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ABSTRACT 

A key element in evidence-based medicine approaches is the ability for clinicians 

to evaluate the scientific rigor and relevance of research evidence.  In the treatment of 

diabetes, clinicians make increasingly difficult decisions about which drug regimens are 

best for their patients with limited evidence-based information.   

While the consensus is that metformin should be the initial drug treatment when 

diet and exercise are not sufficient, clinicians disagree on whether sulfonylureas should 

remain a suitable therapy after metformin.  While this would be improved with further 

research investigating the comparative safety of therapeutic options, there is also need for 

better ways to synthesize available information to guide evidence-based decision-making 

in health services research. 

Study 1 summarizes the pre-existing evidence on the long-term safety risks 

associated with sulfonylurea therapy relative to other drug classes.  Results from a series 

of meta-analyses provide some evidence that sulfonylureas are associated with elevated 

all-cause mortality and cardiovascular risks relative to several other medications, either as 

a monotherapy or in combination with metformin.   
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Study 2 analyzes the comparative safety of second-line treatment in diabetic 

patients in the Veterans Health Administration to address gaps in the literature.  Results 

suggest that second-line use of sulfonylureas is associated with increased risks compared 

to thiazolidinediones.  Results also suggest that changes to existing metformin therapy 

may lead to differential hazards.   

Clinicians may disagree about the quality of the evidence as well as the relevancy 

to their own treatment population.  Improvements in methods for evidence-based 

medicine that take this into account are needed.  Study 3 applies an underutilized research 

method that allows for a more thoughtful synthesis of all available evidence.  This 

framework allows clinicians to incorporate the scientific rigor and relevancy of previous 

study results when integrating new data into their current knowledge base.  Results 

suggest an elevated risk in all models for sulfonylureas compared to thiazolidinediones 

and highlight the need to design more focused research to support clinical decision-

making around medication safety.  This novel application to evidence synthesis shows 

promise as applied to a health services research problem and has potential as a useful 

framework in other health services research areas. 
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CHAPTER 1 : INTRODUCTION 

The practice of evidence-based medicine (EBM) relies, in part, on the integration 

of empirical research evidence into treatment decisions.  Yet, the ability for clinicians to 

evaluate the scientific rigor and relevance of research evidence is difficult especially 

when evidence is limited or inconsistent.  To make matters more challenging, research 

methods that synthesize information in a way that is consistent with EBM are 

underutilized and innovative approaches are left unexplored.  In the treatment of diabetes, 

clinicians must make increasingly difficult decisions about which drug regimens to 

manage patients with limited evidence-based information to guide appropriate therapy.   

Among the most pressing clinical decisions is which drugs should be used after 

metformin is no longer sufficient, and in particular, whether sulfonylureas should remain 

as a suitable second-line treatment.  Sulfonylureas are widely prescribed but several 

studies suggest increased long-term safety risks relative to other drug classes.  Still, 

clinical opinion is fragmented on whether sulfonylureas should remain as a suitable 

therapy after diet/exercise and metformin therapies fail to control glucose levels.  Other 

classes of drugs are available but with limited long-term evidence regarding their long-

term safety.  

There have been insufficient long-term comparisons evaluating sulfonylureas 

relative to other medications.  Clinical opinions are disparate and there is variation in 

treatment.  While this would be improved with further research investigating the 

comparative safety of therapeutic options, there is also need for better ways to synthesize 

available information to guide evidence-based decision-making. 
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In this chapter, the existing evidence on the comparative safety of sulfonylureas is 

discussed.  In addition, an overview of EBM concepts and the diabetes treatment model 

are described in further detail and are used to guide the research reported in Chapters 

Two, Three, and Four.  The first study summarizes the pre-existing evidence on the long-

term safety risks associated with sulfonylurea therapy relative to other drug classes. 

Using observational cohort and randomized controlled trial studies with at least one year 

of follow-up in patients without serious conditions at baseline, a series of meta-analyses 

is conducted to provide pooled estimates of the risks of cardiovascular events and death.   

The second study addresses several gaps in the existing literature by analyzing the 

comparative safety of second-line treatment in diabetic patients served by the Veterans 

Health Administration.  Long-term cardiovascular and mortality risks between 

sulfonylureas and other drug classes are evaluated as well as how changes to existing 

metformin use coinciding with second-line therapy influences hazard rates. 

While Study One summarizes prior evidence on sulfonylurea safety risks and 

Study Two conducts a new comparative safety analysis to address weaknesses in the 

current comparative safety literature, clinicians may disagree about the quality of the 

evidence as well as its relevancy to their own treatment population.  EBM friendly 

research methods that take this into account are lacking, despite the need for clinicians to 

use the best external evidence to inform complex treatment decisions.  Study Three 

attempts to address this need by focusing on developing a research method that allows 

clinicians to vary the uncertainty around pre-existing evidence in a way that reflects a 

clinician’s appraisal of the quality of the evidence and relevancy to their own treatment 
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population.  Taken altogether, this dissertation provides a comprehensive evaluation and 

understanding of the comparative safety of sulfonylurea long-term risks and applies a 

research method to aid EBM practice.  

Background: Should sulfonylureas remain as an acceptable second-line oral agent 

therapy in patients with Type 2 diabetes? 

 Sulfonylurea medications have been used for glycemic control in patients with 

type 2 diabetes since the 1950s, but they are increasingly controversial and have attracted 

considerable debate in recent years (Abrahamson, 2015; Genuth, 2015).  While they are 

an inexpensive, widely used, and very effective therapy for glycemic control (Bennett, 

Wilson, et al., 2011; UKPDS-33, 1998), they are also linked to adverse outcomes, 

including higher rates of cardiovascular events and death.  The existing evidence on these 

outcomes is briefly summarized below. 

Cardiovascular Disease Morbidity and Cardiovascular Disease-Related Death  

Cardiovascular disease is the main cause of death for people with diabetes 

mellitus, yet evidence related to how particular drug therapies contribute to increased 

cardiovascular events is unclear and insufficient.  Despite its importance, most clinical 

studies are instead designed to assess glycemic control — often short-term assessments 

that lack the power to examine rare events.  This in turn, results in imprecise estimates of 

the risk for cardiovascular morbidity and mortality. 

Cardiovascular Mortality  

  Clinical trial evidence on the risk of cardiovascular-related death associated with 



 

 

4

sulfonylureas is limited.  In an early randomized control trial (RCT) from the 1960s, The 

University Group Diabetes Program (UGDP) found an increased risk in cardiovascular 

death for first generation sulfonylurea monotherapy (tolbutamide) compared to those who 

received a placebo, but has not been confirmed in later trials (e.g., ADOPT and UKPDS) 

for sulfonylurea monotherapy (Kahn et al., 2006; Meinert, Knatterud, Prout, & Klimt, 

1970; UKPDS-33, 1998).  When the United Kingdom Prospective Diabetes Study 

(UKPDS) published their primary results in 1998, it seemed to exculpate second 

generation sulfonylureas by reporting that patients randomized to sulfonylurea therapy 

did not differ significantly in diabetes-related death (which included death from a 

myocardial infarction and stroke) compared to those in the diet only control group 

(UKPDS-33, 1998).  Yet, a substudy investigating the risk for patients who added 

metformin to sulfonylurea therapy found other results (UKPDS-34, 1998).  They found 

when sulfonylurea was used in combination with metformin it was related to a higher risk 

of diabetes-related death compared to those receiving only sulfonylurea monotherapy – a 

finding the authors concluded was due to chance only (type 1 error).  This comparison 

has yet to be re-evaluated in newer RCTs, but remains a concern.  More recent evidence 

from observational studies provide additional evidence for an elevated risk in 

cardiovascular-related death for sulfonylureas compared to metformin (Eurich, 

Majumdar, McAlister, Tsuyuki, & Johnson, 2005; Evans, Ogston, Emslie-Smith, & 

Morris, 2006; Johnson, Majumdar, Simpson, & Toth, 2002; Roumie et al., 2012).  

Related to other therapy class comparisons, only one major RCT compared 

thiazolidinediones (TZDS) against sulfonylureas (ADOPT trial) but there was not 
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sufficient power to assess a statistically significant difference (Kahn et al., 2006).  Also, 

there has been little research comparing sulfonylureas to newer drugs that may eventually 

replace sulfonylurea use such as GLP1-agonists, DPP-4 inhibitors, and SGLT-2 

inhibitors.  Of these classes, DPP-4 inhibitors have been studied the most.  In a pooled 

analysis, Zhang et al. (2014) compared DDP-4 inhibitor use to sulfonylurea therapy using 

data from four RCTs lasting two years or less.  They estimated that DDP-4 inhibitor use 

was associated with 47% fewer cardiovascular events when compared to sulfonylureas, 

but cautioned interpreting the results because of the relatively small number of studies 

used in the analysis and because of the limited study duration involved in each (Mantel-

Haenszel OR=0.53, 95% CI [0.32, 0.87]). 

Cardiovascular Morbidity  

There is insufficient and unclear evidence for risk of cardiovascular morbidity 

with sulfonylurea use relative to other medications.  The majority of comparisons have 

compared sulfonylureas to metformin.  There is conflicting information in the literature 

with some studies supporting an elevated signal for sulfonylureas compared to metformin 

while others fail to confirm this finding.   In the ADOPT trial, researchers found little 

difference in nonfatal MI and stroke compared to metformin (MI: 1.0% of sulfonylurea 

users vs. 1.4% of metformin users; Stroke: 1.2% for sulfonylureas and 1.3% for 

metformin) (Kahn et al., 2006).  This is consistent with a large cohort study consisting of 

91,521 patients with diabetes in the United Kingdom General Practice Research Database 

(i.e., a large primary care database that today is a part of the Clinical Practice Research 

Datalink) that found no evidence for an increased risk of non-fatal MI in the sulfonylurea 
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group (Tzoulaki et al., 2009). 

However, several observational study findings favor metformin over sulfonylurea 

on cardiovascular events (Pantalone et al., 2009; Roumie et al., 2012; Tzoulaki et al., 

2009).  For example, in an analyses of 20,450 diabetics receiving care at the Cleveland 

Clinic, researchers found an increased risk for congestive heart failure for sulfonylureas 

compared to metformin after adjusting for baseline characteristics and risk factors 

(HR=0.76, 95% CI  [0.64, 0.91]) (Pantalone et al., 2009).  Research using other 

cardiovascular disease morbidity measures has also found elevated signals for 

sulfonylureas when compared against metformin.  They include nonfatal cardiovascular 

hospitalizations, acute MI, coronary revascularization, and cardiovascular events 

composite outcomes (Johnson et al., 2002; McAfee, Koro, Landon, Ziyadeh, & Walker, 

2007).  For instance, in a retrospective cohort study of veterans, investigators compared 

the effects of sulfonylureas and metformin on the risk of cardiovascular events 

(composite outcome consisting of nonfatal acute MI and stroke) in new users of 

antidiabetic medications and found an elevated risk for patients who first were treated 

with sulfonylureas compared to those were given metformin (HR=1.13, 95% CI [1.03, 

1.24]) (Roumie et al., 2012).  

Worse outcomes have also been reported for sulfonylurea/metformin (SU+METF) 

combination therapy against metformin monotherapy (Hermann et al., 1994; McAfee et 

al., 2007).  In a small six-month trial, researchers found that 14% (10 patients) of patients 

in the SU+METF combination therapy group had a cardiovascular event compared to a 

5% (two patients) in the metformin only therapy group, though the difference was not 
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statistically significant (Hermann et al., 1994).   

Compared to TZDs, evidence is inconsistent with some studies reporting elevated 

cardiovascular risks for sulfonylureas (Jain, Osei, Kupfer, Perez, & Zhang, 2006; McAfee 

et al., 2007), similar risks between TZDs and sulfonylureas (Kahn et al., 2006; Pantalone 

et al., 2009; St John Sutton et al., 2002), and lower risks for sulfonylureas (Brownstein et 

al., 2010; Hsiao et al., 2009; St John Sutton et al., 2002).   

All-Cause Mortality 

The extent to which medications used to manage type 2 diabetes affect all-cause 

mortality remains unclear.  Insufficient evidence has been produced from RCTs.  RCTs 

have not been designed to evaluate long-term safety.  To date, the majority of RCTs have 

been less than one year (16–30 weeks) with relatively few or no deaths occurring during 

the study period (Chien et al., 2007; DeFronzo & Goodman, 1995; A. J. Garber, 

Donovan, Dandona, Bruce, & Park, 2003; Hemmingsen et al., 2013; Kahn et al., 2006).  

As a result, existing RCTs have not been powered to evaluate mortality.  While RCTs 

have not been helpful in understanding mortality risk, several observational studies link 

sulfonylurea monotherapy to increased all-cause mortality when compared to other 

diabetic treatments, particularly metformin.  

Observational studies supporting a higher risk of death in sulfonylurea 

monotherapy compared to metformin include: three observational studies using claims 

information from a cohort of patients in the Saskatchewan Health Registry (Eurich et al., 

2005; Johnson et al., 2002; Simpson, Majumdar, Tsuyuki, Eurich, & Johnson, 2006), one 

study of patients receiving care from the United Kingdom National Health Service in 
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Scotland (Evans et al., 2006), one study of patients receiving care at the Cleveland Clinic 

(Pantalone et al., 2009), one study of patients in northwestern Italy without cancer at 

baseline (Bo et al., 2012), two studies of patients in the United Kingdom General Practice 

Research Database (Azoulay, Schneider-Lindner, Dell’Aniello, Schiffrin, & Suissa, 

2010; Gulliford & Latinovic, 2004; Tzoulaki et al., 2009), and a study of patients in the 

Veterans Health Administration (Kahler et al., 2007).  Average follow-up times for these 

studies were considerably larger than existing RCTs with most ranging 5–8 years of 

follow-up.   

While there appears to be evidence for at least a slight risk of death compared to 

metformin, few studies have compared sulfonylurea to TZD, newer drug classes (e.g., 

DPP-4 inhibitors, GLP-1 agonists, SGLT-2 inhibitors) and most combination therapies.  

Only one study has compared risks of TZDs compared with other treatments.  In that 

assessment, Cleveland Clinic patients had a higher risk when treated with sulfonylurea 

compared to TZDs (HR=1.69; 95% CI [1.23, 2.33]).  Related to GLP-1 agonists, a six-

month RCT in Japan was insufficient to assess mortality as a long-term outcome, with 

only one death in the GLP-1 group and no deaths in the sulfonylurea group (Seino, Min, 

Niemoeller, & Takami, 2012). 

Outcome Summary 

While many antidiabetic medications appear to have equal glucose-lowering 

efficacy alone and when combined with metformin (Morgan et al., 2012), further 

research is needed to determine whether they also provide greater long-term safety.  

RCTs are limited in their design to evaluate long-term outcomes, resulting in few events 
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and providing little evidence (Bennett, Wilson, et al., 2011; Bolen et al., 2007).  The 

focus of many trials has been to make direct head-to-head comparisons to assess which 

medications work best at managing glucose-levels and were not designed to examine 

long-term risks (Holman, Paul, Bethel, Matthews, & Neil, 2008; Kahn et al., 2006; 

Lipska KJ & Krumholz HM, 2014; Nathan et al., 2013; Ryan et al., 2003; UKPDS-34, 

1998).  These trials have typically not been designed to evaluate long-term safety (e.g., 

small in size with relatively short follow-up periods), limiting the ability to obtain precise 

estimates of risk.  Thus, much of the evidence is derived from observational studies, but 

the methodological rigor of such studies is challenged (e.g., internal threats to validity 

such as selection bias and unmeasured confounding are possible). 

There are other shortcomings in existing comparative safety analyses.  While 

sulfonylurea is commonly compared to metformin and TZD, there is insufficient 

comparative safety research on how newer classes of medications (e.g., DPP-4 inhibitor, 

GLP-1 agonists, SGLT-2 inhibitor) compared against sulfonylurea therapy.  Also, there 

are even fewer comparative safety analyses that examine METF+SU combination therapy 

against other metformin combinations.   

Significance: Clinical Opinion is Fragmented on Sulfonylurea Use.   

Diabetic treatment involves a sequencing of therapies over time when glycemic 

control is not being obtained by the current therapy.  These are commonly referred to as 

‘lines’ of treatment.  Clinicians have developed different opinions regarding the relative 

therapeutic benefits and harms of sulfonylureas, leading to the support of different 

guidelines recommendations.  While the current consensus is that metformin should be 
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the initial first-line agent when diet and exercise are not sufficient, the debate is whether 

sulfonylurea should be used as a) a second-line agent after metformin, b) a third- or 

fourth-line treatments, or c) not at all.  For example, The American College of Physicians 

(ACP) developed guidelines based on their evaluation of the existing comparative 

effectiveness of type 2 diabetes medications, which included outcomes related to 

glycemic control, mortality, cardiovascular events as well as safety outcomes and 

recommends sulfonylurea use as a suitable second-line therapy in the treatment of type 2 

diabetics (Qaseem A, Barry MJ, Humphrey LL, Forciea M, & for the Clinical Guidelines 

Committee of the American College of Physicians, 2017; Qaseem, Humphrey, Sweet, 

Starkey, & Shekelle, 2012).   

While this is a stance in agreement with the American Diabetes Association, the 

National Institute for Health and Care Excellence, the International Diabetes Federation, 

and the European Association for the Study of Diabetes, it differs from guidelines put 

forth by the American Association of Clinical Endocrinologists and American College of 

Endocrinology guidelines which cautions against the use of sulfonylurea as a first- or 

second-line agent in the treatment of type 2 diabetics (Garber et al., 2017; International 

Diabetes Federation Guideline Development Group, 2014; Inzucchi et al., 2012, 2015; 

Marathe, Gao, & Close, 2017; National Institute for Health and Clinical Excellence, 

2014). 

Significance: Diabetes is a Major Public Health Problem.   

This research area is of public health importance given that approximately 9% 

(~29 million) of the adult population in the United States are diagnosed as diabetic, is the 
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seventh leading cause of death, and costs upwards of  $245 billion or 1 in 5 healthcare 

dollars spent (as of 2012) (Centers for Disease Control and Prevention, 2014; Geiss LS, 

Wang J, Cheng YJ, & et al, 2014; Go et al., 2014).  The prevalence is even higher 

amongst U.S. veterans (Reiber, Koepsell, Maynard, Haas, & Boyko, 2004) and it is 

particularly high among veterans receiving health care from the Department of Veteran 

Affairs (VA) (the study population in Study 2), with an estimated prevalence of about 

25% (Veterans Health Administration, 2011). 

 

Evidence based medicine model of clinical practice and diabetes medication 

treatment model 

Evidence-based medicine conceptual model  

As described above, different evaluations of the same evidence have contributed 

to the creation of different treatment guidelines.  Evaluating the scientific rigor and 

relevance of research evidence is a key element for informing clinical decision-making in 

evidence-based medicine (EBM) approaches.  EBM is commonly defined as “the 

integration of best research evidence with clinical expertise and patient values” 

(Rosenberg & Haynes with Sackett, Straus Sharon E. and Richardson W. Scott, 2000) 

and involves “the conscientious, explicit, and judicious use of clinically relevant research 

in making decisions about the care of individual patients” (Sackett, Rosenberg, Gray, 

Haynes, & Richardson, 1996).  This is the basis for our conceptual model developed by 

Sacket et al. (2000) and is depicted in the diagram in Figure 1.1.   
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The integration of three main components are involved in most EBM conceptual 

models of decision-making: Best Research Evidence; Individual Clinical Expertise; and 

Patient Values and Preferences.  First, the model acknowledges the importance of 

previous research in informing clinical practice.  Best External Evidence involves 

evaluating evidence from systematic investigations that are clinically relevant.  For 

diabetes research, this includes existing comparative effectiveness and safety evaluations.  

The gold standard in evidence is appropriately designed RCTs given their strong internal 

validity to infer causality.  In EBM approaches physicians are “urged to assume that the 

clinical effectiveness results from RCTs could be applied to their own patients, unless 

there was a good reason not to make this default assumption” (Charles, Gafni, & 

Freeman, 2011; Straus, Richardson, Glasziou, & Haynes, 2005).  However, RCT designs 

have their limitations.  Evidence solely from RCTs is inadequate for the questions in this 

dissertation for several reasons.  First, the relatively short follow-up and small sample 

sizes of RCTs make long-term evaluations difficult and underpowered (susceptible in 

making type II errors).  Second, the generalizability is of concern.  This is particularly 

true in populations that have multiple comorbidities (e.g., veteran and elderly 

populations) – a common criterion for study exclusion. That may not reflect common 

characteristics in clinical practice.    
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Figure 1.1.  Evidence-based medicine conceptual model 

Evidence from other study designs should be included to a certain degree.  A key 

challenge for researchers is the extent in which to incorporate evidence from other study 

designs that are quasi-experimental.  These observational studies may introduce bias 

given that patients are not randomized into particular treatment groups, but are typically 

much larger in size and have longer follow-up duration than RCTs.  Also, they may 

provide useful information about real clinical populations typically excluded from RCTs 

and how they may benefit/be harmed by treatments.   

A clinician’s experience, education, knowledge, and skills are also needed in the 

decision making process.  The Individual Clinical Expertise component refers to “the 

proficiency and judgment that individual clinicians acquire through clinical experience 

and clinical practice” (Sackett et al., 1996).  Also, the extent to which external evidence 

is judged to apply to an individual patient may rely on clinical expertise. 

EBM models also acknowledge that the patient plays an important role in the 
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decision-making process.  The Patient Values and Preferences component includes the 

patient’s “own personal and unique concerns, expectations, and values” (Sackett et al., 

1996).  It includes the types of patient information that should be considered in treatment 

decisions (i.e., either treatment decisions made on behalf of the patient or with active 

participation of the patient in the process). 

The three components do not have to be equally relevant in a given decision and 

determining the appropriate balance may not be an easy task.  That is, any one 

component or components may be stronger in any particular decision.  

Model of Medication Decisions Involved in Antidiabetic Therapy   

Many medications exist to manage glucose levels, resulting in an even greater 

number of sequencing possibilities to treat type 2 diabetes patients as the illness 

progresses.  Figure 1.2 describes the medication decisions patients and providers have to 

make when determining how to manage diabetes.  During each step of treatment, 

clinicians should monitor short and long-term outcomes beyond how well current 

treatment manages a patient’s glucose levels. 

The common treatment pathway is as follows.  Patients begin with lifestyle 

changes such as diet and exercise.  They likely also receive diabetes education.  Changes 

are recommended to existing therapy when glucose levels are not controlled.   When 

initial approaches fail to manage glucose levels, monotherapy of an oral antidiabetic 

agent is added (commonly referred to as first-line treatment).  While there are seven 

classes of medications that are FDA approved, metformin (a biguanide) is recommended 

as the first-line agent by all major clinical guidelines.  When monotherapy fails to control 
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glucose levels, patients are then typically placed on one or more agents from the 

remaining classes: sulfonylurea, thiazolidinediones, meglitinides, dipeptidyl peptidase 4 

inhibitor, glucagon-like peptide-1 agonist, sodium/glucose cotransporter-2 inhibitor, 

and/or insulin (note: the order of the agents in the diagram has no meaning of hierarchy 

or preference).  With each step, a decision to augment existing medications (combination 

therapies) or replace existing therapies is made, keeping in mind the short and long-term 

outcome risks.  These outcomes are indicators for the treatment’s effectiveness.  Shorter-

term outcomes are primarily focused on glycemic control (HbA1c), while long term risks 

include both micro and macrovascular complications, safety and adverse effects as well 

as death.  Also, the extent to which a treatment is considered safe and effective may vary 

depending on the subgroup being treated, where any effects may be modified by a 

particular variable (e.g., in patients over 65, medication adherence, etc.).  In the next 

chapter, attention is focused on the safety risks associated with sulfonylureas in attempt 

to understand the extent that sulfonylureas should be included in this treatment model. 
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Figure 1.2. Medication treatment model in type 2 diabetes [adapted from (Bennett, Wilson, et al., 2011)] 
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CHAPTER 2   
EVIDENCE-BASED SYNTHESIS OF SULFONYLUREA USE AND THE RISK 

OF MORTALITY AND CARDIOVASCULAR EVENTS COMPARED TO 

OTHER ORAL ANTIDABETIC TREATMENTS 

 

Introduction 

Type 2 diabetes is a common cause of death, linked to both micro and 

macrovascular complications, and costly to treat.  A wide array of medications exists to 

manage glucose levels, resulting in an even greater number of sequencing possibilities to 

treat the illness as it progresses.  Clinicians face increasingly complex decisions about 

which medications regimens to use to treat patients with limited evidence-based 

information to guide appropriate therapy. 

