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ABSTRACT

This dissertation studies control and optimization approaches to obtain energy-efficient

and reliable routing schemes for battery-powered systems in network settings.

First, incorporating a non-ideal battery model, the lifetime maximization problem

for static wireless sensor networks is investigated. Adopting an optimal control ap-

proach, it is shown that there exists a time-invariant optimal routing vector in a fixed

topology network. Furthermore, under very mild conditions, this optimal policy is

robust with respect to the battery model used. Then, the lifetime maximization prob-

lem is investigated for networks with a mobile source node. Redefining the network

lifetime, two versions of the problem are studied: when there exist no prior knowl-

edge about the source node’s motion dynamics vs. when source node’s trajectory is

known in advance. For both cases, problems are formulated in the optimal control

framework. For the former, the solution can be reduced to a sequence of nonlinear

programming problems solved on line as the source node trajectory evolves. For the

v



latter, an explicit off-line numerical solution is required.

Second, the problem of routing vehicles with limited energy through a network

with inhomogeneous charging nodes is studied. The goal is to minimize the total

elapsed time, including traveling and recharging time, for vehicles to reach their

destinations. Adopting a game-theoretic approach, the problem is investigated from

two different points of view: user-centric vs. system-centric. The former is first

formulated as a mixed integer nonlinear programming problem. Then, by exploiting

properties of an optimal solution, it is reduced to a lower dimensionality problem.

For the latter, grouping vehicles into subflows and including the traffic congestion

effects, a system-wide optimization problem is defined. Both problems are studied in

a dynamic programming framework as well.

Finally, the thesis quantifies the Price Of Anarchy (POA) in transportation net-

works using actual traffic data. The goal is to compare the network performance

under user-optimal vs. system-optimal policies. First, user equilibria flows and origin-

destination demands are estimated for the Eastern Massachusetts transportation net-

work using speed and capacity datasets. Then, obtaining socially-optimal flows by

solving a system-centric problem, the POA is estimated.

vi



Contents

1 Introduction 1

1.1 Routing in Wireless Sensor Networks . . . . . . . . . . . . . . . . . . 2

1.1.1 Non-Ideal Battery Dynamics . . . . . . . . . . . . . . . . . . . 3

1.1.2 Lifetime Maximization for Static Wireless Sensor Networks . . 5

1.1.3 Lifetime Maximization of Wireless Sensor Networks with a Mo-

bile Source Node . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Optimal Routing for Battery-Powered Vehicles . . . . . . . . . . . . . 10

1.2.1 Scope of work . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 The Price of Anarchy in Transportation Networks . . . . . . . . . . . 13

1.3.1 Scope of work . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Analytical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Optimal control approach and optimization methods . . . . . 15

1.5 Contributions of This Work . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.1 Optimal routing of static wireless sensor networks . . . . . . . 19

1.5.2 Optimal routing of wireless sensor networks with a mobile source

node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.3 Optimal routing of energy-limited vehicles . . . . . . . . . . . 21

1.5.4 Price of Anarchy in transportation networks using real traffic

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Lifetime Maximization for Static Wireless Sensor Networks 26

vii



2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Optimal control problem formulation . . . . . . . . . . . . . . . . . . 31

2.2.1 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2 Non-ideal battery dynamics . . . . . . . . . . . . . . . . . . . 32

2.2.3 Energy consumption model . . . . . . . . . . . . . . . . . . . 35

2.2.4 Optimal control problem formulation . . . . . . . . . . . . . . 37

2.3 Optimal control problem solution . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Analysis of scenario Si . . . . . . . . . . . . . . . . . . . . . . 39

2.3.2 Algorithm for solving the optimal control problem . . . . . . . 45

2.3.3 A robustness property of the optimal routing policy . . . . . . 48

2.3.4 Simulation examples . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 A joint optimal routing and initial energy allocation problem . . . . . 53

2.4.1 Simulation examples . . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Lifetime maximization problem under a more general nonlinear battery

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5.1 Optimal control problem formulation . . . . . . . . . . . . . . 64

2.5.2 Optimal control problem solution . . . . . . . . . . . . . . . . 65

2.5.3 Analysis of scenario Si . . . . . . . . . . . . . . . . . . . . . . 66

2.5.4 A Robustness Property of the Optimal Routing Policy . . . . 69

2.5.5 Optimal routing by solving a single NLP . . . . . . . . . . . . 71

2.5.6 Simulation examples . . . . . . . . . . . . . . . . . . . . . . . 72

2.5.7 Joint optimal routing and initial energy allocation . . . . . . . 75

2.5.8 Simulation examples . . . . . . . . . . . . . . . . . . . . . . . 78

2.6 Network Performance Under Security Threats . . . . . . . . . . . . . 79

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

viii



3 Lifetime Maximization for Wireless Sensor Networks with a Mobile

Source Node 86

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3 Energy Consumption Model . . . . . . . . . . . . . . . . . . . . . . . 90

3.4 Optimal control problem formulation . . . . . . . . . . . . . . . . . . 90

3.4.1 Optimal Control Problem - I . . . . . . . . . . . . . . . . . . . 91

3.4.2 Optimal Control Problem - II . . . . . . . . . . . . . . . . . . 96

3.4.3 Optimal Control Problem - III . . . . . . . . . . . . . . . . . . 99

3.4.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . 104

3.5 Optimal Control Formulation when source node trajectory is known in

advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.5.1 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . 111

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4 Optimal Routing and Charging of Energy-Limited Vehicles in Traffic

Networks 119

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2 Single Vehicle Routing . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2.2 Determination of optimal recharging amounts r∗i . . . . . . . . 131

4.3 Multiple Vehicle Routing . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.3.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3.2 Flow control formulation . . . . . . . . . . . . . . . . . . . . . 138

4.3.3 Objective function selection . . . . . . . . . . . . . . . . . . . 141

4.3.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . 143

4.4 Selection of the Number of Subflows . . . . . . . . . . . . . . . . . . . 151

4.4.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 154

ix



4.5 Multiple-Vehicle Routing Problem in the Presence of Non-Electric Ve-

hicle Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.6 Routing of energy-aware vehicles in networks with inhomogeneous charg-

ing nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.6.1 Single Vehicle Routing . . . . . . . . . . . . . . . . . . . . . . 161

4.6.2 Multiple Vehicle Routing . . . . . . . . . . . . . . . . . . . . . 167

4.6.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.6.4 Flow control formulation . . . . . . . . . . . . . . . . . . . . . 171

4.6.5 Objective function selection using actual traffic data . . . . . . 173

4.6.6 Numerical examples for the Eastern Massachusetts transporta-

tion network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5 Optimal Routing of Electric Vehicles in Networks with Charging

Nodes: A Dynamic Programming Approach 185

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.2 Single Vehicle Routing . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.2.1 Dynamic Programming Formulation . . . . . . . . . . . . . . . 187

5.2.2 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 189

5.3 Multiple Vehicle Routing . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.3.1 Dynamic Programming Formulation . . . . . . . . . . . . . . . 191

5.3.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . 196

5.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . 197

6 The Price of Anarchy in Transportation Networks Using Actual

Traffic Data 199

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.2 Models and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

x



6.2.1 Transportation network model . . . . . . . . . . . . . . . . . . 201

6.2.2 Selfish routing . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.2.3 Socially optimal routing . . . . . . . . . . . . . . . . . . . . . 203

6.2.4 Price of Anarchy . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.3 Data Set Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.3.1 Speed dataset description . . . . . . . . . . . . . . . . . . . . 204

6.3.2 Capacity dataset description . . . . . . . . . . . . . . . . . . . 204

6.3.3 Matching capacity data with speed data . . . . . . . . . . . . 206

6.4 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.4.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.4.2 Estimating the O-D demand matrix . . . . . . . . . . . . . . . 211

6.4.3 Estimating cost functions . . . . . . . . . . . . . . . . . . . . 212

6.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7 Conclusions and Future Directions 218

7.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.1.1 Extensions for lifetime maximization problem for static wireless

sensor networks . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.1.2 Extensions for lifetime maximization problem for wireless sen-

sor networks with mobile source nodes . . . . . . . . . . . . . 222

7.1.3 Extensions to Optimal Routing of Energy-limited Vehicles . . 223

7.1.4 Extensions to data-driven estimation of Origin-Destination de-

mand matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 224

References 226

Curriculum Vitae 234

xi



List of Tables

2.1 Optimal routing probs., 7-node network, ideal batteries . . . . . . . . 51

2.2 Lifetimes under routing policy given in Table 2.1 . . . . . . . . . . . . 52

2.3 Optimal routing probs., 7-node network, non-ideal batteries (k = 0.001) 53

2.4 Lifetimes under routing policy given in Table 2.3 and k = 0.001 . . . 53

2.5 Optimal routing probabilities and network lifetime for a 7-node net-

work (Fig.2·2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Lifetimes under routing policy given in Table 2.5 . . . . . . . . . . . . 54

2.7 Optimal routing probabilities and network lifetime for a 7-node net-

work with different initial energies . . . . . . . . . . . . . . . . . . . . 54

2.8 Lifetimes under routing policy given by Table 2.7 . . . . . . . . . . . 55

2.9 Optimal routing probabilities, initial battery energy and network life-

time for a 7-node network . . . . . . . . . . . . . . . . . . . . . . . . 60

2.10 Optimal routing probabilities and network lifetime for a 7-node net-

work with different diffusion coefficients . . . . . . . . . . . . . . . . . 74

2.11 Node Lifetimes under w∗(0) when δm = (0.273)2m2 . . . . . . . . . . 74

2.12 CPU time under different battery dynamics using Single NLP formu-

lation compared to Algorithm A1 . . . . . . . . . . . . . . . . . . 75

2.13 Optimal routing probs., 7-node network, non-ideal batteries . . . . . 80

2.14 Optimal routing probs., 7-node network, ideal batteries . . . . . . . . 81

3.1 Network lifetime using OCP-II for different values of ε . . . . . . . . . 108

4.1 dij values for network of Fig. 4·1 (miles) . . . . . . . . . . . . . . . . 143

xii



4.2 Numerical results for sample problem . . . . . . . . . . . . . . . . . . 144

4.3 CPU time for sample problems . . . . . . . . . . . . . . . . . . . . . 148

4.4 Numerical results for different values of eg for network of Fig. 4·1 . . 148

4.5 Traveling time on each link for the network shown in Fig. 4·1 under

system-optimal flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.6 Normalized Nash-equilibrium flows . . . . . . . . . . . . . . . . . . . 150

4.7 Optimal Normalized flow on each link (xij) obtained by solving N -NLP

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.8 Estimates for the MINLP solution for different values of N . . . . . . 156

4.9 Critical number of subflows, N∗, for different values of δ . . . . . . . 157

4.10 Classification of charging stations (Bai et al., 2010) . . . . . . . . . . 161

4.11 Uncontrolled NEV flow on each link during AM period [No. veh/hr] . 178

4.12 Distance [mile] of all links in the sub-network in Fig. 4·6 . . . . . . . 178

4.13 Numerical results for sample problem . . . . . . . . . . . . . . . . . . 180

4.14 Effect of flow rate, R, on Optimal routes . . . . . . . . . . . . . . . . 182

4.15 CPU time for sample problem . . . . . . . . . . . . . . . . . . . . . . 183

5.1 Subflow-level graph size for different number of subflows for road net-

work shown in Fig. 5·1 . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.2 Numerical results for sample problem . . . . . . . . . . . . . . . . . . 197

6.1 Traveling time (hr) on each link under system-optimal flows. . . . . . 217

xiii



List of Figures

1·1 Battery operation: a) Charged battery; b) Before recovery; c) After

recovery d) Discharged battery . . . . . . . . . . . . . . . . . . . . . 4

2·1 Kinetic Battery Model including recharging . . . . . . . . . . . . . . 34

2·2 Network topology-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2·3 Network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2·4 Network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2·5 Routing probability updates under EAR policy . . . . . . . . . . . . 82

