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ABSTRACT 

Metagenomics, or genomic sequence of the community of microbiota (bacteria, 

fungi, virus), enables an investigation of the full complement of genetic material, 

including virulence, antibiotic resistance, and strain differentiating markers. The 

granularity to distinguish between closely related strains is important as within one 

species, these strains possess distinct functions and relationships to a host. To analyze 

metagenomic samples, I developed a reference-based approach that utilizes both single 

nucleotide variants and genetic content to assign species and strain-level designations. 

After refining this approach with complex simulated communities, I utilized it to analyze 

the microbial communities present in skin samples from healthy and diseased individuals. 

First, to investigate strain-level heterogeneity in healthy adults, I focused on the 

common skin commensals Propionibacterium acnes and Staphylococcus epidermidis 

with well-documented sequence variation. Results indicated that an individual’s strains of 

P. acnes are shared across multiple sites of his or her body, and that those strains are 
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more similar within than between individuals. For S. epidermidis, in addition to 

individual site similarities, there were also site-specific strains. Overall these results 

emphasize that both individuality and site specificity shape our bodies’ microbial 

communities. Based on longitudinal data, an individual’s strain signatures remain stable 

for up to a year despite external, environmental perturbations. 

I then used metagenomic data to explore microbial temporal dynamics in atopic 

dermatitis (AD; eczema), an inflammatory skin disease commonly associated with 

Staphylococcal species. Species-level investigation of AD flares demonstrated a 

microbial dichotomy in which S. aureus predominated on more severely affected patients 

while S. epidermidis predominated on less severely affected patients. Strain-level analysis 

determined that S. aureus-predominant patients were monocolonized with distinct S. 

aureus strains, while all patients had heterogeneous S. epidermidis strain communities. 

To assess the host immunologic effects of these species, I topically applied patient-

derived strains to mice. AD strains of S. aureus were sufficient to elicit a skin immune 

response, characteristic of AD patients. This suggests a model whereby staphylococcal 

strains contribute to AD progression through activation of the host immune system.  

Overall, this strain-level analysis of healthy and disease communities provides previously 

unexplored resolution of human skin microbiome. 
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CHAPTER 1  Introduction 

1.1 Microbial studies in the past and present 

Bacteria, fungi, and viruses are an integral part of ourselves, other host organisms 

and the environment in which we all live. Collectively referred to as the microbiome, 

these microbes remained our silent partners for most of history, until the 1760s when 

Dutch scientists Antoine Van Leeuwenhoek invented the first microscope and used it to 

observe the little "animalcules" living in the substance upon and between his teeth. Years 

later in 1885, Theodore Esherich studied diaper contents to understand why only a subset 

of his pediatric patients developed diarrhea in one of the original gut microbiome 

comparative studies (Escherich, 1988, 1989). Around this same time, German physician 

Robert Koch was formulating his infamous postulates as the gold standard criteria to 

establish a causative relationship between a microbe and a disease (Koch, 1890). Koch's 

original postulates can be summarized as follows: First, the microorganism occurs in 

every case of the disease; second, it is not found in healthy hosts; and third, after the 

microorganism has been isolated from a diseased organism and propagated in pure 

culture, the proposed pathogen can induce disease anew. In light of these postulates, for 

the years following, people focused on pathogenic microbes in regards to their roles in 

disease, while the benefits of commensal microbes were largely ignored. This was true in 

spite of the observation of 10x more bacterial than human cells in the body (Luckey, 

1972; Savage, 1977), a ratio recently updated with more accurate numbers to 1:1 (Sender 

et al., 2016).  
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This imbalance was intrinsic to the available technologies of the time. 

Traditionally, microbial communities were explored with culture-based methods. 

Because this strategy favors microbes that thrive in artificial growth conditions, it 

underestimates the diversity of a community. In disease states, where a single pathogen 

often predominates, this approach is sufficient, almost preferable, to isolate the microbe 

and proceed with Koch's postulates. However, when studying our bodies' complex 

indigenous flora, culture-based approaches are less appropriate. Thus to capture the 

complete diversity, investigators began applying sequencing methods to characterize a 

community that circumvented the bottleneck of culturing. This approach utilizes 

amplification of the conserved small subunit ribosomal RNA genes (16S ribosomal DNA 

(rDNA)) as a taxonomic marker to identify bacterial members of microbial communities 

(Woese and Fox, 1977). Early on, this 16S rRNA method was used to show the diversity 

of flora in healthy individuals (Eckburg et al., 2005), the differences between obese 

versus lean twins (Ley et al., 2006), and describe the bacterial communities across body 

sites (Faveri et al., 2008; Gao et al., 2007; Hyman et al., 2005).  

In 2001, the Human Genome Project was completed (Lander et al., 2001). Upon 

its successful completion, clinician scientists David Relman and Stanley Falkow 

advocated a continuation of the momentum with a "second genome project" to investigate 

our poorly understood indigenous microflora (Relman and Falkow, 2001). In 2007, 

following the success of several preliminary microbiome studies, a second genome 

project was realized with the NIH's funding of the Human Microbiome Project (HMP) 

initiative (Group et al., 2009). The main goals of the HMP were to utilize new high-
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throughput sequencing technologies to establish a baseline for normal volunteers, to 

make comparisons of microbes in health and disease, and finally provide data resources 

and analysis techniques to facilitate future microbiome studies. In total from this 

initiative, 4,788 samples from 242 'healthy' adults and five major body areas (oral, skin, 

nasal, gastrointestinal track as represented by stool, and urogenital) were used for 16S 

bacterial sequencing (Human Microbiome Project, 2012). From this large scale 

sequencing effort, they found that site was the strongest driver of community 

composition and that each site was predominated by characteristic phyla. However, 

within a site, there was a large amount of variation between individuals in the relative 

abundance of genera and species within those main phyla. With longitudinal sampling, it 

was shown that an individual’s microbial composition is more similar to themselves over 

time than to others. 

As the cost of sequencing a megabase of DNA has decreased from ~$5,000 to ~5 

cents in the last fifteen years, the field of microbiome research has simultaneously 

bloomed from 103 papers in 2000 to 5,484 in 2014 [Figure 1.1], the majority of which 

have focused on gut microbes. In contrast to the heavily studied gut microbial 

communities, fewer studies have focused on the skin, a site where many disorders are 

similarly associated with an altered microbial state or dysbiosis. While several recent 

Reviews have focused on gut microbial ecology (Blaser, 2014; Donaldson et al., 2016), 

microbial communities of the skin in health and disease will be the focus of this 

introduction and the subsequent thesis.  
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Figure 1.1. PubMed hits to “Microbiome” versus sequencing costs over time.  

Top) Number of hits to “microbiome” in PubMed over time. Bottom) Cost to sequence a 
megabase of DNA over time (https://www.genome.gov/sequencingcostsdata/). The number of 
PubMed microbiome hits is positively associated with cheaper DNA sequencing. 

	
1.2 Computational methods for microbiome analysis 

 A fundamental component of microbiome studies is classifying the organisms that 

are present. This was accomplished with culture-based methods until Woese and Fox 

found variations in ribosomal gene sequences could be utilized to classify microbes 

(Woese and Fox, 1977). In this original approach, ribosomal RNA from organisms was 

digested into individual oligonucleotides. The components of this oligonucleotide 

fingerprint were then Sanger sequenced and sequence variations within variable regions 

were used as molecular fingerprints to identify organisms. To identify and classify the 
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constituents of bacterial communities the 16S ribosomal gene is used, while for fungal 

communities the internal transcribed spacer 1 (ITS1) region of the eukaryotic ribosomal 

gene complex is used to phylogenetically identify organisms (Schoch et al., 2012). 

As sequencing technologies have advanced from Sanger sequencing to Roche/454 

pyrosequencing and then Illumina, this original approach has continually adapted to 

accommodate increasing read depths and shorter read lengths. This has been 

accomplished with new primers for shorter amplicons, clustering methods to overcome 

sequencing error, and assembling methods to combine paired-end reads. With shorter 

amplicon lengths ~300 basepairs compared to >1,000, only a subset of the 16S gene can 

can be analyzed. This requires primers to be strategically placed within the 16S gene to 

optimize the diversity seen. Depending on the site being studied, different primer pairs 

may provide optimal results (Meisel et al., 2016). To date (Kuczynski et al., 2012), the 

primary pipelines for analyzing amplicon data are Mothur (Schloss et al., 2009) and 

Qiime (Caporaso et al., 2010). Both methods utilize a read clustering approach and 

subsequent comparison to curated reference databases to classify communities at a genera 

and when possible species level.   

As the price of sequencing has fallen, the number of microbiome related studies has 

increased dramatically [Figure 1.1]. The majority of these studies were carried out with 

amplicon sequencing. However, over the last few years, the popularity of whole genome 

metagenomic sequencing has increased. With no targeted amplification, this method 

simultaneously captures all genetic material in a sample including human, bacterial, 

fungal, archeal, and viral, thus allowing relative kingdom abundances to be inferred 



	

	

6 

[Figure 1.2]. Because no marker gene is universally shared amongst viruses, viral 

community diversity is best captured in this way. Examining the complete microbial 

genome sequence provides sufficient granularity to differentiate strains within a species. 

The ability to differentiate strains is important as more and more studies highlight the 

functional differences that exist between strains within a species (Conlan et al., 2012; 

Tomida et al., 2013). 

When designing experiments, it is important to consider that whole genome 

metagenomic sequencing is associated with additional costs (Franzosa et al., 2015). 

Financially, capturing the entire genomic content of a sample requires additional 

sequencing reads and is thus more expensive. This cost is particularly significant in the 

skin where depending on the body site sampled between 40 and 90% of reads are human 

(Oh et al., 2014). Thus samples must be sequenced deeply to reliably detect the microbial 

portion. In addition to sequencing costs, analysis costs should also be considered. 

Because few publicly available tools exist for metagenomic analysis, researchers need to 

independently create their own analysis approaches to explore the complexity of 

metagenomic data. The creations of such tools will be described throughout this thesis, 

but will be the primary focus of Chapter 2 and 3. 
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Figure 1.2. Amplicon versus whole genome metagenomic sequencing.  

To study the microbial members of a community, two sequencing strategies can be utilized. Left) 
To amplicon sequence, primers are utilized to amplify conserved regions within a kingdom. For 
bacteria the 16S region of the ribosomal gene is utilized, while for fungi the ITS1 subunit is used. 
Right) Whole genome sequencing captures the entire complement of genetic material in a sample 
without a targeted amplification step. 

	
1.3 Skin physiology shapes its microbial communities 

Skin is the largest organ in our body composed of 1.8 meters squared of diverse 

habitats. It serves dual roles of acting as a physical barrier to outside pathogens while 

simultaneously providing a home to over 1010 resident bacterial cells (Belkaid and Segre, 

2014). Structurally, the skin is composed of two distinct layers: the epidermis and dermis. 

The outermost layer, the epidermis, is composed of layers of ever-more differentiated 

keratinocytes. The top layer or stratum corneum is composed of terminally differentiated, 

enucleated keratinocytes, termed squames which are chemically cross-linked to each 

other to fortify the skin’s barrier (Segre, 2006). 
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In addition to this conserved layer of structures, body sites provide diverse 

microenvironments varying in pH, temperature, moisture, sebum content, and topography 

(Grice and Segre, 2011). Based on these characteristics, sites can be grouped into these 

broad categories: sebaceous/oily(face, chest, and back), moist(bend of elbow, back of 

knee, and groin), and dry(volar forearm and palm). The environment of these sites is 

influenced by punctuation with varying densities of appendages such as sweat glands, 

hair follicules, and sebaceous glands. More abundant in moist sites, sweat glands are 

important for thermoregulation through the evaporation of water which also acidifies the 

skin making conditions unfavorable for the growth and colonization of certain 

microorganisms (Grice and Segre, 2011). In addition, sweat is laden with antimicrobial 

molecules, such as free fatty acids and AMPs that further inhibit microbial colonization 

(Gallo and Hooper, 2012). Connected to the hair follicle and more dense in oily sites, 

sebaceous glands secrete lipid-rich sebum, a hydrophobic coating that lubricates while 

also providing an antibacterial shield to hair and skin. 

Despite the presence of lipid-rich sebum, skin is a nutrient desert compared to the 

nutrient rich environment of our intestines. Thus to survive in such a cool, acidic, 

desiccated environment, the resident microbes of our skin have adapted to utilize the 

resources that are available in sweat, sebum, and the stratum corneum (Scharschmidt and 

Fischbach, 2013). For example, facultative anaerobe, P. acnes, a prominent skin bacteria, 

is able to thrive in the anoxic sebaceous gland by using proteases to liberate the amino 

acid arginine from skin proteins (Holland et al., 1979) and lipases to degrade triglyceride 

lipids in sebum (Bruggemann et al., 2004). This degradation releases free fatty acids that 
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promote bacterium adherence (Gribbon et al., 1993; Ingham et al., 1981; Marples et al., 

1971). For mammals which produce smaller quantities of this triglyceride-rich sebum, P. 

acnes attaches less effectively and is thus found at lower abundances (Webster et al., 

1981). The lipid-rich content of sebum and stratum corneum is also utilized by lipid 

auxotrophs Malassezia and Corynebacterium species, as they are unable to produce their 

own (Scharschmidt and Fischbach, 2013). Corynebacterium utilize these lipid 

compounds to generate corynemycolic acids that coat their cell surface (Scharschmidt 

and Fischbach, 2013). Consistent with skin’s carbohydrate-deficient, lipid-rich 

environment, Malassezia genomes are enriched for lipases genes and depleted for 

carbohydrate utilizing ones compared to other fungi (Wu et al., 2015). Finally, 

Staphylococci have evolved many strategies for surviving on the skin, including the 

capability of being halotolerant, i.e. withstanding the high salt content of sweat, and 

utilizing the urea present in sweat as a source of nitrogen (Scharschmidt and Fischbach, 

2013). To further promote colonization, various Staphylococci can also produce 

adhesions that promote attachment to the skin and proteases that are capable of liberating 

nutrients from the stratum corneum (Scharschmidt and Fischbach, 2013).  

Given these specializations of bacteria for different niches it is not surprising that 

preliminary studies of the skin microbiome identified physiological characteristic as the 

strongest driver of bacterial community composition across body sites (Grice et al., 

2009). Sebaceous sites are dominated by lipophilic Propionibacterium species, while 

humidophilic, halotolerant Staphylococcus and Corynebacterium species are abundant in 

moist areas, with higher densities of sweat glands [Figure 1.3]. In contrast, Malassezia is 
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the dominant fungal genera across core body sites, while the feet harbor a more diverse 

community (Findley et al., 2013) [Figure 1.3]. These initial amplicon-based surveys will 

be expanded on with whole genome metagenomic samples in Chapter 3 and 4. In 

addition to utilizing valuable nutrients, our skin’s bacterial communities are able to 

survive because of microbe/microbe interactions and a continuous dialogue with our 

immune system. 

	
Figure 1.3. Physiological characteristics shape bacterial and fungal communities.  

Consensus relative abundance plots show distribution of bacteria and fungi across different body 
sites based on previous 16S and ITS amplicon surveys. Site labels colored by microenvironment. 
Colors not shown in the microbial key may be grouped as ‘Other’. 

	
1.4 Interactions between cutaneous microbial species 

In addition to host centric factors, community assembly and stability is driven by 

interactions between microbes. Microbes can act competitively to exclude one another or 
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synergistically to optimize an effect. In the skin, S. aureus has been the focus of many 

colonization resistance studies. Colonizing the nares of 1/3 of the population, S. aureus 

presence is a significant risk factor for subsequent infections (von Eiff et al., 2001) 

(Weidenmaier et al., 2012). In clinical infections, 80% of S. aureus blood stream isolates 

match those identified in the patients nostril (von Eiff et al., 2001). Eradication of S. 

aureus in a surgical patient’s nares strongly reduces their predisposition to invasive 

infection (Bode et al., 2010).  

Because S. aureus frequently evolves resistance to antibiotics (DeLeo et al., 2010), 

alternate eradication strategies, particularly those that utilize indigenous microbes, are an 

active area of research (Pamer, 2016). These studies are akin to those exploring how soil 

microbes compete via antibiotic, bacteriocin production (Ling et al., 2015). Iwase and 

colleagues were the first to discover that a subset of S. epidermidis strains expressing the 

serine protease, Esp could inhibit S. aureus biofilm formation (Iwase et al., 2010). When 

Esp worked synergistically with the keratinocyte-produced AMP beta-defensin, S. aureus 

was completely inhibited [Figure 1.4]. Interestingly, 30 out of 30 sequenced S. 

epidermidis isolates encode the Esp gene (Conlan et al., 2012), but in Iwase’s study only 

a subset were found to actually express it (Iwase et al., 2010). This discrepancy is an 

important reminder that coding potential does not guarantee expression. In a more recent 

study, Zipperer and colleagues found S. lugdunensis inhibited S. aureus growth via the 

productive of the antibiotic lugdunin, a novel thiazolidine-containing cyclic peptide 

(Zipperer et al., 2016)[Figure 1.4]. Importantly for long term therapeutic potential, after 

multiple generations S. aureus never developed resistance to either esp or lugdunin. This 
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is in sharp contrast to traditional antibiotics which organisms rapidly evolve resistance to 

and emphasizes that naturally derived products will likely be a more effective means to 

block opportunistic pathogens. Notably, not all microbes inhibit S. aureus; Wollenburg et 

colleagues found that some Propionibacterium species could actually induce S. aureus 

aggregation and biofilm formation in a manner dependent on dose, growth phase, and pH 

(Wollenberg et al., 2014) [Figure 1.4]. 

 

Figure 1.4. Skin microbial communities are shaped by interactions between organisms. 

      In the skin, many interactions between commensals and S. aureus have been identified. The 
antibiotic, lugdunin, produced by Staphylococcus lugdunensis, prohibits colonization of S. 
aureus. Utilizing a different approach, Staphylococcus epidermidis can inhibit S. aureus biofilm 
formation with production of the serine protease, Esp. However, when Esp-expressing S. 
epidermidis acts in concert with keratinocytes expressing the antimicrobial peptide beta-defensin 
2, S. aureus is effectively killed. In contrast to inhibiting S. aureus, Propionibacterium acnes 
produces a small molecule coproporphyrin III that promotes S. aureus aggregation and biofilm 
formation.  
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Other examples of competition between skin microorganisms also exist. Bomar and 

colleagues found Corynebacterium accolens could modify the local environment of the 

skin to inhibit growth of the contextual pathogen Streptococcus pneumonia (Bomar et al., 

2016). This response was dependent on C. accolens using the lipase Lisp1 to release 

antibacterial free fatty acids from skin surface triacylglycerols. In another study, 

Christensen and colleagues performed pairwise antagonism assays with isolates from 

their culture collections of S. epidermidis and P. acnes isolates (Christensen et al., 2016). 

One clade of P. acnes exhibited a higher antimicrobial activity against S. epidermidis, 

likely due to a thiopeptide conserved between genomes in the clade. In the reverse, the 

majority of tested S. epidermidis strains were capable of inhibiting P. acnes in vitro. 

Computationally, they predicted a variety of different elements that could be responsible 

in different strains. In an even broader study of 89 Staphylococcus isolates from 6 species 

it was found that 84% could produce antimicrobial substances against common skin 

bacteria, indicating that bacteriocin capacity is an essential trait among skin commensals 

(Janek et al., 2016). 

In contrast to many species/species interaction studies, investigations of dynamics 

between strains within a species are more rare. Extrapolations from metagenomic data 

have revealed two patterns of strain colonization within a species. For some species, there 

is a single dominant strain, while for other species, multiple strains coexist. In the gut of 

infants, the species Escherichia coli, Faecalibacterium prausnitzii, Bacteroides fragilis, 

and Haemophilus parainfluenzae exist as a single predominant strain while Bacteroides 

vulgatus exists as a heterogeneous community (Yassour et al., 2016). In an animal model 
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of strain competition, it was shown that germ free mice mono-associated with a single B. 

fragilis isolate were resistant to colonization by a different B. fragilis strain but 

susceptible to colonization by a separate Bacteroides species (Lee et al., 2013). 

Interestingly, competition exclusion was also demonstrated by 3 other Bacteroides 

species as the initial colonizer, but E. coli did not exhibit this characteristic. While the 

heterogeneous B. fragilis strain communities observed in the babies’ guts conflict with 

the competition exclusion observed in animal models, this data emphasizes that although 

reductionist germ-free experiments are a great place to start, they may not always reflect 

the ecological dynamics of a more complex community. 

As will be described more in Chapter 4, in the skin P. acnes and S. epidermidis exist 

as stable heterogeneous communities of strains (Oh et al., 2016). Pangenome analysis 

revealed that functional saturation across the gene coding potential of these species may 

drive the maintenance and acquisition of multiple strains (Oh et al., 2016). Within the 

gut, studies have shown that a community of Clostridium species can act synergistically 

to enhance an immunologic effect greater than any individual species could alone 

(Atarashi et al., 2013). Similar studies are needed to demonstrate the possible functional 

advantages of heterogeneous skin strain communities. 

 

1.5 Cutaneous immune microbe dialogue 

The skin's immune system and that of other mucosal sites has evolved closely with 

resident microbes to allow maintenance of commensal partners and elimination of 

unwelcome transients. The skin accomplishes this task with a sophisticated system of 
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immune surveillance composed of epithelial cells, lymphocytes, and antigen presenting 

cells in the epidermis and dermis (Nakatsuji et al., 2013). More specifically, within the 

dermis, there are innate cells (such as macrophages, dendritic cells, and mast cells), 

innate lymphoid cells (ILCs, including group 2 ILCs and gamma delta T cells), and many 

adaptive resident lymphocytes (including CD4+ and CD8+ T cells) (Pasparakis et al., 

2014; Tong et al., 2015a).  

To operate optimally, the skin microbiota, epithelial cells, and both arms of the 

immune system need to communicate effectively. Keratinocytes can begin this dialogue 

by sampling microbes on the skin surface via pattern recognition receptors (PRRs) such 

as Toll-like receptors (TLRs), mannose, and Nucleotide oligomerization domain (NOD)-

like receptors (Grice and Segre, 2011). These receptors recognize pathogen associated 

molecular patterns (PAMPs) such as flagellin, nucleic acids, and lipopolysaccharides 

from bacteria, and mannan and zymosin from fungi. Binding of PAMPs to PRRs triggers 

innate immune responses resulting in the secretion of antimicrobial peptide (AMPs), 

cytokines, and chemokines. AMPs, molecules that can rapidly kill and inactivate a 

diverse range of organisms including fungi, bacteria, and parasites, are our body’s first 

line of defense against pathogens (Gallo and Hooper, 2012). While some AMPs are 

constitutively expressed, the expression of others can be controlled by members of the 

skin microbiome, including P. acnes (Nagy et al., 2006) and S. epidermidis (Naik et al., 

2015). However, because microbes can be resistant to AMPs (Cullen et al., 2015; Joo et 

al., 2016), how these molecules ultimately shape microbial communities is poorly 

understood.   
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Studies comparing conventional to germ-free mice showed that microbes are 

essential for the development of gut-associated immune cells (Lee and Mazmanian, 

2010), but the overall structure or seeding of skin-directed immune cells occurs even 

without microbial colonization (Belkaid and Hand, 2014; Naik et al., 2012). Which is not 

to say that microbes don’t educate the skin immune cells: commensal organisms are 

essential for proper education of the immune system in responses to pathogens and 

commensals. In the skin, initial microbial exposure is dependent on delivery mode: 

vaginally delivered babies first acquire microbes from their mother's vagina, while babies 

born via Caesarean section acquire microbes from the skin (Mueller et al., 2015). During 

this postnatal period, the immune system is immature enough to allow microbial 

colonization in the absence of inflammatory responses (PrabhuDas et al., 2011). This 

tolerance is dependent on T regulatory (Treg) cells; a subset that have been shown in mice 

to populate neonate skin, post morphogenesis of the hair follicle when microorganisms 

are beginning to colonize the site (Scharschmidt et al., 2015). This likely represents a 

mechanism by which regulatory responses are induced to limit aberrant responses against 

commensals. Indeed, association of S. epidermidis to neonate but not adult murine skin 

induced S. epidermidis-specific FOXP3+ Treg cells that limited inflammatory responses to 

the skin commensal upon future tissue damage (Scharschmidt et al., 2015). Given the 

many resident commensals on the skin, it is unsurprising that this site contains one of the 

highest frequencies of FOXP3+ Treg cells in the body (Belkaid et al., 2002; Suffia et al., 

2006). How these regulatory responses are initiated and maintained later in life despite 

shifts in microbial communities remains poorly understood.   
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After this initial tolerogenic period, different microbes have been shown to illicit 

distinct effects on the innate and consequently adaptive immune systems. To date, 

immune responses induced by the ubiquitous skin commensal S. epidermidis have been 

well described in murine models. First, it was discovered that lipoteichoic acid from S. 

epidermidis cell walls binding TLR2 was sufficient to inhibit inflammatory responses 

which limited tissue damage and promoted wound healing (Lai et al., 2009). More 

recently, topically applied S. epidermidis was shown to induce increased levels of the 

proinflammatory cytokine interleukin 1 (IL-1)(Naik et al., 2015; Naik et al., 2012). 

Expressed by a large numbers of skin cells including keratinocytes, IL-1 is involved in 

the initiation and amplification of immune responses (Pasparakis et al., 2014). In this 

particular case, IL-1 promoted skin homing T-cells to produce the cytokines IL-17 and 

interferon gamma (IFNγ), cytokines important for host defense and inflammatory 

diseases (Naik et al., 2015; Naik et al., 2012). This particular effect was dependent on the 

cooperation of 2 of the 4 skin resident dendritic cell (DC) subsets, CD11b+ and CD103+ 

(Naik et al., 2015). Chapter 4 explores how different effector subsets are induced 

depending on the strain of Staphylococcus epidermidis that is applied. 

Notably, this induction of effector T cells occurred in the absence of classical 

inflammation in a process termed “homeostatic immunity” (Belkaid and Tamoutounour, 

2016). This process represents an essential mechanism whereby different commensals 

can educate distinct aspects of the immune system to respond to future pathogen 

exposures. In other words, immune responses to pathogen exposures occur in the context 

of broader recall responses to diverse microbial antigens (Hand et al., 2012). This is 
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consistent with the skin harboring ~20 million effector lymphocytes (Clark et al., 2006), 

many of which are likely specific to skin commensals (Belkaid and Tamoutounour, 

2016). This concept is demonstrated when mice pre-associated with S. epidermidis were 

better protected against skin infections with Candida albicans and Leishmania major 

(Naik et al., 2015; Naik et al., 2012). 