The current clinical consensus is to treat patients with metformin when diet and 

exercise has failed to control glucose levels, but there is disagreement on whether 

sulfonylureas should be used as a second-line therapy.  While sulfonylureas are a 

common, inexpensive, and effective way to manage glucose levels they have become 

increasingly controversial because of long-term safety concerns.  Emerging evidence 

links sulfonylureas use with elevated risks for cardiovascular events and mortality 

compared to other antidiabetic drug therapies.  Still, clinical opinion is fragmented on 

whether sulfonylureas should remain as a suitable therapy.   This difference may be 

attributed, in part, to the fact that a number of studies reported elevated risks that are 

observational in nature and challenged on their methodological rigor.  This, in 

combination with the lack of safety and efficacy RCTs that are designed to evaluate long-

term outcomes, and to reflect actual clinical populations in such trials have likely 

contributed to the adoption of different clinical guidelines.  
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The purpose of this study is to use the existing evidence to summarize the risk of 

1) cardiovascular events and 2) mortality (all-cause and cardiovascular) associated with 

sulfonylureas use relative to other therapies by conducting a series of meta-analyses using 

existing evidence for these outcomes. 

 

Methods 

Search strategy  

The MEDLINE database (via PubMed) was searched for studies comparing the 

safety of sulfonylurea (monotherapy or in combination) relative to other diabetes 

medications in those with type 2 diabetes patients from 1965 through December 15th 

2015.1  Clinicaltrials.gov, a public database for clinical trials was also searched for 

unpublished data.  In addition, reference lists of relevant articles were examined for 

studies not retrieved from the other search strategies.  Finally, references from previous 

meta-analyses and Cochrane reviews were examined. 

Figure 2.1 describes the selection process resulting from the MEDLINE and other 

search strategies. A total of 1,982 articles were extracted from MEDLINE.  Two hundred 

sixty-four additional articles were culled from the other search strategies, resulting in a 

total of 2,246 articles extracted.  Abstracts of each of these articles were reviewed for 

eligibility.  Of these, 172 articles were reviewed in their entirety and a total of 52 met the 

eligibility requirements to be included in the meta-analyses. 

Information regarding the effect size (e.g., hazard ratio, odds ratio, relative risk) 

                                                 
1 Search terms included in Appendix A 
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or raw information to calculate it (e.g., number of major cardiovascular events, number of 

people who died), standard deviation (or 95% confidence interval), sample size (number 

of people in treatment group), and the study characteristics were extracted from each 

study if this information was provided.  Adjusted estimates of the effect size were used if 

provided, otherwise unadjusted estimates were extracted.  Authors were not contacted to 

obtain information if missing.  For the purposes of this study, hazard ratios, odds ratios, 

and relative risk were treated as equivalent when pooling estimates. 

  

Figure 2.1. Study selection process 
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Study Selection Criteria  

Randomized control trials and observational cohort studies were included in the 

study.  All studies explicitly examining all-cause mortality, cardiovascular-related 

mortality, or major cardiovascular events were examined.  Since the aim was to evaluate 

long-term cardiovascular and mortality risks, only studies with a year or more of follow-

up from the date of the first prescription were included.   

Studies were excluded if they met any of the following criteria: included only 

patients with serious conditions at baseline such as a history of major cardiovascular 

events or renal failure, consisted of only children (younger than 18 years of age), type 1 

diabetes patients only, did not include an active comparator (e.g., diet/exercise, placebo), 

case-control design, research only on animals, and written in a language other than 

English.  For studies with more than one publication, the study with the most complete 

data or involved the most recent follow-up was selected.  For observational studies, an 

attempt to address confounding must have been implemented (matched in the design or 

model adjustment) by including basic demographic information (i.e., age, sex, and race) 

and relevant comorbidities at baseline (those adjusting for CVD risk at a minimum).  This 

resulted in 25 RCTs and 27 observational cohort studies being included in this study. 

Risk of Bias (Quality) Assessment   

Details about potential biases in each randomized trial included in the meta-

analysis was assessed using items from the Jadad scale, which asks about the study 

design and its appropriateness (randomization, double blind) as well as whether a 

description of the dropouts from the study is included (Jadad et al., 1996).  The quality of 
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observational cohort studies were rated using the eight items from the Newcastle-Ottawa 

Scale (Wells et al., 2000).  This scale assesses quality of three dimensions: sample 

selection, comparability of groups, and outcome assessment.  An additional item for both 

study designs examined whether industry funding explicitly sponsored the study. 

Details of the quality assessments are presented in the Appendix A-3 and A-4. 

Results from the Newcastle Ottawa Scale suggest that all studies met most of the quality 

assessments for each domain.  Regarding RCTs, all studies were randomized, 21 of 25 

were double blind and a description of the participant dropouts were described in 24 of 

the studies.  However, industry funding was judged to be high in 65% of all studies (24 of 

25 RCTs; 10 of 27 observational studies).  With the exception of industry funded studies, 

most studies were assessed as low risk of bias on the domains assessed suggesting that 

the overall quality was fair to good in the selected studies (see Appendix A-3 and A-4 for 

study specific breakdown).  Total scores from the quality assessments were not used as a 

way to exclude studies from the meta-analyses.   

Analysis   

Each outcome and comparison required two or more studies (Valentine, Pigott, & 

Rothstein, 2009).  For RCT and observational designs, both fixed effects and random 

effect models were conducted and reported.  In a fixed effects model, the assumption is 

that each study provides evidence towards one common effect size.  That is, the model 

assumes the effect size should be the same and that the features of the study (e.g., study 

design, population,) should not impact the magnitude of the effect size.  Therefore, the 

fixed effect model combined all study information together without taking into account 



 

 

22

that studies can vary between each other as well as vary between different study designs.  

Weights given to each study are determined only by its within-study variance (study 

weight=1/within study variance).  Since variance is a function of sample size, smaller 

studies will contribute less information to the weighted estimate than larger studies.  

In the random effects model, the weights given to each study are determined not 

only by the within group variability (like for fixed effects) but also by the between-group 

variability.  The implication is that relatively greater weight tends to be given to smaller 

studies than it would be in a fixed effect model approach since the weights for each study 

now account for between study design variability.  In general, since random effects 

models also include between study variation, they will tend to have relatively wider 

confidence intervals compared to fixed effects models (Borenstein, Hedges, Higgins, & 

Rothstein, 2009).  The inverse variance and the DerSimonian-Laird methods were used to 

estimate fixed and random effect estimates respectively using the METAN command in 

Stata 14.1 (StataCorp, 2015).    

A particular challenge for researchers is how to synthesize results that are 

produced from two inherently different study designs: RCTs and quasi-experimental 

observational designs.  Therefore, to address this methodological challenge, the approach 

uses a two-level hierarchical Bayesian design to synthesize result estimates across RCT 

and observational designs.  This is a random effects model approach, and assumes that 

the effects derived from different study designs will be similar and also different to some 

extent.  The combined effect is the weighted average of these two common effect sizes.    

Overall pooled estimates were estimated using the ‘bayesmh’ command with 
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random effect of study design in Stata 14.1 (StataCorp, 2015).  Thus the model accounts 

for heterogeneity from the different study design.  This is similar to the approach by 

Peters et al. (2005) and involved Markov chain Monte Carlo (MCMC) estimation using a 

Metropolis-Hastings algorithm and Gibbs sampling with vague conjugate prior 

distributions specified on unknown parameters.  Convergence diagnostics suggest fairly 

rapid convergence with no trend in trace plots, low autocorrelation, and acceptance rates 

for the Metropolis-Hastings algorithm around 75% (well above the 10% rule of thumb) 

and efficiencies above one percent for all analyses. 

Heterogeneity across the studies was assessed via the I2 statistic, with values 

greater than 50% benchmarked as indicating substantial heterogeneity (Higgins, 

Thompson, Deeks, & Altman, 2003).  This statistic represents the percent of variance in 

the effect size attributable to heterogeneity with larger values indicating less overlap in 

confidence intervals across studies.  A benefit of the statistic is that the number of studies 

involved in the meta-analysis has little influence on the I2 statistic unlike other estimates. 

In drug comparisons that included 10 or more studies, publication bias was 

assessed by testing for asymmetry in funnel plots (scatterplot for the log effect size by the 

log standard error) using Egger’s tests (Egger, Davey Smith, Schneider, & Minder, 1997) 

via the METABIAS Stata command (Harbord, Harris, & Sterne, 2009).  Tests for funnel 

plot asymmetry are not recommended in comparisons with less than 10 studies since 

power may be too low to detect moderate asymmetry (Higgins & Green, 2011). 
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Results 

A total of 25 randomized clinical trials and 27 observational cohort studies were 

included in the series of meta-analyses.  Meta-analytic summaries of the effect size (and 

95% confidence or credible intervals) for each comparison and outcome are presented in 

Figures 2.2, 2.3, and 2.4.  Further information, including both fixed and random effect 

models for each analysis is presented in Appendix A-2. 

Pooled Effects By Design 

 Observational cohort design.  Sixteen meta-analyses (from eight drug-to-drug 

comparisons) of only observational cohort studies suggest greater sulfonylurea risk 

compared to other therapies.  Three of these comparisons involved sulfonylurea 

monotherapy against metformin (all-cause mortality: RR=1.38, 95% CI [1.35, 1.41], 

cardiovascular mortality: 1.21 95% CI [1.16, 1.27], cardiovascular composite: RR=1.18, 

95% CI [1.15, 1.22]), TZD (all-cause mortality: RR=1.28, 95% CI [1.13, 1.45]), and 

combination METF+TZD (all-cause mortality: RR=1.76, 95% CI [1.41, 2.20], 

cardiovascular composite: RR=1.99, 95% CI [1.47, 2.70]).   

There were also differential risks when sulfonylurea combination therapy was 

evaluated against sulfonylurea and metformin monotherapy.  A lower risk was associated 

with METF+SU when compared to sulfonylurea monotherapy (all-cause mortality: 

RR=0.76, 95% CI [0.71, 0.80], cardiovascular mortality: RR=0.80, 95% CI [0.66, 0.97], 

cardiovascular composite: RR=0.84, 95% CI [0.77, 0.93]) and a higher risk was 

associated with sulfonylurea combination therapy compared against metformin 

monotherapy (all-cause mortality: RR=1.15, 95% CI [1.08, 1.22], cardiovascular 
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mortality: RR=1.47, 95% CI [1.18, 1.82]). 

The remaining analyses found elevated effects for sulfonylurea combination 

therapy with metformin relative to other metformin combinations: METF+TZD (all-

cause mortality: RR=1.20, 95% CI [1.08, 1.34], cardiovascular composite: RR=1.12, 

95% CI [1.03, 1.23]), METF+DPP-4 (all-cause mortality: RR=1.45, 95% CI [1.32, 1.59], 

cardiovascular composite: RR=1.46, 95% CI [1.28, 1.68]), and METF+GLP-1 (all-cause 

mortality: RR=1.42, 95% CI [1.00, 2.01]. 

In addition, pooled results were statistically inconsistent in four analyses between 

the fixed inverse variance method and the DerSimonian and Laird random effect method, 

such that the added between study variance included in the random effects estimates 

produced wider confidence intervals for the pooled effect in all cases giving statistically 

non-significant estimates.  Thus substantial heterogeneity existed within each of these 

analyses, with the I2 statistic ranging from 74% to 93%.  All of these analyses involved 

METF+SU combination therapy compared to monotherapies, and found a lower risk 

when compared to sulfonylurea alone (all-cause, cardiovascular composite) and found a 

higher risk when compared to METF monotherapy (on all cause mortality. cardiovascular 

death).  With the exception of this last drug comparison, all of the inconsistent 

comparisons had similar magnitude and directions of the estimated pooled effects 

between random effects and fixed effects estimates (see Appendix A-2 for more details). 

RCT. One significant elevated effect was found in the series of analyses using 

only RCTs.  People randomized to receive combination METF+SU had an 86% increased 

risk of a cardiovascular composite event at any point in time compared to those assigned 
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METF+DPP-4 (Pooled RR=1.86, 95% CI [1.18, 2.93]).  All other pooled estimates of 

RCT design studies failed to find a difference in risk between sulfonylurea therapy and 

other regimens for all outcomes.  While most comparisons had the same direction in the 

effect as pooled observational cohort estimates, precision was often worse than its pooled 

observational cohort counterpart. 

Overall combined across study design.  None of the analyses suggested an 

elevated effect for sulfonylureas when results were combined across RCT and 

observational cohort study designs according to all two-level hierarchical Bayesian 

models.  While the overall direction and magnitude of the effect estimates are similar to 

that of the pooled estimates from observational cohort designed studies, overall pooled 

estimates have considerably wider credible intervals.  This is most likely a result of the 

added variation existing between study designs. 

Publication Bias  

Assessing publication bias was limited since most analyses were excluded if there 

were fewer than 10 studies included.  There was no significant test suggesting publication 

bias according to Egger’s test. 
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Figure 2.2.  Pooled relative risks for all-cause mortality.  Inverse variance fixed effect 

estimates are shown for pooled estimates by study design.  Two-level hierarchical Bayesian 

estimates shown for overall pooled estimates. Relative risk and 95% confidence interval 

presented for results by study design.  Relative risk and 95% credible intervals for overall 

pooled estimates.  Note: ES=Effect Size 
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Figure 2.3.  Pooled relative risks for cardiovascular mortality.  Inverse variance fixed effect 

estimates are shown for pooled estimates by study design.  Two-level hierarchical Bayesian 

estimates shown for overall pooled estimates. Relative risk and 95% confidence interval 

presented for results by study design.  Relative risk and 95% credible intervals for overall 

pooled estimates.  Note: ES=Effect Size 
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Figure 2.4.  Pooled relative risks for cardiovascular composite events.  Inverse variance 

fixed effect estimates are shown for pooled estimates by study design.  Two-level 

hierarchical Bayesian estimates shown for overall pooled estimates. Relative risk and 95% 

confidence interval presented for results by study design.  Relative risk and 95% credible 

intervals for overall pooled estimates.  Note: ES=Effect Size 
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Discussion 

Cardiovascular disease is the main cause of death for people with diabetes 

mellitus, yet evidence on whether particular drug therapies contribute to an increase in 

cardiovascular events and mortality has been unclear and insufficient.  Despite its 

importance, most clinical studies are instead designed to assess glycemic control — often 

short-term assessments that lack the power to examine rare events. This in turn, results in 

imprecise estimates of the risk for cardiovascular morbidity and mortality.  

Based on this series of meta-analyses, there is some evidence that sulfonylurea 

therapy is associated with elevated risk relative to other drug classes (against metformin, 

TZD, and DPP-4s) when compared alone (as a monotherapy) and when used in 

combination with metformin.   

These significant findings are almost entirely derived from observational data 

(with one exception).  In monotherapy, higher pooled relative risk is reported for 

sulfonylurea monotherapy when compared to metformin on all three safety outcomes and 

TZD on all-cause mortality. 

Evidence from observational cohort studies also found sulfonylureas to have 

higher long-term risks when compared to three other potential second-line drugs for one 

or more outcomes.  Against METF+DDP-4, results suggest that combination METF+SU 

has an increased risk of cardiovascular composite events (in agreement with RCT pooled 

results) as well as all-cause mortality.  Against METF+GLP-1 there was an elevated risk 

for all-cause mortality.  In both sulfonylurea alone and METF+SU combination therapy, 
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the results suggest higher risk than METF+TZD for all-cause mortality and 

cardiovascular composite events.  

While most RCT derived estimates were in the same direction and had similar 

magnitude to their observational cohort counterpart, the uncertainty surrounding the 

effect were much larger.  Therefore when evidence is pooled using both types of studies 

design, there is high variability around effect estimates (wide credible intervals) as a 

result from the imprecise estimates reported from prior RCT studies. 

Insufficient evidence has been produced from RCTs.  This is reflected in the 

imprecise estimates reported in this study (relative to pooled observational estimates).  In 

addition, 34 RCT designed studies were excluded solely on their duration (less than one 

year).  Despite these limitations, one analysis did suggest a significant elevated effect for 

combination METF+SU against METF+DPP-4 for cardiovascular events. Across all 

RCTs in this study, the majority of RCTs evaluating long-term safety outcomes had small 

sample sizes with relatively few or no events in a given drug group occurring during the 

study period.  As a result, existing RCTs were not powered sufficiently to evaluate long-

term safety outcomes.   

While several pooled analyses of observational cohorts provide evidence and 

suggest different risks, the extent to which observational data should be used as evidence 

is unresolved.  Despite some evidence from observational studies, when combined with 

RCTs, pooled estimates did not suggest an increased risk for long-term adverse events. 

A methodological challenge for researchers is how/whether evidence from observational 

cohort and RCTs can be combined.  In this study, a two-level Bayesian model was used 
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to explore how results can be synthesized across study designs.  Since there were fewer 

RCTs relative to observational studies this tended to give more weight to RCTs than it 

otherwise would if simply combined without consideration of study design.  However, it 

also included additional variance in the form of between study design variance as well as 

variability from highly uncertain (i.e., uniformed) prior distributions in the Bayesian 

models.  

Future studies should explore whether there are other suitable methods to account 

for uncertainty and pooling estimates across study designs for the purpose of advancing 

empirical knowledge and informing evidence-based medicine practice.  In particular, 

Bayesian multilevel models that use informed prior distributions that are formally 

specified to reflect the relative strength of RCT designs compared to observational 

designs would be most beneficial.  This would assign less weight to study design types 

that are more susceptible to bias (e.g., observational designs) relative to RCT designs.  

Empirically, these weights might be developed via meta-regression examining how effect 

estimates vary by study design as has been suggested previously (Goodman, 2013).  

Additionally, expert judgments may be elicited via survey or using a Delphi or group 

consensus approach, where this information may be quantified in the form of a prior 

probability distribution.  

Finally, it is important to note that there are several shortcomings in existing 

comparative safety analyses that need to be explored in future research.  While 

sulfonylurea therapy is commonly compared to metformin and TZD, there is limited 

comparative safety research on how newer classes of medications compare against 
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sulfonylurea therapy.  Also, there are even fewer comparative safety analyses that parse 

out the different sequencing possibilities involving sulfonylurea combination therapy 

such as whether existing therapy (e.g., often METF monotherapy) is discontinued or 

augmented when a second-line therapy is introduced. 

Also, there were few comparisons that included 10 or more studies to examine 

publication bias so this cannot be ruled out.  In addition, other biases could influence 

study effect sizes.  In future work, meta-regression is one way to explore the influence 

that various study characteristics as well as other effect modifying factors had on these 

estimates. 

 

Conclusion 

While previous studies suggest other antidiabetic medications appear to have 

equal glucose-lowering efficacy alone and when combined with metformin (Morgan et 

al., 2012), further research is needed to determine whether they also provide greater long-

term safety.  While meta-analyses using only observational cohort evidence suggest 

elevated sulfonylurea risk, RCTs to date have been poorly designed to evaluate long-term 

outcomes, resulting in few events and providing little evidence.  The focus of many trials 

has been to make direct head-to-head comparisons to assess which medications work best 

at managing glucose-levels and were not designed to examine long-term risks (Holman et 

al., 2008; Kahn et al., 2006; Lipska KJ & Krumholz HM, 2014; Nathan et al., 2013; Ryan 

et al., 2003; UKPDS-33, 1998).  These trials have typically been small in size with 

relatively short follow-up periods, limiting the ability to obtain precise estimates of risk.    
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While much of the evidence is derived and will continue to come from 

observational studies, the methodological rigor of such studies is questionable (e.g., 

internal threats to validity such as selection bias and unmeasured confounding are 

possible).  Well-designed, rigorous observational studies may provide additional 

evidence, but more RCTs examining long-term risk are needed.  
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CHAPTER 3  
A COMPARATIVE SAFETY ANALYSIS OF SECOND-LINE DIABETES 

TREATMENTS IN A VETERAN POPULATION 

 
Background 

Evaluating the scientific rigor and relevance of research evidence is a key element 

for informing clinical decision-making in evidence-based medicine (EBM) approaches. 

In the treatment of type 2 diabetes, care involves a sequencing of therapies over time as 

the illness progresses.  EBM is commonly defined as “the integration of best research 

evidence with clinical expertise and patient values” (Rosenberg & Haynes with Sackett, 

Straus Sharon E. and Richardson W. Scott, 2000) and involves “the conscientious, 

explicit, and judicious use of clinically relevant research in making decisions about the 

care of individual patients” (Sackett et al., 1996).  With physicians making difficult 

decisions about which medications regimens to use to treat patients with limited or 

uncertain evidence-based information to guide appropriate therapy more comparative 

safety evidence is needed. 

While the current clinical consensus is that metformin should be the initial first-

line agent when diet and exercise are not sufficient, disagreement exists amongst 

clinicians about whether sulfonylureas are a suitable second-line of treatment after 

metformin fails to control glucose levels in type 2 diabetes patients.  While they have 

been used for glycemic control in patients with type 2 diabetes since the 1950s, they are 

increasingly controversial and have attracted considerable debate in recent years 

(Abrahamson, 2015; Genuth, 2015).  Knowledge of the benefits and risks relative to other 

therapies in the short-term are fairly well known, while the longer-term risks are poorly 



 

 

36

understood.   In the short-term, several pooled analyses of RCT and observational cohort 

studies suggest that other classes of diabetes medications yield similar reductions in 

hemoglobin A1c levels relative to sulfonylureas and are associated with lower rates of 

hypoglycemic events compared to sulfonylureas (Bennett, Maruthur, et al., 2011; Bolen 

et al., 2007; DeFronzo & Goodman, 1995; A. Garber et al., 2009; Hemmingsen et al., 

2014; Morgan et al., 2012; Scott, Wu, Sanchez, & Stein, 2007; Seaquist et al., 2013; 

UKPDS-33, 1998).   

The results from the series of meta-analyses conducted presented in Chapter Two 

of this dissertation, suggest that there is some evidence for increased risks for 

sulfonylureas compared to other oral antidiabetic treatments from observational studies.  

RCTs have been, for the most part, poorly designed to evaluate long-term outcomes, 

often resulting in fewer events over the longer term and also provide little evidence for 

long term outcomes (Bennett, Wilson, et al., 2011; Bolen et al., 2007).  This has led to 

imprecise estimates of pooled risk across RCT and observational studies. 

Results from Study One also highlight that there are critical gaps in the literature 

that deserve attention.  Specifically, few studies to date have investigated second-line 

therapies after metformin is no longer sufficient.  Since all major guidelines support 

metformin as the initial pharmacologic therapy to maintain glycemic control, studies 

should be designed to evaluate the safety when a second-line therapy is needed.  Related, 

information regarding the impact that discontinuing or using metformin in combination 

with second-line medications is also lacking. 

