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ABSTRACT

In this thesis, we study the overfitting problem in supervised learning of classifiers

from a geometric perspective. As with many inverse problems, learning a classi-

fication function from a given set of example-label pairs is an ill-posed problem,

i.e., there exist infinitely many classification functions that can correctly predict the

class labels for all training examples. Among them, according to Occam’s razor, sim-

pler functions are favored since they are less overfitted to training examples and are

therefore expected to perform better on unseen examples. The standard technique to

enforce Occam’s razor is to introduce a regularization scheme, which penalizes some

type of complexity of the learned classification function. Some widely used regular-

ization techniques are functional norm-based (Tikhonov) techniques, ensemble-based

techniques, early stopping techniques, etc. However, there is important geometric in-

formation in the learned classification function that is closely related to overfitting,

and has been overlooked by previous methods. In this thesis, we study the com-

plexity of a classification function from a new geometric perspective. In particular,

we investigate the differential geometric structure in the submanifold correspond-

ing to the estimator of the class probability P (y|x), based on the observation that

vi



overfitting produces rapid local oscillations and hence large mean curvature of this

submanifold. We also show that our geometric perspective of supervised learning

is naturally related to an elastic model in physics, where our complexity measure

is a high dimensional extension of the surface energy in physics. This study leads

to a new geometric regularization approach for supervised learning of classifiers. In

our approach, the learning process can be viewed as a submanifold fitting problem

that is solved by a mean curvature flow method. In particular, our approach finds

the submanifold by iteratively fitting the training examples in a curvature or volume

decreasing manner. Our technique is unified for both binary and multiclass classifi-

cation, and can be applied to regularize any classification function that satisfies two

requirements: firstly, an estimator of the class probability can be obtained; secondly,

first and second derivatives of the class probability estimator can be calculated. For

applications, where we apply our regularization technique to standard loss functions

for classification, our RBF-based implementation compares favorably to widely used

regularization methods for both binary and multiclass classification. We also design

a specific algorithm to incorporate our regularization technique into the standard

forward-backward training of deep neural networks. For theoretical analysis, we es-

tablish Bayes consistency for a specific loss function under some mild initialization

assumptions. We also discuss the extension of our approach to situations where the

input space is a submanifold, rather than a Euclidean space.
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Chapter 1

Introduction

Supervised learning is one of the fundamental tasks in machine learning. It takes as

input a training set of labeled data and outputs a function that is capable of predict-

ing the desired value associated with the data. The two main topics in supervised

learning are classification and regression. In this thesis, we study the classifica-

tion problem in supervised learning, where a classifier is learned from a given set

of labeled training data. With the ever increasing availability of labeled data and

computational resources, classification techniques are playing an important role and

achieving great success in many applications. The representation of the problem

and the classification function, the optimization technique in learning the classifier,

and the regularization technique to prevent overfitting during training are among the

most important factors that affect the performance of a classification algorithm. This

thesis focuses on regularization techniques. In the following sections of this chapter,

we first define the problem we study, and motivate our main idea from challenges

observed in practice. Then we briefly introduce the main contributions of this thesis.

Finally we give a roadmap of this thesis and list the related publication.
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1.1 Problem Definition

The major problem studied in this thesis is supervised learning of classifiers. In

machine learning, the problem of classification is to determine to which of a given set

of categories an observation belongs. The set of categories is commonly represented

by a discrete set of labels, with each label corresponding to one category. The

observation, which serves as the input of a classification task, is usually in the form

of some sensed data. For example, the input could be an image, a video, a recording,

a paragraph of text, etc. Figure 1.1 shows an example of image classification, where

an input image is given on the left, and the task is to decide which is the most proper

label assigned to it given a set of labels on the right. The function or mapping that

performs this task is called a classifier.

Figure 1.1: An image classification example. Image courtesy of the ImageNet
database [22].

Supervised learning of classifiers is the problem of constructing a classifier for a

specific type of classification task, based on a training set of input-label pairs of the

same type. The performance of an algorithm in solving this problem is evaluated by

the classification accuracy of the constructed classifier on unseen data of the same

type. Just as with many inverse problems, supervised learning of classifiers is also
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an ill-posed problem, since there exist infinitely many functions (classifiers) that are

able to correctly predict the labels of all examples from the given (finite) training set.

As a result, if the classification accuracy on training examples is the only criterion

in constructing the classifier, our algorithm is very likely to come up with one that

performs perfectly on the training set, but poorly on unseen examples. This is

known as the problem of overfitting to training data. The standard technique to

prevent overfitting is by introducing an additional information/criterion in learning

the classifier, which is known as regularization.

1.2 Main Idea

Our study of the overfitting problem and regularization techniques in supervised

learning of classifiers is motivated by some widely observed phenomena and chal-

lenges in practice. In many real world classification problems, if the feature space is

meaningful, then all examples that are locally within a small enough neighborhood

of a training example should have class probability P (y|x) similar to the training

example. For instance, a small enough perturbation of RGB values at some pixels of

a human face image should not change dramatically the likelihood of correct iden-

tification of this image during face recognition. We refer to this phenomenon, i.e.,

a small perturbation in the input results in small changes in its class probability,

as the “small local oscillations” of the class probability. However, such a widely

observed phenomenon is not explicitly incorporated by previous regularization tech-

niques. For instance, as reported by [31], linear models and their combinations can

be easily fooled by barely perceptible perturbations of a correctly predicted image,

even though a L2 regularizer is adopted. Such an example is shown in Figure 1.2,

where the left image is correctly recognized by the learned classifier as dog. However,
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after adding some small random noise, the resulting perturbed image, which looks

almost identical to human eyes, is predicted incorrectly by the classifier.

Figure 1.2: An example of fooling deep neural networks by slightly perturbed images,
reported in [79]. The left image is correctly recognized by a learned classifier. The
right image is constructed by adding some small random noise to the left image, where
the added random noise is plotted (with 10 times the magnitude) in the middle. The
right image, however, is predicted incorrectly by the same classifier.

Let us use a cartoon example to reveal the hints behind these observations. As

shown in Figure 1.3, in both plots, the x-axis denotes the high dimensional space X

of input images, i.e., every point on x-axis is an input image, and the original and

perturbed dog images in Figure 1.2 correspond to two points close to each other in

X . The y-axis denotes the class probability of being dog, i.e., P (y = 1|x). Then any

class probability estimator corresponds to some curve between y = 0 and y = 1 in

these plots. Two exemplar class probability estimators are shown as cyan curves in

the left and right plots respectively. The left curve exhibits rapid oscillations in the

neighborhood of the original dog image, and therefore predicts a negative result for

the slightly perturbed image. On the other hand, since the right curve exhibits small

oscillations in the neighborhood of the original image, a slight perturbation will not

change the prediction of being positive.

The main idea of this thesis is to generalize the insight from Figure 1.3 to high-
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(a) rapid local oscillations (b) small local oscillations

Figure 1.3: A cartoon example depicting the “small local oscillations” phenomenon
of the class probability.

dimensional input space and general multiclass classification settings. Let f : X →

∆L−1 be a class probability estimator, where X is the input space and ∆L−1 is the

probabilistic simplex for L-class problem. Then there exists a submanifold corre-

sponding to f , in X ×∆L−1, namely the functional graph (in the geometric sense) of

f : {(x,f(x))|x ∈ X}. By carefully studying the geometry of this submanifold, we

argue that “small local oscillations” of the class probability can be characterized by

the Riemannian geometry of this submanifold, and in particular, can be measured

by the local volume or the more sensitive local curvature of this submanifold. We

then propose a regularization approach based on this specific measure of the amount

of local oscillations. In our approach, the supervised learning process can be viewed

as a submanifold fitting procedure following a geometric flow. As we will see in

later chapters, this regularization approach naturally handles binary and multiclass

classification in a unified way, while many previous geometric methods focus on the

geometry of the decision boundary, which are originally designed for binary classi-

fication and rely on “one versus one”, “one versus all” or more efficiently a binary



6

coding strategy [83] to generalize to the multiclass case.

1.3 Contributions

The main contributions of this thesis include the following:

• We conduct the first study of the differential geometric structure of class proba-

bility estimators, from a perspective combining statistical learning, differential

geometry, and practical algorithm design.

• We provide a new geometric perspective on overfitting in supervised learning

of classifiers.

• We provide a new complexity measure of classification functions, which is a

natural extension of the surface energy in physics.

• Our study leads to a new regularization framework that is unified for both

binary and multiclass classification.

• We implement a highly optimized library1 of this regularization approach for

applications in a variety of classification models, including feedforward deep

neural networks.

1.4 Roadmap of Thesis

We organize the rest of the thesis as follows:

Chapter 2: Related Work

1http://cs-people.bu.edu/qinxun/geo/geo.html

http://cs-people.bu.edu/qinxun/geo/geo.html
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This chapter reviews related literature on the following subjects: supervised

learning of classifiers, regularization techniques, especially geometric regular-

ization and Sobolev regularization techniques, manifold learning, variational

problems and gradient flow, and the theory of minimal surfaces. Recent work

in deep learning related to the application of our approach is also reviewed.

Chapter 3: Geometric Perspective of Supervised Learning

This chapter describes a new geometric perspective of supervised learning. To

incorporate the phenomenon of “small local oscillations”, we first draw insights

from Bayesian arguments for Occam’s Razor and optimization arguments for

statistical learning. Then we motivate our geometric perspective by describ-

ing an elastic model in physics that naturally fits the process of supervised

learning of a classifier. In the last section of this chapter, we establish the

mathematical foundation of our geometric perspective, in particular, we study

the Riemannian geometry and the gradient flow on the functional space in

which our learning algorithm works.

Chapter 4: Differential Geometric Regularization

This chapter presents the methodology of the proposed differential geometric

regularization method for supervised learning of classifiers. We first give a for-

mal setup of the problem and related terminologies, then present in detail the

formulation of our approach. In particular, we present the general variational

formula for the regularized learning process, detailed formulas for the empirical

term and the regularization term, and detailed formulas for solving the varia-

tional formula with gradient flow. Special concerns to the simplex constraint

and a summary of the learning algorithm are also given.
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Chapter 5: Theoretical Analysis

This chapter discusses some theoretical aspects and extensions of the proposed

approach. Firstly, with a particular empirical loss function, we establish Bayes

consistency for our geometric regularization scheme, under some mild initial-

ization assumptions. Secondly, we discuss the theory and formulation of an

alternative geometric regularizer based on the Riemannian curvature. Thirdly,

we discuss the existence of the gradient flow under different topologies and

point out that the existence of the gradient flow, in a strict mathematical

sense, is non-trivial and not automatic. Lastly, we discuss the extension of

our geometric perspective and regularization approach to situations where the

input space is a submanifold with local charts, rather than a Euclidean space.

Chapter 6: Applications

This chapter discusses applications of the proposed approach in two represen-

tative classification models, i.e., the linear combination of radial basis functions

(RBFs) and feedforward neural networks. For each model, we introduce spe-

cific formulations for applying our regularization approach to that model, and

design specific algorithms incorporating our regularization approach into the

training process of that model. Implementation details and practical concerns

are also discussed for both models. In experiments with the RBF-based model,

we demonstrate the effectiveness of our approach in benchmarks for binary and

multiclass classification tasks. In experiments with deep neural networks, we

analyze in detail the experimental results and suggest recipes to improve the

implementation for follow-up research.

Chapter 7: Conclusions and Future Work
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This chapter summarizes the thesis, and discusses key contributions and ob-

servations of our study. Some follow-up directions and open problems related

to regularization in supervised learning are also discussed.

1.5 Related Paper

Part of the material for this thesis is based on the following paper:

Qinxun Bai, Steven Rosenberg, Zheng Wu, and Stan Sclaroff. Differential

Geometric Regularization for Supervised Learning of Classifiers. In Proceedings

of International Conference on Machine Learning (ICML), 2016.
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Chapter 2

Related Work

In this chapter, we review the related literature on the following subjects: supervised

learning of classifiers, regularization techniques, especially geometric regularization

and Sobolev regularization techniques, manifold learning, variational problems and

gradient flow, and the theory of minimal surfaces. We also review recent work re-

lated to our applications in deep learning, in particular, those related to adversarial

examples of deep neural networks.

2.1 Supervised Learning of Classifiers

Many supervised learning algorithms for solving the classification problem have been

proposed in machine learning literature, and there exist different ways of categorizing

them. From statistical learning standpoint, there are two main types of classifiers:

the empirical risk minimization (ERM) type, such as those introduced in [82], and

the plug-in type, where the class label prediction is based on a class probability

estimator [1], such as the nearest neighbor classifier [20]. In following paragraphs,

we review some representative classification techniques following the categorization

of [63].

One main type of classifiers is logic (rule) based, such as decision tree classi-

fiers [61]. A decision tree classifier consists of a hierarchical decision making process
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following a tree structure, and the learning process depends on heuristics for split-

ting the feature space at every node while constructing the tree. Combining with

ensemble techniques, some decision tree based classifiers have shown very strong

performance in practice, such as AdaBoost [28] and Random forests [12].

Another main type of classifiers is based on the notion of the perceptron [65],

which is inherently a linear and binary classifier. Variants along this line include

some of the most powerful classifiers. A regularization and kernel extension of the

perceptron leads to the well-known support vector machines [70]. A deep struc-

ture extension of the perceptron leads to multilayered perceptrons and deep neural

networks [30]. State-of-the-art algorithms based on deep neural networks already

achieve human level accuracy on some challenging classification tasks [67].

2.2 Regularization Techniques

In supervised learning for classification, the idea of regularization seeks a balance

between a perfect description of the training data and the potential for generalization

to unseen data. One popular type of regularization technique is defined in the form

of penalizing some functional norms, such as L1-norm, L2-norm, etc. One of the most

successful classification methods, the support vector machine (SVM) [82, 70] and its

variants [6, 76], use a RKHS norm as a regularizer. Another type of regularization

technique makes use of the ensemble principle to reduce the variance of the learning

model, such as the very effective dropout strategy for training neural networks[75],

which approximates some sort of “geometric averaging” over a large ensemble of

possible sub-networks. There are also heuristic based regularization techniques, such

as early stopping [60] in training neural networks. In the following subsections, we

review two types of functional norm based regularization techniques that are most
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closely related to our approach.

2.2.1 Geometric Regularization

Geometric regularization techniques have also been studied in machine learning.

Belkin et al. [11] employed geometric regularization in the form of the L2 norm of

the gradient magnitude supported on a manifold. This approach exploits the ge-

ometry of the marginal distribution P (x) for semi-supervised learning, rather than

the geometry of the class probability P (y|x). Other related geometric regulariza-

tion methods are motivated by the success of level set methods in image segmen-

tation [15, 83] and Euler’s Elastica in image processing [46, 45]. In particular, the

Level Learning Set [15] combines a counting function of training samples and a ge-

ometric penalty on the surface area of the decision boundary. The Geometric Level

Set [83] generalizes this idea to standard empirical risk minimization schemes with

margin-based loss and carefully treats the variational problem with a Radial Basis

Function (RBF) approximation. Along this line, the Euler’s Elastica Model [46, 45]

proposes a regularization technique that penalizes both the gradient oscillations and

the curvature of the decision boundary. However, all three methods focus on the

geometry of the decision boundary supported in the domain of the feature space,

and the “small local oscillation” of the class probability is not explicitly addressed.

2.2.2 Sobolev Regularization

There exist other regularization methods that are related to some aspects of our work.

Most notably, Sobolev regularization involves functional norms of a certain number of

derivatives of the prediction function. For instance, the manifold regularization [11]
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uses a first derivative-based functional norm,

∫
x∈M
‖∇Mf‖2dP (x), (2.1)

where f is a smooth function on a manifold M. A discrete version of (2.1) corre-

sponds to the graph Laplacian regularization [89]. Lin et al. [45] discuss in detail the

difference between a Sobolev norm and a curvature-based norm for the purpose of

exploiting the geometry of the decision boundary.

For our purpose, while imposing, say, a high Sobolev norm1 will also lead to

a flattening of the submanifold gr(f), these norms are not specifically tailored to

measuring the flatness of gr(f). In other words, a high Sobolev norm bound will

imply the volume bound we desire, but not vice versa. As a result, imposing high

Sobolev norm constraints (regardless of computational difficulties) overshrinks the

hypothesis space from a learning theory point of view. In contrast, our regularization

term, as we will see in §4.2.2, involves only the combination of first derivatives of

f that specifically address the geometry behind the “small local oscillation” prior

observed in practice.

2.3 Manifold Learning

Our training procedure for finding the optimal graph of a function is, in a general

sense, also related to the manifold learning problem [80, 66, 10, 25, 88, 47]. The

main difference is that we are studying the geometry of a specific manifold, i.e.,

the functional graph of a class probability estimator, which is well-defined given the

estimator and unrelated to the distribution of the data. This is in contrast with

1“High Sobolev norm” is the conventional term for a Sobolev norm with a high number of
derivatives.
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the traditional manifold learning problem and assumptions therein. For instance, a

common assumption made by most manifold learning methods is that the data lie in a

low dimensional smooth manifold embedded in the high dimensional space. Actually,

even checking the validity of this manifold hypothesis is both mathematically and

algorithmically extremely involved [27]. Nevertheless, regarding the optimization

process of finding the optimal submanifold, the most closely related work is [25],

which seeks a flat submanifold of Euclidean space that contains a dataset. Again,

there are key differences. Since the goal of [25] is dimensionality reduction, their

manifold has high codimension, while our functional graph has codimension L − 1,

which may be as low as 1, where L is the number of classes. More importantly, we

do not assume that the graph of our target function is a flat (or volume minimizing)

submanifold, and we instead flow towards a function whose graph is as flat (or volume

minimizing) as possible.

2.4 Variational Problems and Gradient Flow

Gradient flow procedures are widely used in variational problems, such as level set

methods [59, 71], the Mumford-Shah functional [54], etc. In the classification liter-

ature, Varshney and Willsky al. [83] were the first to use gradient flow methods to

solve level set based energy functions, then followed by [46, 45] to solve Euler’s Elas-

tica models. In our case, we are exploiting the geometry of submanifolds of the space

X ×∆L−1, rather than standard vector spaces. In this regard, our work is related to

a large body of literature on gradient flow/Morse theory in finite dimensions [52] and

infinite dimensions [2], and on mean curvature flow, see [17, 51] and the references

therein.
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2.5 Theory of Minimal Surfaces

As will be presented in more detail in §3.2, our regularization approach moves the

submanifold following the mean curvature flow, i.e., in the maximally volume decreas-

ing direction. Since minimal surfaces are critical points of the volume functional used

as our regularization term, our work is also related to the theory of minimal surfaces.

For more details about this topic, please refer to Chapter One of [42]

2.6 Training in Neural Networks Robust to Adversarial Ex-

amples

Since the observations [79, 56] that neural networks are vulnerable to certain pertur-

bations of the input data which are hardly noticeable to the human eye, there has

been much effort to alleviate vulnerability of neural networks to adversarial pertur-

bations.