2·6 Routing probability updates under EAR policy when node 2 is under

attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2·7 Normalized throughput vs prob. of broadcasting faked-cost . . . . . 84

3·1 6-node network with mobile source (node 1) . . . . . . . . . . . . . . 105

3·2 (a) Routing vector ; (b) Residual energies over time during the network

lifetime (Problem II) . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3·3 (a) Routing vector ; (b) Residual energies over time during the network

lifetime (Problem III) . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3·4 5-node network with mobile source . . . . . . . . . . . . . . . . . . . 111

3·5 (a) Residual energies over time during the network lifetime; (b) Opti-

mal routing vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3·6 (a) Residual energies over time during the network lifetime; (b) Routing

vector under greedy policy . . . . . . . . . . . . . . . . . . . . . . . . 114

3·7 5-node network with mobile source . . . . . . . . . . . . . . . . . . . 115

xiv



3·8 (a) Residual energies over time during the network lifetime; (b) Opti-

mal routing vector for the sinusoidal trajectory . . . . . . . . . . . . . 116

3·9 (a) Residual energies over time during the network lifetime; (b) Routing

vector under the greedy policy for the sinusoidal trajectory . . . . . . 117

3·10 (a) Residual energies over time (Problem II); (b) Residual energies over

time (Problem III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4·1 A 7-node network example for routing with recharging nodes. . . . . 125

4·2 Performance as a function of N (No. of subflows) . . . . . . . . . . . 145

4·3 A 13-node network example for routing with recharging nodes. . . . . 147

4·4 Average deviation between the solution of the NLP and estimated so-

lution of the MINLP problem for different values of N . . . . . . . . 157

4·5 Road map of Eastern Massachusetts . . . . . . . . . . . . . . . . . . . 174

4·6 (a) An interstate highway sub-network of Eastern Massachusetts ( the

blue numbers indicate node indices); (b) The topology of the sub-network175

4·7 Comparison of the estimated cost functions corresponding to different

time periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4·8 Performance as a function of N (No. of subflows) . . . . . . . . . . . 179

5·1 A 49-node grid network with inhomogeneous charging nodes. . . . . . 189

5·2 A 7-node road network with inhomogeneous charging nodes. . . . . . 191

5·3 Subflow-level graph showing all feasible combination of nodes via which

subflows may travel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6·1 All available road segments in the road map of Eastern Massachusetts. 205

6·2 Sample lines from speed dataset . . . . . . . . . . . . . . . . . . . . 205

xv



6·3 (a) An interstate highway sub-network of Eastern Massachusetts (a

sub-map of Fig. 6·1; the blue numbers indicate node indices); (b)

The topology of the sub-network (the numbers beside arrows are link

indices, and the numbers inside ellipses are node indices). . . . . . . . 207

6·4 Relationships between speed, density, and flow based on Greenshield’s

traffic flow model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6·5 Comparison of the estimated cost functions corresponding to different

time periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6·6 (a) Social-opt. (green) and user-opt. (red) flows on links 0 to 11; (b)

Social-opt. (green) and user-opt. (red) flows on links 12 to 23. . . . . 215

6·7 POA for PM period (5–7 pm) in April based on avg. flow on each link. 216

xvi



List of Abbreviations

BEV . . . . . . Battery Electric Vehicle
BPS . . . . . . Battery-Powered System
BPV . . . . . . Battery-Powered Vehicle
DoS . . . . . . Denial of Service
DP . . . . . . Dynamic Programming
EAR . . . . . . Energy Aware Routing
EV . . . . . . Electric Vehicle
E-VRPTW . . . . . . Electric Vehicle Routing Problem with Time Windows
GLS . . . . . . Generalized Least Squares
IP . . . . . . Integer Programming
KBM . . . . . . Kinetic Battery Model
LDV . . . . . . Light Duty Vehicle
LP . . . . . . Linear Programming
LSP . . . . . . Least Squares Problem
MINLP . . . . . . Mixed Integer Non-Linear Programming
MPO . . . . . . Metropolitan Planning Organization
NEV . . . . . . Non-Electric Vehicle
NLP . . . . . . Non-Linear Programming
OCP . . . . . . Optimal Control Problem
O-D . . . . . . Origin-Destination
PHEV . . . . . . Plug-in Hybrid Electric Vehicle
PMP . . . . . . Pontryagin Maximum Principle
POA . . . . . . Price Of Anarchy
RBS . . . . . . Regenerative Braking System
TPBVP . . . . . . Two Point Boundary Value Problem
TSP . . . . . . Traveling Salesman Problem
UAV . . . . . . Unmanned Autonomous Vehicle
WSN . . . . . . Wireless Sensor Networks

xvii



1

Chapter 1

Introduction

The increasing presence of mobile and wireless battery-powered systems (BPS) has

given rise to novel issues in classical network routing problems (Laporte, 1992). Due

to limited accessibility to charging resources and limited battery lifetime, the power

consumption is a key issue in BPS. In this thesis we study the routing problem for

battery-powered energy-aware systems with applications in wireless sensor networks

and Battery Power Vehicles (BPVs). In WSNs we deal with a routing problem in

which nodes are energy-limited with no recharging capabilities. On the other hand,

for routing of BPVs we deal with a routing problem in which entities (vehicles)

are energy-limited with rechargeability. Thus, in both applications we face energy

constraints in the network routing problem but in different settings.

In wireless sensor networks, nodes are mainly battery powered with sensing, pro-

cessing and communicating capabilities. For most applications of interest, e.g., ex-

ploration, nodes are hardly accessible and they do not have rechargeablility. Thus,

power consumption is crucial in WSNs, since it directly impacts their lifetime. In

this thesis we propose algorithms determining routing schemes to optimize properly

defined performance metrics which reflect the limited energy resources of WSNs.

Unlike WSNs, BPVs have recharging capability and their energy constraint has

direct impact on the routing decision. Motivated by the significant role of recharging

in BPVs, we study the routing problem for vehicles with limited energy through a

network with at least some charging nodes.
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The structure of this chapter is as follows. First, we review the lifetime maximiza-

tion problem for wireless sensor networks. We define our research scope and review

this problem in the literature. Then, we briefly introduce the routing problem for

energy-aware battery-powered vehicles. Reviewing the literature, we define problems

we will focus on. We also discuss how to use actual traffic data to investigate the

transportation network performance under user-centric vs system-centric strategies.

We then discuss the methodologies we are using to solve these problems and point

out contributions of this thesis.

1.1 Routing in Wireless Sensor Networks

A Wireless Sensor Network (WSN) is formed by small autonomous nodes communi-

cating over wireless links. Nodes have sensing, processing and communicating capa-

bilities. They are mainly battery powered and tightly constrained in terms of energy,

processing, and storage capacities, therefore requiring careful resource management

(Al-Karaki and Kamal, 2004). Applications of such networks include exploration,

surveillance, and environmental monitoring.

Since the majority of power consumption is due to the radio component (Shnayder

et al., 2004), nodes rely on short-range communication and form a multi-hop network

to deliver information to a base station. Because nodes are battery-powered, it is

crucial to adopt a realistic battery model for nodes in order to maximize the net-

work lifetime. Under the assumption that an electrochemical battery cell is “ideal”,

a constant voltage throughout the discharge process and a constant capacity for all

discharge profiles are both maintained over time. However, battery discharge behav-

ior is sensitive to several factors including the discharge rate, temperature, and the

number of charge/discharge cycles (Rao et al., 2003). Therefore, battery discharge

behavior deviates significantly from the behavior of an ideal battery. In this thesis,
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we relax the common assumption of ideal battery dynamics for nodes in the literature

(e.g., (Chang and Tassiulas, 2004), (Wu and Cassandras, 2005),(Shah and Rabaey,

2002)) and revisit the lifetime maximization problem of WSNs by adopting a realistic

non-ideal battery dynamics for nodes.

1.1.1 Non-Ideal Battery Dynamics

There are two important effects (Rao et al., 2003) that make battery performance

nonlinear and sensitive to the discharge profile: (i) the Rate Capacity effect (Doyle

and Newman, 1997), and (ii) the Recovery effect(Martin, 1999). The former leads to

the loss of capacity with increasing load current, and the latter makes the battery

regain portions of its capacity after a resting time.

Fig. 1·1 shows a simplified symmetric electrochemical cell to illustrate this phe-

nomenon. We assume the distance between electrodes (anode and cathode) is 2ω.

During a rest time, the electrolyte concentration is constant over the length of ω (Fig.

1·1a). When the cell is connected to a load, due to the electro-chemical reaction, the

concentration of the electrolyte is reduced near the electrode and creates a gradient

(Fig. 1·1b) which causes the diffusion of species towards the electrode. Then, during

an idle period, this diffusion makes the electrolyte concentration gradually become

uniform over the length ω showing the battery recovery effect (Fig. 1·1c). Finally,

when the electrolyte concentration drops to a predetermined cutoff level, the battery

is said to be depleted while it has some unused capacity. This phenomenon describes

the rate capacity effect (Fig.1·1d) Therefore, the voltage as well as energy amount

delivered by a battery heavily rest on the discharge profile. Thus, when dealing with

energy optimization, it is necessary to take this into account along with nonlinear

variations in a battery’s capacity.

As a result, there are several proposed models to describe a non-ideal battery; a

detailed overview is given in (Jongerden and Haverkort, 2008). Accordingly, models
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Figure 1·1: Battery operation: a) Charged battery; b) Before recov-
ery; c) After recovery d) Discharged battery

are broadly classified as: electrochemical (Fuller et al., 1993; Doyle and Newman,

1997; Newman, 1998), circuit-based (Hageman, 1993; Chen and Rincon-Mora, 2006),

stochastic (Chiasserini and Rao, 1999b; Chiasserini and Rao, 1999a; Chiasserini and

Rao, 2001; Rao et al., 2005), and analytical (Rakhmatov and Vrudhula, 2001; Vrud-

hula and Rakhmatov, 2003; Manwell and McGowan, 1993). Electrochemical models

possess the highest accuracy, but their complexity makes them impractical for most

real-time applications. Electrical-circuit models are much simpler and therefore com-

putationally less expensive but their accuracy leads to errors which may be reduced

at the expense of added complexity (Chen and Rincon-Mora, 2006). Stochastic mod-

els use a discrete time Markov chain with N + 1 states to represent the number of

charge units available in the battery. Since N is large, these models are also limited

by high computational requirements. Last but not least, analytical models, includ-

ing diffusion-based models (Vrudhula and Rakhmatov, 2003; Zhang and Shi, 2009;

Barbarisi et al., 2006) and the Kinetic Battery Model (KBM) (Manwell and Mc-
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Gowan, 1994; Rao et al., 2005), use only a few equations to capture the battery’s

main features, i.e., the rate capacity effect and the recovery effect. They also provide

acceptable accuracy with respect to battery lifetime estimation. Thus, in this thesis,

we use analytical models in order to capture the nonlinear dynamics of the battery

for each node.