With limited evidence-based information on long-term outcomes to guide 
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appropriate therapy, second-line treatment considerations rely upon scientific evidence 

from studies of patients with no prior oral medication use or that ignore the sequencing of 

medication.  These cohorts may be inherently different from actual treatment populations 

who are considering second-line treatment.  Second-line considerations also rely upon 

short-term safety (severe hypoglycemic events) and efficacy (influence on glucose 

levels).  Well-designed observational studies with large sample sizes and longer follow-

up can provide additional evidence on the comparative safety of sulfonylureas relative to 

other second-line drugs on long-term outcomes.  The purpose of this study is to provide 

new evidence on the cardiovascular and mortality risks for diabetes agents relative to 

sulfonylureas by conducting a new comparative safety study in a veteran diabetic 

population on second-line glycemic control treatment both as add-on therapies and 

second-line monotherapies (i.e., where metformin is discontinued) with longer term 

follow-up than previously reported.  

 

Methods 

Data Source 

A national analysis of Veterans Health Administration (VA) medical and 

administrative observational data was conducted.  Patients in the Diabetes Epidemiology 

Cohorts (DEpiC), a diabetes registry developed and maintained for over 10 years (Miller 

& Pogach, 2008), were used to reliably identify patients with type 2 diabetes and to link 

VA data over time.  Information gathered included face-to-face outpatient visits and 

inpatient stays, which contain codes for diagnoses and medical procedures performed, as 
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well as VA prescriptions  (e.g., drug agent, number of days supplied, and dispense date) 

and laboratory test results.  Since many VA patients also receive care outside the VA, we 

used non-VA data sources including Medicare data.  For mortality data, the VA Vital 

Status File and National Death Index were used (Centers for Disease Control and 

Prevention, 2017). 

Design and Analysis.   

A comparative safety analysis was conducted on the risk of adverse outcomes in a 

retrospective cohort study of VA veteran patients with diabetes who received a 

prescription for metformin and subsequently augmented or switched to other diabetic oral 

treatments from fiscal year 1998 to 2012.  Specifically, patients were included whose first 

diabetes medication was metformin as a first-line therapy, remained adherent to 

metformin until they subsequently augmented or switched to sulfonylurea or another 

second-line oral glycemic control medication.  Similar to a run-in period in clinical trials, 

patients must have remained on that second-line regime, defined as at least two 

prescriptions and more than 90 days supplied within 180 days of initial second-line 

prescription to ensure that the cohorts consist of patients who tolerated and remained on 

the second-line therapy.  Other inclusion criteria are: type 2 diabetic (according to DEpiC 

registry) in at least one fiscal year; received regular care in VA  (at least two face-to-face 

outpatient visits in the 731 days before the initial second-line prescription); known gender 

and age; first VA service use (outpatient visit or inpatient admission) at least 365 days 

before initial second-line prescription date; no insulin use prior to the start of follow-up; 
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and did not die before the start of follow-up.  A flowchart for the sample derivation is 

presented in Figure 3.1. 

Study Design, Cohort Entry and Exposure   

To compare medications for patients at similar stages in diabetes progression, a 

variant of a new user design in which incident use of a second-line medication was 

implemented after prior metformin prescribing.  Cohort entry was defined on the basis of 

the initial second-line prescription, with exposure beginning on the day of the initial 

second-line prescription and ending 180 days after.  As previously stated, the second line 

regimen had to be tolerated and prescribed relatively long-term, which is defined as 

consisting of two or more prescriptions totaling more than 90 days supplied in the 180-

day exposure window.  Follow-up began after the criteria for cohort entry and exposure 

status had been established and therefore started 181 days after the initial second-line 

prescription. 

All second-line oral agents were considered and classified according to their drug 

class.  However, prescribing for newer medications like DPP-4, GLP-1 analogues, SGL-

2, and alpha glucosidase inhibitors was low and cohorts for these groups lacked sufficient 

power for analysis.  As a result, second-line sulfonylurea and thiazolidinedione (TZD) 

therapies are only reported in this study. 

In a second series of analyses, cohorts were subdivided into whether second-line 

regimens were added to existing metformin use or if patients were switched off 

metformin when the second-line monotherapy was initiated (i.e., metformin prescribing 

discontinued).  
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In addition, all models were also stratified by variables determined a priori to 

potentially modify any estimated effect.  These variables included dual Medicare/VA 

beneficiaries, prior cardiovascular disease, and being 65 years of age or older. 

Two analysis approaches were employed: intent-to-treat and as-treated.  The two 

analytic approaches treat changes in the exposure to drug treatment differently.  Intent-to-

treat ignores subsequent changes to drug exposure and analyzes the initial exposure 

cohort, censoring only at the end of study period.  In the as-treated analysis, there will be 

fewer events since follow-up is censored when the second-line therapy is discontinued 

(defined as a prescription gap of cohort medicine lasting more than 90 days or more), 

when another class of oral glucose lowering medication for long-term use was prescribed, 

when insulin was prescribed, or at the end of the study period.  Ninety days was chosen 

to define discontinuation as it has been shown to represent true non-persistence in a study 

of sulfonylurea and metformin therapies in an earlier study (Greevy et al., 2011). 

Outcomes 

Time to all-cause death and time to a cardiovascular composite event were the 

outcomes of interest.  Death was ascertained from National Death Index and VA vital 

Status data.  Events included in the cardiovascular composite event measure are listed in 

Table 3.1 and include new hospitalized acute myocardial infarctions, stroke 

hospitalizations, congestive heart failure, cardiac surgery, and all-cause mortality.  Non-

death related cardiovascular events included in the composite were identified by 

International Classification of Disease, Ninth Revision [ICD-9] and Current Procedural 

Terminology codes from the medical encounter data.   
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Table 3.1. Definition of cardiovascular composite event end-point 

Cardiovascular 

condition Specification 

Myocardial infarction 

ICD-9-CM diagnosis code [inpatient only]: 410, 410.xx, except 
410.x2 

Acute coronary 

syndrome ICD-9-CM diagnosis code:  411.1, 411.81, 411.89 

Stroke ICD9-CM code: single code or specified combination: (inpatient 
codes for 430-432.xx, 434, 434.xx, 436, 436.xx)  

or ((inpatient codes: 342, 342.xx, 433, 433.xx, 435, 435.xx, 438, 
438.xx) + (inpatient or outpatient) V57) or  

or ((inpatient codes: 433, 433.xx, 435, 435.xx) + ((inpatient or 
outpatient) 342, 342.xx))  

Cardiac surgery ICD-9 Procedure code: 36.01, 36.02, 36.05, 36.10-36.16, 36.19 

  

or CPT-4 procedure code: 33510-33519, 33521-33523, 33533-
33536, 33572, 92973-92975, 92977, 92980-92982, 92984, 92986, 
92995, 92996 

Congestive heart 

failure 

ICD-9-CM code: 428,428.xx, 402.01, 402.11, 402.91, 404.01, 
404.11, 404.91 

All-cause death National Death Index, VA Vital Status file 
 

Covariates 

The following types of information were used to minimize bias and were assessed 

before cohort entry: demographics/sociodemographics (e.g., age, sex, race, income), 

comorbidities in the prior two years (e.g., cardiovascular, cerebrovascular, peripheral 

vascular disease, retinopathy, neuropathy), health care utilization in the prior six months 

(hospitalizations, outpatient visits, Medicare use), physiologic measures in the past 

twelve months (A1c, creatinine, blood pressure), prescriptions (e.g., antihypertensive 

agents, lipid lowering medications), and access to care (VHA health insurance benefits).  
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See Appendix B-1 for selected covariates and their baseline frequencies and or 

means by drug exposure.  In instances where patients had covariates with missing data, 

multiple imputations using Markov-chain Monte-Carlo methods were used to impute 

missing values (consisting of 20 imputation models using Jeffrey’s prior) via PROC MI 

in SAS 9.3.  Model estimates were subsequently pooled using PROC MIANALYZE and 

reported. 

Statistical Analyses 

To mitigate against the influence of selection bias, propensity score methods were 

used (Rosenbaum & Rubin, 1983).  When applied in observational studies, propensity 

scoring attempts to approximate a randomized study as much as possible by creating 

balance in the distribution of observed baseline covariates across the sulfonylurea 

treatment group and its comparator (Austin, 2011; Rubin, 2007).  Thus if propensity 

scores are properly specified, then they should make the treatment and comparison group 

similar on key characteristics.  If the sample is balanced, then estimates of outcome are 

unbiased and model dependence is decreased (i.e., the way in which the statistical model 

is specified leads to very little change is the estimated effect). 

Descriptive statistics at baseline were calculated for all covariates before and after 

propensity score weighting.  The effect of sulfonylureas relative to TZDs is reported in 

two ways.  The absolute effect of sulfonylurea treatment relative to its comparator was 

estimated by graphing the unadjusted Kaplan-Meier curves.  Additionally, Cox 

proportional hazards models were used to estimate the relative effect via hazard ratios for 

each of the outcomes.  TZD second-line therapy was used as the reference group for the 
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primary analyses and metformin augmented by sulfonylurea was used as the reference 

group for the secondary analysis.  A series of unadjusted and weighted adjusted hazard 

ratios are reported.  To check the assumption of proportional hazards, plots of the log (- 

log) Kaplan-Meier survival by the log of time were examined.  Patients were weighted by 

the inverse probability of treatment using the propensity score (Austin, 2013; Austin & 

Stuart, 2015).  Using inverse probability of treatment weights (IPTW) gives greater 

weight to a) patients in non-sulfonylurea groups with high propensity scores and b) 

sulfonylurea patients with low propensity scores. 

Weights were determined by the following steps.  First, the propensity score was 

estimated by modeling the predicted probability of receiving a sulfonylurea as a second-

line medication compared to other antidiabetic drug agents conditioned on observed 

baseline characteristics.  For each patient, the estimated predicted probabilities were 

obtained from a logistic regression predicting second-line sulfonylurea prescribing from 

all observed covariates plausibly related to both treatment and the outcomes a priori.  

Covariates included were based on subject matter expertise and a review of existing 

literature as has been proposed previously (Austin, 2014).  IPTW was calculated as the 

inverse of the propensity score, defined as (1/ρ) for the sulfonylurea group and 1/(1-ρ) 

for the comparison group, with ρ denoting the propensity score (Austin, 2013; Harder, 

Stuart, & Anthony, 2010).  To reduce the influence of very large weights that may lead to 

imprecise (or biased) estimates, IPTWs were stabilized by multiplying each IPTW by the 

mean propensity score (inverse mean for comparator).  In addition, very large weights 

were truncated to the 95th percentile of the distribution as previously recommended (Cole 
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& Hernán, 2008; Xiao, Moodie, & Abrahamowicz, 2013).  IPTWs were then normalized 

to preserve the original sample size (Garrido et al., 2014). 

The performance of the propensity score was evaluated in several ways.  First, to 

assess how well the propensity score was specified, the overlap in the distribution of 

propensity scores between the treatment and comparison was examined, typically 

referred to as common support.  Propensity score distributions between groups should be 

similar.  If there are areas with no overlap it suggests that the propensity score may not be 

properly specified and/or that it may not be possible to reduce confounding through 

propensity score techniques (Harder et al., 2010). 

 If the propensity score is properly specified, it should serve as a balancing score: 

the distribution of each covariate should be the same across cohorts (Brookhart, Wyss, 

Layton, & Stürmer, 2013).  Imbalance is the source of model dependence.  When there is 

high model dependence, the way a model is specified will lead to different effect 

estimates and potentially different interpretations of the results.  Small changes in the 

model specification may lead to changes in the effect estimates.  This leaves results up to 

the researcher’s discretion, which then ultimately leads to bias.  Small changes in 

specifications produce big changes in the subset of results.  Therefore assessing how well 

weighting diminishes imbalance (the relationship between the control variable and a key 

causal variable) is important.  If balanced, it suggests that it is one adequate way of 

specifying the propensity model that limits confounding. 

The extent weighting balanced covariates was assessed by comparing the 

standardized mean difference (SMD) before and after weighting for each baseline 
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covariate.  SMD is similar to the effect size, and calculated by taking the difference in 

means of each covariate across the two therapy groups and dividing by the standard 

deviation in the sulfonylurea group (Stuart, Lee, & Leacy, 2013).  As a rule of thumb, it 

is suggested that a standardized mean difference lower than 25% should be considered a 

relatively balanced covariate (Harder et al., 2010).  See Appendix B-2 for more 

information. 

Research assessing the performance of various propensity methods for estimating 

effects (in particular hazard ratios) suggests weighting may minimize bias more than 

other existing methods (Austin, 2013).  While propensity adjustment (Rosenbaum & 

Rubin, 1983), stratifying (Rosenbaum & Rubin, 1984), and matching are other propensity 

score techniques that all attempt to remove confounding, weighting was chosen for 

several other reasons.  Propensity score matching involves excluding patients from the 

sample who are unmatched (pruning), thus removing information and lowering the 

sample size.  Removing patients/observations may introduce bias.  In addition, propensity 

score matching, despite being a widely popular technique in observational studies, is 

increasingly controversial with research finding that it leads to biased estimates and 

performs suboptimally compared to other matching techniques (King & Nielsen, 2016).  

Propensity score matching throws away information and makes decisions on one 

dimension.  Stratification approaches (Rosenbaum & Rubin, 1984) group patients with 

similar propensity scores, but the interpretation may be difficult when clinically 

meaningful distinctions exist between strata, (Curtis, Hammill, Eisenstein, Kramer, & 

Anstrom, 2007) and may result in the greatest bias compared to the other available 



 

 

46

propensity score methods (Austin & Schuster, 2014). 

As an additional step to reduce residual bias in the face of moderate levels of 

imbalance in some of the covariates, models were adjusted for covariates from five 

domains at baseline: demographics, utilization, laboratory values, comorbidities, and 

non-diabetes medications. 

For stratified analyses, the hazard ratios obtained in each subgroup were 

compared to each other to test whether there is evidence supporting different effects 

(Altman & Bland, 2003). 

 

Results 

Figure 3.1 describes the sample derivation to obtain the analytic cohorts.  There 

were 148,404 patients in the analysis cohort who met all the inclusion criteria: 138,097 

received sulfonylurea second-line treatment (either as a monotherapy or in combination 

with metformin) and 7,153 were treated with TZDs.  Of those treated with a second-line 

medication, 103,181 of sulfonylurea users and 4,897 of TZDs users were used in 

combination with metformin. 
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 Figure 3.1.  Sample derivation for patient selection into analytic sample 

The distributions of estimated propensity scores for sulfonylurea and TZD users 

show an overlap in their range and density (i.e., common support) suggesting the two 

samples are comparable and propensity score methods can be applied (Figure 3.2). 
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Figure 3.2.  Overlap in propensity scores for METF+SU vs. METF+TZD 

Figure 3.3 summarizes the absolute effect of sulfonylureas compared to TZDs for 

each outcome by comparing unadjusted Kaplan-Meier estimates of the survival function, 

and suggests that the two survival functions are significantly different with sulfonylurea 

having a higher risk of all-cause death and the cardiovascular composite end-point (log-

rank chi-square=41.15, p<0.0001 and chi-square=57.344, p=0.0001 respectively).  
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Figure 3.3. Unadjusted Kaplan-Meier curves for death (top) and cardiovascular 

event (bottom) for sulfonylureas (SULF) and TZD second-line treatments 

Time to Death 

Time to Cardiovascular Event 
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Primary Intention-to-Treat Analysis.  

Results for the relative estimated effect of sulfonylurea vs. TZD on each outcome 

are also reported.  Table 3.2 presents the crude, weighted, and adjusted hazard ratios 

(HRs) separately for all-cause mortality and cardiovascular event.  All models suggest an 

elevated risk of all-cause mortality and a cardiovascular event.  In the final model 

(weighted, fully adjusted), second-line sulfonylurea users had a 15% increased risk of all-

cause mortality and a 12% increased risk of a cardiovascular event when compared to 

TZD second-line treatment, (HR=1.15, 95% CI [1.08, 1.22]; HR=1.12, 95% CI [1.07, 

1.17]).  Thus, at any point in time, the risk of dying or having a cardiovascular event 

while receiving sulfonylureas treatment was 15% and 12% higher than the hazard of TZD 

treatment, respectively.  When models were stratified, results were similar for all 

analyses (all p-values of comparisons were greater than 0.05), providing no evidence to 

suggest effects differ by age, Medicare status, or prior cardiovascular disease (see 

Appendix B).  
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Table 3.2. Primary intention-to-treat analysis: Crude, propensity adjusted and weighted, and weighted adjusted hazard 

ratios for all-cause mortality and cardiovascular events comparing sulfonylurea to TZD treatment 

 

Treatment cohort Patients Events

Person-

years

Incidence 

rate

Crude HR 

(95% CI)

PS adjusted  

(95% CI)

Weighted, 

unadjusted  

(95% CI)*

Weighted,  

adjusted  

(95% CI)*†

2nd line treatment

All-cause mortality

  Sulfonylurea 138,097 28,386 719,850 3.94 1.19 (1.13-1.25) 1.19 (1.13-1.25) 1.22 (1.15-1.3) 1.15 (1.08-1.22)

  TZD 7,153 1,504 45,647 3.29 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

Cardiovascular composite event

  Sulfonylurea 138,097 46,308 580,860 7.97 1.17 (1.12-1.22) 1.17 (1.12-1.22) 1.19 (1.13-1.24) 1.12 (1.07-1.17)

  TZD 7,153 2,514 38,234 6.58 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

CI , confidence interval; HR, hazard ratio; PS , propensity score

Note: Incidence rate per 10,000 person-years

*Weighted by the inverse probability of treatment

†Adjusted for demographic, u9liza9on, laboratory values, medica9ons, and comorbidi9es at baseline
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Table 3.3 summarizes the relative results of the secondary analysis in which 

medications are further classified into whether a new second-line treatment is added to 

metformin (i.e., second-line combination therapy) or switched off metformin (second-line 

monotherapy).  In the crude model, the risk of death at any point was lower for the 

METF+SU combination group compared to switching off metformin to either TZDs or 

sulfonylureas.  Suggestions of a lower risk for METF+SU combination therapy was 

supported in subsequent weighted and adjusted models vs. sulfonylurea monotherapy 

(weighted, fully adjusted model HR=0.88, 95% CI [0.85, 0.90]), but not vs. TZD 

monotherapy when confounding is minimized (weighted, fully adjusted model HR=1.06 

95% CI [0.96, 1.18]).  Additionally, the METF+SU combination was associated with an 

increased risk of death compared to the METF+TZD combination group in the 

unadjusted model and remained elevated in subsequent models controlling for measured 

confounding (weighted fully adjusted model HR=1.20, 95% CI [1.14, 1.28]).   

For weighted adjusted estimates comparing sulfonylurea monotherapy to TZD 

mono and combination therapies, sulfonylurea monotherapy had a higher risk of death 

against TZD monotherapy (HR=1.21, 95% CI [1.09, 1.89]) but not compared to 

METF+TZD combination therapy (HR=1.37, 95% CI [0.98,1.93]). Final models find a 

difference in risk between METF+TZD and TZD only therapies (HR=0.88, 95% CI  

[0.56, 1.38]; reference=TZD monotherapy) 

Similar conclusions for each comparison can be made regarding the risk of a 

cardiovascular event.  In the final model, combination METF+SU had a lower risk of 

cardiovascular composite events compared to sulfonylurea monotherapy (HR=0.90, 95% 
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CI [0.88, 0.93]), a similar risk to TZD monotherapy (HR=1.06, 95% CI [99, 1.15]), and a 

higher risk than METF+TZD combination therapy (HR=1.15, 95% CI [1.10, 1.20]).  

For weighted adjusted estimates comparing sulfonylurea monotherapy to TZD 

mono- and combination therapies, sulfonylurea monotherapy had an elevated risk of 

cardiovascular composite events relative to TZD monotherapy (HR=1.18, 95% CI [1.10, 

1.72]) but not against METF+TZD combination therapy (HR=1.28, 95% CI [0.95, 1.72]).  

Final models fail to find a difference in risk between METF+TZD and TZD therapies 

(HR=0.93, 95% CI [0.63, 1.35]; reference=TZD monotherapy). 
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Table 3.3. Secondary intention-to-treat analysis: Crude, propensity adjusted and weighted, and weighted adjusted 

hazard ratios for all-cause mortality and cardiovascular events comparing second-line treatments as metformin 

combinations or monotherapy 

 

Treatment cohort Patients Events Person-years

Incidence 

rate

Crude HR 

(95% CI)

PS adjusted  

(95% CI)

Weighted, 

unadjusted  

(95% CI)*

Weighted, 

adjusted  

(95% CI)*†

2nd line treatment

All-cause mortality

  Metformin+Sulfonylurea 103,181 20,229 560,043 3.61 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

  Sulfonylurea only 34,916 8,157 159,808 5.10 1.51 (1.47-1.55) 1.08 (1.05-1.11) 1.08 (1.05-1.11) 1.14 (1.11-1.17)

  TZD only 2,256 643 13,545 4.75 1.36 (1.26-1.48) 0.91 (0.84-0.99) 0.92 (0.84-1.02) 0.94 (0.85-1.04)

  Metformin+TZD 4,897 861 32,103 2.68 0.76 (0.71-0.82) 0.68 (0.64-0.73) 0.60 (0.57-0.64) 0.83 (0.78-0.88)

Cardiovascular composite eventξ

  Metformin+Sulfonylurea 103,181 33,381 453,551 7.36 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

  Sulfonylurea only 34,916 12,927 127,309 10.15 1.35 (1.32-1.37) 1.05 (1.03-1.08) 1.05 (1.03-1.08) 1.11 (1.08-1.13)

  TZD only 2,256 969 10,865 8.92 1.24 (1.16-1.32) 0.93 (0.87-0.99) 0.92 (0.85-1.00) 0.94 (0.87-1.01)

  Metformin+TZD 4,897 1,545 27,369 5.65 0.80 (0.76-0.84) 0.74 (0.70-0.78) 0.70 (0.67-0.73) 0.87 (0.83-0.91)

CI , confidence interval; HR, hazard ratio; PS , propensity score; TZDS, thiazolidinedione

Note: Incidence rate per 10,000 person-years

*Weighted by the inverse probability of treatment

†Adjusted for demographic, u9liza9on, laboratory values, medica9ons, and comorbidi9es at baseline

 ξ Defined as composite of myocardial infarc9on, acute coronary syndrome, stroke, cardiac surgery, conges9ve heart failure, and all-cause death
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Figure 3.4 reports the absolute effect (unadjusted) for each second-line 

combination and monotherapy in each outcome. 

 

 
Figure 3.4. Unadjusted Kaplan-Meier curves for death (top) and cardiovascular 

event (bottom) for sulfonylurea (SULF) and TZD monotherapy and combination 

second-line treatments 0=switch; 1=augment 
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Sensitivity As-Treated Analysis.   

The primary results of the as-treated analysis suggest similar elevated effects in 

the METF+SU cohort for both outcomes.  Sulfonylurea use as a second-line therapy was 

associated with an increased hazard compared to second-line TZD use of all-cause 

mortality (HR=1.39, 95% CI [1.14, 1.70]) and composite cardiovascular events 

(HR=1.19, 95% CI [1.09, 1.30]). 

In the secondary analyses, changing the analytical approach from an intent-to-

treat to as-treated analysis were again similar, but moved the effects away from the null.  

In the final model, combination METF+SU had a lower risk of death compared to 

sulfonylurea monotherapy (HR=0.61, 95% CI [0.66, 0.57]), a similar risk to TZD 

monotherapy (HR=0.92, 95% CI [0.66, 1.27]), and a higher risk than METF+TZD 

combination therapy (HR=1.49, 95% CI [1.14, 1.96]).  

