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ABSTRACT 

 The distinctiveness of brain structures and circuits depends on interacting gene 

products, yet the organization of these molecules (the "transcriptome") within and across 

brain areas remains unclear.  High-throughput, neuroanatomically-specific gene 

expression datasets such as the Allen Human Brain Atlas (AHBA) and Allen Mouse 

Brain Atlas (AMBA) have recently become available, providing unprecedented 

opportunities to quantify molecular neuroanatomy.  This dissertation seeks to clarify how 

transcriptomic organization relates to conventional neuroanatomy within and across 

species, and to introduce the use of gene expression data as a bridge between genotype 

and phenotype in complex behavioral disorders. 

 The first part of this work examines large-scale, regional transcriptomic 

organization separately in the mouse and human brain.  The use of dimensionality 

reduction methods and cross-sample correlations both revealed greater similarity between 

samples drawn from the same brain region.  Sample profiles and differentially expressed 

genes across regions in the human brain also showed consistent anatomical specificity in 

a second human dataset with distinct sampling properties. 
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 The frequent use of mouse models in clinical research points to the importance of 

comparing molecular neuroanatomical organization across species.  The second part of 

this dissertation describes three comparative approaches.  First, at genome scale, 

expression profiles within homologous brain regions tended to show higher similarity 

than those from non-homologous regions, with substantial variability across regions.  

Second, gene subsets (defined using co-expression relationships or shared annotations), 

which provide region-specific, cross-species molecular signatures were identified.  

Finally, brain-wide expression patterns of orthologous genes were compared.  Neuron 

and oligodendrocyte markers were more correlated than expected by chance, while 

astrocyte markers were less so. 

 The localization and co-expression of genes reflect functional relationships that 

may underlie high-level functions.  The final part of this dissertation describes a database 

of genes that have been implicated in speech and language disorders, and identifies brain 

regions where they are preferentially expressed or co-expressed.  Several brain structures 

with functions relevant to four speech and language disorders showed co-expression of 

genes associated with these disorders.  In particular, genes associated with persistent 

developmental stuttering showed stronger preferential co-expression in the basal ganglia, 

a structure of known importance in this disorder. 
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CHAPTER 1:  INTRODUCTION 

1.1 Gene expression and neuroanatomy 

 The cytoarchitecture and myeloarchitecture that traditionally define regional brain 

organization arise from molecular events: the actions and interactions of genes and their 

products, resulting in proteins and other molecules which are present at varying levels 

across different cell populations throughout the brain.  These events guide the 

development and differentiation of the brain and are integral to its function throughout 

life, but are difficult to observe.  The technologies to measure mRNA abundance (an 

approximation of protein level) simultaneously for thousands of sequences were 

developed in the 1990s, allowing investigators to take a genome-wide "snapshot" of gene 

expression from a biological sample (see Lockhart and Winzeler, 2000 for an overview of 

DNA microarrays; and Lennon, 2000 for a brief historical overview).  The resulting 

datasets, known as "high-throughput" datasets for their genome-wide coverage, include 

gene expression profiles of samples from diverse brain areas (composed of varying cell 

populations).  High-throughput gene expression datasets open the possibility of 

characterizing the brain's transcriptome: the RNA sequences present, which varies by 

brain tissue as well as time. 

 The molecular scale that underlies conventional neuroanatomy is reflected by 

spatial organization (i.e., patterns of common gene expression) within high-throughput 

gene expression datasets.  This dissertation examines global and local transcriptomic 

organization within three high-throughput, brain-wide, neuroanatomically-specific gene 

expression datasets, and uses observed transcriptomic correspondence with conventional 
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neuroanatomy to make necessary initial steps towards connecting the functions of groups 

of genes with those of brain structures. 

 

1.2  Gene expression and development 

 The expression datasets studied here are from adult brains (24-57 years old in the 

human; 56 days old in the mouse).  The adult brain, however, must be understood as the 

outcome of developmental processes at regional, cellular, and molecular scales. 

 Regional organization in the mature mammalian brain can be traced back to the 

embryonic neural tube (the form assumed by the first neural tissue; see Sanes et al., 2012, 

Ch. 2, for a review that includes a discussion of molecular mechanisms).  Vesicles form 

along the length of the neural tube, each of which generates cells destined for a different 

part of the brain.  Telencephalic structures share a common developmental origin in the 

anterior-most vesicle; diencephalic structures all rise from the adjacent vesicle, and so on 

through three vesicles which generate the midbrain, pons, and medulla, respectively.  At 

the boundary between the midbrain and hindbrain, a transient structure called the 

rhombic lip generates cerebellar neurons (Wingate, 2001; Fink, 2006), as well as some 

other parts of the hindbrain (Wang et al., 2005).  Organization of brain areas along the 

rostrocaudal axis thus emerges from the order of vesicles along the neural tube.  Some 

connections between these areas begin to form even while neurogenesis and cell 

migration to the area is still taking place, and this early connectivity further refines areal 

differentiation.  In particular, the developing dorsal thalamus sends projections to the 
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neocortex (and other parts of the telencephalon), and is vital to cortical arealization (see 

O’Leary et al., 2007 for a review).  

 Like the (relatively) stable organization of the mature brain, these developing 

structures and circuits have cellular and molecular underpinnings.  Early brain 

development involves a fantastically complex set of interacting cellular-scale events.  

Cells proliferate and migrate to specific destinations while taking on a wide variety of 

forms, both neurons and glia; cell processes and synapses appear; cells and synapses die 

in vast numbers; the intricate circuitry of the brain begins to form.  These events are 

effected and regulated, with temporal and spatial precision, by gene products.  The first 

appearance of neural tissue in the embryo requires interactions between gene products 

working in, at a minimum, three signaling pathways (Stern, 2005; Sanes et al., 2012).  

The differentiation of that tissue into distinct brain areas is orchestrated by a growing list 

of transcription factors; for example, morphogens such as TGF-8 regulate rostrocaudal 

gradients of expression that influence neuron fate towards forming motor cortex (Pax2, 

Sp8) or visual cortex (Emx2; see Sansom and Livesey, 2009 for a review).  Rapid 

changes in the developing human brain are reflected by genome-scale transcriptomic 

change, which is accordingly greatest through infancy (Kang et al., 2011b; also see Fig. 2 

in Cahoy et al., 2008).  Region-dependent changes continue throughout the lifespan, 

however, and multiple studies have identified changes related to aging and 

neurodegenerative disease (Lee et al., 2000; Fraser et al., 2005; Berchtold et al., 2008; 

Colantuoni et al., 2011). 
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1.3  Overview of data collection techniques 

 This section briefly describes the two experimental techniques for measuring 

mRNA abundance that were used to produce the datasets analyzed in this dissertation 

(i.e., DNA microarrays and in situ hybridization, or ISH).  Chapter 2 formally describes 

these datasets and the normalization procedures applied to them. 

 Gene expression from neuroanatomically-specific samples in human donor brains 

can be measured using microarray technology, as is the case in two of the datasets 

analyzed here (Gibbs et al., 2010; Hawrylycz et al., 2012).  A microarray chip consists of 

a surface (usually made of glass) that is covered in microscopic spots, each containing 

many synthesized copies of a given DNA sequence, or "probes".  "Targets" are created 

by extracting mRNA strands from the sample tissue and converting them into 

complementary DNAs (cDNAs).  The cDNAs are labelled with fluorescent dye and 

hybridized to the spots containing the DNA probes.  There, they bind to the probe 

sequences to which they are complementary.  After removing cDNAs that failed to bind 

to any probes, the remaining cDNA at a given spot is revealed by the fluorescent label.  

Quantification of that signal then yields an estimate of the abundance of the original 

transcript in the sample tissue. A variety of commercial and custom microarray platforms 

are now available for performing genome-scale profiling of individual samples. 

 Microarrays and ISH are essentially complementary ways of expression profiling.  

Where microarrays involve affixing the probe to a surface and then applying the labelled 

target, ISH requires affixing the sample tissue and applying the labelled probe.  In the 

ISH method, the probe is complementary RNA, and the target is mRNA present within 
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the tissue, which has been treated to facilitate the probe's access to the target.  After 

hybridization, the tissue is washed, and the label indicates how much of the probe bound 

to its target, and thus the abundance of the target transcripts in the tissue.  This is a more 

direct measure of mRNA abundance than microarrays can provide, with a higher signal-

to-noise ratio.  However, because it requires individual sections of brain tissue, each 

tested for the presence of a different transcript, ISH is highly labor-intensive and less 

suitable for high-throughput genomic screening.  The small size of the mouse brain, as 

well as the ability to use many mice, make ISH a more practicable approach for the 

mouse than the human brain when genome-wide coverage and / or good spatial resolution 

is desired. 

 

1.4  Large-scale molecular neuroanatomy 

 The advent of large gene expression datasets from the brains of multiple species 

offers unprecedented opportunities to investigate molecular neuroanatomy.  These 

datasets show varying gene expression levels across different brain tissues for thousands 

of genes, allowing us to study not only the pattern of expression of a gene of interest, but 

the relationships between many genes' spatial expression patterns, or, conversely, the 

expression profiles of different regions of the brain.  Large expression datasets have 

inspired efforts to map the brain's transcriptome at a large scale, revealing systematic, 

region-dependent variation of gene expression across the brains of rodents and primates 

(Lein et al., 2007; Hawrylycz et al., 2012; Ng et al., 2009; Bohland et al., 2010; Bernard 



 

 

6 

et al., 2012; Ji, 2011), as well as regional differences in the co-expression relationships 

between different genes (Oldham et al., 2008; Ko et al., 2013; Grange et al., 2014). 

 The characterization of data pertaining to thousands of genes poses a daunting 

problem.  Conventional neuroanatomy, while sometimes plagued by difficulties in clearly 

and consistently defining brain regions, is generally based on simple markers and, 

usually, visually observable features.  By contrast, the gene expression profile of a 

sample is a multidimensional observation of its molecular composition, and the extraction 

of useful information from these large datasets has demanded the application of a variety 

of tools from statistics, machine learning, and graph theory.  One way to deal with this 

complexity is to investigate samples one gene at a time to identify genes whose 

expression patterns distinguish certain samples (see Pavlidis and Noble, 2001, for 

example, for an examination of these methods).  The proportion of genes which are 

differentially expressed can then be used to quantify dissimilarity between samples from 

different brain regions (e.g. Hawrylycz et al., 2012; Khaitovich, 2004).  Alternatively, the 

correlation between two samples' expression profiles can be used as a measure of 

similarity, often followed by clustering of samples based on those similarities (e.g. 

Hawrylycz et al., 2012; Roth et al., 2006) in order to determine molecularly 

homogeneous groups of samples and/or samples with discriminable transcriptomes.  

Similarly, data reduction and visualization methods such as multi-dimensional scaling 

(MDS), principal components analysis (PCA), or t-Distributed Stochastic Neighbor 

Embedding (t-SNE) may be used to assign each sample a set of coordinates in a low-

dimensional space such that proximity between samples reflects the similarity of the 
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expression profiles, providing a simple visual representation of the “landscape” of gene 

expression across samples (Khaitovich, 2004; Mahfouz et al., 2015).   

 Chapter 3 of this dissertation begins with an overview of the literature on large-

scale transcriptomic organization as it relates to neuroanatomy, followed by a study of 

this organization in the human and mouse, showing relationships between brain samples 

based on gene expression that correspond to the samples' regions of origin.  The chapter 

also quantitatively compares two expression datasets from the adult human brain, one 

with high spatial resolution and the other with large sample size, to determine the 

consistency of anatomically specific expression signatures across datasets and microarray 

platforms. 

 

1.5 Comparative molecular neuroanatomy 

 Given the common usage of mouse models to study human neuropathologies, 

there is a striking paucity of such disease models that have proven to be clinically useful 

(Le et al., 2014; Duff, 2004; Hardy, 2006).  While much is known about the similarities 

and differences between the human and mouse brain from conventional neuroanatomical 

methods (based on features such as cytoarchitecture and inter-regional connectivity), 

mouse models fundamentally rely on cross-species correspondences that are realized at 

the much smaller, intracellular scale that involves interactions between gene products.  

Currently, relatively little is known about how these molecular mechanisms, which vary 

substantially across cell populations and brain regions in each animal, compare across the 

two species.  This lack of an established basis for comparison at the relevant scale may 
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cause some of the difficulty in developing successful mouse models (Burns et al., 2015). 

 Chapter 4 briefly reviews cross-species studies of molecular neuroanatomy before 

presenting three quantitative comparisons of the adult human and mouse transcriptome.  

A whole-brain, genome-wide comparison based on sample profile correlations is 

followed by a novel approach to identifying region-specific gene expression signatures 

that are consistent across the two species.  Finally, the brain-wide profiles of orthologous 

genes are compared between the two species, with a particular focus on genes that mark 

certain cell types.  The ultimate goal of this approach is to inform brain research that 

relies on mouse models by illuminating gene interactions that are similar, and that impact 

similar brain areas, in the human and mouse brain. 

 

1.6 Expression of genes associated with speech and language disorders 

 Transcriptomic data from the brain have the potential to help illuminate how 

functionally relevant genes impact neuronal and cognitive processes at a larger scale.  In 

the many heritable disorders characterized by behavioral phenotypes, there is currently a 

large genotype-phenotype gap; knowledge is becoming available about either the genes 

potentially involved in these disorders or about the brain regions and circuits that are 

atypically functioning, but little is known about the intermediate pathological 

mechanisms. Chapter 5 describes an attempt to begin bridging this gap, specifically in the 

area of language-related functions.  Disorders of speech and language are highly 

heritable, and variants in over three dozen genes to date have been associated with 

language abilities and disabilities, with varying degrees of evidence (see e.g. Fisher et al., 



 

 

9 

2003; Graham et al., 2015).  Many of these genes have known roles in brain processes 

such as cortical migration and pre-synaptic signaling (e.g. Wang et al., 2006; Yang et al., 

2011), but little is known of the causal links between variants in a given gene and 

behavioral traits.  Chapter 5 begins with a brief overview of the candidate genes and 

associated phenotypes, followed by a description of a manually curated database intended 

to facilitate the integration of genetic and transcriptomic information with neuroimaging 

results from research into speech and language function.  The rest of the chapter 

examines the expression patterns and co-expression relationships of these genes in 

regions throughout the adult human brain in an effort to identify the parts of the brain 

through which the genes may affect language-related functions, and to consider how this 

might relate to known or suspected functions of the genes at a smaller scale.   

 

 Finally, Chapter 6 discusses the data-driven nature of the approach taken in this 

research, and summarizes the contributions of the dissertation as well as common themes 

in the future research proposed in the previous chapters. 
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CHAPTER 2:  OVERVIEW OF MATERIALS AND METHODS 

2.1 Introduction 

 This dissertation focuses primarily on two publicly available, high-throughput 

gene expression datasets.  The Allen Human Brain Atlas (AHBA), a microarray dataset 

from six adult human donors, comprises thousands of samples from several hundred 

finely labelled brain structures (Hawrylycz et al., 2012; www.human.brain-map.org).  

While not at single cell resolution, this is a far higher spatial resolution than is typically 

available in microarray data from brain tissue.  Practical considerations such as the 

smaller size of the mouse brain allow for even more comprehensive sampling using in 

situ hybridization. This method was used in a systematic, brain-wide survey resulting in 

the Allen Mouse Brain Atlas (AMBA), which has been cast as a three dimensional atlas 

at 200 micron resolution (Lein et al., 2007; www.mouse.brain-map.org/).  In both the 

AHBA and the AMBA, the locations of samples have been labeled according to 

conventionally defined brain atlases at multiple levels of granularity, allowing analysis of 

both broad and fine neuroanatomical regions.  Though based on different data collection 

techniques, the high resolution and multi-level structure labelling of these datasets make 

them well-suited for investigating molecular neuroanatomy.  Additionally, Chapter 3 

compares the AHBA to another publicly available microarray dataset from the adult 

human brain, previously described by Gibbs et al. (2010).  This chapter provides a 

description of these datasets, details a procedure for standardization used in Chapters 3 

and 4, and briefly discusses some of the methodological decisions made in processing 

these datasets. 
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2.2  Allen Human Brain Atlas (AHBA) 

 The AHBA includes six genome-wide microarray datasets from adult donors aged 

24-57 with no history of neuropathology (Hawrylycz et al., 2012; www.human.brain-

map.org/).  These data were collected from post-mortem samples and analyzed using a 

custom Agilent 8x60k cDNA array chip. Microarray results were preprocessed (including 

normalization to account for array-specific biases, within-batch intensity differences, 

within-donor batch-level effects, and cross-brain effects) by the research team at the 

Allen Institute for Brain Science (AIBS).  Between 300 and 450 anatomically distinct 

samples were available from the left hemisphere for each donor.  Although samples were 

also available from the right hemisphere for two donors, only left-hemisphere samples 

were used here.  The neuroanatomical region from which each sample was obtained is 

annotated according to a hierarchical classification scheme (using standardized 

nomenclature and based on gyral / sulcal landmarks in the cerebral cortex), and the 

~60,000 probes were annotated with relevant gene symbols by the AIBS group. 

2.2.1  Probe selection 

 For genes represented by two probes, the probe with the highest mean intensity 

across all samples for all donors was selected.  For genes represented by more than two 

probes, each probe's Pearson Product-Moment Correlation Coefficient (PCC) with each 

of the other probes for this gene across all samples for all donors was calculated, and the 

probe with the highest mean PCC (the "most average" probe) was selected.  The “probe-

per-gene” data includes ~32,000 genes.  The subset of genes from this dataset that are 

treated here varies by analysis, and is specified in each case. 
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2.3  Allen Mouse Brain Atlas (AMBA) 

 The AMBA provides cellular resolution expression profiles based on non-isotopic 

in situ hybridization (ISH) for ~20,000 genes in the 56-day-old male C57BL/6J mouse.  

Volumetric datasets were used here, in which sections from each experiment were 

registered to a common three-dimensional template and binned into voxels with 200µm 

resolution (Lein et al., 2007; Ng et al., 2007). In this volumetric space, the expression of a 

gene is summarized by a measure of expression energy (i.e., the average intensity of 

pixels in the ISH image intersecting a given voxel). For this analysis, we used data from 

image series in the coronal plane, comprising 4,108 genes with restricted expression 

patterns, which had been selected by the AIBS team for a brain-wide survey. For 

consistency with the human data, only voxels from the left hemisphere were used in these 

analyses. 

 

2.4 Gibbs dataset. 

 Microarray expression data from 4 distinct neuroanatomical regions - the frontal 

lobe (FL, Brodmann areas 9 and 46), temporal lobe (TL, Brodmann areas 21, 41, and 42), 

cerebellum (CB), and pons (PO) - were obtained from Gene Expression Omnibus (GEO), 

Accession Number GSE15745.  These data were previously reported by Gibbs et al. 

(2010).  Gene expression profiling was performed using Illumina humanRef-8 v2.0 

Expression BeadChips as described in van der Brug et al. (2008).  Expression data were 

processed and quality controlled using procedures similar to those described in Wolock et 

al (2013).  The un-normalized mRNA microarray expression data were downloaded from 
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GEO and associated with the sample phenotype annotations and the mRNA microarray 

probe annotations for the platform used, GEO platform accession GPL6104.  Low quality 

and technical probes as annotated using illuminaHumanv2.db from the Bioconductor 

package were removed from further analysis.  Quantile normalization (Bolstad et al., 

2003) was applied using normalized exponential quantile normalization (Shi et al., 2010) 

with the neqc function from Bioconductor (Ritchie et al., 2011).  Categorical covariates 

were controlled using ComBat (Johnson et al., 2007), which corrected for effects of 

batch, tissue source and sex.  ComBat has been previously shown to have the best overall 

performance, relative to other commonly used methods, in removing artifactual 

correlations induced by group effects (Chen et al., 2011), including when applied to 

Illumina platforms (Kitchen et al., 2010).  The correctBatchEffect routine from limma 

(Smyth, 2005) was used to correct for the continuous covariates age, ancestry and post-

mortem interval (PMI) using linear regression.  After preprocessing, the Gibbs dataset 

consisted of 19,910 features (i.e., probes) and the number of samples that passed quality 

control varied by tissue source (NFL = 137, NTL = 134, NCB = 135, NPO = 137). 

 

2.5 Probe standardization 

 Some form of normalization is necessary for meaningful comparisons across 

expression values from different probes in microarray datasets such as the AHBA and the 

Gibbs dataset.  For consistency, normalization procedures described here were also 

applied to the AMBA. 
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 A “weighted z-scoring” procedure (described in Ch. 2; see also Myers et al., 

2015) was designed to give equal weight to brain structures regardless of the number of 

available samples.  To some extent, this corrects for bias resulting from non-uniform 

sampling - in particular, the AHBA dataset included a greater number of samples from 

human cerebral cortex (1216 samples) than from any subcortical structure (1043 samples 

total).  Because the Gibbs dataset includes one sample per region from each donor (i.e., 

uniform sampling across regions), weighted z-scoring amounts to equally weighting all 

samples in that dataset.   

 Details of the weighted z-scoring procedure are given below.  Briefly, for each 

gene (probe), weighted means and standard deviations were calculated across available 

samples such that the set of all samples from a set of selected brain regions received 

equal overall weight, and these were used to normalize all expression values.  Note, 

however, that the differential expression analysis in Chapter 3 required data that had not 

been standardized, and that all analyses in Chapter 5 used conventional z-scoring. 

 In this procedure, expression data are represented as a matrix E(g, s), indicating 

the expression level of gene g in sample s.  This matrix is partitioned into K distinct sets, 

R1, R2, . . .Rk, where Rj contains the indices of all samples in that set (i.e., brain region).  

For gene g and partitioning S, a weighted mean expression level is defined as: 

                                          𝜇𝑆(𝑔) =
1

𝐾
∑ (

1

|𝑅𝑘|
∑ 𝐸𝑖𝜖𝑅𝑘

(𝑔, 𝑖))𝐾
𝑘=1         (1) 

and the weighted standard deviation is defined as: 
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                                   𝜎𝑆(𝑔)=√
∑

1

|Rk|
(∑ (𝐸(𝑔,𝑖)−𝜇𝑆(𝑔))

2

iϵRk
)K

k=1

𝐾(
∑ |𝑅𝑘|𝐾

𝑘=1 −1

∑ |𝑅𝑘|𝐾
𝑘=1

)

        (2) 

     The most basic case would be all samples in the dataset belonging to the same region, 

i.e. S = {R1} and R1 = {1, 2, ..., N}, where N is the total number of samples.  The 

weighted values would then reduce to the standard formulations for mean and standard 

deviation, and each sample would receive equal weight.  With different partitions S (i.e., 

different groupings of the samples based on neuroanatomical labels), these procedures 

give equal overall weight to the sets of samples in each region Rk.  The standardized 

expression level of gene g in sample i given partition S is then: 

�̃�𝑆(𝑔, 𝑖) =
(𝐸(𝑔,𝑖)−𝜇𝑆(𝑔))

𝜎𝑆(𝑔)
        (3) 

 

2.6  Data selection, processing, and labelling 

 Several methodological decisions contributed to the selection and processing of 

the data used in these analyses.  This section includes a brief discussion of some of these 

decisions. 

2.6.1  Weighted z-scoring   

 First, “weighted z-scoring” of probes (described above) was used as a means of 

addressing the presence of non-uniform sampling of brain regions in the AHBA dataset, 

and applied also to the AMBA dataset (as well as the Gibbs dataset, where it was 

equivalent to conventional z-scoring).  To examine the effect of weighted z-scoring, the 

AHBA and AMBA datasets used in Chapter 3.3 and Chapter 4 (which used this 
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procedure) were compared to the same datasets when probes were standardized using 

conventional z-scoring.  For the weighted z-scoring procedure, the following regions 

were used to partition the brain: the cerebral cortex, hippocampal formation, amygdala, 

striatum, globus pallidus, thalamus, hypothalamus, midbrain, pons, medulla, and 

cerebellum.  (Chapter 4 gives the numerical identifiers associated with these regions in 

the AHBA and AMBA databases; see Table 4.1.) 

 Weighted z-scoring has the effect of de-emphasizing the influence of more 

heavily sampled brain regions on brain-wide expression values; therefore, its effect 

varied somewhat by brain region.  Pearson's Product-Moment Correlation Coefficients 

(PCCs) were calculated between sample (or voxel) expression profiles within each region 

used to partition the brain after weighted z-scoring, and within each of the same regions 

after conventional z-scoring.  Mean within-region PCCs changed by an average (across 

regions) of ~0.1 in the human data, ~0.05 in the mouse data, and ~0.03 across species, 

with the cortex (and to a lesser extent the hippocampus and amygdala) showing increased 

correlations and other regions showing decreases. 

2.6.2  Standardization of probes in the AMBA 

 For consistency, the same standardization procedure was applied to probes in the 

mouse dataset as to probes in the human dataset, though it is not strictly necessary to cast 

the mouse in situ hybridization based datasets in relative terms as is necessary for the 

human microarray-based datasets.  Within-probe standardization of the mouse data has 

the effect of emphasizing differences between voxel expression profiles.  Mean within-

region PCCs for broad mouse regions decrease by an average of ~0.5 when either 
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weighted or unweighted z-scoring is applied to the mouse expression data; however, the 

mean PCC between two expression profiles drawn randomly from anywhere in the mouse 

decreases by ~0.65, suggesting that mouse regions appear more distinct after 

standardization. 

2.6.3  Restriction to the left hemisphere 

 Similarly, because right-hemisphere samples were discarded from the two whole-

brain human datasets, right-hemisphere voxels in the mouse brain were also discarded to 

maintain consistency across species.  Not surprisingly, results did not substantially 

change when the mouse data were restricted to left-hemisphere voxels due to the strong 

left-right symmetry in the AMBA: mean left-hemisphere expression profiles are highly 

correlated with mean right-hemisphere expression profiles for the 11 broad mouse 

regions (mean cross-hemisphere PCC ~0.92; ± ~0.06).  This was also true of 9 finer sub-

cortical regions (dentate gyrus, Ammon's horn, subiculum, caudoputamen, nucleus 

accumbens, external globus pallidus, internal globus pallidus, cerebellar cortex, and 

cerebellar nuclei; mean cross-hemisphere PCC ~0.91, standard deviation ~0.06).  Sixteen 

cortical areas also showed high cross-hemisphere correlations (ectorhinal area, perirhinal 

area, temporal association areas, posterior parietal association areas, retrosplenial area, 

agranular insular area, orbital area, infralimbic area, prelimbic area, anterior cingulate 

area, visual areas, auditory areas, visceral area, gustatory areas, somatosensory areas, 

somatomotor areas, and frontal pole of the cerebral cortex; mean cross-hemisphere PCC 

~0.87, standard deviation ~0.06).  Additionally, within-region mean PCCs for the broad 
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mouse regions change by an average of only ~0.01 when right-hemisphere voxels were 

included. 

2.6.4  Neuroanatomical labels 

 In addition to decisions regarding pre-processing of the data, this study depends 

on the assignment of samples and voxels to conventionally defined neuroanatomical 

structures, and on decisions about which neuroanatomical labels to include in the 

definition of a structure.   For example, in the AHBA ontology, "Hippocampal formation" 

is a child (substructure) of "Cerebral cortex."  In order to study the hippocampal 

formation separately from the rest of the cortex, labels corresponding to any part of the 

hippocampal formation were excluded from the definition of the cerebral cortex.  More 

generally, conventional neuroanatomy sometimes struggles with conflicting opinions 

regarding the identities and borders of different structures and their homologs (Bota et al., 

2003).  Therefore, this work focuses on regions of the brain whose definitions are more 

or less well-established and agreed upon, but is subject to any bias introduced by the 

labeling schemes applied. 
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CHAPTER 3:  LARGE-SCALE, WITHIN-SPECIES PATTERNS OF 

NEUROANATOMICAL GENE EXPRESSION 

3.1 Introduction 

 Studies of gene expression across the brain have revealed a close relationship 

between molecular and conventional neuroanatomy in individual species.  This 

relationship is demonstrated by preferential or exclusive expression of certain genes in a 

given brain region, and a number of studies have identified such genes for coarsely-

defined regions throughout the mouse brain (e.g. Pavlidis and Noble, 2001; Zirlinger et 

al., 2001; Lein et al., 2007).  The Anatomic Gene Expression Atlas (AGEA), which 

includes online tools designed for exploring the AMBA, shows molecular relationships 

between brain regions based on both preferential gene expression in certain brain regions, 

and correlations between gene expression profiles from throughout the mouse brain (Ng 

et al., 2009).   

 The molecular underpinnings of conventional region boundaries emerge in 

striking detail in the AMBA.  Unsupervised clustering of voxels (based on multivariate 

patterns of gene expression at each location) yields clusters which correspond closely to 

mouse brain areas and cortical layers, with cluster boundaries appearing even between 

cortical areas (Bohland et al., 2010).  A similar analysis limited to expression of neuron 

marker genes yields clusters corresponding to over fifty brain areas (Ko et al., 2013).  

Voxel clustering also shows the molecular heterogeneity of brain structures, where 

expression profiles from subcortical nuclei break into small clusters while those from 
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more homogenous structures such as the cerebral cortex form large individual clusters 

(Lein et al., 2007). 

 Other studies have used a variety of computational techniques to elucidate the 

relationship between gene expression and neuroanatomy in the mouse brain, and 

specifically the AMBA.  Mahfouz and colleagues (2015) revealed distinctions between 

mouse brain regions by applying an optimized version of the data reduction technique t-

Distributed Stochastic Neighbor Embedding (t-SNE, Van der Maaten and Hinton, 2008) 

to the AMBA (and the AHBA; see below).  Grange et al. (2014) cast the AMBA dataset 

as a linear combination of cell types, using 64 previously measured expression profiles to 

model the spatial distribution of different transcriptomically defined cell types.  French 

and Pavlidis (2011), also using the AMBA as well as rat data from the Brain Architecture 

Management System (BAMS; Bota et al., 2005), found that regional gene expression 

profiles are statistically related to regional connectivity. 

 Comparable organization has been found based on human brain gene expression, 

where one of the first comprehensive applications of this approach showed brain samples 

clustering by region of origin (Roth et al., 2006).  Neocortical samples grouped together, 

and showed more similarity to the hippocampus and amygdala than to the rest of the 

subcortex, while the cerebellum stood out with a particularly unique molecular profile.  

Similar to the finding by Lein et al. (2007) in mouse, Hawrylycz and colleagues (2012) 

showed much higher internal homogeneity for gene expression profiles in the human 

neocortex than in many subcortical structures, whose varying cellular architecture is 

reflected by higher numbers of differentially expressed genes.  Still, topographical 
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relationships between human cortical areas were preserved in their gene expression 

profiles, reflecting graded differences in cortical cell populations and possibly relative 

positions of progenitor cells in early development.  Application of t-SNE to the AHBA 

also revealed few within-cortex distinctions, but did show separation between broader 

brain regions (Mahfouz et al., 2015). 