Distinctly, when S. epidermidis was first introduced via intradermal injection, 

instead of topically to the mouse, classical inflammatory responses as characterized by 

infiltrating monocytes and neutrophils were observed alongside IFNγ producing T 

effector cells (Naik et al., 2015) [Figure 1.5]. This dichotomy highlights how immune 

responses are mounted in a context dependent manner, meaning immune responses are 

tailored not only to the identity of the microbe but also their location of detection. Such 

contextual responses are essential considering S. epidermidis typically inhabits the skin as 

a beneficial commensal but can be a deadly pathogen when in the blood stream (Otto, 

2009).  
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Figure 1.5. Cutaneous immune responses are context dependent.   

Immune responses to skin microbes (commensals) vary depending on the localization of the 
microbe. If a microbe is sensed in the epidermis of the skin, adaptive immune responses develop 
in the absence of inflammation, a process termed “homeostatic immunity”. By contrast, in the 
circumstance of a barrier breach where a microbe can enter the dermis of a skin, adaptive immune 
responses develop in the presence of classical inflammation, as defined by the presence of 
neutrophils and monocytes. This highlights how cutaneous immune responses are 
compartmentalized depending on the route of microbial exposure.  

In addition to effector responses, microbes can also induce regulatory responses. 

For example, lysates from Vitreoscilla filiformis, a bacteria originally isolated from 

thermal spa water, when applied to mouse skin promote cutaneous Treg accumulation that 

inhibits T cell proliferation during eczematous-like inflammation (Volz et al., 2014). In 

addition, secreted products from S. epidermidis were shown to promote the tolerance 

inducing cytokine IL-10 from human DCs in vitro (Laborel-Preneron et al., 2015). 

Identifying additional microbes that induce tolerogenic effects offers many therapeutic 
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opportunities as aberrant immune responses are characteristic of many skin diseases 

(Belkaid and Tamoutounour, 2016). 

As mentioned, several studies exist demonstrating that microbes can have distinct 

effects on the immune system. Now, future studies are needed to explore the microbial 

molecules/products that are mediating these responses and how the immune system is 

sensing their presence. In addition, immunologic tools should be developed to track these 

commensal specific immune responses (Newell and Davis, 2014). Such tools would 

allow visualizing these cells in the tissue, tracking their persistence overtime, and seeing 

how they respond to pathogens. Understanding these details is necessary to transition 

from observations to therapeutics for blocking undesired effects or inducing the desired 

ones. 

 

1.6 Microbial roles in skin inflammatory disorders 

In addition to educating our immune system, microbes play the essential role of 

inhibiting colonization of harmful bacteria in a process termed colonization resistance 

(Buffie and Pamer, 2013). However, in certain contexts, normally beneficial bacteria can 

be implicated in disease. In fact, many common skin diseases are associated with an 

altered microbial state, termed dysbiosis (Iebba et al., 2016). This dysbiosis is often 

driven by common commensal species. For example, the prevalent teenage malady acne 

vulgaris is a chronic inflammatory skin condition associated with the bacteria 

Propionibacterium acnes (Leyden et al., 1975), the most abundant organism in the 

microbiome of healthy adults (Fitz-Gibbon et al., 2013; Tomida et al., 2013). The reality 
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that almost all adults are colonized with P. acnes but only a minority have acne highlights 

the importance of studying diseases in the broader context of host genetics, immune or 

barrier defects, microbiome, and the environment. For example, beside P. acnes 

presence, increased sebum secretion is associated with the pathophysiology of acne as 

secretion rates correlate well with severity of clinical manifestations (Picardo et al., 

2009). Other common skin diseases associated with an obvious dysbiosis are athletes foot 

and fungal outgrowth, seborrheic dermatitis and Malassezia (Gaitanis et al., 2012), and 

atopic dermatitis and Staphylococcus aureus blooms (Leyden et al., 1974). 

Atopic dermatitis, or eczema, is an extremely heterogeneous disease with multiple 

contributing factors including epidermal barrier impairment, type 2 immunity, and skin 

microbes. In addition to S. aureus being commonly cultured from AD skin (Leyden et al., 

1974), there are additional factors that support the microbiome playing an influential role. 

1) AD is clinically treated with combinations of antimicrobial approaches (e.g. antibiotics 

and dilute bleach baths) and anti-inflammatory or immunosuppressive medications 

(Huang et al., 2009). Their success correlates with decreases in Staphylococcal relative 

abundance (Kong et al., 2012).  2) AD flares commonly manifest at the bend of the elbow 

and the back of the knee two sites that are physiologically classified as moist and have 

shared microbial communities (Grice et al., 2009). 3) The majority of children will 

outgrow AD prior to puberty, a time when increased levels of hormones stimulate 

sebaceous glands to produce additional sebum thus favoring the expansion of lipophilic 

bacteria, such as Propionibacterium and Corynebacterium (Oh et al., 2012).  
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In a longitudinal study of AD patients, 16S rRNA sequencing of clinical samples 

showed that the relative abundance of Staphylococcal species, particularly S. aureus and 

S. epidermidis, increased in flare versus post flare state and the abundance of this 

Staphylococcus correlated with more severe disease. Chapter 5 presents a higher 

resolution longitudinal study of AD flares based on whole genome metagenomic samples. 

Specifically we address whether different species of Staphylococcus exist as homo- or 

heterogeneous communities of strains and how those strain communities respond 

throughout the disease course. In a different paper, comparing the baseline skin 

microbiome of adult AD patients and controls, the authors identified microbial signatures 

enriched for Streptococcus and Gemella but depleted for Dermacoccus in AD-prone 

individuals (Chng et al., 2016). At a functional level, they show that the AD-prone 

microbiome is primed to generate excess ammonia, providing a microbial explanation for 

the high pH levels observed during AD flares. 

Because of S. aureus’s association with AD, other skin disease, and also blood 

stream infections, many studies have focused on interactions between S. aureus, its 

toxins, and the immune system. For example S. aureus produced δ-toxin induces 

degranulation of mast cells, which promotes both innate and adaptive type 2 immune 

responses (Nakamura et al., 2013). S. aureus α-toxin can also induce IL-1β production 

from monocytes that may consequently promote a Th17 response, or CD4+ cells making 

the cytokine IL-17 (Niebuhr et al., 2011). In addition to effecting classical immune cells, 

S. aureus has also been shown to trigger adipocytes to rapidly proliferate and to produce 

increased level of the AMP cathelicidin as a host defense mechanism (Zhang et al., 
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2015). These example demonstrate the many ways S. aureus could initiate or amplify 

skin disorders in the broader context of barrier defects or altered immunity. In fact, it has 

been demonstrated that in the context of barrier breach, S. aureus is able to breach the 

epidermis into the dermis where it encounters immune cells and triggers expression of the 

inflammatory cytokines, IL-4, IL-13, IL-22, and TSLP (Nakatsuji et al., 2016). Chapter 5 

highlights how S. aureus can induce inflammatory responses in the absence of barrier 

breach and in a strain specific manner. 

Although the inflammatory potential of S. aureus has been demonstrated and 

dysbiosis is common to many skin diseases, it is still unknown whether these microbial 

changes are a consequence of the disease, resulting from the release of extracellular 

matrix proteins with the itch-scratch of AD, or whether S. aureus contributes as an 

initiator of the disease. We can begin to differentiate these two models by comparing skin 

microbial communities in mice with various skin barrier or immunologic defects. For 

example, mice with mutations in matriptase, a serine protease essential for proper skin 

integrity, exhibit flaky skin and increased expression of antimicrobial peptides 

(Scharschmidt et al., 2009). In a separate study, mice deficient in disintegrin, a 

metalloproteinase domain-containing protein (Adam17), also experienced eczematous 

dermatitis from a defective barrier and microbial dysbiosis (Kobayashi et al., 2015). In 

this case, inflamed skin was characterized by an overgrowth of Corynebacterium 

mastidis, Corynebacterium bovis, and S. aureus. Targeted antibiotic treatment of these 

animals was sufficient to reverse the dysbiosis and eliminate skin inflammation.  
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Studying human primary immunodeficiency patients (PID) provides an 

opportunity to observe the influence of altered immunity on microbial communities. To 

study this, skin microbiome samples were taken from patients with the rare monogenic 

primary immune deficiencies. Compared to healthy individuals, the skin of PID patients 

is more ecologically permissive with decreased site specificity and temporal stability, and 

colonization with opportunistic fungi (Candida and Aspergillus) and bacterial species 

absent in controls, including Clostridium species and Serratia marcescens (Oh et al., 

2013). Despite this increased permissiveness, the new species belong within phyla 

commonly associated with the skin, i.e. Firmicutes and Proteobacteria. This implies that 

organisms outside these primary phyla are perhaps unable to stably survive in the nutrient 

poor environments of the skin. Whole genome metagenomic sequencing of samples from 

these patients are needed to observe fluctuations in the viral communities. Such studies 

would be interesting considering PID patients, particularly those with mutations in 

dedicator of cytokinesis protein 8 (DOCK8), commonly suffer from viral skin infections 

(Chu et al., 2012).  

Overall, this thesis will provide previously unexplored resolution of human skin 

microbial communities. Chapter 2 will explain the pipelines developed to analyze whole 

genome metagenomic datasets at strain-level resolution. Chapter 3 will highlight the 

multi-kingdom microbial communities present in healthy adults over time with special 

emphasis on strains of P. acnes and S. epidermidis. Chapter 4 will discuss the functional 

potential of the heterogeneous P. acnes and S. epidermidis strain communities. Finally, 
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Chapter 5 will present results from a longitudinal study of atopic dermatitis patients along 

with functional data linking microbes with the disease. 
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CHAPTER 2 Accurate identification of microbes in unassembled sequencing data with 

Clinical Pathocope 

2.1 Abstract 

The use of sequencing technologies to investigate the microbiome of a sample can 

positively impact patient healthcare by providing therapeutic targets for personalized 

disease treatment. However, these samples contain genomic sequences from various 

sources that complicate the identification of pathogens. Here we present Clinical 

PathoScope, a pipeline to rapidly and accurately remove host contamination, isolate 

microbial reads, and identify potential disease-causing pathogens. We have accomplished 

three essential tasks in the development of Clinical PathoScope. First, we developed an 

optimized framework for pathogen identification using a computational subtraction 

methodology in concordance with read trimming and ambiguous read reassignment. 

Second, we have demonstrated the ability of our approach to identify multiple pathogens 

in a single clinical sample, accurately identify pathogens at the subspecies level, and 

determine the nearest phylogenetic neighbor of novel or highly mutated pathogens using 

real clinical sequencing data. Finally, we have shown that Clinical PathoScope 

outperforms previously published pathogen identification methods with regard to 

computational speed, sensitivity, and specificity. Clinical PathoScope is the only 

pathogen identification method currently available that can identify multiple pathogens 

from mixed samples and distinguish between very closely related species with very little 

coverage of the genome. Furthermore, Clinical PathoScope does not rely on genome 

assembly and thus can more rapidly complete the analysis of a clinical sample when 
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compared with current assembly-based methods. Clinical PathoScope is freely available 

at: http://sourceforge.net/projects/pathoscope/. 

Note: The work presented in this chapter has been previously published in (Byrd*, Perez-

Rogers* et al., BMC Bioinformatics 2014).  

2.2 Introduction 

Despite recent advances in diagnostic and preventative medicine, infectious diseases 

still account for a large proportion of the disease burden and mortality worldwide, 

particularly in low-income areas and developing countries (WHO, 2004). Current clinical 

diagnostic tests for identifying infection-causing pathogens utilize limited technologies 

such as polymerase chain reactions (PCR), Sanger sequencing, or cell culture. These 

methods typically focus on identifying only a single pathogen at a time and often lack the 

specificity required to distinguish between closely related species or strains of the same 

species. Bacterial cultures can accurately identify culturable pathogens, but usually 

require 4-5 days to complete and cannot be conducted for all pathogens (Didelot et al., 

2012). Microarray technologies, such as the Virochip (Chen et al., 2011a), have been 

shown to be useful in the space of pathogen identification. Microarrays, such as these, are 

designed to detect both known and novel pathogens through the use of high-sensitivity 

probes and probes that map to conserved genomic regions. While useful for broad 

spectrum screening of clinical samples, this technology is limited in that probes must be 

continually designed and updated to support the ever growing number of genomic 

sequences in public databases. 
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In recent years, researchers have taken advantage of innovations in sequencing 

technologies to more rapidly identify and characterize pathogens responsible for disease 

outbreaks, including the West Nile Virus (Lanciotti et al., 1999), H1N1 influenza (Deng 

et al., 2011; Greninger et al., 2010; Kuroda et al., 2010), cholera (Chin et al., 2011), 

Escherichia coli (Frank et al., 2011; Rasko et al., 2011; Rohde et al., 2011; Turner, 2011), 

Salmonella (Lienau et al., 2011), and antibiotic resistant Klebsiella pneumonia (Snitkin et 

al., 2012). Traditionally, sequencing a single sample has taken as long as several days or 

weeks using the most common platforms. Recent commercial efforts, however, have 

reduced this time to a few hours or days (Rothberg et al., 2011). Within the next few 

years, newer technologies are promising sequencing runs in less than an hour with a cost 

of under one hundred dollars (Rothberg et al., 2011). Once these technologies become 

widely accessible, the use of sequencing as a diagnostic tool in the clinic will have great 

potential for more personalized medical applications. The rapid and accurate analysis of 

next-generation sequencing data, however, remains a challenge for many reasons. The 

sheer volume of data, for example, is difficult to deal with computationally without 

significant computational resources (e.g., a typical sequencing run on the Illumina HiSeq 

2500 can yield 300M million reads requiring 30 GB of storage capacity and significant 

RAM requirements for processing). Furthermore, DNA from host genomes or commensal 

species will often dominate clinical samples and sequencing error can swamp out 

diagnostic signal. These challenges highlight the need for the development of highly 

sensitive algorithms that can distinguish among closely related pathogenic strains in a 

computationally efficient manner. 
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Current sequencing-based diagnostic methods (Bhaduri et al., 2012; Brady and 

Salzberg, 2009; Huson et al., 2007; Kostic et al., 2011; Naeem et al., 2013; Patil et al., 

2011; Segata et al., 2012) require thousands of reads from the pathogen and include 

computationally intensive steps such as genome assembly, multiple genome alignments, 

extensive homology searches, and/or phylogeny estimation, with some methods taking 

upwards of three days to complete a single run (Kostic et al., 2011). Additionally, these 

methods fail to accurately identify pathogens at the strain level and will often assign 

ambiguously aligned reads to higher taxonomic levels which may lead to a nonspecific or 

incorrect diagnosis and the administration of ineffective clinical treatments. Such was the 

case during the European outbreak of hemorrhagic Escherichia coli, which resulted in 

3,800 infections and 54 deaths across 13 countries due to a 3-week delay in appropriate 

intervention (Frank et al., 2011). The challenges encountered when diagnosing viral and 

bacterial pathogens in the clinic reinforce the need for a streamlined sequencing protocol 

and a highly sensitive computational method by which strain specific identification can 

be rapidly achieved. By helping clinicians to direct treatment and avoid misdiagnoses, the 

identification of viral and bacterial pathogens in clinical samples will directly benefit 

patients suffering from a variety of infectious diseases (Bibby, 2013).  In particular, 

assigning a viral rather than bacterial cause to an infection may help alleviate the 

antibiotic overuse that is common in clinical practice today (Wylie et al., 2012).  Recent 

editorials and reviews express concern that analysis, rather than data generation, is likely 

to be the limiting factor for sequence-based clinical pathology; thus, clearly highlighting 
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the need for ‘clinic-ready’ software tools and approaches (Chan et al., 2012; Didelot et 

al., 2012; Dunne et al., 2012; Torok and Peacock, 2012; Walker and Beatson, 2012). 

Here we present Clinical PathoScope, a rapid alignment and filtration pipeline for 

accurate viral and bacterial pathogen identification using unassembled sequencing data. 

Using a variety of clinical samples and simulated scenarios, we demonstrate our method's 

ability to differentiate between pathogens, identify multiple pathogens in a single clinical 

sample, and identify the closest relative to highly mutated and novel strains. Clinical 

PathoScope builds on the previous success of PathoScope v1.0 (Francis et al., 2013), 

which capitalizes on a Bayesian statistical framework to process an alignment file and 

provide posterior probability profiles of organisms present. While PathoScope v1.0 

showed success when used with purified samples, it was necessary to develop a method 

to remove potential contaminating sequences from the host and commensal microbes for 

host-dominated clinical samples. Clinical PathoScope incorporates the original 

PathoScope algorithm into a novel pipeline that allows users to go directly from 

metagenomic sequencing reads to a list of organisms present in a sample in one easy step 

and in a clinically relevant timeframe. For convenience, we provide bacterial and viral 

databases curated from NCBI; however, custom databases can easily be incorporated as 

well. Taken together, these features make Clinical PathoScope the fastest and most 

accurate pipeline currently in the literature for identifying strain-specific pathogens in 

clinical samples without the need for genome assembly. Clinical PathoScope (version 

1.0) is freely available at: http://sourceforge.net/projects/pathoscope/. 

 



	

	

31 

2.3 Methods 

In order to develop the Clinical PathoScope framework, we have accomplished the 

following essential tasks for pathogen identification in clinical samples: 1) selection of 

the most appropriate alignment algorithm and parameters for optimal performance on 

clinical samples, 2) evaluation of filtering approaches to efficiently remove reads from a 

clinical sample that originated from host, non-target, or non-pathogenic genomes, and 3) 

the evaluation and comparison of Clinical PathoScope with existing approaches using 

multiple real datasets [Figure 2.1]. Details regarding the specific methods evaluated, 

pipeline modules, and results observed are given in the subsequent sections. Finally, we 

have implemented these results into a highly sensitive and efficient pipeline that is user-

friendly and approachable by physicians and researchers without the requirement of 

advanced computational expertise. 

 

Figure 2.1. Workflow employed to develop the Clinical PathoScope pipeline.  
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Three reference genome libraries were downloaded from NCBI. Four alignment algorithms were 
tested and evaluated on five simulated clinical sequencing samples. Each aligner was parameter 
tuned and optimized and Bowtie2 was selected as the choice aligner for the Clinical PathoScope 
pipeline. The order with which reads are aligned to the reference libraries was determined and the 
performance of Clinical PathoScope was evaluated using four clinical datasets. Furthermore, we 
compared our results against those produced by existing technologies. 

2.3.1 Clinical PathoScope pipeline development & evaluation 

The Clinical PathoScope pipeline consists of three primary steps: 1) optimized 

read alignment, 2) host and non-target genome filtration, and 3) ambiguous read 

reassignment. We developed the optimized Clinical PathoScope algorithm using a set of 

simulated clinical samples (described below) and later validated our method and 

compared our results against existing approaches using multiple clinical datasets, some of 

which are original to this publication. 

2.3.2 Reference genome library curation and processing 

One of the most important steps for the accurate identification of benign and 

pathogenic genomes is to build a comprehensive genome library containing all species 

and strains likely to be present in the sample. This is a critical step as Clinical 

PathoScope can only identify organisms or their nearest neighbors if they are present in 

the library.  In order to maximize the characterization of all reads within a given clinical 

sample, our method aligns reads against three broad categories of reference genomes. The 

human host library consisted of two sequences totaling 3.2 gigabase-pairs (Gbps); the 

GRCh37/hg19 build of the human genome, as well as the human ribosomal DNA 

sequence [GenBank:U13369]. The ribosomal reference was included in order to remove 

several false positive alignments to viral genomes that share sequence similarity with 

human ribosomal RNA (gi|401829614|Shamonda virus segment L, 
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gi|109255272|Choristoneura occidentalis granulovirus, and gi|401829625|Simbu virus 

segment L). The bacterial library was downloaded from NCBI 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/all.fna.tar.gz, 12/15/12) and contained 2,402 

complete reference genomes and 1,759 plasmid sequences. In all, this bacterial library 

consisted of 7.7 Gbps of DNA sequence. Due to restrictions enforced by some of the 

aligners with regard to index size, it was necessary to split this library into two smaller 

segments to facilitate proper alignment. Finally, the viral library was also obtained from 

NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/all.fna.tar.gz, 1/10/13). For genomes 

in which multiple segments were available, all segments for a given genome were 

concatenated into a single contiguous sequence with each segment separated by a series 

of null characters (N’s). In total, the viral library contained 3,738 complete genomes and 

110 megabase-pairs (Mbps) of total sequence. 

2.3.3 Generation of simulation study datasets 

We simulated two sets of five in silico clinical samples to represent a variety of 

clinical scenarios including infections with two or more disease causing and benign 

pathogens, infections with a pathogen having closely related substrains (e.g. Human 

adenovirus), and infections with highly mutated pathogens. The first set of simulated 

samples was used to evaluate several alignment algorithms and to optimize the 

architecture of the Clinical PathoScope pipeline. The second set was then used to 

evaluate the efficacy of Clinical PathoScope alongside existing technologies. Importance 

was placed on implementing accurate mutation rates, genome diversity, and relative 

compositions. Functioning as positive controls, these data were essential to develop a 
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robust pipeline for pathogen identification. Each sample was composed of human, 

bacterial, and viral sequences mimicking the microbiota found in sequencing data from 

nasopharyngeal samples during a respiratory tract infection (Bogaert et al., 2011; Yang et 

al., 2011). Specifically, 10 million 100-base reads were generated for each sample with 

90% of reads originating from the host transcriptome (human RNA), 9% from bacterial 

genomes, and 1% from viral genomes. The first set of simulated samples contained 

sequencing reads from five bacterial and six viral genomes at various depths of coverage. 

This was essential to determine how each aligner and pipeline architecture performed 

with respect to the number of reads originating from each genome. The second set of 

simulated samples was designed as a more challenging and realistic dataset and was used 

to evaluate our optimized approach. Each sample contained sequences from six viral 

genomes and twenty-five bacterial genomes. The number of reads originating from each 

viral genome ranged from 10 to 63,640. To determine a realistic bacterial landscape for 

these samples, we downloaded and aligned three anterior nares samples [SRA: 

SRS011105, SRS012291, SRS013637] from the Human Microbiome Project 

(http://hmpdacc.org/HMASM/) and selected 25 of the most common bacterial strains (19 

unique species) to be included in our simulation. The number of reads originating from 

each bacterial genome was determined by sampling a Gaussian distribution such that the 

number of bacterial reads per sample totaled 900,000. Reference genomes for each of the 

representative species were obtained from NCBI's RefSeq database (Pruitt et al., 2012) 

and samples were simulated using the next-generation read simulator, Mason (Holtgrewe, 

2010), employing its ‘Illumina sequencing’ error-model (Mason illumina -s $seed -N 
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$numReads -sq -n $readLength -i -hs $snpRate -hi $indelRate -hnN -nN -o 

$outputFile.fastq $refGenomes.fa). Previously published species or kingdom specific 

mutation rates for SNPs and indels were applied to the human (Genomes Project et al., 

2012), bacterial (Chen et al., 2009), and viral (Sanjuan et al., 2010) genomes to 

accurately capture the variability inherent in clinical samples. The simulated datasets are 

available for download on the PathoScope software distribution site and will be useful for 

benchmarking and comparing future metagenomic analysis pipelines.   

2.3.4 Alignment optimization 

We evaluated and compared four publicly available alignment algorithms 

(Bowtie2.0.0 (Langmead and Salzberg, 2012), BWA 0.6.2 (Li and Durbin, 2009), 

PBLAT 2.0.0 (Kent, 2002), SOAP2 2.21 (Li et al., 2009)) based on three criteria, namely, 

1) run time, 2) sensitivity and 3) specificity by aligning our first set of five simulated 

samples against the human, bacterial, and viral reference libraries described above 

[Figure 2.2]. Run time was measured as cpu minutes using 8 cores and a single 2.3 GHz 

AMD Opteron processor on the Boston University Medical Campus LinGA cluster. 

Using the resulting alignment files and the known origin of the reads, sensitivity was 

measured as the number of true positives divided by the number of true positives plus 

false negatives, and specificity was measured as the number of true negatives divided by 

the number of true negatives plus false positives. Our goal was to identify the algorithm 

and parameters that provided the best balance of our three evaluation criteria.  

Additionally, we examined the effect of varying the length of each read on the number of 

reads correctly aligned to the reference genomes using the first 25, 50, 75, and 100 base-
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pairs, as well as the full-length sequence. Evaluating variable read lengths served 

multiple purposes: 1) determining whether aligning the entire read was necessary, or if 

aligning a smaller segment of the read performed just as well, 2) identifying optimal 

sequence read size for future studies, and 3) evaluating whether aligning a smaller portion 

of the read can replace the need for a computationally intensive spliced-read alignment 

algorithm for reads from host/filter genomes that contain spliced gene transcripts.  

 

 

Figure 2.2. Alignment optimization variables and methods.  

The internal parameters for each of the four aligners were varied and tuned. Additionally, the 
length of each read aligned was varied. For each unique aligner-parameter-read length 
configuration, the sensitivity, specificity, and run time when aligning the simulated samples 
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target library (e.g. viral library for virus detection) are retained while reads that align to 

the host (e.g. human library) and non-target (e.g. bacterial library) sequences are 

removed. The effects of varying the order of subtraction were examined by comparing 

the resulting alignment sensitivity, specificity, and pipeline run time using all six 

permutations of our three libraries. Additionally, we evaluated the effect of using the 

PathoScope expectation maximization (EM) algorithm (Francis et al., 2013) to minimize 

false positive mappings by reassigning reads with ambiguous alignments to their correct 

genome of origin. A detailed diagram of the overall experimental design is shown in 

Figure 2.1. The subtraction methods evaluated for use in our pipeline as well as the 

optimal method are shown in Figure 2.3. 

 

Figure 2.3. Subtraction and filtration optimization methods.  
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Various filtration methods were tested in an effort to minimize computational burden and 
maximize accuracy.  Approaches tested include A) Naïve Approach, B) Target Centric, C) Target 
Centric + Reassignment, D) Host Centric + Reassignment, and E) Host Centric.  Post filtration, 
all reads are aligned against the target genome library.  The resulting read alignments are 
reassigned to the correct genome of origin using the PathoScope Expectation Maximization 
algorithm.  