1.1.2 Lifetime Maximization for Static Wireless Sensor Networks

Routing schemes in WSNs aim to deliver data from the data sources (nodes with sens-

ing capabilities) to a data sink (typically, a base station) in an energy-efficient and

reliable way. A survey of state-of-the-art routing algorithms is provided in (Akkaya

and Younis, 2005). Most proposed routing protocols in WSNs are based on shortest

path algorithms, e.g., (Perkins and Bhagwat, 1994), (Park and Corson, 1997). Such

algorithms usually require each node to maintain a global cost (or state) information

table, which is a significant burden for resource-constrained WSNs. In order to deal

with node failures, Ganesan et al. (Ganesan et al., 2001) proposed a multipath rout-

ing algorithm, so that a failure on the main path can be recovered without initiating a

network-wide flooding process for path rediscovery. Since flooding consumes consid-

erable energy, this routing method can extend the network’s lifetime when there are

failures. On the other hand, finding multiple paths and sending packets through them

also consumes energy, thus adversely impacting the lifetime of the network if there

are no failures. The routing policies mentioned above may indirectly reduce energy

usage in WSNs, but they do not explicitly use energy consumption models to address

optimality of a routing policy with respect to energy-aware metrics. Such “energy

awareness” has motivated a number of minimum-energy routing algorithms which

typically seek paths minimizing the energy per packet consumed (or maximizing the

residual node energy) to reach a destination, e.g., (Singh and Raghavendra, 1998).

However, seeking a minimum energy (or maximum residual energy) path can rapidly
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deplete energy from some nodes and ultimately reduce the full network’s lifetime by

destroying its connectivity. Thus, an alternative performance metric is the network

lifetime. The definition of the term “lifetime” for WSNs varies. Some researchers,

e.g., (Chang and Tassiulas, 2004), define the network lifetime as the time until the

first node depletes its battery; however, this may just as well be defined as the time

until the data source cannot reach the data sink (Bhardwaj and Chandrakasan, 2002).

In this thesis, we will adopt the former definition, i.e., the time until the first node

depletes its battery.

Along the lines of energy-aware routing, Shah and Rabaey (Shah and Rabaey,

2002) proposed an Energy Aware Routing (EAR) policy which does not attempt to

use a single optimal path, but rather a number of suboptimal paths that are proba-

bilistically selected with the intent of extending the network lifetime by “spreading”

the traffic and forcing nodes in the network to deplete their energies at the same

time. In (Paschalidis and Wu, 2012) a similar problem is studied with the inclusion

of uncertainties in several WSN parameters. From a network security viewpoint, de-

terministic routing policies (i.e., policies where source nodes send data through one or

more fixed paths) are highly vulnerable to attacks that can compromise a node and

easily falsify cost information, leading to Denial of Service (DoS) attacks (Wood and

Stankovic, 2002). In order to reduce the effect of such attacks, probabilistic routing

is an interesting alternative, since this makes it difficult for attackers to identify an

“ideal” node to take over. In this sense, the EAR policy is attractive because of

its probabilistic routing structure, even though it does not attempt to provide opti-

mal routing probabilities for network lifetime maximization. It is worth mentioning,

however, that a routing policy based on probabilities can easily be implemented as a

deterministic policy as well by transforming these probabilities to packet flows over

links and using simple mechanisms to ensure that flows are maintained over time.
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The network lifetime maximization problem studied in (Chang and Tassiulas,

2004) is based on two assumptions. First, it assumes that the energy in a battery

depletes linearly with respect to the quantity of information forwarded, and does

not depend on the physical dynamics of the battery itself. Second, it seeks fixed

routing probabilities over time, even though the dynamic behavior of the WSN may

in fact imply that a time-dependent (possibly based on state feedback closed-loop)

routing policy may be optimal. More generally, routing problems in WSNs are based

on ideal battery models where a battery maintains a constant voltage throughout

the discharge process and a constant capacity for all discharge profiles, neither of

which is generally true. In fact, the energy amount delivered by a battery heavily

depends on the discharge profile and it is generally not possible to extract all the

capacity stored in it (Panigrahi et al., 2001). This dynamic behavior also leads to

the conjecture that an optimal routing policy should take into account the battery

state over time and should, therefore, be time-dependent rather than fixed. Thus, an

optimal control problem formulation for the network lifetime maximization problem

seems to be a natural setting. Considering the network lifetime as the performance

metric, our goal is to maximize it by finding an optimal routing strategy. As already

mentioned, we consider the network lifetime as the time until the first node depletes

its battery and we will see that this definition is a good characterization of the overall

network’s lifetime when the network topology is fixed. From a network security

viewpoint, deterministic routing policies are highly vulnerable to attacks that can

compromise a node and easily falsify cost information, leading to sinkhole attacks

and as discussed, probabilistic routing can be a practical solution. Adopting ideal

battery, in (Wu and Cassandras, 2005) routing was formulated as an optimal control

problem with controllable routing probabilities over network links and it was shown

that in a fixed network topology there exists an optimal policy consisting of time-
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invariant routing probabilities. Moreover, as shown in (Ning and Cassandras, 2009),

the optimal control problem may be converted into the LP formulation used in (Chang

and Tassiulas, 2004).

In this thesis, we adopt an optimal control setting with the goal of determining

routing probabilities so as to maximize the lifetime of a WSN subject to a dynamic

energy consumption model for each node. Due to their acceptable accuracy as well

as manageable computational burden, we will use analytical battery models to cap-

ture the nonlinear dynamics of the battery for each node. In particular, at first we

use the Kinetic Battery Model and formulate the problem as an Optimal Control

Problem(OCP). We then generalize the results achieved under the KBM model by

adopting a more elaborate battery model of which KBM is a special case. We also

consider an alternative problem where, in addition to routing, we allocate a total

initial energy over the network nodes with the same network lifetime maximization

objective; the idea here is that a proper allocation of energy can further increase the

network lifetime.

1.1.3 Lifetime Maximization of Wireless Sensor Networks with a Mobile

Source Node

So far, we assume the network topology is fixed. Next, we investigate the lifetime max-

imization problem for the networks with changing topology. There are various ways

to exploit WSN mobility by incorporating it into different network components. In

recent years, mobility in WSNs has been increasingly introduced and studied (Reza-

zadeh et al., 2012), (Wang et al., 2005), and (Shah et al., 2003) with the aim of

enhancing their capabilities. As discussed in (Di Francesco et al., 2011), mobility can

affect different aspects of WSN design, including connectivity, cost, reliability and

energy efficiency. For instance, in (Wang et al., 2005) sink mobility is exploited and

a Linear Programming (LP) formulation is proposed for maximizing the network life-
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time by finding the optimal sink node movement and sojourn time at different nodes

in the network. In (Shah et al., 2003) mobile nodes (mules) are used to deliver data

to the base station. For rechargeable WSNs, (Zhao et al., 2014) introduces a novel

framework for joint energy replenishment and data gathering by employing multi-

functional mobile nodes. WSNs with partial mobility are studied in (Srinivasan and

Chua, 2007). As discussed in (Raja and Su, 2009), there exist two modes for sensor

nodes mobility: weak mobility, forced by the death of some sensor nodes and strong

mobility using an external agent (Laibowitz and Paradiso, 2005), (Dantu et al., 2005).

By combining static wireless sensors and sophisticated mobile sensors, (Tseng et al.,

2007) proposes a mobile, event-driven surveillance system. In a slightly closer setting

to the problem investigated here, (He et al., 2004) studies the problem of tracking

mobile targets using WSNs. In particular, an energy-efficient surveillance system is

proposed for detecting and tracking the positions of mobile targets using cooperating

static sensor nodes.

Scope of work

In this thesis, we focus on the lifetime maximization problem in WSNs when the

source node is mobile. This situation frequently arises when a mobile sensor node is

used to track one or more mobile targets or when there is a large area to be monitored

that far exceeds the range of one or more static sensors. As already mentioned, in the

case of a fully static network, the lifetime is defined as the time until the first node

depletes its energy and it is a good characterization of the overall network’s lifetime

in practice for networks with fixed topology.

Adding mobility to nodes raises several questions. First, one can no longer expect

that a routing policy would be time invariant. Second, it is no longer reasonable to

define the WSN lifetime in terms of the the first node depleting its energy. Finally,

if a routing policy is time-varying, then it has to be re-evaluated sufficiently fast to
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accommodate the real-time operation of a WSN.

Here, we consider mobility added to the source node and assume that any such

node travels along a trajectory that it determines and which may or may not be

known in advance. While on its trajectory, the source node continuously performs

sensing tasks and generates data. Our goal is to derive an optimal routing scheme in

order to maximize the network lifetime, appropriately redefined to focus on the mobile

source node. We study two versions of this problem; first, we study the case with no

a priori knowledge about the mobile node’s trajectory; next, we investigate the case

when the mobile node’s trajectory is known in advance. Finally, we investigate how

this information helps improving the network lifetime.

1.2 Optimal Routing for Battery-Powered Vehicles

We next study the routing problem for another group of BPS, Battery-Powered Ve-

hicles (BPVs). Unlike WSNs, in routing problem for BPVs, entities are mobile and

they have energy constraints. In general, when entities (e.g., EVs) in a network are

characterized by physical attributes with a dynamic behavior, this behavior can play

an important role in the routing decisions. In the case of BPVs the key physical

attribute is energy.

From increasing energy security to reducing emissions of greenhouse gases, BPVs,

such as Electric Vehicles (EVs), offer a new pathway to an energy efficient, environ-

mentally friendly transportation system. Based on the International Energy Agency

(IEA) road-map vision (IEA, 2011), at least 50% of Light Duty Vehicle (LDV) sales

worldwide should include Electric and Plug-in Hybrid Electric Vehicles (EVs/PHEVs)

by 2050. This significant rise of BPVs in traffic networks has introduced new chal-

lenges in classical network routing problems (Laporte, 1992). In general, BPVs face

battery-related challenges which are crucial in routing problems including limited



11

driving range, long recharge time, sparse coverage of charging stations, and the BPV

energy recuperation ability (Artmeier et al., 2010) which can be exploited.

In recent years, the vehicle routing literature has been enriched by work aiming to

accommodate the aforementioned BPV characteristics. For example, by incorporat-

ing the recuperation ability of EVs (which leads to negative energy consumption on

some paths), extensions to general shortest-path algorithms are proposed in (Artmeier

et al., 2010) that address the energy-optimal routing problem. The energy require-

ments in this problem are modeled as constraints and the proposed algorithms are

evaluated in a prototypical navigation system. Extensions provided in (Eisner et al.,

2011) employ a generalization of Johnson’s potential shifting technique to make Di-

jkstra’s algorithm applicable to the negative link cost shortest-path problem so as

to improve the results and allow for route planning of EVs in large networks. This

work, however, does not consider the presence of charging stations, modeled as nodes

in the network. Charging times are incorporated into a multi-constrained optimal

path planning problem in (Siddiqi et al., 2011), which aims to minimize the length of

an EV’s route and meet constraints on total traveling time, total time delay due to

signals, total recharging time and total recharging cost; a particle swarm optimization

algorithm is then used to find a suboptimal solution. In this formulation, however,

recharging times are simply treated as parameters and not as controllable variables.

In (Khuller et al., 2011), algorithms for several routing problems are proposed, includ-

ing a single-vehicle routing problem with inhomogeneously priced refueling stations

for which a dynamic programming based algorithm is proposed to find a least cost

path from source to destination. In (Sweda and Klabjan., 2012), the same problem is

revisited, assuming the recharging cost is a nonlinear function of the battery charging

level and a dynamic programming algorithm is proposed to find a minimum-cost path

for an EV. An EV Routing Problem with Time Windows and recharging stations (E-
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VRPTW) was proposed in (Schneider et al., 2014), where an EV’s energy constraint

is first introduced into vehicle routing problems and recharging times depend on the

battery charge of the vehicle upon arrival at the station. Controlling recharging times

is circumvented by simply forcing vehicles to be always fully recharged. In (Worley

et al., 2012), an integer programming optimization problem was formulated to simul-

taneously find optimal routes and charging station locations for commercial electric

vehicles. In (Sachenbacher et al., 2011), a heuristic algorithm is proposed to find the

energy-optimal routing for EVs taking into account the energy recuperation, battery

capacity limitations and dynamic energy cost imposed by the vehicle properties. In

recent work, (He et al., 2014) investigates the user-optimal network flow equilibrium

with different scenarios for flow dependency of energy consumption of Battery Elec-

tric Vehicles (BEVs). Combinatorial optimization methods for different aspects of

EV management such as energy-efficient routing and facility location problems are

studied in (Touati-Moungla and Jost, 2012). In the Unmanned Autonomous Vehicle

(UAV) literature, (Sunder and Rathinam, 2012) considers a UAV routing problem

with refueling constraints. In this problem, given a set of targets and depots the goal

is to find an optimal path such that each target is visited by the UAV at least once

while the fuel constraint is never violated. A Mixed-Integer Nonlinear Programming

(MINLP) formulation is proposed with a heuristic algorithm to determine feasible

solutions.