 Nearly all of the human studies mentioned above use the AHBA, which offers 

uniquely high spatial resolution (as compared to other gene expression datasets from the 

human brain) but low sample size (six donors).  Similar sampling properties are shared 

by the datasets used in Roth (2006), Johnson (2009), and Khaitovich (2004), though 

without such high spatial resolution (19, 13, and 8 brain areas, respectively).  In contrast, 

Oldham et al. (2008) and Gibbs et al. (2010) use datasets from over 100 donors each, but 

with samples from only 3 or 4 brain regions in each donor.  Relatively fine 

neuroanatomical specificity and broad coverage (i.e. sampling from areas throughout the 

brain) comes at a price of low sample size, which limits the ability to distinguish 

individual variability from noise.  These trade-offs emphasize the need for validation 

across datasets.  Most of the work described in this dissertation focuses on the AHBA and 

AMBA; however, a comparison of the AHBA with the dataset from Gibbs et al. (2010) is 

presented below. 

 This chapter examines large-scale structure in gene expression data from the 

human and mouse brain, using a largely exploratory approach applied to the AHBA and 

the AMBA.  Transcriptomic structure in the AHBA is cross-validated through 

comparison to a second dataset with larger sample size and coarser spatial resolution.  
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Visualizations revealing organization of samples based on gene expression and its 

correspondence to neuroanatomical labels serve to lay the groundwork for the studies 

presented in Chapters 4 and 5. 

 

3.2 Modes of variability 

 The singular value decomposition (SVD, described briefly below) is useful for de-

noising and reducing the dimensionality of high-dimensional datasets.  Essentially, the 

singular value decomposition of a matrix yields (1) an orthonormal basis for its columns, 

(2) an orthonormal basis for its rows, and (3) "singular values" indicating how each 

vector in each orthonormal basis is scaled.  In a sample-by-gene expression matrix, (1) 

defines a rotated coordinate system for genes and (2) for samples, while (3) indicates the 

spread of datapoints along each axis in the new system. 

 To understand why this is useful, compare the new space defined by (2) to the 

coordinate space of the original sample data.  This original space is defined by thousands 

of axes, one per gene, and each sample is represented in the space by as many 

coordinates.  Because genes do not vary independently, the way samples are spread out in 

the space may be effectively described by a smaller number of orthogonal axes, each of 

which captures as much variability across samples as possible.  If we know how much 

variability each axis captures, we can assess how many sources of variability there are in 

the data.  Singular values give us this information.  (This is also true if we reverse 

"samples" and "genes" in the above example; singular values describe the variability 

captured by each axis in either of the orthonormal vector sets). 
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 Below, the first use made of SVD is to see how much of the original variability in 

the data is captured as more axes (dimensions) in the new coordinate space are included, 

beginning with those which capture the most variability (i.e. those with the highest 

corresponding singular values).  If most of the variability in the data can be captured by 

just a few orthogonal axes, then the structure of the data (i.e., its correlations across 

anatomical space and across genes) is relatively simple.  The more dimensions are 

required to describe variability in the data, the more rich the structure of that data.  The 

second use of SVD made below is to project the sample data down to the three-

dimensional space defined by the three axes in the new space with the highest singular 

values; i.e., those that capture the most variability.  The resulting visualization of sample 

locations in this three-dimensional space gives a sense of whether and how samples 

separate based on region of origin. 

 Bohland et al. (2010) applied SVD to the AMBA, finding rich structure in the 

data as well as region-based separation of voxels in the three-dimensional space capturing 

the most variability.  Here, SVD is applied to both a the AMBA, and also to the AHBA.  

Note that since Bohland et al.'s (2010) study, a new algorithm has been applied to the 

AMBA to register the expression data to the reference space; therefore these analyses use 

a different version of the AMBA (see documentation for the AMBA dataset at 

www.mouse.brain-map.org/). 

3.2.1  Gene selection and standardization 

 Human orthologs were identified for 3,792 of the genes available in the mouse 

dataset using NCBI HomoloGene (NCBI Resource Coordinators, 2015; 
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www.ncbi.nlm.nih.gov/homologene).  Expression data for these genes (in both species) 

constituted a common dataset, which was used in both this section and Section 3.3.  

Expression data for each gene was standardized using the weighted z-scoring procedure 

described in Chapter 2, with the following 11 broad brain regions used to partition the 

data: cerebral cortex, hippocampus, amygdala, striatum, globus pallidus, thalamus, 

hypothalamus, midbrain, pons, medulla, and cerebellum.  For the human data, this 

standardization was performed separately for each donor. 

3.2.2  Singular value decomposition 

Formally, the singular value decomposition of a p x q matrix M is defined as M = USVT, 

where U is a p x q matrix, and both S and V are q x q matrices.  The columns of U and S 

are known as left and right singular vectors, respectively.  The matrix S is only non-zero 

along the diagonal, which contains singular values.  Each singular value corresponds to 

both a right and a left singular vector. 

 When M is centered such that row and column means are 0, each right singular 

vector is an eigenvector of the covariance matrix M'M (the covariance between rows of 

M, without standardizing by number of columns, since singular values will scale the 

eigenvector), while the square of the corresponding singular value is the variance 

described by that eigenvector.  In other words, if M is a sample-by-gene matrix (as here), 

the first right singular vector indicates the direction of the greatest "spread" among the 

samples (and the first singular value indicates its extent); the second right singular vector 

indicates the direction of second-greatest spread that is orthogonal to the first (and the 

second singular value indicates its extent); and so on.  The same is true of left singular 
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vectors, the covariance matrix of MM', and the variance / covariance of genes.  Right 

singular vectors are referred to here as spatial modes, and left singular vectors as gene 

modes (borrowing from Bohland et al., 2010).  These are equivalent to the orthogonal 

axes of the rotated coordinate spaces described at the beginning of this section. 

 The first use of SVD in this section (mentioned above) is to see how much of the 

original variability in the data is captured as more modes are included.  As the variance 

captured by a mode is the square of the corresponding singular value, the proportion of 

the total variance captured by that mode is that variance divided by the sum of squared 

singular values.  The cumulative sum of this proportion, moving from the first singular 

value onward, shows how many modes are required to capture a given proportion of 

variance in the data. 

 The second use of SVD in this section is to project the samples to a 3-dimensional 

subspace that captures the largest possible proportion of their variance.  Because MV = 

US, the matrix US is computed while retaining only the first 3 singular values in S.  This 

is the projection of the sample data in M onto the first spatial modes contained in V, but is 

easier to compute than using M and V directly, due to S having non-zero values only 

along the diagonal.  (This projection is performed only for samples; however, since M has 

been double-centered, the same procedure could be applied to project genes onto the first 

three gene modes.) 

 SVD was applied to the AMBA, to each donor in the AHBA separately, and to a 

single expression matrix combining samples from all human donors (the latter for 

visualization of samples projected into a 3D space).  In each case, the expression matrices 
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included data from the 3,792 probes described in above in "Gene selection and 

standardization", and from left-hemisphere samples / voxels from the 11 broad regions 

listed in that section.  All expression matrices were double-centered (i.e., row and column 

means were subtracted from each value) before SVD was performed.  For comparability 

to Bohland et al. (2010), mouse probes were not converted to z-scores for this analysis.  

Note that probe and voxel selection differ between the two studies:  Bohland et al. (2010) 

used 3,041 probes chosen for consistency with a second dataset (also part of the AMBA, 

but not used here), and used data from the whole brain rather than the left hemisphere 

only. 

3.2.3  Results 

 The proportion of variance explained by each singular value (i.e. that value 

squared divided by the sum of squares of all singular values in S) is shown as a 

cumulative sum in Fig 3.1 for the AMBA and the six donors of the AHBA.  Over 100 

modes are required to explain at least 90% of the variance in the human data, while 222 

are required to explain the same proportion in the mouse data.  The higher spatial 

resolution of the mouse data may explain its comparatively rich structure; different 

voxels can reflect different cell type distributions that would be averaged together in a 

sample from the AHBA.  The spread of values across human donors is relatively small, 

with donor H0351.2001 requiring more modes than the others to account for the same 

proportion of the variance.  Donor sample counts, in ascending number of modes 

required to explain 90% of the variance, were: 363, 292, 392, 374, 434, 404. 
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Fig 3.1.  Cumulative proportion of variance captured by modes in the human (A) and mouse (B) expression 

matrices.  Circles and triangles indicate number of modes required to capture at least 80% and 90% of the 

variance in the data, respectively.  SVD was performed separately in each human donor.  In A, colors 

correspond to donors, and inset shows the spread of values across human donors for number of modes required 

to capture at least 90% of the variance. 

 

 When human samples and mouse voxels were projected onto the first three 

modes, clusters appeared corresponding roughly to several broad regions (Fig 3.3).  The 

cerebellum was particularly distinct from other parts of the brain in both species, 

particularly the human; however, the hippocampal formation, amygdala, striatum, and 

thalamus also show some separation. 
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Fig 3.2.  Projection of human samples (A) and mouse voxels (B) onto the first three spatial modes (i.e. right 

singular vectors).  Additional plots show projection onto each pair of those modes.  Dot color indicates region of 

origin. 



 

 

29 

3.3 Correlations between expression profiles from different locations in the brain 

3.3.1  Calculation and comparison to empirical null distribution 

 To assess the regional organization of transcriptomic relationships, tissues 

throughout the brain were compared in each species using Pearson's Product-Moment 

Correlation Coefficient (PCC) calculated between pairs of profiles.  Genes were selected 

and standardized as described in Section 3.2.  PCCs were calculated (i) between all pairs 

of samples from the human data, and (ii) between all pairs of voxels from the mouse data. 

 Two additional calculations were made to assess the strength of within-region 

similarity.  First, the quartiles of all within-region PCCs were calculated for each of 11 

broad regions and a number of finer regions (varying by species).  Second, PCCs for each 

region were compared to a distribution of 1000 PCCs calculated between sample pairs 

(or, in the mouse data, voxel pairs) for which one sample originated within the region, 

and the other did not.  For each region, the mean of the resulting percentile ranks was 

calculated to assess specificity of within-region correlations. 

3.3.2  Results  

 Heatmaps of PCCs between expression profiles show organization based on brain 

region in both species (Fig 3.3).  Overall, PCC values are higher in the human than 

mouse.  This probably results from the lower spatial resolution of the AHBA.  Samples 

average across more cells than voxels, making them both less prone to noise and less 

revealing of distinct cell type populations. 
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 In both species, blocks of high values (in comparison to the rest of the matrix) 

correspond to brain regions including the cerebral cortex, thalamus, hypothalamus, 

striatum, amygdala, and cerebellum.  Striatal expression profiles show particularly high 

PCCs with each other in comparison to other within-region PCCs.  In some cases, 

expression profiles from different regions show slightly elevated PCCs.  This is true of 

the cerebral cortex and the hippocampal formation, and to a lesser extent of the cerebral 

cortex and amygdala.  The midbrain, pons, and medulla are represented by a single block 

of positive-valued PCCs.  Fig 3.3E shows elevated PCCs within the mouse caudal 

pallidum and globus pallidus, with the internal segment showing even higher PCCs, 

while PCCs between samples from the human globus pallidus do not appear to 

distinguish between the internal and external segments (Fig 3.3B).  However, it is 

possible that coarse sampling of the human globus pallidus has obscured distinctions 

between cell type distributions in the GPi and GPe.  In both species, the cerebellum panel 

(Fig 3.3C, F) shows higher correlations within the cerebellar cortex and cerebellar nuclei 

than across those sub-structures. 
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Fig 3.3 (cont. on next page).  Correlations between expression profiles of human samples and mouse voxels, 

within-species.  Color bar applies to all plots. 
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Fig 3.3 (cont. on next page).  Correlations between expression profiles of human samples and mouse voxels, 

within-species.  Color bar applies to all plots.  Voxels from the cerebellum without a more specific label are 

grouped at the end. 
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Fig 3.3.  Correlations between expression profiles of human samples and mouse voxels, within-species.  Color 

bar applies to all plots.  In F, voxels without a more specific label than "Cerebellum" are not included. 

 

 Fig 3.4 summarizes within-region distributions of PCCs using “box plots.”  For 

the most part, the median PCC within a fine region was higher than for the parent region 

(though not always to a great extent), pointing to the distinct molecular compositions of 

sub-structures within broad regions.  Exceptions included human cerebellar nuclei, with 

no PCCs reaching the mean value for the cerebellum as a whole (Fig 3.4A), and human 

cerebral cortex, where cortical areas showed mean PCCs very similar to the mean for the 

parent lobe (Fig 3.4B). 
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Fig 3.4 (cont. on next page).  Median correlation between expression profiles from within the same brain region.  

Box edges represent the 25th and 75th percentile values and whiskers extend to any data points within 1.5 times 

the interquartile range from the rendered boxes.  Box colors correspond to parent brain regions.  Black vertical 

lines show median cross-species correlation of parent structure.  Numbers in parentheses are sample / voxel 

counts.  Numbers in square brackets are mean percentile rank of within-region correlations in distributions of 

correlations where one expression profile belongs to the region in question and the other is from elsewhere in the 

brain. 
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Fig 3.4 (cont. on next page).  Median correlation between expression profiles from within the same brain region.  

Box edges represent the 25th and 75th percentile values and whiskers extend to any data points within 1.5 times 

the interquartile range from the rendered boxes.  Box colors correspond to parent brain regions.  Black vertical 

lines show median cross-species correlation of parent structure.  Numbers in parentheses are sample / voxel 

counts.  Numbers in square brackets are mean percentile rank of within-region correlations in distributions of 

correlations where one expression profile belongs to the region in question and the other is from elsewhere in the 

brain. 
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Fig 3.4 (cont. on next page).  Median correlation between expression profiles from within the same brain region.  

Box edges represent the 25th and 75th percentile values and whiskers extend to any data points within 1.5 times 

the interquartile range from the rendered boxes.  Box colors correspond to parent brain regions.  Black vertical 

lines show median cross-species correlation of parent structure.  Numbers in parentheses are sample / voxel 

counts.  Numbers in square brackets are mean percentile rank of within-region correlations in distributions of 

correlations where one expression profile belongs to the region in question and the other is from elsewhere in the 

brain. 
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Fig 3.4 (cont. on next page).  Median correlation between expression profiles from within the same brain region.  

Box edges represent the 25th and 75th percentile values and whiskers extend to any data points within 1.5 times 

the interquartile range from the rendered boxes.  Box colors correspond to parent brain regions.  Black vertical 

lines show median cross-species correlation of parent structure.  Numbers in parentheses are sample / voxel 

counts.  Numbers in square brackets are mean percentile rank of within-region correlations in distributions of 

correlations where one expression profile belongs to the region in question and the other is from elsewhere in the 

brain. 
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Fig 3.4.  Median correlation between expression profiles from within the same brain region.  Box edges 

represent the 25th and 75th percentile values and whiskers extend to any data points within 1.5 times the 

interquartile range from the rendered boxes.  Box colors correspond to parent brain regions.  Black vertical 

lines show median cross-species correlation of parent structure.  Numbers in parentheses are sample / voxel 

counts.  Numbers in square brackets are mean percentile rank of within-region correlations in distributions of 

correlations where one expression profile belongs to the region in question and the other is from elsewhere in the 

brain. 

 

 For each fine brain region, the mean percentile rank of within-region PCCs 

against an empirical null distribution is given in Fig 3.4 (bracketed value following 

region name and sample count).  High percentile ranks indicate that samples within the 

region resemble each other more strongly, overall, than they resemble samples from 

elsewhere in the brain.  Except for the mean ranks of cortical areas, most exceed the 90th 

percentile in both species.  The distribution of within-region mean percentile ranks 

(grouping cortical and subcortical areas) for both the human and mouse is significantly 

different from (with higher values than) a normal distribution with a mean at the 50th 
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percentile (p < 0.03x10-8 and p < 0.06x10-12 for the human and mouse, respectively; one-

tailed Kolmogorov-Smirnov test). 

 The distribution of correlations from expression profiles within the same region 

tends to have a smaller range in the human than mouse data, and a greater tendency 

toward negative skew (Fig 3.4).  This is probably also a result of lower spatial resolution 

in the AHBA, where larger samples can be expected to smooth variation in cell type 

distributions within a region, so that sample profiles tend to be similar. 

 

3.4. Cross-dataset validation of anatomical relationships (in human brain) 

3.4.1  Selection of probes for common gene set 

 Each of the 19,910 probes available in the preprocessed and quality controlled 

Gibbs dataset (see Section 2.4 for description) was mapped, where possible, to a unique 

gene symbol using the Illumina annotation file Human-Ref-

8_V3_0_R3_11282963_A.txt. This resulted in 12,202 unique gene symbols, and 1,041 

duplicate gene symbols (i.e., multiple probes mapping to the same gene). For the majority 

of genes, two or more relevant probes were available in the AHBA dataset. To create a 

common gene set across datasets, a simple algorithm was used to choose a single probe 

per gene from each dataset. For each gene, the probe with the highest mean correlation 

(across samples) with other probes for the same gene was chosen; in cases with exactly 

two probes, the probe with highest mean intensity was chosen. This resulted in a set of 

11,841 genes represented by individual probes in both the Gibbs and AHBA datasets, 

which was used in the below analyses. 
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3.4.2  Differential expression of individual genes 

 Differential expression (DEX) of a gene was quantified by contrasting the 

expression levels in all samples from one brain region with expression levels in all 

samples from another region. In the Gibbs dataset, paired t-tests (pairing samples from 

the same donors) were performed, excluding any donors for whom samples were not 

available from both brain regions. In the AHBA dataset, 2-sample t-tests were performed 

across all samples (pooled across donors) within each of the two regions of interest, 

allowing for different population variances (i.e., Welch’s t-test). P-values were corrected 

for multiple comparisons using the linear step-up false 

discovery rate (Benjamini and Hochberg, 1995). A minimum fold-change parameter was 

used, with its value varied to assess the sensitivity of results to the particular parameter 

choice. 

3.4.3  Comparing region-specific expression profiles 

 From either dataset, a set of brain region specific expression profiles, each of 

which is a vector of length 11,841 encoding the average (over samples from that region) 

relative expression level of each of the genes in the common gene set, was calculated. To 

compensate for differences in probe efficacies and, especially, to account for the non-

uniformities in sampling across brain regions, we standardized expression values based 

on a partition of samples into the 4 gross neuroanatomical areas represented in the Gibbs 

datasets (frontal cortex - FCTX, temporal cortex - TCTX, cerebellum - CB, and pons). 

For the Gibbs dataset, this amounted to equally weighting all samples. For the AHBA, 

this meant that means and standard deviations were computed over only the samples from 
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these four brain areas (or their sub-regions), and that each region was given the same total 

weight regardless of numbers of samples. In the AHBA, these standardization procedures 

were performed independently for each donor. Standardizing the AHBA expression 

profiles based on expression values in only the regions represented in the Gibbs sample 

enabled a ‘‘fair’’ comparison between datasets. PCCs were computed between the 4 

region-specific expression profiles derived from the Gibbs dataset and the expression 

profiles from a set of AHBA regions in each of the 6 donor brains. 

3.4.4  Results 

 Fig 3.5 shows three comparisons of DEX across regions in the AHBA and Gibbs 

datasets.  In both datasets, over 20% of genes in the common gene set showed significant 

DEX between all pairs of the four brain regions except the frontal and temporal cortex 

(paired t-tests, p < 0.05 after correction using FDR and a minimum log2 fold change of 

0.5).  A volcano plot (showing log2 fold change against -log10 corrected p-value) for all 

genes in the FCTX / TCTX comparison based on the Gibbs data set is shown in Fig 3.5B.  

Only 26 genes (represented by dark blue circles) were differentially expressed between 

the two cortical areas in both datasets (Table 3.1).  However, in general, there is greater 

agreement in the set of DEX genes across datasets (i.e., >63% overlap relative to the 

smaller gene set for all other region pairs).  Fig 3.5C shows that the fraction of genes that 

show DEX in both datasets for each region pair remains relatively stable even as the fold 

change threshold is varied, again with the exception of FCTX / TCTX. Even as fewer 

genes meet the FC threshold, the number of overlapping genes is far greater than would 

be expected by chance for all tested FC values (hypergeometric tests, p < 1 x 10-275 for all 



 

 

42 

tests). The overlap in DEX genes in cortex is less stable; however, for fold changes below 

1.0, the size of the overlapping DEX gene set is larger than expected by chance 

(hypergeometric tests, p < 0.025 for all tests). Because the FCTX / TCTX comparisons 

have fewer DEX genes overall, the estimated proportion is likely to be somewhat 

imprecise even below a FC of 1.0. Therefore, larger datasets may ultimately be necessary 

to provide an improved estimate of the number of genes with differential expression 

across cortical regions. 

Symbol Name Location 

TGFBI transforming growth factor, beta-induced, 68kDa 5q31 

TNNT2 troponin T type 2 (cardiac) 1q32 

ZBBX zinc finger, B-box domain containing 3q26.1 

CNTN6 contactin 6 3p26-p25 

COL5A2 collagen, type V, alpha 2 2q14-q32 

DUSP13 dual specificity phosphatase 13 10q23.1 

GAL galanin/GMAP prepropeptide 11q13.2 

GPX3 glutathione peroxidase 3 (plasma) 5q23 

GSTM5 glutathione S-transferase mu 5 1p13.3 

APOC1 apolipoprotein C-I 19q13.2 

KCTD4 potassium channel tetramerization domain containing 4 13q14.12-q14.13 

KNG1 kininogen 1 3q27.3 

LAMP5 lysosomal-associated membrane protein family, member 5 20p12 

LGR6 leucine-rich repeat containing G protein-coupled receptor 6 1q32.1 

LXN latexin 3q25.32 

MET MET proto-oncogene, receptor tyrosine kinase 7q31 

ARL9 ADP-ribosylation factor-like 9 4q12 

NECAB2 N-terminal EF-hand calcium binding protein 2 16q23.3-q24.1 

NEFH neurofilament, heavy polypeptide 22q12.2 

ASGR2 asialoglycoprotein receptor 2 17p 

PCP4 Purkinje cell protein 4 21q22.2 

PDGFD platelet derived growth factor D 11q22.3 

PDYN prodynorphin 20p13 

PRRX1 paired related homeobox 1 1q24.3 

BHLHE22 basic helix-loop-helix family, member e22 8q12.1 

STC2 stanniocalcin 2 5q35.2 

Table 3.1.  Common DEX genes between Gibbs and AHBA datasets for TCTX vs. FCTX.  DEX genes have log2 

fold change > 0.5, FDR-corrected p-value < 0.05. 
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Fig 3.5.  Cross-dataset comparison of differential expression across regions.  A.  Proportion of genes in the 

common gene set that are differentially expressed between pairs of structures in each dataset (minimum log2 

fold change of 0.5 and p < 0.05, FDR-corrected).  Light blue bars indicate proportions of DEX genes in the 

AHBA dataset (2-sample t-test), green bars in the Gibbs dataset (paired t-test), and dark blue bars show the 

fraction of overall genes showing DEX in both datasets. B. Volcano plot showing DEX in FCTX vs. TCTX for all 

genes in Gibbs dataset. Gray dots are not significant, green dots show DEX in Gibbs only, light blue dots in 

AHBA only, and dark blue dots show DEX in both datasets. C.  Percentage overlap in DEX genes vs. log2 fold 

change threshold (in all cases p < 0.05, FDR corrected). 

 

 Fig 3.6A shows correlations between each of the Gibbs regions and several 

regions from the AHBA.  These correlations are preferentially high between each Gibbs 

region and the profile from the corresponding region in the AHBA, consistently across 

donors.  The cerebellum profile in each dataset is negatively correlated with all non-

cerebellar profiles in the other dataset. FCTX and TCTX profiles are positively correlated 
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with all AHBA cortical structures, although each shows a slightly but not significantly 

higher correlation with the corresponding cortical lobe in the AHBA. Gibbs cortical 

profiles are also positively correlated with AHBA hippocampal profiles. Figs 3.6B and 

3.6C show finer anatomical resolution for cortical, cerebellar and pons regions. From Fig 

3.6C it is clear that the Gibbs CB profile compares with the AHBA cerebellar cortex and 

not the cerebellar nuclei, which are actually more molecularly similar to the Gibbs PONS 

samples. 

 

Fig 3.6.  Cross-dataset comparison of region expression profiles. Correlations between Gibbs cerebellum (CB; 

orange bars), frontal cortex (FCTX; green bars), pons (PONS; yellow bars), and temporal cortex (TCTX; blue 

bars) samples and expression profiles derived from AHBA regions.  Bar heights represent average PCC across 

AHBA donor brains, and individual dots indicate PCC for each donor. A. Correlations with broad regions. B.  

FCTX and TCTX correlations with individual gyri in the frontal lobe (top) and temporal lobe (bottom). C. CB 

and PONS correlations with cerebellar and pontine sub-structures. 
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3.5 Discussion 

 The visualizations and summary statistics presented above consistently show 

correspondence between transcriptomic and neuroanatomical organization in both the 

human and mouse brain.  The number of modes required to account for 90% of the 

variance suggests rich structure in each of these datasets, and is similar across the six 

human donors.  Even when sample and voxel expression profiles were projected onto a 

three-dimensional subspace (a reduction in dimensionality by at least two orders of 

magnitude in each data set), however, groups emerged corresponding to coarse brain 

regions, suggesting a dominant regional structure present in the expression patterns of 

sets of genes.  These results generally agree with Bohland et al. (2010)'s findings in the 

AMBA, where 67 and 271 modes were required to explain 80 and 90% of the variability 

in the data, respectively, and where the cerebral cortex, striatum and cerebellum were 

particularly distinct in the subspace defined by the first three spatial modes. 

 Subsequent analyses showed this transcriptomic organization at multiple 

neuroanatomical scales.  The broadest of these scales is apparent in Fig 3.3, where most 

telencephalic structures (the cerebral cortex, hippocampal formation, amygdala, and to a 

lesser extent the striatum) show a modest degree of transcriptomic similarity that is not 

shared with the rest of the brain.  This result echoed the clustering of human cortex, 

hippocampus, and amygdala samples observed by Roth et al. (2006) and of mouse cortex, 

hippocampus, and striatal voxels observed by Lein et al. (2007).  Similarly, Zapala et al. 

(2005) found that adult mouse brain samples group transcriptomically according to 
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position along the neural tube during development, with the included telencephalic 

structures (neocortex, hippocampus and olfactory bulbs) forming one cluster. 

 The globus pallidus was an exception to the relative similarity of telencephalic 

structures, sharing this weak similarity only with the striatum and tending to group with 

brainstem structures and the cerebellar nuclei (Fig 3.3).  In early development, neurons of 

the globus pallidus and striatum originate primarily from the medial and lateral 

ganglionic eminence (Olsson et al., 1998).  These transient, raised areas of the developing 

telencephalon do generate cells for other telencephalic structures; for example, most 

cortical interneurons may originate there (Kriegstein and Noctor, 2004).  However, the 

striatum and pallidum derive most of their neurons from these structures, and develop 

into the two main components of the basal ganglia.  Notably, in addition to its projections 

to the thalamus in the main "loop" of basal ganglia motor control, the mature internal 

globus pallidus projects to motor control centers in the brainstem (Hikosaka, 2007).  It is 

possible that the development of this circuitry influenced the transcriptomic profile of the 

globus pallidus such that traces of its earlier origins are obscured.   

 The substructures of the diencephalon did not, on the other hand, show this broad-

level similarity, with the thalamus and hypothalamus having near-zero or slightly 

negative correlations with each other within each species (Fig 3.3).  This result differs 

from Lein et al.'s study (Lein et al., 2007), where the mouse thalamus and hypothalamus 

both showed positive correlations with samples from the brainstem.  This difference may 

be explained by the fact that those authors used a list of over 5000 genes selected to 

contain many genes with expression patterns restricted to certain regions.  It is possible 



 

 

47 

that some of the genes included in their study (but not ours) distinguished the 

diencephalon and brainstem from the telencephalon and cerebellum.  Note also that the 

status of the hypothalamus as part of the diencephalon, based on diencephalic 

development, is subject to debate (e.g. Larsen et al., 2001; Puelles and Rubenstein, 2003; 

see also Lim and Golden, 2007). 

 The brainstem also showed a slight but consistent tendency towards large-scale 

similarity between samples / voxels from across the midbrain, pons, and medulla.  

Finally, in our analyses, the cerebellum (Fig 3.2) and specifically cerebellar cortex (Fig 

3.3) did not consistently group with other regions in either the mouse or the human brain.  

This distinct pattern of gene expression reflects the distinct cellular composition of 

cerebellar cortex, with the Purkinje and granular layers in particular each dominated by 

one cell type.   These results are consistent with Zapala et al. (2005; in the mouse) and 

Roth et al. (2006; in the human), though Roth et al.’s (2006) unsupervised clustering of 

brain samples found that sub-structures of the midbrain, pons and medulla clustered with 

samples from the thalamus and hypothalamus as well as with each other.  Note that (as 

Zapala et al., 2005 point out) the midbrain, pons and medulla develop primarily from 

three adjacent vesicles of the neural tube, while the cerebellum originates from the 

rhombic lip, a distinct, transient structure at the boundary between midbrain and 

hindbrain (Wingate 2001, Fink et al. 2006).  However, cerebellar nuclei (which do show 

elevated correlations with the brainstem; Fig 3.3) as well as some brainstem nuclei also 

originate from the rhombic lip.  The correspondence between mature transcriptomic 

relationships and position along the neural tube may still hold, but if so must be traced to 
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more specific locations of origin, and timing of neurogenesis must also be considered 

(see e.g. Ray and Dymecki, 2009; Landsberg et al., 2005; Wang et al., 2005).  

 At a finer scale, most neuroanatomical regions of greater specificity showed 

somewhat stronger within-region similarity than their parent regions (Fig 3.4).  The most 

striking exception, the human cerebellar nuclei, reinforces that a key takeaway of this 

analysis is the importance of neuroanatomical resolution.  There are too few samples to 

examine individual cerebellar nuclei in the human dataset, but the increase in mean 

within-region correlation for individual cerebellar nuclei in the mouse data suggests that 

these nuclei have distinct patterns of gene expression (Fig 3.4C).  Combining samples 

from different substructures may help to increase the signal-to-noise ratio of a 

characteristic profile of gene expression; however, in cases like the cerebellar nuclei, it 

also means combining substructures that may have quite heterogeneous cellular 

composition, and thus distinct molecular profiles.   Hence, our analysis faces a trade-off 

between signal-to-noise ratio (which increases with additional samples from a brain 

region) and specificity of expression profiles (which requires fine resolution of samples 

taken from consistent cellular environments).  The different trade-off made by the AHBA 

and the AMBA is also likely to be responsible for the lower correlations between mouse 

voxels than human samples (Fig 3.3), the lack of genome-scale molecular distinctions 

between sub-structures of the human globus pallidus (Fig 3.3B), and the tendency toward 

within-region correlations between human samples to have a narrower range and more 

negative skew than mouse voxels (Fig 3.4).  Future studies might help to address the 

optimal partitioning of the dataset to balance these two considerations.  Additionally, it 
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would be informative to make cross-dataset comparisons with some form of 

normalization for tissue sample size. 