Goodfellow et al. [31] argue that this phenomenon arises from high-dimensional

linearity and proposes adding adversarial examples into the training set, where adver-

sarial examples are generated by perturbation of training examples in the direction

that most damage the classification loss. [57] further shows that training with adver-

sarial samples alone also slightly improves the performance on standard testing sets.

[33] penalizes the Frobenius norm of the Jacobian through a series of approximations

and suffers from some performance drop on standard testing sets.

Following [31], Lyu et al. [48] proposed a min-max formulation to train models

that are robust to adversarial examples. This min-max formulation is then trans-

formed into a Jacobian regularization technique by first order approximation and

yields performance improvement when used together with dropout.
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While these early works all have difficulties in computing the derivatives of the

Jacobian, Ororbia et al. [58] proposed a unified framework to compute derivatives of

the Jacobian penalty with respect to the network’s parameters and reported experi-

mental evidence on adversarial testing sets. However, there is still a step using finite

difference approximation in computing the derivatives, which introduces some error

into the process of gradient update.

Inspired by [31], some recent works [53, 38] also apply the min-max formula where

an inner constrained optimization problem is solved to find the most adversarial

direction, with respect to the sensitivity of the class probability (softmax output of

the network), in the sense of KL divergence [53] and disagreement [38] respectively.

Miyato et al. [53] show improvement in standard testing sets over the adversarial

training in [31]. Huang et al. [38] show improvement in adversarial testing sets

over [31] and dropout.

All of these methods, except for [38], only test on simple networks no deeper than

three layers. No adversarial training results have been reported on state-of-the-art

deep architectures, such as Resnet. Moreover, most of these methods focus on some

specific type of “perturbation scheme” and apply more or less approximations in

gradient update with respect to the extra penalty on adversarial examples. In con-

trast, we propose a general regularization scheme for training neural networks which

are robust to small perturbations, without using adversarial examples and without

being specifically tailored to any particular type of perturbation mechanism. Our

approach provides an exact formulation for gradient update with this regularization

scheme, which can be incorporated into the standard back-propagation. We also test

its effectiveness using state-of-the-art network models on both standard testing sets

and adversarial testing sets.
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Applying our regularization techniques to deep neural networks is also motivated

by the recent theoretical study [26], which suggests that the robustness of classifiers

regarding small perturbations in input space is closely related to the curvature of the

classifier’s decision boundary. This work makes it even more interesting to investigate

the possibility of generalizing our geometric regularization technique to deep neural

networks. Since the classifier’s decision boundary is in fact a level set of the class

probability estimator studied in this thesis, the geometry (mean curvature) exploited

by our approach encodes much more information than the curvature of the decision

boundary.
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Chapter 3

Geometric Perspective of Supervised

Learning

To address the observation of “small local oscillations” described in §1.2, in this

chapter, we propose a geometric perspective of supervised learning.

Roadmap for this chapter

In §3.1, we first draw insights from Bayesian arguments for Occam’s Razor and opti-

mization arguments for statistical learning. Then in §3.2, we motivate our geometric

perspective by describing an elastic model in physics that naturally fits the process

of supervised learning of a classifier, and we propose a volume-based “energy” as the

complexity measure of classification functions. In §3.3, we establish the mathemati-

cal foundation of our geometric perspective. In particular, we study the Riemannian

geometry and the gradient flow on the functional space in which our learning algo-

rithm operates.

3.1 Insight from Statistical Learning and Optimization

3.1.1 Bayesian Perspective and Occam’s Razor

To solve the ill-posed problem of supervised learning of classifiers, regularization

techniques are adopted to prevent the learning function from being overfitted to the
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training data. The effectiveness of regularization plays a central role in the general-

ization ability of the trained classification function. There are different perspectives

for mathematically justifying the usefulness of regularization. We describe two per-

spectives that motivate our study of differential geometric regularization.

Bayesian perspective. One justification of regularization from the Bayesian per-

spective is that it imposes certain prior distributions on the search space of classifi-

cation functions. This prior is encoded in the expression of the regularization term,

which should reflect some characteristics of the problem on hand. In other words,

the regularization term should penalize classification functions that are less likely to

incorporate the underlying data distribution P (x, y). In classification problems, as

explained in §1.2, one commonly observed prior is that the underlying class proba-

bility P (y|x) has “small local oscillations” around confidently classified examples.

Occam’s razor perspective. Another justification for regularization is that it

imposes Occam’s razor on the search space of classification functions. Occam’s razor

states that “the simplest model that fits the data is always preferred.” It can be

explained in probability theory without assuming any prior biased towards simpler

models. We briefly review this argument in the following; for more details, please

refer to Chapter 28 of [50].

Assume we are choosing between two models/functions F1 and F2 based on obser-

vation/data D. We consider the posterior of both models, i.e., P (F1|D) and P (F2|D).

According to Bayes’ rule, we have

P (F1|D)

P (F2|D)
=
P (F1)

P (F2)

P (D|F1)

P (D|F2)
. (3.1)

Assuming a uniform prior over the function space, i.e., P (F1) = P (F2), then our

choice between F1 and F2 depends on the second ratio on the righthand side of
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Eqn. (3.1), which compares the integration of of both models’ data likelihood on the

given observation set D. If F2 is more complex than F1, then it is capable of fitting a

greater variety of data, i.e., the data likelihood of F2 is supported on and thus spreads

over a larger measurable subset of the data space than that of F1. As a result, if

both data likelihoods are supported on the observation set D, the integration of the

more “concentrated” data likelihood, i.e., P (D|F1), is expected to be greater than

the integration of the widerly spread data likelihood, i.e., P (D|F2). This explains

why the less complex model F1 is more preferable.

The next question is what type of simplicity should we pursue following Occam’s

razor. Again, we still focus on the data likelihood alone. There is always a trade-off

between the capability of fitting the variability of the data and concentrating on just

explaining the most likely data. The former favors a more complex model, while

the latter favors a simpler one. Ideally, we want a model whose data likelihood is

well aligned with the data distribution of the problem. In other words, by imposing

Occam’s razor, it is preferable to penalize the complexity of models in a way that pe-

nalizes deviation from the underlying data distribution of the classification problem.

Of course, this is wishful thinking in practice.

3.1.2 Optimization and Statistical Learning

Recall the standard regularized loss minimization scheme for supervised learning,

min
f∈M
P(f) = min

f∈M
{L(f) + λG(f)}, (3.2)

where f : X → Y is a (classification) function from the input space X to the output

label space Y , M is the functional space our learning algorithm is searching in,

L is the empirical data term, G is the regularization term, and λ is the trade-off
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parameter between them.

From an optimization perspective, including the regularization term into the min-

imization objective is equivalent to optimizing the original loss within a shrunken

functional space, i.e.,

min
f∈M
{L(f) + λG(f)} ⇐⇒ min

f∈Mλ

L(f), (3.3)

where Mλ = {f ∈ M, G(f) ≤ s(λ)} is the shrunken functional space, and s(λ) is

some monotonically decreasing function of λ.

The key question to ask is how to properly shrink the functional space. Before

answering this question, we need to understand the role of M based on statistical

learning theory. Following the above setup, we denote the generalization error (risk)

of a classification function f by

RP (f) = EP [1f(x)6=y], (3.4)

where P denotes the underlying data distribution P (x, y). The lowest possible gen-

eralization error achievable by any function h : X → Y is defined as the Bayes

error:

R∗P = inf
h:X→Y

RP (h). (3.5)

For a function f ∈ M, it is useful to study the difference between RP (f) and R∗P ,

known as the excess error of f , which can be decomposed as the following two terms,

RP (f)−R∗P = (RP (f)−RP (M)) + (RP (M)−R∗P ), (3.6)

where RP (M) = inf
h∈M

RP (h) refers to the optimal error achievable in M.
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The first term on the right hand side of Eqn. (3.6) is known as the estimation

error, which measures how close f is to the optimal choice inM. The second term is

known as the approximation error, which measures how close one can get to the Bayes

error by searching a function in M. In other words, the estimation error measures

the optimality of the optimization algorithm working inM, while the approximation

error measures the capacity of the functional spaceM. In general, the larger and the

more complex M is, the lower the possible approximation error. However, there is

no free lunch. The larger and the more complexM is, the harder it is for a learning

algorithm to find the optimal function within it, given a fixed amount of training

data, and the more likely it is that the trained function is overfitted to the training

data. In other words, for the estimation error a smallerM is preferred, while for the

approximation error a larger M is preferred.

Returning to the question of how to properly shrink the functional space M by

introducing some regularization G(f), there should be a subtle trade-off concerning

its effect on both the estimation error and the approximation error. Combining the

analysis from Section (§3.1.1), ideally, the regularization term G(f) should precisely

encode our observed/believed prior on the underlying data distribution, without

overshrinking M. This motivates our study of the geometric structure underlying

the class probability.

Smoothness vs. Mean Curvature. A natural question to ask is whether pre-

vious regularization methods have properly encoded the “small local oscillation”

phenomenon of the class probability widely observed in many classification prob-

lems. As described in §2.2, we feel that the answer is no. Most importantly, most

functional-norm based regularization methods focus on enforcing smoothness of dif-

ferent kinds, e.g., a high Sobolev or Hölder norm. Enforcing a strong enough smooth-
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ness will finally lead to flattening all the local oscillations; however, it may overshrink

the functional space, because a Sobolev-type regularization will suppress all partial

derivatives, an extremely strong criterion. This is by way of analogy like carving

with an axe, when what we really need is a sculptor’s knife. On the other hand,

studying the differential geometry on the submanifold corresponding to the class

probability leads us to propose a mean curvature based regularization, which is a

specific measure of the amount of local oscillation. This measurement generalizes to

high dimensional spaces and handles binary and multiclass cases in a uniform way.

3.2 A Physical Model for Supervised Learning

In this section, we motivate our study from an elastic model in physics and the theory

of minimal surfaces.

(a) (b)

Figure 3.1: Example of 2D classification.

We demonstrate our learning process using a binary classification example of

2D points, as shown in Figure 3.1. The left figure plots all training points of the

two classes, with input space X ⊂ R2. The right figure shows the product space
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X × [0, 1], where [0, 1] is actually the output space of an estimator of the class

probability P (y = 1|x). It is natural that all the positive training points lie on

the plane P (y = 1|x) = 1, and all the negative training points lie on the plane

P (y = 1|x) = 0. Without training, an initial guess of the class probability should

assign equal probability of being positive and negative at every location of X , i.e.,

P (y = 1|x) = 1
2

for all x ∈ X , which forms a perfectly flat plane at 1
2
, as shown in

the left image of Figure 3.2.

When training starts, no matter what classification loss is used, the initial plane

will deform towards both positive and negative training points, in order to explain

their labels correctly, as shown in the right image of Figure 3.2. In physics, this is as

if the initial surface is attracted by gravitational force due to point masses centered

at the training data. If this is the only force that the surface is subject to, the surface

will end up like the one shown in the left image of Figure 3.3. However, in elastic

models in physics, the surface itself will simultaneously remain as tight as possible,

due to the presence of surface tension. Then the overall effect of both forces will

deform the surface in the way shown in the right image of Figure 3.3.

(a) (b)

Figure 3.2: Initial surfaces of 2D classification example.
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(a) (b)

Figure 3.3: Resulting surfaces of 2D classification example.

Comparing the two images in Figure 3.3, the left surface deforms under a con-

strained gravitational force and exhibits rapid local oscillation. This is consistent

with the learning process where there is only an empirical data term, and as a result,

the learned function is overfitted to the training data. On the other hand, the right

surface deforms subject to both a gravitational force and its surface tension. The

resulting surface is much flatter than the left surface and exhibits smaller local oscilla-

tion. This is consistent with the learning process where a proper regularization term

is combined with the classification loss and thus prevents the learned function from

being overfitted to the training data. More figures depicting the detailed learning

process as well as the corresponding decision boundaries are included in Figure 3.4.

Our study of the geometric structure of the learning process is inspired by this

physical model. The regularization technique we propose can be regarded as a high-

dimensional extension of the surface tension effect in this elastic model. In elastic

physics, the effect of surface tension follows the rule of minimizing the surface energy,

which is proportional to the surface area. The regularization term we propose is

based on the volume measurement of the submanifold corresponding to the class
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iter 1 iter 1

iter 10 iter 10

iter 20 iter 20

Figure 3.4: Example of binary learning, where input space X is 2d. Training points
are sampled uniformly within the region [−15, 15] × [−15, 15], and labeled by the
function y = sign(10 − ‖x‖2). We plot the surface obtained by our method in the
right column and the corresponding decision boundary in the left column. Note that
the vertical axis of the right image is the 1-simplex ∆1 ⊂ R2.
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probability estimator, which is exactly a natural extension of surface area to the

high-dimensional case. Following the insight drawn from previous section, to impose

Occam’s razor, we propose the volume-based “energy” of the functional graph as

the complexity measure of functions, which is a high-dimensional extension of the

surface energy in elastic physics.

The process of minimizing this volume-based energy is also closely related to the

theory of minimal surfaces. Some real-world example of minimal surfaces are shown

in Figure 3.5.

(a) soap film (b) a fraction of catenoid

Figure 3.5: Real-world examples related to our physical model. The soap film is
balanced by the gravity and surface tension under boundary condition. The catenoid
is a minimal surface where the mean curvature is zero at every point on the surface.

3.3 Geometric Foundation

The learning process and physical model described in previous section is intuitive,

so we need to rigorously formulate it in the language of differential geometry. In
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particular, recalling that the regularized loss minimization formula in Eqn. (3.2), for

supervised learning of classifiers, the functional space our algorithm works in is

M = Maps(X ,∆L−1), (3.7)

the set of smooth functions from X to ∆L−1, where ∆L−1 is the standard (L − 1)-

simplex in RL for L-class problems. Since M is an infinite dimensional manifold

with corners, in order to apply the standard regularized loss minimization on it, in

the following sections we first study the geometry ofM, and then discuss how to do

optimization on it.

3.3.1 Geometry of M

Since our learning process is actually applied to the infinite dimensional manifold

M, we have to understand both the topology and the Riemannian geometry of M.

We think of the input space X ⊂ RN as large enough so that the training examples

are actually sampled well inside X . This allows us to treat X as a closed manifold

in our setup, so that boundary effects can be ignored. Given thatM is not a vector

space, we first study the topology and the Riemannian geometry of its ambient space

M′ = Maps(X ,RL), the set of smooth maps from X to RL. For the topology, we

put the Fréchet topology onM′, and take the induced topology onM. The Fréchet

topology is given as follows: a basis of the topology at a function f ∈ M consists

of all functions f ′ with supαk ‖∂αk(f
′ − f)‖∞ < δk for all k ∈ Z≥0, for choices of

δk > 0, where ∂αk ranges over all partial derivatives of order k. Intuitively speaking,

two functions in M are close if the functions and all their partial derivatives are

pointwise close. For the tangent space ofM, sinceM is a closed Fréchet submanifold
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with corners inside the vector space M′, we can identify each TfM 1 with a closed

cone insideM′. For the Riemannian metric onM, we restrict the L2 metric onM′

to TfM:

〈φ1, φ2〉 :=

∫
X
φ1(x)φ2(x)dvolx, (3.8)

with φi ∈M′ and dvolx being the volume form of the induced Riemannian metric on

the functional graph of f (the submanifold corresponding to f). Strictly speaking,

the volume form is pulled back to X by f , usually denoted by f ∗dvolRN+L . We could

alternatively use the Lebesgue measure on X in this integral, but dvol generalizes to

the case where X is itself a manifold, we will discuss this in more detail in §5.4.

For the Riemannian metric on the functional graph of f , since f : X → ∆L−1 ⊂

RL, we use the standard dot product on RN+L to define the induced Riemannian

metric on the graph of f .

3.3.2 Gradient Flow on M

Following Eqn. (3.2), we are minimizing a penalty function P : M → R on the

infinite dimensional manifold M. Based on the geometric setup described in the

previous section, this optimization problem leads to solving a variational formula.

We leave the detailed formula and other practical concerns to the next chapter, while

focusing on the basic principles in this section.

The standard technique for solving variational formulas is the Euler-Lagrange

PDE. However, due to our geometric regularization term, finding the minimal solu-

tions of the Euler-Lagrange equations for P is difficult. Instead, we solve for argmin P

using gradient flow in functional space M. Note that P should be Fréchet smooth

or at least differentiable, so that the gradient method can be applied.

1TfM is the tangent space to M at f .
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For explanation purposes only, we replace M with a finite dimensional Rieman-

nian manifold M . Without loss of generality, we also assume that P is smooth, so

that it has a differential dPf : TfM → R for each f ∈M , where TfM is the tangent

space to M at f . Since dPf is a linear functional on TfM , there is a unique tangent

vector, denoted ∇Pf , such that dPf (v) = 〈v,∇Pf 〉 for all v ∈ TfM. ∇Pf points

in the direction of maximal increase of P at f . Define the gradient flow equation as

follows,

df t/dt = −∇Pf t , for f t ∈M and t ≥ 0. (3.9)

Its solution is a flow line of steepest descent of P starting at an initial f 0. For

a dense open set of initial points, flow lines approach a local minimum of P as

t→∞. For t� 0, the length of the gradient vector along the flow line goes to zero,

and we could stop the flow when this length is below a specified cutoff. In finite

dimensions, by standard ordinary differential equation theory, the existence of flow

lines is guaranteed if M is complete.

However, in the infinite dimensional case of spaces of functions, the existence of

flow lines is not automatic, and we will discuss this in more detail in §5.3. Assuming

the existence of flow lines, we always choose the initial function f 0 to be the “neutral”

choice f 0(x) ≡ ( 1
L
, . . . , 1

L
), i.e., assigning equal conditional probability to all classes,

which we assume is generic.

Figure 3.6 gives an intuitive idea about the gradient vector ∇Pf t . The gradient

vector at a point f t of the functional space M is plotted as the blue arrow in the

left image. Since a point on M corresponds to a function whose functional graph is

a surface in the right image, the gradient vector ∇Pf t at f t then corresponds to a

vector field on the graph of f t, i.e., blue arrows in the right image. With f t moving

along the negative flow line onM, the corresponding functional graph (submanifold)
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deforms in a volume minimizing manner.

Figure 3.6: Intuitive plots of the gradient vector ∇Pf t .

3.4 Summary

In this chapter, we propose a new geometric perspective of supervised learning. To

incorporate the phenomenon of “small local oscillations”, we first draw insights from

Bayesian arguments for Occam’s Razor and optimization arguments for statistical

learning. Then we motivate our geometric perspective from an elastic model in

physics that naturally fits the process of supervised learning of classifiers. We also

establish the mathematical foundation for our geometric perspective. In particular,

we study the Riemannian geometry and the gradient flow on the functional space in

which our learning algorithm works.
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Chapter 4

Differential Geometric Regularization

In this chapter, we introduce the detailed formulation that explores the geometric

perspective of supervised learning presented in the previous chapter. This leads to a

new differential geometric regularization method for supervised learning of classifiers.