1.2.1 Scope of work

Most of the aforementioned work deals with the routing problem for a single EV.

This is not easily generalized to a multi-vehicle routing problem. In this thesis, we

study the problem first from the driver’s point of view (the user-centric “single-vehicle

routing problem”), then from the system’s point of view (the system-centric “multi-

vehicle routing problem”). In the former, the goal is to find an optimal path along
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with a charging policy for a single EV acting “selfishly” to reach its destination in

minimum time; under certain conditions, a Nash equilibrium may then be reached

(Roughgarden, 2005). In the latter case, we define a system-wide objective and the

goal is to route EVs so that a whole inflow reaches its destination in minimum time,

therefore achieving a “social optimum”. We study these problems in networks with

both homogeneous and inhomogeneous charging nodes where “inhomogeneity” means

that charging rates at different nodes are not identical. For the user-centric case, first

we formulate the problem as a MINLP which is the exact formulation. We then reduce

the problem’s complexity by decomposing it into two simpler LP problems. For the

network with homogeneous charging nodes, this problem decomposition doesn’t affect

the optimality of the solution, however for the more complicated case, network with

inhomogeneous charging nodes, the solution of the decomposed LP is sub-optimal

in general. For the system-centric case, we follow the same framework. Starting

with a MINLP formulation, we decompose it into simpler problems, but now due

to the incorporated congestion effect, the decomposed problem remains as a MINLP

with fewer decision variables. As an alternative approach, we study both user-centric

and system-centric problems in a Dynamic Programming (DP) setting. We start our

analysis with the assumption that every arriving vehicle is an EV. We then relax

this assumption by considering both EVs with energy constraints and Non-Electric

Vehicles (NEVs) in the inflow to the network. We again seek to optimize a system-

centric objective by optimally routing NEVs and EVs along with an optimal policy

for charging EVs along the way if needed.

1.3 The Price of Anarchy in Transportation Networks

Motivated by our game-theoretic approach in routing of BPVs, we next investigate

the performance of transportation networks using actual traffic data. To do so, we
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borrow a well-known concept in game theory called the“ Price of Anarchy (POA)”.

POA is a measure to compare system performance under a user-centric policy and

a system-centric policy in a system with non-cooperative agents. A transportation

(traffic) network is such a system in which each driver (agent) seeks to minimize

her own cost by choosing the best route (resources) to reach her destination without

taking into account the overall system performance (equivalent to the single-vehicle

routing for BPVs). In these systems, the cost for each agent depends on the resources

it chooses as well as the number of agents choosing the same resources (Wang et al.,

2015). In such a non-cooperative setting, one often observes convergence to a Nash

equilibrium, a point where no agent can benefit by altering its actions assuming that

the actions of all the other agents remain fixed (Youn and Jeong, 2008). However, it

is known that the Nash equilibrium is not always the best strategy from the system’s

point of view and results in a suboptimal behavior compared to the socially optimal

policy (equivalent to the multiple-vehicle routing for BPVs).

1.3.1 Scope of work

In this thesis, Our goal is to quantify the social suboptimality of selfish driving in

the Eastern Massachusetts traffic network by comparing the system performance, in

terms of the total latency, under a user-optimal policy vs. a system-optimal policy

using real traffic data.

The dataset at our disposal, provided by the Boston Region Metropolitan Planning

Organization (MPO), includes the spatial average speeds and the flow capacity for

each road segment of Eastern Massachusetts transportation network. We first infer

equilibrium flows on each segment from the speed data which leads to obtain Origin-

Destination (O-D) demand matrices. Next, we formulate a system-centric problem

in which agents, here drivers, cooperate to optimize the overall system performance.

This allows us to estimate the POA for a sub-network of the Eastern Massachusetts
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transportation network so as to determine the difference in network performance

between selfish routing (non-cooperative) and system-optimal routing (cooperative).

We also apply our optimal routing approach for BPVs to the same subnetwork. Using

the estimated flow data and the O-D demand, we investigate the optimal solutions

obtained under different charging station and energy-aware vehicle loads.

1.4 Analytical Tools

1.4.1 Optimal control approach and optimization methods

Optimal control theory focuses on problems with continuous states and exploits their

rich differential structures in order to determine the inputs to the system that opti-

mize a specified performance index while satisfying any constraints on the motion of

the system (Rao, 2009), (Todorov, 2006). For some weakly nonlinear low dimensional

systems, we my obtain the optimal solution analytically by investigating the neces-

sary and sufficient conditions for optimality (Hamiltonian Analysis) (Bryson and Ho,

1975). To do so, one can employ the calculus of variation to obtain the optimality

conditions, then by applying the Pontryagin Maximum Principle (PMP), the opti-

mal solution may obtained analytically. However, due to the complexity of most

applications, it is not possible to obtain a numerical solution for an Optimal Control

Problem (OCP) in general. Thus, it is necessary to use numerical methods to obtain

the optimal solution for a strongly nonlinear dynamical system.

Numerical methods for solving OCPs are classified into two types: indirect meth-

ods vs. direct methods (Rao, 2009). In an indirect method, the calculus of variations

is employed to obtain the first order optimality conditions of the original OCP. These

conditions leads to a Two Point (multi-point) Boundary Value Problem (TPBVP).

Then by applying the PMP, one can use a gradient based method to find the optimal

solution. Since in this method the solution is obtained by solving the TPBVP instead
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of the original OCP, it is called an indirect method. One disadvantage of this method

is that it may have multiple solutions and the solution is highly sensitive to the ini-

tial state. Another disadvantage of this method is that boundary value problems are

generally difficult to solve, specifically for problems with interior point constraints.

On the other hand, a direct method is based on discretizing the state and/or control

of the OCP and transcribing it to a Non-Linear Programming (NLP) problem. Then,

the NLP is solved using well-known optimization techniques such as penalty function

methods or methods of augmented or modified Lagrangian functions. Direct methods

are widely used in commercial solver packages. As an example, GPOPS (Rao, 2009)

uses a direct collocation method and simultaneously fully discretizes both controls as

well as state variables which results in a large sparse NLP. Finally, this NLP can be

solved using standard commercial solvers such as SNOPT (Gill et al., 2002).

Another alternative approach for designing optimal control is Dynamic Program-

ming (DP). DP is an optimization approach that transforms a complex problem into

a sequence of simpler problems and exploits the recursive nature of the problem. It

relies on the Bellman’s Principal of Optimality stating that “Any optimal policy has

the property that, whatever the current state and decision, the remaining decisions

must constitute an optimal policy with regard to the state resulting from the cur-

rent decision.” In other words, optimal policy in future is independent of the past

action leading to the current state. Thus, starting from the final state, DP can pro-

vide a backward recursive algorithm to find the optimal policy. A key element for

this procedure is the value function which is a function of the current state and pro-

vides the optimal value of the objective function completing the task starting from

the current state. DP can be applied to both discrete time and continuous time dy-

namic optimization problems (both deterministic and stochastic problems), as well as

static multi-stage optimization problems which can be transformed into a collection
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of simpler subproblems (e.g., shortest path problem).

In this thesis we use the optimal control approach to deal with the lifetime maxi-

mization problem in WSNs. For static networks, we adopt an optimal control setting

with the goal of determining routing probabilities so as to maximize the lifetime of

a WSN subject to a dynamic energy consumption model for each node. Using the

Hamiltonian analysis and applying the Pontryagin Minimum Principle (PMP), we

will show that there exists a time-invariant optimal control policy which minimizes

the Hamiltonian and the OCP will reduce to a set of relatively simple Non-Linear

Programming (NLP) problems. For networks with a mobile source, when the source

node trajectory is unknown in advance, we use the same approach. In particular,

we formulate an instantaneous optimal control problem that the WSN faces at each

time step. Again, using the Hamiltonian analysis and applying PMP, we will show

that optimal routing vectors are time-invariant and can be evaluated as solutions of

a sequence of NLPs as the source node trajectory evolves. On the other hand, when

the source node’s trajectory is known in advance, we follow a similar approach by

formulating an optimal control problem. In this case, due to the path and control

constraints, the resulting OCP is more challenging and requires an explicit off-line

numerical solution. Thus, we solve it numerically using GPOPS-II, a MATLAB-based

general purpose optimal control software. This solver is based on a direct method

and approximates a continuous-time OCP as a large sparse NLP using variable-order

Gaussian quadrature collocation methods (Patterson and Rao, 2014). The resulting

NLP is then solved using IPOPT, a standard NLP solver.

Another approach to the solution of an optimal control problem is to approxi-

mate the optimal policy structure (e.g., proposed by a numerical solver) by some

parameters and transform the original OCP into a parametric optimization problem.

Consequently rather than a “dynamic” optimization problem, we deal with a “static”
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optimization problem which is much easier to solve.

A general static optimization problem aims to minimize/maximize a given cost/benefit

function by selecting n decision variables from a given feasible region. A feasible so-

lution that optimize the cost function is called the optimal solution. The problem is

unconstrained if the feasible region is Rn. For the constrained problem, the feasible

region is usually specified by a set of equality and inequality constraints.

The problem is called a Linear Programming problem (LP) if the objective func-

tion as well as the constraints are linear functions of decision variables. LP is a special

case of convex programming and it can be solved efficiently using algorithms such as

Simplex and interior-point methods (Bertsimas and Tsitsiklis, 1997).

The problem is called a Non-Linear Programming problem (NLP) if the objective

function is nonlinear and/or feasible region is determined by nonlinear constraints. If

the objective function is convex (minimization) or concave (maximization) and the

feasible region is convex, the problem is a convex problem and the local optimum

is equivalent to the global optimum. In contrast, if the feasible region and/or cost

function are not convex for a minimization problem, the problem is non-convex and

it may have several local optima.

If some or all decision variables are constrained to take on integer values (e.g., bi-

nary choices), the problem is an Integer Programming problem (IP). The problem is a

Mixed Integer Non-Linear Programming (MINLP) when in addition it includes non-

linearity in the objective function and/or constraints. Discrete optimization problems

are not convex and computationally difficult to solve. In fact, most of integer pro-

gramming problems are NP-hard problems, e.g., Knapsack and Traveling Salesman

problems.

In this thesis we face different optimization problems for both lifetime maximiza-

tion of WSNs and the energy-constrained vehicle routing problems. For the routing
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problem in WSNs, we will reduce the OCP to a set of NLPs which should be solved

in order to obtain optimal routing schemes. The complexity of the NLPs depends

on the battery model we will adopt. For optimal routing of EVs, we investigate the

problem form two point of view: user-centric vs system-centric. For the user-centric

problem, we first formulate a MINLP as our exact formulation and show that one can

decompose the exact formulation into two simpler LP problems: route selection and

charging policy determination. For the system-centric problem, we formulate the ex-

act problem as a MINLP and do the problem decomposition again. In this case, due

to the traffic congestion effect on the cost function as well as constraints, the decom-

posed route selection problem remains as a MINLP with fewer variables. We finally

introduce an alternative flow optimization formulation which is an NLP problem.