 The AHBA makes it possible to examine the human brain at different scales, 

while a second human dataset including only four coarsely defined regions offers greater 

confidence in representing the population due to the relatively large number of donors 

(the “Gibbs dataset”; Gibbs et al., 2010).  Genes that were differentially expressed across 

those four regions (the frontal lobe, temporal lobe, pons, and cerebellum) in the second 

dataset overlapped significantly with genes differentially expressed across the same 

regions in the AHBA (Fig 3.5).  The small number of differentially expressed genes 

across frontal and temporal lobe in both datasets is consistent with previous studies, 

showing relatively (though not entirely) uniform gene expression across cortical areas 

(e.g. Bohland et al., 2010; Hawrylycz et al., 2012; Mahfouz et al., 2015).  Genome-scale 

expression profiles of those four regions within the AHBA dataset showed 

correspondence to those within the Gibbs dataset, consistently across the six AHBA 

donors (Fig 3.6).  This correspondence also showed some specificity at a finer level.  

Gibbs frontal lobe samples were taken from BA9/46, which cover portions of the middle 

and superior frontal gyri; these are among the AHBA regions that are most correlated 

with the Gibbs frontal cortex profile (along with the adjacent precentral gyrus).  

Additionally, the Gibbs cerebellum profile is strongly correlated with the AHBA 

cerebellar cortex, but negatively correlated with cerebellar nuclei profiles.  This suggests 

that Gibbs cerebellar samples were selectively taken from the cerebellar cortex.  Gene 

expression profiles sampled from the cerebellum exhibit broad negative correlations with 
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most other brain regions, confirming the very distinct mode of cerebellar gene expression 

observed in Figs 3.2 and 3.3. 

 It is important to note that with the exception of this comparison to the Gibbs 

dataset, all human analyses presented here and throughout this dissertation were 

performed using the AHBA.  Comparison across AHBA donors in assessing sources of 

variability in the AHBA (Fig 3.1) and tissue correlations between the AHBA and Gibbs 

datasets (Fig 3.6) provide some degree of validation.  However, confidence in these 

results will require eventual replication in other datasets.  Similarly, not only the analyses 

presented but most of the works cited regarding the mouse brain use the AMBA.   The 

Allen Brain atlases offer an extremely high level of spatial resolution, and systematic 

comparisons to other datasets will need to account for different sampling properties, as in 

the comparison to the Gibbs data discussed above. 

 One difference that this work does not directly address, particularly in 

comparisons between the AHBA and the AMBA, is in the size of tissue samples (or 

voxels).  Lower correlations between mouse voxels, as well as greater transcriptomic 

distinctions between fine regions in the mouse, probably result from the higher spatial 

resolution of the AMBA.  Normalization for tissue sample size might be difficult, given 

that in a dataset such as the AHBA this can vary by brain structure.  Nevertheless, given 

the importance of cross-dataset comparisons, it would be well worth an attempt in future 

work. 
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CHAPTER 4:  A COMPARATIVE STUDY OF MOLECULAR ORGANIZATION 

IN THE MOUSE AND HUMAN BRAIN 

 

4.1 Introduction 

 Anatomical homologies between the human and mouse brain are relatively well-

understood.  Despite substantial divergence--most notably in the folds and elaborate areal 

patterning of the human cerebral cortex as opposed to that of the mouse--neuroanatomists 

are able to identify homologs of broad human brain structures in the mouse brain, and of 

many finer regions as well.  Cytoarchitecture, myeloarchitecture, and inter-areal neuronal 

connectivity, observable by such long-established techniques as light microscopy and 

histochemical assays, form the conventional basis for these definitions of brain regions.  

Such conventional markers are, however, dependent upon local molecular phenomena 

operating at a much smaller scale, either directly resulting in the signal of interest or 

giving rise to the observable structure through a developmental program.  With the 

development in recent years of technology to measure gene expression with high 

throughput, brain regions can now be characterized and delineated from the perspective 

of gene products and their interactions.  The molecular mechanisms effected by these 

interactions form the cellular environment underlying conventional markers of region 

identity and support the functions associated with the region.  In contrast to homologies 

defined at the macro/structural level, regional correspondences between molecular 

environments of the human and mouse brain remain largely unexplored.  The elucidation 

of molecular-level homologies has substantial implications for the use of mouse models 

of human neuropathologies, which often rely on the implicit assumption of conserved 
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molecular mechanisms that underlie the homologous neuroanatomical features.  This 

chapter describes the development and application of tools for the evaluation of 

molecular correspondences across species using gene expression profiles, and for the 

identification of groups of genes which may preferentially drive those molecular 

correspondences for specific regions.  These analyses use the Allen Human Brain Atlas  

(AHBA; Hawrylycz et al., 2012) and the Allen Mouse Brain Atlas (AMBA; Lein et al., 

2007), which are described in greater detail in Chapter 2. 

4.1.1  Surveying regional gene expression 

 Comparative studies confirm that the relationships between conventional and 

molecular neuroanatomy extend across species, with structural homologies carrying 

molecular-level correspondences.  Such correspondences between the human and 

chimpanzee (one of the closest living relatives to humans) have been identified by cross-

species comparisons of (i) differential expression across regions, (ii) similarity 

relationships between gene expression profiles from different brain regions, and (iii) 

networks based on co-expression relationships between genes (Khaitovich, 2004; Oldham 

et al., 2006).  These analyses revealed strong conservation of gene networks across 

species, but also specializations thought to be introduced by evolution, particularly 

impacting the cerebral cortex.  In a study spanning phylogenetic classes, Pfenning et al. 

(2014) found molecular specialization specific to regions responsible for vocal motor 

function, which appeared in the human and zebra finch brain but not in other species that 

do not engage in vocal learning.  Strand et al. (2007) made several comparisons between 

the human and C57BL/6 mouse brain.  Using samples from the caudate, cerebellum, and 
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motor cortex, they found that genes which show preferential expression in a human 

region tend to show the same preference in the homologous mouse region.  Additionally, 

unsupervised clustering of samples from both species (based on genes with high variance 

of expression across samples) yielded clusters corresponding perfectly to region 

labelings. 

 This evidence for a strong cross-species molecular relationship between these 

three brain regions points to the possibility for a direct, high-resolution comparative study 

of gene expression in regions throughout the brain, which the AHBA and AMBA 

together make possible.  One such comparison was recently performed by Hawrylycz et 

al. (2015).  In this study, a brain-wide co-expression consensus network (Langfelder et 

al., 2011) was defined based on the AHBA, and 32 “core transcriptional modules” were 

identified using weighted gene co-expression network analysis (WGCNA; Zhang and 

Horvath, 2005). Several of these modules were well preserved in the AMBA (based on an 

aggregate preservation score across all genes in the module; Langfelder et al., 2011), 

including modules with strong expression in the striatum, thalamus, and cerebellum.  

Even in well-preserved modules, however, a small proportion of individual genes in the 

mouse were poorly correlated with the human module eigengene and, in some cases, 

genes showed strong associations with a different module.  Furthermore, a number of 

modules, particularly those not enriched for neuronal expression, were poorly preserved 

across species. These results suggest the conservation of co-expression relationships that 

are relevant to specific brain regions, but also indicate points of divergence within the 

larger co-expression networks. 



 

 

54 

4.1.2  Challenges of molecular neuroanatomy and mouse models 

 The neocortex is of special interest in comparative studies of humans and other 

mammals, as the seat of profound cognitive differences as well as a key structure in many 

of the human neuropathologies modelled in other mammals.  However, identifying 

molecular-level similarities and differences that are relevant to cortical function is made 

exceptionally difficult by the fact that both human and mouse neocortex show relatively 

uniform gene expression across cortical areas (see e.g., Hawrylycz et al., 2012; Bohland 

et al., 2010; Mahfouz et al., 2015).  Variation of gene expression across the cortex is 

present, and shows some consistency between the human and the mouse, with genes that 

group together in the one tending to group together in the other (Oldham et al., 2008; 

Miller et al., 2010).  These two studies, though, defined gene clusters based on co-

expression across cortical samples regardless of the area of origin.  In the rhesus 

macaque, Bernard et al. (2012) did take area of origin into account and identified groups 

of genes with cortical area preferences, with striking differences between V1 and the rest 

of the neocortex appearing largely consistent with the human brain but less so with the 

mouse.  Many expression preferences were heavily influenced by proximity between 

cortical areas, reflecting the rostrocaudal gradients of gene expression that are a part of 

brain development (see Sansom and Livesey, 2009 for a review of gradients in human 

cortical development).  Genes may also be expressed in different types of patterns (e.g., 

laminar, widespread, or sparse) in the cortex.  Such patterns show high conservation 

across human cortical areas--more so than across species when compared with mouse 

cortex (Zeng et al., 2012).  Laminar variation in cell type densities results in neocortical 
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layers showing different gene expression patterns (Ng et al., 2009; Belgard et al., 2011; 

Bernard et al., 2012); however, the AHBA lacks laminar specificity because cortical 

samples were taken across layers rather than tangentially through the cortex (Hawrylycz 

et al., 2012).  In addition to the relatively homogenous molecular nature of the neocortex, 

many neocortical areas in the human brain lack clear neuroanatomical homologs in  the 

mouse, making molecular-level homologies doubly challenging to identify. 

 Mouse models used to investigate learning and memory, and sometimes 

Alzheimer's Disease specifically, make the hippocampal formation another structure of 

particular interest.  The broad structure of the hippocampal formation is consistent 

between the human and mouse, each including the dentate gyrus, Ammon's horn, and 

subicular complex (see Ding, 2013 for a detailed comparison of the subicular complex in 

human, monkey, and rodent).  Additionally, the role of the striatum in Parkinson's 

Disease (PD) has made it the focus of a large number of studies in mice (see Le et al., 

2014 for a review of mouse models of PD).  The most substantial divergence of the 

human and mouse striatum lies in the separation of the human caudate nucleus from the 

putamen by the internal capsule, where the mouse caudoputamen is a single structure.  

Unlike the neocortex, the hippocampal formation and striatum are composed of 

substructures with identifiable homologs in the mouse and human, and which are more 

molecularly distinct from each other than are neocortical areas (Bohland et al., 2010; 

Hawrylycz et al., 2012). 

 Nevertheless, developing effective and reproducible mouse models of AD and 

PD, in which these brain structures play central roles, has proved difficult (Duff, 2004; 



 

 

56 

Hardy, 2006; Le et al., 2014).  A probable source of some of this difficulty has been 

identified by Burns et al. (2015) through analysis of the expression profiles of disease-

implicated genes.  This study found striking differences between the up- and down-

regulation of genes of interest in several human diseases (as well as aging in the human 

brain) and the up- and down-regulation of these genes in the various mouse models they 

examined.  Burns et al.'s findings suggest that mouse models of human disease may 

benefit from better knowledge of similarities and differences in the transcriptomic 

environments present in relevant brain structures and systems. This reinforces an 

argument made by Strand et al. (2007), suggesting that understanding the initial 

conditions (i.e., healthy state) of the transcriptome in the human and mouse brain is 

highly relevant to comparisons of disease conditions in the two species. 

4.1.3  Overview of the current approach 

     Rather than focusing on specific genes of interest, the current study deals primarily 

with groups of genes and their co-expression relationships, which underlie the molecular 

environment that influences any given gene.  We evaluated the overall similarity of gene 

expression in regions throughout the human and mouse brain by correlating expression 

profiles, both within- and across-species.  We also sought to identify groups of genes 

which preferentially “drive” cross-species similarity for different regions.  To do this, we 

developed a quantitative measure to assess the extent to which a given set of genes 

provides a region-specific molecular signature that is consistent across species.  Because 

it is not computationally feasible to assess all possible subsets of genes, we defined 

candidate gene sets in two ways.  The first was data-driven, where genes were divided 
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into sets based on their co-expression relationships.  Co-expression is an indicator of 

functional relationships between genes (Eisen et al., 1998; Lee, 2004; Wei et al., 2006); 

therefore, this approach is influenced by relationships – both known and unknown – 

between genes.  In the second approach, gene sets were defined based on common 

annotations; for example, a gene set might include all genes known to distinguish a 

certain cell type or to be involved in a certain metabolic pathway.  In addition to these 

region-specific analyses, gene-gene similarity was evaluated across species by comparing 

each gene's brain-wide expression pattern in the human with its expression pattern in the 

mouse, and examined genes that showed very high or very low cross-species similarity.  

Brain-wide co-expression relationships between cell-type marker genes (for neurons, 

oligodendrocytes, and astrocytes) were also assessed, both within- and between-species. 

 The overall aim of this chapter is to better quantify molecular-level 

correspondences between the human and mouse brain at a large scale, and to provide 

inroads for further study of neural homologies.  The efficacy of mouse models depends 

upon homology at all scales, including preservation of the molecular mechanisms 

underlying the function of individual brain regions, making this area of study important 

in biomedical research and in the development of drugs or other neurotherapeutic 

interventions.  While homologies can be considered in terms of individual genes, the 

expression of one gene always occurs under the influence of others.  This raises the 

question of which aspects of the molecular environment as a whole are conserved across 

species.  Like conventional neuroanatomical markers, this environment varies across the 

brain, reflecting the localization of brain function and dysfunction to specific structures 
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and circuits.  To our knowledge, this study is the first to comprehensively quantify the 

similarity between local transcriptomic environments in the human brain and their 

equivalents in one of the most common model organisms. 

 

4.2 Methods 

 See Chapter 2 for formal descriptions of the Allen Human Brain Atlas (AHBA) 

and the Allen Mouse Brain Atlas (AMBA). 

4.2.1  Gene selection 

 Human orthologs were identified for 3,792 of the genes available in the mouse 

dataset using NCBI HomoloGene  (NCBI Resource Coordinators, 2015; 

www.ncbi.nlm.nih.gov/homologene).  Expression data for these genes constituted a 

common dataset, which was used in all comparisons of the AMBA and AHBA reported 

here. 

4.2.2  Regions of the brain 

 In the AHBA and AMBA, human samples and mouse voxels are assigned 

neuroanatomical labels at multiple levels of granularity based on detailed reference 

atlases.  For effective interspecies comparison, the subsequent analyses treat eleven 

coarsely defined brain structures (Table 4.1).  Only samples and voxels belonging to one 

of these eleven broad brain regions were used in any part of these analyses.  Analyses 

which examine finer subdivisions of these regions focus primarily on those regions in the 

second column of Table 4.1.  In the AHBA ontology, the "cerebral cortex" includes the 
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hippocampal formation.  Here, the hippocampal formation was excluded from the 

definition of cerebral cortex in order to study it as a separate structure.  Human cerebral 

cortex was therefore defined as the neocortex (the frontal, temporal, parietal, and 

occipital lobes, and the insula), cingulate cortex, and parahippocampal gyrus.  In the 

AMBA ontology, "cerebral cortex" also includes the hippocampal formation as well as 

amygdalar nuclei; to study these structures separately, mouse cerebral cortex was defined 

here using the AMBA term "isocortex." 

 

Broad regions (11) Fine regions (9) 

Cerebral cortex  (4008 [excluding 4249] / 315)  

Hippocampal formation (4249 / 1089) Dentate gyrus (12891 / 726) 

Ammon's horn (12892-12895 / 375) 

Subiculum (12896 / 502) 

Amygdala (4327 / 278, 131, 295, 319, 780)  

Striatum (4277 / 672, 56) Caudoputamen (4278, 4287 / 672) 

Nucleus accumbens (4290 / 56) 

Globus pallidus / Pallidum or dorsal pallidum2 

(4293 /  803 or 818) 

External segment of globus pallidus (12897 / 1022) 

Internal segment of globus pallidus (12898 / 1031) 

Thalamus (4392 / 549)  

Hypothalamus (4540 / 1097)  

Midbrain (9001 / 313)  

Pons (9131 / 771)  

Medulla (9512 / 354)  

Cerebellum (4696 / 512) Cerebellar cortex (4697 / 528) 

Cerebellar nuclei (4780 / 519) 

Table 4.1.  List of brain regions.  Regions were defined using the neuroanatomical labels associated with the 

given numeric identifiers (human / mouse) in the AHBA and AMBA ontologies. 1 

1.  The relevant reference atlases can be viewed at http://atlas.brain-map.org/atlas?atlas=265297125 (human) 

and http://atlas.brain-map.org/atlas?atlas=1 (mouse), or downloaded directly (with associated IDs and other 

metadata) from http://api.brain-map.org/api/v2/structure_graph_download/10.xml (human) or http://api.brain-

map.org/api/v2/structure_graph_download/1.xml (mouse). 

2.  Neuroanatomical labels for the ventral, caudal, and medial as well as the dorsal pallidum (globus pallidus) 

are included in the AMBA, but not the AHBA.  In comparisons of homologous brain structures, the human 

globus pallidus was compared only to the mouse dorsal pallidum. 

http://atlas.brain-map.org/atlas?atlas=265297125
http://atlas.brain-map.org/atlas?atlas=1
http://api.brain-map.org/api/v2/structure_graph_download/10.xml
http://api.brain-map.org/api/v2/structure_graph_download/1.xml
http://api.brain-map.org/api/v2/structure_graph_download/1.xml
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4.2.3  Probe standardization 

 Probes in both the AHBA and AMBA were standardized using the weighted z-

scoring procedure described in Chapter 2, with the broad regions given in Table 4.1 given 

equal weight.  Weighted z-scoring in the AHBA was performed within-donor. 

4.2.4  Correlations between individual samples / voxels 

 To assess the regional organization of transcriptomic relationships, tissues 

throughout the brain were compared across species using Pearson's Product-Moment 

Correlation Coefficient (PCC) calculated between pairs of profiles.  These coefficients 

were calculated between each human sample and each mouse voxel. The cross-species 

sample/voxel PCCs were pooled into distributions corresponding to the 121 pairings of 

broad regions in the human and mouse brain (Table 4.1).  The same procedures were 

followed using the 9 fine brain regions listed in Table 4.1.  Cross-species PCC 

distributions for some structure pairs were compared using two-sample Kolmogorov-

Smirnov tests, with p-values corrected for multiple comparisons using the Bonferroni 

method. 

 For each putatively homologous cross-species region pair, the quartiles of all 

sample-voxel PCCs was calculated to assess the strength of cross-species similarity for 

each region at a global scale. Additionally, sample-voxel PCCs for homologous regions 

were compared to a distribution of 1000 PCCs calculated between sample/voxel pairs for 

which either the sample or the voxel originated within the region, and the other member 

of the pair did not. Means of the resulting percentile ranks were calculated to assess 

specificity of regional correlations. 
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4.2.5  Region-specific homology score 

 A "homology score" was defined to quantify the extent to which a given gene set 

provides a molecular signature that is specific to a given brain region, and which is 

consistent across species (see below for selection of gene sets).  Homology scores were 

calculated separately for each human donor brain.  A gene set's homology score for a 

given brain region was based on correlations between its human expression profile for 

that region (averaged across all samples available for a given donor brain) and the 

orthologous expression profile at each voxel in the mouse data. This yields a map of 

correlations across the entire mouse brain, as schematized in Fig 4.1.  Before using 

specific subsets of genes, correlation maps and homology scores were calculated for each 

of the 11 broad seed regions using the full list of 3,792 orthologous genes. 
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Fig 4.1.  Schematic of method for calculating correlation maps.  Color bar at bottom left applies to all panels in 

this figure.  A.  All left-hemisphere samples from a "seed" brain region are selected from one human donor.  B.  

The standardized profiles of those samples are averaged into a mean profile for the seed region.  C.  

Standardized expression profiles for all mouse voxels located within any of the broad brain regions listed in 

Table 1 were used for comparison.  D.  The correlations between the expression profile of the human seed region 

and each mouse voxel are computed to generate a map of correlations across the mouse brain. Reference atlas 

images adapted from files downloaded from the Allen Institute for Brain Science. Image credit: Allen Institute. 

 

 The procedure for calculating a homology score based on a correlation map is 

formalized below.  We compare the mean correlation across voxels falling within a 

mouse target region (usually the putative homolog to the human seed region) to the mean 

correlation across voxels falling elsewhere in the mouse brain.  If the former value is 
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larger than the latter, then the expression of the gene set carries preferential molecular 

similarity between the human seed region and the mouse target region.  Because this 

score is intended to measure region-specific similarity, a penalty for non-specificity is 

then applied to ensure that a gene set does not receive a high homology score if its 

expression profile for the human seed region is highly similar to a non-target mouse 

region in addition to the target mouse region. 

4.2.6  Definition (Correlation map) 

 We define EG(i) as a vector representing the standardized expression levels for 

human sample i across gene set G.  𝐸𝑅
𝐺then represents the average expression profile 

(across N available samples) for a given human seed region R: 

 

𝐸𝑅
𝐺 =

1

𝑁
∑ 𝐸𝐺(𝑖)𝑁

𝑖=1                (1) 

 

     For each mouse voxel, we then calculate the PCC between the seed region profile 𝐸𝑅
𝐺  

and the mouse expression vector defined across orthologs of gene set G at each voxel v, 

denoted as 𝑃𝐶𝐶𝑅
𝐺(𝑣).  If any gene had missing data for certain voxels, that gene was 

excluded from the calculation of  𝑃𝐶𝐶𝑅
𝐺(𝑣) for those voxels.  This procedure yields a 

map of PCCs across the mouse brain. 

4.2.7  Definition (Homology score) 

 Given the map of voxelwise PCCs with 𝐸𝑅
𝐺 , we calculate the average of the PCC 

values within the mouse target region R': 
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𝐼𝑁𝑅′
𝐺 =

1

𝑉𝑅′
∑ 𝑃𝐶𝐶𝑅

𝐺(𝑣)𝑣∈𝑅′                (2) 

where VR’  is the number of voxels in R’.  We then calculate the average of the PCC 

values outside the target region R’: 

𝑂𝑈𝑇𝑅′
𝐺 =

1

(𝑉total−𝑉𝑅′)
∑ 𝑃𝐶𝐶𝑅

𝐺(𝑣)𝑣∉𝑅′        (3) 

where Vtotal  is the total number of voxels analyzed in the mouse brain.  Negative mean 

PCCs (i.e., patterns of gene expression that are inversely related across species) would 

affect the homology score without having a clear biological interpretation; therefore, we 

threshold 𝐼𝑁𝑅′
𝐺  and 𝑂𝑈𝑇𝑅′

𝐺  at zero.   

 The difference of these quantities, [𝐼𝑁𝑅′
𝐺 ]

+
  −    [𝑂𝑈𝑇𝑅′

𝐺 ]
+

, provides information 

about cross-species homology.  However, while this difference is sensitive to a 

concentration of high PCCs in the target region, it is not necessarily specific to such a 

concentration.  It may yield a high value even if some non-target region also has a 

concentration of high PCCs, provided that the overall average (𝑂𝑈𝑇𝑅′
𝐺 ) remains low.  

Therefore, we introduced a penalty for non-specificity.  This penalty is based on the 

highest mean PCC with the seed region for any single non-target mouse region: 

𝑟𝑚𝑎𝑥
′ = argmax

r≠R′
(𝐼𝑁𝑟

𝐺)              (4) 

 The penalty term 𝜆 is defined as the mean of the differences between the mean 

PCC for 𝑟𝑚𝑎𝑥
′  and each mean PCC yielded by another non-target region: 

𝜆𝑅′
𝐺 =

1

𝑀−2
∑ ([𝐼𝑁𝑟𝑚𝑎𝑥

′
𝐺 ]+ −   [𝐼𝑁𝑟

𝐺]+)𝑟≠𝑅′,𝑟≠𝑟𝑚𝑎𝑥
′       (5) 
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where M is the total number of mouse regions analyzed (i.e., those which are homologs to 

the eleven broad seed regions; see "Human seed regions and mouse target regions," 

below).  This penalty will have a large value if one mouse region outside the target has a 

much larger mean PCC than the others, showing that gene set G drives cross-species 

similarity between the human seed region and a mouse region that is not the target. It will 

have no impact (value of zero) if the PCCs are uniform outside the target region. 

 The homology score 𝐻𝑅
𝐺 of gene set G for human seed region R is then defined as: 

𝐻𝑅
𝐺  = ( [𝐼𝑁𝑅′

𝐺 ]
+

  −    [𝑂𝑈𝑇𝑅′
𝐺 ]

+
 )  − 𝜆𝑅′

𝐺                (6) 

 Thus, the homology score quantifies the extent to which higher PCCs are 

concentrated within the mouse homolog to the human seed region (relative to the rest of 

the mouse brain), and are not specifically  concentrated in any other mouse region. 

 The difference of thresholded mean PCCs falls in the interval [−1,1], where a 

value of one would indicate a PCC of 1 with each voxel in the mouse target region and a 

maximum PCC of zero with any non-target voxel.  Conversely, a value of -1 one would 

indicate a PCC of 1 with each non-target voxel, and a maximum average PCC of zero 

inside the target region.  The value of 𝐻𝑅
𝐺, however, may fall below -1 due to the penalty 

term 𝜆𝑅′
𝐺 .  This asymmetrical range reflects the fact that a seed region may be correlated 

only with the target region (𝐻𝑅
𝐺 = 1), only with voxels outside the target region (𝐻𝑅

𝐺 = -1), 

or only with a specific non-target region (𝐻𝑅
𝐺 < -1).  In practice, however, values below -1 

did not occur. 

 Each homology score was converted to a percentile rank in an empirical chance 

distribution.  For each candidate gene set, 1,000 sets of randomly selected genes were 
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generated, each of the same size as the original gene set.  Homology scores were 

computed for these random sets, and the resulting distribution was used to calculate the 

percentile rank of  𝐻𝑅
𝐺 for the original gene set. 

4.2.8  Human seed regions and mouse target regions 

Candidate gene sets (see below) were first scored using each of the 11 broad human brain 

regions (Table 4.1) as seeds.  Target regions in the mouse (i.e., homologous regions) 

were determined based on common nomenclature and through surveys of the anatomical 

literature.  Gene sets were then scored using the fine human regions of Table 4.1 as seeds, 

which also have relatively well-established homologs in the mouse.  In the case of the 

caudate nucleus and putamen, which are distinct structures in the human but not the 

mouse, the mouse caudoputamen was used as the target region for each. 

 Our purpose in using the additional set of fine seed regions was to determine 

whether the specificity of a gene set's cross-species correspondence relative to the rest of 

the brain was affected by increasing the specificity of the neuroanatomical region of 

interest.  Therefore, computation of homology scores for a given fine seed region 

excluded the part of the PCC map falling within the parent structure but outside the target 

region.  For example, a gene set's homology score for the dentate gyrus was not affected 

by PCCs falling within Ammon's horn, the subiculum, or any of the mouse 

retrohippocampal regions. 
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4.2.9  Candidate gene set identification:  Data-driven gene sets 

 Initial candidate gene sets were identified based on co-expression relationships by 

applying weighted gene co-expression network analysis (WGCNA; Zhang and Horvath, 

2005) to the mouse dataset using a publicly available R package (Langfelder and 

Horvath, 2008).  A network of genes was defined in which edge weights encoded the 

absolute value of the correlation between pairs of genes' spatial expression patterns.  Co-

expression similarity was measured by topological overlap (TO; Zhang and Horvath, 

2005)).  Average linkage hierarchical clustering was then applied, and the resulting 

dendrogram was cut using a dynamic tree-cutting algorithm (Langfelder and Horvath, 

2008). 

 WGCNA was applied to the full-brain, unweighted, standardized mouse data.  In 

order to emphasize relationships across the brain structures that would be used as broad 

seed regions when calculating homology scores, the mouse expression dataset was 

averaged (across voxels) into the homologs of those regions, with the exception that the 

striatum and pallidum were treated as a single structure (in later analyses they would be 

treated separately, as in Table 4.1).  WGCNA was performed on the resulting 10 x 3,792 

matrix with default parameters, which sets the minimum gene set size to 20.  Each of the 

resulting gene modules was used as a candidate gene set and assessed for region-specific 

molecular similarity across species. 

4.2.10  Candidate gene set identification:  Annotation-based gene sets 

 A second group of candidate gene sets was defined, consisting of all genes 

associated with a series of annotations representing some function, cellular mechanism, 
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or other association.  Three of these sets were composed of genes which show cell-type 

specific expression for neurons, astrocytes, and oligodendrocytes in the postnatal mouse 

brain (Cahoy et al., 2008); these genes (those intersecting our common gene set) had 

significant differential expression in each of these three cell types compared to the others 

and a fold change of at least 20. 

 Additional gene sets were defined using annotations which were statistically over-

represented in the data-driven gene sets.  We examined over-represented annotations for 

data-driven gene sets whose homology scores ranked at the 80th percentile or higher for 

at least one broad seed region. Such annotations were expected to more specifically 

correspond to groups of genes which had common, conserved roles across the two 

species.     

 The Molecular Signatures Database (MSigDB; Subramanian et al., 2005) includes 

over 10,000 gene annotations from many sources, including publications and online 

neuroinformatics resources such as the Gene Ontology (Ashburner et al., 2000) and the 

KEGG pathways database (Kanehisa and Goto, 2000; Kanehisa et al., 2014).  All 

available annotation terms and their associated gene lists were downloaded from 

MSigDB.  The genes associated with each annotation were limited to those appearing in 

our common set of 3,792 genes.  Over-representation in the selected data-driven sets was 

assessed using the hypergeometric test, with p-values corrected for multiple comparisons 

using the linear step-up false-discovery rate (FDR; Benjamini and Hochberg, 1995).  

Additionally, annotations had to be represented in a gene set by at least 3 genes to be 

considered over-represented in that set.  
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 Annotations that were over-represented with FDR-corrected p-value less than 

0.01 in any of the selected data-driven sets were then manually curated to select only 

annotations that could be specifically related to brain structure or function.  Annotations 

were selected from this list to define gene sets, each of which was composed of all genes 

in our common gene set that were associated with the annotation.  Homology scores were 

then calculated and converted to percentile ranks for both the cell-type marker gene sets 

and these additional annotation-based gene sets, using both the broad and fine seed 

regions. 

4.2.11  Brain-wide similarity of orthologous gene expression profiles across species 

 We measured the similarity between each gene's pattern of expression across the 

human brain and the pattern of expression of its ortholog across the mouse brain.  The 

expression matrix for each human donor was averaged into 16 brain regions by starting 

with the 11 broad regions listed in Table 4.1 and replacing the hippocampal formation, 

globus pallidus, striatum, and cerebellum with their corresponding fine regions.  To allow 

a one-to-one correspondence with brain regions in the mouse, the human caudate nucleus 

and putamen were treated as a single structure for this analysis.  The region-averaged 

AHBA data was then averaged across donors, yielding a single 3,792 x 16 expression 

matrix.   The AMBA dataset was averaged into the same 16 structures, and PCCs 

between expression vectors for orthologous genes in mouse and human were calculated. 