Roadmap for this chapter

We first give a formal setup of the problem and related terminology in §4.1. We then

present in detail the formulations of our approach in §4.2. In particular, we present

the detailed formulas for the empirical term in §4.2.1, and the detailed formulas for

the regularization term in §4.2.2. Special concerns to the simplex constraint and

a summary of the learning algorithm are given in §4.2.3 and §4.2.4 respectively.

Related mathematical notations are summarized in Table 4.1.

4.1 Formal Setup

Following the probabilistic setting of classification, given a sample (feature) space

X ⊂ RN , a label space Y = {1, . . . , L}, and a finite training set of labeled samples

Tm = {(xi, yi)}mi=1, where each training sample is generated i.i.d. from a distribution

P over X×Y , our goal is to find a hTm : X → Y such that for any new sample x ∈ X ,

hTm predicts its label ŷ = hTm(x). The optimal generalization risk (Bayes risk) is

achieved by the classifier h∗(x) = argmax{η`(x), ` ∈ Y}, where η = (η1, . . . , ηL)
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Table 4.1: Notation

δij = 1{i=j} =

{
1, i = j
0, i 6= j

hf (x) = argmax
`∈Y

f `(x) : plug-in classifier of f : X → ∆L−1

∆L−1 : the standard(L− 1)-simplex in RL;

η(x) = (η1(x), . . . , ηL(x)) : class probability: η`(x) = P (y = `|x)

M : {f : X → ∆L−1 : f ∈ C∞}
M′ : {f : X → RL : f ∈ C∞}

TfM : the tangent space to M at some f ∈M
The graph of f ∈M (or M′) : gr(f) = {(x, f(x)) : x ∈ X}

gij = ∂f
∂xi

∂f
∂xj

: The Riemannian metric on gr(f)

induced from the standard dot product on RN+L

(gij) = g−1, with g = (gij)i,j=1,...,N

dvol =
√

det(g)dx1 . . . dxN , the volume element on gr(f)

{ei}Ni=1 : a smoothly varying orthonormal basis
of the tangent spaces T(x,f(x)gr(f) of gr(f)

Tr II ∈ RN+L : the trace of the second fundamental form of gr(f)

Tr II =
(∑N

i=1Deiei

)⊥
: with ⊥ the orthogonal projection to the subspace

perpendicular to the tangent space of gr(f),
and Dyw is the directional derivative of w in y direction

Tr IIL : the projection of Tr II onto the last L coordinates of RN+L

P :M→ R : a penalty function on a possibly infinite dimensional manifold M
∇P : the gradient vector field of P
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Figure 4.1: Example of three-class learning, i.e., L = 3, where the input space X
is 2d. Training samples of the three classes are marked with red, green and blue
dots respectively. The class label for each training sample corresponds to a vertex of
the simplex ∆L−1. As a result, each mapped training point (xi, zi) lies on one face
(corresponding to its label yi) of the space X×∆2.

with η` : X → [0, 1] being the `th class probability, i.e. η`(x) = P (y = `|x).

Our regularization approach exploits the geometry of the class probability esti-

mator, and can be regarded as a “hybrid” plug-in/ERM scheme [1]. A regularized

loss minimization problem is set up to find an estimator f : X → ∆L−1, where ∆L−1

is the standard (L − 1)-simplex in RL, and f = (f 1, . . . , fL) is an estimator of η

with f ` : X → [0, 1]. The estimator f is then “plugged-in” to get the classifier

hf (x) = argmax{f `(x), ` ∈ Y}.

Figure 4.1 shows an example of the setup of our approach, for a synthetic three-

class classification problem. The submanifold corresponding to estimator f is the

graph (in the geometric sense) of f : gr(f) = {(x, f 1(x), . . . , fL(x)) : x ∈ X} ⊂ X ×

∆L−1. We denote a point in the space X ×∆L−1 by (x, z) = (x1, . . . , xN , z1, . . . , zL),
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where x ∈ X and z ∈ ∆L−1. In this product space, a training pair (xi, yi = `)

naturally maps to the point (xi, zi) = (xi, 0, . . . , 1, . . . , 0), with the one-hot vector

zi (with the 1 in its `-th slot) at the vertex of ∆L−1 corresponding to P (y = `|x) = 1.

We point out two properties of this geometric setup. Firstly, it inherently han-

dles multiclass classification, with binary classification as a special case. Secondly,

while the dimension of the ambient space, i.e. RN+L, depends on both the feature

dimension N and number of classes L, the intrinsic dimension of the submanifold

gr(f) only depends on N .

4.2 Variational Formulation

We want gr(f) to approach the mapped training points while remaining as flat as

possible, so we impose a penalty on f consisting of an empirical loss term PTm and

a geometric regularization term PG. For PTm , we can choose either the widely-

used cross-entropy loss function for multiclass classification or the simpler Euclidean

distance function between the simplex coordinates of the graph point and the mapped

training point. For PG, following the physical model introduced in the previous

chapter, we measure the graph’s volume, which is proportional to the graph’s energy

in low dimensions, PG(f) =
∫

gr(f)
dvol, where dvol is the induced volume from the

Lebesgue measure on the ambient space RN+L.

More precisely, we find the function that minimizes the following penalty P :

P = PTm + λPG :M = Maps(X ,∆L−1)→ R (4.1)

on the setM of smooth functions from X to ∆L−1, where λ is the tradeoff parameter

between empirical loss and regularization. It is important to note that any relative
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scaling of the domain X will not affect the estimate of the class probability η, as

scaling will distort gr(f) but will not change the critical function estimating η.

In our setup, we want to find the (or a) best estimator f : X → ∆L−1 of η

on a compact set X ⊂ RN given a set of training data Tm = {(xi, yi)}mi=1. We

think of X as large enough so that the training data actually is sampled well inside

X . This allows us to treat X as a closed manifold in our gradient calculations, so

that boundary effects can be ignored. A similar natural boundary condition is also

adopted by previous work [83, 46, 45].

4.2.1 The Empirical Term

We consider two widely-used loss functions for the empirical penalty term PTm .

Quadratic loss. Since PTm measures the deviation of gr(f) from the mapped train-

ing points, it is natural to choose the quadratic function of the Euclidean distance

in the simplex ∆L−1,

PTm(f) =
m∑
i=1

‖f(xi)− zi‖2, (4.2)

where zi is the one-hot vector corresponding to the ground truth label of xi. The

gradient vector with respect to f evaluated at xi is

∇PTm,f (xi) = 2(f(xi)− zi). (4.3)

Cross-entropy loss. The cross-entropy loss function is also widely used for proba-

bilistic output in classification,

PTm(f) = −
m∑
i=1

L∑
`=1

z`i log f `(xi). (4.4)

We will discuss the detailed formula for the gradient vector of this loss function in
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§6.1 when we represent f in a parametric form.

4.2.2 The Regularization Term

Following our geometric perspective, we wish to penalize graphs for high “energy”,

and we use the following function, which measures the volume of gr(f):

PG(f) =

∫
gr(f)

dvol =

∫
gr(f)

√
det(g)dx1 . . . dxN , (4.5)

where g = (gij) with gij = δij+f
a
i f

a
j , is the Riemmanian metric on gr(f) induced from

the standard dot product on RN+L, and f = (f 1, . . . , fL). We use the summation

convention on repeated indices. Note that this regularization term is clearly very

different from the standard Sobolev norm of any order.

It is standard that ∇PG = −Tr II ∈ RN+L on the space M′ 1 of all embeddings

of X in RN+L, where Tr II is the trace of second fundamental form of gr(f). If we

restrict to the submanifold of graphs of f ∈ M′, it is easy to calculate that the

gradient of geometric penalty (4.5) is

∇PG,f = VG,f = −Tr IIL, (4.6)

where Tr IIL denotes the last L components of Tr II.

The formulation given above is general in that it encompasses both the binary

and the multiclass cases. For both cases, evaluation of Tr IIL at any point x can be

performed explicitly by the following theorem.

1recall that M′ = Maps(X ,RL) is the ambient space of M = Maps(X ,∆L−1).
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Theorem 1. For f : RN → ∆L−1, Tr IIL for gr(f) is given by

Tr IIL = (g−1)ij
(
f 1
ji − (g−1)rsfarsf

a
i f

1
j , . . . , f

L
ji − (g−1)rsfarsf

a
i f

L
j

)
, (4.7)

where fai , f
a
ij denote partial derivatives of fa.

Proof. For f : RN → ∆L−1 ⊂ RL,

{rj = rj(x) = (0, . . . ,
j

1, . . . , 0, f 1
j , . . . , f

L
j ) : j = 1, . . . N} (4.8)

is a basis of the tangent space Txgr(f) to gr(f). Here f ij = ∂xjf
i. Let {ei} be an

orthonormal frame of Txgr(f). We have

ei = Bj
i rj, (4.9)

for some invertible matrix Bj
i .

Define the metric matrix g for the basis {rj} by

g = (gkj) with gkj = rk · rj = δkj + f ikf
i
j . (4.10)

Then

δij = ei · ej = Bk
i B

t
jrk · rt = Bk

i B
t
jgkt

⇒ I = (BBT )g ⇒ BBT = g−1, (4.11)

thus BBT is computable in terms of derivatives of f .

Let Duw be the RN+L directional derivative of w in the direction u, then

Tr II = P νDeiei = P νDBji rj
Bk
i rk = Bj

iP
νDrjB

k
i rk
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= Bj
iP

ν [(DrjB
k
i )rk] +Bj

iB
k
i P

νDrjrk

= Bj
iB

k
i P

νDrjrk

= (g−1)jkP νDrjrk, (4.12)

the equality in the second line holds since P νrk = 0.

From Eqn. 4.8, we have

rk = (0, . . . , 1, . . . , f 1
k (x1, . . . , xN), . . . , fLk (x1, . . . , xN))

= ∂R
N+L

k +
L∑
i=1

f ik∂
RN+L

N+i , (4.13)

so in particular, ∂R
N+L

` rk = 0 if ` > N. Thus

Drjrk = (0, . . . ,
N

0, f 1
kj, . . . , f

L
kj). (4.14)

So far, we have

Tr II = (g−1)jkP ν(0, . . . ,
N

0, f 1
kj, . . . , f

L
kj). (4.15)

Since g is given in terms of derivatives of f , we need to write P ν = I − P T in terms

of derivatives of f . Here P T is the projection to the tangent space of gr(f). For any

u ∈ RN+L, we have

P Tu = (P Tu · ei)ei = (u ·Bj
i rj)B

k
i rk

= Bj
iB

k
i (u · rj)rk

= (g−1)jk(u · rj)rk. (4.16)
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Thus

Tr II = (g−1)jkP ν(0, . . . ,
N

0, f 1
kj, . . . , f

L
kj)

= (g−1)jk(0, . . . ,
N

0, f 1
kj, . . . , f

L
kj)− P T

[
(g−1)jk(0, . . . ,

N

0, f 1
kj, . . . , f

L
kj)
]

= (g−1)jk(0, . . . ,
N

0, f 1
kj, . . . , f

L
kj)

−(g−1)jk
[
(g−1)rs(0, . . . ,

N

0, f 1
rs, . . . , f

L
rs) · rj

]
rk

= (g−1)jk(0, . . . ,
N

0, f 1
kj, . . . , f

L
kj)− (g−1)jk(g−1)rs

(
f irsf

i
j

)
rk

= (g−1)ij
(

0, . . . ,
j

−(g−1)rsfarsf
a
i , . . . , 0,

f 1
ji − (g−1)rsfarsf

a
i f

1
j , . . . , f

L
ji − (g−1)rsfarsf

a
i f

L
j

)
, (4.17)

after a relabeling of indices. Therefore, the last L component of Tr II are given by

Tr IIL = (g−1)ij
(
f 1
ji − (g−1)rsfarsf

a
i f

1
j , . . . , f

L
ji − (g−1)rsfarsf

a
i f

L
j

)
. (4.18)

4.2.3 The Simplex Constraint

An allowable class probability estimator f : X → ∆L−1 always takes values in

∆L−1 ⊂ RL. Recall that in our notation, f ∈M′. However, the gradient vector field

∇PG,f ∈ TfM′ for our geometric penalty PG, i.e., the set of vector fields along f

with values in RL, may not lie in TfM, and in particular may not take values in

T∆L−1. There are two ways to enforce this constraint for the geometric gradient

vector field. Firstly, since our initial function f 0 takes values at the center of ∆L−1,

we can orthogonally project the geometric gradient vector VG,f to V ′G,f in the tangent

space Z = {(y1, . . . , yL) ∈ RL :
∑L

`=1 y
` = 0} of the simplex, and then scale τV ′G,f (τ
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is the stepsize) to ensure that the range of the new f lies in ∆L−1. We then iterate.

To compute the projection of VG,f to TfM, let P : RL → Z be the orthogonal

projection. Then we claim that for a vector fieldX defined along gr(f), the projection

PX of X into TfM is given by Xx 7→ PXx for x ∈ X . For the projection P

by definition satisfies PX = argmin{‖X − Y ‖L2 : Y ∈ TfM}. Since PXx =

argmin{|Xx − Yx| : Yx ∈ Z}, we clearly have

‖X − Y ‖L2 =

∫
X
|Xx − Yx|2dx (4.19)

is minimized over Y ∈ TfM by YTfM = PXx.

Take the following basis of Z,

{h1 = (1,−1, 0, . . . , 0), h2 = (1, 0,−1, 0, . . . , 0), . . . , hL−1 = (1, 0, . . . , 0,−1)}.

(4.20)

For {ei} being an orthonormal basis of Z, we have ei = Cj
i hj for some coefficients

Cj
i . Then

δij = ei · ej = Ck
i C

`
jhk · h` ⇒ CCT = (hi · hj)−1. (4.21)

Since

hi · hj =

 2, i = j,

1, i 6= j,
(4.22)

it is easy to compute H = (hi · hj)−1. Then we get

PVG,f = (VG,f · ei)ei

= (VG,f · Cj
i hj)C

k
i hk

= (CCT )jk(VG,f · hj)hk
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= (H−1)jk(VG,f · hj)hk. (4.23)

Secondly, to enforce this constraint for the geometric gradient vector field, we can

also select L− 1 of the L components of f(x), call the new function f ′ : X → RL−1,

which is equivalent to projecting gr(f) to X × RK−1, and compute the (L − 1)-

dimensional gradient vector VG,f ′ following (4.6) and Theorem 1. The omitted com-

ponent of the desired L-gradient vector is determined by −
∑L−1

`=1 V
`
G,f ′ , by the defi-

nition of tangent space Z. Our implementation follows this second approach, where

we choose the (L− 1) components of f by omitting the component corresponding to

the class with least number of training samples.

4.2.4 Algorithm Summary

Combining both the empirical term and the geometric term, the total gradient vector

at point x can be computed by,

∇Pf (x) = ∇PTm,f (x) + λ∇PG,f (x), (4.24)

where λ is the trade-off parameter. Then a gradient flow step for updating f at

point x is given by,

f(x)←− f(x)− τ∇Pf (x), (4.25)

where τ is some step-size parameter. Note that for explaining the principles, we have

been using the general non-parametric form of function f throughout this chapter. In

practice, however, we will apply some parametric representation of f , and Eqn.(4.25)

will be converted to a formula updating some parameters based on the concrete

representation of f . Examples of representing f in the form of RBF functions and
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neural networks are discussed in detail in Chapter 6.

Algorithm 1 gives a summary of the classifier learning procedure with our ge-

ometric regularization. It is a general algorithm for any classification function f

that satisfies two requirements: firstly, an estimator of the class probability can be

obtained; secondly, first and second derivatives of the class probability estimator can

be calculated. It is also unified for both binary and multiclass classification. The

input to the algorithm is the training set Tm, the trade-off parameter λ, and the

step-size parameter τ. For initialization, our algorithm initializes the function values

of f at every training point with equal probability to all classes. In the subsequent

steps, at each iteration, our algorithm first evaluates the gradient vector field ∇Pf

at every training point, then updates the estimator function f based on Eqn. (4.25)

and the parametric representation of f .

Algorithm 1 Geometric regularized classification

Input: training data Tm = {(xi, yi)}mi=1, trade-off parameter λ, step-size τ
Initialize: f(xi) = ( 1

L
, . . . , 1

L
), ∀i ∈ {1, · · · ,m}

for t = 1 to T do
– Evaluate the total gradient vector ∇Pf (xi) at every training point accord-

ing to Eqn. (4.24).

– Update the f by (4.25).
end for
Output: class probability estimator f .

While our approach is based on a solid Riemannian geometric foundation, the

resulting algorithm, as shown in Algorithm 1, turns out to be simple and straightfor-

ward. And more importantly, it is easily parallelizable, regardless of the parametric

representation of f , given that the computation of the gradient vector at every train-

ing point is independent of each other.
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Chapter 5

Theoretical Analysis

In this chapter, we discuss some theoretical aspects of the proposed approach. In

particular, the consistency analysis relates our approach with statistical learning

theory and shows that under some mild initialization assumptions, our algorithm

converges to the statistically optimal classifier (the Bayes classifier) with the number

of training examples goes to infinity. This is a basic requirement for a good learning

algorithm in a statistical sense. Another fundamental problem for applying our

algorithm is the existence of the solutions of the gradient flow equation (3.9). Since

our iterative algorithm in essence follows the negative gradient flow line of our penalty

function defined on the functional space, without the existence guarantee of the

flow line for at least a short time, in theory, we cannot argue that our learning

algorithm follows exactly our geometric intuition described in §3.2 with a physical

model. To provide theoretical insights on further exploring the potential of the

proposed framework in a wider range of applications, we also discuss extensions of

our approach to incorporate a Riemannian curvature based geometric penalty and

nonlinear input spaces.

Roadmap for this chapter

In §5.1, we establish Bayes consistency of our geometric regularization scheme for

a particular empirical loss function, under some mild initialization assumptions. In
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§5.2, we describe the theory and formulation of an alternative geometric regularizer

based on the Riemannian curvature. In §5.3, we discuss the existence of the gradi-

ent flow under different topologies, and show that the existence and uniqueness of

solutions for parametric representation of f is guaranteed, which provides a founda-

tion for algorithms applied in the next chapter. In §5.4, we discuss the extension of

our geometric perspective and regularization approach to situations where the input

space is a submanifold with local charts, rather than a Euclidean space.

5.1 Bayes Consistency

For a training set Tm of size m, we let fTm = (f 1
Tm , . . . , f

L
Tm) be the class proba-

bility estimator given by our approach. Recall that the generalization risk of the

corresponding plug-in classifier hfTm
is RP (fTm) = EP [1hfTm (x)6=y]. The Bayes risk

is defined by R∗P = inf
h:X→Y

RP (h) = EP [1hη(x)6=y]. Our algorithm is Bayes consistent

if lim
m→∞

RP (fTm) = R∗P holds in probability for all distributions P on X × Y .