The convexity of this problem relays on the choice of delay and energy consumption

functions. We also formulate both user-centric and system-centric problems in a DP

framework. For the user-centric problem, the DP formulation is effective and com-

putationally less demanding than the exact MINLP. However, for the system-centric

problem, the DP formulation is outperformed by the exact MINLP formulation when

the problem size increases.

1.5 Contributions of This Work

In previous sections, we briefly point out the motivation of this dissertation, the scope

of problems we will address and the methodologies we will use to solve these problems.

In summary, the main contributions of this thesis are as follows:

1.5.1 Optimal routing of static wireless sensor networks

• We revisit the lifetime maximization problem for static wireless sensor networks

studied in (Chang and Tassiulas, 2004) and (Wu and Cassandras, 2005) by re-

laxing the assumption of considering ideal battery dynamics for nodes. We



20

adopt an optimal control setting with the goal of determining routing proba-

bilities so as to maximize the lifetime of a WSN subject to a dynamic energy

consumption model for each node. Using the Kinetic Battery Model (KBM),

we show that in a fixed network topology case, there exists an optimal policy

consisting of time-invariant routing probabilities determined through a set of

relatively simple Non-Linear Programming (NLP) problems. We further show

that under a very mild condition, this optimal routing policy is robust with re-

spect to the battery model used, i.e., the routing probabilities are not affected

by the battery model used, although the estimated WSN lifetime itself is signif-

icantly longer under a non-ideal battery model, primarily due to the recovery

effect mentioned earlier. We also consider an alternative problem where, in ad-

dition to routing, we allocate a total initial energy over the network nodes with

the same network lifetime maximization objective. We show that the optimal

routing policy depletes all node energies simultaneously and the corresponding

energy allocation and routing probabilities are obtained by solving a single NLP

problem.

• We generalize the results obtained under the KBM for both the optimal routing

and the joint routing and initial energy allocation problems for lifetime max-

imization by adopting a more elaborate non-ideal battery model and showing

that the time-invariant nature of a maximal network lifetime routing policy is

preserved. This leads to the conclusion that optimal policies for WSNs are

indeed robust with respect to the battery model used. Strictly speaking, the

robustness property suggests to find the optimal routing by adopting the ideal

battery dynamics. This reduces the problem to a single LP. However, in order

to precisely predict the network lifetime, we should use an accurate general

non-ideal battery model while we apply the optimal routing obtained by the
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LP formulation.

1.5.2 Optimal routing of wireless sensor networks with a mobile source

node

• We redefine the lifetime for WSN with a mobile source node and study the life-

time maximization problem in two different settings: (i) when the source node’s

trajectory is unknown in advance vs. (ii) when we have prior knowledge about

it. For case (i), we formulate the problem as instantaneous OCPs obtaining

optimal routing scheme as the source node trajectory evolves. We show that

the solution of these OCPs can be reduced to a sequence of NLPs which can be

solved on line. For case (ii), when the mobile node’s trajectory is known in ad-

vance, we formulate an optimal control problem which is computationally more

challenging and requires an explicit off-line numerical solution. We also observe

that having full knowledge about the source node trajectory may increase the

network lifetime significantly compared to the case when there is no a priori

trajectory knowledge.

1.5.3 Optimal routing of energy-limited vehicles

We study two versions of the problem: user-centric vs. system-centric and investigate

the routing problem in networks with homogeneous as well as inhomogeneous charging

stations.

Single-vehicle routing problem:

• We propose a MINLP optimization problem as the exact formulation which

determines the optimal route and amount of charge at each node simultane-

ously. We then reduce the complexity of the exact MINLP by decomposing

it into two Linear Programming (LP) problems: one to determine the optimal

route and the other to find the charging policy over the optimal route. We do
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so by applying a locally-optimal charging policy and using some properties of

the optimal solution. We show that the decomposed LP obtains the optimal

solution for the network with homogeneous charging stations, though there is

no guarantee for global optimality in general (for networks with inhomogeneous

charging stations). We also formulate the problem in a Dynamic programming

(DP) framework. This model is identical for both homogeneous and inhomo-

geneous charging nodes and allows us to find an optimal routing and charging

policy for both cases in less computational time compared to the exact MINLP

formulation.

Multiple-vehicle routing problem:

• The first challenge to address for this problem is to incorporate the traffic con-

gestion effect on the traveling time and energy consumption over links. We do

so by grouping vehicles into subflows and formulate the problem in subflow-level

as a MINLP. This MINLP problem obtains optimal routes and charging policies

for all subflows simultaneously.

• Adopting some properties of the optimal solution and applying a locally-optimal

charging policy for each subflow, the original MINLP problem is simplified and

decomposed into two problems: route selection and charging amount determi-

nation. In this case due to traffic congestion effects, the decomposed problem

does not reduce to an LP. Similar to the results for the user-centric problem,

when the network has inhomogeneous charging stations, the solution of the de-

composed problem is sub-optimal, though it is optimal for the homogeneous

case. To address the computational complexity required to solve the MINLP

problem, a flow control formulation is proposed for this problem where we seek

for the normalized vehicle flow on each arc for each subflow. Our numerical
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results show that this Non-Linear Programming formulation leads to a compu-

tationally simpler problem solution with minimal loss in accuracy. As an alter-

native approach to solve the exact formulation, a DP-based algorithm is also

proposed to determine optimal routing and charging policies in subflow-level,

by discretizing the residual energy for each subflow and defining an extended

subflow-level graph. In this case, the problem size significantly increases with

the number of subflows and the DP algorithm is eventually outperformed by

our earlier MINLP approach as the number of subflows increases. Thus, to ren-

der the problem computationally manageabe, a proper selection of the number

of subflows is essential. To address this, we propose a criterion and procedure

for appropriate choice of the number of subflows reflecting a trade-off between

computational complexity and proximity to an optimal objective value.

• We also study a more general problem in which the vehicle flow consists of both

EVs and NEVs. We provide appropriate formulations to optimize a system-

centric objective by optimally routing NEVs and EVs along with an optimal

policy for charging EVs along the way if needed.

1.5.4 Price of Anarchy in transportation networks using real traffic data

We investigate the performance of the transportation network using a dataset in-

cluding spatial average speed data for more than 13000 segments, composing the

transportation network of the Eastern Massachusetts, for every minute of year 2012.

• We use the Greenshield’s traffic flow model and infer equilibrium flows from

average spatial speed data for each road segment of a highway sub-network of

Eastern Massachusetts. We then feed the inferred equilibrium flow data to a

Generalized least Squares (GLS) method and estimate the Origin-Destination

(O-D) demand matrices for the network for different months and time-of-day
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periods.

• Using a set of data-driven cost functions (calculated for different months and

time-of-day periods) and the estimated O-D demand matrices, we find socially

optimum flows for different scenarios by solving the corresponding optimization

problem. We finally quantify the POA for the inter-state highway subnetwork,

by comparing the total latency obtained under user centric policy, equivalent to

observed flows (estimated equilibrium flows), and that obtained under socially

optimum flows.

1.6 Thesis Outline

The rest of this thesis is organized as follows. Chapters 2 and 3 address the lifetime

maximization problem for wireless sensor networks. In Chapter 2, we study the

problem of maximizing the lifetime of a static wireless sensor network by means of

routing and initial energy allocation over its nodes. In our analysis, the energy sources

(batteries) at nodes are behaving according to a dynamic energy consumption model

which captures the nonlinear behavior of actual batteries. In Chapter 3, we investigate

the problem of routing in wireless sensor networks when the source node is mobile.

The goal is to maximize the network’s lifetime which requires a new definition due

to the mobility of the source node. We then consider two different settings: first we

assume the mobile node’s trajectory is unknown in advance; then we study the case

when the mobile node’s trajectory is known in advance.

Chapters 4 and 5 address the problem of routing for energy-aware Battery-Powered

Vehicles in networks with charging nodes. The objective is to minimize the total

elapsed time, including travel and recharging time at charging stations, so that the

vehicle reaches its destination without running out of energy. We study both user-

centric and system-centric routing problems. In Chapter 4, Starting with a MINLP
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formulation, we derive computationally simpler formulations to solve different versions

of the problem. Then, we use a Dynamic Programming (DP) approach to solve the

same problems in Chapter 5. We next utilize actual traffic data to study the perfor-

mance of transportation networks under user-optimal vs. system-optimal strategies

in Chapter 6. Finally, Chapter 7 summarizes the main results of the dissertation and

discuss future research directions.
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Chapter 2

Lifetime Maximization for Static Wireless

Sensor Networks

2.1 Introduction

A Wireless Sensor Network (WSN) is a spatially distributed wireless network con-

sisting of low-cost autonomous nodes which are mainly battery powered and have

sensing and wireless communication capabilities (Megerian and Potkonjak, 2003).

Applications range from exploration, surveillance, and target tracking, to environ-

mental monitoring (e.g., pollution prevention, agriculture). Power management is a

key issue in WSNs, since it directly impacts their performance and their lifetime in

the likely absence of human intervention for most applications of interest. Since the

majority of power consumption is due to the radio component (Shnayder et al., 2004),

nodes usually rely on short-range communication and form a multi-hop network to

deliver information to a base station. Routing schemes in WSNs aim to deliver data

from the data sources (nodes with sensing capabilities) to a data sink (typically, a

base station) in an energy-efficient and reliable way.

In this chapter, we focus on the problem of routing in a WSN with the objective

of optimizing performance metrics that reflect the limited energy resources of the

network while also preventing common security vulnerabilities for static (i.e., fixed

topology) networks . Most proposed routing protocols in WSNs are based on shortest

path algorithms, e.g., (Perkins and Bhagwat, 1994), (Park and Corson, 1997). Such
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algorithms usually require each node to maintain a global cost (or state) information

table, which is a significant burden for resource-constrained WSNs. In order to deal

with node failures, Ganesan et al. (Ganesan et al., 2001) proposed a multipath routing

algorithm, so that a failure on the main path can be recovered without initiating a

network-wide flooding process for path rediscovery.

Rather than indirectly reducing energy usage in WSNs, some energy-aware metrics

have motivated a number of minimum-energy routing algorithms which typically seek

paths minimizing the energy per packet consumed (or maximizing the residual node

energy) to reach a destination, e.g., (Singh and Raghavendra, 1998). However, seeking

a minimum energy (or maximum residual energy) path can rapidly deplete energy

from some nodes and ultimately reduce the full network’s lifetime by destroying its

connectivity. Thus, an alternative performance metric is the network lifetime. There

are different definitions for the term “lifetime” for WSNs. Some researchers define

the network lifetime as the time until the first node depletes its battery (Chang and

Tassiulas, 2004); however, it has been also defined as the time until the data source

cannot reach the data sink in some works (Bhardwaj and Chandrakasan, 2002). In

this thesis, we adopt the former definition, i.e., the time until the first node depletes

its battery.

Along the lines of energy-aware routing, Shah and Rabaey (Shah and Rabaey,

2002) proposed an Energy Aware Routing (EAR) policy which does not attempt to

use a single optimal path, but rather a number of suboptimal paths that are proba-

bilistically selected with the intent of extending the network lifetime by “spreading”

the traffic and forcing nodes in the network to deplete their energies at the same

time. In (Paschalidis and Wu, 2012) a similar problem is studied with the inclusion

of uncertainties in several WSN parameters.