 Genes with PCCs in the top 5% (190 genes) were clustered based on their 

expression patterns across the 16 human brain regions using average linkage hierarchical 

clustering.  Leaf order of the resulting dendrogram was used to order genes in heatmap 
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representations of their expression patterns across the 16 regions of interest in both the 

human and mouse brain.  Genes with PCCs in both the top and bottom 5% were 

examined for over-represented annotations, using the MSigDB as described above (see 

"Annotation-based gene sets"). 

4.2.12  Effects of penalty score and regional expression 

 The effect of the penalty term 𝜆 on the homology scores was evaluated by 

converting un-penalized scores to percentile ranks in a distribution of un-penalized scores 

from randomly selected gene sets.  These ranks were compared to those obtained using 

the penalty term. 

 To assess the relationship between a gene set's homology score for a brain region 

and its expression in that region, percentile ranks of 𝐻𝑅
𝐺were compared to percentile 

ranks of mean expression values in each broad region, for all gene sets.  The same 

randomly selected gene sets used to calculate percentile ranks for 𝐻𝑅
𝐺were used to 

calculate percentile ranks for mean expression values in a region.  In separate analyses, 

the mean regional expression was calculated in mouse and human brain by averaging 

entries in the expression sub-matrix that indexes all genes in the set and all samples or 

voxels in the region.  For human data, this mean value and its percentile rank were 

calculated for each donor individually before being averaged across donors. 

4.2.13  Cell-type markers 

 An additional analysis was performed on the three cell-type marker gene sets 

(Cahoy et al., 2008; see “Annotation-based sets”, above).  To assess the similarity of 

expression patterns related to cell types across the human and mouse brain, cross-species 
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PCCs between gene expression patterns (calculated as above) were averaged within each 

cell-type marker gene set.  This average PCC was compared to a distribution of average 

PCCs calculated from 10,000 randomly selected gene sets of the same size as the 

original, and its percentile rank in this empirical chance distribution was calculated. 

 

4.3 Results 

4.3.1  Correlation heatmaps 

 Heatmaps of cross-species PCCs between expression profiles for individual 

AHBA samples and AMBA voxels show global organization based on brain region (Fig 

4.2).  Blocks of high values (in comparison to the rest of the matrix) correspond to brain 

regions including the cerebral cortex, thalamus, hypothalamus, amygdala, and 

cerebellum, with striatal expression profiles showing especially high PCCs with each 

other.  In some cases, expression profiles between non-homologous regions show 

somewhat elevated PCCs.  The midbrain, pons, and medulla are represented by a single 

block of positive-valued PCCs, in addition to showing elevated PCCs with the cerebellar 

nuclei.  To a lesser extent, this is also true of the cerebral cortex, hippocampal formation, 

amygdala, and striatum.  These features also appear in the within-species correlation 

heatmaps (see Chapter 3, Fig 3.3), which show higher within-region PCCs overall than 

those in Fig 4.2.  Fig 4.2 also shows this organization at a finer level for the pallidum and 

cerebellum, where the dorsal pallidum, cerebellar cortex, and cerebellar nuclei show 

higher PCCs with their homologs than with non-homologous sub-structures. 
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Fig  4.2.  Correlations between gene expression profiles of human samples and mouse voxels.  A.  Correlations 

between each human sample (horizontal axis) and each mouse voxel (vertical axis).  B.  Correlations between the 

human and mouse pallidum.  C.  Correlations between the human and mouse cerebellum.  Of the voxels from 

the mouse cerebellum included in this figure, 473 were labelled only with the term "Cerebellum," with no finer 

structure specified.  Correlations between these voxels and human samples are along the bottom of A, and are 

not included in C. 

 

4.3.2  Cross-species correlation distributions 

 Each distribution in Fig 4.3 represents a histogram of all values within a 

submatrix of the correlation matrix shown in Fig 4.2.  For the broad regions (Fig 4.3A), 

these distributions highlight patterns described above in the correlation matrix.  

Distributions of PCCs between homologous regions (along the main diagonal) generally 

showed a rightward shift relative to those between most non-homologous regions.  

Slightly right-shifted distributions also appeared between the groups of regions noted 

above (the cerebral cortex, hippocampal formation, amygdala, and striatum as opposed to 

the midbrain, pons, and medulla).  The thalamus had a bimodal distribution, as did 
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several non-homologous region pairs.  Closer examination revealed that the human 

ventral and mouse dorsal thalamus have a median correlation of only 0.002, while the 

medians for the human dorsal / mouse dorsal, human ventral / mouse ventral, and human 

dorsal / mouse ventral thalamus distributions fall between 0.068 and 0.081.  The shapes 

of the distributions between the human cerebellum and all mouse homologous regions 

includes a high peak near 0, which reflect human cerebellar cortex (Figs 4.2 and 4.3B).  

In most cases, human cerebellum also showed a smaller number of more positive PCCs 

(with mouse brainstem structures and pallidum), or negative PCCs (with other mouse 

telencephalic structures); these are due to human cerebellar nuclei (Figs 4.2 and 4.3B).  

Mouse cerebellar correlations with non-homologous human brain structures do not show 

this shape.  In the AMBA, layers of cerebellar cortex are distinct; in the AHBA, 

cerebellar cortical samples may include more than one layer.  This combination of cell 

type distributions may obscure consistent similarities and differences between human 

cerebellar cortical profiles and most of the mouse brain, although it does not appear to 

obscure similarity with the mouse cerebellar cortex. 
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Fig 4.3. Distributions of correlations between expression profiles from a human region and a mouse region.  

Homologous region pairs are outlined in red. Horizontal axis limits are -0.5 and 0.5; red vertical lines indicate 

zero.  A. Broad brain regions.  B. Fine brain regions. Dashed yellow vertical line indicates median correlation 

for parent brain region.  C. Median correlation between all sample-voxel pairs where sample and voxel are from 

homologous regions. Box edges represent the 25th and 75th percentile values; whiskers extend to any data points 

within 1.5 times the interquartile range from the rendered boxes.  Box colors correspond to parent brain 

regions.  Black vertical lines show median cross-species correlations of parent structures. 
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 For the most part, the PCC distributions for fine regions shown in Fig 4.3B 

echoed the organization shown for broad regions, with a tendency towards higher PCCs 

between profiles of homologous regions than between profiles from regions thought to be 

anatomically and functionally distinct.  This was largely true even for sub-structures of 

the same broad region.  The difference between the distribution of correlations for any 

homologous fine region pair and the pooled distributions of correlations for non-

homologous pairs within the same broad region (those not outlined in red) was significant 

for all sub-structures after Bonferroni correction (one-tailed two sample Kolmogorov-

Smirnov test, p < 0.01, N = 9 homologous pairs) except for the nucleus accumbens (p > 

0.6) and GPe (p > 0.3).  Surprisingly, the cerebellar nuclei showed elevated PCCs with 

the GPe and GPi, and several bimodal distributions were observed for fine structure 

pairings, suggesting further anatomical specificity of gene expression relationships that 

go beyond the labeling available. 

 Fig 4.3C summarizes the above data, showing medians of the PCC distributions 

for homologous structures (outlined in red in Fig 4.3A and 4.3B).  As Fig 4.2 indicated, 

the striatum showed the highest median cross-species PCC; this primarily reflects 

transcriptomic similarity between the human and mouse caudoputamen.  These values are 

consistently lower than within-species PCCs between expression profiles of a given 

region (compare Fig 4.3C to Fig 3.2).  However, they did tend to be higher than cross-

species PCCs where the sample and the voxel were from non-homologous regions (Fig 

4.4A).  At a finer scale, this tendency held only within the cerebellum; expression 
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profiles within the other broad regions were not more similar when originating from the 

same sub-region than when originating from different sub-region (Fig 4.4B).  

 

 

Fig 4.4.  Mean percentile rank of within-region correlations in empirical null distributions.  Bars correspond to 

brain regions and bar length to mean percentile rank of correlations within the region, based on the appropriate 

simulated distribution.  Error bars show standard deviation.  Bar colors correspond to parent brain regions.  A.  

Correlations in null distribution are between expression profiles within the region and expression profiles from 

elsewhere in the brain.  Solid horizontal lines show the mean percentile rank within the parent region.  B.  

Correlations in null distribution are between expression profiles within the region and expression profiles from 

elsewhere within the parent region. 

 

4.3.3  Genome-scale correlation maps 

 The initial analysis of region-specific expression used the full list of 3,792 

orthologous genes to generate correlation maps (by the procedure schematized in Fig 

4.1).  Maximum intensity projections (Fig 4.5) show the similarity between an average 

expression profile from a human brain “seed” region (from one donor brain) and all 

voxels in the mouse brain.  These correlation maps show a varying degree of anatomical 

specificity, as anticipated from sample-based correlation results above (e.g., the human 

striatum profile has particularly high correlations with mouse striatal voxels). 
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Fig 4.5.  Maps of mouse voxel correlations with human seed regions.  Correlation maps for 11 broad brain 

regions, generated using left-hemisphere samples from a single donor (H0351.2002).  Correlation maps are 

shown as maximum intensity projections in each of the cardinal planes, in which the value at a given location in 

the two-dimensional plane is the maximum value found along the perpendicular axis at that location.  Mouse 

homologs to human seed regions are outlined in blue in the left hemisphere.  Bar plots show mean correlations 

across voxels inside and outside the mouse homolog to the seed region (green and yellow bars, respectively), for 

all donors.  Individual bars correspond to human donors.  Error bars show standard deviation across voxels. 

 

 The PCCs inside the homologous mouse brain region were then compared to 

those outside the homolog in each human donor, yielding extremely consistent results 

(Fig 4.5, bar plots).  All broad seed regions showed modest but positive mean PCCs 

inside their homologs (for each donor brain), with the striatum yielding the highest mean 
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across donors (r = 0.34).  Most showed near-zero (and usually slightly negative) mean 

PCC values for voxels outside their homologs.  The human hippocampal formation 

profile yielded small positive values outside its homolog due to a tendency towards 

positive PCCs with cortical, amygdalar, and striatal voxels (mean PCCs of 0.16, 0.10, 

and 0.07, respectively).  Similarly, the human amygdala showed a small positive value 

due to positive mean PCCs for cortical, hippocampal, and striatal voxels (mean PCCs of 

0.08, 0.09, and 0.09).  

4.3.4  Homology scores of candidate gene sets 

 Next we sought to quantify the degree to which specific sets of genes provided 

region-specific, cross-species homologies, based on the anatomical specificity of the 

calculated correlation maps.  Sets of genes were determined in either a data-driven 

manner using WGCNA or based on curated annotations. 

4.3.5  Data-driven sets 

 WGCNA applied to the region-averaged mouse expression data resulted in 31 

gene sets; see Fig 4.6 for dendrogram.  Un-penalized homology scores and penalties (see 

Equations 5 and 6) for the full list of 3,792 genes and for each of the 31 data-driven gene 

sets are shown in Fig 4.7 for each of the 11 broad seed regions.  For all seed regions, 

there were one or more gene sets that provide a higher un-penalized homology score than 

the full gene set.  Penalties were then subtracted from the un-penalized scores for each 

gene set.  After enforcing the penalty, at least one gene set per seed region increased the 

homology score relative to the full gene set, with the exception of the cerebral cortex.  
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Homology scores were then converted into percentile ranks, with average ranks across 

donors (in comparison to an empirical null distribution) shown in Fig 4.8A. 

 

 

 

Fig 4.6.  Dendrogram resulting from hierarchical clustering of genes using WGCNA on mouse data after 

averaging into the 10 broad regions shown in Table 1, with striatum and pallidum treated as a single structure.  

Dissimilarity is based on topological overlap.  Colors of horizontal band correspond to gene sets. 
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Fig 4.7 (cont. on next page).  Un-penalized homology scores and penalties of full gene list and data-driven 

subsets.  Green bar height indicates average un-penalized score across the six human donors.  Orange bar height 

indicates average penalty.  Yellow dots represent individual donors. 
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Fig 4.7 (cont. on next page).  Un-penalized homology scores and penalties of full gene list and data-driven 

subsets.  Green bar height indicates average un-penalized score across the six human donors.  Orange bar height 

indicates average penalty.  Yellow dots represent individual donors. 
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Fig 4.7.  Un-penalized homology scores and penalties of full gene list and data-driven subsets.  Green bar height 

indicates average un-penalized score across the six human donors.  Orange bar height indicates average penalty.  

Yellow dots represent individual donors. 
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Fig 4.8.  Homology score percentile ranks (in empirical null distributions) of data-driven gene sets.  Color bar 

applies to both panels.  White indicates chance (50th percentile) performance.  Yellow outlines indicate values of 

80th percentile or above.  A.  Broad regions.  B.  Sub-structures of the hippocampal formation, striatum, globus 

pallidus, and cerebellum. 

 

 In general, there was a sparse pattern of data-driven gene sets that provided strong 

homology scores for individual brain regions when compared to random gene sets. We 

established a threshold for identifying possible sets of interest for further investigation at 

the 80th percentile, with sets surpassing this threshold for any brain region highlighted in 

yellow in Fig 4.8.  Seven seed regions showed between one and five gene sets which 
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scored at or above this threshold.  For the most part, different gene sets yielded high 

percentile ranks for different brain regions (though there were exceptions; e.g., Sets 3 and 

23 in the globus pallidus, midbrain, and pons).  No data-driven gene sets scored at or 

above the 80th percentile for the cerebral cortex, hypothalamus, striatum, or medulla.  

This was due in part to the penalty term 𝜆 (Equation 5), which decreased the score when 

a relatively high concentration of correlations occurred in a specific non-homolog region 

of the mouse brain.  When un-penalized homology scores were compared to distributions 

of un-penalized scores from the randomly selected gene sets, at least one data-driven 

gene set met the cutoff for each of these seed regions except the cerebral cortex, for 

which the highest-ranking gene set was at the 77th percentile.  In one extreme example, 

Set 22's percentile rank for the striatum increased from 70 to 99.88 when it was no longer 

penalized for similarity to the pattern of expression in the globus pallidus. 

 For a subset of brain regions, homology scores were additionally computed for 

each of their sub-structures according to the Allen Reference Atlas hierarchy (Fig 4.8B).  

In some cases, a gene set showed a high rank for only some portion of the larger structure 

(e.g., Set 2 for the subiculum only); in others, a gene set maintained high ranks 

throughout the larger structure (e.g., Set 29 for the CA fields, dentate gyrus, and 

subiculum).  Fig 4.8B also shows that results for the striatum and cerebellum as a whole 

were largely determined by the caudoputamen and cerebellar cortex, respectively. 

4.3.6  Annotation-based sets 

 Three candidate gene sets were defined using neuron, oligodendrocyte, and 

astrocyte markers of the postnatal mouse brain (Cahoy et al., 2008).  Eleven additional 
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gene sets were defined by identifying over-represented annotations in the 14 data-driven 

gene sets which had a mean percentile rank of at least 80 for at least one broad seed 

region (Fig 4.8A).  Of the 255 annotations that were over-represented in these sets (FDR-

adjusted p-value < 0.01), 11 were selected to form candidate gene sets (Table 4.2). 

 

Name in MSigDB (Abbreviation) Description Enriched data-driven set 
REACTOME_OPIOID_SIGNALLING (OP)1, 2  48 genes Set 23 (5 occurrences) 
KEGG_LONG_TERM_POTENTIATION 
(LTP)3, 4 

32 genes Set 3 (9 occurrences) 

CIRCADIAN_RHYTHM (Circ)5  8 genes  Set 3 (5 occurrences) 
BLALOCK_ALZHEIMERS_DISEASE_DN 
(Alzdn)6  

461 genes down-regulated 
in human hippocampus 
with Alzheimer's Disease 

Set 3 (50 occurrences); 
Set 18 (14 occurrences) 

MCCLUNG_COCAINE_REWARD_5D (Coc)7 41 genes up-regulated in 
mouse nucleus accumbens 
after 5 days cocaine 
treatment 

Set 22 (11 occurrences) 

LU_AGING_BRAIN_DN (FLdn)8  77 genes down-regulated 
in human frontal lobe with 
age 

Set 18 (4 occurrences) 

LEE_AGING_CEREBELLUM_DN (CBdn)9  27 genes down-regulated 
in mouse cerebellum with 
age 

Set 18 (3 occurrences) 

LEIN_PONS_MARKERS (Po)10  63 genes  (those appearing 
in the current data) out of 
the 100 most specific to 
mouse pons 

Set 10 (31 occurrences) 

LEIN_MIDBRAIN_MARKERS (Mb)10  57 genes  out of the 100 
most specific to mouse 
midbrain 

Set 23 (8 occurrences) 

LEIN_MEDULLA_MARKERS (Med)10 53 genes  out of the 100 
most specific to mouse 
medulla 

Set 10 (23 occurrences) 

MODY_HIPPOCAMPUS_POSTNATAL 
(HFpost)11 

31 genes up-regulated in 
mouse postnatal 
hippocampus 

Set 18 (3 occurrences) 

Table 4.2.  Annotation terms selected to define new candidate gene sets.   Description field includes the number 

of genes with this annotation found in the list of 3,792 genes used here.  All annotations were over-represented 

with FDR-corrected p < 0.01 in the specified data-driven set (i.e., WGCNA module). 

1. Croft et al. (2014).  2. Milacic et al. (2012).  3. Kanehisa and Goto (2000).  4. Kanehisa et al. (2014).  5. 

Ashburner et al. (2000).  6. Blalock et al. (2004).  7. McClung and Nestler (2003).  8. Lu et al. (2004).  9. Lee et al. 

(2000).  10. Lein et al. (2007).  11. Mody et al. (2001). 
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 Percentile ranks of homology scores for all annotation-based gene sets are shown 

in Fig 4.9.  Neuron markers met or exceeded the 80th percentile for all regions except the 

hippocampal formation and the thalamus.  Analysis of hippocampal sub-structures shows 

that the neuron markers in fact yielded high region-specific correspondence for the 

dentate gyrus (99th percentile), but lower ranks for the CA fields and subiculum (Fig 

4.10).  This was due to a penalty for similarity to the cortex, causing the mean rank to 

drop from 91st to 66th for the CA fields, 92nd to 32nd for the subiculum, and 98th to 

74th for the hippocampal formation as a whole.  In the thalamus, even the un-penalized 

scores for neuron markers ranked, on average, only at the 42nd percentile. 

 

 

Fig 4.9.  Homology score percentile ranks of annotation-based gene sets for broad seed regions.  Bar height 

indicates average percentile rank across the six human donors; yellow dots are values for individual donors.  

Bar colors for cell-type marker sets correspond to Fig 4.13.  Grey shaded area denotes the 80th to the 95th 

percentile, and darker grey the 95th to 100th percentile values for random gene sets of the same size.  See Table 

4.2 for full names and descriptions of gene sets. 
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Fig 4.10.  Homology score percentile ranks of annotation-based gene sets for sub-structures of four broad 

regions.  Bar height indicates average percentile rank across the six human donors; yellow dots are values for 

individual donors.  Grey shaded area denotes the 80th to the 95th percentile, and darker grey the 95th to 100th 

percentile values for random gene sets of the same size.  See Table 4.2 for full names and descriptions of gene 

sets. 

 

 Homology scores for oligodendrocyte and astrocyte markers not only had low 

percentile ranks for most regions, but were almost always negative before being 

converted to percentile ranks.  Exceptions included oligodendrocyte markers in the 

amygdala and globus pallidus, the only two regions where either glial gene set showed 

homology scores with relatively high ranks compared to random gene sets (mean score 
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and rank 0.09 and 88th percentile for amygdala; 0.16 and 92nd percentile for globus 

pallidus). 

 For the most part, the other 11 annotation-based sets showed more variable results 

across the broad regions.  However, a striking number of annotation-based sets showed 

high region-specific correspondence for the striatum, globus pallidus, and cerebellum.  

This tendency appeared to be common to the three human striatal sub-structures and to 

the external and internal globus pallidus, but within the cerebellum it was specific to the 

cerebellar cortex (Fig 4.10). 

 For each of the other broad regions, at least one of these 11 annotation-based sets 

yielded a percentile rank of at least 80 (Fig 4.9).  In the cerebral cortex, for example, 

genes that have been found to be down-regulated in the aging human frontal lobe 

(“FLdn”; Lu et al., 2004) had a percentile rank of 97, notably higher than any of the data-

driven gene sets.  For the hippocampal formation, both FLdn and a set of genes down-

regulated in aging mouse cerebellum (“CBdn”; Lee et al., 2000) exceeded the 90th 

percentile.  The thalamus showed the strongest region-specific correspondence with 

mouse midbrain marker genes  (“MB”; Lein et al., 2007) and the hypothalamus with 

genes downregulated in the human hippocampus with Alzheimer's disease (“AlzDn”; 

Blalock et al., 2004).  Both gene sets ranked at the 99th percentile. 

 Genes involved in the long-term potentiation pathway (“LTP”; Kanehisa and 

Goto, 2000; Kanehisa et al., 2014) showed high percentile ranks for most regions, with a 

mean percentile rank of ~75 across the 11 seed regions.  The most striking exceptions, 

however, were the cerebral cortex, hippocampal formation, and globus pallidus (11th, 
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51st, and 56th percentile).  For the cerebral cortex and hippocampal formation, this was 

due to high penalties for similarity to the striatum (un-penalized scores ranked at the 99th 

and 86th percentile, respectively). 

4.3.7  Effects of penalty term and regional expression 

 Fig 4.11 shows homology score percentile ranks obtained using the penalty term 

(Equation 5) against percentile ranks obtained without it.  The penalty term sometimes 

had the effect of increasing percentile rank, and sometimes of decreasing it. 

 

 

Fig 4.11.  Homology score percentile rank against un-penalized score percentile rank.  Each datapoint results 

from one gene set for one brain regions.  Dashed horizontal and vertical lines mark the 80th percentile.  Dashed 

diagonal line runs from (0, 0) to (1, 1). 

 

 Fig 4.12 compares gene sets' homology scores for each broad region to their mean 

expression in that region (after converting both values to percentile ranks).  Most 

homology scores that rank over the 80th percentile occur in a brain region where the gene 

set showed either much lower or much higher expression than in other regions. 



 

 

90 

 

Fig 4.12. Homology score percentile rank against mean expression percentile rank.  Each datapoint represents 

results from one gene set for one brain region.  Mean expression percentile ranks that use human data are 

averaged across human donors (as are homology score percentile ranks).  Dashed horizontal lines show the 80th 

and 95th percentiles for homology scores. 

 

4.3.8  Brain-wide similarity across species 

 Finally, we analyzed the similarity of cross-species, brain-wide gene expression 

profiles for individual genes and for sets of cell-type marker genes.  Fig 13A shows the 

distribution of PCCs between each gene’s expression pattern (summarized into 16 

regions) across the human brain and its corresponding expression pattern across the 
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mouse brain (quartiles at -0.09, 0.24, 0.56).   For cell-type markers, the median PCC 

between a gene's expression profile across the human brain and its profile across the 

mouse brain was 0.65 for neuron markers, 0.63 for oligodendrocyte markers, and -0.18 

for astrocyte marker genes. When compared to an empirical chance distribution of 

average PCCs of 10,000 randomly selected gene sets of the same size, the percentile 

ranks of these values were 100 for neuron markers (higher than all random gene sets), 

~99 for oligodendrocyte markers, and 0.0001 for astrocyte markers. 

 

Fig 4.13.  Cross-species correlations and expression heatmaps of orthologous genes.  A.  Distribution of 

correlations between brain-wide expression profiles for orthologous genes.  Dashed orange lines mark the 5th 

and 95th percentiles.  Orange triangle indicates distribution median.  Cross-species correlations for cell-type 

markers are represented below, with median correlation for each group of cell-type markers indicated by a 

triangle.  B.  Heatmap of human brain-wide expression patterns of genes with cross-species correlations in the 

top 5%.  Genes are ordered by clusters obtained by hierarchical clustering of their human expression patterns.  

C.  Mouse brain-wide patterns of the same genes shown in B, in the same order. 
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 The top 5% of gene-gene PCCs ranged from 0.83 to 0.98.  Heatmaps of these 190 

genes’ expression patterns across the human and mouse brain show clusters of genes with 

higher expression values for the striatum, or hypothalamus, or cerebellar cortex than for 

the other regions (Fig 4.13).  Other genes were most strongly expressed in multiple 

regions, such as the cerebral cortex, hippocampal formation, and to a lesser extent the 

amygdala, or for these regions together with the striatum.  Finally, one cluster of genes 

showed slightly higher expression in the globus pallidus, thalamus, midbrain, pons, 

medulla, and cerebellar nuclei than in the rest of the human brain, though this cluster's 

preferences for those structures were less apparent in the mouse brain. 

 Table 4.3 shows the median within-species PCC for each group of cell-type 

marker genes.  Although these values were low, they were higher than for randomly 

selected genes, with the exception of astrocyte markers in the mouse.  Brain-wide 

expression patterns of neuron and oligodendrocyte markers are shown in Fig 4.14.  

Overall, neuron markers had their strongest expression in the cortex and hippocampal 

formation, and to a lesser extent the amygdala, of both species.  Oligodendrocyte markers 

showed higher expression in the brainstem and cerebellar nuclei. 

 

Cell type Human 

(samples) 

Human (region 

averages) 

Mouse (voxels) Mouse (region 

averages) 

Neuron 0.20 (100) 0.28 (100) 0.19 (100) 0.28 (99.9) 

Oligodendrocytes  0.34 (100) 0.46 (100) 0.19 (99.0) 0.32 (96.9) 

Astrocytes 0.14 (99.9) 0.26 (99.9) 0.05 (41.2) 0.16 (62.9) 

Table 4.3.  Within-species correlations of mouse cell-type markers.  The median of all correlations between the 

markers for a cell type is followed in parentheses by the percentile rank of that median correlation in a 

distribution of 10,000 randomly selected gene sets. 
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Fig 4.14 (cont. on next page).  Heatmaps of human and mouse brain-wide expression patterns of mouse cell-type 

marker genes.  Color scale is consistent across panels.  Expression in human brain regions was averaged across 

donors.  *In panel B, note that Sst has NaN values for all voxels of CbCtx and CbN in the AMBA. 
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Fig 4.14.  Heatmaps of human and mouse brain-wide expression patterns of mouse cell-type marker genes.  

Color scale is consistent across panels.  Expression in human brain regions was averaged across donors. 

 

4.3.9  Annotations of genes with high correlations across species 

 45 annotations were over-represented in the 5% most-correlated genes (FDR-

corrected p-value < 0.01; Table 4.4).  These included long-term potentiation, long-term 

depression, calcium signaling (Kanehisa and Goto, 2000; Kanehisa et al., 2014), 

glutamate signaling, nerve impulse transmission, and synaptic transmission (Ashburner et 

al., 2000).  Highly-correlated genes also showed over-representation of several 

annotations curated from publications, including some that were used previously to 

define annotation-based gene sets such as genes down-regulated in human frontal cortex 

with age (Lu et al., 2004), genes involved in the mouse nucleus accumbens’ response to 
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cocaine treatment (McClung and Nestler, 2003), and genes down-regulated in human 

hippocampus with Alzheimer's Disease (Blalock et al., 2004). 

 

Annotation term in MSigDB Associated genes 

in dataset 

Occurrences in gene 

set 

KEGG_LONG_TERM_POTENTIATION 32 13 

GLUTAMATE_RECEPTOR_ACTIVITY 17 8 

LU_AGING_BRAIN_DN 77 17 

REACTOME_NEURONAL_SYSTEM 175 27 

CAHOY_NEURONAL 71 16 

REACTOME_TRANSMISSION_ACROSS_CHEMICA

L_SYNAPSES 

130 21 

REACTOME_UNBLOCKING_OF_NMDA_RECEPTO

R_GLUTAMATE_BINDING_AND_ACTIVATION 

12 6 

V$RFX1_02 86 16 

REACTOME_NEUROTRANSMITTER_RECEPTOR_

BINDING_AND_DOWNSTREAM_TRANSMISSION_

IN_THE_POSTSYNAPTIC_CELL 

97 17 

IONOTROPIC_GLUTAMATE_RECEPTOR_ACTIVIT

Y 

10 5 

BLALOCK_ALZHEIMERS_DISEASE_DN 461 44 

KEGG_CALCIUM_SIGNALING_PATHWAY 98 16 

GLUTAMATE_SIGNALING_PATHWAY 16 6 

KEGG_LONG_TERM_DEPRESSION 29 8 

MIKKELSEN_MCV6_HCP_WITH_H3K27ME3 197 24 

REACTOME_CREB_PHOSPHORYLATION_THROU

GH_THE_ACTIVATION_OF_CAMKII 

8 4 

REACTOME_TRAFFICKING_OF_AMPA_RECEPTO

RS 

18 6 

MIKKELSEN_IPS_WITH_HCP_H3K27ME3 32 8 

BIOCARTA_CK1_PATHWAY 13 5 

GSE19825_NAIVE_VS_IL2RAHIGH_DAY3_EFF_CD

8_TCELL_UP 

67 12 

STARK_PREFRONTAL_CORTEX_22Q11_DELETIO

N_UP 

78 13 

BIOCARTA_NOS1_PATHWAY 14 5 

MCCLUNG_DELTA_FOSB_TARGETS_8WK 27 7 

YOSHIMURA_MAPK8_TARGETS_UP 453 41 

KEGG_AMYOTROPHIC_LATERAL_SCLEROSIS_A

LS 

28 7 

LEIN_OLIGODENDROCYTE_MARKERS 44 9 

MIKKELSEN_MEF_HCP_WITH_H3K27ME3 240 26 
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MODULE_26 55 10 

REACTOME_ACTIVATION_OF_NMDA_RECEPTOR

_UPON_GLUTAMATE_BINDING_AND_POSTSYNA

PTIC_EVENTS 

22 6 

REACTOME_RAS_ACTIVATION_UOPN_CA2_INFU

X_THROUGH_NMDA_RECEPTOR 

10 4 

TRANSMISSION_OF_NERVE_IMPULSE 107 15 

PLASMA_MEMBRANE 497 43 

MEISSNER_NPC_HCP_WITH_H3K4ME2 194 22 

ST_G_ALPHA_I_PATHWAY 16 5 

V$NRSF_01 58 10 

MODULE_20 24 6 

MCCLUNG_COCAINE_REWARD_5D 41 8 

DOANE_BREAST_CANCER_ESR1_DN 18 5 

KEGG_GAP_JUNCTION 42 8 

METABOTROPIC_GLUTAMATEGABA_B_LIKE_RE

CEPTOR_ACTIVITY 

7 3 

MODULE_415 7 3 

PID_IL8CXCR1_PATHWAY 7 3 

REACTOME_TRAFFICKING_OF_GLUR2_CONTAIN

ING_AMPA_RECEPTORS 

12 4 

SYNAPTIC_TRANSMISSION 104 14 

WATANABE_COLON_CANCER_MSI_VS_MSS_UP 7 3 

Table 4.4.  Annotations over-represented in genes with cross-species correlations in the top 5%.  These terms 

were over-represented with p < 0.01 after correction using FDR. 