For weighted adjusted estimates comparing sulfonylurea monotherapy to TZD 

mono- and combination therapies, sulfonylurea monotherapy had an elevated hazard 

relative to TZD monotherapy (HR=1.50, 95% CI [1.07, 3.34]) and against METF+TZD 

combination therapy (HR=2.43, 95% CI [1.17, 5.07]) (compare to non-significant finding 

in ITT analysis; reference group=sulfonylurea monotherapy). There was no significant 

difference in risk between METF+TZD and TZD therapies (HR=0.61, 95% CI [0.26, 

1.43]; reference=TZD monotherapy). 
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Table 3.4. Primary as-treated analysis: Crude, propensity adjusted and weighted, and weighted adjusted hazard ratios 

for all-cause mortality and cardiovascular events comparing sulfonylurea to TZD treatment 
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Table 3.5. Secondary as-treated analysis: Crude, propensity adjusted and weighted, and weighted adjusted hazard 

ratios for all-cause mortality and cardiovascular events comparing second-line treatments as metformin combinations 

or monotherapy 
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In the final as-treated model for composite cardiovascular events, combination 

METF+SU had a lower risk of cardiovascular composite events compared to sulfonylurea 

monotherapy (HR=0.81, 95% CI [0.78, 0.84]), a similar risk to TZD monotherapy 

(HR=0.99, 95% CI [0.86, 1.15]), and a 30% higher risk than METF+TZD combination 

therapy (HR=1.30, 95% CI [1.18, 1.45]).  

For weighted adjusted estimates comparing sulfonylurea monotherapy to TZD 

mono and combination therapies, sulfonylurea monotherapy had a higher risk against 

TZD monotherapy (HR=1.23, 95% CI [1.07, 2.07) and METF+TZD combination therapy 

(HR=1.61, 95% CI [1.04, 2.50]; compare to non-significant finding in ITT analysis) 

(reference group=sulfonylurea monotherapy). There was no significant difference in risk 

between TZD therapies (HR=0.76, 95% CI [0.45, 1.30]; reference=TZD monotherapy). 

 

Discussion 

With limited evidence-based information on long-term outcomes to guide 

appropriate therapy, this paper addresses critical gaps in existing knowledge surrounding 

the safety risks of sulfonylureas.  New information regarding the long-term safety of 

sulfonylurea against TZD as second-line therapies is reported.  This study also adds 

knowledge regarding the relationship that continuing or discontinuing existing metformin 

to a second-line medication has on long-term outcomes. 

 Findings from the primary analysis suggest that sulfonylurea second-line 

treatment is related to an increased risk of mortality and composite cardiovascular events 

compared to TZD second-line users.  This study also helps to better understand the risks 

of adding medications to metformin and discontinuing metformin in favor of other oral 
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antidiabetics.  Results suggest there is effect modification (see Table 3.6 for a summary).  

When second-line cohorts are divided into patients initially treated with metformin and 

subsequently add or switch to a new second-line therapy, patients who add sulfonylurea 

compared to those who switch to sulfonylurea monotherapy have a lower risk of 

mortality and composite cardiovascular events.  This suggests it may be favorable to add 

instead of switch to a sulfonylurea.  When compared to those who augmented TZD to 

existing metformin, METF+SU combination therapy had an elevated risk on both long-

term outcomes in all models.  While an elevated risk was found against METF+TZD, the  

Table 3.6.  Summary of risks comparing second-line cohorts that augment to 

metformin (combo therapy) or switch off metformin (monotherapy)  
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results failed to find a difference in risk when METF+SU is compared to those who 

switched to TZD monotherapy.  Specifically, while METF+SU combination therapy had 

a lower risk in both outcomes when compared to those who switched off metformin to 

TZD monotherapy in the crude models, it was not confirmed in the weighted adjusted 

models.  

Amongst patients who switched off of metformin, the sulfonylurea cohort had 

higher risks compared to those who switched to TZD for both outcomes.  Compared to 

TZD augmented to metformin, the as-treated analysis found second-line sulfonylurea 

monotherapy was worse (higher risk) than TZD augmented to metformin for both 

outcomes, but was not confirmed in the weighted adjusted model intention-to-treat 

analysis.  With the exception noted, as-treated design models had similar conclusions to 

those found using the intention-to-treat design, with the magnitude of the effect being 

larger in the as-treated design models. 

To date, the long-term safety of sulfonylurea compared to other agents has been 

unclear and insufficient.  There have only been a few studies examining sulfonylurea 

against TZD as second-line agents after metformin.  Two RCTs examined second-line 

use but were relatively short term with few events.  Hamann et al. (2008) (only 52 weeks, 

two deaths in each group) and Matthews (2005) (two deaths in METF+SU group, zero 

deaths in METF+TZD group).  In an observational cohort study Morgan et al. (2012) 

studied patients in the General Practice Research Database (data of patients from 

approximately 700 primary care practices in the United Kingdom) and found similar 

findings to this current study.  Specifically, they found elevated effects on all-cause 
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mortality and cardiovascular composite events for patients who switched to sulfonylurea 

compared to METF+TZD and METF+SU second-line therapies. Also, they report an 

elevated effect for METF+SU compared to METF+Pioglizatone (a TZD).   

Other studies have compared sulfonylureas to TZD therapies but often ignore the 

sequencing of therapies, combine augments and switches into the same cohort, ignore 

earlier therapies prior to study exposure (not incident users), or only assess medications 

as first-line therapies.  Earlier studies examining sulfonylurea against TZD with at least 

one year of follow-up are described in Appendix Table B-6 and B-7. 

Three randomized control trials examined all-cause mortality and cardiovascular 

events, but none specifically at sulfonylureas and TZDs as second-line therapies.  The 

largest investigation, A Diabetes Outcome Progression Trial (ADOPT), failed to find an 

elevated risk for first-line sulfonylurea monotherapy compared to first-line TZD for all-

cause mortality (crude relative risk=0.92, 95% CI [0.81, 1.04]) and cardiovascular events 

(crude relative risk=0.67, 95% CI [0.41, 1.08]).  Yet there were issues with the study 

worth noting.   

 Most troublesome were that more patients withdrew in the sulfonylurea group 

(44% vs. 37%) and the sulfonylurea group had shorter follow-up (3.3 compared to 4 

years) (Kahn et al., 2006).  Two smaller first-line monotherapy trials reported on all-

cause mortality but were fairly short-term, only 56 weeks (Jain et al., 2006) and 52 weeks 

(Hanefeld, Patwardhan, & Jones, 2007) with limited information on mortality.  Jain et al. 

(2006) reported one death in the sulfonylurea group and no deaths in the TZD group.  

Hanefeld et al. (2007) reported zero deaths in both groups.  Hanefeld and colleagues 
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(2007) also reported cardiovascular events finding twice as many events in the 

sulfonylurea group (22 from 251 sulfonylurea patients vs. 11 from 251 TZD patients; 

crude relative risk=2.00, 95% CI 1.01–3.99).  One additional RCT examined 

cardiovascular morbidity.  St. John Sutton (2002) conducted a small, 52-week RCT that 

included non-incident users and found similar incidence rates for both groups: 12 events 

from 99 patients in the sulfonylurea treatment group and 16 of 104 in the TZD group. 

Evidence suggesting a larger sulfonylurea risk compared to TZD is primarily 

derived from observational cohort studies.  Two observational cohort studies examined 

sulfonylurea vs. TZD monotherapy provide some evidence for an elevated risk for 

sulfonylurea therapy.  Pantalone et al. (2009) conducted an observational study using 

patients from the Cleveland Clinic and found increased risk of death for sulfonylurea 

patients against pioglitazone (adjusted HR=1.69, 95% CI [1.23, 2.33]) but not for 

rosiglitazone (adjusted HR=1.37, 95% CI [0.98, 1.96]).  They also found no increased 

risk for cardiovascular events.  Wheeler (2013) studied mortality amongst new users on 

sulfonylurea and TZD monotherapy in the VA from 2005–2009 and found an elevated 

risk for two sulfonylurea agents relative to TZDs: glyburide HR=1.12, 95% CI [1.02, 

1.23] and glipizide (HR=1.27, 95% CI [1.01, 1.59]. 

Fewer studies examined combination therapy.  One RCT compared the effect of 

sulfonylurea and TZD metformin combinations therapies to each other, but was short-

term and underpowered: Bakris et al. (2006) 32 weeks (no deaths in sulfonylurea group, 

one death in TZD group). 

Our primary finding that second-line sulfonylurea treatment may be inferior in 
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terms of long-term safety risks vs. TZDs is consistent with an earlier observational study 

of veterans by Prentice et al. (2014) who examined sulfonylurea and TZD use after a 

metformin prescription was dispensed using VA data from 2000–2009.  They found an 

elevated risk for mortality (HR=1.50, CI [1.31, 2.15]) and stroke/acute myocardial 

infarction (HR=1.15, 95% CI [0.80, 1.17]).  However, this study combined augmenting 

and switching groups into the same cohort and did not examine the influence that 

augmenting and switching may have on long-term risks. 

The present study has both limitations and strengths worth addressing.  This is 

one of largest studies of its kind with the several years of follow-up.  Also, confounding 

was addressed through several strategies that lead to a rigorous observational study 

design.  In the VA, guidelines state that METF+SU is the preferred combination therapy 

in patients who no longer have adequate glycemic control on metformin, and suggest 

TZD combination therapy to be considered for patients unable to use a sulfonylurea “due 

to contraindications, adverse events, or risk for adverse events” (Management of Diabetes 

Mellitus Update Working Group, 2010).   

While, confounding by indication can never entirely be ruled out, this study 

addressed observed confounding in several ways.  First, strict inclusion criteria produced 

patients at similar stages of diabetes, which help to differentiate drug effects from disease 

effects better.  Second, this study also used a variant of new user design to identify 

patients at similar progressions of a more advanced stage of diabetes.  This variant of the 

new user design allowed for a better group of comparators whose underlying 

cardiovascular risks were similar.  Third, propensity scores were used in an effort to 
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obtain less biased estimates of the average treatment effect.  Specifically, propensity 

score weighting resulted in relatively few imbalances, which suggest that the study 

design and inclusion criteria worked well to create similar cohorts even before balancing. 

Performance suggest that the various ways the model was adjusted did not change the 

effect size estimates much provides some evidence that decreased model dependence was 

a result of using an IPTW approach.  Fourth we were able to control for a rich set of 

factors that included disease severity, comorbidities, utilization, and other factors that 

may help explain the relationship between medication exposure and the outcomes.  

Though there still may be unmeasured confounding that explains why patients augment 

or switch off of metformin, effect sizes were similar to those found by Prentice (2014) 

who used an instrumental variables approach (using variation in provider-prescribing as 

the instrument) in a study of dual Medicare/VHA veterans.   

Strict inclusion/exclusion criteria and the new user design likely generated a 

suitable comparison group at similar stages of diabetes but there may be a lack of 

generalization.  Patients who did not tolerate metformin in short term are excluded, so 

this study cannot comment on the safety profile of patients who did not tolerate 

metformin in the short term.  The same is true for those who did not tolerate their second-

line medication in the short term.  Also, this study consists of mostly a male population.  

Both intention-to-treat and as-treated analyses were used to understand the bias 

that may occur when exposure is not properly captured.  Both analyses yielded similar 

conclusions in most comparisons.  These designs have different strengths and 

weaknesses.  Intention-to-treat is susceptible to exposure misclassification as the follow-
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up becomes longer, but it is simpler and does not make any assumptions about adherence 

to therapy.  Intention-to-treat tends to reduce effects thus it is biased toward the null 

hypothesis (Hernán & Hernández-Díaz, 2012; Patorno et al., 2014).  This is what was 

found in the current study.  Conversely, as-treated analyses use informative censoring, 

which terminates exposure when therapy is augmented or discontinued, so it may bias 

estimates if censoring predicts future events.  As-treated analyses result in more censored 

patients thus reducing the number of events.  Both of these models do not account for 

time-varying exposure and covariates, however.  Future work may explore the use of 

marginal structural models as an additional approach, though there is a time-varying 

assumption that treatment changes are independent of outcomes.   

There were several other limitations.  We only had access to several years of 

Medicare utilization data.  However, cohorts were stratified by Medicare beneficiary 

status in the entire study period and results were similar to those who were not dually 

enrolled in Medicare.  

Also, this study cannot comment on newer medications because of the lack of 

prescribing in data.  Not many VA users were prescribed newer medications (e.g., DPP-4 

inhibitors, GLP-1 agonists, SGLT-2 inhibitors) to conduct meaningful analyses up 

through 2012.  This may be a byproduct of good adherence to the clinical guideline for 

use, since the formulary requires failure or contraindication of sulfonylurea or TZD, and 

these patients might be third-line users and were eliminated through the inclusion criteria 

of the study.  

Caution should be made to encourage physicians to rush to newer medications. 
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These results cannot provide evidence on how sulfonylurea is related to newer oral 

antidiabetic medications. The long-term safety profile of newer drugs as second-line 

agents is not yet known. 

Finally, this study does not consider other safety and effectiveness considerations 

that would be involved in making diabetes medication treatments decisions.  They 

include therapy effectiveness (glycemic control, weight, lipid levels), safety/adverse 

events (e.g., hypoglycemia, pancreatitis, fractures), long-term effects (e.g., microvascular 

complications), and costs. 

Conclusion 

This study attempted to understand the complexities involved in prescribing 

antidiabetic therapies related to adding on and switching classes of medications, 

specifically sulfonylureas relative to other second-line therapy.  Results have implications 

for EBM treatment decisions.  While the primary analysis found that second-line 

sulfonylurea treatment might be inferior in terms of long-term safety risks vs. TZD, a 

closer look into whether first-line metformin is discontinued appeared to modify the 

results.  This is one of the few studies to examine the risks associated with augmenting or 

switching from metformin to second-line sulfonylurea or TZD therapies.  Research 

suggests switching off metformin onto sulfonylurea monotherapy may lead to elevated 

long-term risks compared to adding sulfonylurea to metformin.  It also suggests that 

sulfonylurea used as an add-on therapy to metformin is related to an increased risk 

compared to when TZD is used as an add-on therapy.  Future research should continue to 

disentangle the influence of augmenting and substituting second-line therapies, and 
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examine whether augmenting metformin leads to lower long-term risks for both TZD and 

sulfonylurea when compared to switching off metformin to other monotherapies.
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CHAPTER 4  
AN EVIDENCE BASED-MEDICINE FRIENDLY APPROACH TO 

EVALUATING THE COMPARATIVE SAFETY OF SULFONYLUREA RISK 

COMPARED TO TZD SECOND-LINE THERAPY FOR ALL-CAUSE 

MORTALITY 

 

Abstract 

Evidence based medicine (EBM)-friendly research methods that allow for more 

thoughtful and comprehensive assessments are needed.  This paper reintroduces a method 

adapted from Brophy and Joseph (1995) that can help healthcare practitioners evaluate 

clinically relevant research in a way that supports evidence-based decision-making: 

leading to more comprehensive evaluations of evidence.  Within this approach, the 

degree of uncertainty around pre-existing evidence, for example a meta-analysis derived 

estimate of prior studies, is varied to simulate differences in clinical evaluations of pre-

existing evidence by modifying the influence of earlier study results (e.g., 100% use of 

the prior information, 50%, 10%, or 0%).  Then using a Bayesian statistical approach, the 

learning process of combining existing evidence and updating it with new study data can 

be represented.  The weight (i.e., use of prior information) that most closely resembles a 

clinician’s own evaluation of the strength of the earlier evidence will determine how 

much it will influence the new conclusion.  If prior evidence is down-weighted, it reflects 

a lack of confidence in the early studies and will contribute less information when 

forming the new conclusion.  

This approach allows clinicians to draw their own conclusions by interpreting the 

results of a new study while also taking into account their evaluation of the pre-existing 

evidence.  This approach requires evaluations of prior evidence to be stated explicitly and 
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allows clinicians to draw their own conclusions as well as observe the potential 

conclusions other clinicians may reach. 

In this illustrative example, the evidence surrounding the question of the long-

term safety risks of sulfonylureas and whether they should continue to be prescribed as an 

appropriate second-line therapy to treat type 2 diabetes given is explored.  Results 

suggest that the extent to which pre-study results influenced the newly formed 

conclusions were minimal relative to the contribution that the new VA study data made in 

terms of information.  Each post-study estimate reached a similar conclusion across each 

scenario, even when the extent and type of prior evidence used in the analyses was 

varied.  Depending on which scenario was chosen, there was a 15%–19% increased risk 

of all-cause mortality associated with second-line sulfonylurea therapy relative to TZD 

second-line therapy following metformin.  Implications of this method as well as future 

directions are discussed. 

 

Introduction  

The ability to evaluate existing research evidence on the therapeutic benefits and 

harms of therapy is a key element in evidence-based medicine (EBM) approaches of 

clinical decision-making (Sackett et al., 1996, 1996).  According to the EBM framework, 

clinically relevant research is determined through evaluations of the strength and 

weaknesses of studies related to the treatment population.   However, evaluations of 

scientific rigor (e.g., methodological quality of a study) and relevance of study results to 

particular patient populations can vary by clinician.  As a result, clinical opinions 

regarding the same study results or body of evidence may be fragmented, and may not 
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lead to convergence of opinion, especially when the evidence appears inconsistent or 

inconclusive.  Even amongst researchers disagreement can exist on the quality of a given 

study: the inter-rater agreement can often be poor to fair when applying valid survey 

instruments to assess the quality of a study.  This is true in assessing both observational 

cohort and RCT studies (Armijo-Olivo et al., 2014; Armijo-Olivo, Stiles, Hagen, Biondo, 

& Cummings, 2012; Clark et al., 1999; Lo, Mertz, & Loeb, 2014). 

Therefore, when conducting new studies, it may be helpful to utilize analytic 

methodologies that are complementary to the EBM framework, in particular, where 

differing evaluations of the pre-existing evidence are allowed to be made explicit and 

then taken into account when evaluating new study evidence.  The purpose of this chapter 

is to demonstrate the utility of an underutilized approach by Brophy and Joseph (1995) 

that incorporates results from earlier studies and then combines it with the results of a 

new study to provide a more comprehensive evaluation of the evidence supporting a 

given hypothesis.  To apply this method, the long-term risks of prescribing sulfonylureas 

as a second-line glucose lowering therapy are examined by comparing it to TZD therapy.  

This is a particularly appropriate research question to apply this method since clinicians 

have different opinions regarding the relative benefits and safety of sulfonylureas, as 

evidenced in the support of different guidelines recommending/cautioning against the use 

of sulfonylureas as second-line agents.   

The basic steps of the Brophy and Joseph evidence synthesis approach are 

outlined in Table 4.1 and discussed in the following sections. 
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Table 4.1.  List of steps in the Brophy and Joseph (1995) approach 

Step Description 

1) Review the existing evidence.  Pool estimates, if appropriate, using evidence 
synthesis methods (e.g., meta-analysis) to summarize pre-existing information. 

2) For existing evidence, generate a range of plausible clinical evaluations by 
adjusting the degree of uncertainty around the pre-existing results to represent 
various scenarios of the strength of the evidence. 

3) Conduct a new study.  Use Bayesian statistics to combine the new study 
estimate with each of the different clinical evaluations of the pre-existing 
evidence. 

4) Reevaluate evidence. Compare the post-study conclusion derived from each of 
the different pre-study clinical evaluations.  Then, find the post-study 
conclusion that was derived from the pre-study clinical evaluation that most 
closely resembles one’s own and base the updated conclusion on this estimate. 

 

First an evaluation of all relevant prior evidence is needed.  Oftentimes, if there 

are enough studies on the topic and pooling estimates across studies is appropriate, then 

prior results can be synthesized into statistical summaries, using analytic methods like 

meta-analysis.  

Second, to reflect the confidence in precision of the meta-analysis estimate 

obtained in the first step, the uncertainty around the pooled estimate is varied.  As a 

result, a range of probability distributions summarizing the prior evidence is generated.  

When applied to EBM, this would simulate the range of different clinical opinions that 

likely exists regarding the scientific rigor and relevancy of previous study results.  This 

range should reflect the uncertainty and relevance of the evidence that exists amongst 

clinicians.  The greater the uncertainty in the prior evidence, the less influence it will 

ultimately have when forming a new conclusion.  In this paper, approximations of 

potential clinical opinions are created by weighting the prior evidence, using 100%, 50%, 
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or 10% of the prior information, where the amount of information is represented by the 

width of the confidence interval. 

The decision for a clinician to weight the earlier evidence may stem from several 

types of concerns about the study’s internal and external validity, including its ability to 

examine long-term risks or the ability to generalize to their specific patient panel.  Other 

concerns often are aspects of the study methodology, such as not adequately minimizing 

the risk of bias more specifically controlling for confounding by indication.  For example, 

if a clinician believes that previous studies were poorly designed to evaluate long-term 

risks with serious methodological flaws and should be completely ignored, then the 

model that uses only new study data and gives no influence to earlier evidence (0% of 

prior information) would be used to form their new conclusion.  

The third step is to conduct a new study and use that information along with the 

earlier evidence to update existing knowledge.  Combining pre-study evidence with new 

data is done using a Bayesian model.  Since several clinical evaluations exist before the 

study (see step 2 in Table 4.1) there is a range of post-study conclusions reported – one 

derived from each of pre-study clinical evaluations.   

The fourth step is then to reevaluate the evidence.  First, a consideration of all of 

the different conclusions that have been derived from each pre-study clinical evaluation 

should be made.  This allows for a broad understanding across all of the likely 

conclusions reached by clinicians who had judged the existing evidence differently 

coming into the study.  Next, a clinician should form a new conclusion by identifying the 

pre-study evaluation that most closely resembles their own and then finding the 
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corresponding post-study evaluation derived from it.  

 

Evidence Based Medicine Model of Clinical Practice 

Since this approach is being applied to EBM, this section describes EBM and how 

the Brophy and Joseph method can be applied.  EBM is commonly defined as “the 

integration of best research evidence with clinical expertise and patient values” 

(Rosenberg & Haynes with Sackett, Straus Sharon E. and RichardsonW. Scott, 2000) and 

involves “the conscientious, explicit, and judicious use of clinically relevant research in 

making decisions about the care of individual patients” (Sackett et al., 1996).  This is the 

basis for the conceptual model developed by Sacket et al. (2000) and is depicted in the 

diagram presented in the Chapter 1 (Figure 1.1).  

The integration of three main components are involved in most EBM conceptual 

models of decision-making: Best Research Evidence; Individual Clinical Expertise; and 

Patient Values and Preferences.  First, the model acknowledges the importance of 

previous research in informing clinical practice.  Best External Evidence involves 

evaluating evidence from systematic investigations that are clinically relevant.  For 

diabetes research, this includes existing comparative effectiveness and safety evaluations.  

The gold standard in evidence is appropriately designed RCTs given their strong internal 

validity to infer causality.  In EBM approaches, physicians are “urged to assume that the 

clinical effectiveness results from RCTs could be applied to their own patients, unless 

there was a good reason not to make this default assumption” (Charles et al., 2011; Straus 

et al., 2005).  However, RCT designs have their limitations.  Evidence solely from RCTs 

is inadequate for the questions in this dissertation for several reasons.  First, the relatively 
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short follow-up and small sample sizes of RCTs make long-term evaluations difficult and 

underpowered (susceptible in making type II errors).  Second, the generalizability is of 

concern.  This is particularly true in populations that have multiple comorbidities — a 

common criterion for study exclusion.  That may not reflect common characteristics in 

clinical practice.    