While showing Bayes consistency for general empirical terms is hard for our reg-

ularized scheme, we give an example with an empirical loss that enables Bayes con-

sistency proof under some mild initialization assumptions. Related notation is sum-

marized in Table 5.1.

For ease of reading, we change the notation for empirical penalty PTm in this

section to PD, i.e., P = PD + λPG. PD measures the deviation of gr(f) from the

mapped training points. A natural geometric distance penalty term is an L2 distance

in RL from f(x) to the averaged z component of the k-nearest training points for a

fixed choice of k:

PD(f) = RD,Tm,k(f) =

∫
X
d2

(
f(x),

1

k

k∑
i=1

z̃i

)
dx, (5.1)
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Table 5.1: Notation for Bayes consistency

hf (x) = argmax
`∈Y

f `(x) : plug-in classifier of f : X → ∆L−1

1hf (x)6=y =

{
1, hf (x) 6= y
0, hf (x) = y

RP (f) = EP [1hf (x)6=y] : generalization risk for the estimator f

R∗P = RP (η) : Bayes risk

RD,P (f) =
∫
X d

2(f(x),η(x))dx : D-risk

RD,Tm(f) = RD,Tm,k(f) =
∫
X d

2

(
f(x), 1

k

k∑
i=1
z̃i

)
dx : empirical D-risk,

where z̃i is the vector of the last L components of (x̃i, z̃i),
with x̃i the ith nearest neighbor of x in Tm

RD,P,λ(f) = RD,P (f) + λPG(f) : regularized D-risk for estimator f

RD,Tm,λ(f) = RD,Tm(f) + λPG(f) : regularized empirical D-risk for estimator f

fD,P,λ : function attaining the global minimum for RD,P,λ
R∗D,P,λ = RD,P,λ(fD,P,λ) : minimum value for RD,P,λ

fD,Tm,λ = fD,Tm,k,λ : function attaining the global minimum for RD,Tm,λ(f),

note that we assume fD,P,λ and fD,Tm,λ exist

where d is the Euclidean distance in RL, z̃i is the vector of the last L components of

(x̃i, z̃i) = (x̃1
i , . . . , x̃

N
i , z̃

1
i , . . . , z̃

L
i ), with x̃i the ith nearest neighbor of x in Tm, and

dx is the Lebesgue measure. The gradient vector field is

∇(RD,Tm,k)f (x,f(x)) =
2

k

k∑
i=1

(f(x)− z̃i). (5.2)

However, ∇(RD,Tm,k)f is discontinuous on the set D of points x such that x has

equidistant training points among its k nearest neighbors. D is the union of (N−1)-

dimensional hyperplanes in X , so D has measure zero. Such points will necessarily

exist unless the last L components of the mapped training points are all 1 or all 0.

To rectify this, we can smooth out ∇(RD,Tm,k)f to a vector field

VD,f ,φ =
2φ(x)

k

k∑
i=1

(f(x)− z̃i). (5.3)
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Here φ(x) is a smooth damping function close to the singular function δD, which has

δD(x) = 0 for x ∈ D and δD(x) = 1 for x 6∈ D. Outside any open neighborhood of

D, ∇RD,Tm,k = VD,f ,φ for φ close enough to δD.

Recall the geometric penalty term, i.e., PG(f) =
∫

gr(f)
dvol, with the geometric

gradient vector field being VG,f = −Tr IIL.

Then the gradient vector field Vtot,λ,m,f ,φ of this example penalty P is,

Vtot,λ,m,f ,φ = ∇Pf = VD,f ,φ + λVG,f

=
2φ(x)

k

k∑
i=1

(f(x)− z̃i)− λTr IIL. (5.4)

Usually, gradient flow methods are applied to a convex functional, so that a flow

line approaches the unique global minimum. If the domain of the functional is an

infinite dimensional manifold of (e.g. smooth) functions, we always assume that flow

lines exist and that the actual minimum exists in this manifold.

Because our functionals are not convex, we can only hope to prove Bayes con-

sistency for the set of initial estimators in the stable manifold of a global minimum

point (or sink) of the vector field [34]. Recall that a stable fixed point f 0 has a max-

imal open neighborhood, the stable manifold Sf0
, on which flow lines tend towards

f 0. For the manifoldM, the stable manifold for a stable critical point of the vector

field Vtot,λ,m,f ,φ is infinite dimensional.

The proof of Bayes consistency for multiclass (including binary) classification

follows these steps:

Step 1: lim
λ→0

R∗D,P,λ = 0.

Step 2: lim
n→∞

RD,P (fn) = 0⇒ lim
n→∞

RP (fn) = R∗P .

Step 3: For all f ∈ M = Maps(X ,∆L−1), |RD,Tm(f) − RD,P (f)| m→∞−−−→ 0 in
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probability.

Proofs of these steps are provided below. In the notation of Table 5.1, R∗D,P,λ is the

minimum of the regularized D risk RD,P,λ(f) for f :

RD,P,λ(f) = RD,P (f) + λPG(f), (5.5)

with RD,P (f) =
∫
X d

2(f(x),η(x))dx being the D-risk. Also,

RD,Tm,λ(f) = RD,Tm(f) + λPG(f), (5.6)

with RD,Tm(f) =
∫
X d

2
(
f(x), 1

k

∑k
i=1 z̃i

)
dx being the empirical D-risk.

Theorem 2 (Bayes Consistency). Let m be the size of the training data set. Let

f 1,λ,m ∈ SfD,Tm,λ, the stable manifold for the global minimum fD,Tm,λ of RD,Tm,λ,

and let fn,λ,m,φ be a sequence of functions on the flow line of Vtot,λ,m,f ,φ starting with

f 1,λ,m with the flow time tn → ∞ as n → ∞. Then RP (fn,λ,m,φ)
m,n→∞−−−−−−→

λ→0,φ→δD
R∗P in

probability for all distributions P on X × Y, if k/m→ 0 as m→∞.

Proof. If fD,Tm,λ is a global minimum for RD,Tm,λ, then outside of D, fD,Tm,λ is the

limit of critical points for the negative flow of Vtot,λ,m,f ,φ as φ→ δD. To see this, fix

an εi neighborhood Dεi of D. For a sequence φj → δD, Vtot,λ,m,f,φj is independent

of j ≥ j(εi) on X \ Dεi , so we find a function f i, a critical point of Vtot,λ,m,f ,φj(εi) ,

equal to fD,Tm,λ on X \ Dεi . Since any x 6∈ D lies outside some Dεi , the sequence

f i converges at x if we let εi → 0. Thus, we can ignore the choice of φ in our proof,

and drop φ from the notation.

For our algorithm, for fixed λ,m, we have as above lim
n→∞

fn,λ,m = fD,Tm,λ, so

lim
n→∞

RD,Tm,λ(fn,λ,m) = RD,Tm,λ(fD,Tm,λ), (5.7)
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for f 1 ∈ SfD,Tm,λ . By Step 2, it suffices to show RD,P (fD,Tm,λ)
m→∞−−−→
λ→0

0. In probability,

we have ∀δ > 0,∃m > 0 such that

0 ≤ RD,P (fD,Tm,λ)

≤ RD,P (fD,Tm,λ) + λPG(fD,Tm,λ)

≤ RD,Tm(fD,Tm,λ) + λPG(fD,Tm,λ) +
δ

3
(Step 3)

= RD,Tm,λ(fD,Tm,λ) +
δ

3

≤ RD,Tm,λ(fD,P,λ) +
δ

3
(minimality of fD,Tm,λ)

= RD,Tm(fD,P,λ) + λPG(fD,P,λ) +
δ

3

≤ RD,P (fD,P,λ) + λPG(fD,P,λ) +
2δ

3
(Step 3)

= RD,P,λ(fD,P,λ) +
2δ

3
= R∗D,P,λ +

2δ

3

≤ δ, (Step 1) (5.8)

for λ close to zero.

The following subsections for proving the three steps are taken from the supple-

mental materials of [5].

5.1.1 Step 1

Lemma 3. (Step 1) lim
λ→0

R∗D,P,λ = 0.

Proof. After the smoothing procedure in §3.1 for the distance penalty term, the

function RD,P,λ : M → R is continuous in the Fréchet topology on M. We check

that the functions RD,P,λ :M→ R are equicontinuous in λ: for fixed f 0 ∈ M and

ε > 0, there exists δ = δ(f 0, ε) such that |λ−λ′| < δ ⇒ |RD,P,λ(f 0)−RD,P,λ′(f 0)| < ε.
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This is immediate:

|RD,P,λ(f 0)−RD,P,λ′(f 0)| = |(λ− λ′)PG(f 0)| < ε, (5.9)

if δ < ε/|PG(f 0)|. It is standard that the infimum inf Rλ of an equicontinuous family

of functions is continuous in λ, so lim
λ→0

R∗D,P,λ = R∗D,P,λ=0 = RD,P (η) = 0.

5.1.2 Step 2

We assume that the class probability function η(x) : RN → RL is smooth, and that

the marginal distribution µ(x) is continuous. We also let µ denote the corresponding

measure on X .

Denote: hf (x) = argmax{f `(x), ` ∈ Y}, and,

1hf (x)6=y =

 1, hf (x) 6= y,

0, hf (x) = y.
(5.10)

Lemma 4. (Step 2 for a subsequence)

lim
n→∞

RD,P (fn) = 0⇒ lim
i→∞

RP (fni) = R∗P

for some subsequence {fni}
∞
i=1 of {fn}.

Proof. The left hand side of the Lemma is

∫
X
d2(fn(x),η(x))dx→ 0, (5.11)



51

which is equivalent to

∫
X
d2(fn(x),η(x))µ(x)dx→ 0, (5.12)

since X is compact and µ is continuous. Therefore, it suffices to show

∫
X
d2(fn(x),η(x))µ(x)dx→ 0 (5.13)

=⇒ EP [1hfn (x)6=y]→ EP [1hη(x)6=y].

We recall that L2 convergence implies pointwise convergence a.e, so (5.12) implies

that a subsequence of fn, also denoted fn, has fn → η(x) pointwise a.e. on X . (By

our assumption on µ(x), these statements hold for either µ or Lebesgue measure.)

By Egorov’s theorem, for any ε > 0, there exists a set Bε ⊂ X with µ(Bε) < ε such

that fn → η(x) uniformly on X \Bε.

Fix δ > 0 and set

Zδ = {x ∈ X : #{argmax
`∈Y

η`(x)} = 1, |max
`∈Y

η`(x)− submax
`∈Y

η`(x)| < δ}, (5.14)

where submax
`∈Y

denotes the second largest element in {η1(x), . . . , ηL(x)}. For the

moment, assume that Z0 = {x ∈ X : #{argmax
`∈Y

η`(x)} > 1} has µ(Z0) = 0.

It follows easily1 that µ(Zδ)→ 0 as δ → 0. On X \ (Zδ ∪Bε), we have 1hfn (x) 6=y =

1Let Ak be sets with Ak+1 ⊂ Ak and with µ(∩∞k=1Ak) = 0. If µ(Ak) 6→ 0, then there exists
a subsequence, also called Ak, with µ(Ak) > K > 0 for some K. We claim µ(∩Ak) ≥ K, a
contradiction. For the claim, let Z = ∩Ak. If µ(Z) ≥ µ(Ak) for all k, we are done. If not, since the
Ak are nested, we can replace Ak by a set, also called Ak, of measure K and such that the new Ak

are still nested. For the relabeled Z = ∩Ak, Z ⊂ Ak for all k, and we may assume µ(Z) < K. Thus
there exists Z ′ ⊂ A1 with Z ′ ∩ Z = ∅ and µ(Z ′) > 0. Since µ(Ai) = K, we must have Ai ∩ Z ′ 6= ∅
for all i. Thus ∩Ai is strictly larger than Z, a contradiction. In summary, the claim must hold, so
we get a contradiction to assuming µ(Ak) 6→ 0.



52

1hη(x)6=y for n > Nδ. Thus

EP [1X\(Zδ∪Bε)1hfn (x)6=y] = EP [1X\(Zδ∪Bε)1hη(x)6=y]. (5.15)

(Here 1A is the characteristic function of a set A.)

As δ → 0,

EP [1X\(Zδ∪Bε)1hfn (x) 6=y]→ EP [1X\Bε1hfn (x)6=y]. (5.16)

and similarly for fn replaced by η(x). During this process, Nδ presumably goes to

∞, but that precisely means

lim
n→∞

EP [1X\Bε
1hfn (x)6=y] = EP [1X\Bε

1hη(x)6=y]. (5.17)

Since ∣∣EP [1X\Bε1hfn (x)6=y]− EP [1hfn (x)6=y]
∣∣ < ε, (5.18)

and similarly for η(x), we get

∣∣∣ lim
n→∞

EP [1hfn (x) 6=y]− EP [1hη(x) 6=y]
∣∣∣

≤
∣∣∣ lim
n→∞

EP [1hfn (x)6=y]− lim
n→∞

EP [1X\Bε1hfn (x)6=y]
∣∣∣

+
∣∣∣ lim
n→∞

EP [1X\Bε1hfn (x)6=y]− EP [1X\Bε1hη(x)6=y]
∣∣∣

+
∣∣∣ lim
n→∞

EP [1X\Bε1hη(x)6=y]− EP [1hη(x)6=y]
∣∣∣

≤ 3ε. (5.19)

(Strictly speaking, limn→∞ EP [1hfn (x)6=y] is first lim sup and then lim inf to show that

the limit exists.) Since ε is arbitrary, the proof is complete if µ(Z0) = 0.

If µ(Z0) > 0, we rerun the proof with X replaced by Z0. As above, fn|Z0 converges

uniformly to η(x) off a set of measure ε. The argument above, without the set Zδ,
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gives ∫
Z0

1hfn (x)6=yµ(x)dx→
∫
Z0

1hη(x)6=yµ(x)dx. (5.20)

We then proceed with the proof above on X \ Z0.

Corollary 5. (Step 2 in general) For our algorithm, lim
n→∞

RD,P (fn,λ,m) = 0 ⇒

lim
i→∞

RP (fn,λ,m) = R∗P .

Proof. Choose f 1,λ,m as in Theorem 2. Since Vtot,λ,m,fn,λ,m has pointwise length going

to zero as n → ∞, {fn,λ,m(x)} is a Cauchy sequence for all x. This implies that

fn,λ,m, and not just a subsequence, converges pointwise to η.

5.1.3 Step 3

Lemma 6. (Step 3) If k →∞ and k/m→ 0 as m→∞, then for f ∈ Maps(X ,∆L−1),

|RD,Tm(f)−RD,P (f)| m→∞−−−→ 0 in probability,

for all distributions P that generate Tm.

Proof. Since RD,P (f) is a constant for fixed f and P , convergence in probability will

follow from weak convergence, i.e.,

ETm [|RD,Tm(f)−RD,P (f)|] m→∞−−−→ 0. (5.21)

We have

|RD,Tm(f)−RD,P (f)|

=

∣∣∣∣∣
∫
X

[
d2

(
f(x),

1

k

k∑
i=1

z̃i

)
− d2(f(x),η(x))

]
dx

∣∣∣∣∣
≤

∫
X

∣∣∣∣∣d2

(
f(x),

1

k

k∑
i=1

z̃i

)
− d2(f(x),η(x))

∣∣∣∣∣ dx. (5.22)
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Set a = f(x)− 1
k

∑k
i=1 z̃i, b = f(x)− η(x). Then

∣∣‖a‖2
2 − ‖b‖2

2

∣∣
=

∣∣∣∣∣
L∑
`=1

a2
` −

L∑
`=1

b2
`

∣∣∣∣∣ =

∣∣∣∣∣
L∑
`=1

(a2
` − b2

`)

∣∣∣∣∣
≤

L∑
`=1

|a2
` − b2

` | ≤ 2
L∑
`=1

|a` − b`|max{|a`|, |b`|}

≤ 2
L∑
`=1

|a` − b`|, (5.23)

since f `(x), 1
k

∑k
i z̃

`
i , η

`(x) ∈ [0, 1]. Therefore, it suffices to show that

L∑
`=1

ETm

[∫
X

∣∣∣∣∣((f `(x)− 1

k

k∑
i

z̃`i )− (f `(x)− η`(x))

∣∣∣∣∣ dx
]

m→∞−−−→ 0, (5.24)

so the result follows if

lim
m→∞

ETm,x

[∣∣∣∣∣η`(x)− 1

k

k∑
i

z̃`i

∣∣∣∣∣
]

= 0 for all `. (5.25)

By Jensen’s inequality (E[f ])2 ≤ E[f 2], (5.25) follows if

lim
m→∞

ETm,x

(η`(x)− 1

k

k∑
i

z̃`i

)2
 = 0 for all `. (5.26)

Let η`k,m(x) = 1
k

∑k
i z̃

`
i . Then η`k,m is actually an estimate of the class probability

η`(x) by the k-Nearest Neighbor rule. Following the proof of Stone’s Theorem [77,

23], if k
m→∞−−−→∞ and k/m

m→∞−−−→ 0, (5.26) holds for all distributions P .
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5.2 Riemannian Curvature Based Geometric Penalty

In defining the geometric penalty, we choose the volume of the functional graph as

our complexity measure of the function, since it is a natural high-dimensional ex-

tension of the “surface energy” in a physical model related to the learning process.

In the theory of Riemannian geometry, however, we could alternatively consider an

L2 measure of the Riemann curvature of gr(f), as the vanishing of this term gives

optimal (i.e., locally distortion free) diffeomorphisms from gr(f) to RN . Given that

it is complicated and inefficient to compute in practice, in this section, we discuss

only the theory and formulations of the Riemannian curvature based geometric reg-

ularization, while leaving implementation concerns for future exploration.

We wish to penalize graphs for excessive curvature. Very sensitive measures are

given by the L2 norm of the length of the Riemann curvature tensor:
∫
X |Rf |

2f ∗dvol

or the L∞ norm ‖ |Rf | ‖∞ = supx∈X |R(x,f(x))|. Minimization of Riemannian curva-

ture corresponds to finding the graph with the least distortion of lengths and angles,

i.e., minimizing |df ((x1,f(x1)), (x2,f(x2))) − dRN (φ−1(x1f(x1)), φ−1(x2,f(x2))|,

where df is the geodesic distance on the graph of f , dRN is the standard Euclidean

distance, and φ ranges over all diffeomorphisms from RN to gr(f). This is similar to

the approach in [25].

We choose as curvature penalty function

PG(f) =

∫
X
|Rf |2f ∗dvol =

∫
gr(f)

|Rf |2dvol =

∫
gr(f)

RijklRijkldvol, (5.27)

where R = Rijkldx
i ⊗ dxj ⊗ dxk ⊗ dxl is the Riemann curvature tensor for the

Riemannian metric on gr(f) induced from the Euclidean metric on RN+1, and dvol

is the induced volume form. We always use summation convention on repeated
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indices. As with the original PG, this penalty term has the desirable property of being

invariant under diffeomorphisms/reparametrizations of X , while, e.g.,
∫
X |Rf |

2dx is

not.