  

4.4 Discussion 

 Previous studies have used neuroanatomically-linked gene expression data to 

elucidate the tight relationship between molecular and conventional neuroanatomy and 

have shown that some aspects of this relationship (i.e., specific genes that are 

differentially expressed between pairs of homologous brain regions) persist across 

species as closely related as human and chimpanzees (Khaitovich, 2004; Oldham et al., 

2006) and as distantly related as humans and birds (Pfenning et al., 2014).  Here, we have 

advanced understanding of the correspondences between the molecular neuroanatomical 
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architecture of the human and mouse brain in several ways.  The present study used high-

resolution datasets from the AIBS to enable a direct, systematic comparison of adult 

human and mouse gene expression in a set of 11 broadly defined regions and several 

finer sub-regions throughout the brain.  We developed and applied methods which 

support three approaches to quantifying these comparisons.  The first was global, 

comparing high-dimensional gene expression profiles from each location in the brain of 

one species to expression profiles from all locations in the brain of the other.  The second 

approach was designed to evaluate similar expression patterns between the human and 

mouse brain that are specific to a brain region.  We identified distinct subsets of genes 

which preferentially drive this molecular similarity for different regions, while other 

subsets show negligible similarity for the same region.  Third, we took a gene-centered 

approach, examining the similarity between a gene’s spatial expression pattern across the 

human brain with its orthologous pattern across the mouse brain.  These three approaches 

in sum reveal a highly structured relationship between gene expression profiles 

throughout the human and mouse brains.  They also demonstrate that this relationship – 

and in turn the similarity of the local molecular “environment” – varies considerably, not 

only in its overall strength, but in which genes are co-expressed in similar ways in each 

brain region. 

4.4.1  Brain-wide comparisons of expression profiles 

 Similarities between gene expression profiles from throughout the human and 

mouse demonstrate how the local molecular architecture corresponds with conventional 

neuroanatomical boundaries.  We found this correspondence, based on our full set of 
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3,792 orthologous genes, to vary by neuroanatomical region and by species, but its broad 

outlines appeared in cross-species comparisons as well as the within-species study 

described in Chapter 3.  Correlations between profiles from the two different species 

were overall lower than correlations within-species (compare Fig 4.2 to Fig3.3).  This 

may be a result of comparing microarray data (the AHBA) to ISH data (the AMBA).  Lee 

et al. (2008) found relatively low correlations between the AMBA and microarray data 

from adult mouse brains of similar strains (~0.4-0.5 for most brain regions).  The authors 

suggested that this was due to differences in dynamic range and signal detection 

thresholds for the two types of data. 

 The neuroanatomical organization shared by the two species was, however, 

similar to that appearing within-species in Chapter 3, at both broad and fine scales.  The 

cerebral cortex, hippocampal formation, amygdala, and striatum showed some 

transcriptomic similarity across species that is not shared with the rest of the brain, as did 

the midbrain, pons, and medulla (Figs 4.2 and 4.3A).  The striatum stands out with the 

highest within-region correlations of the broad brain regions, reflecting its consistent 

cellular architecture, while the amygdala and brainstem structures have lower within-

region correlations (Fig 4.3C; note that these lower correlations were still higher than 

expected by chance as shown in Fig 4.4A).  The lack of enhanced transcriptional 

similarity between the thalamus and hypothalamus seen in Chapter 3 also appears in Figs 

4.2 and 4.3A.  The cerebellum remained distinct from other structures, showing a highly 

positively skewed distribution of cross-species correlations only when samples and 

voxels were both chosen from the cerebellum (Fig 4.3A), consistent with the findings of 
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Strand et al. (2007).  Altogether, the relationships that emerge in both within- and across-

species correlation heatmaps point to the developmental plan discussed in Chapter 1.1, 

the basic divisions of which are common to vertebrate brains (Sanes et al., 2012, Ch. 2).  

 Transcriptomic organization seen within both the mouse and human brain in 

Chapter 3 showed cross-species correspondence at a slightly finer scale as well.  Finer 

neuroanatomical regions tended to show somewhat stronger cross-species similarity than 

their parent regions (Figs 4.2 and 4.3); additionally, cross-species similarity within a 

parent region was nearly always significantly greater between homologous than non-

homologous sub-regions. 

4.4.2  Region-specific homology scores 

 We next considered the question of region-specific homology not only using the 

full list of 3,792 orthologous genes but also focusing on groups of genes that might show 

enhanced similarity for different neuroanatomical entities.  Candidate gene sets were 

evaluated in each brain region using a homology score, which provided a continuous 

measure of the extent to which a group of genes encoded a cross-species consistent, 

region-specific "fingerprint."  The full gene list provides such a fingerprint, to some 

extent, for most broad brain regions in that the human region's mean expression profile 

tends to have slightly higher correlations with voxels inside its mouse homolog than 

voxels in other regions (Fig 4.5).  We began with the assumption that these enhanced 

correlations between homologous samples may be driven by different genes for different 

brain regions since each region may require a distinct, though likely overlapping, set of 

gene products that specify its structure and function.  Our approach was not designed to 
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identify a unique gene set responsible for enhanced cross-species similarity for each brain 

region.  Instead, gene sets and brain regions may have a many-to-many relationship in 

which (a) multiple gene sets provide strong signatures for the same region, and (b) the 

same gene set may provide enhanced cross-species similarity for multiple brain regions. 

 The latter possibility can occur if the same gene set provides uncorrelated 

expression profiles for distinct brain regions (i.e., the genes are expressed in a different 

pattern in the two areas).  The penalty term 𝜆 (see Equation 5) enforces the idea that the 

“signature” provided by a given gene set must be uncorrelated with its signatures for 

other regions by decreasing the homology score to the extent that it shows enhanced 

similarity between a human region and a non-homologous mouse region.  For example, 

data-driven Gene Set 23 provides relatively high homology scores for the globus pallidus, 

midbrain, and pons (Fig 4.8A); these homology scores would be reduced if, for example, 

the pattern in which these genes are expressed in the human globus pallidus was highly 

correlated with their expression pattern in the mouse midbrain or pons. Instead, the gene 

set simply provides a “basis” for comparison, with each of the human brain signatures 

defined over that basis both sufficiently distinct from one another and sufficiently similar 

with expression vectors defined over that basis in the homologous mouse brain regions.  

The penalty term also had the unexpected result of sharply increasing percentile ranks for 

certain gene sets primarily because they reduce this kind of "cross-region similarity" as 

compared to chance, particularly for several data-driven sets (i.e., those grouped by 

within-mouse brain-wide co-expression relationships), which showed strong homology 
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scores for the hippocampus only when their unusually low similarity with mouse cortex 

was taken into account by the application of the penalty (Fig 4.11). 

 This region-specific approach is not oriented toward individual genes which mark 

a given brain region in both species, but towards groups of genes whose products may 

have consistent region-specific interactions.  The gene groups tested often showed a 

tendency towards particularly high or low expression values for the brain region in 

question (Fig 4.12), but did not simply contain anatomical marker genes.  In fact, a set of 

genes which all have similar standardized expression values for that region (i.e., a 

relatively “flat” profile) in either species will result in cross-species correlations that may 

be dominated by noise, even if those expression values are large.  The use of correlation 

as the measure of similarity is best suited to identifying gene sets with diverse expression 

values within a given region and its homolog.  These diverse expression values reflect the 

complex, local biological environment within the region, including cell type populations 

of varying densities.  Because expression of a gene depends on many such complex local 

interactions, the identification of consistent local molecular environments defined over a 

set of genes may help to improve our understanding of the appropriateness of knockdown 

/ knockout mouse models of human brain disorders and the effectiveness of 

pharmacological agents that implicitly target specific brain regions. 

4.4.3  Data-driven candidate gene sets 

 Gene sets were defined based on the organization of their brain-wide expression 

patterns in the mouse using WGCNA (Fig. 4.6; Langfelder and Horvath, 2008).  

WGCNA, as applied here, groups genes whose expression patterns show spatial 
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correlations at a broad scale, suggesting potential functional relationships between genes 

assigned to the same module or set.  This approach has the advantage of being a 

discovery method, open to influence by gene-gene relationships that have not yet been 

identified, but which may be important in a local neuronal environment.   However, a 

disadvantage of this approach is limited biological interpretability:  that is, to the extent 

that we do not know specific functions or pathways underlying gene groupings, we 

likewise cannot identify conserved functions that underlie a high homology score. 

 Using this approach, specific gene sets were found that enhanced molecular 

similarity (relative to random gene sets) very strongly for some regions, moderately for 

others, and not at all for the cerebral cortex (Figs 4.7, 4.8).  This variability does not 

appear to correspond with higher or lower variability across the six individual human 

donors.  For example, neither the cerebral cortex nor the striatum showed especially high 

homology scores for any gene set, yet neither had particularly high variability across 

donors (their highest cross-donor interquartile rank for any data-driven set was 0.35 and 

0.14, respectively, which was lower than most other broad regions).  Because there was a 

tendency toward reduced variation in standardized expression values across the cortex 

relative to subcortical regions, co-expression relationships in the latter structures may 

have played a relatively dominant role in the creation of modules in WGCNA.  Overall, it 

is not clear why using WGCNA in this way yielded gene sets with region-specific 

similarity for some brain regions and not others, but it is possible that other approaches to 

clustering genes might reveal different gene sets with stronger homology scores for some 

regions. 



 

 

103 

 For further interpretation of the WGCNA-based gene sets, we used the g:Profiler 

online tool (Reimand et al., 2016) to assess enrichment of Gene Ontology annotation 

terms including "IEAs", or "Inferred from Electronic Annotations" (which are 

automatically assigned and have not been reviewed by a curator).  Using this option and a 

background set consisting of the full list of 3,792 genes, a majority of data-driven sets 

were enriched for several brain-related annotations from the Gene Ontology.  In 

particular, Set 3 over-represented a substantial number of annotations related to functions 

that occur in many areas of the brain (e.g., dendrite development, synaptic transmission, 

and postsynaptic density; note that Set 3 was also enriched for LTP-related genes in the 

previous analysis using MSigDB), and very few GO annotations that are not brain-

related.  Interestingly, Set 3 had higher-ranking homology scores for regions throughout 

the brain than most other data-driven sets (Fig 4.8).  A few GO terms that were over-

represented in data-driven sets have associations with specific regions; for example, 

learning and memory (Set 3), diencephalon development (Set 20) , and response to 

cocaine (Set 23).  However, the only one of these with a clear relationship to a region 

where the gene set showed strong correspondence was diencephalon development (Set 20 

had a percentile rank of 88 for the thalamus). 

4.4.4  Cell-type markers as candidate gene sets 

 Varying distributions of cell types are central to the differentiation of brain 

structures.  Genes whose expression marks certain cell types are thus natural candidates 

for assessment using our homology score.  Neuron markers showed strong region-

specific correspondence in nearly all regions (Fig 4.9).  The relatively weak 
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correspondence of neuron markers for the hippocampal formation as a whole results from 

reduced similarity of the CA fields and subiculum rather than the dentate gyrus (Fig 

4.10), and is due to a strong penalty for similarity to the cerebral cortex (i.e., neuron 

markers are expressed similarly in hippocampus and cortex).  The low correspondence of 

neuron markers for the thalamus is notable, reflecting surprisingly weak correlations in 

cross-species expression profiles defined across neuron marker genes (the mean 

correlation within the mouse thalamus was 0.17, which ranked at the 40th percentile 

relative to random gene sets.)  It is possible that thalamic nuclei with different neuron 

populations have varying degrees of cross-species correspondence, resulting in relatively 

weak correspondence for the thalamus as a whole.  It is also possible that thalamic sub-

structures were sampled differently in the two species, to a greater extent than other brain 

structures which include many nuclei. 

 Astrocyte markers, on the other hand, provided homology scores that were near or 

below chance (random gene sets) for all regions (Fig 4.9).  These results are consistent 

with a comparison of co-expression relationships from Hawrylycz et al. (2015), in which 

modules of genes that were co-expressed in the Allen Human Brain Atlas were assessed 

for preservation in the Allen Mouse Brain Atlas.  In that analysis, better-preserved 

modules showed higher proportions of neuron markers, while the module containing 

predominantly astrocyte markers was poorly preserved.  Astrocytes in the human and 

rodent show structural, functional and molecular differences (Oberheim et al., 2006, 

2009), and evidence of these differences has been found previously in large gene 

expression datasets (Miller et al., 2010).  It is possible that astrocyte markers identified in 
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the mouse, as these were, may simply not provide strong cell type specific markers in the 

human brain.  Our results support a much stronger conservation of neuron-specific 

markers, which are expressed in relatively unique, but cross-species consistent, patterns 

across brain areas.   

4.4.5  Other annotation-based candidate gene sets 

 We additionally identified over-represented annotations across the high-scoring 

data-driven gene sets.  We hypothesized that such annotations would reveal some of the 

highly conserved functions and pathways that drove high homology scores.  If over-

represented attributes are important to cross-species homologies (i.e., due to conserved 

local functions), then the more complete list of genes associated with an annotation might 

serve as an even stronger basis for molecular similarity.  Over-represented annotations 

from the MSigDB for the data-driven gene sets, however, included many general terms 

that could not be clearly related to the brain or nervous system function.  This was 

expected, of course, as many groups of genes work together throughout the body, and 

genes may take on different roles in different tissues.  Therefore, the process of selecting 

which annotations (and resulting gene sets) to examine further was necessarily somewhat 

subjective.  However, the selected annotations included many of those with a clear 

relationship to brain function. 

 Homology scores for these gene groups showed a different pattern from those for 

the data-driven gene sets or cell-type markers (Fig 4.9).  Here, most gene sets showed 

variable performance across the eleven broad regions (unlike cell-type marker sets), 

while nearly all broad regions examined showed multiple gene sets ranking at or above 
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the 80th percentile (unlike our data-driven sets).  One possible reason for the general 

trend toward increased homology scores for the annotation-based gene sets is that genes 

chosen were, in effect, required to have established brain functions.  It is important to 

note that gene sets with unexpectedly low homology scores may also provide important 

insights; for example, a group of genes previously shown to be down-regulated in the 

human hippocampus in Alzheimer's Disease (“Alzdn”; Blalock et al., 2004) showed 

reduced cross-species similarity specific to the hippocampus in comparison with 

randomly selected gene lists of the same size.  This suggests that products of these genes 

may function in distinct molecular environments in the mouse and human hippocampus, 

which should be considered in preclinical research that may target these genes. 

 In some cases, our results revealed enhanced similarity of gene expression 

profiles specific to certain brain regions with known functions that are associated with the 

annotation common to the genes in the set.  For example, a set of genes down-regulated 

with age in the human frontal lobe (“FLdn”; Lu et al., 2004) yielded a higher homology 

score than more than 96 percent of random gene sets of the same size in the cerebral 

cortex (Fig 4.9A).  This set includes genes involved in synaptic plasticity and neuronal 

survival, which, while functionally relevant for the cerebral cortex, are clearly relevant 

across all brain structures. Indeed, the “FLdn” set also scored highly for the hippocampal 

formation, striatum, and cerebellum.  

 A group of 41 genes whose expression in the mouse nucleus accumbens was 

shown to change in response to cocaine treatment (“Coc”; McClung and Nestler, 2003) 

showed strong region-specific similarity between the mouse and human striatum (Fig 
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4.9D).  This cross-species similarity was maintained for both the nucleus accumbens and 

the caudoputamen (Fig 4.10B).  Interestingly though, the human nucleus accumbens 

profile for this gene set has a similar average correlation with both mouse nucleus 

accumbens profiles (r ~ 0.43) and mouse caudoputamen profiles (r ~ 0.49).  The nucleus 

accumbens is a major reward center in the brain, implicated in addiction (Carlezon and 

Thomas, 2009).  McClung et al.'s finding that cocaine treatment regulates expression of 

these genes (McClung and Nestler, 2003) suggests that they are functionally important in 

the mouse nucleus accumbens.  Here, we have shown that these genes show similar co-

expression patterns that are unique to the striatum and are consistent in each of its sub-

structures, and which are conserved between the mouse and human brain.  Thus, these 

genes form the basis of a similar, functionally relevant molecular environment in the 

striatum of the two species, and directly suggest their relevance for mouse models of 

addiction.  Genes associated with this annotation were also over-represented in the only 

data-driven set whose homology score for the striatum ranked above the 50th percentile 

(Fig 8A). 

 Genes involved in the opioid signaling pathway ("Op") provided high homology 

scores for both the dorsal and ventral striatum.  Opioid receptors in the dorsal striatum 

have been implicated in ethanol consumption in rats (Nielsen et al., 2012), and more 

specifically, down-regulation in the dorsal striatum of the opioid peptides PDYN (in the 

gene set Op) and PENK (not in Op) has been implicated in alcoholism (Sarkisyan et al., 

2015).  In the ventral striatum, µ-opioid stimulation affects food intake, most likely 

through an effect on pleasurability of tastes (Kelley et al., 2002).  This gene set also 
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provided a relatively high homology score in the medulla, which includes centers where 

opioids are involved in pain modulation (Lovick, 1985; Fields, 2004), respiratory 

suppression (Lovick, 1985; White and Irvine, 1999; Montandon et al., 2011), and 

cardiovascular function (Lovick, 1985; Tjen-A-Looi et al., 2007).  However, without 

enough samples to analyze individual nuclei in the medulla, it is unclear which function 

or functions affected by the opioid signaling pathway may have contributed to this result. 

 On the other hand, three gene sets originally defined as marking the mouse 

midbrain, pons and medulla (“Mb”, “Po”, and “Med”; Lein et al., 2007) showed weak 

similarity for those specific regions (Fig 9).  In the source paper, the authors identified 

the 100 genes with expression patterns most specific to a given brain region in the 

AMBA, based on the ratio of voxels expressing the gene that were inside and outside the 

region.  The Mb, Po and Med gene sets were subsets of the top 100 genes identified for 

each structure (i.e., those which appear in our common gene set).  Lein et al. note, 

however, that the midbrain, pons, and medulla do not show strongly enriched expression 

even for their "top 100" genes; rather, the most-specific genes for each of these regions 

show brain-wide expression patterns that extend beyond the brain region in question. In 

this study, we found that these gene sets were expressed in different patterns across the 

corresponding regions in mouse and human, suggesting that strong expression in these 

brain regions in mouse does not necessarily predict strong expression in the homologous 

regions in human. 

 There were many cases in which the common annotation used to define a gene set 

had no obvious relationship to brain regions for which it received a high homology score.  
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The cerebellum showed a tendency towards high percentile ranks for nearly all the 

annotation-based gene sets.  FLdn, Coc, and Op are mentioned above for yielding high 

homology scores for brain regions with related functions; however, these sets also 

yielded high scores for other regions for which there is no obvious explanation.  We do 

not know what functions these genes may have in these regions, or why they show 

enhanced cross-species similarity for regions not clearly associated with the annotation.  

In these cases, the implicated molecular mechanisms remain as obscure as with the data-

driven gene sets. 

 In sum, the use of a region-specific homology score makes it clear that (i) there 

exists region-specific molecular similarity across species, and (ii) different sets of genes 

drive or enhance this specificity for different brain regions.  The interpretation of the 

results for any given subset of genes is, at this point, somewhat less clear, and will 

require further examination of known gene functions, gene-gene interactions, and the 

expected composition of each region’s underlying cell types. 

4.4.6  Gene-gene comparisons 

 The AHBA and AMBA together also enabled an analysis of the similarity of 

brain-wide expression profiles for orthologous genes across species. While the median 

correlation between orthologous gene expression patterns (summarized to a set of 16 

neuroanatomical regions spanning the brain) was slightly positive (~0.24), many genes 

had strongly positive or indeed negative correlations across species.  The overall 

distribution of cross-species PCCs was heavily skewed, with the bulk of the density 

focused on positive values (Fig 4.13A).  Highly correlated genes clustered into groups 
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that were preferentially expressed in different regions throughout the brain, suggesting 

their importance to brain-specific and region-specific functions (Fig 4.13B).  Many of the 

most correlated genes are known to be associated with evolutionarily ancient mechanisms 

important for brain function such as long-term potentiation (Sacktor, 2012), use of 

glutamate as a neurotransmitter (Tikhonov and Magazanik, 2009), and use of calcium as 

a signal transductor (Cai et al., 2015; Table 4.4).  Other genes with high cross-species 

similarity have shown changed expression associated with Alzheimer's Disease (Blalock 

et al., 2004), or aging in the human cortex (Lu et al., 2004).  This result suggests that 

normal or pathological processes can impact even the most conserved molecular 

environments, and that mouse models are an appropriate tool for studying how these 

processes impact such genes in the human brain.  Markers of mouse neurons and 

oligodendrocytes (Cahoy et al., 2008) showed strongly conserved brain-wide patterns as 

well, reflecting the similarly varying cell-type populations across the brains of the two 

species (Figs 4.13A, 4.14).  The brain-wide expression patterns of mouse astrocyte 

markers, however, differed between the human and mouse, echoing their weak region-

specific relationships (see "Cell-type markers as candidate gene sets", above).  While the 

region-specific analyses performed were designed to suggest conserved local 

mechanisms using the co-expression relationships between different genes, gene-centric 

studies offer a broader view of the conservation of expression patterns for specific genes 

of interest. Our results suggest cross-species similarities in the brain-wide expression of 

many genes implicated in a variety of brain functions, but also demonstrate an 
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exceptional amount of variability in the degree of conservation of anatomical expression 

patterns across the genome. 

4.4.7  Limitations and future directions 

 More complete interpretation of the present results, particularly those regarding 

region-specific molecular signatures, depends on knowledge of the functions of and 

relationships between both brain regions and genes.  There are many protein-coding 

genes whose functions remain unknown, and many more (indeed a majority) for which 

our knowledge about their roles in the brain is sparse.  Annotating the thousands of genes 

in the mammalian genome is a slow and arduous process; however, as these annotations 

accumulate, information regarding the functions of gene sets which provide consistent, 

cross-species molecular signatures for individual brain regions may enable new 

interpretations of our results.  Because it is not computationally feasible to assess all 

possible gene subsets for region-specific homology, other approaches to defining 

candidate gene sets may also be informative.  In particular, for each pair of homologous 

regions, one might apply optimization techniques, which would iteratively eliminate 

genes in order to optimize a region’s homology score (see, for example, a related 

application to find genes whose co-expression patterns correlate with anatomical 

connectivity; French and Pavlidis, 2011). 

 We have focused exclusively on two large, publicly accessible gene expression 

datasets, the Allen Human Brain Atlas and the Allen Mouse Brain Atlas.  Use of other 

gene expression datasets may offer opportunities to (i) assess generalization of the results 

to a larger human population (though we often observed a high degree of consistency in 



 

 

112 

our results across the six available donor brains) and to other strains of the lab mouse 

(Geurts et al., 2011; Sigmund, 2000), (ii) expand analyses of the neocortex by 

incorporating layer-specific information, which is not available in the AHBA , and (iii) 

ensure that findings are robust across expression data collected using different 

techniques, given that microarray data depend on the somewhat inconsistent 

correspondence between abundance of mRNA and protein level (Greenbaum et al., 

2003).  Further, gene expression is a dynamic process, and the available datasets require 

us to assume a meaningful “snapshot” of this process in the adult animal.  The expression 

of many genes changes rapidly and/or systematically during brain development as they 

regulate, among other things, the differentiation of brain areas (Johnson et al., 2009; 

Thompson et al., 2014).  Some local molecular environments may be similar or different 

across species for reasons that can only be understood by using data from earlier 

developmental stages to study the processes that created them.  Even in later stages, while 

the expression of some genes may remain stable in the brain through adulthood, others 

undergo transient changes in expression which no one gene expression dataset can 

illuminate (for example, the transcription factor c-FOS is expressed following neuronal 

activity; Kovács, 1998).  Other important considerations can only be addressed by 

looking beyond the present technologies.  Gene expression is influenced by alternative 

splicing events, which are ubiquitous in the brain (Grabowski, 1998).  Additionally, 

transcriptional regulatory networks (Vaquerizas et al., 2009; Ravasi et al., 2010) and 

post-transcriptional mechanisms (Day and Tuite, 1998) may also differ across species. 
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CHAPTER 5: THE TRANSCRIPTIONAL LANDSCAPE OF GENES 

IMPLICATED IN SPEECH AND LANGUAGE DISORDERS 

5.1 Introduction 

 Developmental disorders of speech and language are highly heritable, and over 

two dozen genes have been implicated in one or more of these pathologies.  There is an 

extensive body of work indicating that certain measures of speech and/or language ability 

are associated with DNA variants at loci within a given gene, or with structural variations 

of the chromosome which affect the gene (for two reviews, see Fisher et al., 2003; 

Graham et al., 2015).  However, the causal links between genotypic variations and 

phenotypic measures that capture speech and language function remain largely obscure.  

This chapter, which is an extension of previously published work (Bohland et al., 2014), 

reviews the putative associations between genes and speech / language abilities and uses 

gene expression data to suggest relationships between the neuroanatomical localization of 

implicated genes, and how these may be used to suggest hypotheses regarding the roles 

those genes play in speech / language function.  "Candidate" genes, curated from the 

literature on the genetics of speech and language and entered into a database described in 

the next section, are examined to determine where (if anywhere) in the brain they are 

preferentially expressed, and to characterize their co-expression relationships throughout 

the brain. 

 Speech and language disorders are nearly always polygenic: loci within many 

genes each exert a small degree of influence on variation of the phenotype (Fisher et al., 

2003).  These influences are characterized as "quantitative trait loci" (QTLs) and stand in 
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contrast to rare situations in which a variant in a single gene explains a disruption of 

normal speech or language function (e.g., a single FOXP2 mutation is causally implicated 

in developmental verbal dyspraxia, or DVD, in ~2% of cases; MacDermot et al., 2005).  

The predominance of statistically weak QTLs among genetic influences on speech and 

language disorders (and neurological and neuropsychiatric disorders more broadly) poses 

a challenge, since the identification of multiple loci with small effects requires more 

studies with higher statistical power than do monogenic influences.  Indeed, nearly all the 

genotype-phenotype associations reviewed in this chapter were found in only a small 

percentage of the cohorts studied (e.g., mutations in NAGPA and GNPTG were found in 

only 2% and 4% of subjects with persistent developmental stuttering, or PDS, 

respectively; Kang et al., 2010).  Just as a given phenotype may have multiple genetic 

influences, a given gene may influence multiple phenotypes, and these may range from 

cognitive abilities to basic cellular functions.  For example, NAGPA and GNPTG, with 

another PDS candidate (GNPTAB; Kang et al., 2010), are involved in directing enzymes 

to the lysosome, which affects cellular processes such as waste disposal (Settembre et al., 

2013).  Thus, although the phenotypes of interest here are all related to speech and 

language, genes which impact them are not "speech genes" or "language genes", but may 

influence many very different processes, some of which remain unknown. 

 The most obvious mechanism for genetic variants to impact behavior is by 

making specific changes in brain areas where those genes are expressed.  A single gene, 

expressed in multiple functionally relevant brain systems, could therefore impact multiple 

disorders.  Similarly, genes that are co-expressed might therefore impact the same 
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disorder.  This suggests that, though many disorders are polygenic, different disorders 

may often be impacted by the same genes.  In an influential paper proposing what has 

become known as the Generalist Genes Hypothesis, Plomin and Kovas (2005) argued 

that this is the case for most learning disorders (in language, reading and mathematics).  

The hypothesis is based primarily on high genetic correlations between different learning 

disorders, and between aspects of a single disorder.  Briefly, the genetic correlation 

between two traits is the likelihood that a gene associated with one trait will also be 

associated with the other.  Any observed covariation, however, does not guarantee that 

both associations are causal: for example, if one trait directly affects the other trait, this 

will increase their genetic correlation regardless of shared genetic influences.  However, 

the consistently high genetic correlations between several measures of language, reading, 

and mathematical ability are at least suggestive of overlap between the genes influencing 

these abilities (Plomin and Kovas, 2005).  While the Generalist Genes Hypothesis is 

relevant to learning disorders, it should be noted that not all the disorders of speech and 

language function discussed here are always considered learning disorders:  DVD and 

PDS, for example, are usually thought of as speech motor disorders, which concern the 

inability to effectively produce (but not necessarily failure to learn) speech sounds. Most 

genetic studies in this field focus on associations with a single speech / language disorder.  

However, a few of the genes discussed below were originally associated with one such 

disorder, but were then implicated in another as well.  For example,  ATP13A4 has been 

implicated in specific language impairment (SLI) and DVD (Kwasnicka-Crawford et al., 
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2005; Worthey et al., 2013), and CMIP in both SLI and dyslexia (Newbury et al., 2009, 

2011; Scerri et al., 2011). 

 Plomin and Kovas also hypothesized that the same genes which influence 

learning disabilities also influence normal variation in learning ability (Plomin and 

Kovas, 2005).  In other words, learning disabilities are not etiologically distinct from 

learning ability, but are the tail end of the overall population distribution.  Of the genes 

analyzed here, only a few have been tested for association with normal variation (i.e., 

using a typical, large population sample).  DYX1C1, DCDC2, KIAA0319 and TTRAP 

were associated with reading and spelling skill (Paracchini et al., 2011; Lind et al., 2010; 

Paracchini et al., 2008; Luciano et al., 2007), and ROBO1 with nonword repetition and 

short-term storage of verbal sequences (Bates et al., 2011).  However, one study failed to 

replicate the association for DCDC2, or to find association between three other genes 

associated with dyslexia and dyslexia-related behavioral measures in the same large, 

typical cohort (MRPL19, C2ORF3, and KIAA0319; Paracchini et al., 2011).  Thus, the 

extent to which speech / language ability and disability share a genetic etiology is not yet 

clear.  Note also that two genes are included here entirely due to associations found in 

subjects with no neurological disorders: CACNA1C with performance on a lexical access 

task, and GRM3  with neural responses to unexpected phonemes (Krug et al., 2010; 

Harrison et al., 2008). 

 The genes treated in this chapter (see Table 5.1 for a complete list) are curated 

from publications using a range of methods to identify genetic causes of speech / 

language disorders, including genome-wide association studies, whole-exome 
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sequencing, and sequencing of just a few individuals with a disorder or a single family 

with members who have a disorder.  This list of speech / language candidate genes, or 

"SL genes", errs on the side of inclusion: in many cases, the evidence for association is a 

single study that has not been replicated.  Most of these genes are associated with one or 

more of four disorders: dyslexia (also sometimes known as reading disorder), specific 

language impairment, developmental verbal dyspraxia (also known as childhood apraxia 

of speech in the United States), and persistent developmental stuttering.  These are 

discussed in turn below. 

