection from I to E). (B) Raster plots produced by PlotData with the 

plot_type option given an array of DynaSim data structures containing results for 

all 9 simulations. (C) Plots produced by PlotFR showing how mean firing rates for E 

and I populations change as a function of the two varied parameters. 

  

vary={ 
  'E'   ,'Iapp',[0 10 20];  
  'I->E','tauD',[5 10 15] 
  }; 
data=SimulateModel(s,'vary',vary) 
PlotData(data,’plot_type’,’raster’); 
PlotFR(data); 
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 The DynaSim SimulateModel function offers three important options for 

increasing the speed of simulation. The speed of any simulation can be increased by a 

factor of 10x to 100x by setting the compile_flag option to 1:  

 

which directs SimulateModel to compile the simulation into C code before numerical 

integration. Furthermore, the time required to run a set of simulations can be increased by 

parallelizing separate simulations. This can be achieved using different cores on the same 

machine by setting the parallel_flag option to 1:  

 

Additionally, multiple simulations can be executed simultaneously on different nodes of a 

compute cluster supporting the “qsub” command by setting the cluster_flag option 

to 1, the study_dir option to a directory where jobs should save results, and then 

using the DynaSim ImportData function to load all simulation results:  

 

All three options (compile_flag, parallel_flag, and cluster_flag) can be 

used in combination to achieve multiplicative benefits. Together they enable Matlab to 

achieve reasonable batch simulation speeds in comparison to other neural simulators. 

These options are described further in the Technical details section. 

data=SimulateModel(s,'vary',vary,‘compile_flag',1); 

data=SimulateModel(s,'vary',vary,'parallel_flag',1); 

D=pwd; % where cluster jobs should save simulation results 
SimulateModel(s,'vary',vary,'cluster_flag',1,'study_dir',D) 
data=ImportData(D); 
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Example 6: Exploring the weak PING model in DynaSim GUI 

 In addition to the DynaSim functions available for script-based model building 

and simulation, DynaSim provides a unique graphical user interface (DynaSim GUI) that 

enables users to benefit from all features of DynaSim without the need for user 

programming. DynaSim GUI provides a highly flexible and dynamic environment for 

interactive, real-time exploration of how model functions and dynamics vary with 

parameters and how varying model architecture changes the system behavior. Any model 

can be explored using the GUI by passing its specification to the function dynasim. For 

instance, the GUI can be used to explore the weak PING model by executing: 

dynasim(s). Fig. A.6 shows how the weak PING model appears in DynaSim GUI. 

Fig. A.6. DynaSim Graphical User Interface showing the weak PING model. 

 

Build detailed models from existing 
mechanisms is as easy as writing 
lists. 

Adjust parameters during  
interactive simulation 

View full model equations and dynamics during interactive model building: 

Inspect and tune auxiliary 
functions 
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A special feature of the DynaSim GUI is the ability to interactively modify a 

model during ongoing simulation and to observe the effects without needing to restart the 

simulation. This feature is useful for interactively exploring models and manually tuning 

model parameters. It is enabled by storing the model in an updatable anonymous function 

that is evaluated at each time step. No other simulator to our knowledge offers this 

feature. 

DynaSim GUI is especially useful as a teaching tool and for researchers without 

programming experience. Researchers who prefer writing code may still find it useful for 

prototyping before honing in on a model to investigate further in Matlab scripts using 

functions of the DynaSim toolbox. 

 

Technical details 

Modeling 

Models can be specified by the user with a cell array of strings (Examples 1-2), a 

single string (Example 3), or a specification structure (Example 4), based on a 

combination of master equations (using standard mathematical notation and built-in 

Matlab functions) and optional model objects from an existing library (Examples 3-4). 

This provides the user with multiple ways of specifying a model depending on the 

complexity of the model and the level of mathematical detail the user wishes to provide. 

Internally, DynaSim converts user-supplied information into a standardized high-level 

specification structure, which is subsequently converted into a lower-level model 

structure. The model structure is then used to automatically generate a suitable 
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implementation (m-file, mex-file, or function handle) based on the desired simulation 

method. The results of simulation are returned in a DynaSim data structure. Simulation 

in DynaSim always involves sequential processing of the following DynaSim structures: 

 

Model objects for populations and mechanisms. Equations define parameters, 

variables, functions, and ODEs. Model objects are ways of grouping equations to 

facilitate the rapid construction of larger models. There are two types of objects: 

populations and mechanisms. Populations represent discrete systems of interest like 

compartments (e.g., soma, dendrite), cells, or populations of cells. Mechanisms represent 

smaller-scale components that affect the dynamics of populations (e.g., ion currents); 

they are called intrinsic mechanisms when they depend only on the state of the population 

they affect (e.g., sodium and potassium currents), and they are called connection 

mechanisms when they depend additionally on the state of other populations (e.g., inter-

compartmental and synaptic currents). DynaSim comes prepackaged with a library of 

common model objects. Each object is assigned a unique name to enable the duplication 

of parameter, variable, and function names in different objects. The same intrinsic 

mechanism can be reused in different populations, and the same connection mechanism 

can be reused to connect different pairs of populations. Thus, mechanism objects enable 

equations to be specified once and reused an arbitrary number of times, and both types of 
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objects enable equations to be specified without requiring the tedious assignment of 

unique variable/function names each time the same equations appear in a model.  

Fig. A.7. Object-based architecture, standardized specification, and DynaSim 

models. 

(A) Object-based architecture and standardized specification. Discrete model objects 

(populations and mechanisms) are shown in bold; any object can be stored independently 

in the library and reused as components of larger models. There is no limit on the number 

of objects in a DynaSim model. Fields of the standardized specification structure are 

underlined. Each population can have a list of intrinsic mechanisms; each directed pair of 

sourcetarget populations can have a list of connection mechanisms. Optional objects 

are enclosed in parentheses. A string-based specification will be internally associated 

with a default population "pop1" in the standardized specification structure. (B) The 

standardized specification structure and model objects are parsed to generate a single set 

of equations describing the full model given the separate sets of equations for each 

object. 