Evidence from other study designs should be included to a certain degree.  A key 

challenge for evaluators is the extent in which to incorporate evidence from other study 

designs that are quasi-experimental.  These observational studies may introduce bias 

given that patients are not randomized into particular treatment groups, but are typically 

much larger in size and have longer follow-up duration than RCTS.  Also, they may 

provide useful information about real clinical populations typically excluded from RCTs 

and how they may benefit/be harmed by treatments.  A Bayesian framework allows 

previous results to be included when new evidence is obtained and allows decision-

makers and clinicians to assess the pertinence of the findings to their own patient 

population.  This is a useful, yet underutilized framework in comparative safety research 

and may help stakeholders evaluate the strength of evidence and inform clinical 

decisions.   

A clinician’s experience, education, knowledge, and skills are also needed in the 

decision making process.  The Individual Clinical Expertise component refers to “the 

proficiency and judgment that individual clinicians acquire through clinical experience 

and clinical practice” (Sackett et al., 1996).  Also, the extent to which external evidence 

is judged to apply to an individual patient may rely on clinical expertise. 
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EBM models also acknowledge that the patient plays an important role in the 

decision-making process.  The Patient Values and Preferences component includes the 

patient’s “own personal and unique concerns, expectations, and values” (Sackett et al., 

1996).  This component also includes the types of patient information that should be 

considered in treatment decisions (i.e., either treatment decisions made on behalf of the 

patient or with active participation of the patient in the process). 

The three components do not have to be equally relevant in a given decision and 

determining the appropriate balance may not be an easy task.  That is, any one 

component or components may be stronger in any particular decision.  

 

Background  

To demonstrate how the Brophy and Joseph approach can be applied in health 

services research, we explore whether sulfonylureas should be used as second-line 

diabetic therapy relative to TZD based on all-cause mortality risk.  This is an appropriate 

application of the Brophy and Joseph approach since clinicians and their patients face 

increasingly complex decisions about which medications regimens to use to manage 

diabetes with inconclusive and inconsistent evidence-based information to guide therapy.  

Evidence-based medicine relies, in part, on relevant empirical evidence of the benefits 

and harms of medications relative to other treatment.  A wide array of medications exists 

to manage glucose levels, resulting in an even greater number of sequencing possibilities 

to treat type 2 diabetes patients as the illness progresses.   

Sulfonylurea medications have been used to treat patients with type 2 diabetes 

since the 1950s, but they are increasingly controversial and have attracted considerable 



 

 

77

debate in recent years (Abrahamson, 2015; Genuth, 2015).  While they are an 

inexpensive, widely used, and very effective therapy for glycemic control (Bennett, 

Wilson, et al., 2011; UKPDS-33, 1998), they are also linked to adverse outcomes, 

including higher rates of cardiovascular events and death.   

Clinicians have different opinions regarding the relative benefits and safety of 

sulfonylureas, leading to the support of different guidelines recommendations.  Thus, this 

topic appears to be an appropriate candidate to apply the Brophy and Joseph approach 

since there is documented differences in clinical opinion.  While the current consensus is 

that metformin should be the initial first-line agent when diet and exercise are not 

sufficient, the debate is whether sulfonylureas should be used as a) a second-line agent 

after metformin, b) a third- or fourth-line treatments, or c) not at all (Abrahamson, 2015; 

Genuth, 2015).  

Given the disparate clinical opinions and lack of direct head-to-head long-term 

comparisons evaluating sulfonylurea treatment relative to other oral antidiabetic 

medications, further research on sulfonylureas safety is needed.  Since this is a clinical 

topic where prior clinical opinions regarding the evidence differ, it makes sense to use 

several different evaluations of existing evidence to simulate these varying clinical 

opinions.   

Methods 

Bayesian Framework Overview 

This study combines evidence from relevant prior studies with results from a new 

study of veterans to evaluate mortality risks associated with sulfonylureas relative to 
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TZDs using a Bayesian framework.  In general, Bayesian reasoning is a mathematical 

way to modify existing knowledge when new information is presented.  Applying a 

Bayesian approach to research questions relies on Bayes’ Theorem and its three elements: 

the prior probability distribution, the likelihood function, and the posterior probability 

distribution.  Goldstein (2006) summarizes the Bayesian approach in the following way: 

The subjective Bayesian approach is based on a very 
simple collection of ideas. You are uncertain about many 
things in the world. You can quantify your uncertainties as 
probabilities [i.e., the prior distribution], for the quantities 
you are interested in... When data arrives [i.e., the 
likelihood ratio], Bayes theorem tells you how to move 
from your prior probabilities to new conditional 
probabilities [i.e., the posterior distribution] for the 
quantities of interest. 

 

 When applied to research, a prior probability distribution can be derived 

empirically by using results estimated in an earlier study or collection of similar studies. 

The Brophy and Joseph approach applies Bayesian reasoning to present conclusions of 

new results taking into account different prior probability distributions.  This approach is 

different from a typical Bayesian analyses conducted in health services research and other 

disciplines.  Bayesian analyses are conducted in most scientific investigations using non-

informative prior probability distributions.  That means they ignore the results of earlier 

studies by specifying that all values are equally possible.  In other words, it gives no 

weight to earlier results.  Even if prior evidence is incorporated, it is typically specified in 

only one way.  Yet this is clearly problematic in areas where there is a lack of a clinical 

consensus regarding the strength of existing evidence — in particular, where clinical 

opinion is fragmented like in the long-term risks of sulfonylurea use.  When clinical 
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opinions differ, a single analysis will only include one clinical opinion and cannot reflect 

the reality that clinicians do not agree on the quality and strength of all previous studies.  

Therefore, certain groups might disregard or highly question any conclusions reached 

because the analysis had used a prior probability distribution that fails to reflect their 

appraisal of earlier evidence.   

As a result, it is more difficult for researchers to converge clinical opinions when 

the prior reflects only one of the existing clinical opinions.  This is especially true in 

health services research where observational studies are commonly used to derive 

empirical evidence (e.g., comparative effectiveness and safety studies), but other 

disciplines/groups (e.g., practicing clinicians) may only value results from RCTs and 

disregard or strongly discount any evidence that does not implement the RCTs gold 

standard design, perhaps partly because of a lack of familiarity with the methods 

employed in these studies (e.g., inverse probability weighting, propensity scoring, 

instrumental variables).  Yet observational data are able to include patients with more 

complex conditions with profiles of patients usually seen in clinical practice and can 

extend the generalizability but can also potentially introduce bias and confounding.   

The major objective of this study is to apply the Brophy and Joseph method to 

demonstrate how to allow clinicians to determine what ‘Best Research Evidence’ means 

to their own practice by allowing judgments of rigor and relevancy of prior research to be 

included in the study and combined with new study data.   Whether this allows for a more 

comprehensive investigation concerning the evidence supporting a differential risk in all-

cause mortality for sulfonylurea use relative to other antidiabetic therapies is explored. 
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Meta-Analysis 

The first step of the Brophy and Joseph approach is to summarize the existing 

research evidence.  In this paper, we rely upon three meta-analyses that pool earlier study 

findings to summarize the relative hazard between sulfonylurea and TZD therapy.  The 

three separate meta-analyses are stratified by type of study design: within RCTs only, 

within observational cohort studies only, and combined across both of these study 

designs.    

The details of the meta-analyses are described below.  The search strategy and 

study selection criteria follow the same methodology used in Study One.  Briefly, all 

observational cohort and RCT studies that explicitly evaluated all-cause mortality with at 

least one year of follow-up were culled.  Studies were then excluded if they met any of 

the following criteria: only included patients with serious conditions at baseline such as a 

history of major cardiovascular events or renal failure, consisted of only children 

(younger than 18 years of age), type I diabetes patients only, did not include an active 

comparator (e.g., diet/exercise, placebo), case-control design, research only on animals, 

and written in a language other than English.  For observational studies, an attempt to 

address confounding in some way must have been implemented (e.g., matched in the 

design or model adjustment) and had to include basic demographic information (i.e., age, 

sex, and race) and relevant comorbidities at baseline (those adjusting for CVD risk at 

least).  For the study in this chapter, only earlier studies specifically evaluating 

sulfonylurea or TZD therapy after prior metformin use are included.  Any studies that 

used VA data and overlapped with the current study’s cohorts were also excluded. 
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To obtain the overall pooled estimate of risk that combines across RCT and 

observational cohort studies, the ‘bayesmh’ command with random effect of study design 

in Stata 14.1 (StataCorp, 2015) was used.  In this model, heterogeneity between 

observational cohort and RCT study designs is accounted for in the estimate.  It is 

important to note that no other assumptions were made regarding the relative strength 

RCT has relative to observational cohort studies when pooling the overall estimate of 

risk.  This is similar to the approach by Peters et al. (2005) and involves Markov chain 

Monte Carlo (MCMC) estimation using a Metropolis-Hastings algorithm and Gibbs 

sampling with vague prior distributions specified on unknown parameters.  Convergence 

diagnostics suggest fairly rapid convergence with no trend in trace plots, low 

autocorrelation, and acceptance rates for the Metropolis-Hastings algorithm around 75% 

(well above the 10% rule of thumb) and efficiencies above one percent for all analyses. 

For pooled estimates by study design, the inverse variance and DerSimonian-

Laird methods are used to estimate and report fixed and random effects estimates of risk 

respectively using the METAN command in Stata 14.1 with a value of 1.0 representing 

the null hypothesis (StataCorp, 2015).  Heterogeneity across the studies was assessed via 

the I2 statistic, with values greater than 50% benchmarked as indicating substantial 

heterogeneity (Higgins et al., 2003).  This statistic represents the percent of variance in 

the effect size attributable to heterogeneity with larger values indicating less overlap in 

confidence intervals across studies.  A benefit of the statistic is that number of studies 

involved in the meta-analysis has little influence on the I2 statistic unlike other estimates.  

Unless noted, the inverse variance fixed effect estimates are used as the basis to generate 
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the prior probability distributions for within RCTS only and within observational cohort 

studies only stratified analyses.  

Developing a Range of Prior Probability Distributions   

Three series of stratified analyses were conducted using the three pooled 

estimates of prior evidence and served as the basis to approximate the pre-existing 

evidence represented in the models: 1) the overall combined (prior evidence from both 

study designs), 2) Prior RCT studies only, and 3) Prior observational studies only.  For 

each, prior evidence was weighted by using 10%, 50%, and 100% of the prior 

information.  These different weights simulate a potential range of clinical opinions 

regarding the rigor and relevancy of the prior results.  This is done by changing the 

uncertainty around the estimate.  Using 100% of the information means that the variance 

estimated from the meta-analysis is used to define the prior probability distribution.  

Weighting prior evidence involves modifying the width of the confidence interval 

around the prior estimate.  Therefore, the point estimate will remains the same, but the 

variance of the distributions will become flatter (less certain) as the weight of the prior 

data is decreased.  Lower weights will cause the prior evidence to have less of an impact 

on the new conclusion formed. 

Conducting a New Study and Combining it With Pre-Existing Information   

Each evaluation of pre-existing evidence (i.e., prior probability distribution) is 

combined with the new study results (i.e., the likelihood ratio) to evaluate the hypothesis 

that sulfonylurea has a greater risk of all-cause mortality compared to TZD as a second-
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line therapy.  This revised evaluation of the evidence is the new conclusion and is called 

the posterior probability distribution.  In general, if the evidence supporting a given 

hypothesis is strong and the prior evidence is weak, then the posterior will more closely 

resemble the results from the new study (i.e., the likelihood ratio).  Whereas, if the prior 

evidence is strong and the likelihood ratio is weak then the posterior will more closely 

resemble the prior distribution (see Appendix C-2 and C-3 for more information on 

Bayes estimation).   

A description of the basic methodology and data sources of this new study is 

presented in Chapter 3.  In brief, a comparative safety analysis using Veterans Health 

Administration (VA) medical and administrative observational data was conducted of 

diabetic veterans who were prescribed metformin as a first-line therapy, and subsequently 

prescribed sulfonylurea or TZD for long-term use.  To reduce confounding several 

approaches were taken.  First, a variation of a new user cohort design was used in which 

incident use of a second-line medication was implemented after prior metformin 

prescribing to ensure that patients were at similar stages in diabetes progression when the 

second-line therapy was prescribed.  

To minimize against bias, statistical models were weighted by the inverse 

probability of treatment using the propensity score and adjusted for a rich set of potential 

confounders.  An intent-to-treat analytic approach was used, which ignores future 

changes to exposure and only uses initial exposure.  Patients were only censored when an 

event did not occur by the end of the study period.  Cox proportional hazards models 

were estimated using the PHREG procedure in SAS 9.2 (SAS Institute Inc., 2010) with 
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the BAYES statement added to invoke a Bayesian analysis of the model.   

To obtain summary statistics for each model parameter, posterior probability 

distributions were obtained using Markov chain Monte Carlo via Gibbs sampling 

(MCMC) with an informed normal prior distribution specified for the drug exposure 

regression coefficient and non-informative prior distributions specified on all other 

variable regression coefficients (normal distributions, each with mean=0 and 

variance=1E6).   The analyses resulted in a posterior MCMC sample size of 5,000 

iterations after 2,000 iterations of burn-in for each parameter estimate. 

Since the number of iterations determines the precision of posterior summaries, 

MCMC standard errors were examined to ensure that posterior samples are accurate to 

three decimal places.  To assess Markov chain convergence, several diagnostic tests were 

evaluated: the Geweke test, autocorrelations, and effective sample size all suggest the 

Markov chain rapidly converged with good mixing, allowing the distribution to be 

estimated relatively easily.  All together the diagnostics indicates the model converged on 

all parameters, and therefore are able to use the summaries of the posterior distributions 

that resulted from each simulation. 

 

Results 

Meta-Analysis 

The meta-analytic results summarizing the prior evidence are presented in Figure 

4.1.  There were two RCTs and five estimates from observational cohort studies included 

in the meta-analyses.  Using only prior evidence derived from RCT designs, the results 
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fail to suggest a difference in hazards between sulfonylurea second-line therapy and TZD 

(effect size2= 1.58, 95% CI [0.31, 8.2]).  Conversely, when using only observational 

cohort studies, the results suggest a significant 28% increase in the hazard for 

sulfonylureas relative to TZDs (effect size=1.28, 95% CI [1.15, 1.41]).  Finally, when all 

studies are combined taking into account the variation coming from between study 

designs type (i.e., using a hierarchical Bayesian model), there is a 95% chance that the 

hazard ratio comparing sulfonylurea vs. TZD second-line therapies lies between 0.33 and 

6.95 (Effect size=1.31, 95% Credible Interval [0.33, 6.95]). 

Meta-Analysis Summary 

A meta-analysis of pre-existing RCTs yielded imprecise estimates of risk 

categorized by wide confidence intervals that extend above and below the value of one 

(equal hazards).  This translates into 95% confidence intervals that ranged from up to a 

8.18 times greater risk for sulfonylurea vs. TZD to a 3.27 times lower risk for 

sulfonylurea vs. TZD.  Since, frequentist analysis assumes all model parameters are 

fixed, all values in this interval are equally likely.  Whereas, evidence using only 

observational cohort studies is relatively more precise with 95% confidence intervals 

above one, suggesting higher sulfonylurea risk compared to TZD therapy. 

                                                 
2 Relative risk estimate for invariance variance fixed effect estimate 
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Figure 4.1. Meta-analysis of pre-existing evidence comparing second-line TZD use to 

sulfonylurea after first-line metformin on all-cause mortality by study design. Values 

greater than one suggest higher risk for sulfonylurea. Fixed and Random effects models are 

reported.  For overall (cross-design) the results from a two-level Bayesian hierarchical 

model result are reported (bottom). 
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Weighting Prior Research Evidence   

Figure 4.2 graphs the overall (combined across observational and RCT designs) 

meta-analysis estimates previously reported at the bottom of Figure 4.1 when the degree 

of uncertainty is varied around the point estimate using 10%, 50%, and 100% of the prior 

information.  See Appendix C-1 for similar figures for RCT studies only and 

observational cohorts only.  These different weights simulate a potential range of clinical 

opinions regarding the rigor and relevancy of the prior results, and are a function of 

varying the standard deviation.  For example, if a clinician believes that the prior research 

was poorly designed with many limitations and is not relevant to their treatment 

population, then they would be less certain in the previous evidence and more likely to 

choose a weight of 10% or 0%, such that prior evidence holds little or no influence 

relative to the new study data.  This was done by changing the uncertainty around the 

estimate.  Using 100% of the information means that the variance estimated from the 

meta-analysis is not changed and is used to define the prior probability distribution (solid 

blue line).  Notice here that the point estimate remains the same, but the variance of the 

distributions become more diffuse (less certain) as the weight of the prior data is 

decreased.   

The concept of weighting the prior information is perhaps more tractable when 

presented in the form of quasi a-priori sample sizes.  The quasi pre-study sample size 

reflects the relative contribution that the prior information contributes to the formation of 

the post-study conclusion relative to the new study.  Suppose the quasi a-priori sample 

size is r, i.e., the information in the current evidence comes from a study of r individuals.  



 

 

88

Weighting lets us reflect variation in opinions about the quality and relevance of the 

current evidence of risk by hypothetically using all r individuals or some percent of them 

(see Appendix C-2 and C-3 for the calculation and further discussion). 

  

Figure 4.2. Prior probability density distributions plotting the hazard ratio (log scale) 

comparing sulfonylurea relative to TZD using weights of 100%, 50% and 10% of the earlier 

existing evidence across all study designs.  Earlier data is synthesized and captured by the 

meta-analysis results. 

Forming a New Conclusion After a New Study   

Table 4.2 presents the estimated hazard ratio before and after the new study is 

conducted.  These results are stratified by the study design of prior evidence (i.e., 

evidence across all study design types, RCTs only, observational cohorts only) and the 

degree of uncertainty in these prior estimates (0%, 10%, 50%, 100%).  The quasi pre-

study sample size is presented in the second column to illustrate the relative contribution 
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pre-existing evidence had on the post study conclusion relative to the new VA study 

(n=145,250).  The third column presents the pre-existing estimate (i.e., prior probability 

distribution).  Each value was obtained from the meta-analysis of earlier studies and 

weighted accordingly.  Notice that the rows corresponding to 100% use of the prior 

evidence (i.e., unweighted) match those estimates presented in Figure 4.1.  For the third 

column, the uncertainty surrounding the estimate becomes wider as the percent of prior 

evidence used in the analysis is decreased.  The last column reports the post-study 

conclusion (i.e., the posterior probability distributions) after the new study findings are 

used to update the pre-existing estimate.  

Table 4.2. Scenarios evaluating evidence before and after a new study. Note: Results are 

stratified by study design and amount of prior evidence used; Column 2 is the quasi sample 

size for the prior evidence, in parenthesis is the relative contribution prior evidence 

contributes to the post study conclusion; Column 3 is the prior probability distribution; 

Column 4 is the posterior probability distribution; Values above one suggest higher 

sulfonylurea risk relative to TZD; New VA study sample size n=145,250

 

 

 

Use of prior evidence

Quasi 

a-priori sample 

size (relative 

contribution)

Before study:

HR (95% Credible 

Intervals)

After study:

HR (95% Credible 

Intervals)

No Prior (0% of prior evidence) 0 (0.00%) Flat prior 1.15 (1.09-1.23)
Overall (across study designs)
   100% of prior evidence 193 (0.13%) 1.31 (0.25-6.95) 1.15 (1.09-1.23)
   50% of prior evidence 96 (0.07%) 1.31 (0.12-13.87) 1.15 (1.09-1.23)
   10% of prior evidence 19 (0.01%) 1.31 (0.01-256.90) 1.15 (1.09-1.23)
By RCTs only
   100% of prior evidence 198 (0.14%) 1.58 (0.31-8.18) 1.15 (1.09-1.23)
   50% of prior evidence 99 (0.07%) 1.58 (0.16-16.14) 1.15 (1.09-1.23)
   10% of prior evidence 20 (0.01%) 1.58 (0.01-284.72) 1.15 (1.09-1.23)
By Observational Cohort only
   100% of prior evidence 57,295 (28.29%) 1.28 (1.15-1.41) 1.19 (1.13-1.25)
   50% of prior evidence 27,987 (16.16%) 1.28 (1.10-1.47) 1.17 (1.11-1.24)
   10% of prior evidence 5,481 (3.64%) 1.28 (0.93-1.75) 1.16 (1.09-1.23)
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Taken altogether, the after study conclusion reached a similar conclusion across 

each scenario, even when stratified by prior study design and the extent to which prior 

evidence was used.  This is reflected in the relatively wider uncertainty around the prior 

point estimates – effectively limiting its overall influence.  When translated into sample 

sizes it is easy to see that the prior information contributed much less information than 

the new study did in the analysis, even when 100% of the prior data was used. 

Without incorporating prior information, the conclusion made through a standard 

Frequentist analysis is that there was a significant elevated effect between the hazard rate 

for sulfonylurea compared to TZD (HR=1.15 (95% CI [1.08, 1.23]; p<0.0001; not shown 

in table).  Using no external prior information in a Bayesian analysis (i.e., 0% use of the 

prior data) leads to a similar interpretation, with a posterior probability that sulfonylurea 

is inferior to TZD on mortality risk and is greater than probability>0.99 or that greater 

than 99% of the posterior distribution for the hazard ratio is above 1.0 (HR=1.15, 95% 

Credible Interval [1.09, 1.23]).  

In this example, the conclusions reached when prior information is used are very 

similar.  When weights of 10%, 50%, and 100% on the prior evidence across all designs 

(i.e., overall) is used, there remains a greater probability of sulfonylurea having higher 

mortality risk than TZD with each estimate being the same when rounded to two 

decimals places, HR=1.15, 95% Credible Interval [1.09, 1.23].  Here, the quasi pre-study 

sample size ranges from 193 when 100% of the prior data is used to 19 when only 10% is 

used compared to 145,250 in the new study.  Thus, at most, the prior evidence is 

contributing only 0.13% of the information used to form the post-study conclusion, while 
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the remaining 99.87% is from the new VA study.   Conclusions are again similar when 

only prior evidence from RCT is taken into account when rounded to two decimal places, 

HR=1.15, 95% Credible Interval [1.09, 1.23].  

Only when prior observational cohort study evidence is used exclusively is there 

some movement in the effect and the certainty around it.  That is because the relative 

contribution of the prior data (100%) is much larger when using only observational 

cohort prior evidence.  Specifically, 28.29% of the post-study conclusion comes from the 

prior evidence (compared to 0.14% when only prior RCT data is used only).   

As more data from the prior observational evidence is incorporated into the 

analysis, the hazard ratio becomes larger and the credible intervals smaller.  In particular, 

the lower credible limit increases while the upper limit stays mostly the same as more of 

the prior evidence is incorporated.  When 10% of the prior data is used, there’s an 

estimated 16% increased risk HR=1.16, 95% Credible Interval [1.09, 1.23].  When the 

prior data is weighted 50%, the hazard ratio is 1.17, 95% Credible Interval [1.11, 1.24].  

The effect becomes higher and most precise when using all of the information (100%) 

from the prior observational cohort evidence — at any point in time, the risk of dying 

while in the sulfonylurea therapy group is 19% higher than the hazard of TZD treatment 

group (HR=1.19, 95% Credible Interval [1.13, 1.25)]). 

Sensitivity Analysis: Reducing the Precision of the Study Results   

Since the new study results were relatively strong in comparison to the weaker 

prior evidence overall and within RCTs, the new conclusion closely resembles the results 

of the new study.  But what would happen if the new results were not as strong?  
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A sensitivity analysis was run that increases the uncertainty in the new study 

estimates, by weighting the new study as if only 10% of the total sample (n=14,525) was 

collected.  Now each person has 1/10 the influence it did in the original VA study 

analysis, which produces more uncertainty in the VA study estimates through wider 

credible intervals around the new study hazard ratio.  This was implemented by adding 

the WEIGHT statement to the SAS PHREG procedure (SAS Institute Inc., 2010). 