Symbol Aliases Entrez 

ID 

Associated 

phenotype(s) 

Sources 

ADARB2 RED2 105 PDS Kraft (2010) 

AP4E1 CPSQ4, 

SPG51 

23431 PDS(2015) Raza et al. (2015) 

ARNT2  9915 PDS Kraft (2010) 

ATP13A4  84239 SLI 

DVD 

Kwasnicka-Crawford et al. (2005) - SLI 

Worthey et al. (2013) - DVD 

ATP2C2 hSPCA2 9914 SLI Newbury et al. (2009) 

BCL11A  53335 DVD Peter et al. (2014) 

BDNF  627 SLI Simmons et al. (2010) 

CACNA1C  775 SVF Krug et al. (2010) 

CEP63 SCKL6 80254 DYX Einarsdottir et al. (2015) 

CFTR  1080 SLI(O’Brien et 

al., 2003) 

O'Brien et al. (2003) 

CMIP  80790 SLI 

DYX  

Newbury et al. (2009, 2011) - SLI 

Scerri et al. (2011) - DYX 

CNTNAP2  26047 SLI 

DYX 

Vernes et al. (2008) - SLI 

Peter et al. (2011) - DYX 

Newbury et al., (2011) - SLI, DYX 

CTNNA3 VR22, 

ARVD13 

29119 PDS  Kraft (2010) 

CYP19A1  1588 DYX 

DVD 

Anthoni et al. (2012) - DYX, DVD 

DCDC2  51473 DYX Deffenbacher et al. (2004); Meng et al. 

(2005a); Schumacher et al. (2006) 

DGKI  9162 DYX Matsson et al. (2011) 

DIP2A DIP2, 

C21orf106 

23181 DYX Poelmans et al. (2009); Kong et al. (2016) 

DOCK4  9732 DYX Pagnamenta et al. (2010) 

DRD2  1813 PDS1 Lan et al. (2009) 

DYX1C1 EKN1 161582 DYX2 Taipale et al. (2003);  Scerri et al. (2004); Wigg 

et al. (2004); Brkanac et al. (2007); Marino et 
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al. (2007); Dahdouh et al. (2009); Lim et al. 

(2011); Newbury et al. (2011); Paracchini et al. 

(2011); Zhang et al. (2012); Mascheretti et al. 

(2013) 

ERC1 ELKS 23085 DVD Thevenon et al. (2013) 

EYA2  2139 PDS  Kraft (2010) 

FADS2  9415 PDS Kraft (2010) 

FMN1  342184 PDS Kraft (2010) 

FOXP1  27086 ELS Hamdan et al. (2010)  

FOXP2  93986 DVD 

DYX 

SLI 

POV 

Lai et al. (2001); MacDermot et al. (2005); 

Feuk et al. (2006); Lennon et al. (2007) - DVD 

Peter et al. (2011) - DYX 

Rice et al. (2009) - SLI 

Tolosa et al. (2010) - POV 

GNPTAB  79158 PDS Kang et al. (2010) 

GNPTG  84572 PDS Kang et al. (2010) 

GPLD1  2822 DYX Meng et al. (2005a) 

GRM3  2913 MMN Harrison et al. (2008) 

KIAA0319  9856 DYX3 

SLI 

Francks et al. (2004); Cope et al. (2005); 

Harold et al. (2006); Paracchini et al. (2008); 

Venkatesh et al. (2013a) - DYX 

Rice et al. (2009); Newbury et al. (2011) - SLI 

NAGPA  51172 PDS Kang et al. (2010) 

NFXL1  152518 SLI Villanueva et al. (2015) 

NRSN1 VMP 140767 DYX Deffenbacher et al. (2004) 

PCSK5  5125 PDS Kraft (2010) 

PLXNA4  91584 PDS Kraft (2010) 

ROBO1  6091 DYX4 

SLI 

Hannula-Jouppi et al. (2005) - DYX 

Bates et al. (2011) - SLI 

SETBP1  26040 ELS Filges et al. (2011); Marseglia et al. (2012) 

SLC24A3  57419 PDS Kraft (2010) 

SRPX2  27286 DVD Roll (2006) 

THEM2  55856 DYX Francks et al. (2004); Cope et al. (2005); 

Harold et al. (2006); Paracchini et al. (2008); 

Venkatesh et al. (2013a) 

TTRAP  51567 DYX Francks et al. (2004); Cope et al. (2005); 

Harold et al. (2006); Paracchini et al. (2008); 

Venkatesh et al. (2013a) 

Table 5.1.  Candidate speech / language genes included in these analyses ("SL genes").  DVD = developmental 

verbal dyspraxia, DYX = dyslexia, ELS = expressive language skills, MMN = mismatched negativity response to 

unexpected phonemes, PDS = persistent developmental stuttering, POV = poverty of speech, SLI = specific 

language impairment, SVF = semantic verbal fluency.  Note that some of the sources use gene symbols from the 

"Alias" column.  Best-supported / first-found association is listed first in "Associated phenotypes".                                                       

1. Kang et al. (2011a) found no association between DRD2 and PDS.  2. Bellini et al. (2005), Marino et al. (2005), 

Meng et al. (2005b), Ramachandra et al. (2008), and Venkatesh et al. (2011) found no association between 

DYX1C1 and dyslexia.  3. Paracchini et al. (2011) found no association between KIAA0319 and dyslexia.  4.  

Venkatesh et al (2013b) found no association between ROBO1 and dyslexia. 
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 Before delving into the genes and phenotypes listed in Table 5.1, several 

important caveats should be noted.  First, speech / language disorders are complex 

phenotypes.  Defining a phenotype of interest as a disorder simplifies analysis, but does 

obscure the impact of genes on specific aspects of the disorder (endophenotypes).  

Similarly, it is not truly the gene as a whole that impacts the phenotype of interest, but 

one or more variants within the gene (possibly working in concert with variants in other 

genes).  This discussion, and the subsequent analyses, deal with the relatively coarse level 

of genes and (primarily) disorders.  The studies cited in Table 5.1 include more detailed 

information on both implicated genotype and, in many cases, impacted phenotype.  

Second, an association between genotype and phenotype need not be causal.  Variants in 

two different genes may be statistically associated, and if one variant influences a given 

phenotype, the other will show a relationship with that phenotype as well.  Third, certain 

genetic variants known as expression quantitative trait loci (eQTLs) impact the 

expression of other genes.  In other words, the gene indicated by genetic research may 

not always be the same as the gene whose expression is relevant to the speech / language 

phenotype.  The identification of eQTLs requires both genotype and gene expression 

data, and may be key in pointing to genes whose expression profiles are of interest in this 

research. 

5.1.1  Dyslexia candidates 

 The ability to read and spell rests on typical development of cognitive functions 

including orthographic processing, phonemic awareness, and phonological short-term 

memory.  Skill in these areas can be measured with a variety of well-established 



 

 

120 

assessments including reading rate and accuracy measures, non-word repetition, and 

rapid automatized naming.  Several genomic regions have been implicated in 

susceptibility to dyslexia, in particular on chromosomes 15 and 6.  The first region 

(DYX1) includes the gene DYX1C1, which was associated with dyslexia in several 

cohorts (Taipale et al., 2003; Scerri, 2004; Wigg et al., 2004; Brkanac et al., 2007; 

Marino et al., 2007; Dahdouh et al., 2009; Newbury et al., 2011; Paracchini et al., 2011; 

Lim et al., 2011; Zhang et al., 2012; Mascheretti et al., 2013).  DYX1C1 is arguably the 

most-studied gene on this list, and some studies have failed to find an association 

between this gene and dyslexia (Bellini et al., 2005; Marino et al., 2005; Meng et al., 

2005b; Ramachandra et al., 2008; Venkatesh et al., 2011).  CYP19A1 is also located in 

DYX1 and has been associated with dyslexia (Anthoni et al., 2012).  The second region 

(DYX2) includes a haplotype (a set of genomic markers that are usually inherited 

together) which has been associated with dyslexia and which spans some of KIAA0319, 

all of TTRAP, and regulatory regions of THEM2 (Cope et al., 2005; Francks et al., 2004; 

Harold et al., 2006; Paracchini et al., 2008; Venkatesh et al., 2013a), though one study 

found no association between dyslexia and THEM2 (Venkatesh et al., 2013b).  DYX2 

also includes three other genes which have been associated with dyslexia.  DCDC2 has 

received the most attention (Deffenbacher et al., 2004; Meng et al., 2005a; Schumacher et 

al., 2006; Wilcke et al., 2009; Newbury et al., 2011); however, single nucleotide 

polymorphisms (SNPs) in GPLD1 and NRSN1  have each shown association with 

performance on several tests used in the diagnosis of dyslexia (Meng et al., 2005a; 

Deffenbacher et al., 2004). 
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 Additionally, CEP63 (Einarsdottir et al., 2015), DIP2A (Poelmans et al., 2009; 

Kong et al., 2016), DGKI (Matsson et al., 2011), DOCK4 (Pagnamenta et al., 2010), and 

ROBO1 (Hannula-Jouppi et al., 2005) have all been implicated in dyslexia, with one non-

replication of the association with ROBO1 (Venkatesh et al., 2013b).    Finally, there is 

some evidence for involvement of FOXP2 (Peter et al., 2011),  CNTNAP2 (Newbury et 

al., 2011; Peter et al., 2011), and CMIP. (Scerri et al., 2011)  Those two, however, are 

primarily and most commonly associated with other disorders, FOXP2 with DVD and 

CNTNAP2 and CMIP with SLI (see sections on DVD and SLI, below).  

 Most of these genes are known or hypothesized to have roles in brain-specific 

functions, including cortical neuron migration (DYX1C1, Wang et al., 2006; KIAA0319, 

Paracchini, 2006; DCDC2, Meng et al., 2005a), neurite development (NRSN1, Araki and 

Taketani, 2009; DIP2A, Poelmans et al., 2011; DOCK4, Ueda et al., 2008), axon 

guidance (ROBO1; Seeger et al., 1993; Kidd et al., 1998), cerebral cortex growth 

(CEP63; Sir et al., 2011), cortical neuron proliferation, sexual differentiation of brain 

areas, development of the neural circuitry underlying vocalizations in songbirds 

(CYP19A1, Morris et al., 2004; Forlano et al., 2006; Martínez-Cerdeño et al., 2006; 

Diotel et al., 2010), and presynaptic signaling (DGKI; Yang et al., 2011).  CYP19A1 

codes for aromatase, which is also essential to the development of vocal and auditory 

circuits in songbirds and vocalizing fish (Forlano et al., 2006).   The involvement of some 

of these genes in cortical development may be a clue to the anomalies of cortical neuron 

migration found in brains of dyslexic donors (Galaburda et al., 1985), and reading deficits 

in subjects with a cortical migration disorder (Chang et al., 2005).  For a review of 
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possible connections between DYX1C1, ROBO1, KIAA0319, and DCDC2 and issues in 

cortical development, see Galaburda et al. (2006). 

 Interestingly, DOCK4, DGKI, FOXP2, and CNTNAP2 are all located on 

chromosome 7q31-35.  This is within a genomic region that has been linked to autism, a 

disorder that also has a language component (Abrahams and Geschwind, 2008).   

CNTNAP2 and DOCK4 have both been associated with autism (Peñagarikano and 

Geschwind, 2012; Pagnamenta et al., 2010), as has FOXP2 in some populations but not 

others (e.g., Gauthier et al., 2003; Gong et al., 2004). 

 Anthoni et al (2006) have suggested MRPL19 and the adjacent C2ORF3 as 

dyslexia candidates.  MRPL19 is also adjacent to an intergenic region containing a risk 

haplotype, and the two genes are in strong linkage disequilibrium (i.e., variants in these 

genes are statistically associated).  The authors also found co-expression between these 

genes and other dyslexia candidates (DYX1C1, ROBO1, DCDC2 and KIAA0319), and 

attenuated expression of both genes in carriers of the risk haplotype.  However, three later 

studies failed to identify any association between these genes and dyslexia (Paracchini et 

al., 2011; Scerri et al., 2011; Venkatesh et al., 2013b).  Therefore, MRPL19 and C2ORF3 

have been excluded from the list of candidate genes treated here.  

5.1.2  Specific language impairment (SLI) candidates 

 SLI is a deficit in the normal development of expressive and / or receptive 

language skills with no more general explanation (such as hearing impairment or 

intellectual disability).  SLI is therefore a heterogeneous disorder, although children with 

SLI characteristically speak in short, simplified sentences (Newbury et al., 2005).  
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Although the classification of language disorders has changed in the Diagnostic and 

Statistical Manual of Mental Disorders  (DSM-V, American Psychiatric Association, 

2013), all research discussed here uses the term SLI as described.  Phonemic awareness 

and phonological short-term memory are impaired in SLI as in dyslexia (Bishop et al., 

1996; Shaywitz and Shaywitz, 2005), and the relationship between the two disorders is a 

subject of much debate, with some arguing that the underlying deficits are the same and 

that dyslexia should be considered a mild form of SLI (see Bishop and Snowling, 2004, 

for a review).  It is not surprising, therefore, that several genes are associated with both 

disorders. 

 CNTNAP2  and CFTR  are both located near FOXP2 (at the autism susceptibility 

locus on chromosome 7q, discussed above), and all three genes have been associated with 

SLI (Vernes et al., 2008; Newbury et al., 2011; O’Brien et al., 2003; Rice et al., 2009).  

In fact, FOXP2 down-regulates CNTNAP2 (Vernes et al., 2008), which codes for a 

neurexin protein that may have a role in human cortical development (Abrahams et al., 

2007).  ATP2C2 and CMIP, located within a risk locus on chromosome 16q (SLI 

Consortium, 2002), have also been associated with SLI (Newbury et al., 2009, 2011).  

Implicated genes at other loci include NFXL1 (Villanueva et al., 2015), ATP13A4 

(Kwasnicka-Crawford et al., 2005), and BDNF (Simmons et al., 2010).  ATP13A4 has 

been hypothesized to have a role in early neural development (Vallipuram et al., 2010).  

BDNF, or "brain-derived neurotrophic factor", has several important roles especially in 

central nervous system development, including regulation of dendrite growth and 
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synaptic plasticity, and is implicated in many other neurological and neuropsychiatric 

disorders (McAllister et al., 1999; Autry and Monteggia, 2012). 

 KIAA0319, a candidate gene for dyslexia, shows association with SLI as well 

(Rice et al., 2009; Newbury et al., 2011).  It has also been argued that ROBO1's 

association with dyslexia results from an impact on phonological short-term memory, 

which is equally central to SLI (Bates et al., 2011). 

5.1.3  Developmental verbal dyspraxia (DVD) candidates 

 DVD (also known as childhood apraxia of speech, or CAS) is not always 

consistently defined, but is generally considered to be characterized by an impaired 

ability to produce (and possibly sequence) the orofacial movements required for speech, 

in the absence of muscle weakness or paralysis (e.g., Lai et al., 2001; Ferry et al., 2008).  

In rare cases of DVD, mutations in FOXP2 cause or are associated with the disorder (Lai 

et al., 2001; MacDermot et al., 2005; Feuk et al., 2006; Lennon et al., 2007).  FOXP2 is a 

transcription factor that primarily down-regulates the expression of other genes, and its 

hundreds of putative targets have roles in neural transmission, synaptic plasticity, and 

axon guidance (and other cellular functions not specific to the CNS; Vernes et al., 2007). 

 Another DVD candidate, BCL11A, is located in a region linked to dyslexia (Peter 

et al., 2014) and is involved in cortical neuron migration (Wiegreffe et al., 2015).  A 

deletion specific to BCL11A was found in a patient with DVD as well as more 

generalized apraxia, hypotonia, and motor delays.  Although the report acknowledges the 

requirement that difficulty producing speech sounds is not accounted for by muscle 

weakness, it is unclear how the diagnosis of DVD was made given the generalized 
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apraxia and hypotonia (Peter et al., 2014).  SRPX2 is also associated with DVD 

accompanied by other traits, primarily seizures (Roll, 2006).  This gene is down-

regulated by FOXP2 (Roll et al., 2010), and its over-expression in mice affects synapse 

density and interferes with ultrasonic vocalization (Sia et al., 2013).  ERC1 is located in a 

region of overlap between deletions in several people with DVD (Thevenon et al., 2013).  

There is also some evidence that ATP13A4, previously mentioned for its potential role in 

SLI, may be involved in some cases of DVD (Worthey et al., 2013). 

     Finally, in addition to its association with dyslexia, CYP19A1 has been associated 

with speech sound disorder (SSD), which is also characterized by difficulty in producing 

intelligible speech sounds (Anthoni et al., 2012).  It is important to note that the 

distinction, if any, between DVD / CAS and SSD in the view of these researchers and 

those who diagnosed their subjects is unclear; the DSM-V has since defined DVD as a 

sub-type of SSD. 

5.1.4  Persistent developmental stuttering (PDS) candidates 

 PDS is characterized by syllable repetitions and prolongations, and interruptions 

of speech flow, typically developing gradually between ages 3 and 8.  In many children 

who initially develop these dysfluencies, they resolve spontaneously within a few years; 

in PDS, they may persist into adulthood (Ashurst and Wasson, 2011).  While the 

mechanisms underlying PDS are unclear, multiple brain areas and circuits have been 

implicated, in particular the basal ganglia (see Craig-McQuaide et al., 2014 for a review).        

 Mutations in GNPTAB, GNPTG, NAGPA, and AP4E1 have been associated with 

PDS in several populations (Kang et al., 2010; Raza et al., 2015).  The first three are part 
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of a signaling pathway that directs enzymes to the lysosome, an organelle with roles in a 

wide range of processes including waste disposal, nutrient sensing, and membrane repair 

(Settembre et al., 2013).  Mutations in GNPTAB and GNPTG are known to cause 

lysosomal storage disorders.  Kang and Drayna (2012) point out that these disorders do 

sometimes have surprisingly specific effects in which only certain organs show defects, 

and they can include neurological deficits.  However, the mechanistic connection 

between this pathway and the rather specific PDS phenotype is unknown.  AP4E1 is also 

involved in sorting proteins, and in neurons it may mediate the transport of AMPA 

glutamate receptors to the postsynaptic domain (Matsuda et al., 2008).  Cases of 

microcephaly and intellectual disability have also been linked to mutations in AP4E1 

(Moreno-De-Luca et al., 2011; Kong et al., 2013). 

 One unpublished genome-wide association study of PDS, though smaller than 

most genome-wide studies (84 people with PDS and 107 controls), suggested nine 

candidate genes based on statistically significant variants (Kraft, 2010).  Several of these 

genes have known relationships with a variety of brain functions and neurological 

disorders.  ARNT2, PLXNA4, and CTNNA3  have roles in neuroendocrinological cell 

development (Hosoya et al., 2001), axon guidance (Suto et al., 2005), and cell-cell 

adhesion (Smith et al., 2011), respectively.  All three are associated with autism 

(Maestrini et al., 2010; Bacchelli et al., 2014; Di Napoli et al., 2015). Additionally, 

ARNT2 regulates BDNF, an SLI candidate (Pruunsild et al., 2011).  PLXNA4 is also 

associated with Alzheimer’s Disease and Parkinson’s Disease (Jun et al., 2014; Schulte et 

al., 2013), and there is conflicting evidence for CTNNA3's involvement in Alzheimer’s 
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Disease (Smith et al., 2011).  ADARB2  affects glutamate levels in white matter 

(Kawahara et al., 2003), while differences have been found in white matter of people 

with PDS (Connally et al., 2014).  FADS2 modulates the effect of fatty acid intake during 

development, and it has been argued that this affects cognition (Rizzi et al., 2013).  The 

other four genes indicated by this GWAS are EYA2, FMN1, SLC24A3, and PCSK5, 

which are not, based on a survey of current literature, implicated in any neurological 

disorders or brain-specific functions (Kraft, 2010). 

 Finally, the hypothesis that PDS involves excessive dopamine (and in particular 

D2 receptors in the striatum; Alm, 2004) resulted in a study showing an association 

between DRD2 and PDS (Lan et al., 2009).  This association, found in a Chinese cohort, 

did not appear in either a Brazilian or a European cohort (Kang et al., 2011a).  It is 

unknown whether the initial finding in a Chinese cohort was a false positive, or whether 

the association is present in the first population but not the latter two; however, the 

authors of the non-replication point out that the allele associated with PDS in the Chinese 

cohort was far less common in the latter two cohorts, and that this difference may have 

obscured the association in the second study. 

5.1.5  Other phenotypes related to speech and language ability 

 Genes that are examined in this chapter also include FOXP1 and SETBP1.  Both 

are implicated in expressive language impairments, accompanied by broader effects 

(aggressiveness and obsessive-compulsive behavior for FOXP1, Hamdan et al., 2010; 

delayed / impaired motor skills and distinctive facial features for SETBP1, Filges et al., 

2011; Marseglia et al., 2012). 
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 Schizophrenia has a language component, and two genes implicated in 

schizophrenia also show association with language measures in healthy controls.  The 

first is GRM3 (Harrison et al., 2008), which predicted neural responses to unexpected 

phonemes as measured by mismatch negativity using magnetoencephalography. 

(Kawakubo et al., 2011).  The second is CACNA1C (Green et al., 2010), which was 

associated with performance on a lexical access task (Krug et al., 2010).  There is 

evidence that performance on this task is impaired in dyslexia and SLI; therefore, 

CACNA1C may be a candidate gene for these disorders (Cohen et al., 1999; Weckerly et 

al., 2001). 

 Finally, in addition to connections with multiple disorders discussed above, 

FOXP2 has been associated with poverty of speech in people with schizophrenia (Tolosa 

et al., 2010) and CNTNAP2 with language acquisition (Whitehouse et al., 2011; Al-

Murrani et al., 2012) and response to syntactic violations as measured by event-related 

brain potentials (Kos et al., 2012).   

 For many of these genes, the mechanisms relating genotype to speech and 

language abilities are completely unknown.  For some genes, little or nothing is known of 

their functions.  Given our sparse knowledge of these genes, their roles and their 

relationships, it is not easy to move beyond making lists of candidates that have shown 

statistical associations.  Neuroanatomically-specific gene expression data suggest a first 

step.  As mentioned earlier, the most obvious mechanism for genetic variants to influence 

these phenotypes is through effects on brain areas where those genes are expressed.  The 

expression profiles of candidate genes are therefore of interest, not only across the brain 
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as a whole, but across samples from brain structures of particular relevance to speech and 

language functions. 

 In addition to cerebral cortex, the basal ganglia and cerebellum support many 

aspects of these functions.  Cortico-basal ganglia and cortico-cerebellar circuitry are 

involved not only in speech-related motor control (Kent, 2000; Wildgruber et al., 2001; 

Riecker et al., 2005) but in speech processing, including at the phoneme level (Booth et 

al., 2007; Peeva et al., 2010; see Mariën et al., 2013; Kotz et al., 2009 for reviews of CB 

and BG involvement, respectively).  In these language-related circuits, cortical 

projections from the basal ganglia and cerebellum have different but overlapping 

distributions at the thalamus, suggesting an interplay between their roles (Barbas et al., 

2013). 

 The cerebral cortex, basal ganglia and cerebellum have all been implicated in 

dysfunctions of speech and language as well as healthy functioning.  Dyslexia has long 

been tied to disturbances of cortical neuronal migration, particularly in the temporal lobe 

(Galaburda, 2005; Giraud and Ramus, 2013).  Areas from all four cortical lobes 

(particularly parietal and inferior frontal) show differences between people with dyslexia 

and controls, both in structure and in functional activations during relevant language 

tasks, as do the anterior and posterior lobes of the cerebellum (see Eckert, 2004 for a 

review).  Ullman and Pierpont (2005) have proposed that SLI results from deficits in the 

procedural memory system, including the cerebral cortex, basal ganglia and cerebellum.  

All three structures have also been implicated in PDS (Alm, 2004; Brown et al., 2005) 

and in DVD (Belton et al., 2003; Vargha-Khadem et al., 1998).  Nicolson and Fawcett 
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(2007) hypothesized more generally that many developmental disorders might arise from 

disturbances of cortico-basal ganglia and cortico-cerebellar circuitry. 

 By determining where in the brain candidate genes are expressed, and whether / 

where they are co-expressed, we can consider our knowledge of these genes in light of 

our incomplete, but more substantial, knowledge of larger-scale functional neuroanatomy 

and pathophysiology of the disorders.  The study described in this chapter identifies brain 

areas where these genes are preferentially expressed, and shows their co-expression 

relationships using multi-dimensional scaling and co-expression network analysis 

approaches. 

 

5.2 Speech and Language Disorders Database 

 A major gap exists between studies that aim to identify candidate genes for 

developmental language disorders and brain imaging studies of the neural bases for 

linguistic functions, which may be impacted by those same disorders.  This section 

outlines the construction of a novel web-accessible database that aims to narrow this gap 

by bringing both data types into a common framework.  This database also, in large part, 

provides the list of candidate genes shown in Table 5.1.  The overall database 

(http://neurospeech.org/sldb) contains a series of manually curated results from the 

published literature describing (i) genes or chromosomal regions (genetic loci) for which 

there is evidence of association to speech and language-related phenotypes, and (ii) 

results from the brain imaging literature describing localized structural or functional 

abnormalities observed in populations of individuals with heritable speech or language 
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disorders compared to typically developing control subjects.  Thus these efforts bring 

results from two fundamentally different levels of investigation together into a common 

database system.  This section focuses on the portions of the database concerned with 

candidate genes rather than with brain imaging studies.  The overall database structure is 

further described in Bohland et al. (2014). 

5.2.1  Candidate genes 

 The database currently contains records related to 27 individual genes that have 

been implicated, with varying degrees of evidence, in speech- or language-related 

phenotypes.  The current gene list includes genes for which some association has been 

found to DYX, SLI, DVD, and PDS; it also includes genes that have been specifically 

linked to quantitative measures of speech and language processing. 

 For each of the genotype-phenotype relationships curated from the literature and 

stored in the database, our web-based interface provides users simple access to the 

curated details, and also provides links to the Entrez Gene database 

(http://www.ncbi.nlm.nih.gov/gene), the original publication via Pubmed 

(http://www.ncbi.nlm.nih.gov/pubmed/), and — using simple URL based mapping — to the 

Allen Human Brain Atlas (AHBA) website (http://human.brain-map.org) depicting brain 

expression profiles for the gene of interest.  The Allen Brain Atlas Application 

Programming Interface (API) is used to provide direct links to download a complete set 

of pre-processed, normalized human gene expression data from the AHBA for each gene 

of interest, in either JSON or XML format.  A screen capture demonstrating the primary 

entry point in the database (http://neurospeech.org/sldb), which summarizes database 
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contents for these genes, is shown in Fig 5.1.  The table shown in the screen capture 

shows basic gene metadata, and provides links to AHBA data for each gene in the 

database. It also gives a summary of how many studies with positive association results 

for this gene have been curated and included in the database to date, and the total number 

of gene-phenotype associations reported for each gene.  This allows the novice user to 

quickly ascertain which genes are of highest interest (reflected in many studies), and also 

places responsibility on the curators to ensure that sampling of studies is as free from bias 

as possible. Clicking the row corresponding to an individual gene leads to a page 

summarizing the reports of associations, as well as any replication failures (i.e., studies 

that tested examined the same gene and did not find association with a similar phenotype) 

entered into the database, for that gene. This more detailed view is depicted in Fig 5.2 for 

the gene ROBO1. 
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Fig 5.1.  Screen capture of a (partial) view into the database showing a sortable table of genes implicated in 

speech / language phenotypes, sorted by gene symbol.  From this primary view, the user is able to quickly survey 

the list of genes implicated in speech and language disorders that are currently in the database, as well as the 

number of reports curated by gene, and hyperlink to a number of relevant resources for each record, including 

the Entrez Gene page for the gene of interest, and the Allen Human Brain Atlas page for the gene of interest. 

The right-most links (labeled “JSON/XML) provide a mechanism to download gene expression data for this 

gene using the Allen Brain Atlas API. 
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Fig 5.2.  Screen capture of a (partial) view into the database detailing reports for the gene ROBO1. This view 

provides two sortable tables, the first of which shows positive evidence for association with any speech or 

language phenotype, and the second of which shows negative results. The study at bottom failed to replicate the 

original association of SNPs in ROBO1 to susceptibility for dyslexia, and the corresponding record in the table at 

top is flagged with a blue icon. Users can expand the rows in either table to provide more detailed information 

about study methods. Finally, users can download each record as a JSON or XML structured text file. 

 

5.2.2  Inclusion criteria 

 Genes were selected for entry into the database by a process intended to minimize 

potentially subjective interpretation of results from the literature.  A series of search 

terms form the basis of RSS (Really Simple Syndication) feeds, current versions of which 

are available through the website (see http://neurospeech.org/sldb/help).  These search 

terms take the following forms: 

http://neurospeech.org/sldb/help
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1.  gene <phenotype> 

2.  genetics <phenotype> 

3.  linkage <phenotype> 

4.  SNP <phenotype> 

 For example, searches include gene dyslexia and linkage stuttering.  Phenotypes 

with multi-word names are encased in quotations (e.g., gene “specific language 

impairment”).  Initially, an additional search expression beginning with the term locus 

was used; this was dropped because the relevant results were a subset of those turned up 

by the term linkage.  Strings currently used as phenotype names include: stuttering, 

dyslexia, reading disability, "verbal dyspraxia", "specific language impairment", "SLI", 

"childhood apraxia of speech", "language delay", and "fluency." 

 In addition, once a gene of interest is established in the literature, follow-up 

studies can be found by explicitly searching for the gene symbol1 appearing concurrently 

with certain search terms.  Therefore, an additional search expression, and corresponding 

RSS feed, takes the form: 

 

(<gene1> OR <gene2> OR ... <geneN>) AND (speech OR language OR <phenotype1> 

OR <phenotype2> ... OR <phenotypeN>) 

 

                                                 
1 Note that Pubmed will automatically explode search terms with synonymous gene symbols as well as 

synonyms from Medical Subject Headings (MeSH) and Unified Medical Language System (UMLS) 

ontologies. 
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where <gene> terms are replaced by official gene symbols for genes in our database, and 

<phenotype> terms are the same as noted above. 

 These searches return hundreds of results, many of which do not fulfill the above 

criteria.  Pubmed’s Really Simple Syndication (RSS) feeds, coupled with an RSS reader, 

however, provide an efficient method for sifting through new literature as it appears, and 

for flagging new studies for inclusion.  As new studies are located, they are added to an 

electronic queue for inclusion in the database.  (Some genes included in this chapter have 

not yet been entered into the database.) 

5.2.3  Concluding remarks 

 The approach used in this chapter, like any work attempting to bridge the 

molecular and neuroanatomical levels, relies in part upon careful and thorough curation 

of the literature to establish the best candidate gene list according to current knowledge, 

and the ability to refine and expand that list to reflect continuing research.  The database 

described above facilitates this curation, brings information about genotype-phenotype 

relations specific to speech and language disorders together with results from 

neuroimaging research, and provides the ability to link to and / or download spatial gene 

expression data.  Thus, these efforts represent a first step toward bringing molecular level 

information into cognitive and computational theories of speech and language function. 