 

DynaSim structures for higher-level specification, lower-level model definition, 

and simulated data. Specifiers for the higher-level, more abstract model 

specification structure are grouped into populations (each including a name, 

size, master equations, optional intrinsic mechanism list, and parameters) 

and connections between populations (each including a direction, connection 

mechanism list, and parameters) (Fig. A.7A). Connectivity between 
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populations is specified using connectivity matrices defined in connection mechanisms 

between presynaptic source and postsynaptic target populations. Models specified by the 

user with strings are always associated internally with a population (named “pop1” by 

default). Model specification is divided into populations and connections to 

facilitate network modeling. However, a population of multi-compartment neurons can be 

implemented by specifying different compartments using the populations field and 

connecting them, for instance, using connections with the ohmic axial current 

mechanism from the DynaSim library and an identity connectivity matrix.  

The lower-level, more detailed model definition structure includes a single set of 

model elements: parameters (scalars, strings), fixed variables (matrices and 

scalar expressions), functions (of time and state variables), and ODEs/ICs describing 

system dynamics (i.e., the evolution of state variables over time) (Fig. A.7B). Model 

elements are always assigned unique names in the lower-level model structure by 

prepending an object-specific namespace identifier (e.g., “pop1_” for population object 

“pop1”; “pop1_Na_” for mechanism object “Na” in population “pop1”) to the reusable 

names given in the object definition (e.g., “pop1_V” for state variable “V” in population 

“pop1”; “pop1_Na_m” for state variable “m” in mechanism “Na”). The same unique 

state variable and function names are used in the output data structure storing the 

results of simulation. 

 Linking equations across model objects. Once namespace identifiers are used to 

assign unique names to all parameters, variables, and functions, then the equations from 

lower-level mechanisms need to be combined with the equations from higher-level 
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populations and other lower-level mechanisms belonging to the same population. This is 

trivial for ODEs but requires something extra to indicate how mechanism functions affect 

the dynamics of population state variables defined outside the mechanism; for instance, 

how the sodium current “INa,” defined in mechanism “Na,” affects the voltage “V” of 

population “pop1”. Linking objects can be a difficult concept to grasp at first, and 

understanding it is not necessary to use DynaSim; however, it does become more 

intuitive with use. 

Linking mechanism elements (functions or variables) to equations defined in 

other objects is achieved by performing substitution guided by “linkers”. A linker is a 

string that appears in two objects; in one object (e.g., population “pop1”) it is a 

placeholder indicating the location in an equation (e.g., ODE “dV/dt”) where an element 

of a different object (e.g., function “INa”) should be inserted; in the second object (e.g., 

mechanism “Na”) it indicates the element (e.g., function “INa”) to be inserted into the 

first object. For instance, the linker “@current” can be used in population-level dynamics 

“dV/dt=@current” along with the mechanism-level linker statement “@current += INa” 

to direct DynaSim to perform addition assignment, after prepending namespace 

identifiers, resulting in “d(pop1_V)/dt=@current+pop1_Na_INa”. Compound assignment 

operators (e.g., “+=” and “-=”) enable the same linker to be used in multiple mechanisms; 

for instance, “@current+=INa” in mechanism “Na” and “@current+=”IK” in mechanism 

“K” would produce “d(pop1_V)/dt=@current+pop1_Na_INa +pop1_K_IK”. All linkers 

are removed from the resulting ODE system before simulation; e.g., producing the 

desired final ODE “d(pop1_V)/dt=pop1_Na_INa+pop1_K_IK”. The online 
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documentation explains how to increase modularization by linking objects with 

mismatched linker identifiers (e.g., “@Currents” in “dV/dt” and “@current” in “Na”). 

Fig. A.8. Linking equations across population and mechanism objects. 

Mechanism linker statements with addition assignment (e.g., @current+=IK) direct 

DynaSim to substitute functions INa and IK into population-level dynamics “dv/dt,” 

where the linker appears (i.e., @current). In this example, intrinsic mechanisms are 

defined in script and added to specification structure in a mechanisms field. 

master_equations='dv/dt=Iapp+@current+randn(1,N_pop); {ina,ik}'; 

ik={ 
    'IK(v,n) = -gK.*n.^4.*(v+77); gK=36';           
    'dn/dt = aN(v).*(1-n)-bN(v).*n; n(0)=0';        
    'aN(v) = (.1-.01*(v+65))./(exp(1-.1*(v+65))-1)'; 
    'bN(v) = .125*exp(-(v+65)/80)';   
    '@current+=IK'; 
  }; 

ina={ 
    'INa(v,m,h) = -gNa.*m.^3.*h.*(v-50) ; gNa=120'; 
    'dm/dt = aM(v).*(1-m)-bM(v).*m; m(0)=.1';  
    'dh/dt = aH(v).*(1-h)-bH(v).*h; h(0)=.1';       
    'aM(v) = (2.5-.1*(v+65))./(exp(2.5-.1*(v+65))-1)'; 
    'bM(v) = 4*exp(-(v+65)/18)'; 
    'aH(v) = .07*exp(-(v+65)/20)'; 
    'bH(v) = 1./(exp(3-.1*(v+65))+1)'; 
    '@current+=INa'; 
  }; 

s.populations(1).name='E'; 
s.populations(1).size=80; 
s.populations(1).equations=master_equations; 
s.populations(2).name='I'; 
s.populations(2).size=20; 
s.populations(2).equations=master_equations; 
s.connections(1).direction='I->E'; 
s.connections(1).mechanism_list={'iGABAa'}; 
s.connections(2).direction='E->I'; 
s.connections(2).mechanism_list={'iAMPA'}; 
s.mechanisms(1).name='ina'; 
s.mechanisms(1).equations=ina; 
s.mechanisms(2).name='ik'; 
s.mechanisms(2).equations=ik; 
data=SimulateModel(s); 