2.3.6 Clinical datasets 

Prostate Cancer Cell Line (PCCL): The PCCL dataset (Prensner et al., 2011) has been 

leveraged in previous studies as a positive control and a means for comparing algorithm 

run time. This dataset is derived from a prostate cancer cell line infected with the human 

papillomavirus serotype 18. The RNA sequencing was performed using an Illumina GA 

II sequencer and 26,958,682 reads (40 bases each) were publically available 

[SRA:SRR073726]. 

 

New World Titi Monkey Adenovirus Outbreak (TMAdv): Sequencing reads from two New 

World titi monkeys (Callicebus cupreus) infected with a highly divergent adenovirus 

(Chen et al., 2011b) make up the third dataset used to evaluate Clinical PathoScope. The 

samples originated from an outbreak of an unknown virus in a colony of titi monkeys in 

California. Tissue samples were obtained from the lungs of two titi monkeys during 

necropsy and were sequenced together using the Illumina GA IIx for 73 cycles in both 

directions yielding 12,393,506 reads (73 bases). Chen et al. identified the cause to be a 

new highly divergent species of adenovirus that was subsequently assembled and so 

named Titi Monkey adenovirus (TMAdv). We supplemented our host library with the 

most closely related, fully sequenced simian species, Callithrix jacchus 

[GenBank:PRJNA46205]. As a positive control, we included the TMAdv genome in our 
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target library and validated that Clinical PathoScope accurately distinguished the TMAdv 

from all other adenovirus genomes.  

 

Tuberculosis in a Mummy: Sequencing reads from a 200 year old mummy infected with 

tuberculosis were obtained from a previous study (Chan et al., 2013) and used to evaluate 

Clinical PathoScope’s ability to detect bacterial pathogens. The sample was collected 

from lung tissue taken from the left side of the thorax of a mummified body. Pulmonary 

tuberculosis was suspected because of the cathectic state of the body and confirmed 

based on PCR analyses. As further validation, the sample was sequenced on the Illumina 

Miseq instrument for 300 cycles in both directions yielding 5,541,400 reads with an 

average length of 297 basepairs; the reads were retrieved from Sequence Read Archive 

with accession number SRP018736. For analysis with Clinical PathoScope, the reads 

were split into 12,261,862 reads of approximately 100 bases in length. 

 

16S Amplimer Sequencing (16S): In addition to testing our approach on in silico and 

previously published clinical datasets, we validated our approach on data from our own 

clinical samples. Under an IRB-approved protocol, deep endobronchial aspirates from 3 

patients intubated for mechanical ventilation were obtained after the aspirate had been 

used for microbiologic testing directed by their medical team. The bacteriological 

staining of aspirate samples revealed the presence of Gram-negative bacteria, and 

bacterial culture from aspirates identified abundant Pseudomonas (patients F1 and G1) 

and Enterobacter (patient H1), with opportunistic flora in all samples. All three patients 
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were on antibiotic treatment regimen prior to the collection of samples. Patient F1 was 

treated with a combination of aminoglycoside (gentamicin and tobramycin) and 

polymyxin (colistin) antibiotics; patient G1 was on gentamicin/tobramycin regimen only, 

and patient H1 was treated with third generation cephalosporin antibiotics (ceftazidime). 

In addition to clinical samples, we collected the bacterial DNA from gram-positive and 

gram-negative ATCC reference strains: Staphylococcus aureus (ATCC No. 25923 - 

MSSA), Enterococcus faecalis (ATCC No. 51299), Pseudomonas aeruginosa (ATCC 

No. 27853), Escherichia coli (ATCC No. 25922).  Total DNA from these samples was 

isolated by centrifugation, and solubilization of the pellet using the Sigma GeneElute kit 

combined with a lysis buffer by mixing together the Gram+ and Gram- buffers 

supplemented with lysozyme (2.115X10^6 units/mL), lysostaphin (200 units/mL), 

mutanolysin (5000 units/mL). Nanodrop and Qubit measurement of concentrations were 

used to quantify DNA. After DNA isolation, we amplified the 16S rRNA using the 

U1492R, Tm 49.44 (GGTTACCTTGTTACGACTT) and B27F, Tm 41.67 

(AGAGTTTGATCCTGGCTCAG) universal primers using 800 ng of template. The 

amplimers were ligated into SMRTbells and sequenced on a Pacific Biosystems RS. The 

sequencing yielded an average of 4,127 reads per sample, averaging 1,178 bases long. 

For analysis with Clinical PathoScope, the PacBio reads from each sample were split into 

100 base segments that were then treated as individual reads, generating on average 

39,183 reads of 100 bases per sample. To accommodate the high homologies of 16S 

RNA sequences from different bacterial species and strains, the alignment parameters for 

this dataset were tightened compared to the viral samples, allowing 1 mismatch per 100 
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bases during alignment, and allowing for multiple ‘best’ hits per read (e.g. Bowtie2  ‘k’ 

set at 1,000). These data were submitted to the NCBI Sequence Read Archive (SRA) 

database under accession number SRP028704. 

2.3.7 16S Phylogenetic inference 

We took all genomes from GenBank’s RefSeq database belonging to 

Pseudomonas, Enterobacter, and Acinetobacter genera (56 taxa) and generated a BLAST 

database, which we queried with a full-length 16S rDNA sequence (Altschul et al., 1990). 

We selected one copy per species and aligned the resulting dataset using a secondary 

structure aware algorithm (Q-INS-i) as implemented in MAFFT (Katoh et al., 2005). We 

ran 10 independent Maximum Likelihood searches in RAxML (Stamatakis, 2006) (1000 

bootstraps) assuming a GTR nucleotide substitution model with gamma distributed rate 

heterogeneity. Additionally, we obtained diagnostic characters defining particular species 

using the phylogeny-aware algorithm implemented in CAOS (Sarkar et al., 2008). 

2.3.8 Clinical dataset preprocessing 

The four clinical datasets were used to evaluate our Clinical PathoScope pipeline 

and to compare our method against previously published algorithms. A summary of these 

datasets is shown in Table 2.1. Overview of clinical datasets used to evaluate Clinical 

PathoScope. Extensive quality control was performed uniformly on each of the datasets 

to remove low quality and artificial sequences using PrinSeq (Schmieder and Edwards, 

2011) (-derep 123; -lc_method dust; -lc_threshold 40) and Cutadapt (Martin, 2011), 

respectively. For each read, bases having a Phred quality score less than 20 were trimmed 
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from the 3' end and reads with a median quality score below 20 were removed. Low 

complexity and redundant reads were determined using PrinSeq and removed along with 

adapter and primer sequences. A minimum read length of 25 base pairs was strictly 

enforced for trimmed reads to facilitate accurate sequence alignment. Reads that failed to 

meet the length requirement were not considered for further analysis. 

Name Accession # Samples Read Length Avg. # Reads 

PCCL SRR073726 1 40 26958682 

CALRTI Yang et. al 14 36 3907924 

TMAdv SRR167721 1 75 12222012 

16S SRP028704 8 1178 4127 
Table 2.1. Overview of clinical datasets used to evaluate Clinical PathoScope. 

2.3.9 Comparison to published algorithms 

Clinical PathoScope was evaluated alongside two existing pathogen identification 

algorithms, RINS (Bhaduri et al., 2012) and READSCAN (Naeem et al., 2013) to 

emphasize the major differences in performance between assembly-based approaches and 

our implementation of computational subtraction with varying read length and ambiguous 

read reassignment. All three methods were compared based on their ability to rapidly 

identify the pathogens present in the clinical datasets described above. We also 

considered several published metagenomic-like pipelines such as CloVR-Metagenomics 

(Angiuoli et al., 2011), IMSA (Dimon et al., 2013), LMAT (Ames et al., 2013), and 

metAMOS (Treangen et al., 2013) in the context of pathogen identification. 
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2.4 Results and discussion 

2.4.1 Comparison of alignment algorithms 

The internal parameters for each alignment algorithm were evaluated and tuned to 

maximize alignment sensitivity and specificity as well as to minimize run time by 

mapping reads from our first set of simulated samples to the reference libraries. The 

average alignment results and confidence intervals of each algorithm using optimized 

parameters and read lengths are shown in Table 2.2. When aligning reads to the human 

library, SOAP2 was on average 30.5% faster than Bowtie2; however Bowtie2 had a 

15.0% higher average sensitivity at 90.2% and a more consistent run time. For alignments 

to the viral library, PBLAT had the highest average sensitivity of 99.8%. Bowtie2 also 

achieved a high average sensitivity of 98.1% with an 80% reduction in average runtime 

compared with PBLAT. For alignments to the bacterial library, PBLAT had the highest 

average sensitivity of 98.9%; however, it took almost 20 times longer than Bowtie2, 

which had an average sensitivity of 79.8%. Overall, Bowtie2 offered the best 

combination of sensitivity, specificity, and speed when aligning reads against the human, 

bacterial, and viral libraries. 
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 Human Virus Bacteria 
Time (m) Sensitivity Time (m) Sensitivity Time (m) Sensitivity 

Specificity Specificity Specificity 
Bowtie2 8.2 ± 0.0 90.2 ± 0.0 3.3 ± 0.6 98 .1 ± 0.6 15.8 ± 1.6 79.8 ± 0.1 

100.0 ± 
0.0 

99.8 ± 0.2 100.0 ± 0.0 

BWA 22.8 ± 
3.2 

89.9 ± 0.0 6.5 ± 1.4 76.8 ± 5.4 - - 
100.0 ± 

0.0 
99.8 ± 0.2 - 

SOAP2 5.7 ± 1.6 76.7 ± 0.0 3.9 ± 0.8 50.3 ± 5.4 23.3 ± 2.2 27.7 ± 0.0  
100.0 ± 

0.0 
99.9 ± 0.1 100 ± 0.0 

PBLAT 61.2 ± 
6.8 

78.2 ± 0.0 16.7 ± 1.3 99.8 ± 0.1 306.3 ± 
23.3 

98.9 ± 0.0 
100.0 ± 

0.0 
99.6 ± 0.2 52.7 ± 0.0 

Table 2.2. Simulation study alignment statistics using optimal model parameters.  

Each aligner was used to align the first set of five simulated sequencing samples (10 million 100 
base-pair reads) against each of the three genome libraries using optimal parameters. The average 
run time, sensitivity, and specificity as well as confidence intervals for each alignment are 
reported. BWA failed to run to completion with the bacterial library. 

2.4.2 Impacts of read length 

We evaluated the effect of varying the length of each read used during alignment 

to further maximize the sensitivity, specificity, and minimize run time. Temporary read 

splitting and trimming allows clinical samples from any sequencing technology to be 

analyzed without compromising the speed and accuracy of the short read aligner or losing 

the alignment specificity of longer reads. For the five simulated samples, varying read 

length had a larger impact on runtime and sensitivity than adjusting internal parameters. 

Using Bowtie2 as our primary aligner, 10 million 50 base reads were aligned against the 

human library in an average 28 minutes, while aligning 100 base reads took on average 

40 minutes. Depending on the reference library used, increasing read length may or may 

not increase sensitivity. Bowtie2 aligned 50 base reads to the human library with an 

average sensitivity of 90% and 100 base reads with a decreased average sensitivity of 
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75%. This trend can be explained by the splice junctions found in human transcriptome 

sequences. With fewer bases, the odds of a read spanning a splice junction are smaller 

and the read will be more likely to align. Conversely, when aligning reads against the 

bacterial and viral libraries, the average sensitivity is 10-20% higher using 100 base reads 

compared to 50 base reads. To evaluate if longer reads continue to increase sensitivity, a 

subset of 150 base simulated bacterial reads were tested. Results indicate that splitting the 

150 base reads into 100 base and 50 base segments increased sensitivity by 

approximately 4 percent compared to leaving the reads at the full length of 150 bases. 

Thus, upon initiation, Clinical PathoScope splits all long reads into fragments with a 

maximum length of 100 bases. 

2.4.3 Library alignment and filtering order 

Various filtration methods were evaluated in an effort to minimize computation 

burden and maximize accuracy. Five subtraction frameworks were evaluated: A) Naïve 

Approach, B) Target Centric, C) Target Centric + Reassignment, D) Host Centric + 

Reassignment, and E) Host Centric [Figure 2.3]. In the target centric approaches, reads 

are first aligned against the target library followed by the host and non-target libraries. 

Conversely, in the host centric approaches, reads are first aligned against the host and 

non-target libraries and then against the target library. The naïve approach, or only 

aligning to the target library, took the least amount of time, but resulted in the highest 

number of false positives. While both the target centric and host centric filtration 

approaches yielded similar results in terms of accuracy, the target centric approaches 

required ten fewer minutes to run to completion than the host centric approaches. The 
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target centric approaches were more efficient because a greater number of sequences 

were removed by initially mapping reads to the target library than to the host library, thus 

reducing computational burden for subsequent alignments. To determine the impact of 

the read reassignment algorithm, we compared the sensitivity of both target centric 

approaches by analyzing our second set of simulated samples. With viral pathogens as the 

target library, the target centric approach with read reassignment achieved an average 

sensitivity of 97.8% for species and strain level identifications [Figure 2.4]. Without the 

reassignment algorithm, the target centric approach achieved an average sensitivity of 

90.3% and 78.1% at the species and strain level, respectively. Concurrently, with 

bacterial pathogens as the target library, the target centric method with reassignment 

achieved an average sensitivity of 77.6% and 72.8% at the species and strain levels 

[Figure 2.4], respectively, compared with 52.8% and 41.7% for species and strain 

specific identifications without read reassignment. These dramatic improvements in 

sensitivity between methods with and without read reassignment demonstrate the 

necessity of this algorithm within the Clinical PathoScope pipeline. The performance 

difference between viral and bacterial identification can be directly attributed to the 

mixture of bacterial pathogens present in these simulated samples. When two very 

closely related strains of the same species are present in a given sample, Clinical 

PathoScope will tend to reassign reads which aligned to both strains to the strain with 

more uniquely identifying sequences.  
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Figure 2.4. Clinical PathoScope validation with simulated communities.  

Results from complex synthetic communities indicated that the target centric pipeline has an 
average true positive rate of 77.6 for bacteria species and 97.8 for virus. Relative abundance plots 
of the actual proportions and those found with Clinical PathoScope for bacteria and virus are 
shown. 

2.4.4 Optimal Clinical PathoScope pipeline 

The optimized Clinical PathoScope pipeline uses three reference genome 

libraries, four alignments modules and the original PathoScope read reassignment 

algorithm to identify pathogens in a given sample [Figure 2.5]. First, all reads from a 

sample are mapped against the reference genomes of the organisms of interest (target 

library, e.g. viruses) using up to the first 100 bases of each read. This initial alignment 

results in the removal of the greatest number of sequences by eliminating reads without 

strong sequence similarity to the target genomes. Second, reads that aligned to the target 

library are aligned against the reference library of the host species (host library) using the 

first 50 bases of each read. This step allows for any residual host contamination to be 
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identified and removed from the set of candidate reads originating from the target 

genomes. Third, reads which did not align to the host library are aligned against 

additional reference genomes (non-target library) known to be negative targets of the 

analysis and which may overlap with the candidate read set. Similar to step one, reads are 

aligned using the first 100 bases of each read to maintain high specificity. Reads which 

did not align to the non-target library are realigned to the target library allowing up to k 

alignments (e.g., we recommend k=10 for viral detection) per read and subsequently 

passed to the read reassignment module in which reads with ambiguous alignments are 

reassigned to their putative correct genome of origin. In summary, any sequencing read 

contributing to the identification of a pathogenic genome must 1) align to the target 

genome library, 2) remain unaligned to the host genome library, 3) remain unaligned to 

the non-target library, and 4) retain its alignment to the target library. Finally, the pipeline 

produces a report detailing the number and proportion of reads originating from each 

genome identified in a given sample. 

 

Figure 2.5. Clinical PathoScope pipeline.  

A computational subtraction method using varying sequence read lengths and ambiguous read 
reassignment. Unassembled sequencing reads are aligned against a target library containing 
reference sequences of the intended target(s) of identification (e.g. viruses). Reads aligned to the 
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target library are then aligned to a host library. Any reads aligned to the host sequences are 
removed from further analysis. Next, reads are aligned against a library of known non-target 
sequences. Unaligned reads are then mapped back to the target library, allowing up to k 
alignments per read (e.g. k=10). These alignments are subsequently passed to an expectation 
maximization algorithm in which ambiguous alignments are reassigned to their most probable 
genome of origin. Upon reassignment, a report detailing the pathogens identified and their 
relative abundances is produced. 

2.4.5 Software implementation and distribution 

The Clinical PathoScope pipeline has been implemented in open-source Python, 

and is freely available for download at: http://sourceforge.net/projects/pathoscope/. The 

software requires the user to supply a fastq read file (after conducting quality control), 

any number of target, host, and non-target library Bowtie2 indices. Furthermore, the user 

has the option of changing the pipeline alignment parameters using inputs in the 

configuration file. For convenience, our viral, bacterial, and human alignment indices are 

freely available for download on the software distribution website. Clinical PathoScope 

will output two alignment files in SAM format, one directly from the Bowtie2 alignment, 

and another after read reassignment. Finally, the pipeline will output a tab-delimited 

summary report containing the genomes found in the sample as well as read numbers and 

proportions assigned to each genome.  

2.4.6 Evaluation of Clinical PathoScope on clinical data 

Four clinical datasets were utilized to evaluate the efficacy of Clinical PathoScope 

across a variety of scenarios [Table 2.1]. In addition, Clinical PathoScope was evaluated 

side by side with two previously published pathogen identification methods, RINS and 

READSCAN, on the basis of computational speed and accuracy at identifying pathogens 

in clinical sequencing samples. 
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  Average Run Time (minutes) 
Dataset Target Clinical PathoScope RINS READSCAN 
Simulation Virus 4.5 84.1 193.58 
Simulation Bacteria 13.1 1108.2 
PCCL Virus 6.0 89.1 52.8 
TMAdv Virus 4.4 144.0 78.6 
Mummy Bacteria 25.0 1099 882 
Table 2.3. Runtime comparisons of Clinical PathoScope and existing technologies. 

	
Prostate Cancer Cell Line (PCCL) 

Clinical PathoScope was able to rapidly decode the viral composition of this 

dataset; identifying the Human papillomavirus type 18 in fewer than 10 minutes. RINS 

and READSCAN both produced similar results; however, they required approximately 

four times the computational time to identify the pathogen, with run times of 89 minutes 

and 53 minutes, respectively [Table 2.3]. 

 

New World Titi Monkey Adenovirus Outbreak (TMAdv) 

We examined Clinical PathoScope’s performance in two clinical scenarios using 

the TMAdv dataset. First, to evaluate our pipeline in cases where the exact strain is 

missing from the target library, we excluded the TMAdv strain from the target library. In 

this scenario, Clinical PathoScope assigned reads to several adenovirus species [Figure 

2.6A]. According to Chen et al., the Simian adenovirus 3, which was the top ranked virus 

in the Clinical PathoScope result, is the closest phylogenetic relative to the TMAdv, with 

approximately 56% sequence similarity. Despite its highly divergent nature, Clinical 

PathoScope was able to successfully identify the closest phylogenetic neighbor of this 

novel species. Next, as a positive control, we included the TMAdv genome in our target 
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library and validated that Clinical PathoScope accurately distinguished the TMAdv from 

all other adenovirus genomes [Figure 2.6B], identifying 12,568 reads from TMAdv. In 

their original analysis, Chen et al. used BLASTn (Altschul et al., 1990) to identify 16,524 

reads from TMAdv. This discrepancy can be explained by the fact that BLASTn is a 

much more sensitive algorithm than Bowtie2. This moderate increase in sensitivity, 

however, results in a dramatic increase in run time, with BLASTn requiring ten times 

longer to complete the alignment than Bowtie2 when TMAdv is the only sequence in the 

database. Therefore, with rapid pathogen detection as the goal, a Bowtie2-based approach 

clearly provides a reasonable trade-off between speed and sensitivity, whereas if genome 

assembly is the goal, a BLAST-based approach might be preferable (at the cost of 

computational efficiency). Despite aligning approximately 4,000 fewer reads than the 

analysis in the original publication, we were still able to obtain 22.0x coverage of the 

TMAdv genome. While it is clear that Clinical PathoScope aligned substantially more 

reads with the TMAdv genome in the target library than in its absence, we were still 

capable of generating a list of candidate relatives with read counts proportional to their 

sequence similarity with the TMAdv. Furthermore, Clinical PathoScope completed 

analysis of this dataset in less than 5 minutes [Table 2.3]. 
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Figure 2.6. Alignment variations with and without TMAdv in the target library.  

A) Without the TMAdv present in the target library, Clinical PathoScope assigned reads to 
several adenovirus genomes. The identified genomes are displayed according to the proportion of 
total reads aligned to all adenovirus genomes. The pairwise nucleotide identities of several 
adenovirus subtypes to the TMAdv genome according to Chen et al. are given in parentheses. 
The Simian adenovirus 3 had the most reads aligned of all adenoviral genomes, which is 
concurrent with its sequence similarity to the TMAdv. Additionally, the Human adenovirus D 
aligned the most reads of all human adenoviruses, which is concurrent with the analysis of Chen 
et al. B) Inclusion of the Titi Monkey Adenovirus (TMAdv) in the target library resulted in the 
assignment of 12,568 reads to the TMAdv reference genome. 

With the TMAdv genome in the reference library, both RINS and READSCAN 

were able to accurately identify the correct viral genome in the sample. When the 

TMAdv was removed from the library, RINS generated a single contiguous sequence 

consisting of only 156 reads which mapped to 6 different adenovirus genomes, none of 

which included the nearest phylogenetic neighbor. This shows that, while assembly may 

be possible in a given sample, the ambiguous mapping of a contig to multiple genomes 

provides little information pertaining to the true subspecies of origin. Additionally, RINS 

required 144 minutes to complete its analysis of this dataset. READSCAN assembled 

several contigs of varying lengths and read counts from 16-60 reads per contig. However, 

the adenovirus strains identified and ranked by READSCAN based on their relative 
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genome abundance score (Naeem et al., 2013) were inconsistent with phylogenetic 

relationships found by Clinical PathoScope and the original study (Chen et al., 2011b). 

Finally, READSCAN required approximately 80 minutes to analyze this dataset. 

 

Tuberculosis in a Mummy 

To demonstrate the performance of Clinical PathoScope with respect to bacterial 

pathogen identification, we analyzed a sample isolated from a mummy infected with 

tuberculosis. Using assembled contigs and comparative genomics, Chan et al. found 

evidence the deceased was infected with two Mycobacterium tuberculosis genotypes. 

Using patterns of deletions and SNPs, they concluded that both strains most closely 

resemble strain 7199/99, but also share similarities with strain H37Rv. When strain 

7199/99 was included in the target database, Clinical PathoScope associates 32% of the 

reads with strain 7199/99 and 25% of reads with H37Rv. The majority of remaining reads 

were split between additional M. tuberculosis strains and Nocardia species. Chan et al. 

also identified Nocardia species using their assembly approach. Clinical PathoScope 

successfully identified the most closely related strains and furthermore, only required 25 

minutes to complete the analysis. While these results are in agreement with the author’s 

nearest-neighbor findings, we note that the number of M. tuberculosis strains in the 

sample (two unique strains according to Chan et al.) cannot be inferred from the Clinical 

PathoScope output alone. To successfully conclude the presence of two unique strains in 

the sample, a more complex, assembly based approach is required. Neither RINS nor 

READSCAN performed well on this dataset, requiring 1099.0 and 882.25 minutes, 



	

	

54 

respectively, to complete the analysis, likely due to the large average read size of 297 

bases and the complexity of the bacterial database. RINS assembled 20,483 unique 

contigs of varying length and reported 1,044,193 unique alignments of these contigs to 

2,293 bacterial genomes. While vast, these results are uninformative as to the specific 

strains present within the clinical sample. Several contigs were assigned to various M. 

tuberculosis strains in the RINS report, however there was a tremendous lack of 

specificity with regard to the specific strains present in the sample. With thousands of 

other bacterial genomes identified and no metric for quantifying sequence abundance, the 

user is forced to interpret the results of thousands of contigs and millions of potential 

alignments, many of which are redundant or uninformative. READSCAN required less 

time to complete its analysis of the mummy dataset than RINS; however it also failed to 

generate a report detailing any of the identified pathogens. In their original publication, 

the authors demonstrate READSCAN primarily in the context of viral pathogen 

identification and note its performance improvements over previous methods. As can be 

observed from its run time on the mummy dataset, however, READSCAN has trouble 

scaling to larger bacterial datasets with many closely related strains of the same species.  

 

Bacterial species identification from 16S amplimer aequencing 

Clinical PathoScope was also tested on eight 16S amplimer samples (Accession: 

SRP028704), five originating from ATCC bacterial species, and three from patient tissue 

extracted from intensive care patients with suspicion of bacterial infections. As shown in 

Table 2.4, Clinical PathoScope was able to successfully identify the unique bacterial 
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species in each of the first four ATCC samples with high accuracy. Furthermore, Clinical 

PathoScope was able to accurately identify the correct mixture of ATCC species in the 

fifth sample, assigning 30.4%, 30.2%, 21.2%, and 15.9% of the reads to Escherichia coli, 

Enterococcus faecalis, Pseudomonas aeruginosa, and Staphylococcus aureus, 

respectively.  