The network lifetime maximization problem studied in (Chang and Tassiulas,
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2004) is based on two assumptions. First, it assumes that the energy in a battery

depletes linearly with respect to the quantity of information forwarded, and does not

depend on the physical dynamics of the battery itself. Second, it seeks fixed routing

probabilities over time, even though the dynamic behavior of the WSN may in fact

imply that a time-dependent (possibly based on state feedback closed-loop) routing

policy may be optimal. More generally, routing problems in WSNs are based on

ideal battery models where a battery maintains a constant voltage throughout the

discharge process and a constant capacity for all discharge profiles, neither of which is

generally true. In fact, the energy amount delivered by a battery heavily depends on

the discharge profile and it is generally not possible to extract all the capacity stored

in it (Panigrahi et al., 2001). This dynamic behavior also leads to the conjecture

that an optimal routing policy should take into account the battery state over time

and should, therefore, be time-dependent rather than fixed. Thus, an optimal control

problem formulation for the network lifetime maximization problem seems to be a

natural setting. From a network security viewpoint, deterministic routing policies

(i.e., policies where source nodes send data through one or more fixed paths) are highly

vulnerable to attacks that can compromise a node and easily falsify cost information,

leading to Denial of Service (DoS) attacks (Wood and Stankovic, 2002). In order to

reduce the effect of such attacks, probabilistic routing is an interesting alternative,

since this makes it difficult for attackers to identify an “ideal” node to take over.

In this chapter, we adopt an optimal control setting with the goal of determining

routing probabilities so as to maximize the lifetime of a WSN subject to a dynamic

energy consumption model for each node. In particular, we first use a Kinetic Bat-

tery Model (KBM) (Manwell and McGowan, 1994), (Rao et al., 2005) which has

successfully been applied in other power mangement applications. We will then show

that in a fixed network topology case there exists an optimal policy consisting of
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time-invariant routing probabilities. We subsequently show that the optimal control

problem may be converted into a set of relatively simple Non-Linear Programming

(NLP) problems. Moreover, we show that, under a very mild condition, this optimal

routing policy is in fact robust with respect to the battery model used, i.e., the rout-

ing probabilities are not affected by the battery model used, although naturally the

estimated WSN lifetime itself is significantly longer under a non-ideal battery model,

primarily due to the recovery effect mentioned earlier. We also consider an alterna-

tive problem where, in addition to routing, we allocate a total initial energy over the

network nodes with the same network lifetime maximization objective; the idea here

is that a proper allocation of energy can further increase the network lifetime. We

show that the solution to this problem is given by a policy that depletes all node

energies at the same time and that the corresponding energy allocation and routing

probabilities are obtained by solving again a NLP problem.

In view of these results, we next address the question of whether considering dif-

ferent, more elaborate, non-ideal battery models preserves the time-invariant nature

of an optimal routing policy. In other words, is the relatively simple nature of the

KBM responsible for this property or is this inherent in the problem regardless of

how detailed a battery model one uses? We answer these questions by adopting the

most general non-ideal battery model available in the literature and showing that the

time-invariant nature of a maximal network lifetime routing policy is preserved. In

fact, we generalize the results obtained under the KBM battery dynamics for both

the optimal routing and the joint routing and initial energy allocation problems for

lifetime maximization. This leads to the conclusion that optimal policies for WSNs

are indeed robust with respect to the battery model used, although, naturally, the

corresponding network lifetime value may be very different (therefore, accurately pre-

dicting the lifetime benefits from the increased accuracy of such general non-ideal
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battery models.) We note that when the battery behavior is reduced to a simple

idealized model, our setting recovers that of (Wu and Cassandras, 2005) and (Ning

and Cassandras, 2009) where it was shown that the set of NLP subproblems can in

fact be transformed into the LP formulation in (Chang and Tassiulas, 2004). It was

also shown in (Ning and Cassandras, 2009) that the initial energy allocation problem

can be reformulated into a shortest path problem on a graph where the arc weights

equal the link energy costs.

Finally we investigate WSN performance under common forms of security threats.

We explore the network performance under one of the most severe routing attacks

in WSN, namely the sink-hole attack (Krontiris et al., 2008). Although we limit

ourselves to a simple empirical study, it becomes clear that the optimal policy we

have derived is significantly more robust to common forms of cyber-attacks than

other proposed energy-aware routing policies.

This chapter is organized as follows. In Section 2.2, we formulate the maximum

lifetime optimization problem using non-ideal energy sources at nodes which have

their own dynamics. We adopt a standard energy consumption model along with the

aforementioned KBM. In Section 2.3, we show that for a fixed network topology there

exists an optimal routing policy which is time invariant and identify a set of NLP

problems which can be solved to obtain an explicit fixed optimal routing vector and

the corresponding WSN lifetime. We also derive sufficient conditions under which

this optimal policy is robust with respect to the battery model used. In Section 2.4,

we consider a joint optimal routing and initial energy allocation problem. We show

that in this case (under some conditions) it is optimal to set a routing vector and

initial node energies so that all nodes have the same lifetime. An explicit solution

can again be obtained by solving a NLP problem. We generalize the results obtained

under the KBM battery dynamics by incorporating a more general non-ideal battery
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model into similar problems in Section 2.5. Finally, in section 2.6 we analyze the

network performance when the network is under a “sink hole” type of routing attack

in terms of its normalized throughput as a performance metric.

2.2 Optimal control problem formulation

In order to simplify our analysis, we will consider a WSN with a single source node

and one base station and will assume a fixed topology. It will become clear that

our methodology can be extended to multiple sources and one base station, as well as

time-varying topologies, although the main fixed optimal routing result will obviously

no longer hold in general.

2.2.1 Network model

Consider a network with N+1 nodes where 0 and N denote the source and destination

(base station) nodes respectively. Except for the base station whose energy supply is

not constrained, a limited amount of energy is available to all other nodes. Let ri(t) be

the residual energy of node i, i = 0, . . . , N−1, at time t. The dynamics of ri(t) depend

on the battery model used at node i; we will discuss in the next subsection the Kinetic

Battery Model (KBM) we will adopt. The distance between nodes i and j at time t

is denoted by di,j(t); since we assume a fixed topology, we will treat di,j(t) as time-

invariant in the sequel. The nodes in the network may be ordered according to their

distance to the destination node N so that d1,N ≥ d2,N ≥ · · · ≥ di,N ≥ · · · ≥ dN−1,N

and assume that d0,N > di,N for all i = 1, . . . , N − 1.

Let Oi denote the set of nodes to which node i can send packets. We assume full

coverage of the network and define Oi = {j : j > i, di,j < di,N}, where j > i implies

that di,N > dj,N , i.e., a node only sends packets to those nodes that are closer to the

destination , and di,j < di,N means that a node cannot send packets to another node

which is further away from it relative to the destination node N . It should be noted
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that this is a simplified model and it does not take into consideration the channel

quality or the Shannon capacity of each wireless channel. (i.e., considering channel

quality, it may be optimal to send data packets via a node located further from the

base station but with a better channel condition.) We will use the notation i ≺ j,

if j ∈ Oi. Let wi,j(t) be the routing probability of a packet from node i to node

j at time t. The vector w(t) = [w0,1(t), . . . , w0,N−1(t), . . . , wN−2,N−1(t)]′ defines the

control in our problem. We do not include w0,N(t), . . . , wi,N(t), . . . , wN−1,N(t) in the

definition of w(t), since it is clear that wi,N(t) is an implicit control variable given by

wi,N(t) = 1−
∑

i≺j, j<N wi,j(t), i = 0, . . . , N − 2.

For simplicity, the data sending rate of source node 0 is normalized to 1 and let

Gi(w) denote the data packet inflow rate to node i. Given the definitions above, we

can express Gi(w) through the following flow conservation recursive equation:

Gi(w) =
∑
k≺i

wk,i(t)Gk(w), i = 1, . . . , N (2.1)

where G0(w) = 1.

2.2.2 Non-ideal battery dynamics

Under the assumption that an electrochemical battery cell is “ideal,” a constant

voltage throughout the discharge process and a constant capacity for all discharge

profiles are both maintained over time. However, in real batteries the rate capacity

effect (Doyle and Newman, 1997) leads to the loss of capacity with increasing load

current and the recovery effect (Martin, 1999) makes the battery appear to regain

portions of its capacity after some resting time. Due to these phenomena, the voltage

as well as energy amount delivered by the battery heavily rest on the discharge profile.

Therefore, when dealing with energy optimization, it is necessary to take this into

account along with nonlinear variations in a battery’s capacity.
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There are several proposed models to describe a non-ideal battery over-viewed in

(Jongerden and Haverkort, 2008). Accordingly, models are broadly classified as elec-

trochemical, circuit-based, stochastic, and analytical. Among all, analytical models

like the Kinetic Battery Model (KBM) (Manwell and McGowan, 1994; Rao et al.,

2005) or diffusion-based models (Vrudhula and Rakhmatov, 2003; Zhang and Shi,

2009; Barbarisi et al., 2006) provide a trade-off between accuracy and computational

complexity. A detailed analysis of two analytical battery models, the KBM and diffu-

sion models derived by Rakhmatov et al. (Rakhmatov and Vrudhula, 2001), is given

in (Jongerden and Haverkort, 2009) where it is shown that the KBM is a first-order

approximation of the popular Rakhmatov-Vrudhula-Wallach (RVW) diffusion model

(Daler Rakhmatov, 2003).

While diffusion-based models are hard to combine with a performance model

(Jongerden and Haverkort, 2008), a KBM combines speed with sufficient accuracy,

as reported, for instance, in embedded system applications (Manwell and McGowan,

1994). Empirical evidence for the accuracy of the KBM is also provided in (Rao

et al., 2005). The KBM was successfully used to study problems of optimal single

and multi-battery power control in (Wang and Cassandras, 2013),(Wang and Cassan-

dras, 2013) with results consistent with the use of a more elaborate linear state space

model (Zhang and Shi, 2009) derived from the popular RVW diffusion-based model

(Rakhmatov and Vrudhula, 2001). In this chapter we investigate the lifetime opti-

mization problem for static WSNs while capturing the nonlinear battery dynamics

using analytical models. We first use the simpler analytical battery model, KBM. We

then generalize our results by adopting the more elaborate analytical battery model,

diffusion-based model.
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KBM Battery Model

The KBM models a battery as two wells of charge, as shown in Fig.2·1. The available-

charge well (R-well) directly supplies electrons to the load while the bound-charge well

(B-well) only supplies electrons to the R-well. The energy levels in the two wells are

denoted by r(t) and b(t) respectively. The rate of energy flow from the B-well to the

R-well is k(b(t)− r(t)), where k depends on the battery characteristics. The output

u(t) is the workload of the battery at time t.

Figure 2·1: Kinetic Battery Model including recharging

The battery is said to be depleted when r(t) = 0. If a battery has rechargeability

capabilities, we modify the KBM by adding a controllable input flow h(t). For the

sake of generality, we distribute the inflow h(t) to both wells by adding a constant

coefficient β (0 ≤ β ≤ 1), as seen in Fig. 2·1. The resulting model is:

ṙ(t) = −c1u(t) + c2βh(t) + k(b(t)− r(t)) (2.2)

ḃ(t) = c2(1− β)h(t)− k(b(t)− r(t)) (2.3)

where c1, c2 are battery-specific influencing factors for the discharge outflow u(t) and

the recharge inflow h(t) respectively; since, in general, a battery discharges faster
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than it can recharge, we assume c1 > c2 ≥ 0 where the special case c2 = 0 simply

means the battery is not rechargeable. The state variables r(t), b(t) are physically

constrained so that b(0) ≥ r(0) and b(t) ≤ B̄ where B̄ is the battery capacity.