 

5.3 Preferential expression of genes implicated in speech and language disorders 

 This section focuses on the expression patterns of individual speech / language 

candidate genes across the brain, and particularly on where those genes show unusually 
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high expression levels, or preferential expression.  Intuitively, preferential expression (as 

used here) means that in a given brain area, the gene's expression level "stands out" 

(relative to its expression elsewhere) more than other genes' expression levels stand out 

(relative to their own expression elsewhere).  In other words, we are testing for areas 

where the deviation of a gene's expression from its brain-wide average (or average across 

some other "parent" structure) is large compared to other genes. 

 Importantly, strong expression does not necessarily imply preferential expression.  

A gene showing uniformly strong expression throughout the brain is not considered 

preferentially expressed in a given brain area.  In fact, because of differences in probe 

efficacy, we cannot distinguish between a gene with uniformly strong expression or 

uniformly weak expression throughout the brain in these data.  Conversely, preferential 

expression does not imply strong expression.  A gene may show only slightly higher 

expression levels in an area than it does elsewhere, but if few other genes show even that 

much of an increase, the gene may meet the criteria for preferential expression (see 

Methods).  In practice, higher expression levels in a particular area frequently co-occurs 

with preferential expression. 

5.3.1  Methods 

 Expression values were standardized within-probe across all left-hemisphere 

samples using conventional z-scoring (i.e., not the weighted z-scoring described in 

Chapter 2).  For each of the ~32,000 genes in the AHBA, probes were z-scored across all 

left-hemisphere samples and a mean expression value was calculated for each of 10 broad 

regions by averaging across samples.  For each of 88 sub-regions, the un-standardized 
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probe data was z-scored across left-hemisphere samples within the "parent" region only, 

and values for those samples were then averaged to calculate the sub-region mean 

expression profile.  The above steps were performed within each donor brain (though not 

all donors had left-hemisphere samples available for all 88 fine regions). 

 Each speech / language (SL) candidate gene's mean expression value for a region 

was converted to a percentile rank in the distribution of mean values for all genes in that 

region.  This was also done separately for each donor.  Preferential expression was 

defined as a percentile rank of 95 or greater in all donors with samples available for the 

brain region.  This is equivalent to an uncorrected p-value under 0.05.  The results shown 

here do not survive Bonferroni correction for multiple comparisons (for N = 42 genes x 

10 regions, or N = 42 genes x 88 regions). 

 Of the full set of ~32,000 genes, those that were preferentially expressed in at 

least one of the 11 broad area were identified, and the hypergeometric test was used to 

assess whether the SL genes were overrepresented in this group.  The same test was then 

performed using the 88 fine areas. 

5.3.2  Results 

 Of the 42 SL genes, 12 were among those showing preferential expression in at 

least one broad region (3,041 genes total, p < 1 x 104, hypergeometric test) and 16 in at 

least one fine region (3,498 genes total, p < 1 x 106). 

 Mean expression values of the SL genes appear in Fig 5.3.  In addition to the 

green outlines which flag preferentially expressed genes (those with a percentile rank of 

at least 95 in all donors), yellow outlines indicate a percentile rank of at least 90 in all 
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donors.  Note also that although preferential expression is based on a minimum value 

across donors, values indicated in the heatmaps are mean expression values across all 

donors. 

 

Ctx = Cerebral cortex; Hipp = Hippocampal formation; Amyg = Amygdala; Str = Striatum; GP = Globus 

pallidus; Th = Thalamus; Hyp = Hypothalamus; Mb = Midbrain; Po = Pons; Med = Medulla; Cb = Cerebellum. 

Fig 5.3 (cont. on next page).  Expression heatmaps of speech / language candidate genes.  Values are averaged 

across donors.  Genes are ordered by clusters obtained by hierarchical clustering of values across broad brain 

regions.  Asterisks next to each gene symbol indicate phenotypes the gene has been associated with.  Colored 

outlines indicate expression at or above the 95th percentile (green boxes) or 90th percentile (yellow boxes) for 

that region within each donor.  Parenthetical values following region names indicate the number of donors with 

left-hemisphere samples available. 

 

 Few genes were preferentially expressed in more than one broad region, with the 

exceptions of DOCK4 (HF, STR), SLC24A3 (HF, TH) and KIAA0319 (HF, TH) (Fig 

5.3).  SL genes that showed preferential expression tended to do so in the hippocampal 

formation, striatum, or thalamus (4 genes in each case); also note that cerebral cortex 

ranked five SL genes at the 90th percentile or above for all donors.  Although FOXP2 

was not preferentially expressed in any broad region, its highest percentile ranks were in 
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the cerebral cortex, striatum, and thalamus (minimum across donors of 80th, 81st, and 

87th percentile, respectively). 
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SFG = superior frontal gyrus; MFG = middle frontal gyrus; IFG = inferior frontal gyrus; SRoG = superior 

rostral gyrus; IRoG = inferior rostral gyrus; LOrG = lateral orbital gyrus; MOrG = medial orbital gyrus; PCLa 

= paracentral lobule, anterior part; PaOG = parolfactory gyri; FP = frontal pole; fro = frontal operculum; GRe 

= gyrus rectus; PrG = precentral gyrus; SCG = subcallosal gyrus; PoG = postcentral gyrus; IPL = inferior 

parietal lobule; SPL = supraparietal lobule; PCu = precuneus; FuG = fusiform gyrus; HG = Heschl's gyrus; 

STG = superior temporal gyrus; MTG = middle temporal gyrus; ITG = inferior temporal gyrus; PLP = planum 

polare; PLT = planum temporale; TP = temporal pole; TG = transverse gyri; Cun = cuneus; SOG = superior 

occipital gyrus; IOG = inferior occipital gyrus; LiG = lingual gyrus; OTG = occipito-temporal gyrus. 

Fig 5.3 (cont. on next page).  Expression heatmaps of speech / language candidate genes.  Values are averaged 

across donors.  Genes are ordered by clusters obtained by hierarchical clustering of values across broad brain 

regions.  Asterisks next to each gene symbol indicate phenotypes the gene has been associated with.  Colored 

outlines indicate expression at or above the 95th percentile (green boxes) or 90th percentile (yellow boxes) for 

that region within each donor.  Parenthetical values following region names indicate the number of donors with 

left-hemisphere samples available. 

 



 

 

142 

CgGf = Cingulate gyrus, frontal part; CgGp = Cingulate gyrus, parietal part; LIG = Long Insular Gyri; SIG = 

Short Insular Gyri. 

Fig 5.3 (cont. on next page).  Expression heatmaps of speech / language candidate genes.  Values are averaged 

across donors.  Genes are ordered by clusters obtained by hierarchical clustering of values across broad brain 

regions.  Asterisks next to each gene symbol indicate phenotypes the gene has been associated with.  Colored 

outlines indicate expression at or above the 95th percentile (green boxes) or 90th percentile (yellow boxes) for 

that region within each donor.  Parenthetical values following region names indicate the number of donors with 

left-hemisphere samples available. 

 

 These expression patterns did not group by associated disorders (Fig 5.3).  

However, most PDS candidates did have higher expression values (and sometimes 

preferential expression) in either the telencephalon (GNPTAB, NAGPA, ARNT2, 

PLXNA4), the amygdala, striatum, diencephalon, and brainstem (DRD2, EYA2, FADS2), 

or the globus pallidus, thalamus, and brainstem (GNPTG, AP4E1, ADARB2, CTNNA3) 

than in other brain areas. 

 A set of 93 finer brain regions revealed a few more genes with preferential 

expression in areas throughout the brain (though still none in any amygdalar nuclei).  

Most SL genes showed relatively modest variation in either expression percentile rank 

within any given telencephalic or diencephalic broad region, with the exceptions of 

differences between hippocampal sub-structures, lower values in the nucleus accumbens 

than the rest of the striatum, and some distinction between the dorsal and ventral 

thalamus. 
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DG = Dentate gyrus; CA fields = CA fields; S = Subiculum; ATZ = Amygdaloid Transition Zone; BLA = 

Basolateral Nucleus; BMA = Basomedial Nucleus; CeA = Central Nucleus; LA = Lateral Nucleus; COMA = 

Cortico-medial group; BCd = Body of the Caudate Nucleus; HCd = Head of the Caudate Nucleus; TCd = Tail of 

the Caudate Nucleus; Pu = Putamen; Acb = Nucleus accumbens; GPe = globus pallidus, external segment; GPi = 

globus pallidus, internal segment; DTA = Anterior Group of Nuclei; DTP = Posterior Group of Nuclei; DTM = 

Medial Group of Nuclei; DTL = Lateral Group of Nuclei; ILr = Rostral Group of Intralaminar Nuclei; ILc = 

Caudal Group of intralaminar Nuclei; LGd = Dorsal Lateral Geneiculate Nucleus; MG = Medial Geniculate 

Complex; VT = Ventral Thalamus, Left; AHR = Anterior Hypothalamic Region; MamR = Mammillary Region; 

PrOR = Preoptic Region; TubR = Tuberal Region. 

Fig 5.3 (cont. on next page).  Expression heatmaps of speech / language candidate genes.  Values are averaged 

across donors.  Genes are ordered by clusters obtained by hierarchical clustering of values across broad brain 

regions.  Asterisks next to each gene symbol indicate phenotypes the gene has been associated with.  Colored 

outlines indicate expression at or above the 95th percentile (green boxes) or 90th percentile (yellow boxes) for 

that region within each donor.  Parenthetical values following region names indicate the number of donors with 

left-hemisphere samples available. 
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IC = Inferior Colliculus; SC = Superior Colliculus; SN = Substantia Nigra; VTA = ventral tegmental area; 

MBRF = Midbrain Reticular Formation; CGMB = central grey substance of midbrain; RN = Red Nucleus; SOC 

= Superior Olivary Complex; MPB = medial parabrachial nucleus; LPB = lateral parabrachial nucleus; LC = 

locus ceruleus; SubC = nucleus subceruleus; PPRF = Paramedian Pontine Reticular Formation; 5 = Trigeminal 

Nuclei; Bpons = Basal part of pons; Arc = arcuate nucleus of medulla; Cu = cuneate nucleus; IO = inferior 

olivary complex; MeRF = medullary reticular formation; Sp5 = spinal trigeminal nucleus; Cb-AL = Anterior 

Lobe; Cb-PL = Posterior Lobe; CbN = Cerebellar nuclei. 

Fig 5.3.  Expression heatmaps of speech / language candidate genes.  Values are averaged across donors.  Genes 

are ordered by clusters obtained by hierarchical clustering of values across broad brain regions.  Asterisks next 

to each gene symbol indicate phenotypes the gene has been associated with.  Colored outlines indicate expression 

at or above the 95th percentile (green boxes) or 90th percentile (yellow boxes) for that region within each donor.  

Parenthetical values following region names indicate the number of donors with left-hemisphere samples 

available. 

 

 In contrast, several genes had high expression values in only one or two nuclei of 

the midbrain, pons, and / or medulla (e.g. FOXP2, BCL11A, DYX1C1, PCSK5, and 

SLC24A3).  However, few of these met the criteria for preferential expression.  In the 
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midbrain, three genes were preferentially expressed (SRPX2) or had minimum ranks of at 

least 90 in the substantia nigra (DRD2, ADARB2).  In the medulla, the inferior olivary 

complex ranks PCSK5 and AP4E1 at or above the 90th and 95th percentile for all donors, 

respectively.  Several other genes show stronger expression there than elsewhere in 

medulla or, for the most part, the rest of the brainstem (e.g. FOXP2, FMN1).  This is 

maintained when expression values are converted to percentile ranks: five genes have 

higher minimum percentile ranks (across donors) in the inferior olivary complex than in 

any other brainstem area (FOXP2, GRM3, FMN1, FOXP1, AP4E1). 

 In the cerebellum, most genes showed higher expression in either the cerebellar 

cortex or cerebellar nuclei.  In particular, GPLD1 and ERC1 are preferentially expressed 

in the cerebellar cortex, and THEM2 and EYA2 in the cerebellar nuclei. 

 

5.4  Co-expression modularity 

 This section examines potential enrichment of co-expression for a given gene set 

within specific brain regions.  Enriched co-expression may point to particular brain 

regions through which candidate genes could influence behavioral phenotypes, and 

ultimately may suggest mechanisms for that influence.  Here, a "modularity score" is 

used to measure the extent to which a group of genes is co-expressed across samples 

within a given region (i) relative to other genes within the region, and (ii) relative to their 

own co-expression across randomly selected samples. 
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5.4.1  Methods 

 AHBA gene expression profiles were converted to z-scores across samples.  

Gene-gene co-expression networks were then generated using the PCC computed across 

expression profiles for pairs of genes.  All PCC matrices were of size 32,536 x 32,536 

(the number of unique genes in the dataset).  Each co-expression network used samples 

from a particular brain region and its sub-regions.  To account for tissue sampling biases 

(i.e., an overrepresentation of samples from one brain region), the PCC approach was 

adjusted to allow weighting of individual samples given a partition set S containing K 

regions, R1, R2,. . .RK, where Rj contains the integer indices of all samples in that brain 

region.  The resulting equation for weighted correlation between gene m and gene n is 

given by: 

𝑟𝑚𝑛
S =  

∑ (∑
1

|𝑅𝑘|𝑖∈𝑅𝑘
(𝐸AHBA(𝑚,𝑖)−𝜇𝑆(𝑚))(𝐸AHBA(𝑛,𝑖)−𝜇𝑆(𝑛)))𝐾

𝑘=1 𝐾⁄

𝜎𝑆(𝑚)𝜎𝑆(𝑛)
         (1) 

 For each AHBA region analyzed, the partition function S was set to represent the 

set of its child regions in the reference hierarchy. For example, the children of the region 

Cerebral Cortex in the hierarchy are Frontal Lobe, Insula, Limbic Lobe, Occipital Lobe, 

Parietal Lobe, and Temporal Lobe, each of which receives equal weight (despite non-

uniform sampling) in computing the correlation coefficient for the cortical co-expression 

network.  In order to obtain reasonable correlation estimates, only regions with at least 30 

samples available were included. 

 Enrichment of co-expression within a brain region was characterized by 

comparing the modularity of a provided gene set to values expected by chance in each 
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AHBA region-specific co-expression network. The modularity score for a given gene set 

G was defined as: 

𝑀𝐺 =
1

|𝐺|(|𝐺|−1)
∑ ∑ abs (𝐹(𝑟𝑖𝑗))𝑗∈𝐺,𝑗≠𝑖𝑖∈𝐺 −

1

|𝐺|(|�̅�|)
∑ ∑ abs (𝐹(𝑟𝑖𝑗))𝑗∈�̅�𝑖∈𝐺        (2) 

where F( ) denotes the Fisher r to z transformation, and �̅� is the complement of gene set 

G (i.e., the genes in the dataset that are not in set G). The value MG then indicates the 

difference between the average co-expression score between pairs of genes in G and the 

average co-expression score between pairs of genes where one gene is in G and one gene 

is not in G. 

 Two methods were used to assess the extent to which a given gene set had high 

modularity in a given brain region (and its subregions), both using randomization 

approaches. In the first method (gene permutation), a series of 1000 randomly selected 

gene sets of the same cardinality as the gene set of interest are used to generate a 

distribution of expected modularity scores, for each region-specific network.  Then, the 

modularity score for set G is standardized by subtracting the mean and dividing by the 

standard deviation of scores obtained in these random draws. Thus the final, region-

specific standardized modularity score reflects how modular a given gene set is in a given 

brain area relative to other gene sets in units of standard deviation (i.e., a score of 5 is 

five standard deviations higher than average).  P-values are also obtained by calculating 

the percentile rank of MG  in the relevant empirical chance distribution (i.e., without 

assuming chance distributions were Gaussian). In results presented here, the p-values are 

Bonferroni corrected for multiple comparisons across brain regions (N = 60). 
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 A second randomization procedure (sample permutation) compared the 

modularity of a gene set in a given brain region to the modularity of the same gene set in 

randomly selected samples.  Specifically, a null distribution was generated by 

recomputing MG  across randomly selected groups of left-hemisphere samples from the 

AHBA, with the number of samples matched to the number of samples available in the 

brain region of interest. It should be noted that the sample permutation method is more 

computationally intensive than the gene permutation approach above because it requires 

recalculating a weighted correlation network for every permutation using a new subset of 

available samples. As above, a set of 1000 random selections of samples was used to 

calculate each empirical null distribution. Based on these chance distributions, 

standardized modularity scores and Bonferroni-corrected p-values were calculated as 

described above.  Scores based on the sample permutation approach describe how 

modular the gene set is in samples from a specific brain area – i.e., the anatomical 

specificity for this gene set – whereas scores based on gene permutations reflect how 

modular the gene set is in a brain region relative to other gene sets.  These 

complementary pieces of information are presented separately for each gene set of 

interest. 

5.4.3  Results 

 Fig 5.4 shows co-expression modularity based on the gene permutation approach 

(left column) and the sample permutation approach (right column) of the five groups of 

genes defined by associated disorders.  The first row corresponds to the complete set of 

42 SL genes.  These genes showed higher co-expression modularity than average for 
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random genes (i.e., positive modularity z-scores) in all 60 regions.  The genes' modularity 

was significant (p < 0.05 after correction for multiple comparisons) in the cerebral cortex, 

as well as specifically in the frontal, temporal and limbic lobes.  Within those lobes, the 

inferior frontal, inferior temporal, fusiform, frontal cingulate, and parahippocampal gyri 

also showed enhanced modularity for these genes.  Other regions showing significant 

modularity included the diencephalon, pons, and medulla. 
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Fig 5.4 (cont. on next page).  Enrichment of speech / language gene candidates in region-specific AHBA 

networks.  Each row represents regional enrichment of a gene set based on co-expression modularity relative to 

other gene sets (gene permutation, left column) and relative to random samples (sample permutation, right 

column).  Rows illustrate results for the full set of 42 candidates (A, B), and for subsets consisting of genes 

implicated in dyslexia (C, D), and specific language impairment (E, F).  See panel K for a legend indicating the 

brain regions corresponding to each individual wedge.  Bold outlined wedges indicate significant results (p < 

0.05, Bonferroni-corrected).  For sample permutations, values for the brain and grey matter are set to 0 (since it 

is impossible to select random samples outside of those structures), as well as the telencephalon and cerebral 

cortex (because slightly fewer than half the samples are outside these structures). 
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Fig 5.4 (legend on next page).  Enrichment of speech / language gene candidates in region-specific AHBA 

networks.  Each row represents regional enrichment of a gene set based on co-expression modularity relative to 

other gene sets (gene permutation, left column) and relative to random samples (sample permutation, right 

column).  Rows illustrate results for developmental verbal dyspraxia (G, H), and persistent developmental 

stuttering (I, J).  See panel K for a legend indicating the brain regions corresponding to each individual wedge.  

Bold outlined wedges indicate significant results (p < 0.05, Bonferroni-corrected).  For sample permutations, 

values for the brain and grey matter are set to 0 (since it is impossible to select random samples outside of those 

structures), as well as the telencephalon and cerebral cortex (because slightly fewer than half the samples are 

outside these structures). 
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K. 

Fig 5.4.  Enrichment of speech / language gene candidates in region-specific AHBA networks.  Panel K is a 

legend indicating the brain regions corresponding to each individual wedge in panels A-J. 

 

 Neither dyslexia, SLI nor DVD candidate genes (Fig 5.4, second through fourth 

rows) reached significant modularity in any brain region.   However, the dyslexia 

candidate group showed largely positive values that were highest (over 3) in the temporal 

lobe and inferior temporal gyrus, as well as the limbic lobe, thalamus and both sub-

structures of the medulla.  PDS candidate genes (Fig 5.4, fifth row) showed enhanced 

modularity in the basal ganglia and diencephalon.  The parietal lobe, and specifically the 

angular gyrus, also reached significance, as well as the lingual gyrus and spinal 

trigeminal nuclei. 

 The SL candidates as a group, dyslexia candidates, and SLI candidates showed 

similar or slightly lower modularity in most brain regions than across randomly selected 

samples, though the full SL gene list and the SLI candidates both yielded modest positive 
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values in the cerebellum.  In contrast, the DVD candidates showed enhanced modularity 

relative to random samples in the frontal and temporal lobes, lingual and frontal cingulate 

gyri, and the pons, and the PDS candidates in the basal ganglia. 

 

5.5  Co-expression landscape 

 The following analysis uses the similarity / dissimilarity between expression 

profiles of the SL genes to visually analyze their overall co-expression landscape, and to 

examine whether genes implicated in certain subclasses of these disorders cluster in this 

co-expression space.  In the two-dimensional landscape, calculated using non-metric 

multi-dimensional scaling (MDS), distances between genes are based on their co-

expression.  Genes with either positively or negatively correlated expression values 

across samples  (either of suggests a regulatory relationship) are represented as nearby 

locations, while genes whose expression profiles have no clear relationship are 

represented as distant locations.  This technique does not create a perfect representation 

of the distance relationships, but does provide a useful visualization for exploration of the 

anatomical expression patterns of genes implicated in related phenotypes.  In this way, 

the co-expression landscape of candidate genes is examined here both within the brain as 

a whole and separately within the cerebral cortex, basal ganglia, and cerebellum. 

5.5.1  Methods 

 Pearson's Product-moment Correlation Coefficients (PCCs) were calculated 

between each pair of SL genes, based on their expression profiles across an anatomically 

relevant set of samples.  Correlation distance between two genes was then defined as one 
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minus the absolute value of this PCC.  Using the magnitude of the PCCs allows the 

distance measure to treat inverse relationships, such as one gene down-regulating 

another, as constituting "similar" expression. 

 Distance matrices were calculated by pooling samples from all donors for each of 

four sample subsets: (i) the entire left hemisphere, (ii) left cerebral cortex only, (iii) left 

basal ganglia only and (iv) left cerebellum only.  In each case, probes were z-scored 

across the samples in the subset (using conventional, i.e. un-weighted z-scoring).  

Cerebral cortex was defined to include the frontal, parietal, temporal, and occipital lobes, 

the cingulate gyrus, and the insula.  Basal ganglia included the striatum, pallidum, 

subthalamic nucleus, and substantia nigra. 

 For each disorder (dyslexia, SLI, DVD, and PDS), pair-wise distances "within-

group" were compared to those "across-group".  Genes within a group included all those 

associated with the disorder (including those also associated with one or more additional 

disorders).  Across-group distances were calculated between all possible pairs of a gene 

in the group with a gene outside the group.  For each group, a one-tailed, two-sample t-

test was performed on the two sets of distances to test for significantly smaller within-

group than across-group differences.  The Bonferroni method was used to correct for 

multiple comparisons (i.e., 4 groups x 4 sample sets = 16 comparisons). 

 Donor variability was assessed by calculating within-donor distance matrices and 

performing a Mantel test (Mantel, 1967) for each pair of donors.  In the Mantel test, the 

PCC between two distance matrices is compared to a distribution of PCCs between the 

first matrix and randomly permuted versions of the second.  The proportion of the 
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distribution that is greater than the original PCC determines the PCC's statistical 

significance.  This corrects for the dependence between values in a distance matrix (i.e., a 

change in one value of the matrix entails a change in the other values, since the gene's 

"location" relative to all the other genes has been altered).  10,000 random permutations 

per donor pair were used. 

 To visualize the co-expression distance relationships between genes, non-metric 

multi-dimensional scaling was applied to calculate the genes' coordinates in a two-

dimensional space.  This method solves an optimization problem such that the distances 

between pairs of points (genes) in the 2D embedding space approximate a monotonic 

transformation of the input distance matrix.  The method specifically minimizes "stress", 

or the squared difference between the input and output distance matrices, normalized by 

the sum of all squared input distances. 

5.5.2  Results 

 PDS candidate genes were the only group to show a smaller mean within-group 

than across-group distance in all sample subsets except the cerebellum (Fig 5.5).  Within-

group distances f or PDS candidates were significantly smaller than across-group 

distances (p < 0.05 after correction for multiple comparisons) only in the basal ganglia (p 

= 0.0005). 
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Fig 5.5.  Within- and across-group correlation distances.  Bar height is mean distance across pairs of genes.  

Asterisks indicate differences with p < 0.05 after multiple comparisons correction. 

 

 The mean pair-wise PCC between donor distance matrices was 0.63 for the brain, 

0.43 for cerebral cortex, 0.45 for the basal ganglia, and 0.44 for the cerebellum.  For each 

sample subset, each of the fifteen donor pairs had a higher PCC than the maximum of the 

empirical null distribution (i.e., p = 0, Mantel test). 

 The two-dimensional "landscapes" based on samples from all donors are shown in 

Fig 5.6.  While there is some loose grouping of genes in the cortex and a single tight 

cluster in the cerebellum, for the most part genes do not appear to separate by phenotype.  

Genes with high proximity in the cerebellum (Fig 5.6D) include GPLD1, ERC1, THEM2, 

and EYA2, which all showed preferential expression for either the cerebellar cortex or 

cerebellar nuclei (Fig 5.3B).  Other genes shown in the expanded area of Fig 5.6D (e.g., 

BDNF, SETBP1) had percentile ranks in a cerebellar structure that did not meet the 

criteria for preferential expression, but nevertheless did a preference for one or the other.  

Most genes outside of that densely populated area of Fig 5.6D did not show a preference 

(e.g., AP4E1, BCL11A). 
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Fig 5.6 (cont. on next page).  Two-dimensional representation of gene expression pattern relationships, using 

multi-dimensional scaling.  For genes associated with multiple disorders, datapoint color is based on the best-

supported or first association. 
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Fig 5.6 (cont. on next page).  Two-dimensional representation of gene expression pattern relationships, using 

multi-dimensional scaling.  For genes associated with multiple disorders, datapoint color is based on the best-

supported or first association. 
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Fig 5.6 (cont. on next page).  Two-dimensional representation of gene expression pattern relationships, using 

multi-dimensional scaling.  For genes associated with multiple disorders, datapoint color is based on the best-

supported or first association. 
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Fig 5.6 (cont. on next page).  An expanded view of the boxed area is shown in the next plot.  Two-dimensional 

representation of gene expression pattern relationships, using multi-dimensional scaling.  For genes associated 

with multiple disorders, datapoint color is based on the best-supported or first association. 
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Fig 5.6.  Expanded image of tightly clustered datapoints from the previous plot.  Two-dimensional 

representation of gene expression pattern relationships, using multi-dimensional scaling.  For genes associated 

with multiple disorders, datapoint color is based on the best-supported or first association. 

 

5.6  Co-expression networks using topological overlap 

 The previous analyses deal with comparisons of gene spatial expression profiles.  

An alternative approach to examining relationships between genes is to instead compare 

patterns of co-expression with the other genes.  In other words, rather than asking only if 

FOXP2 and CNTNAP2 are co-expressed, we might ask whether FOXP2's co-expression 
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relationships to the other SL genes resemble those of CNTNAP2.  One distance measure 

that is based on similarity of co-expression relationships is topological overlap (Zhang 

and Horvath, 2005; Yip and Horvath, 2007).  Briefly, each gene is treated as a node in a 

co-expression network.  Genes are then hierarchically clustered based on similarity 

between their patterns of co-expression, or topological overlap.  The resulting 

dendrograms can reveal the overall structure in the relationships between gene expression 

patterns. 

5.6.1  Methods 

 Weighted gene co-expression analysis (WGCNA; Zhang and Horvath, 2005) was 

applied to the 42 SL genes using a publicly available R package (Langfelder and 

Horvath, 2008). A network of genes was defined in which edge weights encoded the 

absolute value of the correlation between pairs of genes' spatial expression patterns.  Co-

expression similarity was measured by topological overlap (Zhang and Horvath, 2005; 

Yip and Horvath, 2007), a measure which quantifies the degree to which two nodes' 

neighborhoods overlap.  Because of the small number of genes, resulting in a dendrogram 

with easily distinguishable branches, the "dynamic tree-cutting algorithm" included in the 

R package was not used (Langfelder et al., 2008). 

 WGCNA was applied separately across each of the four sample subsets used in 

the previous section: (i) the entire left hemisphere, (ii) left cerebral cortex only, (iii) left 

basal ganglia only and (iv) left cerebellum only.  Samples from all donors were used.  

Similarity matrices (topological overlap matrices) were also calculated for each donor 

individually.  As in the previous section, the Mantel test was applied to each pair of donor 
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matrices by computing the PCC between vectors composed of the upper-triangular parts 

of the two matrices, and comparing it to PCCs resulting from 10,000 random 

permutations of one of the matrices. 

5.6.2  Results 

 The dendrograms in Fig 5.7 show small groups of genes at shorter distances than 

others (i.e., with more similar patterns of co-expression relationships with the other SL 

genes).  These groups vary somewhat by structure, but for the most part do not reflect 

associated disorders.  The cerebellum alone does not show this tendency to cluster (Fig 

5.7D).  Genes that appeared very close to each other in the cerebellum's co-expression 

landscape have similar co-expression relationships with other genes (compare genes in 

the expanded area of Fig 5.6D to genes at the far right of Fig 5.7D).  After that, genes are 

merged into the dendrogram with fairly regular spacing, reflecting the circle of datapoints 

around the tight cluster in Fig 5.6D. 
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Fig 5.7 (cont. on next page).  Hierarchical clustering of genes in a co-expression network.  Asterisks next to each 

gene symbol indicate disorders the gene has been associated with. 
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Fig 5.7.  Hierarchical clustering of genes in a co-expression network.  Asterisks next to each gene symbol 

indicate disorders the gene has been associated with. 

 

 The mean pair-wise PCC between donor topological overlap matrices was 0.68 

for the brain, 0.34 for cerebral cortex, 0.55 for the basal ganglia, and 0.57 for the 

cerebellum.  Using the Mantel test, the largest p-value for any pair of donors in any of the 

sample subsets was p = 0.0095 (i.e., the lowest PCC between donors was higher than 

99.05% of PCCs in the empirical null distribution). 

 

5.7 Persistent developmental stuttering candidate genes in the basal ganglia 

 Both the regional networks and co-expression landscape analyses pointed to co-

expression relationships between PDS candidates specifically in the basal ganglia.  These 

relationships were stronger than expected by chance relative not only to randomly 

selected genes (Fig 5.4I), but also to the other SL genes (Fig 5.5C).  These observations 

motivated a closer examination of PDS candidate gene expression within the basal 

ganglia. 