For the three patient samples, we observed that the first sample (F1) contained a 

mixture of Acinetobacter baumannii (57.6%) and Pseudomonas aeruginosa (40.4%), and 

that the other two samples (G1 and H1) were dominated by Pseudomonas aeruginosa 

(94.6%) and Enterobacter aerogenes (84.2%), respectively. To validate these results, we 

constructed a phylogenetic tree of 16S genes from all genomes in the reference library 

that reside within the three genera identified in the clinical samples [Figure 2.7]. We then 

visually inspected the read coverage pileup plots of 16S genes that are unique between 

the species we identified and their phylogenetic neighbors [Figure 2.8]. We observed that 

read coverage is uniform across the genomes identified by Clinical PathoScope in each 

sample, resulting from the fact that they share 100% sequence similarity of their 16S 

genes. In contrast, we noticed large coverage gaps in the nearest phylogenetic neighbors, 

indicating that there were sequence variants in these regions that prohibited reads from 

aligning to these specific locations. This analysis further demonstrates the highly specific 

and accurate framework employed by Clinical PathoScope and its utility not only for 

strain-specific pathogen identifications, but also for 16S bacterial classification.  
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  Clinical PathoScope Results 
Accession Sample Type Species 

Identified 
Reads 
Assigned (%) 

SRR949994 S. aureus ATCC No. 
25923 MSSA  

S. aureus 3,479 (98.0) 

  P. aeruginosa 36 (1.0) 
SRR949995 E. faecalis ATCC No. 

51299 
E. faecalis 2,351 (89.8) 

  S. aureus 139 (5.3) 
  E. hirae           44 (1.7) 
  P. aeruginosa 42 (1.6) 
SRR949996 P. aeruginosa ATCC No. 

27853 
P. aeruginosa              5,661(82.3) 

  E. coli                1,021 (14.9) 
SRR949997 E. coli ATCC No. 25922        E.  coli                4,169 (94.7) 
  S. enterica 66 (1.6) 
SRR949998 Mixture of E. coli, E. 

faecalis,  
P. aeruginosa, S. aureus 
(above) 

E. coli 14,280 (31.9) 
 E. faecalis 14,306 (31.9) 

  P. aeruginosa 8,771 (19.6) 
  S. aureus 6,594 (14.8) 
SRR950015 Clinical Sample (F1) A. baumannii 4,889 (59.4) 
  P. aeruginosa              3,177 (38.7) 
SRR950024 Clinical Sample (G1) P. aeruginosa 1,131 (94.5) 
  E. coli 45 (3.8) 
SRR950025 Clinical Sample (H1) E. aerogenes                587 (85.9) 
  P. aeruginosa  18 (2.6) 
  Erwinia sp. 

Ejp617 
 19 (2.8) 

  E. coli  18 (2.6) 
  S. enterica  9 (1.3) 
  E. asburiae  10 (1.5) 
  S. intermedius  8 (1.2) 
Table 2.4. Clinical PathoScope performance on the 16S amplimer dataset. 



	

	

57 

	
Figure 2.7. Phylogeny of 16S genes for genera found in clinical samples.  

We constructed a phylogenetic tree of 16S genes from all species in the reference library from the 
genera identified in the patient samples from the clinic. This tree was used to identify the nearest 
16S neighbor of the Clinical PathoScope diagnosis, and to check initial mapping read coverage of 
16S genes. 
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Figure 2.8. Read coverage for 16S genes and nearest phylogenetic neighbors.  

A) F1, B) G1, and C) H116S clinical samples (top frame: overall coverage, bottom frame: 
‘pileup’ plot for a selected sets of the reads). Coverage for the ‘nearest’ phylogenetic neighbor 
contains large coverage gaps and some of the locations have mismatching bases for all reads. 
Combined these figures indicate that Clinical PathoScope has correctly identified the correct 
species in these clinical samples.   

a. Sample F1 (SRR950015); Acinetobacter baumannii and Pseudomonas aeruginosa

b. Sample G1 (SRR950024); Pseudomonas aeruginosa

c. Sample H1 (SRR950025); Enterobacter aerogenes
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2.4.7 Comparison to metagenomic pipelines 

Clinical PathoScope has been designed to facilitate a rapid and streamlined 

approach to identify strain-specific pathogens in noisy clinical sequencing samples. We 

compared our method directly with two previously published algorithms, RINS and 

READSCAN, which were designed specifically for pathogen identification in clinical 

samples. Additional methods, such as PathSeq (Kostic et al., 2011) and IMSA (Dimon et 

al., 2013), were also considered. These methods rely on several BLAT and BLAST 

alignments in order to filter sequencing reads which can take several hours to days to 

complete depending on the number of reads in a given sample. To evaluate these types of 

approaches, we implemented a similar BLAST-based workflow and applied this 

workflow to our second set of simulated samples with the bacterial library as the target. 

This approach resulted in a substantial decrease in performance with only 48.3% and 

34.8% sensitivity for species and strain-specific identifications, respectively. This 

BLAST-based approach required 55 hours and 26 minutes, which is 300 times slower 

than Clinical PathoScope. Therefore, these algorithms are not practical methods for rapid 

clinical diagnostics.  

We further expanded our comparisons to metagenomic pipelines that were not 

specifically designed for the identification of pathogens in clinical samples but whose 

methods or modules may be useful for the task. We first considered the CloVR-

Metagenomics pipeline which clusters raw sequencing reads to reduce redundancy 

followed by a simultaneous BLASTX and BLASTN analysis against RefSeq and COG in 

order to annotate each sequencing read. CLoVR-Metagenomics does not address the 
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issue of host contamination and thus wastes computational time clustering and annotating 

sequences originating from the host which can account for >90% of the clinical sample. 

While very sensitive, BLASTN is notoriously slow and does not scale well to large 

metagenomic samples (Ames et al., 2013), making CLoVR-Metagenomics impractical 

for rapid strain identification. Furthermore, the redundancy reduction procedures 

employed by CLoVR-Metagenomics collapse sequences with 99% nucleotide similarity 

which could potentially remove reads which distinguish two closely related strains of the 

same species.  

We also considered assembly-based metAMOS (Treangen et al., 2013) and 

phylogeny-based LMAT (Ames et al., 2013). metAMOS offers a rich suite of assembly 

algorithms and pathogen annotation methods, however it does not incorporate any 

methods to remove host or contaminating sequences. As a result, the assembly of 

sequencing reads from a host-dominated clinical sample would require an attempt to 

assemble the entire host genome. This will result in a substantial and unnecessary 

increase in computational time and these contaminating reads could result in high 

instances of false positive mappings. LMAT, a software package designed for taxonomy 

classification, does not report strain-level annotation of sequencing reads nor does it 

report genome abundance information and thus cannot replicate the detailed pathogen 

report produced by Clinical PathoScope.  

2.5 Conclusions 

Sequence-based diagnostic tools have the potential to revolutionize the treatment of 

patients in the clinic, particularly those suffering from viral and bacterial infections. As 
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the run times and error rates of modern sequencing technologies rapidly decline, it is 

essential that software be developed to analyze these data in a manner that is both fast 

and highly sensitive in order to provide physicians with the most accurate information 

possible. We have implemented a novel pipeline for pathogen identification that 

overcomes many of the challenges faced by current sequence-based methods including 

clinically appropriate run time and subspecies specific assignment of sequencing reads. 

We have also demonstrated our method’s ability to identify multiple pathogens in a 

single clinical sample or the nearest phylogenetic neighbor of highly mutated or divergent 

species. Furthermore, Clinical PathoScope remained robust when analyzing datasets with 

lower than 1x coverage of the target genomes. It should be noted, however, that as 

coverage drops below 1x, the probability of sequencing a strain-specific segment of the 

target genome decreases. If these uniquely identifying reads are not sequenced and thus 

not present in the sample, Clinical PathoScope will tend to report the strain with the most 

aligned reads. Given that strain-specific reads do exist within a given sample, we expect 

the lower limit of coverage required to make a strain-specific identification to be 

comparable to our previously published results (Francis et al., 2013) in which we 

demonstrated the efficacy of our read reassignment algorithm with as low at 20% 

coverage of the genome 

The reference genome libraries used in this analysis contain all sequenced and 

assembled viral and bacterial genomes from NCBI’s RefSeq database. By avoiding 

genome assembly in lieu of more rapid computation, Clinical PathoScope is limited in 

that it can only identify pathogens that are present in these reference libraries. While the 
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libraries used in this study characterize the majority of known pathogens, they do not 

contain draft genomes. To broaden and extend the application of Clinical PathoScope in 

future studies, we allow the user to exchange, modify, or extend these libraries as more 

data becomes available. 

By comparison with existing methods, we have demonstrated that our method is 

the fastest strain-level pathogen identification algorithm currently available in the 

literature. As the number of sequenced pathogens grows, the breadth of the reference 

libraries used with Clinical PathoScope will increase, thus expanding the search space 

required to assign sequencing reads to a specific genome of origin. While this increase in 

search space will result in a linear increase in run time, we assert that our method will not 

lose its computational advantage over existing methods.  

In addition to faster run times and more accurate results, Clinical PathoScope 

offers a user-friendly implementation. With only two dependencies, Bowtie2 and the 

PathoScope reassignment algorithm, Clinical PathoScope can easily be installed and run 

on a standard desktop computer, facilitating a simplified workflow for the accurate 

identification of pathogens in clinical sequencing samples. While designed for use by 

computational biologists and biologists, the reports produced by Clinical PathoScope 

may prove useful to physicians as they provide a complete picture of the microbial 

community of a given clinical sample which may influence clinical diagnoses and 

treatment options. 
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CHAPTER 3 Strain tracking bacteria in metagenomic samples of the skin microbiome 

3.1 Abstract 

 Metagenomics, or the genomic sequencing of an entire community of microbiota 

(bacteria, fungi, virus), enables an investigation of the full complement of genetic 

material, including virulence, antibiotic resistance, and strain differentiating markers. The 

granularity to distinguish between closely related strains is particularly important as 

within one species some strains are beneficial while others are pathogenic to the host. A 

novel pipeline was developed to identify individual strains from complex metagenomic 

datasets. In this method, reads are first mapped against a database of all sequenced strains 

of an organism; the resulting alignment file is then processed by a Bayesian statistical 

framework which reports what percent of each strain is present in the sample. Finally, as 

further validation, the alignment file is parsed to identify reads mapping to informative 

single-nucleotide variants (SNVs). To validate the accuracy of the method, metagenomic 

samples were simulated composed of 6 and 12 Propionibacterium acnes strains, for 

which 78 sequenced strains are available. Results of the simulation study indicate the 

pipeline can successfully identify multiple different strains present in a sample with 96% 

sensitivity. When a strain was left out of the reference database, as is likely the case in 

real metagenomic samples, the pipeline correctly reported the most closely related strains 

the majority of the time. When the pipeline was applied to skin metagenomic samples 

from healthy volunteers, we found that individual strains are shared across multiple body 

sites (e.g.; arm crease, forearm, nose,…) of the same person. These strain tracking tools 
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provide the framework for future investigations comparing longitudinal datasets or 

investigating strains specific to a disease state. 

  Note: The majority of work presented in this chapter has been previously published in 

(Oh, Byrd et al., Nature 2014). 

3.2 Introduction 

Skin is the first defense against pathogenic bacteria while simultaneously harboring 

billions of commensal bacteria. These symbiotic skin bacteria play important roles in 

lipid metabolism, inhibiting colonization by transit bacteria, education of the immune 

system, and pathogen suppression. They inhabit defined topographical regions of the 

skin, such as the arm pit, elbow crease, forehead, toe webs, and heel (Grice et al., 2009). 

A clinician can easily and discretely access these individual sites for sampling. This 

highlights an advantage of the skin for microbiome studies over the gut that has the same 

topography, but is easily assessed only with the aggregate stool sample. Thus intra-

individual comparisons are possible with skin samples that are not possible with stool. 

The ability to compare different sites is particularly valuable for the study of common 

skin disorders, which show predilection for stereotypical skin sites such as eczema inside 

the elbow versus psoriasis on the outside of the elbow(Kong et al., 2012) (Paulino et al., 

2006). There is evidence that these common skin disorders and others including acne and 

rosacea are associated with altered microbial states (Fitz-Gibbon et al., 2013). Before 

studying disease states, it is important to establish a baseline for healthy individuals.   

To date the majority of skin microbiome studies explore microbial composition based on 

amplicon sequencing of universal marker genes, such as the16S ribosomal RNA (rRNA) 
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gene for bacteria and the Intertranscribed Spacer (ITS) of rRNA for fungi (Findley et al., 

2013; Grice et al., 2009). Based on the 16S rRNA survey, it was found that bacterial 

colonization is dependent on the physiology of the skin site with specific bacteria being 

associated with the moist, dry, and sebaceous microenvironments. Sebaceous sites are 

dominated by lipophilic Propionibacterium species, while humidity loving 

Staphylococcus and Corynebacterium species are most abundant in moist areas. In 

contrast to colonization patterns found for bacteria, results of ITS surveys indicate fungal 

diversity is more dependent on body location than physiology. Fungi of the genus 

Malassezia dominate core-body and arm sites, while foot sites are colonized by a more 

diverse combination of Malassezia, Aspergillus, Cryptococcus, Rhodotorula, Epicoccum 

and others [Figure 1.3]. 

To expand upon previous amplicon surveys, clinical and laboratory techniques 

were developed to sample healthy volunteers and extract enough biomass for shotgun 

metagenomics sequencing. Metagenomics, or genomic sequencing of an entire 

community of microbiota (bacteria, fungi, virus), enables an investigation of the full 

complement of genetic material, including virulence, antibiotic resistance, and strain 

differentiating markers. Under IRB protocol (08-HG-0059; PI: Segre), samples for 

complete microbial and human genome sequencing were collected from 18 body sites of 

15 healthy adult volunteers, 6 females and 9 males with ages ranging from 23 to 39. 

Samples were sequenced on an Illumina Hi-Seq to yield 30-100 million 100 basepair 

paired-end reads.  In total, 244 samples were available for analysis. 
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3.3 Methods and Results 

3.3.1 Multikingdom metagenomics 

With no well-validated pipelines or databases, analysis of skin metagenomic 

samples was dependent on the curation of a whole genome database with known skin 

microbes and the development of new computational tools. To address these needs, first  

a comprehensive multi-kingdom database was compiled from 2,342 bacteria, 389 fungi, 

1,375 virus, and 67 archeael genomes sequences from the National Center for Biological 

Information (NCBI), the Human Microbiome Project (HMP), the Saccharomyces 

Genome Database (SGD), the Fungal Genome Initiative (FGI), and FungiDB (Stajich et 

al., 2012). Where multiple genomes for a reference were available, the complete genome 

was selected for inclusion over draft genomic sequences. Next to analyze the 

metagenomic data, Clinical Pathoscope (Byrd et al., 2014), a pipeline to rapidly and 

accurately remove host contamination, isolate microbial reads, and identify potential 

disease-causing pathogens, was modified to simultaneously detect bacteria, fungi, 

archaea, and viruses [Figure 3.1]. Modifications to the original pipeline include removing 

the initial target-mapping step, removing the non-host filtration steps, and the addition of 

a genome coverage calculation. Given there were 4 large target databases, the initial 

target-mapping step was less effective in reducing runtime than when there were 1 or 2 

target databases, thus it was excluded. 
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Figure 3.1. Complete metagenomic analysis pipeline. 

To analyze a sequencing sample, first, reads mapping to the human database are filtered away. 
The remaining non-human reads are then individually mapped with Bowtie2 to archaeal, 
bacterial, fungal, and viral databases. The resulting sam alignment files are then combined and 
processed with the Pathoscope read assignment algorithm. The updated alignment file is then 
processed with samtools to determine the percent of the genome covered for each species in the 
sample. 

 In the updated pipeline, reads were first mapped to the human hg19 reference 

genome and human rRNA sequence using bowtie2’s -very-sensitive parameter. Reads 

mapping to human were not considered further in this microbe centric analysis. Human-
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derived reads varied from 5-99% of the total reads depending on skin site and stochastic 

features [Figure 3.2].  Remaining non-human reads were then mapped to the microbial 

genome collection using bowtie2’s (Langmead and Salzberg, 2012) -very-sensitive and –

k 10 parameters such that the top 10 hits were retrieved. Multiply mapping reads were 

then reassigned using Pathoscope v1.0 (Francis et al., 2013), which uses a Bayesian 

framework to examine each read’s sequence and mapping quality within the context of a 

global reassignment. Read hit counts were then normalized by genome length and scaled 

to sum to one. Coverages of each genome were calculated using the genomeCoverageBed 

tool in the Bedtools suite(Quinlan and Hall, 2010). For relative abundance and diversity 

calculations, genomes with coverage < 1 were removed. The remaining genomes’ relative 

abundances were subsequently rescaled to one. 

 

Figure 3.2. Percent human by body site. 

Boxplots (line indicates median; boxes represent first and third quartiles) show, for each site, % 
reads mapping to human hg19 that are discarded before analysis. Sites are colored by site 
characteristic. Sites label as in Figure 3.5. 

For validation, taxonomic assignments of bacteria and fungi were compared to 

16S and ITS amplicon results, as well as to the output from a bacterial and archaeal 
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mapping tool, Metaphlan (Segata et al., 2012). The Pathoscope pipeline’s results were 

highly correlated with Metaphlan results. For species counts, the correlation was ρ = 0.96 

[Figure 3.3A]. For genus level relative abundances, the correlation was ρ > .90 for all 

genera compared [Figure 3.3B]. The Pathoscope amplicon correlations were also high; ρ 

> 0.85 for all bacterial genera compared and ρ > 0.64 for all Malassezia species [Figure 

3.3C,D].   

 

Figure 3.3. Comparison between Pathoscope and Metaphlan.  

A) Number of species observed with no coverage cutoff (Left) and a coverage cutoff off of > 1 
(Right). B) Relative abundance of the bacterial genera. C,D) Comparison between Pathoscope 
and amplicon results in regards to C) Relative abundance of bacterial genera with 16S. D) 
Relative abundance of fungal species with ITS.  

When all healthy volunteer samples were run through the pipeline, bacteria and 

fungal abundances and distributions were similar to what was seen in the previously 
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published amplicon surveys. The distribution of bacteria was mostly driven by the 

characteristic of the site, and the distribution of fungi was driven by the body location. P. 

acnes was the dominant bacteria in sebaceous regions, and Malassezia was the dominant 

fungi throughout the core body sites [Figure 3.4]. 

 

Figure 3.4. Multikingdom analysis across healthy individuals by site.  

Relative abundance of prominent skin taxa in healthy volunteers. Within a site, each bar 
represents the microbes present in an individual.  
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Figure 3.5. Relative kingdom abundances across different skin sites based on metagenomic 
survey.  

Consensus pie charts show the relative abundances of archaea, bacteria, eukaryotes, and viruses 
across 18 different body sites. Body sites are colored based on their physiological classification. 

 New observations include relative abundances of the kingdoms [Figure 3.5]. The 

majority of samples were primarily bacteria, but a handful of samples, particularly the 

nares and alar crease, had a high proportion of viruses. Those viruses were most often 

bacteria phage, specifically Staphylococcus and Propionibacterium phage. The average 

fungal abundance at all sites was low, less than 10 percent; even on the feet where the 

fungal diversity was much higher than the rest of the body. Caveats to concluding low 

fungal abundance include the lack of high quality full fungal genomes, and the difficulty 

lysing fungi with a standard DNA extraction method. 
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3.3.2 Strain-level metagenomics 

Marker based studies are limited in taxonomic resolution to genus or species 

level. Functional information can be inferred from marker genes (Langille et al., 2013), 

but strain differences are lost. The importance of differences between strains is 

highlighted by the increasing number of studies identifying large numbers of non-core 

genes within the pangenome of a species (Conlan et al., 2012; Tomida et al., 2013). 

While previous studies have used 16S rRNA gene profiling and SNPs to study intra-

species variation between and within individuals (Schloissnig et al., 2013), comparisons 

of strains across multiple different body sites using reference sequences have not yet been 

done. To differentiate between closely related strains of the same species, parameters 

within the metagenomics pipeline were adjusted such that the stringency of bowtie2 was 

increased and Pathoscope’s tendency to choose a parsimonious list was reduced [Figure 

3.6A]. Strain tracking was focused on P. acnes and S. epidermidis species because of 

their high abundance in the skin and the availability of sequenced genomes. 



	

	

73 

 

Figure 3.6. Three tested strain tracking approaches.  

To detect strains present in metagenomic samples three alternative strategies were tested. A) 
whole genome + Pathoscope utilized a database composed of all sequences genomes of a species 
B) strain specific SNPs were identified and used to determine strain presence. C) noncore regions 
+ Pathoscope utilized a database composed of only the noncore, variable, regions for each strain 
of a species. 

	
The P. acnes and S. epidermidis databases were curated from all complete and 

draft genomes present for these species at NCBI, totaling 78 and 61, respectively. Isolates 

HL037PA2, HL037PA3 HL044PA1, and SK182B-JCVI were excluded from the P. 

acnes database as they likely represent different Propionibacterium species (Butler-Wu et 

al., 2011; McDowell et al., 2012). Reads were mapped to each species-specific database 

using bowtie2 with the most stringent parameters (--score-min L,-0.6,0.006), allowing 

zero mismatches and as many hits as genomes in the database (-k 78 or –k 61). This 
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stringent criteria is necessary given 88% of the P. acnes genome is core, defined as 

regions shared between all reference genomes, and 80% of the S. epidermidis genome is 

core (Conlan et al., 2012; Tomida et al., 2013). Read assignment using Pathoscope was 

performed as described for the metagenomics pipeline, except theta_prior, an option that 

changes whether reads are assigned to as few genomes as possible, was set to 1088 (most 

genomes permitted). Read hit counts were then normalized by genome length and scaled 

to sum to one. Strains with a normalized abundance less than 1 percent were grouped as 

“Other”.  

To evaluate the ability of Pathoscope to accurately reassign reads to very similar 

strains, sensitivity was assessed using complex synthetic communities and it was 

demonstrated that the presence of unique genomic loci can allow discrimination between 

subtypes [Figure 3.6B,C]. To create a comprehensive test set, 3 sets of 6 different strains 

were chosen for both P. acnes and S. epidermidis. Strains were chosen such that all major 

taxonomic clades were represented. For each species, the 3 sets were then combined into 

all possible combinations to have samples of 12 and 18 genomes. For each of the sets, 

50,000, 100,000, and 500,000 reads per genome were simulated with 5 different seeds 

using the simulator Mason (parameters: mason illumina -s ## -N ## -sq -n 100 -i -hs 0.0 -

hi 0 -hnN –nN) (Holtgrewe, 2010); given those parameters, Mason incorporates an 

Illumina sequencing error rate into the reads. Thus 45 samples of 6 genomes, 45 samples 

of 12 genomes, and 15 samples of 18 genomes were tested for each species. In addition to 

the samples with equal abundances per strain, the 3 sets of 6 different strains were 
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simulated to have staggered abundances ranging from 5,000 to 500,000 reads per 

genome. 

 

Figure 3.7. Strain-tracking simulation results.  

A) P. acnes B) S. epidermidis. Size of the circle indicates the number of simulated reads per 
strain in the sample, the larger the circle the greater the number of reads. Different color families 
indicate which strain-tracking pipeline was used (whole genome, SNPs, or noncore regions). 
Shades of a color represent the number of different strains present in a sample, the darker the 
shade the more strains that were present. 
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average sensitivity of ~78% for P. acnes and ~92% for S. epidermidis when considering 

abundance across all simulated samples [Figure 3.7]. This discrepancy in sensitivity 

exists because S. epidermidis genomes are less similar to each other than P. acnes 

genomes giving Pathoscope more regions of dissimilarity to accurately resolve strains. 

When only considering presence/absence of strains, the sensitivity is ~98% for P.acnes 
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increases as the number of reads per genome increases. This is caused by the slow 

accumulation of sequencing errors in places that perfectly match incorrect strains. 

The majority of falsely reported strains are closely related phylogenetically to the strain 

identified. Using clade membership as a proxy for relatedness, we see the P. acnes 

sensitivity increase from ~78% for strain level to ~91% when using clade levels 

previously established by Tomida et al. (Tomida et al., 2013). Such specific clade 

identifications have not been previously published for all S. epidermidis strains. 

 To further validate the strain-tracking pipeline, two alternative pipelines were 

created using SNPs and noncore regions to discrimination between subtypes. SNPs 

unique to a strain in core regions of the genome were identified using nucmer (Delcher et 

al., 2002) and custom scripts. Nucmer was also used to identify non-core regions in each 

of the genomes. KPA171202 and SK137 were used as the P. acnes references, and 

ATCC_12288 and RP62A were used for S. epidermidis. To increase confidence, only 

SNPs and noncore regions identified with both references were used for strain 

identification. In agreement with previous studies (Conlan et al., 2012; Tomida et al., 

2013), 88% of the P. acnes genome was identified as core and 80% of the S. epidermidis 

genome. To visualize relationships between the strains, all SNPs identified in core 

regions were used to create phylogenetic trees with the program PhyML (Guindon et al., 

2009)[Figure 3.10B, Figure 3.11B]. In the SNP-based pipeline, custom scripts parsed the 

bowtie2 sam file, generated in the previously described strain-tracking pipeline, for reads 

mapping to SNPs unique to a strain [Figure 3.6C]. Counts per strain were then 

normalized based on the total number of SNPs per strain. When tested on the simulated 
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reads, the average sensitivity of this approach is 88% for P. acnes and 93% for S. 

epidermidis with almost no strains falsely identified [Figure 3.8]. In the non-core region-

based approach, the whole genomes databases in the Pathoscope-based pipeline were 

replaced with databases composed of only the non-core regions for each strain [Figure 

3.6C]. Because the similarity between strains is reduced when using only noncore 

regions, the Pathoscope -thetaPrior variable was decreased to 0. Using only the non-core 

regions, the average strain-tracking sensitivity falls to 55% for P. acnes and 65% for S. 

epidermidis, and the average number of incorrect strains increases respectively to 11 and 

8 [Figure 3.7]. This drop in sensitivity and increase in false positives indicate that 

differences in noncore regions alone are not sufficient for strain level analysis. 

 

Figure 3.8. P. acnes simulation results for 3 strain tracking approaches. 

Relative abundance plots show how accurate each of the 3 strain tracking approaches is when all 
sequenced strains are in the database (top) and when a strain (HL110PA2) is missing from the 
database, the more realistic scenario. Similarly colored bars represent closely related strains, or 
strains residing in the same phylogenetic clade. Strains present in the actual sample are boxed in 
black. For each approach, results are shown for 5 samples simulated with different seeds.  
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 To evaluate the behavior of each pipeline when a strain is missing from the 

database, as is likely the case in real metagenomic samples, a set of P. acnes simulated 

samples were run through each pipeline with one of the strains removed from each 

database. Under these more realistic circumstances, the whole-genome approach 

identified closely related strains of the missing strain [Figure 3.8A]. Using clade 

membership as a proxy for relatedness, when the correct strain is present in the database 

the clade-level sensitivity is 87.9% percent. When the strain is missing, the clade-level 

sensitivity remains high at 86.6% percent. This validates the whole-genome approach’s 

ability to successfully report the most closely related strains; however, because the reads 

are mapping to several closely related strains, the exact number of strains present cannot 

be accurately determined, only that something within that clade is present. Although the 

SNP-based approach performed better than the whole-genome based approach when all 

strains are present in the database, it is unable to identify closest neighbors when a strain 

is missing from the database [Figure 3.8B]. Because the SNP pipeline only uses SNPs 

that are unique to a strain, relatedness between strains cannot be inferred from SNPs 

alone. On the other hand, with the non-core region based approach it is possible to 

identify closest neighbors [Figure 3.8C]. By incorporating both SNP and noncore 

information into its reassignment method, the whole genome Pathoscope-based pipeline 

is able to exploit the high sensitivity of the SNP approach and the nearest-neighbor 

tracking ability of the non-core region based approach. 
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Figure 3.9. Strain tracking pipeline. 