We have the following theorem for the gradient vector field of PG. In this theorem,

we work in a more general setup, with X replaced by a manifold M . (However, for

simplicity we assume that M is compact without boundary; see [4] for the boundary

terms in the case of a manifold with boundary and for the proof of the theorem

below.)

Theorem 7. Let φ = (φ1, . . . , φN+L) : M → RN+L be an embedding. The gradient

vector field for PG at φ is the RN+L-valued vector field Z = (Z1, . . . , ZN+L) defined

on φ(M) with α component

Zα = 6
1√

det(g)
∂r

(√
det(g)Rr

jklφ
α
i R

ijkl

)
+2

1√
det(g)

∂z

([
1√

det(g)
([φαlj − φαrΓrlj]∂m(Rmjlz

√
det(g)))

+
(
φαljm − φαrmΓrlj − φαr ∂m(Γrlj)

)
Rmjlz

+Γznk[φ
α
lj − φαrΓrlj]R

njlk

]√
det(g)

)
−|R|2(Tr II)α − 2〈∇R,R〉],α.

Here (i) det(g) is the determinant of the induced metric tensor in local coordinates

on φ(M) coming from local coordinates on M composed with φ, (ii) φαi , φ
α
rm, etc.

denote partial derivatives of φα in these local coordinates and ∂z is the zth partial

derivative, (iii) Γrlj are the Christoffel symbols of the induced metric on φ(M), (iv)

∇R is the covariant derivative of R, (v) 〈∇R,R〉 is the one-form on M given by

contracting ∇R with R, (vi) 〈∇R,R〉],α is the α component of the dual vector field

on M . In the graph case, the embedding φ associated to the function f : X → RL
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is the graph of f : φ(x) = (x,f(x)).

This formula is complicated, but the main point is that embeddings with mini-

mal/vanishing geometric penalty are flat, i.e. the embedding admits distortion-free

coordinate maps to RN . While this geometric penalty is more informative, the vec-

tor field Z involves fourth derivatives of the embedding φ, which are expensive to

compute in practice.

5.3 Existence of Gradient Flow

In §5.1 where we discuss the Bayes consistency of our algorithm, we simply assume

that gradient flow lines always exist. However, unlike the case of finite dimensions,

the existence of flow lines on our functional space M′ = Maps(X ,RL) is not au-

tomatic. We address this problem in this section. In particular, we discuss the

existence of the solution of the following gradient flow equation, which is a ordinary

differential equation (ODE) with initial condition on the functional space M′,2

df t
dt

= −∇Pf t ,

f 0 ≡ (
1

L
, . . . ,

1

L
). (5.28)

In §5.3.1, we discuss the short time existence and uniqueness of solutions of ODE (5.28)

under both Banach space norm and Fréchet space topology. We explain why the ex-

istence for general non-parametric form of f has no guarantee even for a short time.

Then for parametric representation of f , we show that the existence and uniqueness

is guaranteed. In §5.3.2, we discuss the same ODE solution existence problem for the

empirical term (standard classification losses), which again has no guarantee if f is

2Then we could use the simplex constraint of §4.2.3 to get the solution onM = Maps(X ,∆L−1).
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expressed in the general non-parametric form, but has a straightforward guarantee

if f is represented in a parametric form.

5.3.1 Existence and Uniqueness of The Geometric Flow

In ODE theory, the fundamental theorem on existence and uniqueness of solutions to

first-order ODEs with initial condition is known as the Picard-Lindelöf Theorem [24,

Chpater 10]. A proof for the situation of gradient flow equations can be found

in [44, Chapter 17], where the arguments depend on two requirements, the Lipschitz

continuity of the vector field and the Banach Fixed Point Theorem [24, Chapter 10.1].

As a result, to guarantee a short time3 existence and uniqueness of the solution to our

gradient flow equation (5.28), we have to ensure both requirements for our gradient

flow setup.

To ensure that our functional space M′ is a Banach space, we simply put the

following Sobolev norm with sufficiently large s, and its induced topology on M′,

‖f‖s =

(∑
|α|<s

∫
X
|∂αf |2dx

) 1
2

. (5.29)

Then M′ becomes a s-Sobolev space, denoted as Hs. Since each Sobolev space is

a Banach space, the Banach Fixed Point Theorem applies to M′. To determine a

suitable choice of s, recall that the Sobolev embedding theorem [13] gives a continuous

inclusion i : Hs → Cs−N/2−δ for any δ > 0. Given that we only need up to second

order derivatives to construct ∇Pf t to solve the ODE (5.28), any integer s > 2+N/2

will work us.

On the other hand, the Lipschitz continuity of our geometric gradient vector

3i.e., for f0 given in (5.28), there exists some ε(f0), s.t. the solution to (5.28) exists for |t| < ε.
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field ∇PG is hard to show. By (4.6), ∇PG is the last L-components of Tr II.4

Given f , g ∈ M′, such that ‖f − g‖s < ε for some ε > 0, then there must exist

some ε′ > 0, such that ‖Tr IIgr(f) − Tr IIgr(g)‖s−2 < ε′, with lim
ε→0

ε′ = 0, since Tr II

involves second partial derivatives. However, there is in general no guarantee that

‖Tr IIgr(f)−Tr IIgr(g)‖s < ε′′, for any ε′′ > 0. Therefore ∇PG is not continuous in the

s-norm, so it is not Lipschitz continuous. As a result, the existence and uniqueness

theorem of ODE does not apply directly to our regularization term PG, i.e., the

short time existence of gradient flow lines is not automatic when we put Banach

space norm on M′.

Also note that if we just put the Fréchet topology on M′, as we have done in

§3.3.1, since we do not have a Fixed Point Theorem in Fréchet spaces, it is still

unclear if the short time existence of gradient flow lines still holds there.

Parametric representation of f

We now show that the Lipschitz continuity is not a concern for applying our

algorithm in practice, where function f is always represented as some parametric

form. To see this, consider some parametric representation f(x) = f(w;x), where

w ∈ W ⊂ Rp is the vector of parameters in representing f . Let F : W →M′ be the

mapping from the parameter space W to the functional spaceM′, i.e., fw = F (w),

then we have the following commutative diagram,

W M′

R

F

P ′
G=PG◦F

PG

Let {ei} = { ∂
∂xi
}pi=1 denotes the standard basis of Rp, then the ODE (5.28) for

4Tr II is the trace of second fundamental form of gr(f).
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parameter space W becomes

dwt

dt
= −∇P ′G,wt ,

f 0 = F (w0) ≡ (
1

L
, . . . ,

1

L
). (5.30)

From the above commutative diagram,

∇P ′G,w =
∂P ′G
∂wi

ei, (5.31)

where
∂P ′

G

∂wi
can be computed by

∂P ′G
∂wi

∣∣∣∣
w

= ∇P ′G,w
Rp· ei

= dP ′G,w(ei)

= d(PG ◦ F )w(ei)

= dPG
(
dFw(ei)

)
= ∇PG,fw

M′

· F∗ei

= Tr IILgr(fw)

M′

· d

dt

∣∣∣∣
w

fw+tei , (5.32)

where F∗ denotes the pushforward associated with F,
Rp· denotes the inner product

on RL, and
M′

· denotes the L2 metric on M′. For compact W and smooth F, the

component functions of ∇P ′G,w given by Eqn. (5.32) are Lipschitz continuity. As a

result, by applying the Picard-Lindelöf Theorem, the existence and uniqueness of

geometric gradient flow lines is guaranteed for parametric representation of f .
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5.3.2 Existence for the Empirical Term

The empirical term is in general expressed as the following form,

PTm(f) =
m∑
i=1

`(f(xi), yi), (5.33)

where ` is some classification loss function. If f is in this general non-parametric

form, the gradient flow equation (5.28) applies on the infinite dimensional function

space M′, then the Lipschitz continuity of the gradient vector field ∇PTm does not

hold. To give an example, consider the following Quadratic loss defined in §4.2.1,

PTm(f) =
m∑
i=1

‖f(xi)− zi‖2, (5.34)

where zi is the one-hot vector corresponding to the ground truth label yi. Then for

any v ∈ TfM′, the differential dPTm,f : TfM′ → R is

dPTm,f (v) =
d

dt

∣∣∣∣
t=0

PTm(f + tv)

=
d

dt

∣∣∣∣
t=0

m∑
i=1

L∑
j=1

(
(f + tv)j(xi)− zji

)2

= 2
∑
i,j

(
f j(xi)− zji

) d
dt

∣∣∣∣
t=0

(f + tv)j(xi)

= 2
∑
i,j

(
f j(xi)− zji

)
vj(xi)

= 2
m∑
i=1

(
f(xi)− zi

)
· v(xi)

= 2

∫
X

m∑
i=1

(
f(xi)− zi

)
δxi · v(x)dvolx

=
〈
2

m∑
i=1

(
f(xi)− zi

)
δxi ,v

〉
, (5.35)
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where the last equality follows our choice of the Riemannian metric (3.8), and δxi is

the delta function at xi. This gives

∇PTm(f) = 2
m∑
i=1

(
f(xi)− zi

)
δxi . (5.36)

It is obvious that ∇PTm is a discontinuous vector field. As a result, even short time

existence of gradient flow lines for the empirical term PTm is not guaranteed. This

is in fact not surprising, given that the empirical loss term (5.33) is in general not

designed for the infinite dimensional space of non-parametric functions, but for the

finite dimensional vector space of parameters, by which the functions are represented.

This is also one of the main reasons that we can only show consistency for a specific

empirical loss in §5.1, where the existence of gradient flow lines is guaranteed.

However, this is not a concern for applying our algorithm in practice, where

function f is always represented as some parametric form. To see this, consider

some parametric representation f(x) = f(w;x), where w ∈ Rp is the vector of

parameters in representing f . Then a direct computation gives the gradient of the

empirical term (5.34) with respect to w,

∇PTm(wj) =
∂PTm
∂wj

= 2
m∑
i=1

(
f(w;x)− zi

)∂f(w;x)

∂wj
. (5.37)

Then for PTm , the gradient flow equation (5.28) becomes a standard ODE on vector

space Rp, the gradient function ∇PTm defined above is Lipschitz continuous, so the

existence and uniqueness of gradient flow lines is guaranteed.

Combining the analysis from §5.3.1, in our practical algorithms, where f is al-

ways represented as some parametric form, the short time existence and uniqueness

of solutions of the gradient flow equation (5.28), for P = PTm + λPG, is always
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guaranteed. This lays the foundation for applying our regularization approach in

practice, since algorithms applied to applications in the next chapter are therefore

guaranteed to reflect our geometric intuition to fit the training data in a volume

decreasing manner.

5.4 Extension to Nonlinear Input Spaces

To extend the input space from X ⊂ RN to a finite dimensional compact manifold

N , we can use coordinate charts and a partition of unity [44] to put a Sobolev norm

on the space Maps(N ,RL). We still get a Banach space, and all the results and

analysis of previous sections of this chapter remain. In fact, the key is that there

exists a finite number of coordinate charts on N . If this is true, even for non-compact

manifolds, all previous results still hold. For instance, even non-compact Lie groups

have a finite number of charts.

5.5 Summary

In this chapter, we discuss some theoretical aspects and extensions of our geomet-

ric approach. Firstly, with a particular empirical loss function, we establish Bayes

consistency for our geometric regularization scheme, under some mild initialization

assumptions, namely that the initial estimator lies in the stable manifold of a global

minimum point of the vector field. Secondly, we discuss the theory and formulation

of an alternative geometric regularizer based on Riemannian curvature. This has im-

plications for a more sophisticated regularization method for future study. Thirdly,

we discuss the short time existence and uniqueness of gradient flow lines for both the

empirical term and the geometric regularization term. We point out that existence
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of the gradient flow, in a strict mathematical sense, is not automatic, and give a par-

ticular topology such that the short time existence and uniqueness of gradient flow

lines for the regularization term has a theoretical guarantee. For the empirical term,

we have shown that even short time existence may not hold in general for a non-

parametric representation of f . However, existence holds in general for parametric

representations of f . Combining the results on both terms, the short time existence

and uniqueness of gradient flow lines of our regularized loss minimization formula is

guaranteed in practice, where f is always represented as some parametric form. This

provides a theoretical guarantee that our algorithm applied in applications, such as

those reported in the next chapter, is applicable and matches the geometric intuition

and theory we have proposed. Lastly, we discuss the extension of our geometric

perspective and regularization approach to situations where the input space is a sub-

manifold with local charts, rather than a Euclidean space. In particular, we point

out that the key point for realizing this extension is the existence of a finite number

of coordinate charts on the input submanifold.
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Chapter 6

Applications

In previous chapters, we focus on introducing the intuition, methodology, and math-

ematical foundations of our geometric regularization scheme for supervised learning

of classifiers. As a result, we have been treating the class probability estimator f

as a general function from X to ∆L−1, without specifying any particular representa-

tion of f . In applications, however, we always need some particular representation

model of f in order to design applicable algorithms. In this chapter, we discuss the

application of the proposed geometric regularization approach in two representative

classification models, i.e., the linear combination of radial basis functions (RBFs)

and feedforward (deep) neural networks, such as convolutional neural networks. For

each model, we introduce specific formulations for applying our regularization to

that model, and design specific algorithms incorporating our regularization into the

training process of that model. Implementation details and practical concerns are

also discussed for both models. We test both models first on simple simulated exam-

ples, in order to validate our intuition and get visible insight about our method, and

then on real-world benchmarks, in order to study the effectiveness of our method

quantitatively.

Roadmap for this chapter

We present the application of our regularization approach to an RBF-based model in
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§6.1 and to feedforward (deep) neural networks in §6.2. For §6.1, specific formulations

and algorithms for the RBF-based model are introduced in §6.1.1, qualitative and

quantitative experiments are then reported and discussed in detail in §6.1.2 and §6.1.3

respectively. For §6.2, specific formulations and algorithms for general feedforward

(deep) neural networks are introduced in §6.2.1, followed by technical details for an

efficient implementation in §6.2.2, and the qualitative and quantitative experiments

are then reported and discussed in detail in §6.2.3 and §6.2.4 respectively.

6.1 RBF Representation

In this section, we illustrate our approach under an RBF representation of f . Note

that RBF’s are also used by previous geometric classification methods [83, 46, 45].

6.1.1 Formulations and Algorithm

Given values of f are probabilistic vectors, it is common to represent f as a “softmax”

output of RBFs, i.e.

f j =
eh

j∑L
l=1 e

hl
, where hj =

m∑
i=1

ajiϕi(x), for j = 1, . . . , L, (6.1)

where ϕi(x) = e−
1
c
‖x−xi‖2 is the RBF function centered at the training sample xi,

with kernel width parameter c.

Estimating f becomes an optimization problem for the m× L coefficient matrix

A = (a`i). The following equation determines A:

[h(x1), . . . ,h(xm)]T = GA, where Gij = ϕj(xi). (6.2)

To plug this RBF representation into our gradient flow scheme, the gradient vector
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field ∇Pf is evaluated at each sample point xi, and A is updated by

A← A− τG−1 [∇Ph(x1), . . . ,∇Ph(xm)]T , (6.3)

where τ is the step-size parameter, and

∇Ph(xi) =

[
∂f

∂h

]T
xi

∇Pf (xi). (6.4)

Here ∇Ph(xi) denotes the gradient vector field with respect to h evaluated at xi,

and the L×L Jacobian matrix
[
∂f
∂h

]
xi

can be obtained in closed form from (6.1). In

the following subsections, we give exact forms of the empirical penalty PTm and the

geometric penalty PG, and discuss the computation of ∇Ph for both penalty terms.

6.1.1.1 The empirical penalty PTm

We give detailed formulas for gradient vectors of the two losses introduced in §4.2.1,

under the RBF representation of f .

Quadratic loss. As defined in Eqn. (4.2), the quadratic loss is given by

PTm(f) =
m∑
i=1

‖f(xi)− zi‖2, (6.5)

where zi is the one-hot vector corresponding to the ground truth label of xi. The

gradient vector with respect to f evaluated at xi is

∇PTm,f (xi) = 2(f(xi)− zi). (6.6)
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Under the RBF representation (6.1), the gradient vector w.r.t. h evaluated at xi is

∇PTm,h(xi) = 2

[
∂f

∂h

]T
xi

(f(xi)− zi), (6.7)

where
[
∂f
∂h

]T
xi

is evaluated as in (6.4).

Cross-entropy loss. As defined in Eqn. (4.4), the cross-entropy loss is given by

PTm(f) = −
m∑
i=1

L∑
`=1

z`i log f `(xi). (6.8)

Under the RBF representation (6.1), the gradient vector field with respect to h

evaluated at xi is

∇PTm,h(xi) = f(xi)− zi. (6.9)

6.1.1.2 The geometric penalty PG

As discussed in §4.2.2, the geometric penalty is

PG(f) =

∫
gr(f)

dvol =

∫
gr(f)

√
det(g)dx1 . . . dxN , (6.10)

and the gradient is

∇PG,f = VG,f = −Tr IIL. (6.11)

Under the RBF representation (6.1), the geometric gradient with respect to h is

∇PG,h = VG,h = −
[
∂f

∂h

]T
Tr IIL. (6.12)

Evaluation of
[
∂f
∂h

]
and Tr IIL at xi leads to ∇PG,h(xi).
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6.1.1.3 Algorithm summary

Algorithm 2 gives a summary of the classifier learning procedure. The input to the

algorithm is the training set Tm, the RBF kernel width c, the trade-off parameter

λ, and the step-size parameter τ. For initialization, our algorithm first initializes the

function values of h and f for every training point, and then constructs the matrix

G and solves for A by (6.2). In the subsequent steps, at each iteration our algorithm

first evaluates the gradient vector field∇Ph at every training point, and then updates

the coefficient matrix A by (6.3). For the overall penalty function P = PTm + λPG,

we compute the total gradient vector field ∇Ph evaluated at xi as follows.

For quadratic loss, it is:

∇Ph(xi) =

[
∂f

∂h

]T
xi

(
2(f(xi)− zi)− λTr IILxi

)
. (6.13)

For cross-entropy loss, it is:

∇Ph(xi) = f(xi)− zi − λ
[
∂f

∂h

]T
xi

Tr IILxi . (6.14)

Our algorithm iterates until it converges within a threshold or reaches the maxi-

mum iteration number.

The same algorithm applies to both the quadratic loss and the cross-entropy loss.