Intrinsic Mechanisms (ina, ik) 

Populations (E, I) 
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Linking objects is the most unconventional aspect of modeling in DynaSim, and it 

enables the flexible, modular construction of arbitrary dynamical systems, not only neural 

models. Fortunately, in practice, it is not necessary to understand linkers to build models 

in DynaSim when working with existing objects from the library. For instance, 

“@current+=” is used in all prepackaged ionic mechanisms; thus, for conductance-based 

neural models, users only need to list the ionic mechanisms they wish to include in a 

population or connection between populations with suitable dynamics. Additional 

mechanisms can be flexibly added or removed simply by updating the appropriate 

mechanism list without being concerned with linkers. This frees the modeler to focus on 

the mechanisms that are most relevant for their models and the parameters of those 

mechanisms. 

Simulation batches. Simulation batches are sets of simulations that systematically 

vary some aspect of a base model; each simulation in a batch involves some set of 

modifications to the base model. More precisely, modifications are ways of 

modifying specifiers (most commonly parameter values) in the base model’s high-level 

specification. Simulation batches are specified using the SimulateModel vary 

option, which is expanded into a set of modifications for each simulation (see 

Example 4 and the tutorial for additional details). A “study” in DynaSim is a processing 

chain that includes a simulation batch plus downstream analysis and visualization.  
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Simulation 

Models are simulated in DynaSim by passing the user’s model specification to the 

SimulateModel function along with options specifying details of the simulation. 

SimulateModel provides options to control the solver and machine(s) used for 

numerical integration, the location of outputs, and the details of batch simulation. 

Depending on the options specified, SimulateModel automates the construction of the 

full system of equations, as described above, and the generation of Matlab functions that 

perform the numerical integration. DynaSim supports custom fixed-step integration 

(Euler, 2nd-order Runge-Kutta, and 4th-order Runge-Kutta) as well as Matlab’s built-in 

variable-step solvers (e.g., ode23, ode45). The integration method is specified by the 

solver option. When fixed-step simulation is desired, DynaSim generates and executes 

an m-file that explicitly integrates the system of equations using the desired method. 

When built-in solvers are used, DynaSim generates an m-file with the appropriate format 

and passes it as a function handle to the desired built-in Matlab function. All m-files 

generated are saved by default and available for examination and re-use.  

 A common criticism of simulating computationally intensive models in Matlab is 

the time required for simulation. An important method of increasing the simulation speed 

is available for users with the Matlab Coder toolbox. When available, the 

compile_flag option can be used to instruct SimulateModel to compile the 

automatically-generated m-file into a mex-file. Depending on model details, simulating 

models using compiled mex-files reduces simulation time by a factor of 10x to 100x.  
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Fig. A.9. Single simulation workflow. 

From the user perspective, the functional interface to DynaSim involves specifying a 

model using strings or a DynaSim specification structure, passing it to 

SimulateModel, and obtaining a DynaSim data structure with the results of 

simulation. Internally, SimulateModel standardizes the supplied specification using 

the CheckSpecification function. The standardized specification structure is 

converted into a DynaSim model structure (Fig. A.7) using the GenerateModel 

function, which prepends object-specific namespace identifiers and links variables and 

functions across model objects (Fig. A.8). A solve_file for numerical integration is 

automatically generated from the model structure by GetSolveFile according to 

simulator options. Simulated data is then obtained by evaluating the solve_file. 

DynaSim structures are shown in bold. Functions are followed by “()”. Simulator options 

are enclosed in parentheses. 

 

Batch management 

 One advantage of DynaSim over other neural simulators is its extensive support 

for conducting sets of simulations (i.e., simulation batches). In practice, one is often 

interested in how behavior changes as some aspect of a model is varied. To facilitate 

model exploration, DynaSim offers (1) a compact specification of the parameter space to 

explore, (2) the ability to perform multiple simulations in parallel on different cores of a 

single machine (using the Parallel Computing toolbox) and different nodes of a compute 

cluster (using automated job creation and the “qsub” command), (3) functions for 

analysis and visualization of how behavior varies over parameter space, and (4) 

automated management of large sets of simulation results. See the tutorial below and 

online documentation referenced in the DynaSim resources section for details. 
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Limitations and future directions 

At present, DynaSim has two important limitations compared to other simulators: 

(1) it does not manage physical units, thus making users responsible for ensuring 

consistency, and (2) it does not provide an explicit spatial representation for model 

objects, although workarounds exist. These features will be added in future versions of 

DynaSim. Still, DynaSim is tailored for network modeling more than modeling 

morphologically complex neurons with many compartments; for instance, it was 

designed using the name “populations” instead of “compartments” for the 

specification structure field storing information on the sub-systems of interest. 

Thus, even with explicit spatial representation, simulators like NEURON will remain a 

better option for modeling morphologically complex neurons. 

The ability to export DynaSim models for exploration and further development in 

other simulators outside of Matlab is under active development. It will be possible to 

export DynaSim models for further development if evolving models become hindered by 

limitations of DynaSim. At present, DynaSim models can be exported to XPP, and 

DynaSim mechanisms can be converted into NEURON MODL files via NeuroML. 

Further integration with NeuroML will enable converting DynaSim models for 

simulation in Brian and web-based simulation using Geppeto via Open Source Brain. 

Support for parameter estimation using data-driven optimization techniques (genetic 

algorithms and particle filtering) is also under development. 
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Web-based model repository (InfiniteBrain.org) 

Beyond DynaSim, I created a web-based, crowd-sourced model repository, 

InfiniteBrain.org (Fig. A.10), coupled directly to DynaSim, facilitating collaborative 

model building. Models created in DynaSim can be uploaded to InfiniteBrain by 

DynaSim users with InfiniteBrain User accounts. Models derived from earlier models are 

related in the InfiniteBrain database, enabling the evolution of models to be tracked over 

time. Fig. A.11 shows the relational structure of entities in the InfiniteBrain database. 