Nonhuman reads are mapped against a database of all sequenced strains of an organism. Multiple 
mapping reads are reassigned to the most likely genome of origin with the Bayesian statistical 
framework Pathoscope. 

	
Based on positive results from the simulated data, all metagenomic samples were 

run through the whole-genome Pathoscope based pipeline [Figure 3.9]. At the majority of 

sites, humans were colonized by heterogeneous communities of P. acnes and S. 

epidermidis strains [Figure 3.10, Figure 3.11]. Similarity between samples was assessed 

using the Yue-Clayton theta similarity index that considers both presence/absence of 

strains and their relative abundance [Figure 3.12]. These results showed that an 

individual’s communities of P. acnes strains were more similar across his or her body 

sites than between individuals. Similar trends of intra-individual similarity were also 

observed across core body sites with S. epidermidis. Distinctly, for all individuals in this 

study, strains from clade B of S. epidermidis predominated the feet (orange strains in 

Figure 3.11). Interestingly, in a comparative analysis of S. epidermidis genomes (Conlan 
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et al., 2012), this group was labeled as the professional commensals, as no nosocomial 

isolates, those isolated from hospital infections, clustered in this group. Overall, these 

results suggest that the host and the environment can differentially shape commensal 

strain communities. Further analyzes at this resolution will be powerful in tracking 

microbial communities across time in steady state and disease conditions. 

 

Figure 3.10. P. acnes strain tracking across body sites. 

A) Full strain-level assignments for samples with relative abundances of closest related 
Propionibacterium acnes strains, by individual. B) Dendrograms of strain similarity. Trees were 
generated using core SNPs. Bar of colors indicates delineations of subtypes where 
phylogenetically more similar genomes are in similar colors; for example, we defined 12 subtypes 
for P. acnes. 
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Figure 3.11. S. epidermidis strain tracking across body sites. 

A) Full strain-level assignments for samples with relative abundances of closest related 
Staphylococcus epidermidis strains, by body site. B) Dendrograms of strain similarity. Trees were 
generated using core SNPs. Bar of colors indicates delineations of subtypes where 
phylogenetically more similar genomes are in similar colors; for example, we defined 14 subtypes 
for P. acnes. 
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Figure 3.12. P. acnes and S. epidermidis are differentially shaped by host and the 
environment. 

A) Relative abundance plots of P. acnes (left) and S. epidermidis (right) at representative sites. 
Similarly colored bars represent closely related strains as in [Figure 3.10B, Figure 3.11B]. P. 
acnes subtypes differ more significantly between individuals than site characteristic, while S. 
epidermidis subtypes differ by site characteristic and individual. B) The Yue-Clayton theta 
calculates similarity between two samples based on both the number of shared features and their 
relative abundances. θ=0: dissimilar; θ=1: identical.‘Inter’ reflects similarity between individuals 
or site characteristics; ‘intra’ reflects similarity to samples within individuals or site 
characteristic. 
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CHAPTER 4 Temporal stability of the human skin microbiome 

4.1 Abstract 

Biogeography and individuality shape the structural and functional composition of 

the human skin microbiome. To explore these factors’ contribution to skin microbial 

community stability, we generated metagenomic sequence data from longitudinal 

samples collected over months and years. Analyzing these samples using a multi-

kingdom, reference-based approach, we found that despite the skin’s exposure to the 

external environment, its bacterial, fungal, and viral communities were largely stable over 

time. Strain and single nucleotide variant level analysis showed that individuals maintain, 

rather than reacquire prevalent microbes from the environment. Longitudinal stability of 

skin microbial communities generates hypotheses about colonization resistance and 

empowers clinical studies exploring alterations observed in disease states. 

Note: The majority of work presented in this chapter has been previously published in 

(Oh*, Byrd* et al., Cell 2016). 

	
4.2 Introduction 

 Human skin is the first line of defense against pathogens while simultaneously 

harboring a diverse milieu of commensals including bacteria, fungi, and viruses. These 

symbiotic organisms play essential roles in lipid metabolism, colonization resistance to 

transient organisms, and education of the immune system (Belkaid and Segre, 2014; 

Grice, 2015; Scharschmidt and Fischbach, 2013). Previous studies have shown a strong 

site-specificity to microbial community composition and function: the physiologic 
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characteristics of a skin site, including pH, temperature, moisture, sebum content, and 

topography shape the local microbial community (Costello et al., 2009; Findley et al., 

2013; Grice et al., 2009; Grice and Segre, 2011; Oh et al., 2014). Understanding 

community variability across skin sites has provided the foundation to study the 

corresponding site-specificity to disease predilection, for example atopic dermatitis 

(eczema) in the bends of the arms and legs (Kong et al., 2012) and psoriasis on the 

elbows and knees (Alekseyenko et al., 2013). However, it is poorly understood why 

disease predilection changes over human lifespans and whether fluctuations in host-

intrinsic factors, such as immunity or hygiene, influence microbial community 

composition and function. Understanding stability determinants is critical to studies 

investigating if homeostatic forces contribute to a healthy skin microbial community and 

if alterations influence host health.  

In addition to skin’s biogeography, as defined by physiologic factors such as 

sebaceous, moist, or dry, individual discriminatory attributes also likely contribute to skin 

microbial community dynamics over time. Using the high resolution and multi-kingdom 

analyses afforded by metagenomic shotgun sequencing, we have shown that low 

abundance microbial species including bacteria, fungi, and viruses can differentiate 

between individuals. Observing inter-kingdom dynamics is meaningful since these 

interactions may exacerbate disease severity (Peleg et al., 2010) or facilitate transitions 

from opportunistic to pathogenic. Moreover, a subspecies-level analysis of dominant skin 

species showed that strains can be unique to an individual, while the population 

heterogeneity of other species can be more specific to skin physiology (Oh et al., 2014). 
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Distinguishing between strains of the same species is necessary because some strains are 

beneficial while others may be pathogenic to the host. 

Shotgun sequencing data provides resolution difficult to achieve with 

phylogenetic marker gene analyses. Metagenomic surveys of the gut have shown that 

single nucleotide variants (SNVs) (Schloissnig et al., 2013) and gene copy number 

variations (Greenblum et al., 2015; Zhu et al., 2015) can identify individual-specific 

strains, which illustrate functional differences that cannot be explained by species 

composition alone. Longitudinal studies in the gut have found individual-specific strains 

persist for a year (Schloissnig et al., 2013) or more (Faith et al., 2013). These studies 

have leveraged a combination of compositional and functional attributes to identify a 

broad trend of long-term retention of one’s individual strains over time, even at the SNV 

level.  

To understand community dynamics of healthy human skin, we investigated the 

temporal stability and diversity of skin microbial communities, expanding our previous 

metagenomic study to re-sample individuals at successive timepoints. Here, we show that 

community stability persists regardless of sampling time interval and despite constant 

exposure of skin communities to extrinsic factors [Figure 4.1]. Interestingly, the nature 

and degree of this stability is highly individual-specific; a trend previously observed with 

phylogenetic marker gene sequencing across body sites (Gajer et al., 2012). Strain-level 

analysis reveals that this stability is driven primarily by the maintenance of individual 

strains over time, rather than through the acquisition of prevalent microbes from the 

environment and other individuals (Lax et al., 2014). We present new insights into how 
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biogeography and individuality regulate stability and transience of the skin microbiome 

community. 

 

Figure 4.1. The skin microbiome is largely stable overtime despite environmental exposures. 

4.3 Results 

4.3.1 Skin microbes are largely stable at a community level 

Our previous studies defined that the diversity and composition of skin microbial 

communities possess both site- and individual-specific qualities (Oh et al., 2014). To 

assess the effect of time on these characteristics, we collected samples over long (1-2 

years) and short (1-2 months) time intervals. 12 healthy individuals were sampled across 

17 skin sites at 3 timepoints for a total of 594 samples and 720 Gbp of shotgun microbial 

sequence data [Figure 4.2A]. For taxonomic reconstructions, we mapped microbial reads 

to a multi-kingdom reference database. To assess the stability of skin microbial 

communities, we compared community membership and structure over short and long 

time intervals using the Yue-Clayton theta index, which calculates the distance between 
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communities based on relative proportions of shared and non-shared species in each 

population (Yue and Clayton 2005). θ = 0 indicates dissimilar and θ = 1 identical 

communities. We observed that an individual’s short- and long-term community 

similarity significantly exceeded similarity between individuals [Figure 4.2B], similar to 

observations in gut and other communities (Caporaso et al., 2011; Costello et al., 2009; 

Faith et al., 2013; Flores et al., 2014; Human Microbiome Project, 2012). At all sites, 

long-term was lower than short-term similarity at the species level; a trend also observed 

when comparing timescales of 1 day versus 3 months (Costello et al., 2009). Bacterial 

and fungal communities of sebaceous sites were the most stable regardless of time 

intervals [Figure 4.2C]. Surprisingly, dry sites including high-exposure, high-perturbation 

sites like the palm, were also stable regardless of time. Foot sites were the least stable, 

with significant differences over both short- and long-term. This may be due to a 

combination of behavioral and physiologic factors, including shoe-wearing habits, 

personal hygiene, or features such as the thickness of plantar stratum corneum (the upper 

layer of skin).  

 



	

	

88 

 

Figure 4.2. Study design and community stability between timepoints.  

A) Longitudinal study design to show time between samplings. B) Boxplots of Yue–Clayton 
theta indices calculate similarity between sites aggregated by characteristic. ‘Long’ duration 
indicates ~1-2 years between samplings; ‘Short’ duration averages a month (T2 to T3). For 
comparison, ‘Interpersonal’ values show the average between individuals. Bonferroni-adjusted 
*P <0 .05 value, **P <0 .01 value , ***P < .001 value. C) Relative abundances of the most 
common skin bacteria, fungi, and viruses are shown for three representative individuals. 
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harbor complex subspecies variation for both P. acnes and S. epidermidis. Strain 

heterogeneity could be unique to an individual (P. acnes) or specific to skin site (S. 

epidermidis) (Oh et al., 2014). 

Here, we observed that P. acnes strains are remarkably stable over time across 

body sites [Figure 4.3A,B; Figure 4.4]. We quantified this stability with the Yue-Clayton 

theta similarity index [Figure 4.3C], taking into account both strain presence/absence and 

relative abundance. Temporal stability, short- or long-term, surpassed the similarity 

between individuals, indicating that P. acnes stability likely derives from the 

maintenance of an individual’s strains over time and less from the acquisition of new 

strains from the environment or other individuals.   
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Figure 4.3. Individual-specific strain and SNV signatures are stable over time.  

A) Dendrogram of P. acnes strain genome similarity based on core SNVs. B) P. acnes strain 
relative abundance plots of 3 representative individuals’ manubrium, colors as in (A). Full set of 
strain classifications is shown in Figure 4.4. C) Boxplots of Yue-Clayton (left) and Jaccard 
(right) theta indices indicate similarity between strains (all body sites) and SNVs (manubrium and 
back) of P. acnes in a time series (θ = 1 is identical).  ***P < .001 value, Wilcoxon rank-sum test. 
D) Rarefaction curves demonstrate core SNV accumulation with read subsampling for 
manubrium sites. For remaining panels, SNVs are reported for samples subsampled to 1 million 
reads. Colors correspond to individuals as shown in Figure 4.2A. 
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Figure 4.4. P. acnes strains are stable over time across body sites.  

A) Full P. acnes strain tracking for all individuals, all sites. Sample headings are colored by site 
characteristic. T1, T2, and T3 indicate timepoints, with T1 and T2 being long-duration timepoints 
(>1 year) and T2 and T3 short-duration timepoints (~1 month). Colors correspond to those in (B). 
B) Dendrogram of P. acnes strain similarity based on core SNVs. Similar strains are grouped into 
clades. 
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have high sequencing depth and P. acnes abundance [Figure 4.5]. For these sites, we used 

SNVs specific to the P. acnes core genome (2,248,676 bps region of the genome shared 

between all 78 sequenced strains) to ensure even representation of SNVs in every 

metagenomic sample. We identified 83,081 variant positions in the P. acnes core or 

~24,000 SNVs per sample after filtering variants for an allele frequency > 1% and > 4 

read depth. To test if P. acnes sequencing depth was sufficient to identify the majority of 

variants, we generated rarefaction curves of SNVs discovered over increasing read depths 

[Figure 4.3D]. We found that 1 million reads, 40X coverage of the P. acnes core, was 

sufficient for variant discovery.  

 

Figure 4.5. P. acnes core coverage across body sites.  

A) Boxplots show average depth of coverage of the P. acnes core across body sites. Black lines 
indicate median, boxes show first and third quartiles. Colors correspond to the site characteristic. 
B) Number of P. acnes reads versus percent coverage of the P. acnes core. With ~100,000 reads, 
the complete core is covered. 

The major advantage of an SNV-based approach is that given sufficient 

sequencing depth, temporal stability and genetic diversity can be estimated in the absence 
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based on presence/absence of features, we found the stability of P. acnes SNVs mirrors 

that of P. acnes strains over time [Figure 4.3C]. We found that regardless of duration, an 

individual shares significantly more SNVs with themself over time than with other 

individuals (P-value<0.001).  

 

Figure 4.6. SNV distributions indicate heterogeneity of a community.  

Top) In a homogenous community, with a single strain per species, when reads from that strain 
are mapped to a reference, all variant positions will be monoallelic. Bottom) In a heterogeneous 
community of multiple strains, some variants will be unique to a strain, while other variants are 
shared between strains. Because of the presence of multiple sources of variation, some variant 
positions will be monoallelic while others will be di- or in rare cases triallelic.  

Finally, polyallelism can reflect genetic heterogeneity, i.e., the presence of 

multiple strains, in a community [Figure 4.6]. While the number of diallelic sites does not 

scale linearly with the number of strains in a sample, low levels are indicative of a 
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monocolonized population. We focused on diallelic states, as triallelism was extremely 

rare (<1.0% in the population). We calculated the cumulative distribution of alternate 

alleles derived from the shotgun metagenomic reads as a function of distance from a 

defined reference genome [Figure 4.7]. Through these analyses, we identified a putatively 

monocolonized individual with strikingly low diallelism (1.0% of sites), in contrast to 

other individuals, e.g., HV02 and HV09, in which 97.4% and 25.6% of alternate sites 

have reads reliably mapping to both reference and an alternate allele indicating the 

presence of multiple strains. For future disease studies, fluctuations in pollyallelism, for 

example, a dramatic decrease in the number of diallelic positions could indicate 

emergence of a dominant pathogenic strain.  

 

Figure 4.7. P. acnes SNV heterogeneity.  

A) Number of SNVs that are mono, di, and triallelic. T1, T2, and T3 indicate order in time series. 
HV is healthy volunteer. B) For samples in [Figure 4.3A], the distribution of reads between the 
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reference and alternate allele(s) for all identified SNVs. SNVs ordered by decreasing percentage 
of reads mapping to the reference allele.  

4.3.3 P. acnes pangenome maximized across a multi-phyletic community 

	
Figure 4.8. Pangenome of a species. 

In comparative genomics, the pangenome is the full complement of genes within a species. This 
example shows three different strains belonging to a single bacterial species. Core genes shown in 
gray are present in all strains of a species, while noncore genes shown in orange, blue, or pink are 
present in a subset but not all strains of a species. Together, the core and noncore genes compose 
the pangenome of a species.  

Since skin sites stably maintain the same P. acnes strains over time, we wanted to 

explore the community’s full gene content to generate hypotheses about evolutionary 

forces shaping community drift, resilience, and stability on a functional level. A species’ 

total functional repertoire is the ‘pangenome’, composed of core (conserved) and non-

core (absent in at least one strain) genes [Figure 4.8]. The P. acnes pangenome is 

composed of 3,774 non-redundant gene clusters, of which 1,685 were core [Figure 

4.9A,B]. Each additional genome adds 3 novel genes to the total [Figure 4.9C] (Tomida 

et al., 2013), implying that the majority of P. acnes functional capacity is captured within 
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these 78 reference genomes. We mapped our reads to this P. acnes pangenome database, 

requiring 1 million reads for adequate sequencing depth [Figure 4.9D]. Between 82.6 

(3,117) and 99.9% (3,771) of the known P. acnes pangenome [Figure 4.10A] was 

represented in healthy individuals. 70% of samples had > 95% (3,585) of the pangenome.  

 

Figure 4.9. Pipeline for P. acnes pangenome identification.  

A) Detailed pipeline for clustering of the P. acnes proteins. For all 78 P. acnes genomes, 196,083 
protein annotations were downloaded from NCBI.  All sequences were clustered with usearch 
into 3,672 clusters and 461 singletons. Singletons were filtered based on various criteria including 
length, complexity, and location. After filtering, 102 singletons remained for a total of 3,774 
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genes in the pangenome. These genes were then BLASTed against a KEGG database to assign 
functional annotation. Finally, the presence of the gene clusters in the metagenomic samples was 
determined using bowtie2. B) Gene accumulation curves for pangenome (blue) and core genome 
(green) as a function of genomes sequences (N). Pangenome data are fit by a power law 
regression. Core data are fit by an exponential decay curve. Points are means of n for 200 
simulations. Error bars indicate the standard deviations for the 200 simulations. C) Accumulation 
of new genes (n) discovered with the addition of new genome sequences (N) fits a power law 
regression. D) Rarefaction curves for accumulation of genes for different size subsamples in 
representative sites. A minimum of 1 million reads was required for further pangenome analyses. 
Different colors represent trends for different individuals. 

Interestingly, combining functional capacity with strain signatures revealed that 

similar pangenomic capacity can be achieved with distinct strain combinations [Figure 

4.10A,B]. This suggests that functional niche saturation can occur through multiple 

combinations of a limited number of strains, rather than requiring a full phylogenetic 

complement. Thus, while individuals have distinct P. acnes strain signatures, their 

functional capacities are remarkably similar, only differing 5% between individuals, and 

an individual is more likely to retain those unique genes over time [Figure 4.10C]. This 

percent difference between individuals increases to ~40 when relative copy numbers of 

genes are compared [Figure 4.10D], further illustrating that while individuals’ microbial 

communities have the same set of genes their relative abundances vary. 
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Figure 4.10. P. acnes pangenome reaches functional saturation with distinct strain 
combinations.  

A) Boxplots show number of genes present at > 40% coverage across sites of individuals at 3 
time points. Black dashed line indicates the 3,774 genes in P. acnes pangenome. Blue dashed line 
indicates the 3,005 genes present in every individual at every time point in at least 50% of body 
sites. Sites with < 1 million P. acnes reads were excluded. B) Relative abundance plots of P. 
acnes strains across all body sites, color-coded by site characteristic. Strain colors defined in 
Figure 4.4B. T1, T2, and T3 indicate order in time series. C) Boxplots of Jaccard theta indices 
indicate stability of gene presence over time (θ = 1 is identical). **P <0 .01, ***P < 0.001, 
Wilcoxon rank-sum test. D) Boxplots of Yue-Clayton theta indices indicate the stability of gene 
copy numbers over time (θ = 1 means identical). 
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In addition to gene retention, we also observed an increase in pangenome size in 

three of the individuals (HV01, HV02, and HV03) over time [Figure 4.10A]. Thus, 

although strain stability is more typical, individuals can acquire new gene content over 

time. Because of convergent functionality between individuals, we redefined the core 

genome to represent a ‘functional’ core that is characteristic of healthy communities, 

towards which a probiotic approach might strive. We defined that 2,982 genes were 

present in at least 50% of sites in all individuals at all times, exceeding the 1,860 genes 

that are derived using genomes alone. This functional core genome increases to 3,186 

genes when we exclude HV06 whose strain community is predominated by a single P. 

acnes clade [Figure 4.4].  

To evaluate functional enrichment within the 769 genes not identified as core, we 

assigned KEGG pathway annotations to clusters with BLAST. Unsurprisingly, these 

noncore genes were statistically enriched for pathway "None" (702 of 769 genes) [Figure 

4.11A], underscoring that more extensive gene annotations are needed to better 

understand functional variation. After removing unannotated clusters, we found 

accessory genes to be enriched in functions associated with ABC transporters and 

cysteine and methionine metabolism [Figure 4.11B]. Ubiquitous across bacteria, ABC 

transporters facilitate communication between bacteria and the environment through the 

active transport of substances such as ions, sugars, lipids, proteins, and drugs across 

membranes, contributing to nutrient sensing and other processes. 
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Figure 4.11. P. acnes pangenome KEGG functions.   

A) Pie chart indicates distribution of P. acnes genes between those present in all individuals 
“core” and those absent from some individuals “noncore”. Majority of core and noncore genes 
are pathway “unknown” when compared to a KEGG database. B) Distribution of core and 
noncore genes for prevalent KEGG pathways. Colors indicate broader KEGG class of each 
pathway. Pathways with * are functionally enriched in noncore based on Fisher exact test with 
FDR <0.05. 

4.3.4 Multi-phyletic S. epidermidis communities have more variable gene content 

To determine if our observations in P. acnes extended to other members of the skin 

community, we applied our analyses to evaluate the stability of S. epidermidis strains 

over time. Like P. acnes, S. epidermidis is a common skin commensal with well-

documented sequence and gene content variation. Multi-phyletic communities of S. 
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epidermidis strains are stably maintained over time irrespective of body site Figure 

4.12A, Figure 4.13] strain similarity over the long- and short-term exceeded similarity 

between individuals (P-value< 0.001) [ Figure 4.12B], suggesting that new strains are 

rarely acquired from outside sources. Because S. epidermidis is maintained at an overall 

lower abundance on the skin than P. acnes (<10% versus 40%), we lacked sufficient 

depth for SNV analyses.  

 
Figure 4.12. S. epidermidis strains remain stable over time, and communities do not reach 
gene saturation.  

A) Relative abundance plots of S. epidermidis strains across body sites, color-coded by site 
characteristic. Full set of taxonomic classifications is shown in Figure S6B. Strain colors defined 
in Figure Figure 4.13A. Due to coverage S. epidermidis, foot sites were combined as “foot” and 
all moist, dry, and sebaceous sites were combined as “other”. Combined samples with <1 million 
S. epidermidis reads were excluded. B) Boxplots of theta indices indicate the stability of S. 
epidermidis strains within an individual over long or short time compared to between individuals 
(Inter) (θ = 1 means identical). **P < 0.01; ***P < 0.001, Wilcoxon rank-sum test. C) Number of 
genes present on foot and other body sites, with mean number shown as thin bar. Black dashed 
line indicates the 5,465 genes present in S. epidermidis pangenome. Blue dashed lines indicate the 
2,712 genes present in all foot and other combined samples. 
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Figure 4.13. S. epidermidis strains are stable over time across body sites.  

A) Dendrogram of S. epidermidis strain similarity based on core SNVs. Similar strains are 
grouped into clades. B) Full S. epidermidis strain tracking for all individuals, all sites. Sample 
headings are colored by site characteristic. T1, T2, and T3 indicate timepoints, with T1 and T2 
being long-duration timepoints (>1 year) and T2 and T3 short-duration timepoints (~1 month). 
Colors correspond to those in (A). 
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The S. epidermidis pangenome, assembled from 61 reference genomes, is larger 

than P.acnes, containing 5,465 unique clusters and a noncore of 3,583 genes [Figure 

4.14A] with 23 genes added from each additional genome [Figure 4.14B]. To achieve 

sufficient coverage for pangenome analyses, S. epidermidis reads from three foot sites 

were pooled by individual to create ‘foot’, while non-foot body sites were pooled to yield 

a composite "other" sample [Figure 4.14C]. This grouping was based on B clade S. 

epidermidis dominance on all foot sites [Figure 4.13]. Using samples with greater than 1 

million S. epidermidis reads [Figure 4.14D], we found that individuals did not appear to 

reach gene saturation, and generally possessed from 65 to 85% (3,552 to 4,693 genes) of 

the available pangenome [ Figure 4.12C]. In addition to lower saturation of the pan-

genome, S.epidermidis gene content varied 20% between individuals, in contrast to 5% 

for P. acnes. Accordingly, our newly defined S. epidermidis healthy ‘core’ is 2,712 

genes. Unique genes could encode similar functions, but be unrecognized as homologs, 

which could increase the number of genes in the S.epidermidis pan-genome, leading to 

lower full representation.  However, the differences in the functional/gene saturation may 

also be explained by the relatively narrow niche of the sebaceous gland where P. acnes 

primarily resides. S. epidermidis has a broader range, which could be reflected in the 

larger complement of genes needed for strains to persist in a niche.  
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Figure 4.14. S. epidermidis pangenome assembly.  

A) Gene accumulation curves for pangenome (blue) and core genome (green) as a function of 
genomes sequences (N). Pangenome data are fit by a power law regression. Core data are fit by 
an exponential decay curve. Points are means of n for 200 simulations. Error bars indicate the 
standard deviations for the 200 simulations. B) Accumulation of new genes (n) discovered with 
the addition of new genome sequences (N) fits a power law regression. C) Due to low S. 
epidermidis coverage across samples, all foot sites of an individual were combined as “foot” and 
all moist, dry, and sebaceous sites were combined as “other”. Average depth of the S. epidermidis 
core for each sample is shown. D) Rarefaction curves for accumulation of genes for different size 
subsamples in the combined foot and other samples. A minimum of 1 million reads was required 
for further pangenome analyses. Different colors represent trends for different individuals. 
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the noncore [Figure 4.15B]. Other enriched pathways demonstrated significant trends, 

including beta-lactam resistance, cysteine and methionine metabolism, bacterial secretion 

system, vancomycin resistance, and steroid hormone biosynthesis. Discovering multiple 

mechanisms of drug resistance in the noncore was unsurprising, given that individuals 

have varied histories of antibiotic usage, and intraspecies transfer of drug resistance is 

common. Finally, we looked for functional differences in the foot compared to non-foot 

sites and found overall gene content was not statistically significantly different, despite 

the presence of 212 genes specific to foot and 58 genes to non-foot sites.  