2.2.3 Energy consumption model

In our WSN environment, the battery workload u(t) is due to three factors (e.g., see

(Bhardwaj and Chandrakasan, 2002), (Bhardwaj et al., 2001)): the energy needed to

sense a bit, Esense, the energy needed to receive a bit, Erx, and the energy needed to

transmit a bit, Etx. If the distance between two nodes is d, we have:

Etx = p(d), Erx = Cr, Esense = Ce (2.4)

where Cr, Ce are given constants dependent on the communication and sensing char-

acteristics of nodes, and p(d) ≥ 0 is a function monotonically increasing in d; the most

common such function is p(d) = Cf + Csd
β where Cf , Cs are given constants and

β is a constant dependent on the medium involved. We shall use this energy model

but ignore the sensing energy, i.e., set Ce = 0. Clearly, this is a relatively simple

energy model that does not take into consideration the channel quality or the Shan-

non capacity of each wireless channel. The ensuing optimal control analysis is not

critically dependent on the exact form of the energy consumption model attributed

to communication, although the ultimate optimal value of w(t) obviously is. Before

proceeding, it is convenient to define the following constants:

ki,j = p(di,j)− p(di,N), i < j < N (2.5)

k0,N = p(d0,N) (2.6)

ki,N = Cr + p(di,N), i = 1 . . . N − 1 (2.7)
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where di,j is the distance between nodes i and j. Note that we may allow these

constant to be time-dependent if the network topology is not fixed, i.e., di,j(t) is

time-varying. Let us now combine the KBM model above with (2.4). Although the

ability to recharge a battery offers an interesting possibility for routing control, we

shall not take it into account in this chapter, i.e., set c2 = 0 in (2.2)-(2.3). Moreover,

for simplicity, we set c1 = 1. Then, starting with node 0, the workload u0(t) at that

node is given by

u0(t) =
∑
0≺j

w0,j(t)p(d0,j)

=
∑

0≺j,j<N

w0,j(t)p(d0,j) + w0,N(t)p(d0,N)

=
∑

0≺j,j<N

w0,j(t)p(d0,j) + [1−
∑

0≺j,j<N

w0,j(t)]p(d0,N)

=
∑

0≺j,j<N

w0,j(t)[p(d0,j)− p(d0,N)] + p(d0,N)

=
∑

0≺j,j<N

w0,j(t)k0,j + k0,N

= G0(w)

[ ∑
0≺j,j<N

w0,j(t)k0,j + k0,N

]

where we have used the fact that G0(w) = 1. Similarly, for any node i = 1, . . . , N−1,

where we must include the energy for both receiving and transmitting data packets,

we get

ui(t) = Gi(w)

[ ∑
i≺j,j<N

wi,j(t)ki,j + ki,N

]
Defining gi(w) =

∑
i<j,j<N wi,j(t)ki,j + ki,N the KBM equations (2.2)-(2.3) for nodes

i = 0, . . . , N − 1 become

ṙi(t) = −Gi(w(t))gi(w(t)) + k(bi(t)− ri(t)) (2.8)

ḃi(t) = −k(bi(t)− ri(t)) (2.9)
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The vectors r(t) = [r0(t), . . . , rN−1(t)] and b(t) = [b0(t), . . . , bN−1(t)] define the state

variables for our problem. Observe that controlling the routing probabilities wi,j(t)

means indirectly controlling node i’s battery discharge process.

2.2.4 Optimal control problem formulation

Our objective is to maximize the WSN lifetime by controlling the routing probabilities

wi,j(t) (equivalently, the flows through all network links). The WSN lifetime is defined

as T = min0≤i<N Ti where Ti is given by Ti = inf{t : ri(t) = 0, t ≥ 0}. Thus, our

objective is to maximize T . Using the energy consumption model we have developed

above, the optimal control problem is formulated as follows:

min
w(t)
−

T∫
0

dt (2.10)

s.t.

ṙi(t) = −Gi(w(t))gi(w(t)) + k(bi(t)− ri(t)), ri(0) = Ri (2.11)

ḃi(t) = −k(bi(t)− ri(t)), bi(0) = Bi (2.12)

Gi(w(t)) =
∑
k≺i

wk,i(t)Gk(w), i = 1, . . . , N − 1, G0(w(t)) = 1 (2.13)

gi(w(t)) =
∑

i≺j,j<N

wi,j(t)ki,j + ki,N (2.14)

∑
i≺j,j<N

wi,j(t) ≤ 1, 0 ≤ wi,j(t) ≤ 1, i = 0, . . . , N − 1 (2.15)

min
i=0,...,N−1

ri(T ) = 0 (2.16)

where ri(t), bi(t) are the state variables representing node i’s instantaneous battery

energy level, i = 0, . . . , N−1. Control constraints are specified through (2.15), where

the first inequality follows from the fact that
∑

i≺j<N wi,j(t) + wi,N(t) = 1. Finally,

(2.16) provides boundary conditions for ri(t), i = 0, . . . , N − 1, at t = T requiring
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that the terminal time is the earliest instant when ri(t) = 0 for any node i. In other

words, at t = T we require that the minimal value over all {r0(T ), . . . , rN−1(T )} is 0

or, equivalently, T = inft≥0{t : ri(t) = 0 for at least some i = 0, . . . , N − 1}.

This is a classic minimum (maximum) time optimal control problem except for two

complicating factors: (i) The boundary condition (2.16) which involves the nondif-

ferentiable min function, and (ii) The control constraints (2.15). In what follows, we

will use w∗(t) to denote the optimal routing vector, which provides a (not necessarily

unique) solution to this problem.

Remark 1: Note that there is an additional state constraint imposed by the

capacity of every node battery, i.e., bi(t) ≤ Bi. However, it is easy to show (see (Wang

and Cassandras, 2013)) that as long as Ri < Bi, it is always true that ri(t) < bi(t) <

B̄i for all t > 0 so that this constraint is never active in our problem (intuitively, since

all batteries are being discharged and never recharged, it is not possible for a capacity

to be reached except at t = 0.) Moreover, if Bi = Ri, then ri(t) < bi(t) < B̄i as long

as Gi(w(t))gi(w(t)) > 0 for all t > 0. Since ki,N > 0 in (2.7) for all i = 0, . . . , N − 1,

this is always true unless a node i is not used in the network, i.e., wk,i(t) = 0 for all

k ≺ i. In addition, observe that when the battery is “at rest”, i.e., there is no load in

(2.11), it is easy to show that limt→∞(bi(t) − ri(t)) = 0. Therefore, we normally set

inital conditions so that Bi = Ri.

2.3 Optimal control problem solution

In standard optimal control theory the Hamiltonian is defined as H(x, λ, u, t) =

−L(x, u, t) + λT (t)f(x, u, t) where ẋ = f(x, u, t) are the state dynamics, L(x, u, t)

is the integrand in the objective function, and λ(t) is the vector of costate variables

interpreted as Lagrange multipliers associated with the state equations. We begin
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with the Hamiltonian for this optimal control problem:

H(w, t, λ) = −1 +
∑
i<N

[λi1(t)
(
−Gi(w(t))gi(w(t))+

k(bi(t)− ri(t))
)
− λi2(t)

(
k(bi(t)− ri(t))

)
] (2.17)

where λi1(t), λi2(t) are the costates corresponding to ri(t) and bi(t) at node i, which

must satisfy {
λ̇i1(t) = −∂H

∂ri
= k[λi1(t)− λi2(t)]

λ̇i2(t) = −∂H
∂bi

= −k[λi1(t)− λi2(t)]
(2.18)

To derive explicit expressions for λi1(t), λi2(t) it is necessary to use boundary condi-

tions λi1(T ), λi2(T ). This is complicated by the nature of the state boundary condi-

tions in (2.16). Thus, we proceed by considering each possible case of a node dying

first which we will refer to as “scenario Si” under which 0 = ri(T ) ≤ rj(T ), j 6= i

for some fixed node i.

2.3.1 Analysis of scenario Si

Under Si, we have the terminal time constraints ri(T ) = 0 and rj(T ) ≥ 0 for all

j 6= i. Consequently, all rj(t), j 6= i, are unconstrained at t = T . The next theorem

establishes the property that, under a fixed network topology, there exists a static

optimal routing policy, i.e., there exists a vector w∗(t) which is time invariant.

Theorem 1: If 0 = ri(T ) ≤ rj(T ), j 6= i, for some i and the network topology

is fixed, i.e., dij(t) = di,j = constant for all i, j = 0, . . . , N − 1, then there exists a

time-invariant solution of (2.10)-(2.16):

w∗(t) = w∗(T ).

Proof : Since ri(t) ≥ 0 for all i and t ∈ [0, T ], the optimal control problem under Si

is state-unconstrained except for ri(T ) = 0. Thus, the terminal state constraint func-
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tion Φ(r(T ), b(T )) is reduced to ri(T ) and the costate boundary conditions (Bryson

and Ho, 1975) are given by:{
λi1(T ) = ν ∂Φ(r(T ),b(T ))

∂ri
= ν

λi2(T ) = 0
,

{
λj1(T ) = 0
λj2(T ) = 0

, j 6= i

where ν is an unspecified scalar constant. This allows us to solve the costate equations

in (2.18) to obtain for t ∈ [0, T ]:

λi1(t) = ν
2
(1 + e2k(t−T ))

λi2(t) = ν
2
(1− e2k(t−T ))

,
λj1(t) = 0
λj2(t) = 0

, j 6= i (2.19)

Using (2.19) in (2.17), we can simplify the Hamiltonian as follows:

H(w, t, λ) = −1 + λi1(t)[−Gi(w(t))gi(w(t))+

(bi(t)− ri(t))]− λi2(t)[k(bi(t)− ri(t))] (2.20)

Observe that the control variables wi,j(t) appear only in Gi(w(t)) and gi(w(t)) in the

problem formulation (2.10)-(2.16). Thus, we can set Ui(t) = Gi(w(t))gi(w(t)), i =

0, . . . , N − 1 to be the effective control variables with Ul ≤ Ui(t) ≤ Uu, where Ul ≥ 0

and Uu are, respectively, the lower bound and upper bound of Ui(t) for all t ∈ [0, T ].

Note that both are constant since their determination depends exclusively on (2.13),

(2.14) subject to (2.15), independent of the states ri(t) and bi(t). In particular, they

depend on the fixed network topology and the values of the energy parameters ki,j,

ki,N in (2.14). Applying the Pontryagin minimum principle to (2.20):

U∗i (t) = arg min
Ul≤Ui(t)≤Uu

H(Ui, t, λ
∗)

implies that the optimal control is of bang-bang type:

U∗i (t) =

{
Uu if λi1(t) > 0
Ul if λi1(t) < 0

(2.21)
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with the possibility that there is a singular arc on the optimal trajectory if λi1(t) = 0.