DynaSim uses database connectors from the Matlab Database toolbox to download 

models, enabling automated generation of new models from combinations of models 

stored locally and in the InfiniteBrain repository. 

Fig. A.10. Browsing existing models using InfiniteBrain.org. 

 
 

Fig. A.11. InfiniteBrain database entities. 
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Growing the DynaSim community 

I have taken several steps to begin introducing DynaSim to the larger modeling 

community and to ensure its long-term success: I demonstrated DynaSim for users at the 

International Neuroinformatics Coordinating Facility (INCF) booth at Society for 

Neuroscience conference (2015) and for developers at the Janelia Research Campus 

workshop on Collaborative Development of Data-Driven Models of Neural Systems 

(2016); I also presented it to MathWorks representatives who have since promoted it at 

Cosyne (2017) and have plans to feature it on the MathWorks website. I have established 

a core team of developers to facilitate future developments and building a community of 

users. All code, documentation, and future developments can be found in the GitHub 

repository. DynaSim is open-source and licensed under the MIT License. Conversations 

regarding DynaSim can be followed in the public user mailing list. Articles by 

MathWorks that feature DynaSim will be linked to the File Exchange. See the Online 

Resources section below for more details. 
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Online Resources 

DynaSim models for cognitive rhythms 

All models in this dissertation were implemented in DynaSim. Equations for cell 

models can be found in Appendix B. Details on network architecture can be found in the 

Methods sections of Chapters 2 and 3. Implementation details can be found in the GitHub 

repositories listed below.  

 

LPFC Network Model (Chapter 2):  

https://github.com/jsherfey/PFC_models 

ACC Network Model (Chapter 3):  

https://github.com/jsherfey/ACd_model 

 

DynaSim community resources 

DynaSim GitHub repository:  

https://github.com/DynaSim/DynaSim 

DynaSim toolbox in the MathWorks File Exchange:  

https://www.mathworks.com/matlabcentral/fileexchange/61700-dynasim-dynasim 

DynaSim User Mailing List: 

https://groups.google.com/forum/#!forum/dynasim-users 

InfiniteBrain model repository:  

http://infinitebrain.org 

https://github.com/jsherfey/PFC_models
https://github.com/jsherfey/ACd_model
https://github.com/DynaSim/DynaSim
https://www.mathworks.com/matlabcentral/fileexchange/61700-dynasim-dynasim
https://groups.google.com/forum/#!forum/dynasim-users
http://infinitebrain.org/
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DynaSim Tutorial 

The following is a Matlab-compatible script that demonstrates the core functionality and 

power of the DynaSim toolbox. See the DynaSim documentation available on GitHub for 

more demos and details: https://github.com/DynaSim/DynaSim. 

 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% DynaSim Tutorial 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%{ 

Download the DynaSim toolbox from https://github.com/dynasim/dynasim. 

  or, download using git: git clone https://github.com/dynasim/dynasim.git 

For further documentation, see tutorial.m in the demos directory. 

Sign up for user mailing list at: 

https://groups.google.com/forum/#!forum/dynasim-users. 

Tip: In Matlab, you can obtain more information associated with any function 

"FUNCTION_NAME" by entering "help FUNCTION_NAME" in the command window. Use the 

"See also" list at the end of the help section to browse through related help 

documentation. 

%} 

 

% Set path to your copy of the DynaSim toolbox 

dynasim_path = ‘path/to/dynasim’; 

 

% add DynaSim toolbox to Matlab path 

addpath(genpath(dynasim_path)); % comment this out if already in path 

 

% Set where to save outputs 

output_directory = fullfile(demos_path, 'outputs'); 

% move to root directory where outputs will be saved 

cd(output_directory); 

 

% Here we go! 

 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% DEFINING AND SIMULATING MODELS 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%% Lorenz equations with phase plot 

 

% DynaSim makes it easy to simulate arbitrary systems of ordinary 

% differential equations. Simply write out the system in a cell array of 

% strings, separating equations into different strings or the same string 

% separated by semicolons. 

 

eqns={ 

  's=10; r=27; b=2.666'; 

  'dx/dt=s*(y-x)'; 

  'dy/dt=r*x-y-x*z'; 

  'dz/dt=-b*z+x*y'; 

}; 

 

https://github.com/DynaSim/DynaSim
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data=SimulateModel(eqns,'tspan',[0 100],'ic',[1 2 .5],'solver','rk4'); 

% tspan: time limits on integration [ms] 

% ic: initial conditions 

% solver: numerical method to use (default: rk4 = "4th-order Runge-Kutta") 

 

% All models are numerically integrated using a DynaSim solver function 

% created uniquely for a given model and stored in a directory named 

% "solve". The file that solves the system (i.e,. numerically integrates 

% it) is stored in data.simulator_options and can be viewed or rerun: 

edit(data.simulator_options.solve_file) 

 

% Every component of the model is assigned to a "population", and the  

% population name (default: 'pop1') is prepended to all variable and 

% function names. 

 

% Simulated data can be easily plotted using the resulting data structure: 

figure; plot(data.pop1_x,data.pop1_z);  

title('Lorenz equations'); xlabel('x'); ylabel('z') 

 

%% Izhikevich neuron with noisy drive  

% (reference: p274 of "Dynamical Systems in Neuroscience" by Izhikevich) 

 

% The DynaSim data structure always contains the model state variables, 

% time vector, and a copy of the DynaSim model structure that was 

% simulated. Additionally, functions can be recorded and returned in the 

% DynaSim data structure if indicated using the "monitor" keyword. 