 

Figure 4.15. S. epidermidis KEGG pangenome function.  
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A) Pie chart indicates distribution of S. epidermidis genes between those present in all individuals 
“core” and those missing from some individuals “noncore”. Majority of core and noncore genes 
are pathway “unknown” when compared to a KEGG database. B) Distribution of genes between 
core and noncore for the most prevalent KEGG pathways. Colors indicate the broader KEGG 
class of each pathway. Pathways indicated with * are functionally enriched in noncore based on 
Fisher exact test with FDR < 0.05. 

4.3.5 Functional differences between S. epidermidis strains 

To test the functional consequences of genomic variability between S. epidermidis 

strains, 4 isolates from distinct clades were tested in a murine model of microbial 

association [Figure 4.16B](Naik et al., 2015; Naik et al., 2012). In this model, overnight 

cultures of bacteria were topically applied to the skin of wild type mice with intact 

epidermal barriers and immune systems. This was done every other day four times 

[Figure 4.16A]. On day 14, the mice were sacrificed for analysis and their cutaneous 

immune cells were analyzed with flow cytometry, a technique that allows proteins on the 

surface and inside of cells to be tagged with fluorescently labeled antibodies. With this 

approach, individual cells can be classified in a mixed population. On day 14 post topical 

association, analysis of immune cells in the mouse ears revealed that different S. 

epidermidis isolates could induce variable adaptive immune responses. In mice 

associated with 3 of the 4 isolates, there was an increased accumulation of T cell receptor 

(TCR) αβ+ cells that were CD4+, while only mice associated with the A20 isolate showed 

a large increase in the number of CD8+ T cells [Figure 4.16C,D,E]. In contrast, the A25 

isolate induced minimal immune responses compared to controls in this model. 

Differences were also observed in the effector potential of these cells. TCRβ+ cells in the 

A20 associated animals had greater potential to produce the cytokine interferon gamma 

(IFNg) [Figure 4.16F].  
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Further experiments are necessary to determine whether genetic elements or 

expression differences are conferring these functional variations. Additionally, because 

individuals harbor heterogeneous communities of S. epidermidis strains, other 

experiments should be done to monitor what happens when multiple strains are applied 

simultaneously. When applied as communities, the strains could actively inhibit one 

another or act synergistically to amplify an effect. Such experiments will be necessary to 

begin to explain how heterogeneous communities are assembled and why they are stably 

maintained over time.  

 

Figure 4.16. S. epidermidis strains induce unique immunological signatures. 

A) Experimental study design B) S. epidermidis strain cladogram with clades applied to mice 
highlighted in red C. TCRβ+ subpopulation summary plot from topical application of strains in A. 
Circle size corresponds to absolute numbers of cells while color represents percentage of the 
TCRβ+population. D) Representative flow plots for C. E) Absolute numbers for C. F) Summary 
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plot of cytokine production from CD8+ and CD4+ T cell populations. Circle size corresponds to 
absolute numbers of cells while color represents percentage of the CD4+ or CD8+ population. 

 

4.4 Discussion 

Despite the continuous perturbation that human skin undergoes in daily life, 

healthy adults stably maintain their skin communities for up to two years, similar to the 

stability observed in the gut (Faith et al., 2013; Schloissnig et al., 2013). Homeostasis of 

skin microbial communities is largely maintained by fixation of abundant species, 

although a smaller number of low abundance species are also stably maintained and 

contribute to an individual’s unique microbial signature. We suspect that larger, longer-

term studies will show a larger reservoir of transients entering and exiting the 

community, consistent with previous observations of individuals sharing and receiving 

microbes from the home and other individuals (Lax et al., 2014). Such stochastic drift 

likely increases over time, unless other constraints, like geographic restriction, lifestyle, 

or host immune surveillance narrow the transient pool.  

We surmise that in the absence of major perturbations, dominant characteristics of 

skin microbial communities would remain stable indefinitely, a conclusion previously 

extrapolated for gut communities (Faith et al., 2013; Schloissnig et al., 2013). This 

stability extends beyond the species level into SNVs and strains, which can impart unique 

functional contributions to a niche or individual. Total functional content variation, 

however, differed depending on skin species—P. acnes, a dominant skin commensal, 

showed low content variation in comparison to S. epidermidis. However, integration of 

metagenomic, or ‘coding’ potential with transcriptional or metabolomics profiles may 
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better delineate community function, as SNVs and small variants can impact actual 

functional levels.  

Future studies will define what and how extrinsic perturbations can alter the skin 

microbiota; these include antimicrobial treatment (Naik et al., 2012), probiotics, 

prebiotics, long-term environmental relocations, or diet (Kang et al., 2015). Intrinsic 

conditions, like immunosuppression, illness, or the occurrence of disease, have also been 

shown to cause major shifts in skin communities (Kong et al., 2012; Oh et al., 2013). In 

future disease studies, sequence data can generate hypotheses about which strains 

contribute to the disease and which are bystanders in the greater microbial consortia. 

Subsequently, valuable functional information can be gained from culturing and 

sequencing of primary isolates associated with metagenomic datasets. Functional 

assaying of individual and mixed strain groups in vitro and in animal models will be 

particularly relevant for determining the causality of diseases. Such studies are the 

prelude to prebiotic, probiotic and transplantation approaches of skin microbes in the 

context of disease amelioration and prevention. 

4.5 Materials and Methods 

4.5.1 Subject recruitment and sampling 

To expand our previous metagenomic survey, we re-sampled 12 healthy 

volunteers from our original study (Oh et al., 2014). Recruitment criteria, sampling 

procedure, and sample processing were as described previously. Briefly, 7 males and 5 

females adults <45 years without chronic skin diseases were sampled three times between 

June 2011 and May 2014. Sample collection was approved by the Institutional Review 
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Board of the National Human Genome Research Institute 

(http://www.clinicaltrials.gov/ct2/show/NCT00605878) and all subjects provided 

informed consent. Longitudinal samples were collected such that the span between time 1 

and time 2 was 10-30 months, while 5-10 weeks separated time 2 and time 3 [Figure 

4.2A]. This study design allowed the comparison of stability over a long and short time 

span. Individuals with a history of chronic medical conditions, including chronic 

dermatologic diseases, were excluded. 3 patients did report use of oral antibiotics 

between timepoint 1 and timepoint 2. However, in this study, antibiotic usage did not 

appear to induce discernible shifts in the overall diversity or structures of skin 

communities. Separate studies are necessary to fully understand the effects of oral 

antibiotics on the skin.  

17 sites were sampled to represent the diverse physiological characteristics of skin 

and the sites of predilection for certain dermatologic disease [Figure 3.5]: dry 

(hypothenar palm, volar forearm), moist (antecubital crease, inguinal crease, interdigital 

web space, popliteal crease), sebaceous (alar crease, back, cheek, external auditory canal, 

glabella, manubrium, occiput, retroauricular crease), and foot (plantar heel, toenail, toe 

web space). To obtain sufficient DNA for metagenomic sequencing, most sites were 

sampled using a swab-scrape-swab procedure, exceptions include the external auditory 

canal where only a swab was used and the toenail where a clipping was taken. All 

samples were stored in lysis buffer at -80C until DNA extraction.  
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4.5.2 Sample sequencing 

Procedures for library generation, sequencing, and processing of longitudinal 

samples were as previously described (Oh et al., 2014). Briefly, Nextera library kits were 

used to generate Illumina libraries per manufacturer's instructions with the exception of 

increasing from 6 to 10 PCR cycles. Libraries were sequenced on an Illumina HiSeq at 

the NIH Intramural Sequencing Center to a target of 15 to 50 million clusters of 2 x 

100bp reads. In total, for 12 individuals, 3 timepoints, we obtained 594 samples or 8.4 

trillon reads (722 Gbp) of non-human, quality-filtered paired-end and singleton reads 

(median 17.9 million reads (1.4 Gbp) per sample). After human removal based on 

mapping to the hg19 human reference genome, all samples were processed to trim bases 

with quality score below 20 and remove reads less than 50 bp. To reduce computational 

burden, post quality control, samples with >20 million reads were subsampled to 10 

million paired end reads, and singletons were discarded. 

4.5.3 Taxonomic classifications of skin species and diversity estimates 

Taxonomic classifications were performed as previously described (Oh et al., 

2014), except we updated the viral database, incorporating all Refseq viral genomes as of 

06.2015. The microbial reference genome database in total included 2342 bacterial, 389 

fungal, 6009 viral, and 67 archaeal. Reads not matching hg19 + hg19 rRNA were mapped 

to this genome collection using bowtie2’s —very-sensitive parameter retrieving the top 

10 hits (Langmead and Salzberg, 2012). Reads mapping to multiple genomes were then 

reassigned using Pathoscope v1.0 (Francis et al., 2013), which uses a Bayesian 

framework to examine each read’s sequence and mapping quality within the context of a 
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global reassignment. Read hit counts were then normalized by genome length and scaled 

to sum to one. Coverages were calculated using the genomeCoverageBed tool in the 

Bedtools suite (Quinlan and Hall, 2010). Because very low abundance organisms are 

represented by few reads, they are more susceptible to misclassification than more 

abundant genomes. To reduce the effects of low abundance misclassifications, we used 

genome coverage cutoffs for relative abundance and diversity calculations; genomes were 

binned with coverage cutoffs of ≥ 1, 0.1, 0.01 or 0.001. A coverage cutoff of ≥ 1 was 

used for major analyses, a conservative number that produced classifications that most 

closely corresponded with the results from other common metagenomic classifiers (e.g., 

Metaphlan (Truong et al., 2015) or analysis using other methodologies like 16S rRNA 

and ITS gene sequencing (Oh et al., 2014). This number typically accounts for >99.9% of 

the community abundance. All taxonomies were reconstructed to the species level, 

combining hits to multiple strain subtypes to reduce the potential for erroneous strain-

calling. 

4.5.4 Strain tracking of dominant species 

Strain tracking of the dominant skin commensals Propionibacterium acnes and 

Staphylococcus epidermidis was accomplished as described previously (Oh et al., 2014). 

Briefly, reference databases for P. acnes and S. epidermidis were compiled from all 

complete and draft genomes available on NCBI, 78 and 61, respectively. Whole genome 

alignment, with nucmer, was then used to identity the "core" region shared between all 

sequenced strains for a species. SNVs identified in these core regions were subsequently 

used to generate dendograms with PhyML 3.0. We then grouped strains into subtypes 
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based on phylogenic distance, 12 for P. acnes and 14 for S. epidermidis [Figure 4.4B, 

Figure 4.13A]. Metagenomic reads were mapped to each species database with bowtie2 (-

score-min L,-0.6,0.006, -k number of genomes) (Langmead and Salzberg, 2012) with 

zero tolerance for mismatches. The resulting alignment file was then processed with 

Pathoscope (-theta_prior 10 x 10^88) (Francis et al., 2013) to deconvolute multiple 

mapping reads. Accuracy of this strain-tracking approach was previously validated with 

extensive simulations (Oh et al., 2014). 

4.5.5 Identification of SNVs in the P. acnes core 

For each sample, coverage of the P. acnes core was calculated with samtools (Li, 

2011) and genomecoveragebed (Quinlan and Hall, 2010). High average coverage nicely 

related to percent coverage of the P. acnes core [Figure 4.5]. Back and manubrium 

samples had the highest P. acnes sequencing depth, so were selected for more extensive 

SNV analysis [Figure 4.5]. Because P. acnes strains are shared across sites of an 

individual, these results can be extrapolated to the rest of the body. For SNV analysis 

[Figure 4.17], metagenomic reads were first mapped against the P. acnes core genome 

using bowtie2 (--very-sensitive). The resulting alignment file was sorted by samtools and 

then processed with GATK's IndelRealigner (McKenna et al., 2010) to minimize 

mismatches resulting from insertions or deletions in the reads with respect to the 

reference genome. The corrected alignment file was then analyzed with samtools and 

bcftools to identify possible variants (samtools mpileup -uD -q30 -Q30, bcftools view -

Abvcg, vcfutils.pl varFilter -D99percentileofcoverage -d4 -1 .00001 -4 .00001). 

Parameters were selected to filter false positive polymorphisms that were a result of 
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sequencing error, recent sequence duplications not found in the draft genome, strand bias, 

or end distance bias. Possible variants were then filtered with custom scripts to meet 

criteria previously described (Lieberman et al., 2014). Briefly, an alternate allele was 

only considered if it was supported by >2 reads with a minimum mapping quality of 30, 

had an allele frequency >3%, and fewer than 20% of reads supporting the SNV also 

mapped to an indel. With rarefaction curves of SNVs discovered over increasing read 

depths [Figure 4.3D], we found that 1 million reads, 40X coverage of the P. acnes core, 

was sufficient for variant discovery. Thus, to reduce computational burden only 

subsamples of 1 million reads were used for further analysis. 
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Figure 4.17. Detailed pipeline for identifying a species SNVs in metagenomic sequencing 
data.  

First, metagenomic reads are mapped against the species of interest’s core genome. The resulting 
alignment file is processed with the programs samtools, picard, and GATK to identify the depth 
of sequencing coverage and correct for misalignments due to indels. The remaining alignment file 
is then further processed with samtools and custom scripts to identify single nucletodie variant 
regions. Box colors correspond to the programs implemented at each step.  
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4.5.6 Pangenome analyzes of dominant species 

To identify the functional capacity of dominant species in our metagenomic 

samples, we followed the procedure illustrated in Figure 4.9A. First, 196,083 P. acnes 

nucleotide-coding sequences were downloaded from NCBI and 147,257 S. epidermidis 

sequences were extracted from Manatee annotations of the genomes. The IGS Analysis 

Engine was used for structural and functional annotation of the sequences. 

(http://ae.igs.umaryland.edu/cgi/index.cgi, 

Galens et al., 2011). Manatee was used to view annotations 

(http://manatee.sourceforge.net/). Genes were then clustered into non-redundant 

orthologs with usearch (-cluster_fast -id 0.80 -centroids) (Edgar, 2010). To validate 

accuracy of the clustering, we verified the presence of 13 single copy marker genes 

(Greenblum et al., 2015). Singletons, clusters composed of a single sequence, were then 

filtered based on previously established criteria (Lefebure and Stanhope, 2007). Briefly, 

singletons were excluded if they 1) were shorter than 150 nucleotides, 2) were flagged as 

low complexity by Prinseq (Schmieder and Edwards, 2011), or 3) overlapped the 

beginning or end of a contig. 4) had a blast hit to a cluster at -e 1e-10. Based on this 

criteria 359 P. acnes and 874 S. epidermidis singletons were removed, leaving 3,774 and 

5,627 gene clusters respectively. Gene accumulation curves for these clusters mirrored 

previous pangenome studies for P. acnes (Tomida et al., 2013) and S. epidermidis 

(Conlan et al., 2012). The curves showed that new genes discovered with additional 

genomes and the pangenome followed a power law curve, while core genome size fit an 

exponential decay curve [Figure 4.9B,C, Figure 4.14A,B]. These gene clusters were then 
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annotated by BLASTx against the KEGG database. To identify the functional capacity of 

a sample, reads were mapped to each of the gene cluster databases using bowtie2 (--very-

sensitive). A gene was subsequently considered present only when 40% of its length was 

covered with reads. This criteria reduces gene calling due to spuriously mapped reads or 

reads from orthologs of closely related species (Zhu et al., 2015). Average coverage of 

each gene was calculated with samtools (Li, 2011) and then normalized by the average 

coverage of 13 single copy marker genes (Greenblum et al., 2015) to yield a copy number 

estimate. 

4.5.7 Statistics  

All statistical analyses were performed in the R software. Data are represented as 

mean ± standard error of the mean unless otherwise indicated. Spearman correlations of 

non-zero values were used for all correlation coefficients. Site characteristics were treated 

as separate groups where indicated based on spatial physiological differences between 

these different body niches (Grice et al., 2009). For all boxplots, black center lines 

represent the median and box edges the first and third quartiles. The nonparametric 

Wilcoxon rank-sum test was used to determine statistically significant differences 

between microbial populations. Unless otherwise indicated, P-values were adjusted for 

multiple comparisons using the p.adjust function in R using method = “fdr”. Statistical 

significance was ascribed to an alpha level of the adjusted P-values ≤ 0.05. Similarity 

between samples was assessed using the Yue–Clayton theta or Jaccard similarity index 

with relative abundances of species, sub-strains, or shared genomic variants. The theta 

coefficient assesses the similarity between two samples based on (1) number of features 
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in common between two samples, and (2) their relative abundances with θ = 0 

indicating totally dissimilar communities and θ = 1 identical communities (Yue and 

Clayton 2005). As θ takes into account species abundance, it is less susceptible to low-

abundance species whose classifications are less robust. The Jaccard similarity index is a 

metric defined by the union of the species occurring between two samples. To avoid 

repeated measures, samples belonging to an individual were averaged before statistical 

comparisons between site characteristic when using summary metrics such as means, 

diversity, or theta indices. 
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CHAPTER 5  Staphylococcal strain diversity underlies the individuality of atopic dermatitis 

5.1 Abstract 

Staphylococcus aureus has been tightly linked with atopic dermatitis (AD; 

eczema). We explored microbial temporal dynamics with metagenomic sequencing to 

investigate the role of staphylococci in AD. Species-level investigation of AD flares 

demonstrated a microbial dichotomy in which S. aureus was predominant on more 

severely affected patients while S. epidermidis was more predominant on less severely 

affected patients. Metagenomic analyses at the strain-level determined that S. aureus-

predominant patients were monocolonized with distinct S. aureus strains, while all 

patients had heterogeneous S. epidermidis strain communities. To assess the 

immunologic effects of these species, we topically applied patient-derived strains to 

mice. AD strains of S. aureus were sufficient to elicit skin inflammation associated with 

infiltration of Th2 and Th17 cells, an immune signature characteristic of AD patients. 

Integrating sequencing, culturing, and animal models, we explore a model whereby 

staphylococcal strains contribute to AD progression through activation of the host 

immune system.  

5.2 Introduction 

Atopic dermatitis (AD, eczema) is a common inflammatory skin disorder in 

industrialized countries, affecting 10-30% of children (Eyerich et al., 2015). Pediatric 

patients suffer from chronic, relapsing, intensely itchy, inflamed skin lesions, and have an 

increased likelihood of developing asthma and/or hay fever (Bantz et al., 2014). AD is a 

complex disease in which multiple underlying components, including epidermal barrier 
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impairment, type 2 immunity, and skin microbes, are thought to play a causative role 

(Eyerich et al., 2015). Over 30 susceptibility loci have been associated with AD, 

including mutations in the gene encoding the skin barrier protein filaggrin (FLG) 

(Genetics et al., 2015) and genes linked to the immune system (Palmer et al., 2006).  

In addition to host genetics, the relationship between AD and skin bacteria is 

clinically well recognized. AD skin disease is clinically managed with combinations of 

antimicrobial approaches (e.g. antibiotics and dilute bleach baths) and anti-inflammatory 

or immunosuppressive medications (Huang et al., 2009). The efficacy of these 

antimicrobial treatments is associated with drops in staphylococcal relative abundances 

(Kong et al., 2012). Staphylococcus aureus is commonly cultured from AD skin (Leyden 

et al., 1974) and murine models have demonstrated exacerbation of eczematous 

dermatitis with topical application of S. aureus (Kobayashi et al., 2015).  

With an increasing appreciation of functional differences between strains within a 

single species, we performed shotgun metagenomic sequencing of AD patient skin to 

capture the full genetic potential and strain-level differences of the skin microbiome 

throughout the course of disease. We confirmed an increase of staphylococcal species 

during disease flares in our cohort and more deeply explored the S. aureus and S. 

epidermidis strain diversity of each patient. To test the functional consequence of this 

strain diversity between patients, we isolated staphylococcal strains from patients and 

investigated the cutaneous and immunologic effects when applied topically to a mouse 

model. 
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5.3 Bacterial communities shift during AD disease progression 

To examine the relationship between the skin microbiota and AD, eleven children 

with moderate-to-severe AD and seven controls (ages 6-12) were recruited to the NIH 

Clinical Center between June 2012 and March 2015. As AD has a chronic relapsing 

course, patients were sampled at stable disease state (baseline/B), worsening of disease 

(flare/F), and 10-14 days after initiation of treatment (post-flare/PF). At each timepoint, 

disease severity was determined with objective SCORAD (SCORing Atopic Dermatitis), 

a validated clinical severity assessment tool (Kunz et al., 1997; Oranje et al., 2007; 

Williams et al., 1994b). Subjects were sampled bilaterally at sites of disease predilection, 

the inner elbow (antecubital crease/Ac) and behind the knees (popliteal crease/Pc), along 

with five additional sites to investigate different physiologic skin sites [Figure 5.1]. For 

baseline samples, subjects refrained from the use of topical medications on sampled sites 

to reduce potential confounding effects of skin-directed treatments. Five of the eleven 

AD patients were able to provide a baseline sample, as the others exhibited clinical 

worsening of skin disease requiring re-initiation of skin treatments. Based on similar 

bacterial communities observed at baseline and post-flare (Kong et al., 2012), we focused 

on comparisons between flare and post-flare time points. In total, we sequenced 422 

samples, generating 191 Gb of microbial sequence data from 27 AD patient and 7 healthy 

control visits.  During patient flares, AD disease severity was significantly elevated as 

indicated by higher mean objective SCORAD (38 ± 2.9) as compared to baseline (9.4 ± 

1.6, P < 4.5x10-4) and post-flare (11 ± 1.6, P < 2.8x10-6) [Figure 5.2A]. 
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Figure 5.1. Seven sites sampled bilaterally on AD patients and control children.   

Sites colored by their microenvironment: sebaceous (blue), moist (green), and dry (red). Sites of 
AD disease predilection indicated with *.  

	

Figure 5.2. Bacterial communities shift during AD disease progression. 
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A) Objective SCORAD for each patient at baseline, flare, and post-flare. Higher SCORAD 
corresponds to more severe disease. *** P<0.001 B) Mean Shannon diversity +/- SEM in 
controls and AD disease states. Colors correspond to disease state. Volar forearm (Vf), 
antecubital crease (Ac), inguinal crease (Ic), popliteal crease (Pc), forehead (Fh), occiput (Oc), 
and retroauricular crease (Ra). C) Shannon diversity versus objective SCORAD for combined 
antecubital (Ac) and popliteal creases (Pc) (AcPc) of AD patients. Partial correlation (adjusting 
for disease state). D) Mean relative abundance of bacterial genera in AcPc for controls and AD 
disease states. E) Mean relative abundance of predominant genera in AcPc for disease states, 
Flare (F) and Post-flare (PF). F) Proportion of Staphylococcus versus objective SCORAD for 
AcPc of AD patients, partial correlation (adjusting for disease state). 

To compare the microbial community composition across time-points, we mapped 

microbial reads to a multi-kingdom reference database. In this cohort, we analyzed 

bacterial communities where we observed the greatest changes [Figure 5.3]; no 

significant differences in the fungal or viral components over time were identified. We 

first determined the Shannon diversity index, an ecological measure of richness (total 

number of bacterial species) and evenness (relative proportion of the bacterial species), to 

evaluate the overall community structure/composition across body sites and time points. 

During flares, sites of AD predilection (Ac and Pc) exhibited a marked reduction in 

Shannon Diversity compared to baseline, post-flare, and healthy controls, a trend 

observed to a lesser extent across other sites [Figure 5.2B]. Since changes in bacterial 

diversity were most pronounced at the sites of disease predilection and Ac/Pc have 

similar microbial communities (Oh et al., 2014), we averaged these sites per subject and 

used the composite "AcPc" for subsequent analyses. Similar to our previous analysis of 

microbial diversity in an AD patient cohort (Kong et al., 2012), the partial correlation 

between objective SCORAD and Shannon diversity, adjusting for disease state, was 

significantly inversely correlated (r = -0.58, P =4.5x10-4)[Figure 5.2C], indicating that 
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reduced skin bacterial diversity corresponds to worse disease severity, primarily at sites 

of disease predilection [Figure 5.4A].  

To determine which taxa were contributing to the loss of diversity, we compared 

the relative abundances of the most prominent taxa [Figure 5.2D and Figure 5.4B]. Of the 

four most prominent genera in the AcPc, only Staphylococcus was significantly increased 

in flares (45 ± 10.2%) as compared to post-flare (9.2 ± 2.4%, P < 0.0078) and controls 

(6.6 ± 4.1%, P < 0.033) [Figure 5.2E]. This increase in Staphylococcus relative 

abundance was positively correlated with objective SCORAD (r=0.67,P < 8.1x10-

6)[Figure 5.2F], indicating that severe AD was associated with higher staphylococcal 

relative abundances at sites of disease predilection. In addition, there was a positive 

correlation for the forehead, retroauricular crease, and volar forearm [Figure 5.4C], sites 

that can be affected in more severe disease. However, differences in Corynebacterium, 

Propionibacterium, and Streptococcus relative abundances between flare and post-flare 

were not significant [Figure 5.2E]. 
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Figure 5.3. Full multi-kingdom taxonomic classifications for AD patients and controls. 

A) Relative abundance of most abundant skin taxa for each super-kingdom for all sites in AD 
patients and controls. B) Boxplots of mean relative abundance of different kingdoms by timepoint 
for the different site characteristics. Timepoints are Control (C), Baseline (B), Flare (F), and Post-
flare (PF). 
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Figure 5.4. Full bacterial taxonomic classifications for AD patients and controls. 
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A) Shannon diversity versus objective SCORAD for all sites. Partial correlation (adjusting for 
disease state) with only significant correlations shown. B) Relative abundance of bacterial genera 
for all sites in AD patients and controls. C). Relative proportion of Staphylococcus versus 
objective SCORAD for all sites. Partial correlation (adjusting for disease state) with only 
significant correlations shown. 

	
5.4 More severe AD patient flares associated with specific staphylococcal species 

To further examine the positive correlation between Staphylococcus and AD 

disease, (Williams and Gallo, 2015), we identified the relative abundances of 

staphylococcal species including S. aureus, S. epidermidis, S. hominis and S. capitis 

[Figure 5.5A and Figure 5.6]. Only relative abundance of S. aureus was significantly 

decreased from flare (28 ± 8.8%) to post-flare (2.3 ± 0.8%, P < 0.014)[Figure 5.5B]. 