Table 4.3. Sensitivity analysis weighting the new study by 10 percent: Scenarios evaluating 

evidence before and after a new study. Note: Results are stratified by study design and 

amount of prior evidence used; Column 2 is the quasi sample size for the prior evidence, in 

parenthesis is the relative contribution prior evidence contributes to the post study 

conclusion; Column 3 is the prior probability distribution; Column 4 is the posterior 

probability distribution; Values above one suggest higher sulfonylurea risk relative to TZD; 

Note: New VA study sample size n=14,525 

 

Before and after study results are presented in Table 4.3.  When ignoring prior 

study results (no prior data incorporated), there was a 17% increased risk of mortality 

with confidence intervals that now include values less than or equal to one (values 

suggesting equal or lower risk), HR=1.17, 95% Credible Interval [0.96, 1.42].  In the 

Use of prior evidence

Quasi 

a-priori sample 

size (relative 

contribution)

Before study:

HR (95% Credible 

Intervals)

After study:

HR (95% Credible 

Intervals)

No Prior (0% of prior evidence) 0 (0.00%) Flat prior 1.17(0.96-1.42)

Overall (across study designs)

   100% of prior evidence 193 (1.31%) 1.31 (0.25-6.95) 1.16(0.96-1.41)

   50% of prior evidence 96 (0.66%) 1.31 (0.12-13.87) 1.17(0.96-1.42)

   10% of prior evidence 19 (0.13%) 1.31 (0.01-256.90) 1.16(0.96-1.42)

By RCTs only

   100% of prior evidence 198 (1.35%) 1.58 (0.31-8.18) 1.17(0.96-1.44)

   50% of prior evidence 99 (0.68%) 1.58 (0.16-16.14) 1.16(0.96-1.42)

   10% of prior evidence 20 (0.14%) 1.58 (0.01-284.72) 1.16(0.96-1.42)

By Observational Cohort only

   100% of prior evidence 57,295 (79.78%) 1.28 (1.15-1.41) 1.25(1.14-1.37)

   50% of prior evidence 27,987 (65.83%) 1.28 (1.10-1.47) 1.23(1.10-1.39)

   10% of prior evidence 5,481 (27.40%) 1.28 (0.93-1.75) 1.19(1.01-1.41)
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Frequentist analysis, the conclusion is that we failed to find a significantly different 

hazard between sulfonylurea and TZD therapies.  From a Bayesian perspective, 93.5% of 

the after study HR distribution is above the value of 1, suggesting a higher risk for 

sulfonylurea compared to TZD. 

Even though the influence of the new VA study is attenuated, the prior evidence 

still does not influence the post study estimate much, except when using only the prior 

observational cohort evidence.  When the prior observational evidence is weighted 10%, 

the after study probability of sulfonylurea mortality is higher than TZD mortality.  Here, 

the prior evidence contributed 27.40% of the total information used to estimate the post-

study conclusion.  This shorter 95% credible interval no longer includes the value of 1 (as 

it did when no prior or RCT evidence was used), with 98.1% of the curve being above the 

HR of 1.0,  (HR=1.19, 95% Credible Interval [1.01, 1.41]).  When using 50% of the prior 

observational results (equivalent to a quasi pre-study sample size of 27,987 and a 65.83% 

relative contribution to the post-study estimate), there is a larger estimated effect (a 23% 

higher risk) with smaller credible intervals, in particular the lower credible interval 

moves further above the value of 1 while the upper limit stays fairly similar (probability 

of sulfonylurea >1=99.9%; HR=1.23, 95% Credible Intervals [1.10, 1.39]).  The post-

study conclusion is most similar when 100% of the prior data is used with higher risk and 

slightly smaller credible intervals, (probability of sulfonylurea >1=99.9%; HR= 1.25, 

95% Credible Interval [1.14, 1.37], which is closest to the before study estimate since its 

relative contribution to the post-study conclusion is 79.78%. 
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Discussion 

The ability to assess scientific rigor and determine what represents the best 

research evidence to clinicians is a key component in evidence-based practice 

approaches.  Yet research methods in alignment with EBM practice that allow for more 

thoughtful and comprehensive assessments of evidence are lacking in health services 

research.  This chapter reintroduced a research methodological approach that can 

facilitate EBM models of decision-making by allowing clinicians to more formally 

express their uncertainty in prior study evidence and account for that when evaluating 

new results.  

In this example, the extent to which prior results influenced the new conclusion 

was relatively minimal.  This should not be seen as a weakness to this approach, rather it 

serves to highlight the relatively small contribution prior evidence made when forming a 

new conclusion in this particular example, especially when all prior evidence and within 

RCT evidence was integrated.  At its most influential, the relative information that was 

contributed by pre-existing evidence was only 0.13% when using all prior data, 0.14% 

when using prior RCT data only, and 28.29% when using prior observational data.  In 

models using prior observational data only, going from zero percent use to 100% use of 

the prior evidence translated into a 4% change in hazard ratio (from 1.15 to 1.19) with 

increasingly smaller credible intervals. 

When the new study was weakened in the sensitivity analysis, the prior evidence 

had a greater influence — prior evidence contributed 1.31%, 1.35%, 79.78% of the total 

evidence when all, RCT only, and observational cohort evidence only was incorporated, 
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respectively.   

Conversely, the research method helped to underscore the strength of the new 

study results.  This new VA study is one of the largest samples of older adults with 

diabetes and had several years of follow-up making it one of the biggest of its kind.  

Consequently, this led each new conclusion to closely resemble the results of the new 

study.  If all clinicians agree the quality of the new study is strong, then clinical opinions 

should likely be similar post-study even though clinical evaluations of the pre-existing 

evidence were different.  Thus this method has the potential to reduce the variation in 

treatment and enhance EBM decision-making.  Therefore within an EBM framework, 

clinicians should have a similar base of evidence when individualizing treatment 

decisions.  Since this method allows for a more comprehensive assessment of risk, 

clinicians can also have better conversations with their patients regarding the uncertainty 

around the long-term risk of taking sulfonylurea medication relative to other antidiabetic 

agents.   

Study Strengths and Weaknesses.   

There are several advantages to the approach taken in this paper.  First, this 

approach provides a framework to help clinicians evaluate evidence and is potentially 

most useful where clinical opinions differ prior to running a new study.  By presenting a 

range of conclusions that reflect the uncertainty clinicians have, it acknowledges openly 

that evaluations on the strength and generalizability of prior evidence might not be all the 

same.   

Second, this approach requires clinicians to place a value on their uncertainty of 
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prior results.  By being explicit, it makes assumptions transparent since it assigns a 

specific numeric value to the uncertainty and allows for a deeper discussion related to 

why the value was chosen.  The explicit nature also offers the opportunity for clinicians 

to understand and examine other opinions.  Then, when evaluating the evidence of a 

study, conclusions derived from the range of different priors evaluations can be 

compared, argued for and against, and discussed.  By discussing the range of different 

evaluations, the underlying causes for these differences can be explored: a necessary step 

to resolving any differences in the future.  Thus, this approach can provide a framework 

for clinicians to debate different conclusions and determine where future research should 

be focused in order to move the research closer to informing key decisions. 

This approach also has the advantages of Bayesian analyses in general, like 

asking direct questions such as “Which treatment is superior?” or “What is the 

probability of a clinically meaningful treatment difference?” as well as overcomes 

methodological limitations of using p-values in hypothesis testing since credible intervals 

reflects the variability in the unknown parameter (Brophy & Joseph, 1995; Cohen, 1994; 

Freiman, Chalmers, Smith, & Kuebler, 1978; Kruschke, 2010; Trafimow, 2003; 

Woodworth, 2004). 

This methodological approach also helps to understand the weaknesses in the 

entire body of evidence related to this hypothesis.  In this example, information from 

RCTs contributes very little to the existing knowledge to this research question.  Existing 

RCTs of oral antidiabetics have been, for the most part, poorly applied to evaluate long-

term outcomes (designed instead to evaluate efficacy), often resulting in few events over 
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the longer term and also providing little evidence on long term outcomes (Bennett, 

Wilson, et al., 2011; Bolen et al., 2007).  There is even fewer studies where RCTs have 

examined second-line therapies.  This lead to imprecise estimates of pooled risk and with 

relatively little impact on the conclusions reached in this study.  Instead, most of the prior 

evidence has been derived from observational studies, which have larger cohorts and 

longer follow-up than the RCTs.  Indeed, when only observational cohort prior evidence 

was incorporated it did have an influence on the post study conclusions.  

The example also highlights the relative strength of new study results.  Here, the 

new study used rigorous methods for large cohort sizes with long-term follow-up.  

Confounding was addressed through several strategies that lead to a rigorous 

observational study design.  It involved weighted propensity score models with rich 

confounder adjustment, strict inclusion criteria coupled with an incident user design, 

which likely generated a suitable comparison group at similar stages of diabetes (see 

Chapter 3 for more detail).  

Future directions   

There are several avenues of future research that can strengthen and refine this 

methodological approach.  In this paper, there are no judgments made on the relative 

strength that one study design has over another when combining prior study results.  In 

the overall pooled estimate, the only assumption was that the study designs (RCT vs. 

cohort) are inherently different and therefore the variance existing between study designs 

should be included.  Since well-run RCTs are the gold standard, it’s likely that those 

results should hold more weight than well-run observational designs.  The question of 
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how much is still uncertain.   

Future work should explore ways in which to synthesize evidence across different 

study designs.  In particular, Bayesian multilevel models that use informed prior 

probability distributions that are formally specified to reflect the relative confidence in 

the accuracy of RCT result compared to observational results may be most beneficial.  

This would, in effect, assign less weight to designs that are more susceptible to bias (e.g., 

observational designs) relative to RCT designs.  One potential research direction would 

be to survey research experts to obtain their informed judgments using a Delphi or group 

consensus approach.  Empirically, these weights might also be informed with a meta-

regression that examine how the effect varies by study design as has been suggested 

previously (Goodman, 2013).   

Another related assumption made in this paper is that the evidence of the current 

study is strong and should not be weighted.  Therefore, if all clinicians agree the quality 

of the new study is strong, then it suggests that opinions should likely be similar even 

though opinions of the earlier evidence are different.  Yet this is unlikely, as clinicians 

might be less confident in the accuracy of results coming from a cohort design since it is 

not randomized and more susceptible to bias.  Conclusions reached can be different if 

more uncertainty is added to the new VA study estimate.  

The sensitivity analysis illustrates that to a certain extent and provided one way to 

weight new study data and add uncertainty around the study estimate.  In that analysis the 

new study strength was weakened by making each patient worth 10% of what they did in 

the original sample.  This led to less precise estimates of risk derived from the current 
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study, leading to post study credible intervals that included the value of one when prior 

evidence derived by RCT and overall was used.  Despite weakening the new study, it was 

still more precise than pooled estimates derived from RCT and overall combined prior 

evidence. 

 

Conclusion 

An underutilized method to the EBM framework that allows for a more thoughtful 

consideration of the evidence was applied.  This framework allows clinicians to question 

the scientific rigor and relevancy of previous study results when incorporating new study 

data to form new conclusions.   

Results suggest an elevated effect in all models for second-line sulfonylurea 

compared to TZD, but highlight the need for better-designed studies to evaluate long-

term safety outcomes.  This paper does not make any assumptions as to the relative worth 

of one design over another.  A critical question still to be explored is how much more is 

evidence derived from a well-designed RCT worth relative to a well-designed 

observational study?  This will have several implications to this methodology, 

specifically whether the new study is weighted as well as the extent to which cohort 

studies contribute to the overall estimate of prior evidence.  
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CHAPTER 5 : CONCLUDING COMMENTS 

 

A key element in evidence-based medicine (EBM) approaches is the ability for 

clinicians to evaluate the scientific rigor and relevance of research evidence.  Clinicians 

must make increasingly difficult decisions about which antidiabetic drug regimens to 

manage patients with limited evidence-based information to guide appropriate therapy.  

Given the varying clinical opinions coupled with the lack of comparisons evaluating 

treatment relative to other antidiabetic medications, further research investigating the 

comparative safety research of therapeutic options and the development of better research 

methods was needed to support evidence-based decision-making.    

Among the most pressing clinical decisions in diabetes treatment are which drugs 

should be used after metformin is no longer sufficient, and in particular, whether 

sulfonylureas should remain as a suitable second-line treatment.  Sulfonylureas are 

widely prescribed but some studies suggest an increased long-term safety risks relative to 

other drug classes.  Newer classes of drugs are available but with limited long-term 

evidence regarding their long-term safety. 

In this dissertation, the extent to which sulfonylureas should be included in the 

clinical pathway of treatment decisions was evaluated in an effort to improve the 

evidence-base for clinical based decision-making around medication safety.  Within each 

step of treatment, clinicians monitor short and long-term outcomes beyond how well 

current treatment manages a patient’s glucose levels.  However evidence to inform 

decisions on long-term adverse outcomes is limited.  This dissertation provided a more 

comprehensive evaluation into the long-term risks of sulfonylureas relative to other 
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antidiabetic medications on two key long-term outcomes compared to other diabetes 

medications through three studies. 

As evidence accumulates, it is helpful to summarize the benefits and harms 

associated with each antidiabetic medication.  However, it is often unreasonable to expect 

clinicians to be able to systematically synthesize and assess the quality of all existing 

study results on their own.  Therefore, meta-analysis is viewed as a critical component of 

evidence-based medicine (Herman, 2002; Jadad, Haynes, Hunt, & Browman, 2000; 

Sauerland & Seiler, 2005).   

The aim of Study 1 was to summarize pre-existing evidence on the long-term 

safety risks associated with sulfonylurea use relative to other drug classes in an effort to 

offer clinicians a more comprehensive picture of sulfonylurea as a therapeutic option to 

manage diabetes.  Using observational and experimental studies with at least one year of 

follow-up in patients without serious conditions at baseline, a series of meta-analyses 

were conducted to provide pooled estimates of the risks of cardiovascular events and 

death. 

The results provide some evidence that sulfonylurea treatment is associated with 

elevated risk relative to other drug classes either when compared alone (as a 

monotherapy) or when used in combination with metformin.  However, these findings are 

almost entirely derived from observational data, and are not confirmed by smaller, 

efficacy designed RCTs (with the exception of one analysis).  Therefore when evidence is 

pooled using both types of studies design, there is high variability around effect estimates 

(wide credible intervals) as a result of the imprecise estimates reported from prior RCT 
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studies.  

Findings from Study 1 also highlight the lack of evidence specifically examining 

sulfonylurea as a second-line therapy after metformin.  It also reveals that even less is 

known about the influence that augmenting and switching from metformin may have on 

the risk of mortality and cardiovascular events.  Study 2 attempted to address this gap in 

the existing literature by analyzing the comparative safety of second-line treatment in 

diabetic patients in the Veterans Health Administration.  This study consisted of a large 

sample with long follow-up and used a rigorous design to address confounding. 

Results suggested that second-line use of sulfonylureas was related to higher 

mortality and cardiovascular risks than TZD therapy, which is consistent with the few 

existing studies.  It also suggests that whether or not metformin is discontinued may lead 

to differential hazards.  In particular, it suggests switching to sulfonylurea instead of 

adding sulfonylurea to existing metformin may increase the risk of all-cause mortality 

and cardiovascular events, and that adding sulfonylurea is related to an elevated risk 

when compared to adding TZD to existing metformin. 

While Study 1 intended to summarize prior evidence of sulfonylurea risks and 

Study 2 attempted to address weaknesses in the current comparative safety literature, 

clinicians may disagree over the quality of the evidence as well as its relevance to their 

own treatment population.  Improvements in methods for evidence-based medicine that 

take this into account are needed. 

Study 3 addressed this need by focusing on a research method that allows 

clinicians to vary the uncertainty around pre-existing evidence in a way that reflects a 
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clinician’s appraisal of the quality of the evidence and relevancy to their own treatment 

population.  This facilitates EBM by allowing clinicians to specify the extent to which 

prior results should be added to new study results when forming new evidence-based 

conclusions. 

In our example, the extent to which prior results influenced the new conclusion 

was minimal relative to the new VA study data.  Each post-study estimate reached a 

similar conclusion across each scenario, even when stratified by prior study design and 

prior weight.  Here the research method helps to highlight that the prior evidence, 

especially when combined across designs or within RCTs only, had wide variability and 

the new study data was relatively stronger given its large sample size and precise study 

estimates.  

Taken altogether, this dissertation provides a more comprehensive evaluation and 

deeper understanding of the comparative safety of sulfonylurea long-term risks and 

suggests a research method to aid EBM approaches.  It also highlights the need for more 

evidence, and the need for more refined research methods to help clinician’s evaluate 

evidence, which can serve as the foundation to make complex treatment decisions.  Large 

RCTs with years of follow-up are needed but unlikely to be funded, yet observational 

studies using secondary databases provide another source of evidence despite 

methodological flaws and potential for bias.  Like Study 2, comparative safety studies 

should continue to address particular gaps in the literature, specifically the use of 

medications as second-line agents following metformin and the influence that 

augmenting and switching off medications has on adverse outcomes. 
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This dissertation also explored the use of a method intended to support EBM.  

One of the benefits of this approach appears to be its ability to aid in interpreting study 

results in a way that yield a richer understanding and a deeper insight into evidence 

supporting a particular hypothesis.  While promising as an EBM research method, there 

are several aspects its method that need be refined.  Future work should focus on the 

relative strength that observational evidence contributes when compared to RCT 

evidence, as well as the ways in which evidence can be synthesized across observational 

cohort and RCT study designs. 

Within medication safety, this methodological approach may also be applied to 

improve evidence synthesis for policy makers in setting health policy, managers making 

operational decision, and health services researchers in designing focused research to 

identify the safest treatments to deliver diabetes care. 

In addition, this research method offers a potentially useful framework in other 

health services research areas, yet existing approaches are underutilized and innovative 

new applications are often left unexplored.  For example, patient-centered outcomes 

research does not have adequate frameworks nor specific measures to assess how new 

information is incorporated into patient health beliefs.  Assessments of how this 

methodology serves as a basis to understand how and to what extent patients modify their 

health beliefs when faced with new evidence-based information may prove valuable to 

patient centered outcomes research initiatives.  Greater insight into the patient’s belief 

and how they combine new information into existing belief may lead to enhanced 

information exchange between clinicians and patients, improved targeting of where 
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patient-provider communication can be focused, increased patient health self-

improvement efforts, and better facilitated shared decision making processes when 

planning and delivering individualized care.  

Thus, this method has the potential to be used in different, yet complementary 

ways, however, key initial research steps and priorities for developing and evaluating 

their utility in other HSR domains is still in its infancy.  Future work should explore how 

this method may have broader applications beyond evidence-based decision making in an 

effort to advance methods in others health services research areas. 
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APPENDIX A 

A- 1: MEDLINE search terms 

(diabetes mellitus, type 2[mh] OR (diabet*[tiab] AND (“non-insulin dependent”[tiab] OR 

type-2[tiab] OR "type II"[tiab] OR "type 2"[tiab])))  

AND (sulfonylurea compounds [mh] OR sulfonylurea*[tiab] OR sulphonylurea*[tiab] 

OR glipizide[tiab] OR glyburide [tiab] OR glimepiride[tiab] OR glibenclamide[tiab]) 

AND English[lang] 

NOT (animal[mh] NOT human[mh])  

NOT (letter[pt] OR comment[pt] OR editorial[pt]) 

AND Humans[mh] 

AND ("controlled clinical trial"[pt] OR "randomized controlled trial"[pt] OR 

"comparative study"[pt] OR "case control studies"[mh] OR "cohort studies"[mh]) 

 

A- 2. Meta-analytic results for outcomes.  Note: D&L = DerSimonian and Laird 

random effects model; NA=Not applicable 
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METF+SU vs. METF 

Outcome Study 

Study Effect 

Size (95% 

CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

All-cause 
mortality 

Single RCT       

 
Ahrén, 2014 

0.99 
(0.10–9.38) 

     

 Obs Cohort       

 
Johnson, 2002 

0.81 
(0.66–0.99) 

     

 Gulliford, 
2004 

0.95 
(0.64–1.40) 

     

 
Evans, 2006 

0.60 
(0.35–1.03) 

     

 
Evans, 2006 

2.47 
(1.88–3.25) 

     

 
Evans, 2006 

2.16 
(1.68–2.78) 

     

 
Sillars, 2010 

1.18 
(0.81–1.72) 

     

 
Currie, 2013 

1.10 
(1.02–1.18) 

     

 Pooled 

Estimate for 

Obs Cohort 

  
1.21 

(0.89–1.65) 
1.15 

(1.08–1.22) 
91.81% NA 

 Overall 

Pooled 

Estimate 

 
1.12 

(0.16–7.59) 
1.21 

(0.89–1.64) 
1.15 

(1.08–1.22) 
90.44% NA 

        

Cardio-
vascular 
compo-
site 

Obs Cohort       

 
Johnson, 2005 

1.17 
(0.92–1.48) 

     

 
Sillars, 2010 

0.83 
(0.60–1.15) 

     

 
Currie, 2013 

1.10 
(0.98–1.22) 
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Outcome Study 

Study Effect 

Size (95% 

CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

 
Li, 2014 

1.99 
(1.07–3.70) 

     

 Pooled 

Estimate for 

Obs Cohort 

  
1.11 

(0.91–1.34) 
1.10 

(1.00–1.20) 
54.86% NA 

        

Cardio-
vascular 
death 

Obs Cohort       

 Johnson, 
2005 

0.78 
(0.52–1.15) 

     

 
Evans, 2006 

0.62 
(0.25–1.53) 

     

 
Evans, 2006 

2.29 
(1.45–3.61) 

     

 
Evans, 2006 

2.43 
(1.61–3.66) 

     

 
Sillars, 2010 

1.49 
(0.85–2.63) 

     

 Pooled 

Estimate for 

Obs Cohort 

  
1.38 

(0.80–2.37) 
1.47 

(1.18–1.82) 
82.73% NA 
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METF+SU vs. METF+DPP-4 

Outcome Study 

Study Effect 

Size (95% 

CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

All-cause 
mortality 

RCT       

 Ferrannini, 
2009 

1.50 
(0.25–8.98) 

     

 Filozof, 
2010 

1.03 
(0.06–16.49) 

     

 Matthews, 
2010 

0.86 
(0.29–2.55) 

     

 
Seck, 2010 

8.05 
(1.01–64.20) 

     

 Gallwitz, 
2012 

1.00 
(0.25–3.99) 

     

 
Göke, 2013 

0.50 
(0.09–2.70) 

     

 
Ahrén, 2014 

2.95 
(0.31–28.22) 

     

 DelPrato, 
2014 

1.68 
(0.51–5.49) 

     

 Obs Cohort       

 Mogensen, 
2014 

1.54 
(1.25–1.85) 

     

 Morgan, 
2014a 

1.50 
(1.09–2.05) 

     

 Kannan, 
2015 

0.97 
(0.76–1.23) 

     

 
Ou, 2015 

1.59 
(1.39–1.82) 

     

 Pooled 

Estimate 

for RCT 

  
1.29 

(0.74–2.23) 
1.29 

(0.74–2.23) 
0.00% NA 

 Pooled 

Estimate 

for Obs 

Cohort 

  
1.39 

(1.12–1.72) 
1.45 

(1.32–1.59) 
76.70% NA 

 Overall 

Pooled 

Estimate 

 
1.42 

(0.67–2.81) 
1.38 

(1.15–1.65) 
1.44( 

1.32–1.59) 
41.12% 0.697608 
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Outcome Study 

Study Effect 

Size (95% 

CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

Cardio-
vascular 
compo-
site 

RCT       

 Filozof, 
2010 

1.77 
(0.70–4.47) 