% Syntax: monitor FUNCTION 

 

eqns={ 

  'C=100; vr=-60; vt=-40; k=.7; Iapp=70; ton=200; toff=800'; 

  'a=.03; b=-2; c=-50; d=100; vpeak=35'; 

  'dv/dt=(k*(v-vr)*(v-vt)-u+I(t))/C; v(0)=vr'; 

  'du/dt=a*(b*(v-vr)-u); u(0)=0'; 

  'if(v>vpeak)(v=c; u=u+d)'; 

  'I(t)=Iapp*(t>ton&t<toff)*(1+.5*rand)'; % define applied input  

  'monitor I';                            % indicate to store applied input 

}; 

% note: applied input uses the reserved variable 't' for time  

 

data=SimulateModel(eqns,'tspan',[0 1000]); 

 

% plot the simulated voltage and monitored input function 

figure;  

subplot(2,1,1); plot(data.time,data.pop1_v); % plot voltage 

xlabel('time (ms)'); ylabel('v'); title('Izhikevich neuron') 

subplot(2,1,2); plot(data.time,data.pop1_I); % plot input function 

xlabel('time (ms)'); ylabel('Iapp'); 

 

% note: "t", "dt", and "T" are special variables that can be used in model 

% equations. "t" represents the current time point of the simulation.  

% "dt" is the fixed time step used for numeric integration. "T" is the full 

% simulated time vector defined before simulation begins. 

 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% RUNNING SETS OF SIMULATIONS 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% 'vary' indicates the variable to vary, the values it should take, and the  

% object (population or connection) whose variable should be varied.  
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% Syntax 1: vary={{object, variable, value1},{object, variable, value2},...} 

%   - this is useful for simulating an arbitrary set of parameter values 

% Syntax 2: vary={object, variable, values; ...} 

%   - this is useful for varying parameters systematically (described later) 

 

% Izhikevich study of neuro-computational properties (using Syntax 1) 

% based on: http://www.izhikevich.org/publications/izhikevich.m 

eqns={ 

  'a=.02; b=.2; c=-65; d=6; I=14'; 

  'dv/dt=.04*v^2+5*v+140-u+I; v(0)=-70'; 

  'du/dt=a*(b*v-u); u(0)=-20'; 

  'if(v>=30)(v=c;u=u+d)'; 

  }; 

P='pop1'; % name of population 

vary={ 

  {P,'a',.02; P,'b',.2 ; P,'c',-50; P,'d',2;  P,'I',15} % tonic bursting 

  {P,'a',.01; P,'b',.2 ; P,'c',-65; P,'d',8;  P,'I',30} % spike freq adaptation 

  {P,'a',.02; P,'b',.2 ; P,'c',-65; P,'d',6;  P,'I',7}  % spike latency 

  {P,'a',.03; P,'b',.25; P,'c',-52; P,'d',0;  P,'I',0}  % rebound burst 

  {P,'a',1;   P,'b',1.5; P,'c',-60; P,'d',0;  P,'I',-65}% bistability 

  {P,'a',.02; P,'b',1  ; P,'c',-55; P,'d',4;  P,'I',1}  % accomodation 

  {P,'a',-.02;P,'b',-1 ; P,'c',-60; P,'d',8;  P,'I',80} % inhib-induced spiking 

  {P,'a',-.026;P,'b',-1; P,'c',-45; P,'d',0;  P,'I',70} % inhib-induced bursts 

  }; 

data=SimulateModel(eqns,'tspan',[0 250],'vary',vary); 

PlotData(data); 

 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% QUICKLY BUILDING LARGE MODELS FROM EXISTING "MECHANISMS" 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Mechanisms are predefined reusable sub-models meant to be incorporated  

% in larger complete models. Examples of mechanisms in neuron models include 

% ion currents, pumps, etc. Once defined, they can be easily incorporated 

% into larger models by simply listing the name of the file containing their 

% equations, without the need to re-write any of the mechanism equations. 

% This greatly simplifies large model prototyping and re-configuration. 

 

% Hodgkin-Huxley neuron equations (without predefined mechanisms) 

eqns={ 

  'gNa=120; gK=36; Cm=1'; 

  'INa(v,m,h) = gNa.*m.^3.*h.*(v-50)'; 

  'IK(v,n) = gK.*n.^4.*(v+77)'; 

  'dv/dt = (10-INa(v,m,h)-IK(v,n))/Cm; v(0)=-65'; 

  'dm/dt = aM(v).*(1-m)-bM(v).*m; m(0)=.1'; 

  'dh/dt = aH(v).*(1-h)-bH(v).*h; h(0)=.1'; 

  'dn/dt = aN(v).*(1-n)-bN(v).*n; n(0)=0'; 

  'aM(v) = (2.5-.1*(v+65))./(exp(2.5-.1*(v+65))-1)'; 

  'bM(v) = 4*exp(-(v+65)/18)'; 

  'aH(v) = .07*exp(-(v+65)/20)'; 

  'bH(v) = 1./(exp(3-.1*(v+65))+1)'; 

  'aN(v) = (.1-.01*(v+65))./(exp(1-.1*(v+65))-1)'; 

  'bN(v) = .125*exp(-(v+65)/80)'; 

}; 

data=SimulateModel(eqns); 

figure; plot(data.time,data.(data.labels{1})) 

xlabel('time (ms)'); ylabel('membrane potential (mV)');  

title('Hodgkin-Huxley neuron') 
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% Equivalent Hodgkin-Huxley neuron with predefined mechanisms 

data=SimulateModel('dv/dt=10+@current/Cm; Cm=1; v(0)=-65; {iNa,iK}'); 

figure; plot(data.time,data.(data.labels{1})) 

xlabel('time (ms)'); ylabel('membrane potential (mV)');  

title('Hodgkin-Huxley neuron') 

 

% View the mechanism files: 

[~,eqnfile]=LocateModelFiles('iNa.mech'); edit(eqnfile{1}); 

[~,eqnfile]=LocateModelFiles('iK.mech');  edit(eqnfile{1}); 

% Mechanisms can be custom built; however, DynaSim does come pakaged with 

% some common ones like popular ion currents (see <dynasim>/models). 