While S. epidermidis relative abundances were also higher during flares (13 ± 5.4%) as 

compared to post-flares (3.7 ± 1.4%), results were not statistically significant.  For all 

patients, relative abundances of S. aureus were positively correlated with objective 

SCORAD (r = 0.73, P < 1.x10-7), while S. epidermidis was not correlated [Figure 5.5C 

and Figure 5.7]. This is consistent with the high incidence of S. aureus-positive cultures 

from lesional and nonlesional AD skin (Leyden et al., 1974; Totte et al., 2016). Neither S. 

hominis nor S. capitis demonstrated significant shifts in relative abundances between time 

points [Figure 5.5B] or were correlated with disease severity [Figure 5.7]. 
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Figure 5.5. Staphylococcal species increase during AD disease flare. 

A) Mean relative abundance of staphylococcal species within the total bacterial population in 
combined antecubital (Ac) and popliteal creases (Pc) (AcPc) of AD patients and controls. B) 
Mean relative abundance of most abundant Staphylococcus species in AcPc for disease states, 
Flare (F) and Post-flare (PF). C) Correlation of S. aureus (top) and S. epidermidis (bottom) mean 
relative abundance and objective SCORAD for AcPc of patients, partial correlation (adjusting for 
disease state). D) Comparison of S. aureus to S. epidermidis relative abundance by patient for all 
sites. Patient's SCORAD indicated in parenthesis. Shape corresponds to physiological 
characteristic of the body site, size to the magnitude of disease severity (objective SCORAD), and 
color to the most predominant species at the site. Patients in the top row have lower SCORADS 
and a higher predominance of S. epidermidis across sites, while bottom row patients are more 
severe disease and have S. aureus-predominantly across sites.  

To examine more closely the relationship between staphylococcal species and the 

degree of disease severity, we plotted the relative abundances of S. aureus and S. 

epidermidis based on objective SCORAD [Figure 5.5D]. We observed a trend between 

patients with more severe AD based on objective SCORAD (45 ± 3.0) and higher relative 

abundances of S. aureus across sampled sites [Figure 5.5D top row]. Patients with less 

severe disease, or lower objective SCORAD (31 ± 1.9, P < 0.0043), had higher relative 
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abundances of S. epidermidis across sampled sites [Figure 5.5D bottom row and Figure 

5.8]. Based on severity of the objective SCORAD during disease flares, we defined 

patients as either more severe (34 ± 8.7% S. aureus, 7.4 ± 4.2% S. epidermidis average 

across all sites during flare) or less severe (3.8 ± 1.7% S. aureus, 13 ± 3.9% S. 

epidermidis). To compare our metagenomics methods with more traditional culture 

methods, we cultured skin and nares swabs that had been collected concurrently with 

genomics samples. The sequencing results were more sensitive than the cultivation 

studies in identifying which patients had S. aureus: 100% of patients with more severe 

disease were culture positive for S. aureus at the antecubital crease and nares, while 50% 

of patients with less severe disease were culture positive for S. aureus at those sites. 

Thus, the close association between AD disease severity and S. aureus is even more 

apparent based on genomics studies. Since sequence-typing methods have been shown to 

misclassify distinct clones of S. aureus as the same clone (Salipante et al., 2015; Ugolotti 

et al., 2016), a question remained whether a bloom of S. aureus observed during disease 

flares is polyclonal or monoclonal. 
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Figure 5.6. Relative abundance of staphylococcal species in relation to total bacterial 
population for all sites in AD patients and controls. 
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Figure 5.7. Correlation of various staphylococcal species mean relative abundance and Obj 
SCORAD for all sites of patients. 

Partial correlation (adjusting for disease state). Only significant correlations are indicated. 
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Figure 5.8. Relative abundance of staphylococcal species for all sites in AD patients and 
controls. 
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composed of 215 S. aureus genomes, of which 61 representatives are shown in Figure 

5.9A.  

 

Figure 5.9. More severe AD patients are often monocolonized with a single S. aureus strain. 

A) Dendogram of 61 representative S. aureus strains based on SNVs in the core genome. Strains 
labeled in red were isolated from patients in our study. Colors correspond to genomes of the same 
clade. Phylogenetically distant clade G1 is shown as an outgroup as it was recently reclassified as 
S. argenteus (Tong et al., 2015b). B) For more severe AD patients, S. aureus clade relative 
abundances in bilateral antecubital (Ac) and popliteal creases (Pc) for AD disease states, flare and 
post-flare. Colors correspond to those in (A). C) For combined samples of all sites/time points of 
individuals in (B), barcharts show the number of SNVs per individual that are mono, di, and 
triallelic. D) Venn diagram showing the number of genes shared between isolates from patients in 
our study, indicated in red in (A). 
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In contrast to the heterogeneous communities of P. acnes and S. epidermidis strains 

observed in healthy adult skin (Oh et al., 2014; Oh et al., 2016), more severe AD patients 

were strikingly monocolonized with a single clade of S. aureus during disease flares 

[Figure 5.9B,  

Figure 5.10].  For 4 out of the 5 severe AD patients, this monocolonization persisted in 

the post-flare. Patient AD11 was the exception, colonized by 3 different clades of S. 

aureus with clade E17 predominating during a flare and clades E8 and E17 

predominating post-flare. The more severe AD patients were colonized with distinct S. 

aureus clades. This supports previous studies demonstrating AD patients did not share a 

single dominant S. aureus clone (Hoeger et al., 1992; Kim et al., 2009; Lomholt et al., 

2005; Yeung et al., 2011). The variation in S. aureus-clades monocolonizing AD patients 

raises the possibility that this heterogeneity may contribute to the differential course 

and/or therapeutic responses of AD patients. 

To confirm our strain-tracking results, we used a complementary approach in 

which SNVs were identified in the S. aureus core genome (1.9 Mbps shared between all 

sequenced S. aureus). To power this analysis, we combined all sites and time points for 

each patient. In total, we identified 38,867 variant positions in the S. aureus core or 

~10,000 SNPs per patient. We then used the degree of polyallelism in each individual to 

infer genetic heterogeneity or the presence of multiple S. aureus strains. We calculated 

the number of mono, di, and triallelic SNVs for each patient [Figure 5.9C]. Consistent 

with strain tracking results, SNVs in S. aureus-monocolonized AD patients were diallelic 
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at only 6.6% of sites, while heterogeneous patient AD11's SNVs were diallelic at 46% of 

sites.  

S. aureus isolates cultured from each of the more severe AD patients underwent 

whole genome sequencing to confirm that the cultured patient isolates grouped into the 

respective clades predicted by strain-tracking of the metagenomic data [Figure 5.9A]. 

Based on standard cultivation methods and whole genome sequencing analysis, the five 

S. aureus isolates from the more severe AD patients were all methicillin-sensitive S. 

aureus (MSSA), consistent with higher incidences of MSSA than methicillin-resistant S. 

aureus (MRSA) cultivated from AD patient skin (Chaptini et al., 2015; Hsiang et al., 

2012; Suh et al., 2008). Consistent with these patient isolates mapping to disparate 

phylogenetic clades, comparative genomic analysis revealed extensive heterogeneity in 

their gene content. The genome of a single S. aureus isolate encodes ~2,500 genes of 

which 67% (2125 genes) are present in every strain’s genome and constitute the 

functional core [Figure 5.9D] while the remaining ~300 genes derive from the flexible 

pangenome comprised of 1,048 genes. Noncore genes showed functional enrichment in 

the KEGG pathways ko05150 Staphylococcus aureus infection and ko00906 Carotenoid 

biosynthesis. With a targeted search, enterotoxin genes, previously shown to exacerbate 

AD (Strange et al., 1996), were present in 4 of 5 AD patient strains of S. aureus. This 

strain-level gene variation generates additional questions regarding the potential role of 

specific strains on disease pathogenesis and host factors on clonal strain selection.  
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Figure 5.10. S. aureus clades for AD patients and controls. 

(A) Cladogram of S. aureus strains based on SNVs in the core genome. Strains with names in red 
were isolated from patients in our study. Colors correspond to genomes of the same clade. 
Phylogenetically distant clade G1 is shown as an outgroup. (B) S. aureus clade relative 
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abundances for all sites in AD patients and controls. Colors correspond to those in the (A). (C) S. 
aureus clade relative abundance normalized to percent S. aureus in the total bacterial population. 
Colors correspond to those in the (A). 

5.6 Heterogeneous S. epidermidis strain communities 

Next, we explored strain-level variation of the S. epidermidis isolates, using 61 

sequenced S. epidermidis genomes [Figure 5.11A]. As seen with healthy adults (Oh et al., 

2014) and children, AD patients’ S. epidermidis communities at both flare and post-flare 

are composed of multiple different strains from diverse clades of the phylogenetic tree 

[Figure 5.11B and Figure 5.12], in direct contrast to the identification of homogeneous S. 

aureus communities. This multi-phyletic S. epidermidis strain diversity was observed for 

both the more severe and less severe AD patients [Figure 5.12].  However, analysis of the 

S. epidermidis strain composition in this cohort revealed a clustering of the less severe 

AD patients [Figure 5.11C]. Specifically, unsupervised clustering and principal 

coordinate analyses both identified S. epidermidis clades A29 and A30 as contributing to 

the clustering of the less severe patients and clade A20 as contributing to the clustering of 

the healthy adults [Figure 5.11D]. In contrast, the S. epidermidis strain diversity in 

healthy control children and more severe patients were intermixed. 
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Figure 5.11. All patients are colonized by a multi-phyletic community of S. epidermidis 
strains. 

A) Dendogram of S. epidermidis strains based on SNVs in the core genome. Red strains were 
isolated from patients in our study. Similar colors represent closely related strains that were 
grouped into 14 clades. Starred (*) isolates are nosocomial in origin B) For the less severe AD 
patients, S. epidermidis strain relative abundances in combined antecubital (Ac) and popliteal 
creases (Pc) for AD disease states, flare and post-flare. Colors correspond to those in (A). C) 
Heatmap shows mean relative abundance of each clade across all sites in S. aureus and S. 
epidermidis-predominant AD patients, healthy adults (HA), and healthy children (HC). D) In 
principal component analysis, clades A20, A29, and A30 drive separation between S. 
epidermidis-predominant AD patients and healthy adults. 

In genomic analysis of the S. epidermidis clades, clades A29 and A30 were 

enriched in strains originally collected from nosocomial infections rather than as skin 

commensals (Conlan et al., 2012)(indicated with *s in Figure 5.11A). The 

overrepresentation of nosocomial isolates in AD patients suggests these strains may have 

the potential to outcompete commensals in inflammatory or non-steady-state conditions. 

Comparative genomic analysis of nosocomial isolates and the other strains revealed 
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higher relative abundances of the SCCmec cassette (Conlan et al., 2012), which encodes 

genes necessary for methicillin-resistance, in the nosocomial isolates. To further evaluate 

the S. epidermidis strains in this cohort, isolates were collected from less severe patients 

AD05 and AD10. Whole genome sequencing identified the patient isolates as members 

of the A29 and A30 clade, respectively [Figure 5.11A in red]. Consistent with the trend 

of increased drug resistance genes observed through genomic analysis, these patient 

isolates were methicillin-resistant on cultivation. 
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Figure 5.12. S. epidermidis clades for AD patients and controls.  
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A) S. epidermidis clade relative abundances for all sites in AD patients and controls. Colors 
correspond to those in Figure 4A. B) S. epidermidis clade relative abundance normalized to 
percent S. epidermidis in the total bacterial population. Colors correspond to those in Figure 
5.11A.  

	
5.7 Induction of AD-like immune responses in a murine model  

While S. aureus has been tightly linked with AD, it remains unclear whether S. 

aureus can elicit and/or worsen AD skin disease or is a bystander that flourishes with 

increased access to extracellular matrix or other products of inflammation in eczematous 

skin (Cho et al., 2001; Kuusela, 1978). We next analyzed if AD patient strains would be 

sufficient to elicit skin inflammation in the absence of any known genetic predisposition 

or barrier disruption. To do this, we topically applied our clinically relevant AD patient 

staphylococcal strains onto intact skin of wild-type mice with a method previously 

developed to test the immune response to skin commensals [Figure 5.13A](Naik et al., 

2015; Naik et al., 2012). We individually tested the five phylogenetically distinct S. 

aureus isolates from more severe AD patients and three S. epidermidis isolates (an isolate 

from clades A29, A30, and B). In contrast to the non-inflammatory responses observed 

following association with either skin commensals (Naik et al., 2015; Naik et al., 2012) 

or AD patient S. epidermidis isolates, topical application of the AD patient S. aureus 

isolates was sufficient to induce inflammatory responses as evidenced by epidermal 

thickening [Figure 5.13B,C, Figure 5.14A] as well as immune cell infiltrate composed of 

neutrophils and eosinophils [Figure 5.13D, Figure 5.14B]. 
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Figure 5.13. Topical application of AD isolates induce AD-like immune responses in murine 
models. 

A) Mice were topically associated with staphylococcal monocultures every other day 4 times 
before sacrifice on the 8th day. B) Representative histological images of the ear pinnae of mice 
associated with tryptic soy broth TSB, S. aureus 2075, or S. epidermidis A30. Dotted line 
indicates separation between the epidermidis and dermis. Scale bar 50 µm. C) Epidermal 
thickness of ears post topical association of patient AD isolates. D) Of skin CD45+ cells, the 
distribution of innate immune cells, neutrophils and eosinophils. Color corresponds to the 
percentage of the parent (Eosinophils: Lin-, MHCII CD64-; Neutrophils: Lin-) population and size 
to the absolute number of cells. Isolates with significant differences compared to TSB (P-values < 
0.05) have dashed outlines. E) Left: Absolute numbers of skin TCRβ+ CD4+ cells of mice in (D). 
Color indicates species designation of the isolate. Right: Flow plots show the frequencies of CD4+ 
and CD8+ effector T cells of mice in (B). F) Top: Absolute numbers of skin IL-13+ and IL-17A+ 
CD4+ cells from mice in (D). Bottom: Frequencies of IL-13+ and IL-17A+ CD4+ cells from mice 
in (D). Results are cumulative data from 2 independent experiments. *P<0.05, **P<0.01, 
***P<0.001 as calculated by ANOVA with multiple comparison correction. 
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In addition, infiltration of T cell receptor (TCR) αβ+ and γδlow cells was also observed 

[Figure 5.15A]. The degree of infiltration varied depending on the isolate, indicating 

strain-level specificity in ability to engage the immune system. More specifically, the 

dominant flare S. aureus isolates from AD04 and AD06 induced an amplified response 

compared to that of AD01, AD03, and the non-dominant strain from AD11. The majority 

of TCR-β+ cells were CD4+ [Figure 5.13E]. A proportion of these cells had the potential 

to produce the cytokine interleukin-13 (IL-13) [Figure 5.13F], an immune signature 

reminiscent of that seen in human AD patients. Cutaneous Th17 cells were also identified 

in S. aureus colonized mice [Figure 5.13F]. Recent reports have identified the presence of 

Th17 cells in AD lesions (Koga et al., 2008; Suarez-Farinas et al., 2013), particularly in 

certain patient populations (Noda et al., 2015). Similar to the CD4+ T cells, the γδ T cells 

of mice associated with S. aureus isolates also had the potential to make greater levels of 

interleukin-17A (IL-17A) [Figure 5.15B]. Overall, association of S. aureus strains 

isolated from AD patients to wild-type mice without barrier disruption induced AD-like 

immune responses in the skin. Thus, the findings suggest certain strains of S. aureus may 

be sufficient to exacerbate and/or elicit skin inflammation. 
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Figure 5.14. Histologic and cutaneous innate immune cell responses with AD isolate 
association in a murine model. 

A) Representative histological images of the ear pinnae of mice associated with tryptic soy broth 
(TSB), and various AD patient S. aureus and S. epidermidis isolates. Scale bars, 50 µm. B) 
Absolute numbers and percentages of cutaneous eosinophils and neutrophils of mice in (A). 
*P<0.05, **P<0.01, ***P<0.001 as calculated by ANOVA with multiple comparison correction. 
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Figure 5.15. CD45+ cutaneous immune responses with AD isolate association in a murine 
model. 

A) Absolute numbers and representative flow plots of skin CD45+ γδlow and TCRβ+ cells with 
topical application of TSB and various AD patient S. aureus and S. epidermidis isolates. B) 
Absolute numbers and percentages of IL-17A+ γδlow T cells. Results are representative of 2 
independent experiments. *P<0.05, **P<0.01, ***P<0.001 as calculated by ANOVA with 
multiple comparison correction. 
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metagenomic sequencing to investigate the microbial communities of AD skin at strain 

and SNV-level resolution. Based on the skin microbiome, we stratified AD patients based 

on disease severity during flare. The differential abundances of S. aureus and S. 

epidermidis, along with the respective finding of MSSA and MRSE predominance may 

contribute to differential responses to therapies in AD patients (Bath-Hextall et al., 2010). 

Additional investigations of these microbiome phenotypic differences may improve the 

understanding of AD pathogenesis and lead to more targeted therapeutics. With strain 

tracking, we further stratified the more severe AD patients by the presence of unique S. 

aureus clades. Birth cohort studies may address whether these patients acquired bacterial 

strains from family members and/or environmental sources as part of microbial 

inheritance (Faith et al., 2015). Testing of S. aureus strains in gnotobiotic mice, similar to 

Bacteroides gut commensal studies, may functionally address whether monocolonization 

by S. aureus occurs through limited exposure or colonization resistance (Lee et al., 2013). 

Using strains isolated from inflamed AD skin, we examined the potential biological 

effects of variation between strains. With intact skin barrier and immunity, S. aureus was 

sufficient to induce AD-like features in a murine model, such as epidermal thickening 

and cutaneous infiltration of Th2 and Th17 cells. The magnitude of this effect varied 

depending on the isolated strain. Notably, colonization with AD11’s non-dominant B 

clade S. aureus isolate, a strain similar to that identified in a pediatric control [Figure 

5.10], induced minimal IL-13. In mouse models, S. aureus enterotoxins have been shown 

to act as superantigens that can initiate Th17 responses(Macias et al., 2011), while S. 

aureus δ-toxin can induce degranulation of mast cells (Nakamura et al., 2013). These 
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genes were both present in the non-inducing S. aureus isolate indicating strain-variability 

exists not only in gene content but also expression of the genes. In the context of prior 

studies (Kobayashi et al., 2015; Naik et al., 2015; Naik et al., 2012; Nakamura et al., 

2013), our findings demonstrate that AD-associated S. aureus strains can elicit skin 

inflammation in a manner distinct from other bacteria and suggests that cutaneous 

staphylococci may play an important role in AD skin inflammation.  

In this study, we used metagenomic sequencing to examine strain-level microbial 

compositions of AD patient skin. We observed differential abundance of S. aureus and S. 

epidermidis associated with disease severity, suggesting potential differential phenotypes. 

Additionally, the less severe AD patients were colonized with more methicillin-resistant 

S. epidermidis strains while the more severe AD patients were colonized with methicillin-

sensitive S. aureus strains. The more severe AD patients were also colonized by 

phylogenetically distinct, single strains of S. aureus during flares. With increasing 

recognition of highly individualized skin microbiomes (Oh et al., 2016), the different 

patient-specific strains underscore the individuality of the disease course and therapeutic 

response in AD patients and may represent an opportunity for precision medicine.  The 

topical application of these patient-associated strains of S. aureus and S. epidermidis in a 

murine model demonstrated strain-specific differences in the ability to elicit AD-like 

histologic and immunologic features. Along with recent studies showing that early 

exposures can influence host immunity (Du Toit et al., 2015; Scharschmidt et al., 2015) 

and murine skin bacteria can exacerbate eczematous skin in an AD mouse model 

(Kobayashi et al., 2015), the current findings suggest that AD patient bacterial strains can 
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induce AD-like inflammation in a host without skin barrier disruption or immune 

alterations. Thus, in light of the known links between severe AD and subsequent 

development of asthma and hay fever (“the atopic march”), targeted modulation of 

microbes that may play a role in pathogenesis of AD has the potential to abrogate 

development of atopic disorders.   

5.9 Materials and Methods 

5.9.1 Experimental design 

Patients with AD and similarly aged healthy controls were recruited from the 

Washington DC metropolitan region, USA, between June 2012 and March 2015, to 

participate in a natural history study approved by the Institutional Review Board of 

National Human Genome Research Institute 

(http://www.clinicaltrials.gov/ct2/show/NCT00605878).  

 Eligibility criteria included age 2-18 years, moderate-to-severe disease, presence 

of ≥1 affected antecubital crease (inner elbow) or popliteal crease (behind the knee) at 

enrollment, and >3 weeks off of systemic antibiotics and corticosteroids. Patients were 

diagnosed with AD based on the UK Working Party definition (Williams et al., 1994a). 

Disease severity was measured by the objective SCORAD as assessed by one individual. 

At each clinical visit, objective SCORAD was used to determine study eligibility and 

disease status (Kunz et al., 1997; Oranje et al., 2007; Williams et al., 1994b). Moderate-

to-severe disease was defined by objective SCORAD ≥ 15 (range 0-83) (Oranje et al., 

2007).  
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 For all subjects, exclusion criteria included receiving investigational new 

treatments, ultraviolet light therapy, monoclonal antibodies, systemic 

immunosuppressants within 7 days or five half-lives (taking the longer time period) of 

skin sampling, and clinically apparent underlying immunodeficiency. AD patients were 

also excluded if they took systemic antibiotics during the preceding three weeks (except 

for the post-flare timepoint). For healthy controls, additional exclusion criteria included 

current or prior chronic skin disease such as AD or psoriasis; asthma and allergic rhinitis, 

via International Study of Asthma and Allergies in Childhood questionnaire (Asher et al., 

1995); other chronic medical conditions; and use of systemic antibiotics in the preceding 

6 months.  

 Written consent was obtained from parents or guardians of all participating 

children. At all clinic visits, complete medical and medication history and skin 

examination was performed. To standardize skin sampling and optimize microbial load, 

no bathing, shampooing or emollients were permitted within 24 hours of sample 

collection. AD patients were sampled at three timepoints (baseline, flare, and post-flare) 

to capture the different stages of the chronic relapsing, remitting skin disease. Healthy 

controls were matched based on Tanner stage, which can be used to define an 

individual’s stage of puberty based on physical examination. Unlike chronological age 

which does not necessarily correspond with a defined stage in sexual maturation, Tanner 

staging of sexual maturity can provide a phenotypic assessment of the physiologic age of 

an individual.   



	

	

150 

For AD patients in this study, baseline was defined as usual and stable disease state and 

ability to tolerate ≥7 days without topical AD treatments to intended sample sites and >2 

weeks off both oral antibiotics and corticosteroids. The skin preparation regimen of 7 

days without topical steroids or topical antimicrobial regimens prior to skin sampling was 

used to minimize the potential confounding effects of topical therapies on skin microbiota 

(Kong et al., 2012). Five of the 11 patients successfully reached a baseline state during 

the course of this study; the remaining patients required reinitiation of treatment due to 

clinical worsening of skin disease. Flare was defined as acute exacerbation of the disease 

on any skin site prior to initiation of intensified AD treatment and without restriction of 

usual treatments >24 hours prior to sampling. When skin disease worsening was 

apparent, patients were instructed to promptly contact the research team for evaluation 

and intensified skin-directed treatment. Post-flare was defined as 10-14 days after the 

initiation of intensified skin-directed AD treatment. Recommendations for intensified AD 

treatment included the following based on the patient’s typical regimen: dilute bleach 

baths (0.25 cup of 6% bleach into bath half filled with water for a final concentrations of 

0.0005%) two to four times per week, regular use of topical steroids twice daily, and 

bland emollients at least twice daily. 

 Seven sites were sampled bilaterally to represent the sites of disease predilection 

(antecubital creases and popliteal creases) and the different physiological characteristics 

of the skin [Figure 5.1]: dry (volar forearm/inner forearm), moist (antecubital crease, 

inguinal crease, popliteal crease), and sebaceous (glabella/central forehead, retroauricular 

crease/behind the ear, occiput/back of lower scalp). To obtain sufficient DNA for 
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metagenomic sequencing, sites were sampled using a swab-scrape-swab procedure (Oh et 

al., 2014). All samples were stored in lysis buffer at -80C until DNA extraction. In 

addition to sequencing, swabs were taken from the antecubital crease, retroauricular 

crease, and the nares for culture analysis. 

5.9.2 DNA extraction and sequencing of metagenomic samples 

Procedures for library generation, sequencing, and processing of longitudinal samples 

were as described previously (Oh et al., 2014). Briefly, metagenomic DNA was prepared 

for sequencing using the Nextera DNA Library Prep Kit (Illumina) per manufacturer's 

instructions with the exception of increasing from 6 to 10 PCR cycles and increasing the 

AMPure XP Beads clean-up volume from 30uL to 50uL. Libraries were sequenced on an 

Illumina HiSeq at the NIH Intramural Sequencing Center to a target of 15 to 50 million 

clusters of 2 x 125bp reads. In total, for 18 individuals (11 patients and 7 controls), we 

obtained 422 samples or 2.26 trillon reads (191 Gb) of non-human, quality- filtered 

paired-end and singleton reads (median 2.4 million reads (.21 Gb) per sample). For 

sample processing, human reads were removed based on mapping to the hg19 + hg19 

rRNA human reference genome, bases with quality scores below 20 were trimmed, and 

remaining reads less than 50bp were removed. To reduce computational burden, post 

quality control, samples with >20 million reads were subsampled to 10 million paired end 

reads, and singletons were discarded. 
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5.9.3  Taxonomic classification of skin species and diversity estimates 

Microbial reads were assigned taxonomic classifications as previously described (Oh 

et al., 2014). Included in the microbial reference genome database are 2,342 bacteria, 389 

fungal, 1,375 viral, and 67 archaeal genomes. In addition, a staphylococcus database was 

compiled from 315 complete and draft genomes from the National Center for Biological 

Information (NCBI, http://www.ncbi.nlm.nih.gov) as of October 2014. Nonhuman reads 

were separately mapped to both genome collections using bowtie2’s –very-sensitive 

parameter with –k 10 to retrieve the top 10 hits (Langmead and Salzberg, 2012). The 

resulting alignment files were processed with Pathoscope v1.0 (Francis et al., 2013) to 

assign multiply mapped reads to their mostly likely genome of origin. Read hit counts 

were then normalized by genome and scaled to sum to one. Coverages of each output 

genome were calculated using genomeCoverageBed in the the Bedtools suite (Quinlan 

and Hall, 2010). To reduce the effects of spurious classifications from low abundance 

organisms, only species with ≥ 1 percent coverage of the genome were considered (Oh et 

al., 2014). For the multi-kingdom database, the Shannon diversity index was used for 

diversity comparisons. To reduce the potential for erroneous strain-calling, taxonomies 

were predicted at the species level by combing hits of strains within the same species. 