     

 Gallwitz, 
2012 

2.17 
(1.10–4.35) 

     

 DelPrato, 
2014 

1.58 
(0.72–3.47) 

     

 Obs Cohort       

 Mogensen, 
2014 

1.43 
(1.18–1.75) 

     

 Morgan, 
2014a 

1.55 
(1.08–2.23) 

     

 
Ou, 2015 

1.47 
(1.20–1.82) 

     

 Pooled 

Estimate 

for RCT 

  
1.86 

(1.18–2.93) 
1.86 

(1.18–2.93) 
0.00% NA 

 Pooled 

Estimate 

for Obs 

Cohort 

  
1.46 

(1.28–1.68) 
1.46 

(1.28–1.68) 
0.00% NA 

 Overall 

Pooled 

Estimate 

 
1.56 

(0.77–3.52) 
1.49 

(1.31–1.70) 
1.49 

(1.31–1.70) 
0.00% NA 

        

Cardio-
vascular 
death 

RCT       

 Ferrannini, 
2009 

0.50 
(0.05–5.52) 

     

 
Göke, 2010 

1.99 
(0.18–21.87) 

     

 
Seck, 2010 

5.03 
(0.24–104.63) 

     

 Gallwitz, 
2012 

1.00 
(0.14–7.14) 
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Outcome Study 

Study Effect 

Size (95% 

CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

 DelPrato, 
2014 

2.02 
(0.51–8.04) 

     

 Single Obs 

Cohort 
      

 Mogensen, 
2014 

1.75 
(1.25–2.50) 

     

 Pooled 

Estimate 

for RCT 

  
1.55 

(0.63–3.81) 
1.55 

(0.63–3.81) 
0.00% NA 

 Overall 

Pooled 

Estimate 

 
1.70 

(0.56–4.81) 
1.73 

(1.24–2.40) 
1.73 

(1.24–2.40) 
0.00% NA 
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METF+SU vs. METF+GLP-1 

Outcome Study 

Study Effect 

Size (95% 

CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

All-cause 
mortality 

RCT       

 Gallwitz, 
2012b 

1.01 
(0.29–3.45) 

     

 Ahrén, 
2014 

0.98 
(0.20–4.84) 

     

 Obs Cohort       

 Mogensen, 
2014 

1.30 
(0.85–1.96) 

     

 Kannan, 
2015 

1.76 
(0.93–3.33) 

     

 Pooled 

Estimate 

for RCT 

  
1.00 

(0.38–2.65) 
1.00 

(0.38–2.65) 
0.00% NA 

 Pooled 

Estimate 

for Obs 

Cohort 

  
1.42 

(1.00–2.01) 
1.42 

(1.00–2.01) 
0.00% NA 

 Overall 

Pooled 

Estimate 

 
1.30 

(0.37–3.80) 
1.36 

(0.98–1.89) 
1.36 

(0.98–1.89) 
0.00% NA 
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METF+SU vs. METF+MEGL 

Outcome Study 

Study Effect 

Size (95% CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

All-cause 
mortality 

RCT       

 Gerich, 
2005 

1.05 
(0.07–16.64) 

     

 Schwarz, 
2008 

2.63 
(0.11–62.66) 

     

 Pooled 

Estimate 

for RCT 

  
1.56 

(0.19–12.54) 
1.56 

(0.19–12.54) 
0.00% NA 
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METF+SU vs. METF+SGLT-2 

Outcome Study 

Study Effect 

Size (95% CI) 

Bayes-

ian 

Pooled 

Esti-

mate 

(95% 

CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

All-cause 
mortality 

RCT       

 
DelPrato, 2015 

2.49 
(0.49–12.75) 

     

 
Leiter, 2015 

0.67 
(0.14–3.30) 

     

 
Leiter, 2015 

6.02 
(0.25–147.47) 

     

 NCT01167881, 
2015 

0.99 
(0.25–3.93) 

     

 Pooled 

Estimate for 

RCT 

  
1.29 

(0.55–3.01) 
1.29 

(0.55–3.01) 
0.00% NA 

 

  



 

 

115

METF+SU vs. METF+TZD 

Outcome Study 

Study Effect 

Size (95% CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

All-cause 
mortality 

RCT       

 Matthews, 
2005 

5.06 
(0.24–105.05) 

     

 Hamann, 
2008 

0.98 
(0.14–6.89) 

     

 Obs Cohort       

 Morgan, 
2012 

1.41 
(1.03–1.94) 

     

 Morgan, 
2012 

1.10 
(0.90–1.35) 

     

 Prentice, 
2014 

1.50 
(1.09–2.09) 

     

 Kannan, 
2015 

1.16 
(1.00–1.35) 

     

 Pooled 

Estimate 

for RCT 

  
1.58 

(0.31–8.18) 
1.58 

(0.31–8.18) 
0.00% NA 

 Pooled 

Estimate 

for Obs 

Cohort 

  
1.21 

(1.07–1.37) 
1.20 

(1.08–1.34) 
17.24% NA 

 Overall 

Pooled 

Estimate 

 
1.22 

(0.30–6.50) 
1.20 

(1.08–1.34) 
1.20 

(1.08–1.34) 
0.00% NA 

        

Cardio-
vascular 
compo-
site 

Obs Cohort 

      

 McAfee, 
2007 

1.27 
(0.75–2.13) 

     

 Walker, 
2008 

1.12 
(0.96–1.32) 

     

 Walker, 
2008 

1.08 
(0.95–1.22) 
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Outcome Study 

Study Effect 

Size (95% CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

 Morgan, 
2012 

1.38 
(0.93–2.06) 

     

 Morgan, 
2012 

1.19 
(0.91–1.55) 

     

 Pooled 

Estimate 

for Obs 

Cohort 

  
1.12 

(1.03–1.23) 
1.12 

(1.03–1.23) 
0.00% NA 
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METF+SU vs. SU 

Outcome Study 

Study 

Effect Size 

(95% CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

All-cause 
mortality 

Single RCT       

 UKPDS, 
1998 

1.60 
(1.02–2.52) 

     

 Obs Cohort       

 Olsson, 
2000 

1.63 
(1.27–2.09) 

     

 Johnson, 
2002 

0.63 
(0.57–0.71) 

     

 Gulliford, 
2004 

1.06 
(0.85–1.31) 

     

 Evans, 
2006 

0.42 
(0.23–0.75) 

     

 Evans, 
2006 

1.73 
(1.22–2.45) 

     

 Evans, 
2006 

1.51 
(1.09–2.10) 

     

 Sillars, 
2010 

1.02 
(0.76–1.37) 

     

 Morgan, 
2012 

0.69 
(0.57–0.83) 

     

 Currie, 
2013 

0.63 
(0.57–0.69) 

     

 Pooled 

Estimate 

for Obs 

Cohort 

  
0.94 

(0.73–1.22) 
0.76 

(0.71–0.80) 
93.15% NA 

 Overall 

Pooled 

Estimate 

 
1.06 

(0.02–50.38) 
0.98 

(0.76–1.27) 
0.77 

(0.72–0.81) 
92.92% 2.412320 

        

Cardio-
vascular 
compo-
site 

Obs Cohort 

      

 Johnson, 
2005 

0.96 
(0.82–1.12) 
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Outcome Study 

Study 

Effect Size 

(95% CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

 Sillars, 
2010 

0.87 
(0.66–1.15) 

     

 Morgan, 
2012 

0.63 
(0.48–0.84) 

     

 Currie, 
2013 

0.79 
(0.68–0.92) 

     

 
Li, 2014 

1.79 
(0.68–4.74) 

     

 Pooled 

Estimate 

for Obs 

Cohort 

  
0.84 

(0.71–0.99) 
0.84 

(0.77–0.93) 
58.91% NA 

        

Cardio-
vascular 
death 

Obs Cohort       

 Johnson, 
2005 

0.59 
(0.45–0.78) 

     

 Evans, 
2006 

1.43 
(0.83–2.47) 

     

 Evans, 
2006 

0.36 
(0.14–0.97) 

     

 Evans, 
2006 

1.35 
(0.75–2.41) 

     

 Sillars, 
2010 

0.98 
(0.66–1.45) 

     

 Pooled 

Estimate 

for Obs 

Cohort 

  
0.88 

(0.57–1.35) 
0.80 

(0.66–0.97) 
74.13% NA 
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METF+SU vs. SU+TZD 

Outcome Study 

Study Effect 

Size (95% 

CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

Cardio-
vascular 
composite 

Obs Cohort       

 
Walker, 2008 

0.85 
(0.72–1.01) 

     

 
Walker, 2008 

0.99 
(0.83–1.18) 

     

 Pooled 

Estimate for 

Obs Cohort 

  
0.92 

(0.79–1.07) 
0.92 

(0.81–1.04) 
30.98% NA 
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SU vs. DDP-4 

Outcome Study 

Study Effect 

Size (95% 

CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

Cardio-
vascular 
compo-
site 

Rosenstock, 
2013 

2.03 
(0.19–22.20) 

     

 Single Obs 

Cohort 
      

 Berkowitz, 
2014 

1.17 
(0.97–1.42) 

     

 Overall 

Pooled 

Estimate 

 
1.25 

(0.16–10.53) 
1.18 

(0.97–1.42) 
1.18 

(0.97–1.42) 
0.00% NA 

 

  



 

 

121

SU vs. METF 

Outcome Study 

Study 

Effect Size 

(95% CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

All-cause 
mortality 

Single RCT       

 
Kahn, 2006 

1.01 
(0.62–1.65) 

     

 Obs Cohort       

 Johnson, 
2002 

1.28 
(1.09–1.54) 

     

 
Evans, 2006 

1.43 
(1.15–1.77) 

     

 Pantalone, 
2009 

1.85 
(1.56–2.17) 

     

 Tzoulaki, 
2009 

1.24 
(1.14–1.35) 

     

 
Corrao, 2011 

1.37 
(1.26–1.49) 

     

 Schramm, 
2011 

1.05 
(0.94–1.16) 

     

 Schramm, 
2011 

1.32 
(1.24–1.40) 

     

 Schramm, 
2011 

1.27 
(1.17–1.38) 

     

 Schramm, 
2011 

1.19 
(1.11–1.28) 

     

 Sullivan, 
2011 

1.09 
(0.83–1.42) 

     

 
Currie, 2013 

1.75 
(1.64–1.86) 

     

 Wheeler, 
2013 

1.38 
(1.27–1.50) 

     

 Wheeler, 
2013 

1.55 
(1.43–1.67) 

     

 Morgan, 
2014b 

1.50 
(1.37–1.65) 

     

 Pooled 

Estimate for 

Obs Cohort 

  
1.37 

(1.26–1.48) 
1.38 

(1.35–1.41) 
90.73% 0.671953 
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Outcome Study 

Study 

Effect Size 

(95% CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

 Overall 

Pooled 

Estimate 

 
1.30 

(0.46–3.05) 
1.36 

(1.25–1.47) 
1.38 

(1.35–1.41) 
90.12% 0.567854 

        

Cardio-
vascular 
compo-
site 

Single RCT       

 
Kahn, 2006 

0.71 
(0.44–1.16) 

     

 Obs Cohort       

 Johnson, 
2005 

1.22 
(1.02–1.47) 

     

 McAfee, 
2007 

1.30 
(1.04–1.61) 

     

 Pantalone, 
2009 

1.06 
(0.95–1.18) 

     

 Schramm, 
2011 

1.06 
(0.95–1.18) 

     

 Schramm, 
2011 

1.21 
(1.14–1.29) 

     

 Schramm, 
2011 

1.17 
(1.07–1.28) 

     

 Schramm, 
2011 

1.12 
(1.04–1.21) 

     

 Sullivan, 
2011 

0.97 
(0.79–1.18) 

     

 
Currie, 2013 

1.39 
(1.25–1.55) 

     

 
Hung, 2013 

1.68 
(1.15–2.45) 

     

 
Hung, 2013 

3.23 
(2.50–4.17) 

     

 Berkowitz, 
2014 

1.16 
(1.04–1.29) 

     

 
Li, 2014 

1.11 
(0.52–2.35) 
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Outcome Study 

Study 

Effect Size 

(95% CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

 Morgan, 
2014b 

1.07 
(0.88–1.30) 

     

 Pooled 

Estimate for 

Obs Cohort 

  
1.24 

(1.13–1.36) 
1.18 

(1.15–1.22) 
85.18% 0.294266 

 Overall 

Pooled 

Estimate 

 
1.02 

(0.13–6.12) 
1.22 

(1.11–1.34) 
1.18 

(1.15–1.22) 
84.76% 0.517152 

        

Cardio-
vascular 
death 

Single RCT       

 
Kahn, 2006 

1.52 
(0.25–9.06) 

     

 Obs Cohort       

 Johnson, 
2005 

1.32 
(1.00–1.72) 

     

 
Evans, 2006 

1.70 
(1.18–2.45) 

     

 Schramm, 
2011 

1.05 
(0.91–1.20) 

     

 Schramm, 
2011 

1.28 
(1.18–1.38) 

     

 Schramm, 
2011 

1.25 
(1.12–1.40) 

     

 Schramm, 
2011 

1.14 
(1.03–1.25) 

     

 Sullivan, 
2011 

1.17 
(0.72–1.91) 

     

 Pooled 

Estimate for 

Obs Cohort 

  
1.21 

(1.12–1.31) 
1.21 

(1.16–1.27) 
50.63% NA 

 Overall 

Pooled 

Estimate 

 
1.25 

(0.29–5.67) 
1.21 

(1.12–1.31) 
1.21 

(1.16–1.27) 
42.68% NA 
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SU vs. METF+TZD  

Outcome Study 

Study Effect 

Size (95% 

CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

All-cause 
mortality 

Obs Cohort       

 
Morgan, 2012 

2.06 
(1.43–2.98) 

     

 
Morgan, 2012 

1.61 
(1.21–2.12) 

     

 Pooled 

Estimate for 

Obs Cohort 

  
1.77 

(1.39–2.24) 
1.76 

(1.41–2.20) 
11.90% NA 

        

Cardio-
vascular 
compo-
site 

Obs Cohort       

 
Morgan, 2012 

1.87 
(1.27–2.76) 

     

 
Morgan, 2012 

2.18 
(1.34–3.56) 

     

 Pooled 

Estimate for 

Obs Cohort 

  
1.99 

(1.47–2.70) 
1.99 

(1.47–2.70) 
0.00% NA 
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SU vs. TZD  

Outcome Study 

Study Effect 

Size (95% 

CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

All-cause 
mortality 

RCT       

 
Tan, 2004 

3.59 
(0.15–87.00) 

     

 
Jain, 2006 

5.00 
(0.24–103.62) 

     

 
Kahn, 2006 

0.92 
(0.57–1.49) 

     

 Obs Cohort       

 Pantalone, 
2009 

1.69 
(1.23–2.33) 

     

 Pantalone, 
2009 

1.37 
(0.98–1.96) 

     

 Tzoulaki, 
2009 

1.16 
(0.82–1.63) 

     

 Wheeler, 
2013 

1.13 
(0.90–1.42) 

     

 Wheeler, 
2013 

1.27 
(1.01–1.59) 

     

 Pooled 

Estimate 

for RCT 

  
0.99 

(0.62–1.58) 
0.99 

(0.62–1.58) 
0.00% NA 

 Pooled 

Estimate 

for Obs 

Cohort 

  
1.28 

(1.12–1.47) 
1.28 

(1.13–1.45) 
13.73% NA 

 Overall 

Pooled 

Estimate 

 
1.20 

(0.46–2.60) 
1.26 

(1.11–1.43) 
1.26 

(1.12–1.42) 
6.97% NA 

        

Cardio-
vascular 
compo-
site 

RCT       

 St. John 
Sutton, 
2002 

0.58 
(0.20–1.69) 
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Outcome Study 

Study Effect 

Size (95% 

CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

 
Jain, 2006 

2.00 
(1.01–3.99) 

     

 
Kahn, 2006 

0.67 
(0.41–1.08) 

     

 Perriello, 
2006 

0.53 
(0.14–2.09) 

     

 Obs Cohort       

 McAfee, 
2007 

1.22 
(0.98–1.61) 

     

 Walker, 
2008 

1.10 
(0.94–1.29) 

     

 Walker, 
2008 

1.12 
(0.94–1.34) 

     

 
Hsiao, 2009 

0.97 
(0.61–1.54) 

     

 
Hsiao, 2009 

0.65 
(0.54–0.78) 

     

 Pantalone, 
2009 

0.96 
(0.79–1.16) 

     

 Pantalone, 
2009 

1.11 
(0.88–1.41) 

     

 Berkowitz, 
2014 

1.10 
(0.89–1.37) 

     

 Pooled 

Estimate 

for RCT 

  
0.87 

(0.45–1.67) 
0.87 

(0.61–1.24) 
61.39% NA 

 Pooled 

Estimate 

for Obs 

Cohort 

  
1.01 

(0.87–1.18) 
1.00 

(0.93–1.07) 
75.11% NA 

 Overall 

Pooled 

Estimate 

 
0.98 

(0.53–1.70) 
0.99 

(0.85–1.16) 
0.99 

(0.92–1.07) 
69.83% 0.871221 

        

Cardio-
vascular 
death 

RCT 
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Outcome Study 

Study Effect 

Size (95% 

CI) 

Bayesian 

Pooled 

Estimate 

(95% CI) 

D&L 

Method 

(95% CI) 

Inverse-

Variance 

Method 

(95% CI) 

I-

squared 

Egger's 

Test P-

value 

(95% 

CI) 

 
Tan, 2004 

3.59 
(0.15–87.00) 

     

 
Jain, 2006 

3.00 
(0.12–73.29) 

     

 
Kahn, 2006 

1.52 
(0.25–9.06) 

     

 Pooled 

Estimate 

for RCT 

  
2.04 

(0.50–8.29) 
2.04 

(0.50–8.29) 
0.00% NA 
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A- 3. Newcastle-Ottawa Scale for assessing the quality of 

Observational cohort studies and an additional item on industry funding 
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Total 

In
d

u
s

tr
y

 F
u

n
d

e
d

 

Berkowitz, 2014 b a a a a,b b a d 7 Yes 

Corrao, 2011 b a a a a b a a 8 No 

Currie, 2013 a a a a a,b b a b 9 No 

Evans, 2006 a a a a a,b b a b 9 No 

Gulliford, 2004 a a a a a,b b a b 9 No 

Hsiao, 2009 a a a a a,b b a a 9 No 

Hung, 2013 b a a a a,b b a a 9 No 

Johannes, 2007 b a a a a,b b a b 9 Yes 

Johnson, 2002 a a a a a,b b a b 9 No 

Johnson, 2005 a a a a a,b b a a 9 No 

Kannan, 2015 b a a a a,b b a a 9 Unclear 

Li, 2014 b a b a a,b b a b 9 Yes 

McAfee, 2007 b a a a a,b b a b 9 Yes 

Mogensen, 2014 b a a a a,b b a a 9 Unclear 

Morgan, 2012 a a a a a,b b a b 9 Yes 

Morgan, 2014a a a a a a,b b a b 9 Yes 

Morgan, 2014b a a a a a,b b a b 9 Yes 

Olsson, 2000 b a a a a,b b a a 9 No 

Ou, 2015 a a a a a,b b a a 9 No 

Pantalone, 2009 b a a a a,b b a a 9 Yes 

Prentice, 2014 b a a a a,b b a a 9 No 

Schramm, 2011 a a a a a,b b a a 9 No 

Sillars, 2010 b a a a a,b b a a 9 No 

Sullivan, 2011 b a b a a,b a a b 9 Yes 

Tzoulaki, 2009 a a a a a,b b a a 9 No 

Walker, 2008 b a a a a,b b a a 9 Yes 
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A- 4. Items from Jadad Scale for randomized trials and an additional item on 

industry funding 

Study Randomization 

Double-

blinded 

Dropouts 

described 

Industry 

funded  

Ahrén, 2014 Yes Yes Yes Yes 
Del Prato, 2014 Yes Yes Yes Yes 
Del Prato, 2015 Yes Yes No Yes 
Ferrannini, 2009 Yes Yes Yes Yes 
Filozof, 2010 Yes Yes Yes Yes 
Gallwitz, 2012 Yes Yes Yes Yes 
Gallwitz, 2012b Yes No Yes Yes 
Gerich, 2005 Yes Yes Yes Yes 
Göke, 2010 Yes Yes Yes Yes 
Göke, 2013 Yes Yes Yes Yes 
Hamann, 2008 Yes Yes Yes Yes 
Jain, 2006 Yes Yes Yes Unclear 
Kahn, 2006 Yes Yes Yes Yes 
Leiter, 2015 Yes Yes Yes Yes 
Matthews, 2005 Yes Yes Yes Yes 
Matthews, 2010 Yes Yes Yes Yes 
NCT01167881, 2015 Yes Yes Yes Yes 
Perriello, 2006 Yes Yes Yes Yes 
Rosenstock, 2006 Yes Yes Yes Yes 
Rosenstock, 2013 Yes Yes Yes Yes 
Schwarz, 2008 Yes Yes Yes Yes 
Seck, 2010 Yes Yes Yes Yes 
St. John Sutton, 2002 Yes No Yes Yes 
Tan, 2004 Yes No Yes Yes 
UKPDS, 1998 Yes No Yes Yes 
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APPENDIX B 

B- 1. Selected covariate means and frequency at baseline by drug therapy 

 

Sulfonylurea    

after    Metformin

(n=138,097)

TZD    after    

Metformin

(n=7,153)

Sampling    Factors    

Index    date 10/21/06 10/7/05

Augmented    to    first-line    metformin 74.72% 68.46%

1st    year    of    diabetes 2002.97 (4.29) 2002.01 (2.91)

Time    (days)    on    metformin    before    augment/switch    to    2nd    line    therapy 759.02 (766.19) 798.73 (666.05)

Diabetes    duration 3.13 (2.55) 3.04 (2.28)

Demographic    and    Social    Factors    (before    index    date)

Age 62.44 (10.67) 64.18 (10.81)

Sex 96.37% 95.67%

Race

   White, non-hispanic 75.79 77.87

   African American, non-Hispanic 13.51 8.74

   Hispanic, white 4.46 6.79

   Other 6.24 6.6

Marital    status

   Widow 5.8 5.2

   Single or divorced 32.96 23.82

   Married 61.24 70.98

Income $33,271 (58,215) $42,863 (74,440)

income,    unknown 5.96% 9.44%

Utilization    and    access    to    care    (before    index    date)

Medicare    beneficiary    at    any    time    prior    to    index    date 13.78% 27.15%

In    Medicare    denominator    in    year    of    index    date    or    in    prior    year 20.92% 26.72%

Medicare    part    C    beneficiary    any    time    in    2    years    before    index    date 3.01% 5.10%

#    of    outpatient    visit    days    in    VA    in    6    months    before    index    date 8.24 (9.06) 6.83 (7.34)

#    of    inpatient    days    in    VA    in    6    months    before    index    date 0.09 (0.38) 0.05 (0.28)

#    of    urgent    or    emergency    room    visit    days    in    VA    in    6    months    before    index    date 0.32 (0.92) 0.19 (0.62)

#    of    outpatient    visit    days    in    Medicare    6    months    before    index    date 1.1 (4.19) 2.72 (6.58)

#    of    inpatient    days    in    Medicare    in    6    months    before    index    date 0.04 (0.34) 0.08 (0.49)

Laboratory    and    Physical    Exam    Measures    (before    index    date)

HbA1c,    most    recent    in    12    months    before    index    date 7.95 (1.72) 7.36 (1.43)

HbA1c,    unknown    -    none    in    12    months    before    index    date 12.13% 18.80%