To evaluate the total gradient vectors ∇Ph(xi) in each iteration, for the quadratic

loss, we use (6.7) and (6.12) to compute the total gradient vector (6.13); for the

cross-entropy loss, we use (6.9) and (6.12) instead to compute (6.14). The remaining

steps of the procedure are exactly the same for both loss functions.
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The final predictor learned by our algorithm is given by

F (x) = argmax{f `(x), ` ∈ {1, 2, · · · , L}}. (6.15)

Algorithm 2 Geometric regularized classification for RBF representation

Input: training data Tm = {(xi, yi)}mi=1, RBF kernel width c, trade-off parameter
λ, step-size τ
Initialize: h(xi) = (1, . . . , 1),f(xi) = ( 1

L
, . . . , 1

L
), ∀i ∈ {1, · · · ,m}, construct

matrix G and solve A by (6.2)
for t = 1 to T do

– Evaluate the total gradient vector ∇Ph(xi) at every training point accord-
ing to (6.13) or (6.14).

– Update the A by (6.3).
end for
Output: class probability estimator f given by (6.1).

6.1.2 Qualitative Experiments on Synthetic Data

We first test our RBF-based implementation on the toy example of 2D classifi-

cation that illustrates our physical model in §3.2, where training points are sam-

pled uniformly within the region [−30, 30] × [−30, 30], and labeled by the function

y = sign(20 − ‖x‖2). As shown in Figure 6.1, under the RBF representation (6.1),

our geometric regularization technique is effective in reducing the “local oscillations”

of the surface (submanifold) corresponding to the class probability estimator, and as

a byproduct, the decision boundary, which is a level set of the surface, is also getting

smoother.

We also run an experiment under the same setup, but reverse the geometric

gradient vector at every iteration. (Note that the same simplex constraint introduced

in §4.2.3 is also enforced to make sure that the reversed gradient vector also lies in

the simplex.) As shown in Figure 6.2, the reversed gradient vector does increase the
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iter 1 iter 1

iter 20 iter 20

iter 40 iter 40

Figure 6.1: Example of binary learning with RBF-based implementation, where input
space X is 2d. Training points are sampled uniformly within the region [−30, 30]×
[−30, 30], and labeled by the function y = sign(20 − ‖x‖2). We plot the surface
obtained by our method in the right column and the corresponding decision boundary
in the left column. The vertical axis of the right image is the 1-simplex ∆1 ⊂ R2.
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iter 1 iter 1

iter 40 iter 40

iter 80 iter 80

Figure 6.2: Example of binary learning with reversed geometric gradient under RBF
representation, where input space X is 2d. Training points are sampled uniformly
within the region [−30, 30] × [−30, 30], and labeled by the function y = sign(20 −
‖x‖2). We plot the surface obtained by our method in the right column and the
corresponding decision boundary in the left column. The vertical axis of the right
image is the 1-simplex ∆1 ⊂ R2.
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amount of local oscillations of the surface, and gradually tears apart the positive

region of the input space, which is consistent with the cartoon motivation example

of Figure 1.2 introduced in §1.2.

6.1.3 Quantitative Experiments on Benchmarks

To evaluate the effectiveness of the proposed regularization approach, we compare

our RBF-based implementation with two groups of related classification methods.

The first group of methods involve standard RBF-based methods that use regu-

larizers different from ours. The second group of methods involve other geometric

regularization methods.

In particular, the first group includes the Radial Basis Function Network (RBN),

SVM with RBF kernel (SVM) and the Import Vector Machine (IVM) [91] (a greedy

search variant of the standard RBF kernel logistic regression classifier). Note that

both SVM and IVM use RKHS regularizers and the IVM also uses the similar cross-

entropy loss as Ours-CE.

The second group includes the Level Learning Set classifier [15] (LLS), the Geo-

metric Level Set classifier [83] (GLS) and the Euler’s Elastica classifier [46, 45] (EE).

Note that both GLS and EE use RBF representations and EE also uses the same

quadratic distance loss as Ours-Q.

We test both the quadratic loss version (Ours-Q) and the cross-entropy loss ver-

sion (Ours-CE) of our implementation.

6.1.3.1 UCI datasets

We tested our classification method on four binary classification datasets and four

multiclass classification datasets. Given that [83] has covered several methods on our
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comparison list and their implementation is publicly available, we chose to use the

same datasets as [83] and carefully followed their experimental setup. The tenfold

cross-validation error is reported. For each of the ten trials, the kernel-width constant

c and tradeoff parameter λ are found using fivefold cross-validation on the training

folds. All dimensions of input sample points are normalized to a fixed range [0, 1]

throughout the experiments. We select c from the set of values {1/25, 1/24, 1/23,

1/22, 1/2, 1, 2, 4, 8} and λ from the set of values {1/1.54, 1/1.53, 1/1.52, 1/1.5, 1, 1.5}

that minimize the fivefold cross-validation error. The step-size τ = 0.1 and iteration

number T = 5 are fixed over all datasets. We used the same settings for both loss

functions.

Table 6.1: Tenfold cross-validation error rate (percent) on four binary and four
multiclass classification datasets from the UCI machine learning repository. (L,N)
denote the number of classes and input feature dimensions respectively. We compare
both the quadratic loss version (Ours-Q) and the cross-entropy loss version (Ours-
CE) of our method with 6 RBF-based classification methods and (or) geometric
regularization methods: SVM with RBF kernel (SVM), Radial basis function network
(RBN), Level learning set classifier [15] (LLS), Geometric level set classifier [83]
(GLS), Import Vector Machine [91] (IVM), Euler’s Elastica classifier [46, 45] (EE).
The mean error rate averaged over all eight datasets is shown in the bottom row.
Top performance for each dataset is shown in bold.

Dataset(L,N) RBN SVM IVM LLS GLS EE Ours-Q Ours-CE

Pima(2,8) 24.60 24.12 24.11 29.94 25.94 23.33 23.98 24.51

WDBC(2,30) 5.79 2.81 3.16 6.50 4.40 2.63 2.63 2.63

Liver(2,6) 35.65 28.66 29.25 37.39 37.61 26.33 25.74 26.31

Ionos.(2,34) 7.38 3.99 21.73 13.11 13.67 6.55 6.83 6.26

Wine(3,13) 1.70 1.11 1.67 5.03 3.92 0.56 0.00 0.00

Iris(3,4) 4.67 2.67 4.00 3.33 6.00 4.00 3.33 3.33

Glass(6,9) 34.50 31.77 29.44 38.77 36.95 32.28 29.87 29.44

Segm.(7,19) 13.07 3.81 3.64 14.40 4.03 8.80 2.47 2.73

all-avg 15.92 12.37 14.63 18.56 16.57 13.06 11.86 11.90

Table 6.1 reports the results of this experiment. The top performer for each
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dataset is marked in bold, and the averaged performance of each method over all

testing datasets is summarized in the bottom row. The numbers for RBN, LLS and

GLS are copied from Table 1 of [83]. Results for SVM and IVM are obtained by

running publicly available implementations for SVM [16] and IVM [64]. Results for

EE are obtained by running an implementation provided by the authors of [46]. When

running these implementations, we followed the same experimental setup as described

above and exhaustively searched for the optimal range for the kernel bandwidth and

the trade-off parameter via cross-validation.

As shown in the last row of Table 6.1, two versions of our approach are overall the

top two performers among all reported methods. In particular, Ours-Q attains top

performance on four out of the eight benchmarks, Ours-CE attains top performance

on three out of the eight benchmarks. The performance of the two versions of our

method are very close, which shows the robustness of our geometric regularization

approach cross different loss functions for classification. Note that three pairs of

comparisons, IVM vs Ours-CE, GLS vs Ours-Q/Ours-CE, and EE vs Ours-Q are of

particular interest. We will discuss them in detail below.

The IVM method of kernel logistic regression uses the same RBF-based imple-

mentation and very similar cross-entropy loss as our cross-entropy version Ours-CE,

and both methods handle the multiclass case inherently. The main difference lies

in regularization, i.e., the standard RKHS norm regularizer vs. our geometric reg-

ularizer. Ours-CE outperforms IVM on six of the eight benchmarks in Table 6.1,

and achieves equal performance on one of the remaining two, and is only slightly

behind on “PIMA”. The overall superior performance of Ours-CE demonstrates the

advantage of the proposed geometric regularization over the standard RKHS norm

regularization.
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The GLS method uses the same RBF-based implementation as ours and also

exploits volume geometry for regularization. However, there are key differences be-

tween the two regularization techniques. GLS measures the volume of the decision

boundary supported in X , while our approach measures the volume of a submanifold

supported in X ×∆L−1 that corresponds to the class probability estimator. Our reg-

ularization technique handles the binary and multiclass cases in a unified framework,

while the decision boundary based techniques, such as GLS (and EE), were inher-

ently designed for the binary case and rely on a binary coding strategy to train log2 L

decision boundaries to generalize to the multiclass case. In our experiments, both

Ours-Q and Ours-CE outperform GLS on all the benchmarks we have tested. This

demonstrates the effectiveness of exploiting the geometry of the class probability in

addressing the “small local oscillation” for classification.

The EE method of Euler’s Elastica model uses the same RBF-based implemen-

tation and the same quadratic loss as our quadratic loss version Ours-Q. The main

difference, again, lies in regularization, i.e., a combination of 1-Sobolev norm and

curvature penalty on the decision boundary vs. our volume penalty on the submani-

fold corresponding to the class probability estimator. Since EE adopts a combination

of sophisticated geometric measures on the decision boundary and level sets of the

classification function, which specifically fits the binary case, it achieves top perfor-

mance on binary datasets. However, the geometry of the class probability for general

classification, which is captured by our approach, cannot be captured by decision

boundary based techniques. That is the reason why Ours-Q, a general scheme for

both the binary and multiclass case, outperforms EE on all four multiclass datasets,

while it still achieves top performance on binary datasets. This again demonstrates

our geometric perspective and regularization approach that exploits the geometry of
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the class probability.

6.1.3.2 Real-world datasets

To test the scalability of our method to high-dimensional and large-scale problems,

we also conducted experiments on two real-world datasets, i.e., the Flickr Material

Database (FMD) [72] for image classification and the MNIST [43] Database of hand-

written digits. Exemplar input images of both datasets are shown in Figure 6.3, and

the results are shown in Figure 6.4.

(a) Flickr Material Database (b) MNIST handwritten digits

Figure 6.3: Exemplar input images from the Flickr Material Database and MNIST
handwritten digits.

FMD (4096 dimensional). The FMD dataset contains 10 categories of images

with 100 images per category. We extract image features using the SIFT descrip-

tor augmented by its feature coordinates, implemented by the VLFeat library [84].

With this descriptor, Bag-of-visual-words uses 4096 vector-quantized visual words,

histogram square rooting, followed by L2 normalization. We compare our method

with an SVM classifier with RBF kernels, using exactly the same 4096 dimensional

feature. Our method achieves a correct classification rate of 48.8% while the SVM

baseline achieves 46.4%. Note that while recent work (Qi et al., 2015; Cimpoi et
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(a) Flickr Material Database (b) MNIST handwritten digits

Figure 6.4: Testing accuracy results on the Flickr Material Database and MNIST
handwritten digits.

al., 2015) reports better performance on this dataset, their effort focuses on better

feature design, not on the classifier itself. The features used in those works, such as

local texture descriptors and CNN features, are more sophisticated than those used

in our experiments.

MNIST (60,000 samples). The MNIST dataset contains 10 classes (0 ∼ 9) of

handwritten digits with 60, 000 samples for training and 10, 000 samples for test-

ing. Each sample is a 28 × 28 grey scale image. We use 1000 RBFs to represent

our function f , with RBF centers obtained by applying K-means clustering on the

training set. Note that our learning and regularization approach still handles all the

60, 000 training samples as described by Algorithm 2. Our method achieves an error

rate of 2.74%. While there are many results reported on this dataset, we feel that

the most comparable method with our representation is the Radial Basis Function

Network with 1000 RBF units [43], which achieves an error rate of 3.6%. This ex-
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periment shows the potential that our geometric regularization approach scales to

larger datasets.

6.2 Deep Neural Networks

While deep neural networks have achieved great success in many machine learning

tasks, some work [79, 56] shows that deep neural networks are vulnerable to certain

perturbations of the input. We propose in this thesis a new geometric perspective on

overfitting which leads to a regularization technique that exploits the geometry of the

class probability estimator with “small local oscillations” in a neighborhood of the

training data. Our motivation is closely related to “adversarial examples” [79, 56]

and it is interesting to explore whether this geometric regularization scheme can

be generalized to alleviate the vulnerability of deep neural networks to adversarial

examples.

In this section, we derive specific formulations for applying our geometric regu-

larization technique to general (deep) feedforward neural networks, including convo-

lutional neural networks. In particular, we have designed a closed-form algorithm for

deep architectures that incorporates the geometric regularization into the standard

forward/backward procedure of network training. We test our implementation on

state-of-the-art network models using classification benchmarks with and without

adversarial examples.

6.2.1 Formulations and Algorithm

As in Figure. 6.5, denote the input to the network by x = (x1, x2, . . . , xd) ∈ Rd, and

the activations of the last layer (before softmax) of the network by z = (z1, . . . , zK).

The softmax output is f = (f 1, f 2, . . . , fK), where f i = ez
i
/
∑K

j=1 e
zj .
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Figure 6.5: A feedforward neural network.

6.2.1.1 Formulation

Given a training set Xn = {x1, . . . ,xn} ⊂ X and corresponding label set Yn =

{y1, . . . , yn} ⊂ Y , we consider the following objective function for regularized network

training,

P(f(Θ);Xn, Yn) = PL(f(Θ);Xn, Yn) + λPG(f(Θ)), (6.16)

where Θ denotes the set of all network parameters, and PL is some standard classi-

fication loss. Our regularization function for the network is

PG(f) =

∫
gr(f)

dvol. (6.17)

Minimization of P with respect to Θ can be solved by gradient descent methods,

where ∇PΘ needs to be computed at every gradient step. For a neural network

architecture, this is done by back propagating the initial gradient ∇Pf . The com-

putation of ∇PL,f is straightforward for standard classification loss, such as the
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cross-entropy losses. ∇PG,f is given by Theorem 1:

∇PG,f = −(g−1)ij
(
f 1
ji − (g−1)rsfkrsf

k
i f

1
j , . . . , f

K
ji − (g−1)rsfkrsf

k
i f

K
j

)
, (6.18)

where fki = ∂fk

∂xi
, and the Jacobian of f is denoted by

J =

[
∂fk

∂xi

]
K×d

=
(
fki
)k=1,...,K

i=1,...,d
, (6.19)

fkij = ∂2fk

∂xi∂xj
, and the Hessian of fk for some fixed k is denoted by

Hk =

[
∂2fk

∂xi∂xj

]
d×d

=
(
fkij
)
i,j=1,...,d

, (6.20)

the Riemannian metric matrix is denoted by

G = (gij)i,j=1,...,d = I + JTJ, (6.21)

where gij = δij + fki f
k
j , and (g−1)ij = G−1.

From Eqns. (6.18) and (6.21), for the proposed regularized training of neural

networks, the extra information needed is the Jacobian J and the Hessian Hk for all

k. We describe in §6.2.2 an efficient method to compute both J and Hk for general

feedforward networks.

6.2.1.2 Algorithm Summary

Algorithm 3 gives a summary of the procedure of (deep) network training with ge-

ometric regularization for a mini-batch. The input to the network N is a training

batch Bm, with current trade-off parameter λ and learning rate α. First, we do a

standard batch forward to get the network output, and feed the network output
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together with ground truth labels into the loss layer to get the initial loss gradient

∇PL,f (Bm) for this batch. Then for each data point xi in the batch, we need to get

its Jacobian matrix Ui =
[
∂zl

∂xj

]
x=xi

and Hessian tensor Ti =
[

∂2zl

∂xj∂xk

]
x=xi

. Feeding

zi, Ui, and Ti into the regularization module, we obtain the corresponding initial

gradient ∇PG,f (xi), where ∇PG,f (xi) is the i-th row of the regularization gradient

∇PG,f (Bm) for the whole batch. The last step is a standard batch back-propagation

with an initial gradient matrix combining contributions from both the classification

loss and the geometric regularization, i.e.∇PL,f (Bm) + λ∇PG,f (Bm). The network is

then updated following the standard stochastic gradient descent (SGD) strategy.

Computational details of the geometric regularization module will be discussed

in next subsection.

Algorithm 3 Training with Geometric Regularization - for one mini-batch

Input: A mini-batch of training data Bm = {(xi, yi)}mi=1, feedforward network N ,
trade-off parameter λ, and learning rate τ.
Step 1: Forward pass of Bm in N to get output matrix Z =

(
z1, z2, . . . ,zm

)
.

Step 2: Feed Z and the corresponding labels into the softmax + classification
loss module to get the initial loss gradient ∇PL,f (Bm) for the whole batch.
Step 3:

for i = 1 to m do
- Compute the Jacobian Ui =

[
∂zl

∂xj

]
x=xi

and Hessian tensor Ti =[
∂2zl

∂xj∂xk

]
x=xi

through automatic differentiation.

- Feed zi, Ui, and Ti into the geometric regularization module to get the
initial regularization gradient ∇PG,f (xi).

end for
Step 4: Back-propagate ∇PL,f (Bm) + λ∇PG,f (Bm) in N and update the weights
of N using learning rate τ.
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6.2.2 Computational Details

We now discuss how to efficiently compute the gradient of the regularization term in

order to initialize a standard back-propagation.

6.2.2.1 Jacobian and Hessian

First, it is straightforward to compute the softmax output f(x) = f(z(x)),

Jacobian

∂fk

∂xi
=

∂fk

∂zj∑
j=1

∂zj

∂xi
,

=⇒ J =

[
∂fk

∂xi

]
K×d

=

[
∂fk

∂zj

]
K×K

[
∂zj

∂xi

]
K×d

= ∇U, (6.22)

where ∇ =
[
∂fk

∂zj

]
K×K

is the Jacobian of softmax function f(z), and U =
[
∂zj

∂xi

]
K×d

is

the Jacobian of the network function z(x). For fixed k,

Jk =

[
∂fk

∂zj

]
1×K

[
∂zj

∂xi

]
K×d

= ∇T
kU, (6.23)

where ∇T
k =

[
∂fk

∂zj

]
1×K

is the k-th row of ∇.

Hessian

∂2fk

∂xi∂xj
=

∂

∂xj

(
∂fk

∂xi

)
=

∂

∂xj

( K∑
l=1

∂fk

∂zl
∂zl

∂xi

)

=
K∑
l=1

∂zl

∂xi
∂

∂xj

(
∂fk

∂zl

)
+

K∑
l=1

∂fk

∂zl
∂2zl

∂xi∂xj

=
K∑
l=1

∂zl

∂xi

( K∑
m=1

∂

∂zm
(∂fk
∂zl
)∂zm
∂xj

)
+

K∑
l=1

∂fk

∂zl
∂2zl

∂xi∂xj
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=
K∑
l=1

∂zl

∂xi

( K∑
m=1

∂2fk

∂zl∂zm
∂zm

∂xj

)
+

K∑
l=1

∂fk

∂zl
∂2zl

∂xi∂xj

=⇒ ∀k,Hk =

[
∂2fk

∂xi∂xj

]
d×d

=

[
∂zl

∂xi

]T
d×K

[
∂2fk

∂zl∂zm

]
K×K

[
∂zm

∂xj

]
K×d

+

[
∂fk

∂zl

]
1×K

[
∂2zl

∂xi∂xj

]
K×d×d

= UT∇2
kU +∇T

k T, (6.24)

where ∇2
k =

[
∂2fk

∂zl∂zm

]
K×K

is the Hessian of the k-th component of the softmax

function f(z), and T =
[

∂2zl

∂xi∂xj

]
K×d×d

is the Hessian of the network function z(x).