 

% Example of a bursting neuron model using three active current mechanisms: 

eqns='dv/dt=5+@current; {iNaF,iKDR,iM}; gNaF=100; gKDR=5; gM=1.5; v(0)=-70'; 

data=SimulateModel(eqns,'tspan',[0 200]); 

figure; plot(data.time,data.(data.labels{1})) 

xlabel('time (ms)'); ylabel('membrane potential (mV)');  

title('Intrinsically Bursting neuron') 

 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% BUILDING LARGE MODELS WITH MULTIPLE POPULATIONS AND CONNECTIONS 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%% Sparse Pyramidal-Interneuron-Network-Gamma (sPING) 

 

% define equations of cell model (same for E and I populations) 

eqns={  

  'dv/dt=Iapp+@current+noise*randn(1,N_pop)'; 

  'monitor iGABAa.functions, iAMPA.functions' 

}; 

% Tip: monitor all functions of a mechanism using: monitor MECHANISM.functions 

 

% create DynaSim specification structure 

s=[]; 

s.populations(1).name='E'; 

s.populations(1).size=80; 

s.populations(1).equations=eqns; 

s.populations(1).mechanism_list={'iNa','iK'}; 

s.populations(1).parameters={'Iapp',5,'gNa',120,'gK',36,'noise',40}; 

s.populations(2).name='I'; 

s.populations(2).size=20; 

s.populations(2).equations=eqns; 

s.populations(2).mechanism_list={'iNa','iK'}; 

s.populations(2).parameters={'Iapp',0,'gNa',120,'gK',36,'noise',40}; 

s.connections(1).direction='I->E'; 

s.connections(1).mechanism_list={'iGABAa'}; 

s.connections(1).parameters={'tauD',10,'gSYN',.1,'netcon','ones(N_pre,N_post)'} 

s.connections(2).direction='E->I'; 

s.connections(2).mechanism_list={'iAMPA'}; 

s.connections(2).parameters={'tauD',2,'gSYN',.1,'netcon',ones(80,20)}; 

data=SimulateModel(s); 

PlotData(data); 

PlotData(data,'variable',{'E_v','E_I_iGABAa_ISYN'}); 

 

% View the connection mechanism file: 

[~,eqnfile]=LocateModelFiles('iAMPA.mech'); edit(eqnfile{1}); 

 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% SAVING SIMULATED DATA 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% How to: set 'save_data_flag' to 1 

% optionally: set 'study_dir' to /path/to/outputs 

 

%% Save data from a single simulation 

% Example using the previous sPING model: 

data=SimulateModel(s,'save_data_flag',1,'study_dir','demo_sPING_1'); 

 

%% Save data from a set of simulations 

 

% Specify what to vary  

% Tip: use 'vary' Syntax 2 to systematically vary a parameter 

vary={'E','Iapp',[0 10 20]}; % vary the amplitude of tonic input to E-cells 

data=SimulateModel(s,'save_data_flag',1,'study_dir','demo_sPING_2',... 

                     'vary',vary); 

 

% load and plot the saved data 

data_from_disk = ImportData('demo_sPING_2'); 

PlotData(data_from_disk); 

PlotData(data_from_disk,'variable','E_v'); 

 

% Vary a connection parameter 

vary={'I->E','tauD',[5 10 15]}; % inhibition decay time constant from I to E 

 

% Vary two parameters (run a simulation for all combinations of values) 

vary={ 

  'E'   ,'Iapp',[0 10 20];      % amplitude of tonic input to E-cells 

  'I->E','tauD',[5 10 15]       % inhibition decay time constant from I to E 

  }; 

SimulateModel(s,'save_data_flag',1,'study_dir','demo_sPING_3',... 

                'vary',vary,'verbose_flag',1); 

data=ImportData('demo_sPING_3'); 

PlotData(data); 

PlotData(data,'plot_type','rastergram'); 

PlotData(data,'plot_type','power'); 

PlotFR(data); % examine how mean firing rate changes with Iapp and tauD 

 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% RUNNING SIMULATIONS ON THE CLUSTER 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% How to: set 'cluster_flag' to 1 

% Requirement: you must be logged on to a cluster that recognizes 'qsub' 

 

% Run three simulations in parallel jobs and save the simulated data 

eqns='dv/dt=@current+I; {iNa,iK}'; 

vary={'','I',[0 10 20]}; 

SimulateModel(eqns,'save_data_flag',1,'study_dir','demo_cluster_1',... 

  'vary',vary,'cluster_flag',1,'overwrite_flag',1,'verbose_flag',1); 

 

% tips for checking job status: 

% !qstat -u <YOUR_USERNAME> 

% !cat ~/batchdirs/demo_cluster_1/pbsout/sim_job1.out 

data=ImportData('demo_cluster_1'); 

PlotData(data); 

 

% Repeat but also save plotted data 

eqns='dv/dt=@current+I; {iNa,iK}'; 

vary={'','I',[0 10 20]}; 

SimulateModel(eqns,'save_data_flag',1,'study_dir','demo_cluster_2',... 

  'vary',vary,'cluster_flag',1,'overwrite_flag',1,'verbose_flag',1,... 

  'plot_functions',@PlotData); 
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% Save multiple plots and pass custom options to each plotting function 

eqns='dv/dt=@current+I; {iNa,iK}'; 

vary={'','I',[0 10 20]}; 

SimulateModel(eqns,'save_data_flag',1,'study_dir','demo_cluster_3',... 

  'vary',vary,'cluster_flag',1,'overwrite_flag',1,'verbose_flag',1,... 

  'plot_functions',{@PlotData,@PlotData},... 

  'plot_options',{{},{'plot_type','power'}}); 

% !cat ~/batchdirs/demo_cluster_3/pbsout/sim_job1.out 

  

% Post-simulation analyses can be performed similarly by passing 

% analysis function handles and options using 'analysis_functions' and 

% 'analysis_options'.  