5.9.4 Strain tracking of S. aureus and S. epidermidis 

Strain tracking of the dominant flare species Staphylococcus aureus and 

Staphyloccocus epidermidis was performed as previously described (Oh et al., 2014). 

Briefly, reference databases for S. aureus and S. epidermidis were compiled from all 

complete and draft genomes available on NCBI, 215 and 61, respectively. For both 
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species, whole genome alignment, with nucmer (Delcher et al., 2002), was then used to 

identify the “core” region shared between all sequenced strains. SNVs identified in these 

core regions were subsequently used to generate dendograms with PhyML 3.0. Based on 

the dendograms, we grouped strains into subtypes or clades, 34 for S. aureus and 14 for 

S. epidermidis. Due to redundancy in many of the S. aureus draft genomes, a 

consolidated tree composed of all 42 complete genomes and 19 representative draft 

genomes was generated for visualization purposes [Figure 5.10A]. For strain-tracking to 

avoid noise from other staphylococcal species, metagenomic reads were first filtered 

against the staphylococcus database minus the species being strain-tracked (--very-

sensitive, -score-min L,- 0.6,0.006). The remaining reads were then mapped to each 

species database with bowtie2 (--very-sensitive, -score-min L,- 0.6,0.006, -k number of 

genomes)(Langmead and Salzberg, 2012) with zero tolerance for mismatches. The 

resulting alignment file was then processed with Pathoscope (-theta_prior 10 x 10^88) 

(Francis et al., 2013) to deconvolute multiple mapping reads. Accuracy of this strain- 

tracking approach was previously validated with extensive simulations (Noda et al., 

2015). 

5.9.5 Identification of SNVs in the S. aureus core 

To achieve sufficient coverage for SNV analysis, all samples for each S. aureus-

predominant patient were combined. For SNV analysis as described previously (Oh et al., 

2016), metagenomic reads were mapped against the S.aureus core genome using bowtie2 

(--very-sensitive). The resulting alignment file was sorted by samtools and then processed 

with GATK’s IndelRealigner (McKenna et al., 2010). The corrected alignment file was 
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analyzed with samtools and bcftools to identify possible variants (samtools mpileup -uD  

-q30 -Q30, bcftools view -Abvcg, vcfutils.pl varFilter -D99percentileofcoverage -d4 -1 

.00001 -4 .00001). Custom scripts were then used to filter possible variants based on 

criteria described in (Lieberman et al., 2014). Briefly, an alternate allele was only 

considered if it was supported by >2 reads with a minimum mapping quality of 30, had 

an allele frequency >3%, and fewer than 20% of reads supporting the SNV also mapped 

to an indel. Due to limited numbers of reads in some of the patients, SNVs were detected 

in subsamples of 350,000 reads for each patient. 

5.9.6 Patient isolate collection, genome sequencing, and annotation 

Skin and nasal cultures were obtained with Catch-all Collection Swabs 

(Epicentre) pre-moistened with Fastidious Broth (Remel), placed in 2.0ml Fastidious 

Broth supplemented with 10% glycerol, and frozen at -80°C. Swabs were thawed, 

vortexed, serial diluted, and plated on Tryptic Soy Agar with 5% Sheep Blood (Remel). 

After overnight incubation at 37°C, colonies were picked and stored in LB with 20% 

glycerol. Colonies were screened by PCR for S. aureus using Nuc1 (5′-

GCGATTGATGGTGATACGGTT-3′) and Nuc 2 (5′ 

AGCCAAGCCTTGACGAACTAAAGC-3′), or S. epidermidis using  Se705-1  (5’-

ATCAAAAAGTTGGCGAACCTTTTCA-3’) and Se705-2 (5’-

CAAAAGAGCGTGGAGAAAAGTATCA-3’) as previously described (Martineau et al., 

1996; Zhang et al., 2004). Individual colonies were then streaked on blood agar for two 

passages. Isolates were grown overnight in Tryptic Soy Broth at 37C, pelleted with 

centrifugation, and genomic DNA was extracted using the Promega Maxwell Tissue 
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DNA Kit with the addition of Readylyse Lysozyme Solution (Epicentre) and Lysostaphin 

(Sigma). DNA was treated with RNase, re-purified with the Genomic DNA Clean and 

Concentrator Kit (Zymo), and quantified using a Nanodrop spectrophotometer and Qubit 

(ThermoFisher). 1.0ng of bacterial DNA was used as input into the Nextera XT Sample 

prep kit (Illumina) as suggested by manufacturer. 

Nextera libraries were generated from the genomic DNA and sequenced using a 

paired-end 300-base dual index run on an Illumina MiSeq to generate 1 million to 2 

million read pairs per library for ~80x genome coverage. Reads for each isolate were 

assembled with MaSuRCA (version 2.2.1) (Zimin et al., 2013) or SPAdes (version 3.6.0) 

(Bankevich et al., 2012). Best k-mer length estimates on paired-end reads were evaluated 

using KmerGenie (version 1.6300)(Chikhi and Medvedev, 2014) and utilized in running 

the MaSuRCA assembler for each genome. The SPAdes assembler was run using K-mer 

values of 21, 33, 55, 77, 99, and 127. Contigs >= 500 nt were retained. For comparative 

genomic analysis, genome annotation was done using the GS Analysis Engine 

(http://ae.igs.umaryland.edu/cgi/index.cgi, (Galens et al., 2011)). For upload to NCBI, 

genome annotation was done using the NCBI Prokaryotic Genomes Automatic 

Annotation Pipeline (PGAAP: http://www.ncbi.nlm.nih.gov/genome/annotation_prok/). 

Distribution of genes between the 5 S. aureus assemblies was visualized with jvenn 

(Bardou et al., 2014).  

5.9.7 Methicillin Resistance  

Glycerol stocks from clinical isolates as well as control strains (ATCC:BA1556; 

ATCC:29213) were plated overnight on blood agar. Individual colonies were then plated 
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on Mannitol Salt Agar (Remel) and Mannitol Salt Agar with Oxacillin (Remel). Plates 

were scored for Mannitol fermentation and growth or no growth at 35°C for 24hrs. 

To verify these results with a Cefoxitin Disk assay, individual colonies were picked 

and completely resuspended in SOC Broth. The suspension was plated on Mueller-

Hinton Agar (Remel) and allowed to dry 5 minutes.  One 30 µg Cefoxitin Disk (BD) was 

placed on the plate and incubated at 35°C for 24hr.  Zones of inhibition were measured 

and scored as described (CLSI, 2013). Briefly, S. aureus was scored as susceptible 

≥22mm and resistant ≤21mm. S. epidermidis was scored as susceptible ≥25mm and 

resistant ≤24mm. 

5.9.8 Mice 

 C57BL/6 specific pathogen free (SPF) mice were purchased from Taconic Farms. 

All mice were bred and maintained under pathogen-free conditions at an American 

Association for the Accreditation of Laboratory Animal Care (AAALAC)-accredited 

animal facility at the NHGRI and housed in accordance with the procedures outlined in 

the Guide for the Care and Use of Laboratory Animals. All experiments were performed 

at the NHGRI under an animal study proposal approved by the NHGRI Animal Care and 

Use Committee. Female mice between 6 and 12 weeks of age were used for each 

experiment. In general, each mouse of the different experimental groups is reported. 

Exclusion criteria such as inadequate staining or low cell yield due to technical problems 

were pre-determined. Animals were assigned randomly to experimental groups. 
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5.9.9 Topical association 

 Topical association of mice was based on (Naik et al., 2015). S. aureus strains 

AD01_abfqm, AD03_abfqt, AD04_aatyq, AD06_abkws, AD11_abkwt and S. 

epidermidis strains A29_abkwq, A30_abkwr, and B_abkux, isolated from AD patients, 

were cultured in tryptic soy broth at 37°C for 18h. Before topical application, bacteria 

were enumerated by assessing colony-forming units using traditional bacteriology 

techniques and by measuring optical density (OD) at 600 nm using a spectrophotometer. 

For topical association, a sterile epicenter Catch-All swab was moistened in liquid 

culture of the bacteria and then rubbed against the ears of mice until they became visually 

moist. Topical association was repeated every other day four times. For each 

experiment,18h cultures were normalized using OD600 to achieve similar bacterial 

density (approximately 108 c.f.u. per ml). Mice were euthanized 8 days after the first 

topical association with bacteria. 

5.9.10 Tissue processing 

 Cells from the ear pinnae of mice were isolated as previously described (Naik et 

al., 2012). Briefly, ears were excised and separated into dorsal and ventral sheets. Tissue 

samples were digested in RPMI 1640 containing 2 mM L-glutamine, 1 mM sodium 

pyruvate and nonessential amino acids, 20 mM HEPES, 100 U/ml penicillin, 100 mg/ml 

streptomycin, 50 mM β-mercaptoethanol, and 0.25 mg/ml Liberase purified enzyme 

blend (Roche Diagnostic Corp.) and incubated for 1 hour 45 minutes at 37°C in 5% CO2. 

Digested skin sheets were homogenized using the Medicon/Medimachine tissue 

homogenizer system (Becton Dickinson).  
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5.9.11 In vitro restimulation  

 For detection of basal cytokine potential, single-cell suspensions from ear tissue 

were cultured directly ex vivo in a 96-well U-bottom plate in complete medium (RPMI 

1640 supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 1 mM 

sodium pyruvate and nonessential amino acids, 20 mM HEPES, 100 U/ml penicillin, 100 

mg/ml streptomycin, 50 mM β-mercaptoethanol) and stimulated with 50 ng/ml phorbol 

myristate acetate (PMA) (Sigma-Aldrich) and 5 mg/ml (mouse) ionomycin (Sigma-

Aldrich) in the presence of brefeldin A (GolgiPlug, BD Biosciences) for 2.5 h at 37°C in 

5% CO2. After stimulation, cells were assessed for intracellular cytokine production as 

described below. 

5.9.12 Flow cytometric analysis 

 Murine single-cell suspensions were incubated with fluorochrome-conjugated 

antibodies against surface markers CD4 (clone RM4-5), CD8β (eBioH35-17.2), CD11b 

(M1/70), CD11c (N418 or HL3), CD19 (6D5), CD45.2 (104), CD49b (DX5), CD64 

(X54-5/7.1), Ly6G (1A8), MHCII (M5/114.15.2), NK1.1 (PK136), TCRγδ (GL3), TCRβ 

(H57-597), and/or SiglecF (E50-2440) in Hank’s buffered salt solution (HBSS) for 20 

min at 4°C and then washed. LIVE/DEAD Fixable Blue Dead Cell Stain Kit (Invitrogen 

Life Technologies) was used to exclude dead cells. Cells were then fixed for 30 min at 

4°C using the eBioscience fixation kit and washed twice with corresponding 

permeabilization buffer. For simultaneous Foxp3 and intracellular cytokine staining, cells 
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were stained with fluorochrome-conjugated antibodies against Foxp3 (FJK-16 s), IFN-γ 

(XMG- 1.2), IL-13 (eBio-13A) and IL-17A (eBio17B7) in permeabilization buffer 

(eBioscience) for 1 hr at 4°C. Each staining was performed in the presence of purified 

anti-mouse CD16/32 (93), 0.2 mg/ml purified rat IgG and 1 mg/ml of normal mouse 

serum (Jackson Immunoresearch). All antibodies were purchased from eBioscience, 

Biolegend, or BD Biosciences. Cell acquisition was performed on a Fortessa flow 

cytometer using FACSDiVa software (BD Biosciences) and data were analyzed using 

FlowJo software (TreeStar). 

5.9.13 Histology  

Mice were euthanized on day 8 after topical application of the AD patient isolates. 

TSB associated mice were used as controls. The ears from each mouse were removed and 

fixed in PBS containing 10% formalin. Paraffin-embedded sections were cut at 0.5 mm, 

stained with haematoxylin and eosin and examined histologically. 

5.9.14 Statistics  

All statistical analyses were performed in R and the majority of graphs generated with 

ggplot2 (Wickham, 2009). Data are represented as mean ± standard error of the mean 

unless otherwise indicated. As disease severity differed minimally from left to right 

symmetric sites, left and right values were averaged in relative abundance plots and prior 

to statistical comparisons. AcPc indicates the mean of values from samples of the 

antecubital and popliteal crease for each individual (post-averaging of left and right 

symmetric sites). To avoid repeated measures when all sites were considered, samples 
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belonging to an individual were averaged before statistical comparisons between 

timepoints when using summary metrics such as means, diversity, or theta indices.  

Pearson correlations of non-zero values were used for all partial correlations adjusting 

for disease state (pcor.test in R package ppcor). For all boxplots, center lines represent 

the median and edges the first and third quartiles. The nonparametric Wilcoxon rank-sum 

test was used to determine statistically significant differences between populations 

(wilcox.test in R). Where indicated, within-subject analysis was performed with option 

“paired=T” in wilcox.test. All P-values were adjusted using p.adjust in R using 

Bonferroni (# comparisons  ≤ 10) or false discovery rate (# comparisons > 10) 

corrections. Statistical significance was ascribed to an alpha level of the adjusted P-

values ≤ 0.05. Similarity between samples was assessed using the Yue–Clayton theta, 

which assesses the similarity between two samples based on (1) number of features in 

common between two samples, and (2) their relative abundances with θ = 0 indicating 

totally dissimilar communities and θ = 1 identical communities (Yue and Clayton, 2005).  

For functional experiments, mice were assigned randomly to groups. Mouse studies 

were not performed in a blinded fashion. Generally, each mouse of the different 

experimental groups is reported. Statistical significance was determined by ANOVA with 

multiple comparison correction (aov and TukeyHSD in R). 
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CHAPTER 6 Moving forward: From description to function 

In summary, this thesis provides an analysis of the skin microbiome in health and 

disease at previously unexplored resolution. Analysis at this level was possible due to 

technical advances in DNA extraction techniques optimized for the microbially diverse, 

yet low biomass, environment of the skin and the creation of novel software pipelines 

that exploited the depth of information available in whole genome metagenomic 

sequencing (Chapters 2 and 3). With strain-tracking tools, it was discovered that the 

stability of healthy adult skin microbial communities is driven by the persistence of 

heterogeneous communities of P. acnes and S. epidermidis strains (Chapters 3 and 4). In 

patients with atopic dermatitis (Chapter 5), these analysis techniques showed that all 

patients harbor heterogeneous communities of S. epidermidis, like their healthy 

counterparts. Interestingly, a subset of those patients was also colonized with a single 

clade of S. aureus across body sites. Functional studies revealed these S. aureus isolates 

were sufficient to induce skin inflammation in mice. Overall these results provide 

comprehensive descriptions of the microbial communities present on the skin in steady 

state and inflammatory conditions. Moving forward many questions remain regarding 

function, what role are the microbes playing in the skin in different contexts; and 

ecology, how did these communities assemble? 

6.1 Function 

DNA sequencing is a useful, unbiased, tool for revealing the microbes present in a 

sample. However, it has the limitation of not discriminating between live colonized 

microbes and dead transients. Traditional culture techniques can differentiate the two; 
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with the caveat that culture conditions can wildly skew the results. RNA sequencing 

would address the issue by revealing microbes' functional activity. In fact, a 

metatranscriptomic analysis of follicular contents has revealed the microbes behave 

differently in healthy individuals and acne patients (Kang et al., 2015). Unfortunately, 

due to the low biomass of the skin, obtaining sufficient microbial RNA for analysis is a 

nontrivial process and even more efficient extraction techniques are necessary. However, 

as a proxy for a microbe's activity, Korem et al. developed an analysis technique that 

compares read distributions at the origin of replication and elsewhere in the genome as 

evidence of active bacterial replication (Korem et al., 2015). Understanding which 

microbes are active in health and disease will help dedicate which microbes to target in 

the development of therapies.  

6.2 Ecology 

Results from strain-level analyzes allow many hypotheses to be generated as to 

how the communities assembled. For example, one could speculate that S. epidermidis 

strains exist as heterogeneous communities because they act cooperatively together, 

while S. aureus strains exist alone as they actively inhibit one another. With appropriately 

large samples sizes, statistical power would be sufficient to predict competition or 

cooperation between strains. Detected interactions could then be tested with competition 

assays measuring interactions between strains or species. To increase accuracy, isolates 

matching those in the metagenomic sequences should be tested first. Then, further testing 

with additional isolates could show how conserved the relationship is. Once interactions 

are confirmed, further in depth experiments would be necessary to resolve the 
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mechanism. Understanding microbial relationships will be helpful in determining 

whether live microbes or microbial products could eventually be employed to promote 

optimal skin health.  

In total, the microbial communities reported in this thesis have been described in 

greater detail than ever before. Moving forward, I hope this data serves as the foundation 

on which many more testable hypotheses are generated and that the AD story will be 

continued such that future mechanistic animal studies will provide information that can 

ultimately lead to the development of targeted therapeutics for use in patients [Figure 

6.1]. 

 

Figure 6.1. : Formulating testable hypotheses from sequencing data to generate novel 
therapeutics. 

The following diagram shows how microbial sequencing data from healthy controls and patients 
can be used to generate hypotheses about putative causative microbes. Computationally identified 
microbes of interest can then be isolated from patient swabs utilizing targeted culturing methods. 
These microbes can then be tested in animal models to decipher the microbe’s possible 
mechanistic role in a disease. These results can then be utilized to develop a therapeutic to 
counteract the microbe.  
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CHAPTER 7 APPENDIX: Adapting Koch's postulates  

7.1 Introduction 

In the late 19th century, Robert Koch established his famous postulates as stringent 

guidelines to evaluate causation in infectious disease (Koch, 1890). These original 

postulates require isolation of the putative pathogen and reinfection of a healthy host to 

prove causation. Over the years, Koch's postulates have been continually restated to 

incorporate the latest scientific findings and technologies (Evans, 1976; Falkow, 1988; 

Fredricks and Relman, 1996; Rivers, 1937). Modern molecular techniques have 

demonstrated that current or previous members of a microbial community can affect 

disease outcome, providing a nuanced view of strict causation as originally proposed by 

Koch. There is thus a need to incorporate microbial communities into rigorous modern 

guidelines for evaluating disease causation. 

Note: The work presented in this appendix has been previously published in (Byrd and 

Segre, Science 2016). 

7.2 1 Pathogen = 1 Disease  

Koch's original postulates can be summarized as follows: First, the 

microorganism occurs in every case of the disease; second, it is not found in healthy 

organisms; and third, after the microorganism has been isolated from a diseased organism 

and propagated in pure culture, the proposed pathogen can induce disease anew. Koch 

did not include the often cited fourth postulate that the microorganism must then be 

reisolated from the experimentally infected host, but it has come to be viewed as 

necessary to complete the loop asserting causation. Although revolutionary for the time, 
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the postulates have since been a double-edged sword. For example, the third postulate 

was implemented to guard against misassignment of causality due to mixed cultures. 

However, blind adherence to this postulate would mean excluding obligate parasites and 

viruses as infectious agents. 

Over the past decade, sequencing technologies and advanced analytic tools have 

enabled whole-genome sequencing of both microbial isolates and communities. These 

advances raise new questions of how Koch's postulates can be updated to incorporate 

these molecular techniques. For example, when assigning causality to an organism, can a 

fully sequenced genome act as a surrogate for pure culture, even when the suspected 

organism requires additional microbes for successful propagation? Also, how do you 

address the role of microbial communities in disease pathogenesis? Here we address 

these questions and introduce new variables into Koch's one organism = one disease 

equation. 

7.3 1 Pathogen + 1 Colonization resistor = 0 Disease 

A modern test of Koch's postulates is the risk to patients of becoming colonized 

with a pathogen while hospitalized. In this setting, it has become clear that some 

commensal organisms can protect the host against pathogenic enemies, a process termed 

“colonization resistance.” These commensal protectors defend the host either by directly 

inhibiting the pathogen or by enhancing host immunity (Buffie and Pamer, 2013). Recent 

evidence for both varieties of colonization resistance highlights how the presence of 

specific commensal bacteria can alter the pathology induced by Koch-verified infectious 

bacteria (Buffie et al., 2015; Schieber et al., 2015). These studies demonstrate how 
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microbial community sequencing can be used to differentiate when an infectious agent 

induces disease in some but not all hosts. 

In one study, Buffie et al. (Buffie et al., 2015) showed that mice treated with 

antibiotics exhibited varied susceptibility to infection by Clostridium difficile, a major 

cause of antibiotic-induced diarrhea. The authors also performed a similar analysis with a 

cohort of patients undergoing stem-cell transplant. Because of antibiotic treatment and 

compromised immune function, these patients are particularly susceptible to C. difficile 

infection. With microbial community sequencing and subsequent modeling of microbial 

interactions, the authors identified Clostridium scindens as a commensal associated with 

colonization resistance. This was validated when mice precolonized with a commercially 

available strain of C. scindens exhibited amelioration of symptoms associated with C. 

difficile infection. Mechanistically, it was demonstrated that C. scindens modifies 

endogenous bile acids to inhibit C. difficile growth (Buffie et al., 2015; Sorg and 

Sonenshein, 2010). Buffie et al. provide a well-validated example of how one organism 

can protect against a common pathogen [Figure 7.1]. 

In addition to direct inhibition, a commensal organism can mediate colonization 

resistance through activation of the immune system. Recently, Schieber et al. 

demonstrated how a commensal Escherichia coli strain protects against muscle wasting 

associated with gut trauma and/or infection (Schieber et al., 2015). By sequencing the 

microbial communities of mice with differential colitis severity, the authors identified an 

outgrowth of Escherichia species in the more resistant mice. E. coli isolate O21:H+ was 

subsequently isolated and administered to the susceptible mice, which were then 
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protected from colitis-induced wasting. Notably, an unrelated commensal E. coli strain 

did not provide a protective effect. This strain specificity highlights the importance of 

using linked primary, rather than banked isolates, since strains of the same species can 

display extensive functional variation. Similarly, when mice were infected with 

Salmonella Typhimurium or Burkholderia thailandensis, precolonization with E. coli 

O21:H+ reduced the degree of wasting (Schieber et al., 2015). With additional 

experiments, the authors showed that this protective effect was not due to inhibition of 

pathogen colonization, but rather that commensal E. coli O21:H+, acting through the 

innate immune system, down-regulates muscle atrophy and promotes muscle 

regeneration. In this example, the pathogenesis of an infectious disease is altered because 

of a single commensal activating the immune system rather than a commensal directly 

inhibiting the growth of a pathogen. 

The idea of distinct E. coli strains conferring colonization resistance is not new. In 

1917, the E. coli strain Nissle was isolated from a soldier who did not develop diarrhea 

during an outbreak of shigellosis (Nissle, 1961). Since then, research on this probiotic 

strain has identified several mechanisms by which it outcompetes pathogens, including an 

efficient iron acquisition system (Sassone-Corsi and Raffatellu, 2015). Despite this early 

example of colonization resistance, previous updates to Koch's postulates have not 

considered the overall community context in which a pathogen does or does not induce a 

disease. As described in (Buffie et al., 2015; Schieber et al., 2015), the role of specific 

members of the microbial community in disease pathogenesis could only be identified 

with antibiotic treatment and subsequent microbial community sequencing, technical 
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advances that Koch could not have imagined as nucleic acids and antibiotics were not 

discovered until years after his death. 

 

Figure 7.1. Microbial protectors 

A) According to Koch's original postulates, a pathogenic organism in a host will induce disease. 
B) This assumption is challenged when an organism is present that can protect against the 
pathogen. C) In some cases, consortia of microbes can have an ever greater protective effect. 

 

7.4 1 Pathogen + 1 Community = 0 Disease 

The previous examples highlighted comparatively simple cases of disease 

causation in which single colonization resistors were important. However, multiple 

microbes can also have an enhanced protective effect. 

 As described above, Buffie et al. find that C. scindens provides colonization 

resistance to C. difficile (Buffie et al., 2015). However, the authors present evidence that 
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even better outcomes are achieved when C. scindens cocolonizes with three other 

microbes. Similarly, Lawley et al. have reported that C. difficile-infected mice become 

less sick and clear the pathogen more efficiently after the administration of healthy donor 

feces (Lawley et al., 2012). To define a more tractable resistant community, Lawley et al. 

cultured individual isolates from the feces and combined them into phylogenetically 

distinct mixtures until they had found a six-member community that reproducibly 

reduced C. difficile infection and bacterial load. 

These findings force us to consider under what circumstances a consortium of 

microbes can fulfill Koch's postulates. For example, do all members of the community 

have to be grown in pure culture and tested individually, or is it sufficient to grow and 

test a group culture? This is important in both scientific and translational arenas as 

researchers strive to create artificial communities capable of recapitulating the positive 

effects of fecal transplant in patients with recurrent C. difficile infections (van Nood et 

al., 2013). 

In the future, artificial communities could also be created to treat other infections 

associated with antibiotic-induced alterations of the microbial community. For example, 

women taking antibiotics are prone to develop mucosal candidiasis due to a depletion of 

beneficial microbes (Break et al., 2015). Instead of traditional probiotic treatments, could 

a vaginal artificial community be designed to restore normal microbial community 

dynamics? 
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7.5 Toward dynamic adaption 

Combining sequencing and culturing represents a powerful way to explore and 

define the microorganisms affecting disease outcome. With sequencing, all organisms 

present in a sample can be observed without the constraints imposed by pure culture 

requirements. Based on conclusions drawn and hypotheses generated from sequencing 

results, researchers can then proceed with a more targeted culturing approach to identify 

organisms of interest. 

In summary, updated Koch's postulates incorporating sequencing and culturing 

would involve the following steps: first, sequencing to classify all members of the 

microbial community; second, using computational models to assess microbes both 

necessary and sufficient for disease induction; third, targeted culturing to isolate microbes 

of interest from the diseased host; and fourth, testing primary isolates and consortia in 

relevant disease models.  

In regards to steps 3 and 4, it should be emphasized that working with primary 

isolates cultured directly from a diseased host, rather than commercially available strains, 

lends scientific accuracy given the extensive genetic variability within a species. As an 

additional step, testing nonprimary isolates can be done to evaluate how widespread the 

capability is across strains of a species.  

In light of recent appreciation of microbial consortia, the scientific community 

should consider infectious disease causation in a broader systems biology context in 

which host genetic variability, health status, past exposure history, and microbial strains 

and communities are all important. As technology advances and new scientific 
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discoveries are made, we must dynamically adapt Koch's postulates so today's science 

maintains the integrity that Koch originally fostered. 
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