According to Eqn. (6.22) and (6.24), to compute J and Hk, we only need the

matrix U =
[
∂zm

∂xj

]
K×d, the tensor T =

[
∂2zl

∂xi∂xj

]
K×d×d

, the softmax Jacobian ∇ =[
∂fk

∂zj

]
K×K

, and the softmax Hessian ∇2
k =

[
∂2fk

∂zl∂zm

]
K×K

.

Computation of ∇ and ∇2
k

∇ and ∇2
k can be computed explicitly at the softmax layer.

∂fk

∂zi
= δki f

k − fkf i, (6.25)

∂2fk

∂zi∂zj
= δkijf

k − δijfkf i − δki f if j − δkj f if j + 2f if jfk, (6.26)

where δkij = 1{i=j=k}.

Computation of U

U can be computed by a standard forward pass followed by a back propagation

starting from the last layer of neurons (before softmax), where the input gradients

to the last layer of neurons is a K ×K identity matrix.
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6.2.2.2 Efficient formula of ∇PG,f

Combining Eqn. (6.18), (6.22) and (6.24), the k-th component of ∇PG,f can be

computed by

∇PkG,f = G−1 •
(
UT∇2

kU
)
−

K∑
l=1

(
G−1 • (UT∇2

lU)
)(
∇T
l UG

−1UT∇k

)
= Tr

(
G−1UT∇2

kU +G−1∇kT
)

−
K∑
l=1

Tr
(
G−1UT∇2

lU +G−1∇lT
)
·
(
∇T
l UG

−1UT∇k

)
, (6.27)

where • denotes the matrix inner product, and Tr denotes the trace of the matrix.

Computation of G−1UT

There are two ways to speed up the computation of G−1UT , with the preferred

method depending on the input and output dimension of the network.

The first way involves solving linear equations rather than directly computing

G−1. For G−1UT = X, i.e. G−1(u1, . . . ,uK) = (x1, . . . ,xK), solve each xi via the

linear system

G−1ui = xi =⇒ solve Gxi = ui. (6.28)

This way is preferred when both d and K are very large.

The second method uses the Woodbury formula on Eqn. (6.21) and (6.22): G−1

can be computed by

G−1 = I − JT (I + JJT )−1J. (6.29)

Although G is a d × d matrix, Eqn. (6.29) only involves the inversion of a K × K

matrix, which is much more efficient if K � d.

Sampling Techniques for Computation of ∇2
kU and G−1∇lT

For matrices (∇2
k)K×K , UK×d, computing the product ∇2

kU by definition requires
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O(dK2) arithmetic operations. In order to speed it up, a variety of randomized

algorithms to approximate the product have been proposed, depending on the scale

of our problem and the available computational resources. We give one example of

using such a sampling-based algorithm.

If we represent the two matrices in vector form, i.e., let ∇2
k = (a1,a2, ...,aK) and

U = (uT1 ,u
T
2 , ...,u

T
K)T , then

∇2
kU =

K∑
i=1

aiu
T
i , (6.30)

where each summand is just the outer product of two vectors, which is cheap to

compute. The basic idea is to do sampling from these vector outer products, rather

than computing all of them.

We define the sampling probability distribution as follows: for each outer product

pair (ai,u
T
i ), let

pi =
‖ai‖2 + ‖ui‖2

‖∇2
k‖

2
F + ‖U‖2

F

, (6.31)

where ‖∇2
k‖

2
F =

∑K
i=1‖ai‖

2 and ‖U‖2
F =

∑K
i=1‖ui‖

2. It is easy to check that the

summation of the pi equals 1, which shows it is indeed a distribution.

We sample
aiu

T
i

pi
with probability pi and repeat L times with replacement. Denote

each sample as Ri. It is easy to see that E[Ri] = ∇2
kU . For R =

∑L
i=1Ri
L

, it can be

shown that even choosing L relatively small (L ≈ lnK), R is a good approximation

of ∇2
kU. For more details of this sampling algorithm, please refer to [81].

The same technique also works for G−1∇lT, where both G−1 and ∇lT are d× d

matrices, and computing their product requires O(d3) arithmetic operations. Using

the above approximation technique will reduce the number of arithmetic operations

to O(Ld2), where L ≈ ln d.
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6.2.2.3 Difficulties in Computing T

The rectified linear unit (ReLU) [55] function is the commonly-used activation func-

tion in state-of-the-art deep neural network models. There are two main advantages

of using the ReLU function as activations in neural networks, compared with previ-

ous activations, such as the sigmoid and the tanh function. First, the ReLU induces

sparsity of hidden units, which is found to be important for classification perfor-

mance [49]. Second, it does not suffer from the gradient vanishing effect and thus

can result in faster training [49]. For networks with ReLU activation functions,

∂2zl

∂xi∂xj
= 0 for all inputs x except for those that might hit the non-differentiable

singular points of some ReLU functions. For a single ReLU function, the measure of

the singular point is 0, which can be ignored in practical algorithms. However, for

deeper networks, such a singularity effect can be serious. To intuitively explain the

rationale, consider the following composition function of a linear transformation and

a ReLU activation,

f(x) = max{0,wTx+ b}. (6.32)

While the ReLU(x) = max{0, x} has only one singular point x = 0, f(x) as defined

above has a line of singularity, i.e., {x|wTx + b = 0}. As a result, the singularity

effect of ReLU activations will be “amplified” with the depth of the network and

cannot be ignored.

To address this singularity issue, ideally, we should rely on the automatic differ-

entiation approach [7, 8], such as back-propagation, to compute the first and second

derivatives of z(x). In practice, however, this computation can be quite slow for

second derivatives if the network is deep and the input dimension d is large. For our

first implementation, we use instead an approximation method by substituting T
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with αU l⊗U l, where U l =
[
∂zl

∂xi

]
d×1

is the l-th row of the network Jacobian U, and ⊗

denotes the outer product between two vectors. The scalar α is a small real number,

which is fixed as 0.001 in our experiments. Using this approximation, the extra cost

for our geometric regularization can be reduced to an extra back propagation pass

plus a function based on Eqn. (6.27) for every training example.

6.2.3 Qualitative Experiments on Synthetic Data

We use again the toy example of 2D classification. For the representation of f , we

follow the structure of Figure 6.5, where we use a two-layer fully connected network

to represent z(x). The training process follows Algorithm 3. Given the difficulties in

computing T as described in §6.2.2.3, we have tried two different types of activation

functions, the sigmoid activation, which is a smooth function and thus enables an

exact computation of T , and the ReLU activation, which depends on the substitution

approach described in §6.2.2.3.

Sigmoid activation

The purpose of testing on this toy example with sigmoid activations, is to provide

visible insights on what our regularization approach actually does to the prediction

functions represented by neural networks. As we will see, the neural network repre-

sentation does have its specialties and challenges compared to “shallow” representa-

tions, such as the RBF representation in §6.1.

Firstly, we would like to isolate the effect of geometric regularization from any

possible difficulties in the back-propagation process. For this purpose, we study the

effect of one geometric gradient step applied directly on the network output, by



89

subtracting the network output with the negative geometric gradient vector, i.e.,

f(x)←− f(x)− τ∇PG,f (x). (6.33)

The functional graph (surface) and its corresponding decision boundary before

and after one such gradient step is plotted in Figure 6.6. The smoothing effect on

the decision boundary, especially in the third row of zoom-in plots, indicates that

local oscillations of the surface corresponding to the network function are reduced,

which shows how our geometric gradient vector can have the expected effect on the

output function of networks, if the second derivatives of network functions can be

computed accurately.

Secondly, we add the back-propagation and network update into our process, i.e.,

after computing the geometric gradient∇PG,f , rather than directly updating the out-

put of the network function as Eqn. (6.33), we apply a standard back-propagation

of the network with initial gradient ∇PG,f , and update the network weights accord-

ingly. As shown in Figure 6.7, the expected effect of reducing local oscillations is

still observed in the updated network. However, it is not as faithful as that in Fig-

ure 6.6, where the gradient update is directly applied to the output of the network

function without updating the network weights. The decision boundary in Figure 6.7

is slightly shrunken, while in Figure 6.6, only the smoothing effect of the decision

boundary is observed. The implication is that after updating the network weights

by back-propagating the geometric gradient vector, the updated network function

might deviate from the ideal case of directly updating the output of the network

function, as Eqn. (6.33). This problem is also related to widely observed difficulties

in training neural networks, where the network function with some classification loss

forms a highly nonconvex and nonlinear function over the parameter space.
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Pre-trained Regularized

Figure 6.6: Effect of one geometric gradient step directly applied on the output of the
network function. The left column shows the functional graph of a learned two-layer
network, its corresponding decision boundary, and a zoom-in plot of the decision
boundary. The right column shows all three after one geometric gradient step (6.33).
Note that no back-propagation or network update is involved in this example.
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Pre-trained Regularized

Figure 6.7: Effect of geometric gradient update though back-propagation. The left
column shows the functional graph of a learned two-layer network, its corresponding
decision boundary, and a zoom-in plot of the decision boundary. The right column
shows all three after one epoch of geometric gradient update by back-propagating
the geometric gradient ∇PG,f .
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Pre-trained Regularized

Figure 6.8: Example of binary learning using a two-layer network with ReLU acti-
vation, singularity problem of ReLU activations is naively ignored, i.e., T ≡ 0 for all
input x. The left column shows the functional graph of the trained network and its
corresponding decision boundary. The right column shows both after 20 epochs of
geometric gradient update by back-propagating the geometric gradient ∇PG,f .

ReLU activation

As explained in §6.2.2.3, for the ReLU activation, the computation of second

derivatives of the network function encounters the singularity problem. If we just

ignore this problem, i.e., naively setting T ≡ 0, then as shown in Figure 6.8, the

geometric regularization has no effect on reducing local oscillations, but leads to

expansion of the decision boundary. This is due to inaccurate computations of the

gradient vectors because of the singularity problem.
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Pre-trained Regularized

Figure 6.9: Example of binary learning using a two-layer network with ReLU acti-
vations, Second derivatives of the network function is substituted using the method
introduced in §6.2.2.3. The left column shows the functional graph of the trained
network and its corresponding decision boundary. The right column shows both after
20 epochs of geometric gradient update by back-propagation training.

On the other hand, if we use the substitution method introduced in §6.2.2.3 to

approximately estimate the second derivatives, as shown in Figure 6.9, the geometric

regularization still has little effect on reducing local oscillations, while the expansion

effect becomes weaker than naively ignoring the singularities.
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6.2.4 Quantitattive Experiments on Benchmarks

To evaluate the effectiveness of the proposed regularization technique on deep neural

networks, we apply our approach to a representative network model for classification,

i.e., the VGG network [74]. In particular, we use VGG-16 as the baseline and com-

pare it against its counterpart models with two variants of the proposed geometric

regularization scheme, i.e., Algorithm 3 and Algorithm 4. We use the substitution

approach introduced in §6.2.2.3 to approximate second derivatives.

For evaluation benchmarks, we use the widely-used CIFAR-10 dataset [40] for

multiclass image classification task, which contains a training set of 50,000 three

channel color images of size 32× 32, and a testing set of 10,000 images of the same

format. The total number of classes is ten. We report two sets of experiments on

CIFAR-10 in the following subsections. The first set of experiments focuses on the

performance of a standard supervised learning task, following the standard setup.

The second set of experiments focuses on the classifier’s robustness with respect to

adversarial examples, following the setup of [38] and [21].

6.2.4.1 Implementation details

Alternating training

Besides the regularized training algorithm as shown in Algorithm 3, we also im-

plement a different strategy of incorporating our regularization process into the stan-

dard network training. As summarized in Algorithm 4, every epoch of the regularized

training is split into one epoch of standard network training and another epoch of

geometric regularization training. In other words, fitting the training data and pe-

nalizing excessive local oscillations are two alternating procedures within one epoch.

CUDA C implementation of Eqn. (6.27)
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Algorithm 4 Alternating training with Geometric Regularization - for one epoch

Input: A set of training data Bm = {(xi, yi)}mi=1, feedforward networkN , trade-off
parameter λ, learning rate τ, and a small parameter α.
Step 1: Standard forward-backward training for one epoch and update the net-
work weights.
Step 2:

for every training example xi do
- Forward pass of xi into N to get zi.
- Compute the Jacobian Ui = ∂zi

∂xi
by back-propagation, and substituting Ti

with αU l
i ⊗ U l

i .
- Feed zi, Ui, and Ti into the geometric regularization module to get the
initial regularization gradient ∇PG,f (xi).
- Back-propagate ∇PG,f (xi) in N and update the weights of N using learn-
ing rate τ.

end for

Even with the efficient formulas therein, computing Eqn. (6.27) could still be

very slow: firstly, Eqn. (6.27) is the formula for computing only one component of

∇PG,f , we will need to compute K of them; secondly, in computing Tr
(
G−1UT∇2

kU
)
,

what we actually need is only the diagonal entries of the d × d matrix G−1UT∇2
kU,

which involves Kd scalar multiplications given G−1UT and ∇2
kU , while the matrix

multiplication G−1UT · ∇2
kU involves Kd2 scalar multiplications. Noticing that both

computational bottlenecks can be parallelizable, we implement Eqn. (6.27) carefully

in a CUDA C function, which achieves approximately 1000 times speedup on a single

GPU when d = 3072.

6.2.4.2 Standard testing

For initial test, we sampled a subset of 1/10 of the total number of training examples

for training, and test on the whole testing set containing 10,000 examples. We

conduct five trials of experiments for all comparison models using the same training

set without data augmentation. Batch normalization is used for all models.
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Table 6.2: Classification performance on CIFAR-10. A same subset of 1/10 of the
total number of training examples is used for training each model. Testing set is
the default testing set of CIFAR-10, which contains 10, 000 examples and no train-
ing example is included. Mean and standard deviation of the testing accuracy are
computed over five trials.

Model # Training examples Testing accuracy (%)
VGG-16 (baseline) 5000 65.54± 0.48
Ours (Algirithm 3) 5000 65.66± 0.43
Ours (Algorithm 4) 5000 65.52± 0.41

The classification accuracy averaged over five trials on the testing set is shown

in Table 6.2. We compare two variants of our regularized learning algorithm, i.e.,

Algorithm 3 and 4, with the VGG-16 baseline implemented by [87]. From Table 6.2,

both training schemes of our regularized approach are comparable, but do not seem

to improve the performance over the baseline.

6.2.4.3 Adversarial testing

Recall the cartoon example of Figure 1.3 that motivates our study of the “small local

oscillations” of the class probability, we expect that a class probability estimator is

robust to reasonably small perturbations of the input. However, as reviewed in §2.6,

state-of-the-art neural networks are vulnerable to certain perturbations of the input,

known as adversarial examples. In this section, we conduct initial experiments to

see if our geometric regularization approach can alleviate the vulnerability of neural

networks to adversarial perturbations.

Following [38, 21], we test our implementation on the perturbation mechanism

based on the classification loss and the `2 constraint. In particular, adversarial
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example perturbed from a given example x is generated by,

x′(x, ε) = x+ ε
∇xPL(f(x), y)

‖∇xPL(f(x), y)‖2

, (6.34)

where ε is the magnitude of the perturbation, and PL is the cross-entropy loss for

classification.

Adversarial examples are generated for each comparison model by applying Eqn. (6.34)

on both the training set and the testing set. Classification accuracy on the per-

turbed training set under different perturbation magnitudes is shown in Table 6.3,

and classification accuracy on the perturbed testing set under different perturbation

magnitudes is shown in Table 6.4. While our implementation based on the alter-

nating scheme, i.e., Algorithm 4, does not have any obvious improvement over the

baseline, the implementation based on Algorithm 3 performs a bit better than the

baseline. Given that our current implementation is based on a substitution method

to estimate second derivatives of the network function, as shown in the qualitative

experiments (§6.2.3), it might not be very effective in reducing the local oscillations

of the functional graph. Thus it is as expected that our current implementation

cannot achieve any substantial improvement over the baseline regarding robustness

to adversarial examples. However, it is also as expected that our implementation

is doing at least no worse than the baseline, as also shown in the toy example of

Figure 6.9, our implementation will, at least, not make the surface any worse. More-

over, a bit of improvement from Algorithm 3 indicates that our approach still holds

promise, and could be better if the estimation of second derivatives is more precise.

It is also reasonable that Algorithm 3 works slightly better than Algorithm 4, since

it is more faithful to the original regularized formulation (6.16) than the alternating

scheme.
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Table 6.3: Classification performance on perturbed training set (results are averaged
over three trials).

Model
Averaged accuracy (%)
ε = 0.5 ε = 1 ε = 2.5

VGG-16 (baseline) 97.16 79.14 37.34
Ours (Algirithm 3) 97.68 81.66 38.82
Ours (Algorithm 4) 97.84 79.36 35.04

Table 6.4: Classification performance on perturbed testing set (results are averaged
over three trials).

Model
Averaged accuracy (%)
ε = 0.5 ε = 1 ε = 2.5

VGG-16 (baseline) 57.78 48.99 27.59
Ours (Algorithm 3) 58.37 50.17 29.75
Ours (Algorithm 4) 60.02 50.73 25.77

6.2.4.4 Insight for future experiments

Based on both the qualitative and quantitative experiments as reported above, it

is clear that further exploring the potential of our regularization approach for deep

neural networks depends on a more accurate computation of second derivatives than

our current substitution method. We propose the following experimental setup for

next step.

Automatic differentiation (AD) approaches [7, 8] are the most powerful techniques

to numerically evaluate the derivatives of any function specified by a computer pro-

gram. It is especially suitable for computing derivatives of functions specified by a

sequence of basic operations, such as deep neural networks. By repeatedly applying

chain rule to the sequence of operations, derivatives of working precision can be ob-

tained automatically and efficiently. For the next step, we plan to apply automatic

differentiation approaches [7, 8] in our implementation to obtain a more accurate sec-

ond derivative estimate for neural networks with ReLU activations. AD is already
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incorporated in the TensorFlow and Theano library for deep learning and there also

exists an AD library [19] “Autograd” for torch. The difference is that TensorFlow

and Theano will construct the computational graph for automatic differentiation be-

fore carrying out any actual computation, i.e., in a static way, while the “Autograd”

library will expand the computational graph on-the-fly. Given that our current im-

plementation is based on the Torch library, we plan to try “Autograd” first. However,

given that on-the-fly AD is less efficient than the static way of carrying AD, we also

plan to move our implementation to Theano if efficiency becomes a concern.