 

% Note: options will be passed to plot and analysis functions in the order 

% given. You can pass handles and options for any built-in, pre-packaged, 

% or custom functions. 

 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% SPEEDING UP SIMULATION USING THE MATLAB C++ COMPILER 

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Simulating large models can be sped up significantly by compiling the 

% simulation before running it. DynaSim makes this easy to do using the 

% 'compile_flag' option in SimulateModel. Note: compiling the model can  

% take several seconds to minutes; however, it only compiles the first time 

% it is run and is significantly faster on subsequent runs. 

 

data=SimulateModel(s,'compile_flag',1); 

PlotData(data); 

 

% Now run again: 

data=SimulateModel(s,'compile_flag',1); 

PlotData(data); 
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APPENDIX B: Model Equations 

Deep layer LPFC model 

DynaSim implementation 

https://github.com/jsherfey/PFC_models 

Equations 

The deep layer LPFC model consists of principal cells (PCs) and fast spiking 

interneurons (FS INs) with cell models taken from Durstewitz et al. (2000) and 

modifications from Durstewitz and Seamans (2002). The original cell models and my 

modifications to them will be summarized here; network descriptions are given in the 

Methods section of Chapter 2. See the referenced publications and DynaSim code for 

more details. 

 Each cell had voltage dynamics given by 𝐶𝑚
𝑑𝑉

𝑑𝑡
= −𝐼𝑖𝑛𝑝(𝑡, 𝑉) − ∑ 𝐼𝑖𝑛𝑡 − ∑ 𝐼𝑠𝑦𝑛. 

Compartment dimensions and maximal conductance of intrinsic ion channels for PC and 

FS INs are given in Table 3. The dynamics of ion channel gating variable, x, is governed 

by 
𝑑𝑥

𝑑𝑡
=

𝑥∞(𝑉)−𝑥

𝜏𝑥(𝑉)
 where 𝑥∞(𝑉)  is the voltage-dependent steady-state and 𝜏𝑥(𝑉)  is the 

voltage-dependent time constant. The kinetics associated with each gating variable is 

given in Table 4.  

 

Each PC compartment had intrinsic ion channels yielding voltage dynamics governed by 

𝐶𝑚
𝑑𝑉

𝑑𝑡
= −𝐼𝑖𝑛𝑝(𝑡, 𝑉) − 𝐼𝑁𝑎𝐹 − 𝐼𝑁𝑎𝑃 − 𝐼𝐶𝑎 − 𝐼𝐾𝐷𝑅 − 𝐼𝐾𝑠 − 𝐼𝐾𝐶𝑎 − 𝐼𝑙𝑒𝑎𝑘 − ∑ 𝐼𝑠𝑦𝑛 ,  

https://github.com/jsherfey/PFC_models
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𝐶𝑚
𝑑𝑉

𝑑𝑡
= −𝐼𝑖𝑛𝑝(𝑡, 𝑉) − 𝑔𝑁𝑎𝐹𝑚3ℎ(𝑉 − 𝐸𝑁𝑎) − 𝑔𝑁𝑎𝑃𝑚ℎ(𝑉 − 𝐸𝑁𝑎) − 𝑔𝐶𝑎𝑢2𝑣(𝑉 −

𝐸𝐶𝑎) − 𝑔𝐾𝐷𝑅𝑛4(𝑉 − 𝐸𝐾) − 𝑔𝐾𝑠𝑎𝑏(𝑉 − 𝐸𝐾) − 𝑔𝐾𝐶𝑎𝑐2(𝑉 − 𝐸𝐾) − 𝐼𝑙𝑒𝑎𝑘 − ∑ 𝐼𝑠𝑦𝑛  

with 𝐸𝐾 and 𝐸𝐶𝑎 calculated using the Nernst equation, and 𝐸𝑁𝑎=55mV. 

 

FS INs had intrinsic ion channels yielding voltage dynamics governed by: 

𝐶𝑚
𝑑𝑉

𝑑𝑡
= −𝐼𝑖𝑛𝑝(𝑡, 𝑉) − 𝐼𝑁𝑎𝐹 − 𝐼𝐾𝐷𝑅 − 𝐼𝑙𝑒𝑎𝑘 − ∑ 𝐼𝑠𝑦𝑛  

            = −𝐼𝑖𝑛𝑝(𝑡, 𝑉) − 𝑔𝑁𝑎𝐹𝑚3ℎ(𝑉 − 𝐸𝑁𝑎) − 𝑔𝐾𝐷𝑅𝑛4(𝑉 − 𝐸𝐾) − 𝐼𝑙𝑒𝑎𝑘 − ∑ 𝐼𝑠𝑦𝑛.  

 

 l, µm d, µm 𝐼𝑁𝑎𝐹 𝐼𝑁𝑎𝑃 𝐼𝐶𝑎 𝐼𝐾𝐷𝑅 𝐼𝐾𝑠 𝐼𝐾𝐶𝑎 𝜏𝐶𝑎 𝐼𝐴𝑅 

PC           

 soma 28.618 21.84 117 1.8 .4 50 .08 2.1 250 - 

 dendrite 650 6.5 20 0.8 .8 14 .08 2.1 120 - 

FS IN 42 42 45 - - 18 - - - - 

LTS IN - - 200 - - 5 - - - 50 

Conductance densities are given in mS/cm2. 𝜏𝐶𝑎 calcium decay time constants in ms.  

Table 3. Dimensions, conductance, and calcium decay in the LPFC model. 