Glucose,    most    recent    in    12    months    before    index    date 177.15 (78.37) 155.15 (58.1)

Glucose,    unknown    -    none    in    12    months    before    index    date 19.44% 14.79%

LDL,    most    recent    in    12    months    before    index    date 95 (35.55) 94.25 (34.49)

LDL,    unknown    -    none    in    12    months    before    index    date 22.45% 26.94%

Total    serum    cholesterol    ,    most    recent    in    12    months    before    index    date 175.59 (45.78) 175.35 (45.03)

Total    serum    cholesterol    ,    unknown    -    none    in    12    months    before    index    date 14.35% 18.37%

eGFR,    using    most    recent    creatinine    in    12    months    before    index    date 80.97 (23.7) 77.32 (22.63)

eGFR    unknown    -    none    in    12    months    before    index    date 13.15% 14.41%

Microalbumin/creatinine    ratio,    most    recent    in    12    months    before    index    date 135.56 (1892.74) 72.89 (1075.49)

Microalbumin/creatinine    ratio,    unknown    -    none    in    12    months    before    index    date 74.67% 76.09%

Alanine    amino    transferase,    most    recent    in    12    months    before    index    date 36.13 (28.96) 29.3 (17.25)

Alanine    amino    transferase,    unknown    -    none    in    12    months    before    index    date 25.46% 22.59%



 

 

131

 

 

  



 

 

132

 

SU    monotherapy    

after    1st    line    

Metformin    

(n=34916)

METF+SU    after    

1st    line    

Metformin    

(n=103,181)

TZD    

monotherapy    

after    1st    line    

Metformin    

(n=34916)

METF+TZD    after    

1st    line    

Metformin    

(n=4,897)

Sampling    Factors 

Index    date 6/16/07 8/1/06 10/18/05 10/2/05

1st    year    of    diabetes 2003.50 (3.90) 2002.79 (4.41) 2002.06 (3.06) 2001.98 (2.84)

Time    (days)    on    metformin    before    augment/switch    to    2nd    line    therapy 808.90 (806.53) 742.14 (751.31) 767.97 (694.71) 812.90 (652.00)

Diabetes    duration 3.21 (2.77) 3.10 (2.47) 3.02 (2.37) 3.04 (2.24)

Demographic    and    Social    Factors    (before    index    date)

Age 65.97 (11.25) 61.25 (10.19) 67.32 (11.05) 62.73 (10.38)

Sex 96.06% 96.48% 94.68% 96.12%

Race

   White, non-hispanic 76.99 75.38 78.28 77.68

   African American, non-Hispanic 14.05 13.33 9.53 8.37

   Hispanic, white 3.91 4.65 6.69 6.84

   Other 5.05 6.64 5.50 7.11

Marital    status

   Widow 7.86 5.10 6.78 4.47

   Single or divorced 30.36 33.83 23.54 23.95

   Married 61.78 61.06 69.68 71.57

Income $36,641 ($64,183) $32,131 ($56,007) $43,046 ($75,433) $42,779 ($73,986)

income,    unknown 6.26% 5.85% 9.62% 9.35%

Utilization    and    Access    to    Care    (before    index    date)

Medicare    beneficiary    at    any    time    prior    to    index    date 16.20% 12.97% 31.60% 25.10%

In    Medicare    denominator    in    year    of    index    date    or    in    prior    year 29.38% 18.06% 35.28% 22.77%

Medicare    part    C    beneficiary    any    time    in    2    years    before    index    date 4.23% 2.60% 7.05% 4.21%

#    of    outpatient    visit    days    in    VA    in    6    months    before    index    date 8.63 (9.17) 8.10 (9.02) 7.20 (6.82) 6.66 (7.56)

#    of    inpatient    days    in    VA    in    6    months    before    index    date 0.12 (0.48) 0.08 (0.34) 0.06 (0.31) 0.05 (0.26)

#    of    urgent    or    emergency    room    visit    days    in    VA    in    6    months    before    index    

date
0.35 (0.93) 0.31 (0.91) 0.20 (0.62) 0.19 (0.62)

#    of    outpatient    visit    days    in    Medicare    6    months    before    index    date 1.55 (5.31) 0.95 (3.72) 3.43 (7.30) 2.39 (6.20)

#    of    inpatient    days    in    Medicare    in    6    months    before    index    date 0.08 (0.49) 0.03 (0.27) 0.11 (0.54) 0.07 (0.46)

Laboratory    and    Physical    Exam    Measures    (before    index    date)

HbA1c,    most    recent    in    12    months    before    index    date 7.20 (1.40) 8.20 (1.75) 6.89 (1.13) 7.57 (1.51)

HbA1c,    unknown    -    none    in    12    months    before    index    date 11.18% 12.45% 19.06% 18.68%

glucose,    most    recent    in    12    months    before    index    date 152.05 (61.39) 186.72 (81.94) 141.45 (47.11) 161.61 (61.57)

glucose,    unknown    -    none    in    12    months    before    index    date 12.10% 21.92% 13.48% 15.40%

LDL,    most    recent    in    12    months    before    index    date 94.35 (35.04) 95.23 (35.73) 96.52 (35.43) 93.19 (33.99)

LDL,    unknown    -    none    in    12    months    before    index    date 19.66% 23.40% 26.60% 27.10%

Total    serum    cholesterol    ,    most    recent    in    12    months    before    index    date 172.07 (43.60) 176.81 (46.45) 176.00 (43.26) 175.05 (45.84)

Total    serum    cholesterol    ,    unknown    -    none    in    12    months    before    index    

date
13.04% 14.79% 17.69% 18.68%

eGFR,    using    most    recent    creatinine    in    12    months    before    index    date 68.66 (24.67) 85.24 (21.79) 66.10 (23.20) 82.59 (20.32)

eGFR    unknown    -    none    in    12    months    before    index    date 11.59% 13.67% 13.30% 14.93%

microalbumin/creatinine    ratio,    most    recent    in    12    months    before    index    

date
151.50 (1741.78) 130.21 (1940.71) 110.32 (1382.90) 56.71 (911.35)

microalbumin/creatinine    ratio,    unknown    -    none    in    12    months    before    

index    date
74.85% 74.60% 77.13% 75.62%

alanine    amino    transferase,    most    recent    in    12    months    before    index    date 33.69 (35.66) 37.06 (25.89) 27.70 (18.40) 30.04 (16.64)

alanine    amino    transferase,    unknown    -    none    in    12    months    before    index    

date
18.54% 27.80% 22.65% 22.56%
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B- 2 Standardized mean differences from 176 baseline characteristics between 

patients on sulfonylurea vs. TZD second-line therapy, before and after inverse 

probability of treatment weighting (sorted by weighted standardized mean 

difference) 

 

Figure B- 2 describes the similarities in baseline characteristics between cohorts before 

and after weighting.  Applying propensity score via IPTW improved balance in the 

observed covariates.  Before weighting, 4 of 176 covariates had a SMD above 25% (29 

covariates were >10%) suggesting some covariates are not well balanced between 

sulfonylurea and TZDS cohort.  The largest imbalances were for the proportion of 

Medicare beneficiaries (27% TZD vs. 14% sulfonylurea), the number of Medicare 

outpatient visits in the last 6 months (2.7 TZDs vs. 1.1 sulfonylurea), and A1C level (7.39 

TZD vs. 7.95 sulfonylurea).  After weighting, zero covariates were above the 

recommended guideline of 25% (7 were above 10%) suggesting cohorts were fairly 

balanced.  However, since there may be some imbalance (i.e., SMDs above 10% but 

below 25%) in some of the covariates after weighting, final models were also adjusted to 

estimate the effect of sulfonylurea relative to TZDs. 
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Figure B- 2.  Standardized mean differences from 176 baseline characteristics between patients on sulfonylurea vs. TZD second-

line therapy, before and after inverse probability of treatment weighting (sorted by weighted standardized mean difference) 
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Figure.B- 3. Intention-to-treat design stratified analysis: Hazard ratios for all-cause 

mortality and cardiovascular events comparing sulfonylurea to TZD second-line treatment 

 

Treatment cohort Patients Events Person-years

Incidence 

rate

Crude HR 

(95% CI)

PS adjusted  

(95% CI)

Weighted, 

unadjusted  

(95% CI)*

Weighted,  

adjusted  

(95% CI)*†

2nd line treatment

Not Medicare beneficiaries:

All-cause mortality

  Sulfonylurea 119,063 18,868 586,215 3.22 1.30 (1.21-1.39) 1.19 (1.11-1.28) 1.25 (1.15-1.35) 1.16 (1.08-1.26)

  TZD 5,211 798 32,584 2.45 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

Cardiovascular composite event

  Sulfonylurea 119,063 33,537 494,057 6.79 1.27 (1.2-1.34) 1.17 (1.11-1.23) 1.21 (1.15-1.29) 1.15 (1.09-1.22)

  TZD 5,211 1,482 28,622 5.18 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

Medicare beneficiaries:

All-cause mortality

  Sulfonylurea 19,034 9,518 133,635 7.12 1.27 (1.18-1.38) 1.22 (1.13-1.32) 1.22 (1.11-1.35) 1.13 (1.02-1.25)

  TZD 1,942 706 13,064 5.40 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

Cardiovascular composite event

  Sulfonylurea 19,034 12,771 86,803 14.71 1.35 (1.27-1.44) 1.25 (1.17-1.33) 1.27 (1.17-1.38) 1.02 (0.94-1.11)

  TZD 1,942 1,032 9,612 10.74 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

CI , confidence interval; HR, hazard ratio; PS , propensity score

Note: Incidence rate per 10,000 person-years

*Weighted by the inverse probability of treatment

†Adjusted for demographic, u9liza9on, laboratory values, medica9ons, and comorbidi9es at baseline

Treatment cohort Patients Events Person-years

Incidence 

rate

Crude HR 

(95% CI)

PS adjusted  

(95% CI)

Weighted, 

unadjusted  

(95% CI)*

Weighted,  

adjusted  

(95% CI)*†

2nd line treatment

No prior cardiovascular disease:

All-cause mortality

  Sulfonylurea 92,300 12,900 476,743 2.71 1.19 (1.10-1.28) 1.18 (1.09-1.27) 1.20 (1.09-1.31) 1.13 (1.03-1.24)

  TZD 4,486 655 29,121 2.25 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

Cardiovascular composite event

  Sulfonylurea 92,300 20,999 425,293 4.94 1.18 (1.11-1.26) 1.16 (1.09-1.23) 1.16 (1.08-1.24) 1.08 (1.01-1.16)

  TZD 4,486 1,103 26,497 4.16 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

Prior cardiovascular disease:

All-cause mortality

  Sulfonylurea 45,797 15,486 243,108 6.37 1.23 (1.14-1.31) 1.20 (1.12-1.29) 1.22 (1.13-1.33) 1.17 (1.07-1.27)

  TZD 2,667 849 16,526 5.14 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

Cardiovascular composite event

  Sulfonylurea 45,797 25,309 155,567 16.27 1.27 (1.20-1.34) 1.23 (1.17-1.30) 1.27 (1.19-1.35) 1.18 (1.11-1.26)

  TZD 2,667 1,411 11,737 12.02 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

CI , confidence interval; HR, hazard ratio; PS , propensity score

Note: Incidence rate per 10,000 person-years

*Weighted by the inverse probability of treatment

†Adjusted for demographic, u9liza9on, laboratory values, medica9ons, and comorbidi9es at baseline

Treatment cohort Patients Events Person-years

Incidence 

rate

Crude HR 

(95% CI)

PS adjusted  

(95% CI)

Weighted, 

unadjusted  

(95% CI)*

Weighted,  

adjusted  

(95% CI)*†

2nd line treatment

Younger than 65:

All-cause mortality

  Sulfonylurea 82,664 9,453 442,771 2.13 1.31 (1.18-1.44) 1.17 (1.06-1.30) 1.24 (1.11-1.38) 1.16 (1.04-1.29)

  TZD 3,743 406 25,409 1.60 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

Cardiovascular composite event

  Sulfonylurea 82,664 20,371 374,815 5.43 1.22 (1.15-1.31) 1.14 (1.07-1.22) 1.18 (1.10-1.27) 1.12 (1.04-1.20)

  TZD 3,743 953 22,185 4.30 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

65 and older:

All-cause mortality

  Sulfonylurea 55,433 18,933 277,079 6.83 1.25 (1.17-1.32) 1.17 (1.10-1.25) 1.20 (1.11-1.29) 1.15 (1.07-1.24)

  TZD 3,410 1,098 20,238 5.43 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

Cardiovascular composite event

  Sulfonylurea 55,433 25,937 206,045 12.59 1.24 (1.18-1.31) 1.18 (1.12-1.24) 1.21 (1.14-1.29) 1.12 (1.05-1.19)

  TZD 3,410 1,561 16,049 9.73 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

CI , confidence interval; HR, hazard ratio; PS , propensity score

Note: Incidence rate per 10,000 person-years

*Weighted by the inverse probability of treatment

†Adjusted for demographic, u9liza9on, laboratory values, medica9ons, and comorbidi9es at baseline
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Figure B- 4. As-treated design stratified analyses: Hazard ratios for all-cause mortality and 

cardiovascular events comparing sulfonylurea to TZD second-line treatment 
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Figure B- 5. As-treated design stratified analyses: Hazard ratios for all-cause mortality and 

cardiovascular events comparing sulfonylurea to TZD second-line treatment 
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Table B- 6. Summary of previous studies examining all-cause mortality for 

sulfonylurea vs. TZD with and without metformin (reference group=comparator; 

NR=not reported) 

 

  

All-cause mortality

Study (year)

Effect size 

(95% CI)

SU 

events

SU 

n

Comparator 

events

Comparator 

 n

METF+SU vs. METF+TZD

RCT (n=2)

Hamann, 2008 0.98 (0.14-6.89) 2 301 2 294

Matthews, 2005 5.06 (0.24-105.05) 2 313 0 317

Obs Cohort (n=4)

Kannan, 2015 1.16 (1.00-1.35) NR 9,419 NR 1846

Morgan, 2012 1.10 (0.90-1.35) 624 15,377 141 4677

Morgan, 2012 1.41 (1.03-1.94) 624 15,377 45 2525

Prentice, 2014 1.50 (1.09-2.09) NR 73,726 NR 7210

METF+SU vs. SU

RCT (n=1)

UKPDS,1998 1.60 (1.02-2.52) 47 268 31 269

Obs Cohort (n=5)

Currie,2013 0.63 (0.57-0.69) 1,152 23,049 2,269 16218

Evans,2006 0.42 (0.23-0.75) NR 113 567 3331

Evans,2006 1.73 (1.22-2.45) NR 985 567 3331

Evans,2006 1.51 (1.09-2.10) NR 1,252 567 3331

Gulliford,2004 1.06 (0.85-1.31) 127 1,868 1,030 8488

Johnson,2002 0.63 (0.57-0.71) 635 4,683 750 3033

Morgan,2012 0.69 (0.57-0.83) 624 15,377 239 2244

Olsson,2000 1.63 (1.27-2.09) NR 169 NR 741

Sillars,2010 1.02 (0.76-1.37) 94 216 150 317

METF+SU vs. TZD

Obs Cohort (n=4)

Evans, 2006 0.42 (0.23-0.75) NR 113 567 3331

Johnson, 2002 0.63 (0.57-0.71) 635 4,683 750 3033

Olsson, 2000 1.63 (1.27-2.09) NR 169 NR 741

Sillars, 2010 1.02 (0.76-1.37) 94 216 150 317

SU vs. METF+TZD

Obs Cohort (n=2)

Morgan, 2012 1.61 (1.21-2.12) 239 2,244 141 4677

Morgan, 2012 2.06 (1.43-2.98) 239 2,244 45 2525

SU vs. TZD

RCT (n=3)

Jain, 2006 5.00 (0.24-103.62) 2 251 0 251

Kahn, 2006 0.92 (0.57-1.49) 31 1,441 34 1456

Tan, 2004 3.59 (0.15-87.00) 0 109 1 91

Obs Cohort (n=5)

Pantalone, 2009 1.37 (0.98-1.96) NR 7,427 NR 1079

Pantalone, 2009 1.69 (1.23-2.33) NR 7,427 NR 1508

Tzoulaki, 2009 1.16 (0.82-1.63) 1,379 58,095 34 8442

Wheeler, 2013 1.13 (0.90-1.42) 912 28,156 88 3753

Wheeler, 2013 1.27 (1.01-1.59) 1,121 28,957 88 3753



 

 

141

Table B- 7. Summary of previous studies examining cardiovascular disease 

composite events for sulfonylurea vs. TZD with and without metformin (reference 

group=comparator; NR=not reported) 

 

 

Cardiovascular composite events

Study (year)

Effect size 

(95% CI)

SU 

events

SU 

n

Comparator 

events

Comparator 

 n

METF+SU vs. METF+TZD

Obs Cohort (n=5)

McAfee, 2007 1.27 (0.75-2.13) 36 1,362 24 1362

Morgan, 2012 1.19 (0.91-1.55) 323 15,377 79 4677

Morgan, 2012 1.38 (0.93-2.06) 323 15,377 27 2525

Walker, 2008 1.08 (0.95-1.22) 854 79,004 222 26885

Walker, 2008 1.12 (0.96-1.32) 854 79,004 135 17282

METF+SU vs. SU

RCT (n=1)

Rosenstock, 2006 5.22 (0.25-107.60) 0 116 2 111

Obs Cohort (n=3)

Currie, 2013 0.79 (0.68-0.92) 538 23,049 624 16218

Li, 2014 1.79 (0.68-4.74) 33 NR 13

Morgan, 2012 0.63 (0.48-0.84) 323 15,377 77 2244

METF+SU vs. TZD

Obs Cohort (n=3)

Johannes, 2007 0.98 (0.83-1.15) NR 12,570 NR 12570

Johnson, 2005 0.96 (0.82-1.12) 264 1,081 541 2138

Sillars, 2010 0.87 (0.66-1.15) 104 216 159 317

SU vs. METF+TZD

Obs Cohort (n=2)

Morgan, 2012 1.87 (1.27-2.76) 77 2,244 79 4677

Morgan, 2012 2.18 (1.34-3.56) 77 2,244 27 2525

SU vs. TZD

RCT (n=4)

Jain, 2006 2.00 (1.01-3.99) 22 251 11 251

Kahn, 2006 0.67 (0.41-1.08) 41 1,441 62 1456

Perriello, 2006 0.53 (0.14-2.09) 3 137 6 146

St. John Sutton, 2002 0.58 (0.20-1.69) 5 99 9 104

Obs Cohort (n=8)

Berkowitz, 2014 1.10 (0.89-1.37) 624 3,570 150 948

Hsiao, 2009 0.65 (0.54-0.78) 7,491 97,651 266 2093

Hsiao, 2009 0.97 (0.61-1.54) 7,491 97,651 44 495

McAfee, 2007 1.22 (0.98-1.61) 191 8,977 152 8977

Pantalone, 2009 0.96 (0.79-1.16) NR 7,427 NR 1508

Pantalone, 2009 1.11 (0.88-1.41) NR 7,427 NR 1079

Walker, 2008 1.10 (0.94-1.29) 551 48,376 160 16302

Walker, 2008 1.12 (0.94-1.34) 551 48,376 122 12440
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APPENDIX C 

Table C- 1. Summary of prior probability distributions (log scale) 
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C- 2. Understanding the influence of prior results: Approximate Bayes estimation 

In the simplest Normal-Normal Bayesian model, shrinkage is defined as: 

� = �/(� + �) 

where… 

r = quasi prior sample size  

n = new study sample size   

Although we do not have a linear relationship between the posterior and the new study 

data for the hazard ratio, we can say approximately that in model form (with square 

brackets defining [mean, variance]), this is… 

Y |mu, sigma ~ [ℎ
�, �
��/n]  (for likelihood) 

Mu|muprior, sigma ~[ℎ�����, �
��/r = �
��/n {1-B/B}]  (for prior) 

Mu|mupost, sigma, data ~ [(1-B) ℎ
� + B(ℎ�����), �
��/n {1-B}] (for posterior) 

To estimate mean and variance, both quasi pre-study sample size and then shrinkage 

needs to be calculated.  To calculate quasi pre-study sample size (r), follow two steps… 

Step 1: first find the variance from the VA study data �
��� , using known information (i.e., 

the study hazard ratio, its upper 95% confidence interval, and sample size): 

�
��� = ln �ℎ��,�����ℎ�� � � √�1.96# 

where…  

 ℎ��,����� = upper 95% confidence interval for the study hazard ratio 

 ℎ�� = hazard ratio related to the new study 

 1.96= z-score approximating the 95% confidence interval 
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Step 2: From here, use �
�� and the confidence interval for the hazard ratio of the prior 

evidence to get a quasi sample size equivalent for the prior evidence (r) (this entails the 

reasonable assumption that the standard deviation of the ln(h) is the same for the prior 

and the likelihood): 

� = �
���

�ln �ℎ�����,�����ℎ����� � $ 11.96%�� 

where…  

ℎ�����,����� = upper 95% confidence interval for the prior evidence hazard ratio 

 ℎ����� =  hazard ratio of the prior evidence 

 1.96= z-score approximating the 95% confidence interval 

 �
���  = variance from the study data 

 

Since quasi sample size is now known, shrinkage can be calculated: � = �/(� + �) 

and, therefore the posterior hazard ratio and variance can be calculated.  

The posterior estimated hazard ratio is: 

ℎ��&' = (1 − �)ℎ�� + �)ℎ�����* 

where … 

ℎ��= hazard ratio from the new data  

ℎ����� = hazard ratio of the prior probability distribution. 

 

Variance of the prior and posterior distributions are calculated as: 
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Prior:  �
������ = �
��� ∗ ((1 − �)/�)  

Posterior: �
��&'� = �
��� ∗ (1 − �)  

 

Here the multiplier for the prior variance, (1-B)/B, is large if B is very small.  B is 

very small when the information in the current study (n) is large compared to the 

information (r) in the prior. The multiplier for the posterior variance, (1-B), reflects the 

combined information from the data and the prior.  If B is tiny, the only information 

mostly coming from the new data, and the posterior variance will be approximately that 

of the data.  However, if the prior is providing substantial information (through the value 

of r), the final estimate of interest will have an interval much narrower than that from the 

data alone because it combines the n and r. 
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Table C- 3: Calculating quasi pre-study sample size, posterior hazard ratio, and 

variance 

Using the formulas described in Appendix C-2 with the data from the observational 
(100%) prior estimate and corresponding confidence intervals as an example, quasi pre-
study sample size, shrinkage, posterior hazard ratio and variance, and prior variance can 
be calculated as follows: 
 

To calculate quasi pre-study sample size (two steps): 

Step 1: 

�
�� = ln �ℎ��,�����ℎ�� � � √�1.96# =  ln �1.22661.1543� 01145,2501.96 3 = 11.813 

Step 2:  

� = �
���

�ln �ℎ�����,�����ℎ����� � $ 11.96%�� = 11.8130�
5ln 51.4101.2806 $ 11.96%6� = 57295 

To calculate shrinkage: 

� = �� + � = 5729557295 + 145250 = 0.2829 

To approximate the post-study (posterior) hazard ratio: 

ℎ��&' = (1 − �)ℎ�� + �)ℎ�����*= (1 − 0.2829) ∗ 1.1543 + (00.2829 ∗ 1.2800)~1.1898 
 

To approximate the prior and posterior variance: 

Prior variance:  �
������ = �
���  *(1-B)/B, so 11.8130� ∗ 59:;.�<�=(;.�<�=) 6 ~353.7731 

Posterior variance:  �
��&'� = �
��� *(1-B), so 11.8130� ∗ (1 − 0.2829)~100.0737 
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