5.7.1  Co-expression in the basal ganglia 

 Correlations between PDS candidate gene expression profiles, defined across 

samples from the basal ganglia are shown in Fig 5.8.  In the basal ganglia, these genes 

fell into two groups which had positively correlated expression profiles within-group, but 

almost entirely negative profile correlations across-group.  These groups were designated 

"Group A" (8 genes) and "Group B" (6 genes).  To a lesser extent, these relationships 

appear to be maintained in the striatum and its sub-regions as well, but not the globus 
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pallidus.  Group A genes showed significantly higher within-group than across-group 

correlations in the basal ganglia, striatum, caudate nucleus, putamen, and nucleus 

accumbens, and Group B genes only in the basal ganglia (one-tailed two sample 

Kolmogorov-Smirnov test, p < 0.05 after Bonferroni correction for 5 regions x 2 gene 

groups = 10 comparisons).  With the exception of the nucleus accumbens, the effect size 

decreased with greater neuroanatomical specificity: the difference between mean 

correlation with Group A and mean correlation across the two groups for the basal 

ganglia was 0.68, for the striatum 0.39, and for the caudate, putamen, and nucleus 

accumbens 0.25, 0.37, and 0.60 respectively.  The difference between Group B's mean 

correlation and the mean cross-group correlation in the basal ganglia was 0.47.  (Note 

that only 25 left-hemisphere samples were available for the globus pallidus and 13 for the 

nucleus accumbens; hence their exclusion from Section 5.4's co-expression modularity 

analysis, where only brain regions with at least 30 available samples were included.) 
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Fig 5.8.  Correlation heatmaps of persistent developmental stuttering candidate genes in the basal ganglia and 

sub-structures.  Genes are ordered to group those with high correlations.  A.  Basal ganglia (146 samples).  B. 

Globus pallidus (25 samples).  C.  Striatum (121 samples).  D.  Putamen (46 samples).  E. Caudate nucleus (62 

samples).  F. Nucleus accumbens (13 samples). 
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5.7.2  Differential expression across sub-structures of the basal ganglia 

 As shown in Chapter 3, sample expression profiles from the striatum and 

pallidum tend to be distinct from each other, but relatively consistent within-region (Fig 

3.2A).  This suggests that many genes may have consistently higher expression values 

across striatal than pallidal samples, and others consistently higher expression across 

pallidal than striatal samples: i.e., many genes may be differentially expressed across the 

two structures.  Strong positive correlations between gene expression profiles within the 

basal ganglia may therefore result from genes that are consistently higher in either the 

striatum or the pallidum. 

 Fig 5.9A confirms that the eight "Group A" genes consistently (though sometimes 

weakly) showed stronger expression in the globus pallidus than the striatum, while the six 

"Group B" genes showed the opposite tendency.  This may partially explain the high 

within-group correlations shown in Fig 5.8A, and the decrease of this effect within the 

striatum.  Group A genes (which had shown significantly enhanced correlations in the 

striatum as well) also showed consistently (though weakly) higher expression in the 

putamen than either the caudate or nucleus accumbens, with the exception of EYA2.  

However, none of these genes had a log2 fold change of at least 0.5 between the striatum 

and globus pallidus or between any two sub-regions of the striatum, so they were not 

differentially expressed by the criteria used in Chapter 3. 
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Fig 5.9.  Stuttering candidate gene expression in basal ganglia substructures.  A. Expression in the striatum and 

globus pallidus.  Sub-set of heatmap shown in Fig 5.3A.  B. Expression of "Group A" genes in striatal sub-

structures.  This differs from Fig 5.3C in that expression values for the head, body and tail of the caudate 

nucleus have been averaged together. 

 

5.8 Discussion 

 The analyses discussed here constitute an early step in using the transcriptome to 

investigate genes implicated in speech and/or language disorders ("SL genes") in a 

neuroanatomical context, which may provide clues about their association with those 

higher-level functions.  Because each of these genes probably accounts for only a small 

part of the associated disorder's prevalence, identifying some form of convergence or 

consistency among the different candidate genes is necessary for moving beyond a list of 

genes with few known relationships and, ultimately, understanding their shared influence 

on speech and language.  The current approach seeks this convergence in common 

elements of expression profiles across the brain, which could help to illuminate how these 

genes have similar impacts on complex behavioral phenotypes. 

 The Speech and Language Disorders Database described above is intended in part 

to aid the growth and refinement of this gene list (Figs 5.1 and 5.2).  The rest of the 
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chapter, which examined the expression and co-expression of genes associated with 

speech and language functions in the adult human brain, may also be helpful in focusing 

on the most relevant genes by revealing relationships (or lack thereof) between those with 

little evidence supporting their inclusion, and those with relatively well-established 

relevance.  For example, the genes implicated by Kang et al. (2010) in persistent 

developmental stuttering, while surprising in their general role in encoding proteins 

within the lysosomal enzyme targeting pathway, have strong evidence for involvement 

with stuttering in three cohorts.  Here we showed that an additional set of genes – those 

with strongest evidence based on a single genome-wide association study (Kraft, 2010) – 

showed strong co-expression relationships with the four lysosomal pathway genes 

specifically in the basal ganglia, a set of brain structures with relevance to PDS. This 

result lends support to the possibility that alterations in the genes from Kraft (2010) may 

have at least some similar impacts on the brain, and encourages attempts to validate these 

genes, such as future association studies with larger sample sizes or more detailed case-

control studies using established cohorts of people who stutter. 

5.8.1  Preferential expression 

 The importance of a thorough examination of the overall set of candidate genes in 

neuroanatomically-specific datasets is confirmed by the fact that many of them showed 

preferential expression in one or more brain regions (a statistically significant number, at 

two different anatomical scales; Fig 5.3).  That is, these genes have expression patterns 

that are more anatomically specific than observed for randomly selected genes.  The 

broad-scale regions most often preferred--the cerebral cortex, hippocampal formation, 
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striatum, and thalamus--all have important roles in speech and / or language functions 

(e.g. Gabrieli et al., 1998; Kotz et al., 2009; Duff and Brown-Schmidt, 2012; Barbas et 

al., 2013).  Four genes showed high percentile ranks in the cerebellar cortex (GPLD1, 

ERC1) or cerebellar nuclei (THEM2, EYA2), also important for speech and language 

(Mariën et al., 2013).  FOXP2, though not preferentially expressed by the current 

criterion in any broad region, had minimum percentile ranks (across all donors) of at least 

80 in the cerebral cortex, striatum, and thalamus.  These results, as well as FOXP2's high 

expression and minimum percentile rank of 89 in the inferior olivary complex, are 

consistent with Lai et al. (2003).  That study showed restricted FOXP2 expression in the 

developing human brain, particularly in the cortex, striatum, thalamus, inferior olivary 

complex, and cerebellum, suggesting that associations between FOXP2 and speech / 

language phenotypes may be due to an important role for this gene in the development of 

structures related to speech and language, and particularly motor control. 

 Notably, the inferior olivary complex showed increased relative expression and 

percentile ranks compared to other areas for several other SL genes as well (Fig 5.3C).  

This structure is involved in motor learning and timing, and projects to both the 

cerebellar cortex and cerebellar nuclei (e.g. Martin et al., 1996; De Zeeuw, 1998).  It is 

possible that some of these genes could, when disrupted, in turn disrupt speech- or 

language-related functions due to changes of expression in the inferior olive.  The 

superior olivary complex is involved in both ascending and descending auditory 

pathways; therefore, it is interesting that four PDS candidate genes as well as CNTNAP2 

(implicated in SLI and dyslexia) and THEM2 (implicated in dyslexia) all showed 
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relatively strong percentile ranks there (Fig 5.3C; ADARB2, AP4E1, CTNNA3, and 

GNPTG had mean ranks over 80, but in each case one donor fell under 80).   Finally, the 

substantia nigra, which yielded high percentile ranks of two PDS candidates (DRD2 and 

ADARB2) and a DVD candidate (SRPX2), is integral to basal ganglia function (Graybiel, 

2000). 

 Many SL genes showed (not always preferential) expression across multiple brain 

areas, usually either cortical or subcortical (Fig 5.3).  As noted in Section 5.1, the 

functions of SL genes are not limited to their potential importance to speech and 

language.  The impact of variants in these genes may depend on the molecular 

environment of a given brain areas, which makes points of convergence between 

expression profiles of multiple gene candidates particularly interesting.  The expression 

patterns of SL genes as a group were indeed often restricted to brain areas with known 

roles in speech and language.  Despite this, genes associated with a specific disorder did 

not, for the most part, have common preferences for certain brain areas. 

5.8.2  Regional networks 

 Co-expression relationships often imply common functions or pathways (Eisen et 

al., 1998; Lee, 2004; Wei et al., 2006), through which different genes might influence the 

same processes.  Strong co-expression of SL genes in a given brain structure, therefore, 

suggest that their shared influence on speech and language might be effected through 

changes in that structure.  Here, we looked in different brain structures for unusual co-

expression modularity of the SL genes:  i.e., an exaggerated difference between the genes' 

co-expression with each other and their co-expression with other genes. 
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 The SL genes as a group showed significantly enhanced co-expression modularity 

in several brain areas already known to play important roles in speech and language, 

including the inferior frontal gyrus and the temporal lobe.  This enhancement was 

observed when compared to randomly selected genes in each brain area; however, when 

the same values were compared to the co-expression modularity scores for these genes 

but random neuroanatomical samples, no results reached significance (Figure 5.4A, B). 

This suggests that, while the overall set of genes has some modular network structure, it 

does not appear to have strong neuroanatomical specificity.  It is more likely that 

meaningful neuroanatomical results should arise for smaller gene sets related to more 

specific phenotypes. 

 The set of PDS candidates showed their highest co-expression modularity 

(compared to random gene sets) in the basal ganglia, as well as significant values in the 

thalamus, parietal lobe, and trigeminal nucleus of the medulla (Fig 5.4I).  Importantly, 

when the co-expression scores were compared to those obtained for the same genes and 

random brain samples, only the basal ganglia showed a significant result (Fig 5.4J).  

Thus, this set of subcortical nuclei shows enhanced co-expression modularity across the 

set of PDS candidate genes (including nine genes with only suggestive evidence from 

Kraft, 2010) both compared to other gene sets of the same size, and compared to different 

anatomical areas.   

 Neither dyslexia nor SLI candidates showed significant co-expression modularity 

in any of the brain regions examined.  Dyslexia genes did show their highest co-

expression modularity in the thalamus, cerebral cortex as a whole, and temporal lobe (Fig 
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5.4C).  Though the significance of these values did not survive multiple comparisons 

correction and the modularity is not neuroanatomically specific (Fig 5.4D), it is worth 

noting given that the thalamus is an important structure in speech / language circuits, that 

phonological processing deficits are a central feature of dyslexia (Shaywitz and Shaywitz, 

2005), and that the disruption of cortical neuron migration associated with dyslexia 

occurs in the temporal lobe (Galaburda et al., 1985).  Finally, DVD candidates showed 

enriched co-expression relative to random samples in the frontal and temporal lobes, 

frontal cingulate and lingual gyri, and pons (Fig 5.4H); however, their co-expression was 

not significant in these brain areas relative to other genes (Fig 5.4G). 

 In a few cases, a group of genes showed high co-expression modularity in a brain 

area with no clear relationship to the associated phenotype; in particular, the fusiform, 

frontal cingulate, and parahippocampal gyri for SL genes as a whole, and the parietal lobe 

and lingual gyrus for PDS candidates (these also stood out for SLI candidates, but were 

not significant; Fig 5.4A, I, E).  However, none of these showed anatomical specificity 

(Fig 5.4B, J, F). 

 Overall, though co-expression modularity was higher in several areas known to 

support speech and language functions, only co-expression of PDS candidate genes in the 

basal ganglia was significantly stronger than chance relative to both other genes and 

random brain samples. 

5.8.3  Stuttering and the basal ganglia 

 Neither correlation distances nor topological overlap networks (Figs 5.5, 5.6, and 

5.7) indicated clear correspondence between the transcriptomic relationships of the SL 
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genes and the phenotypes with which they are associated, with the sole exception of PDS 

candidate genes in the basal ganglia (Fig 5.5C).  This result reinforces the co-expression 

modularity analysis discussed above (Fig 5.4I, J).  Within the basal ganglia, the PDS 

candidates appear to separate into two groups of genes which are positively correlated 

within-group and negatively correlated with across-group (Fig 5.8).  This grouping might 

be due to (often slightly, and never significantly) higher expression in either the pallidum 

(ADARB2, AP4E1, CTNNA3, EYA2, FADS2, FMN1, PCSK5, and GNPTG) or the 

striatum (GNPTAB, NAGPA, DRD2, ARNT2, PLXNA4, and SLC24A3; Fig 5.9). 

 The basal ganglia have long been thought to play a key role in stuttering (see 

Alm, 2004 for a review).  Because the basal ganglia subnuclei are small and contain large 

populations of inhibitory neurons, differences between people with PDS and controls are 

difficult to identify and interpret through neuroimaging (Civier et al., 2013).  However, 

lesions of the basal ganglia have been associated with acquired stuttering (Ludlow et al., 

1987; Tani and Sakai, 2011; Theys et al., 2013).  The implication of the basal ganglia in 

stuttering, a disorder that interferes with proceeding from one motor action to the next, is 

consistent with their proposed role in the selection of actions (see e.g. Redgrave et al., 

1999).  Pharmacological evidence also supports basal ganglia involvement, as blocking 

type D2 dopamine receptors (D2Rs) has been shown to reduce stuttering (Stager et al., 

2005).  D2Rs are heavily expressed in the striatum, and necessary for its dense 

dopaminergic innervation.  Civier et al. (2013) have developed a computational model 

suggesting that dopaminergic excess in the striatum, as well as abnormalities of cortico-

striatal projections from ventral primary motor cortex, could result in the dysfluencies 
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characteristic of stuttering.  Briefly, excessive dopaminergic activity in the striatum is 

hypothesized to put a "ceiling effect" on the outgoing signal to produce the next syllable, 

preventing this signal from gaining sufficient strength relative to signals representing 

competing syllables and leading to its re-selection. 

 The findings of the current study suggest that the 14 PDS candidate genes may be 

working in concert, perhaps with a similar impact on basal ganglia circuitry.  This is 

particularly interesting given the varying genetic evidence supporting the inclusion of 

these genes as candidates.  Although the pharmacological evidence and model discussed 

above suggests a connection between PDS and DRD2, which codes for type 2 dopamine 

receptors, genetic evidence for the association is weak (Lan et al., 2009 found an 

association in a Han Chinese cohort; Kang et al., 2011a failed to replicate the finding in a 

Brazilian and a European cohort).  Similarly, 9 genes are implicated by a single genome-

wide association study with a relatively small sample size (Kraft, 2010).  In contrast, 

larger studies in multiple populations provide support for GNPTG, GNPTAB, and 

NAGPA (Pakistani, British, and North American cohorts; Kang et al., 2010) as well as 

AP4E1 (Pakistani, Cameroonian, and North American cohorts; Raza et al., 2015).  The 

strong co-expression relationships between these four genes and the less well-

investigated candidates, which are strongest within a structure implicated in PDS, lends 

support to the inclusion of the genes from Lan et al (2009) and Kraft (2010) as candidate 

genes. Further, these results suggest that the basal ganglia may be of particular 

importance in attempting to establish the mechanisms by which alterations to these genes, 

and possibly others yet to be identified, impact fluent speech. 
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5.8.4  Limitations and future directions 

 Evidence implicating the genes treated here in disorders of speech and language 

varies substantially.  The inclusion of CNTNAP2, for example, is supported by multiple 

studies as well as the fact that it is a regulatory target of the extremely well-established 

candidate transcription factor FOXP2 (Vernes et al., 2008; Peter et al., 2011; Newbury et 

al., 2011).  DRD2's association with PDS, on the other hand, was found in only one study 

of a Han Chinese cohort (Lan et al., 2009), while a study of a European and a Brazilian 

cohort failed to replicate the finding (Kang et al., 2011a).  This raises the possibility of a 

false positive, or perhaps (as the authors of the second study suggest) that the association 

is not causal but is due, for example, to linkage disequilibrium with variants in a different 

gene in some populations.  The current list of candidate genes undoubtedly includes some 

implicated by false positives or non-causal associations.  Many genes with important 

roles in these complex phenotypes are also undoubtedly missing from the list.  

Continuing genetic research into these phenotypes will probably both refine and expand 

the current set of gene-disorder associations, as well as associations between specific 

variants and endophenotypes.  This will create an increasingly solid basis for future 

analyses of their transcriptomic profiles using the general approach defined here. 

 This attempt to relate genotype to phenotype through gene expression makes the 

assumption that variants impact expression of the genes that contain them.  As a result, 

the approach in its current form will not yield useful results in situations where a variant 

influences a behavioral phenotype by altering the expression of a different gene (unless 

that gene is co-expressed with the gene in which the variant resides).  Some variants may 
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indirectly change the expression of another gene through a co-expression network (in 

which genes up- or down-regulate each others' expression).  In other cases, a variant may 

directly change the expression of a different gene; these are found in expression 

quantitative trait loci (eQTLs; see Section 5.1).  Efforts to map eQTLs may allow future 

transcriptomic analyses to address some of these cases. 

 Transcriptomic analyses of implicated genes will also benefit from a 

comprehensive use of current knowledge regarding the brain structures and circuits 

underlying language functions.  The fact that certain structures (such as the cerebral 

cortex, basal ganglia, and cerebellum) have major roles in language functions was used to 

focus the co-expression landscape and co-expression network analyses presented here, 

and to interpret the regional co-expression of genes associated with different phenotypes.  

A more detailed and nuanced use of the neuroimaging results represented in the Speech 

and Language Disorders Database and the vast surrounding literature could provide 

further insight into the transcriptomic results presented here, and might suggest further 

avenues of investigation.  In particular, systematic use of this literature could focus the 

analyses on particular cortical areas supporting different speech and language functions, 

rather than treating the cerebral cortex as a whole. 

 Speech and language production and comprehension are, of course, dynamic 

processes, and some research has directly related gene expression to functional activity in 

the brain.  As early as 1991, expression of the gene c-fos was shown to reflect tonotopic 

maps in the mouse dorsal cochlear nucleus and inferior colliculus (Ehret and Fischer, 

1991).  In human subjects with Fragile X syndrome, expression of the gene FMR1 
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(implicated in intellectual disability) in lymphocytes was correlated with activity in the 

middle frontal and supramarginal gyri (Menon et al., 2000).  Richiardi et al. (2015) 

related functional activity to gene expression across the brain (as opposed to expression 

in blood cells) by defining resting state functional networks in human subjects and 

comparing these to gene expression in the AHBA.  If such a relationship exists between 

speech / language networks and gene expression, it would be worth identifying genes 

responsible for that relationship.  These may become candidate speech / language genes 

(or, if already candidates, such a finding would provide additional support for their 

inclusion). 

 A major limitation of the current study is its exclusive focus on the adult brain.  

Dyslexia, SLI, DVD, and PDS are all developmental disorders, manifesting as children 

learn to speak or to comprehend spoken or written language (and in the case of SLI, 

signed language; see Marshall et al., 2006; Mason et al., 2010).  A small influence at an 

early stage could have a serious impact on the developmental trajectory of brain 

structures and circuits, and many transcriptomic events through which an individual 

genotype may impact a behaviorally-defined phenotype occur transiently in the rapidly-

changing molecular environment of the developing brain. 

 Genome-scale transcriptomic data for donor brains from 8 post-conceptional 

weeks (pcw) to 40 years of age are available as part of the publicly available dataset 

BrainSpan: Atlas of the Developing Brain (http://brainspan.org/).  The BrainSpan Atlas 

includes RNA sequencing (RNA-Seq) expression data for each of 41 neurologically 

normal donors from 8 post-conceptional weeks to 40 years of age.  RNA-Seq allows 
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direct quantification of expression by counting the number of transcripts in a sample 

(rather than quantifying image intensity based on a fluorescent label, as with microarray 

and ISH data), including measurement of alternative transcripts.  This dataset has a low 

sample count and low spatial resolution; for most donors, only one sample per brain 

structure is available from 8-16 structures.  There are also high spatial resolution 

microarray data (including ~300 structures) from four donor brains, from 15-21 post-

conceptional weeks.  The BrainSpan Atlas offers the possibility of examining the 

transcriptomic profiles of speech and language candidate genes at early stages 

corresponding to the onset of the disordered phenotype, and tracing those profiles over 

time.  If some of these genes impact the normal development of brain systems supporting 

language function without leaving lasting evidence in the adult brain, then such data will 

be invaluable for quantifying transient preferential expression or co-expression in key 

brain structures. 

 The restriction to left-hemisphere samples in the current study is also worth 

considering, given asymmetry in the human brain.  Human frontal cortex typically shows 

both functional and structural asymmetry of language-related areas.  Abnormalities of 

cortical asymmetry have also been associated with dyslexia (e.g. Galaburda et al., 1985; 

Hynd et al., 1990; note however that some studies found normal asymmetry in people 

with dyslexia, e.g. Best and Demb, 1999; Rumsey et al., 1997), SLI (Gauger et al., 1997; 

De Fossé et al., 2004), and PDS (Chang et al., 2008; Foundas et al., 2004).  Watkins et al. 

(2002) initially found reduced grey matter in the left inferior frontal gyrus associated with 

DVD, but using a more specific and selective model, concluded that the difference was in 
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fact bilateral (Belton et al., 2003).  There is evidence that the basal ganglia also show 

structural asymmetry as well as hemispheric dominance related to motor control (e.g. 

Kooistra and Heilman, 1988; Scholz et al., 2000), and that the cerebellum's role in 

language as well as other cognitive and motor tasks is lateralized (Mariën et al., 2013; 

Stoodley, 2012).  These asymmetries indicate the desirability of cross-hemispheric 

comparison of the expression profiles of genes implicated in those processes.  In this 

study, such a comparison was precluded by the exclusion of right-hemisphere expression 

data, due to the lack of this data in four of the six donor brains in the AHBA (see Chapter 

2).  The expression and co-expression of the candidate genes could be compared either in 

the two donors with data available from both hemispheres, and in other datasets. 

 Thus far, however, studies of molecular neuroanatomy have revealed little 

difference in the expression of individual genes between hemispheres in adulthood 

(Hawrylycz et al., 2012; Pletikos et al., 2014) or even mid-fetal stages (Sun, 2005; 

Johnson et al., 2009; Lambert et al., 2011; Pletikos et al., 2014).  One study found global 

transcriptomic symmetry from early fetal stages on (beginning 10 weeks post-conception; 

Pletikos et al., 2014).  However, another identified 27 genes showing differential 

expression across cortical hemispheres from about 12-19 weeks post-conception (Sun, 

2005), after which most (not all) of cortical neuron proliferation and migration is 

complete (de Graaf-Peters and Hadders-Algra, 2006).  Therefore, hemispheric 

comparison may be most productive in developmental data from fetal stages before 19 

weeks in datasets that include samples from both hemispheres and label the hemisphere 
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of origin (in the BrainSpan Atlas, the high-resolution microarray data is restricted to the 

left hemisphere and the RNA-Seq data does not indicate hemisphere of origin). 

 The connection suggested by these results between the PDS candidates, the basal 

ganglia, and the disorder itself could be validated by postmortem studies from people 

with PDS, should such data become available.  If the expression or co-expression of these 

genes varied significantly between people who stutter and neurologically normal 

controls, the location and nature of the differences could provide a starting point for a 

model of the mechanisms by which the products of these genes impact fluent speech.  

Nine of the PDS candidate genes studied here are implicated by a single, small genome-

wide association study, and little is known of most of them.  Some are implicated in 

another neuropathology or brain-specific function by a single study (see Section 5.1.4), 

and four by none at all (EYA2, FMN1, SLC24A3, and PCSK5).  As more is learned of the 

roles these genes play in the brain, this information might suggest more specific 

hypotheses (beyond anatomical localization) regarding their influence on fluent speech. 

 Some, but not all, of these analyses include cross-donor comparisons.  Distance 

and topological overlap matrices based on individual donors were all strongly (and 

significantly) correlated, and our definition of preferential expression required that all 

donors show a minimum percentile rank of 95.  However, the analyses of co-expression 

modularity and of PDS candidates in the basal ganglia would benefit from comparison of 

donors, where this is reasonable given the within-donor sample counts for a given brain 

area. 
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 Finally, as with nearly all results based on human data in this dissertation, those 

presented in this chapter use only the AHBA.  Application of these methods to other adult 

datasets is necessary to increase confidence in the results.  Expansion of this work to 

datasets that distinguish between cortical layers would also make examinations of gene 

expression in the cerebral cortex potentially more fruitful, as laminar variation in cell 

type densities results in neocortical layers showing amplified differences in gene 

expression patterns (Belgard et al., 2011; Bernard et al., 2012). 

5.8.5  Conclusion 

 The transcriptomic profiles of genes that impact speech and language ability offer 

the possibility of relating our knowledge of these disorders across very different levels of 

organization.  This study is, to our knowledge, the first systematic examination of the 

brain-wide expression and co-expression relationships of speech and language candidate 

genes.  It represents an important first step towards illuminating the roles of these genes 

and defining points of neuroanatomical convergence in the potential impact of a variety 

of DNA alterations driving similar, sometimes overlapping phenotypes.



 

 

185 

CHAPTER 6: CONCLUSION 

 Though features such as cytoarchitecture and myeloarchitecture are more easily 

observable than are multivariate profiles at a molecular scale, the latter are no less 

integral to the structural and functional organization of the brain.  Large gene expression 

datasets, while sparse in annotation and somewhat overwhelming in scope, contain 

extensive information about that scale.  The work presented here examines the 

correspondence between transcriptomic organization and conventional neuroanatomy 

within and across species, and attempts to lay groundwork for the use of transcriptomic 

data to relate genotype and phenotype in behaviorally-defined disorders. 

 The approach taken in this work often blurs the distinction between exploratory 

data analysis (EDA; Tukey, 1977) and more traditional hypothesis-driven research.  Even 

the first part of dissertation (Chapter 3), which makes heavy use of the sort of simple 

statistical summaries and visualizations that are central to EDA, is informed by prior 

knowledge of neuroanatomical labels, and tests simple hypotheses such as, "samples 

from within the cerebral cortex are more transcriptomically similar to each other than to 

other samples."  The mouse-human comparative study (Chapter 4) selects genes with 

known common functions and poses the hypothesis that they will show conserved 

expression across species.  In Chapter 5, genes were curated from relevant literature, and 

knowledge of the roles of different brain regions in speech and language functions 

informed both design and interpretation.  These hypotheses, however, are very general 

and not always subjected to strict significance tests.  This is because the nature of this 

approach is largely data-driven (as in EDA), using data from “experiments” not 
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specifically designed to address the questions posed but of sufficient scale to provide new 

insight.  A data-driven approach can reduce bias, which is advantageous when faced with 

large, sparsely annotated datasets where it is difficult to know what will be relevant.  

However, in order to move towards more specific hypotheses, prior knowledge of genes, 

brain structures and complex phenotypes were used to inform these studies. 

 

6.1 Summary of contributions 

 Molecular and conventional neuroanatomy have a close correspondence in both 

the mouse and human brain (e.g. Bohland et al., 2010; Roth et al., 2006).  Chapter 3 took 

advantage of two high-throughput gene expression datasets with unusually high spatial 

resolution to reveal this relationship.  These analyses showed the transcriptomic 

similarities and distinctions between brain structures at multiple levels.  Additionally, this 

chapter compared two human datasets and identified consistencies between the 

expression profiles of different brain regions, in spite of the very different sampling 

properties of the datasets. 

 Homological relationships between the mouse and human brain have fundamental 

importance for the use of mouse models in both basic and clinical research.  

Conventional neuroanatomy (i.e., basic histochemical stains and tract tracing studies of 

connectivity) has been used extensively to understand these putative homologies, but less 

is known about the extent to which they are verifiable at the molecular level.  Chapter 4 

described the development and application of tools for identifying similarities and 

differences in brain-wide and regional molecular environments (defined by expression 
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levels across a pre-defined gene set) in the mouse and human brain, using two gene 

expression datasets with high anatomical resolution.  The results revealed conserved 

molecular organization at multiple scales, as well as particular groups of genes whose 

expression patterns form unique regional fingerprints that are consistent between the two 

species. The diverse patterns of conservation of gene expression across the mouse and 

human brain is further reflected by the similarity of individual genes’ brain-wide profiles, 

which was highly variable across the genes studied here.  By applying these and related 

analyses to additional gene expression datasets and interpreting results in light of the 

larger context for gene expression (e.g. alternative splicing and post-transcriptional 

mechanisms), it may ultimately be possible to quantify homologies in the molecular 

architecture of the human and mouse brain, helping to bridge a seemingly vast divide 

between genomics and systems neuroscience. Such directions are of particular 

importance for understanding the mechanisms of heritable diseases of the nervous system 

and for improving and understanding the efficacy of drugs targeting the brain. 

 Genetic, neuroimaging and behavioral lines of research into speech and language 

disorders tend to be conducted in relative isolation.  Chapter 5 provides the first detailed 

analysis of the expression patterns of genes implicated in these disorders throughout the 

human brain, a move in the direction of bridging the gap between genotype and 

phenotype through intervening brain regions and neural systems.  The preferential 

expression and co-expression of many of these genes in regions already known to be 

important to speech and language supports their proposed roles in such functions.  The 

most salient point identified in this study was the strong co-expression relationships 
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between genes associated with persistent developmental stuttering (PDS), which were not 

only preferentially expressed and co-expressed in the basal ganglia, but also showed 

stronger co-expression relationships with each other than with the other speech / language 

gene candidates specifically in that structure.  These genes are differentially expressed 

across the striatum and pallidum, with one group more strongly expressed in the former 

and another in the latter, suggesting potentially different targets and mechanisms for 

impacting the same overall system.  Finally, the co-expression relationships (especially 

within the basal ganglia) between genes identified in a genome-wide association study 

with relatively few subjects (Kraft, 2010) and genes with stronger evidence in PDS (Kang 

et al., 2010; Raza et al., 2015) provides a new source of support for roles for some of 

these genes in PDS. 

  

6.2 Future directions 

 Chapters 3-5 include more detailed discussions of future work; however, there are 

common threads to those discussions that are worth reiterating here.  First, this work has 

focused primarily on two high-throughput gene expression datasets out of many that have 

been made available since their advent in the 1990s.  Chapter 3 implemented one cross-

dataset comparison, showing relatively high consistency between anatomical region 

profiles in two expression datasets from the adult human brain.  Further validation 

studies, and the application of similar methods to other datasets, will be necessary to 

identify most robust results.   
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 Second, molecular neuroanatomy in the adult is the outcome of complex 

developmental processes intricately regulated by gene expression.  Expanding this 

approach to transcriptomic data from a range of developmental stages may elucidate not 

only developmental mechanisms themselves, but also the latent causes of some features 

of the mature transcriptome.  Most particularly, the study of speech and language 

disorders calls for attention to early development, when the processes forming key 

structures and circuitry are so rapid and precise that small differences could have 

profound effects, as well as to later developmental stages (i.e., childhood) when these 

disorders first appear. 

 Finally, functional annotations of genes are vital for both focusing analyses of 

transcriptomic data and interpreting their results.  With prior knowledge of gene 

functions, computational resources can be allocated to the expression profiles of genes of 

interest, and hypotheses may be suggested regarding the biological significance and 

interpretation of some results.  Such prior knowledge is still sparse relative to the number 

of protein-coding genes in the human and mouse genomes, and relative to the number of 

processes some of those genes impact.  Furthermore, knowledge of their function within 

brain tissue specifically is even more sparse.  Continuing genetic research, from knockout 

studies in model organisms to association studies in humans, may support or otherwise 

illuminate some of the results shown here, and suggest further avenues for future study. 
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