In case the precision obtained by AD is still insufficient for ReLU activations,

which could be possible, given that we need second derivatives and ReLU has the

singularity problem, we will replace the ReLU activation with the following softplus

function:

f(x) = ln(1 + ex), (6.35)

which is a smoothed version of ReLU and does not suffer from the singularity prob-

lem. For neural networks with softplus activations, the best way to compute the

second derivatives is still by means of automatic differentiation, as discussed above.

With all of these possible implementation changes, we will re-run all previous

experiments and more, with networks trained on the whole training set of CIFAR-

10. We also plan to test our regularization approach on other state-of-the-art network

architectures, such as the ResNet [35].

6.3 Summary

In this chapter, we study the applications of our geometric regularization principle

and technique in two representative classification models, the linear combination of
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radial basis functions and feedforward (deep) neural networks. We obtain paral-

lelizable algorithms and efficient implementations for training both models with our

regularization scheme. In experiments with the RBF-based model, we demonstrate

the effectiveness of our approach. In initial experiments with deep neural networks,

we obtain a small, but nevertheless promising improvement over the baseline re-

garding robustness to adversarial examples, based on a naive substitution method

for estimating second derivatives. We then analyze in detail the experimental results

and suggest recipes that can compute second derivatives in a much more precise way.

Such next-step implementation improvements have the potential of unlocking the full

power of our geometric regularization approach in training deep neural networks.
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Chapter 7

Conclusions and Future Work

In this final chapter, we first summarize the key contributions of this thesis: a new

geometric perspective on overfitting in supervised learning of classifiers, the first

regularization approach that exploits the geometry of the class probability estimator

for classification, and an efficient algorithm for applying this regularization approach

to feedforward (deep) neural networks. We then describe the major strengths and

limitations of our work. Finally, we point out some interesting directions for future

research.

7.1 Main Contributions

In this thesis, we study the problem of supervised learning of classifiers. Specifically,

we focus on the overfitting problem of classification and the regularization technique

to prevent overfitting during training. This problem is crucial for the generalization

ability of the learned classifier and many successful regularization techniques have

been proposed in the literature of machine learning. The new discovery of this thesis

is that there is inherently a differential geometric structure in the class probability

estimator, which is closely related to overfitting and the complexity measure of the

classification function.

Our study draws insights from both observations in practice and principles in
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learning theory. In practice, it is widely observed that the class probability does not

change dramatically with small perturbations in the input, which we refer to as the

“small local oscillations” phenomenon. In learning theory, Occam’s razor favors sim-

pler models that explain the training data, and an optimization argument indicates

that the regularizer should precisely encode our observed/believed prior of the data

distribution. Therefore, our study focuses on investigating a complexity measure of

the classification function that properly encodes the “small local oscillations” of the

class probability.

To address this problem, we notice that there is a submanifold in the product

space X ×∆L−1 inherently corresponding to the class probability estimator, and the

Riemannian geometry of this submanifold carries some information that is closely

related to the amount of “local oscillations” of the class probability estimator. We

also notice, more interestingly, that there is an elastic model in physics that natu-

rally corresponds to the learning process of a classifier, where the above Riemannian

geometry of the class probability estimator corresponds to a natural extension of the

surface energy in physics that regularizes the deformation of the elastic model.

All these studies point to a characterization of the complexity of the classification

function in the language of differential geometry, which measures the volume of the

functional graph of the class probability estimator. After carefully establishing the

geometric foundation for this new perspective, such complexity measurement leads

to a new geometric regularization approach for supervised learning of classifiers. In

particular, our approach finds the functional graph of the class probability estimator

by iteratively fitting the training data in a volume decreasing manner. Solving our

variational formulation involves a mean curvature flow based algorithm, which is

unified for both binary and multiclass classification and can be easily parallelizable.
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For applications, we first apply our regularization technique to a RBF-based rep-

resentation of the class probability estimator, where our implementation achieves

favorable performance comparing with widely used regularization techniques for

both binary and multiclass classification. We then develop specific formulations and

algorithms to incorporate our regularization technique into the standard forward-

backward training of deep neural networks. For theoretical analysis, we establish

Bayes consistency for a specific loss function under some mild initialization assump-

tions, and discuss the extension of our approach to situations where the input space

itself is a submanifold.

7.2 Strength and Limitations

The main strength of our approach is that it encodes some geometric information

that is closely related to the widely observed “small local oscillation” prior of the

underlying class probability of classification problems, and such information has been

overlooked by previous regularization methods. The hints behind this strength lie in

several areas. Firstly, there is much useful information for classification hidden in the

class probability, which is also pointed out by other researchers, such as the “dark

knowledge” by [36]. Secondly, designing more sophisticated regularization techniques

based on carefully studying the nature of the classification problem is beneficial to

classifier learning algorithms. Thirdly, differential geometric techniques have further

potential to be investigated in machine learning problems, especially those involving

high dimensional structures.

Other advantages of our approach include: it is inherently a unified framework

for both binary and multiclass classification; It does not rely on any assumptions

of the data manifold or the marginal distribution P (x) of the data; and, it scales
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up linearly in the number of classes and quadratically in the input dimension of the

problem, which is much more amenable than the exponential growth known as the

curse of dimensionality.

The major drawbacks of our approach are in three areas. Firstly, it requires an

accurate computation of up to second derivatives of the class probability estimator,

which can be expensive for some classification models or undefined or numerically

unstable in others. Secondly, it does not provide efficient formulations for processing

the training data in a batch mode. Thirdly, the effectiveness of our approach is

still restricted by the representation of the classification function, as with all other

regularization techniques.

7.3 Interesting Directions for Future Research

In the last section of this thesis, we discuss some interesting directions that extend

our current work.

Multi-label classification

Multi-label classification is getting increasing attention in many real-world ap-

plications, where a single object might have multiple semantic meanings. For

instance, in document classification, each document may involve multiple top-

ics so that a document can be classified into multiple categories simultaneously.

Other examples include protein function classification for genomics and pathol-

ogy, music/movie categorization for recommendation systems, and semantic

scene understanding for autonomous robots and augmented reality. Our reg-

ularization approach can be directly extended to multi-label classification by

simply changing the output space from a probabilistic simplex (single label

case) to a unit hyper-cube (multi-label case). All our geometric foundations,
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formulations, and algorithms carry over.

Distilling neural networks

Hinton et al. [36] suggested that the “dark knowledge” in the class probabil-

ity can be used to transfer knowledge from a powerful teacher network to a

simpler student network. The teacher network could be an ensemble of dif-

ferent networks trained on the same dataset, which is inefficient to evaluate

when applied in practice. Then training a single smaller network under the

“guidance” of this teacher network is of practical interest. Another example

is the Cross Quality Distillation [78], where high-quality data is available at

training time but not at testing time, but the teacher network trained on high-

quality data can guide the learning of a student network on low-quality data.

Although promising results have been reported, regarding the methodology it-

self, the regularization technique adopted has not been specifically tailored for

this distilling process. In particular, the class probability of training data is

the teacher knowledge to guide the learning of the student network; however,

the regularization technique remains the same as standard network training as

if no such knowledge is provided. Given our regularization approach exploits

the underlying geometry of the class probability estimator, it should be quite

suitable for regularizing the learning process of the student network.

Auto-encoders for unsupervised learning

Auto-encoders have become the state-of-the-art approaches for unsupervised

learning of generative models [37, 86, 3, 85]. The basic architecture is an en-

coder network followed by a decoder network, with the bottleneck layer in

between. A major source of the variants and considerations focuses on con-

straints/regularizations of this bottleneck layer. Our geometric regularization
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approach also has a potential for improving the performance of this architec-

ture. To give an example, Goroshin et al. [32] recently proposed a generative

model for video frame prediction. One of the key components is a curvature

measure computed among three successive frames at the bottleneck layer. It

has been shown in [32] that adding this curvature regularization clearly im-

proves the quality of predicted frames. However, the actual curvature compu-

tation in [32] is just a finite difference approximation of a quite weak curvature

measure. Our regularization approach, instead, provides an exact computa-

tion of a more informative curvature measure, which has a potential to further

improve the generative result.

More experiments with hyper-parameter tuning for deep neural networks

Our iterative algorithm for neural network training terminates when the gradi-

ent converges within a threshold or the maximum epoch number is reached. It

is widely known [14] that gradient descent at every iteration is equivalent to the

steepest descent with respect to the `2-norm in the parameter space, and the

magnitude of the `2-norm is inversely related to the gradient descent step-size.

Therefore, gradient descent methods implicitly impose regularization along the

gradient flow line in the parameter space. It is interesting, then, to further

study how such regularization affects our geometric regularization approach in

the functional space. There also exist implicit regularization techniques other

than explicit functional-norm based regularization methods. For instance, the

dropout strategy [75] for network training implicitly approximates some sort

of “geometric averaging” over a large ensemble of possible sub-networks, and

early stopping [60] is another widely used heuristic to implicitly impose Oc-

cam’s razor to prevent overfitting in the iterative learning procedure. It is
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therefore also interesting to empirically study how dropout and early stopping

(based on validation error) would work together with our geometric regulariza-

tion approach.

Further study on inexact gradients

We have discussed the difficulties of accurately computing derivatives for net-

works with ReLU activations, and shown that it prevents our regularization

method from exerting its full potential in network training. We also suggest

recipes to improve the accuracy of this computation for future experiments.

On the other hand, the problem of inexact gradients [29] is widely encoun-

tered in applications. From the application perspective, it would be interesting

to study how commonly used tricks, such as stochastic subgradient [62, 73]

at non-differentiable points, work with our algorithm. From the theoretical

perspective, it would be worthwhile to study the possibility of bounding the

prediction error if the actual gradient obtained by the algorithm is within an

ε-ball of the underlying exact gradient [69].

A refined formula for gradient update of parametric representation

In §5.3.1, we have derived the following formula for computing the geometric

gradient vector with respect to parameters of f ,

∂P ′G
∂wi

∣∣∣∣
w

= Tr IILgr(fw)

M′

· F∗ei. (7.1)

This formula involves an L2 metric on M′, which is an integration over the

functional graph of fw. In practice, this integration is replaced by a summation

over a finite set of points {xi} ⊂ X ,

Tr IILgr(fw)

M′

· F∗ei
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=

∫
X

Tr IILgr(fw) · F∗eif ∗wdvolRL

≈
∑
i

Tr IILgr(fw)(xi) · F∗ei(xi)δxi
√

det(g(xi)). (7.2)

If we omit the term
√

det(g(xi)), Eqn. (7.2) is exactly the general formula for

computing geometric gradient with respect to parameters of f used throughout

Chapter 6, where we followed previous work using variational formulas to enable

a fair comparison. The extra term
√

det(g(xi)) in Eqn. (7.2)can be regarded as

a correction term caused by the distortion of the volume form on the functional

graph of fw. It would be interesting to test the effect of this correction term in

practice. Note that there is almost no extra computational burden given that

g(xi) is already computed for each xi in the computation of Tr IILgr(fw)(xi).

Generalization to discrete input sets

It would also be interesting to study the possibility of generalizing our frame-

work to the discrete input case, for instance, the input space is a weighted

undirected graph G = (V,E,W ). One such problem is studied in [41], where a

value function f : T → R is also given on a subset T of vertex set V. The goal

is to learn a value function f̃ on V that agrees with f on T , such that values

assigned by f̃ are as smooth as possible across edges. To enforce smoothness,

functional norms [41], such as `0, `1, and the graph Laplacian norm [90] are

widely used as a regularization term. If we can find a discrete approximation

of the local chart at every vertex of G, where the dimensionality of the chart

depends on the degree of the vertex, we should be able to study the geometry

of the functional graph (in the geometric sense) of the value function of the

graph (in the discrete sense). If first derivatives of the value function at each

vertex can be approximated by operators depending on the weights of edges
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connecting each vertex, such as those used in the graph Laplacian [9], then

our volume-based regularization approach can be introduced to this problem

to learn a less oscillating value function on the graph. Moreover, given the dis-

crete approximation in computing derivatives, it is possible that the regularized

optimization problem will turn out to be a quadratic program which can be

solved directly, without relying on the gradient flow procedure introduced in

this thesis.

The structure of the loss surfaces of neural networks

Deep neural networks are traditionally considered to be very difficult to train

because of the non-convexity. However, the great success in many applications

indicates that training such a non-convex objective function might not be that

difficult, given some special structure of loss surfaces of the deep networks.

Some recent work [18, 68, 39] has already revealed some aspects of the special-

ties of the network structure that facilitate the training procedure. We also

notice in our experiments with neural networks alternating between a standard

classification loss and our regularization loss in gradient descent may sometimes

quickly move the solution from one saddle point of the classification loss surface

to another one. This raises an interesting topic/conjecture for future research

that by carefully designing an extra complementary loss surface and alternating

between the standard loss and the geometric regularization loss, the network

training could be much improved.

The above gives some potentially fruitful directions for future investigation. Ap-

plications of our framework to solve open challenges in supervised learning in deep

neural networks are particularly intriguing/exciting, as indicated by our pilot study

in the application of our geometric flow framework to deep neural networks for image
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classification in Chapter 6. Section 6.2.4.4 describes natural next steps for extending

and evaluating our formulation in this particular application setting.



111

Bibliography

[1] Audibert, J.-Y., and Tsybakov, A. Fast learning rates for plug-in classi-
fiers. Annals of Statistics 35, 2 (2007), 608–633.

[2] Audin, M., and Damian, M. Morse Theory and Floer Homology. Universi-
text. Springer, London; EDP Sciences, Les Ulis, 2014.

[3] Badrinarayanan, V., Kendall, A., and Cipolla, R. Segnet:
A deep convolutional encoder-decoder architecture for image segmentation.
arXiv:1511.00561 (2015).

[4] Bai, Q., Gold, D., and Rosenberg, S. In preperation.

[5] Bai, Q., Rosenberg, S., Wu, Z., and Sclaroff, S. Differential geometric
regularization for supervised learning of classifiers. ICML (2016).

[6] Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. Convexity,
classification, and risk bounds. Journal of the American Statistical Association
101, 473 (2006), 138–156.

[7] Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow,
I., Bergeron, A., Bouchard, N., Warde-Farley, D., and Bengio, Y.
Theano: new features and speed improvements. arXiv:1211.5590 (2012).

[8] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M.
Automatic differentiation in machine learning: a survey. arXiv:1502.05767
(2015).

[9] Belkin, M., and Niyogi, P. Laplacian eigenmaps and spectral techniques for
embedding and clustering. In Proc. Advances in Neural Information Processing
Systems (NIPS) (2001), vol. 14, pp. 585–591.

[10] Belkin, M., and Niyogi, P. Laplacian eigenmaps for dimensionality reduc-
tion and data representation. Neural Computation 15, 6 (2003), 1373–1396.

[11] Belkin, M., Niyogi, P., and Sindhwani, V. Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples. Journal
of Machine Learning Research 7 (2006), 2399–2434.

[12] Breiman, L. Random forests. Machine Learning 45, 1 (2001), 5–32.



112

[13] Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential equa-
tions. Springer Science & Business Media, 2010.

[14] Bubeck, S., et al. Convex optimization: Algorithms and complexity. Foun-
dations and Trends in Machine Learning 8, 3-4 (2015), 231–357.

[15] Cai, X., and Sowmya, A. Level learning set: A novel classifier based on
active contour models. In Proc. European Conf. on Machine Learning (ECML).
2007, pp. 79–90.

[16] Chang, C.-C., and Lin, C.-J. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology 2 (2011),
27:1–27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/

libsvm.

[17] Chen, Y.-G., Giga, Y., and Goto, S. Uniqueness and existence of vis-
cosity solutions of generalized mean curvature flow equations. In Fundamental
Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids.
Springer, Berlin, 1999, pp. 375–412.

[18] Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and Le-
Cun, Y. The loss surfaces of multilayer networks. In Proc. International Conf.
on Artificial Intelligence and Statistics (2015).

[19] Cortex, T. Github project: Autograd for torch. https://github.com/

twitter/torch-autograd, 2016.

[20] Cover, T., and Hart, P. Nearest neighbor pattern classification. IEEE
Trans. Information Theory 13, 1 (1967), 21–27.

[21] Demyanov, S., Bailey, J., Kotagiri, R., and Leckie, C. Invari-
ant backpropagation: how to train a transformation-invariant neural network.
arXiv:1502.04434 (2015).

[22] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.
Imagenet: A large-scale hierarchical image database. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR) (2009), IEEE, pp. 248–255.

[23] Devroye, L., Györfi, L., and Lugosi, G. A Probabilistic Theory of Pattern
Recognition. Springer, 1996.

[24] Dieudonné, J. Foundations of Modern Analysis. Read Books Ltd, 2013.

[25] Donoho, D., and Grimes, C. Hessian eigenmaps: Locally linear embedding
techniques for high-dimensional data. Proceedings of the National Academy of
Sciences 100, 10 (2003), 5591–5596.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://github.com/twitter/torch-autograd
https://github.com/twitter/torch-autograd


113

[26] Fawzi, A., Moosavi-Dezfooli, S.-M., and Frossard, P. Robustness of
classifiers: from adversarial to random noise. arXiv:1608.08967 (2016).

[27] Fefferman, C., Mitter, S., and Narayanan, H. Testing the manifold
hypothesis. Journal of the American Mathematical Society (2016).

[28] Freund, Y., and Schapire, R. E. A desicion-theoretic generalization of
on-line learning and an application to boosting. In European conference on
computational learning theory (1995), Springer, pp. 23–37.

[29] Fukuda, E. H., and Drummond, L. G. Inexact projected gradient method
for vector optimization. Computational Optimization and Applications 54, 3
(2013), 473–493.

[30] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. Book
in preparation for MIT Press, 2016.

[31] Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harness-
ing adversarial examples. arXiv:1412.6572 (2014).

[32] Goroshin, R., Mathieu, M. F., and LeCun, Y. Learning to linearize under
uncertainty. In Advances in Neural Information Processing Systems (2015),
pp. 1234–1242.

[33] Gu, S., and Rigazio, L. Towards deep neural network architectures robust
to adversarial examples. arXiv:1412.5068 (2014).

[34] Guckenheimer, J., and Worfolk, P. Dynamical systems: Some computa-
tional problems. In Bifurcations and Periodic Orbits of Vector Fields. Springer,
1993, pp. 241–277.

[35] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image
recognition. arXiv:1512.03385 (2015).

[36] Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural
network. arXiv:1503.02531 (2015).

[37] Hinton, G. E., Krizhevsky, A., and Wang, S. D. Transforming auto-
encoders. In Artificial Neural Networks and Machine Learning–ICANN 2011.
Springer, 2011, pp. 44–51.

[38] Huang, R., Xu, B., Schuurmans, D., and Szepesvári, C. Learning with
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