 

Superficial LPFC model 

The superficial LPFC model consisted of PCs, FS INs, and low threshold spiking 

(LTS) INs. PCs and FS INs were the same as in the deep layer LPFC model. LTS cells 

correspond to CB+/CR+ interneurons providing inhibition onto PC apical dendrites and 

FS cells. The LTS model is adapted from Kramer et al. (2008) based on the modifications 

described below. See section 2.5 for network architecture. Maximal conductances and ion 

channel kinetics are given in Tables 3 and 4, respectively.  
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Current Gate 

x 

α β x∞ τx, ms 

PC      

   𝐼𝑁𝑎𝐹  m3 −.2816(𝑉 + 28)

−1 + 𝑒−(𝑉+28)/9.3
 

. 2464(𝑉 + 1)

−1 + 𝑒−(𝑉+1)/6
 

α/( α+ β) 1/( α+ β) 

 h . 098

𝑒(𝑉+43.1)/20
 

1

1 + 𝑒−(𝑉+13.1)/10
 

α/( α+ β) 1/( α+ β) 

   𝐼𝑁𝑎𝑃  m −.2816(𝑉 + 12)

−1 + 𝑒−(𝑉+12)/9.3
 

. 2464(𝑉 − 15)

−1 + 𝑒−(𝑉−15)/6
 

α/( α+ β) 1/( α+ β) 

 h 2.8 ∗ 10−5

𝑒(𝑉+42.8477)/4.0248
 

. 02

1 + 𝑒−(𝑉−413.9)/148.3
 

α/( α+ β) .5/( α+ β) 

   𝐼𝐶𝑎 u2 - - 1

1 + 𝑒−(𝑉+24.6)/11.3
 

1.25sech (−.031(𝑉 + 37.1)) 

 v - - 1

1 + 𝑒(𝑉+12.6)/18.9
 

140 

   𝐼𝐾𝐷𝑅 n4 −.018(𝑉 − 13)

−1 + 𝑒−(𝑉−13)/25
 

. 0054(𝑉 − 23)

−1 + 𝑒−(𝑉−23)/12
 

α/( α+ β) 1/( α+ β) 

   𝐼𝐾𝑠 a - - 1

1 + 𝑒−(𝑉+34)/6.5
 

6 

 b - - 1

1 + 𝑒(𝑉+65)/6.6
 200 +

200

1 + 𝑒−(𝑉+71.6)/6.85
 

   𝐼𝐾𝐶𝑎 c2 −.00642(𝑉𝑠 + 18)

−1 + 𝑒−(𝑉𝑠+18)/12
 

1.7𝑒−(𝑉𝑠+152)/30, 

𝑉𝑠 = 𝑉 + 40 log10([𝐶𝑎]𝑖) 

α/( α+ β) 1/( α+ β) 

FS IN      

   𝐼𝑁𝑎𝐹  m3 −.2816(𝑉 + 38)

−1 + 𝑒−(𝑉+38)/9.3
 

. 2464(𝑉 + 13)

−1 + 𝑒−(𝑉+13)/6
 

α/( α+ β) 1/( α+ β) 

 h 
2

. 098

𝑒(𝑉+53.1)/20
 2

1

1 + 𝑒−(𝑉+23.1)/10
 

α/( α+ β) 1/( α+ β) 

   𝐼𝐾𝐷𝑅 n4 −.018(𝑉 − 3)

−1 + 𝑒−(𝑉−3)/25
 

. 0054(𝑉 − 13)

−1 + 𝑒−(𝑉−13)/12
 

α/( α+ β) 1/( α+ β) 

LTS IN      

   𝐼𝑁𝑎𝐹  m∞
3 - - 1

1 + 𝑒−(𝑉+38)/10
 

- 

 h - - 1

1 + 𝑒(𝑉+58.3)/6.7
 . 225 +

1.125

1 + 𝑒−(𝑉+37)/15
 

   𝐼𝐾𝐷𝑅 n4 - - 1

1 + 𝑒−(𝑉+27)/11.5
 

. 25 + 4.35𝑒−|𝑉+10|/10 

   𝐼𝐴𝑅  w - - 1

1 + 𝑒(𝑉+75)/5.5
 

1

𝑒−(.086𝑉+15) + 𝑒(.07𝑉−1.9)
 

V, membrane potential (mV); [Ca]i, intracellular calcium concentration (µmol/l). 

Table 4. Gating variables for all ion channels in the LPFC model. 
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LTS INs had intrinsic ion channels yielding voltage dynamics governed by: 

𝐶𝑚
𝑑𝑉

𝑑𝑡
= −𝐼𝑖𝑛𝑝(𝑡, 𝑉) − 𝐼𝑁𝑎𝐹 − 𝐼𝐾𝐷𝑅 − 𝐼𝐴𝑅 − 𝐼𝑙𝑒𝑎𝑘 − ∑ 𝐼𝑠𝑦𝑛  

𝐶𝑚
𝑑𝑉

𝑑𝑡
= −𝐼𝑖𝑛𝑝(𝑡, 𝑉) − 𝑔𝑁𝑎𝐹𝑚∞(𝑉)3ℎ(𝑉 − 50) − 𝑔𝐾𝐷𝑅𝑛4(𝑉 + 100) − 𝑔𝐴𝑅𝑤(𝑉 +

35) − 6(𝑉 + 65) − ∑ 𝐼𝑠𝑦𝑛  

 

Modifications to LTS model based on PFC physiology: 

The Kramer model is based on somatosensory association cortex. We adapted the 

model so that it exhibited electrophysiological properties based on PFC recordings of 

superficial CB+ interneurons. Specifically, we decreased gKDR by 50% to achieve 

longer action potential duration (Zaitsev et al., 2009), a resting membrane potential of -

64mV (Kawaguchi, 1993; Konstantoudaki et al., 2016), and spike threshold of -52mV 

(Konstantoudaki et al., 2016). 

 

ACC network model 

DynaSim implementation 

https://github.com/jsherfey/ACd_model 

Equations 

The same ion channels in the PFC model were adapted using constraints based on 

rat ACd data to construct the ACC model as described in the Methods section of Chapter 

3. See the DynaSim code for implementation details. 

 

https://github.com/jsherfey/ACd_model
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