Moreover, the optimal solution must satisfy the transversality condition (Bryson and

Ho, 1975)

(
λ∗ dΦ

dt
+L

)
t=T

= 0 where L = −1 and we have seen that Φ(r(T ), b(T )) =

ri(T ). Therefore,

−1 + νṙi(T ) = −1 + ν[−Gi(w(T ))gi(w(T )) + kbi(T )] = 0

and it follows that

ν =
1

−Gi(w(T ))gi(w(T )) + kbi(T )
(2.22)

Observing that ν 6= 0 and looking at (2.19), we can immediately exclude the singular

case λi1(t) = 0. Moreover, since ri(T ) = 0 and ri(t) > 0 for all t ∈ [0, T ), it follows

that ṙi(T ) < 0 and (2.22) implies that ν < 0. Therefore, from (2.19), λi1(t) < 0

throughout [0, T ). Consequently, U∗i (t) = Ul for t ∈ [0, T ] by (2.21). We conclude

that the optimal control problem under Si is reduced to the following optimization

problem:

min
w(t)

Gi(w(t))gi(w(t)) (2.23)

s.t. (2.13)− (2.15) and 0 = ri(T ) ≤ rj(T ), j 6= i

When t = T , the solution of this problem is w∗(T ) and depends only on rj(T ), j 6= i,

and, as already argued, the fixed network topology and the values of the fixed energy

parameters ki,j, ki,N in (2.14). The same applies to any other t ∈ [0, T ), therefore,

there exists a time-invariant optimal control policy w∗(t) = w∗(T ), which minimizes

the Hamiltonian and proves the theorem. �

Note that there may exist multiple optimal control policies, including some that

may be time varying. Theorem 1 asserts that there is at least one which is time-

invariant, i.e., w∗(t) = w∗(T ) = w∗, and it remains to obtain the values of w∗i,j,
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i = 0, . . . , N − 2 and j = 1, . . . , N − 1, by explicitly solving the optimization problem

(2.23). This requires knowledge of all ri(t), t ∈ [0, T ] in order to determine the values

of all ri(T ) and hence identify the node i such that 0 = ri(T ) ≤ rj(T ) and use the

values of rj(T ), j 6= i. This can be accomplished by solving the differential equations

(2.11)-(2.12), whose initial conditions are given, with w(t) = w, the unknown optimal

routing vector. It is straightforward to obtain ri(t) and hence show that the “crtitical

time” T ∗i such that ri(T
∗
i ) = 0 and ri(t) > 0 for all t ∈ [0, T ∗i ) is the solution of the

nonlinear equation in T :

Ri −
Gi(w)gi(w)

2
T − 1

2
[Bi −Ri −

Gi(w)gi(w)

2k
](e−2kT − 1) = 0 (2.24)

which we write as T ∗i (w). Thus, we may rewrite the Si optimization problem as

follows

Pi : min
w
Gi(w)gi(w)

s.t. (2.13)− (2.15), T ∗i (w) ≤ T ∗j (w), j 6= i

where T ∗i (w) is the solution of (2.24) for all i = 0, . . . , N − 1. We will refer to this

as problem Pi and note that it may not always have a feasible solution. The follow-

ing Lemma establishes upper and lower bounds for T ∗i (w) based on which necessary

conditions for Pi to have a feasible solution may be derived. Before proceeding, we

return to the definitions of the energy consumption constants in (2.5)-(2.7) and recall

that ki,N > 0 for all i = 0, . . . , N − 1. Moreover, since di,j < di,N if i ≺ j and j < N ,

we have

ki,j = p(di,j)− p(di,N) < 0, if i ≺ j and j < N (2.25)

Let us also define

γ(i) = arg min
i≺j,j<N

ki,j (2.26)
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From the definition of ki,j, this is the nearest node in the output node set of i.

Lemma 1: For all i 6= 0,

Ri

ki,N
≤ T ∗i (w) ≤ ∞ (2.27)

and for i = 0:

R0

k0,N

≤ T ∗0 (w) ≤ R0

k0,γ(0) + k0,N − kB̄0

(2.28)

Proof : We begin with a lower bound for T ∗i (w), i = 0, . . . , N − 1. Recalling

the state equation (2.11) and observing that k(bi(t) − ri(t)) ≥ 0, it follows that a

lower bound for T ∗i (w), when ri(t) first reaches zero, is given by the value of w that

maximizes
[
Gi(w)

∑
i≺j, j<N wi,jki,j + ki,N

]
, i.e.,

T ∗i (w) ≥ Ri

[
Gi(w)

∑
i≺j, j<N

wi,jki,j + ki,N

]−1

(2.29)

The inflow rate Gi(w) is upper-bounded by the sending rate of the source G0(w) = 1,

therefore Gi(w) ≤ 1. Thus,

Gi(w)

( ∑
i≺j, j<N

wi,jkij + kiN

)
≤

∑
i≺j, j<N

wi,jkij + kiN (2.30)

Next, consider
∑

i≺j, j<N wi,jki,j+ki,N . In view of (2.25) and ki,N > 0, setting wi,j = 0

for all j < N and i ≺ j attains the maximal value of this expression, i.e.,

∑
i≺j, j<N

wi,jki,j + ki,N ≤ ki,N (2.31)

Combining (2.30) and (2.31), we have

Gi(w)

( ∑
i≺j, j<N

wi,jki,j + ki,N

)
≤ ki,N
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and it follows from (2.29) that

T ∗i (w) ≥ Ri

ki,N
(2.32)

Regarding an upper bound for T ∗i (w), if i 6= 0 it is possible to have Gi(w) = 0, while

the upper bound for the term k(bi(t)− ri(t)) in (2.11) is kB̄i where B̄i is the battery

capacity. Hence, we can only write T ∗i (w) ≤ ∞ and this establishes (2.27).

If i = 0, we have G0(w) = 1 and it follows from (2.11) that

ṙ0(t) ≤ −

( ∑
0≺j, j<N

w0,jk0,j + k0,N

)
+ kB̄0

Therefore, an upper bound for T ∗0 (w) is obtained by minimizing [
∑

0≺j, j<N w0,jk0,j +

k0,N − kB̄0]. This entails solving a Linear Programming (LP) problem as follows:

min
w

∑
0≺j, j<N

w0,jk0,j + k0,N − kB̄0

s.t.
∑

0≺j, j<N

w0,j ≤ 1, 0 ≤ w0,j ≤ 1

For this problem, one of the extreme points of the feasible set will be an optimal

solution. There are N extreme points [w0,1, . . . , w0,N−1] such that:

w0,j =

{
1 if j = m
0 otherwise

, m = 1, . . . , N − 1 (2.33)

and the point [0, . . . , 0]. The latter cannot minimize the objective function, since,

from (2.25), we know that k0,j < 0. Thus, the optimal extreme point must be one of

the N − 1 extreme points in (2.33). In this case, the objective function becomes

∑
0≺j, j<N

w0,jk0,j + k0,N − kB̄0 = w0,mk0,m + k0,N − kB̄0

= k0,m + k0,N − kB̄0

for some m = 1, . . . , N − 1. Thus, in order to minimize the objective function, we
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need find the smallest k0,m. It follows from (2.26) that the optimal extreme point is

such that

w0,j =

{
1 if j = γ(0)
0 otherwise

and the optimal value is k0,γ(0) + k0,N − kB̄0. It follows that

T ∗0 (w) ≤ R0

k0,γ(0) + k0,N − kB̄0

(2.34)

which along with (2.32) proves (2.28) and completes the proof. �

Note that it is possible for k0,γ(0) +k0,N−kB̄0 to be negative. In practice, however,

values of the battery parameter k are small and likely to make the contribution of

kB̄0 much smaller than k0,γ(0) + k0,N . Lemma 1 allows us to determine necessary

conditions for Pi to have a feasible solution. In particular, if i 6= 0 and

Ri

kiN
>

R0

k0γ(0) + k0N − kB̄0

(2.35)

then T ∗i (w) > T ∗0 (w) and Pi has no feasible solution. Thus, the necessary condition

that Pi (i > 0) to have a feasible solution is

Ri

kiN
≤ R0

k0γ(0) + k0N − kB̄0

(2.36)

2.3.2 Algorithm for solving the optimal control problem

Based on our analysis thus far, if we focus on a fixed scenario Si, the solution to the

optimal control problem is simply the solution of the NLP problem Pi. However,

since we do not know which node will die first, determining the value of i such that

T ∗i (w) ≤ T ∗j (w) for all j 6= i requires solving all Pi problems and find the best policy

among them. Since not all Pi problems have feasible solutions we can use (2.36)

to check for feasibility before solving the associated NLP problem. The complete

algorithm, referred to as A1, to solve this optimal control problem is as follows.
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Algorithm A1:

1. Solve problem P0 to obtain T ∗0 (w).

2. For 0 < i < N, if Ri
kiN

> R0

k0γ(0)+k0N−kB̄0
, set T ∗i (w) = −1 (no feasible solution

exists); otherwise solve problem Pi and obtain T ∗i (w) if it exists.

3. The optimal lifetime is given by maxi {T ∗i (w)} and the corresponding optimal

policy w∗ is the one obtained for the associated problem Pi.

If the network topology is such that every node i can communicate with every

downstream node j, then the algorithm can be substantially simplified due to the

following result.

Lemma 2: For a single-source fixed topology network such that Oi = {j : j =

i+ 1, . . . , N} for all i = 0, . . . , N − 1, then the source node lifetime is no longer than

any other node lifetime under the optimal routing policy w∗, i.e.,

T ∗0 (w∗) ≤ T ∗i (w∗), for all i = 1, . . . , N − 1

Proof : There are two cases to consider:

Case 1 : If w∗0,N = 1, then it is obvious that T ∗0 (w∗) ≤ T ∗i (w∗), for all i = 1, . . . , N−

1 since none of the non-source nodes is used.

Case 2 : If w∗0,N < 1, we use a contradiction argument. Let us assume that

under the optimal routing vector w∗ there exists a node, say p > 0, which dies first

in the network, i.e., T ∗p (w∗) = T ∗ < T ∗0 (w∗). Next, let us introduce the following

perturbation to the optimal routing vector:

w′m,n =


w∗m,n +Kε if m = 0, n = N
w∗mn − ε if m = 0, 1 ≤ n ≤ N − 1, w∗m,n > 0
w∗m,n otherwise
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where ε > 0 is sufficiently small so that the new routing policy w′ is still feasible, and

K =
∑N

j=11[w0,j > 0] where 1[w0,j > 0] is the usual indicator function (this is always

possible for w∗0,n > 0). In other words, we only perturb routing probabilities from

the source node 0 to other nodes. Consequently, we increase the flow rate from the

source to the sink node, and decrease flow rates into other nodes so as to maintain

the same total flow out of node 0. It follows that the source node’s life must decrease

since it sends more traffic through the longest link. At the same time, the lifetimes

of all other nodes receiving positive flows from node 0 must increase since the inflow

rates into all of them decrease . Therefore, letting T ′i denote the node i lifetime under

the perturbed routing vector w′, we have

T ′0 = T ∗0 (w∗)− f0(ε), T
′

j = T ∗j (w∗) + fj(ε), j = 1, . . . , N − 1

where fk(x),k = 0, . . . , N − 1, is a continuous function such that fk(x) ≥ 0 and

fk(0) = 0. Since fk(x) is continuous, we can find a small enough ε > 0 such that

T
′
p < T

′
0 so that the source node 0 cannot die first under w′. Therefore, the lifetime

under routing policy w′ is T ′ = minj 6=0 T
′
j .

Since the lifetimes of all non-source nodes increase under w′, it follows that T ′ =

minj 6=0 T
′
j > T ∗. In other words, w′ provides a longer network lifetime that w∗

contradicting the assumption that w∗ is optimal. �

This lemma allows us to reduce the original optimal control problem to a single

problem P0 as follows:

P0 : min
w
g0(w) (2.37)

s.t. (2.13)− (2.15) and T ∗0 (w) ≤ T ∗i (w), i > 0

where we have used the fact that G0(w) = 1. Clearly, this provides a much simpler

approach to the solution.
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Remark 2: Our analysis can recover the ideal battery case by setting k = 0 in

(2.11)-(2.12). We can then obtain T ∗i (w) for a fixed routing vector w from ṙi(t) =

−Gi(w)gi(w), ri(0) = Ri as T ∗i (w) = Ri [Gi(w)gi(w)]−1 which greatly simplifies the

process of obtaining a solution through Algorithm A1. In this case, as shown in

(Ning and Cassandras, 2009), the set of NLP problems Pi can be transformed into

the LP formulation in (Chang and Tassiulas, 2004).

2.3.3 A robustness property of the optimal routing policy

In this section, we show that the optimal routing vector w∗ obtained through Algo-

rithm A1 under the ideal battery assumption, i.e., k = 0 in (2.11)-(2.12), is often

unchanged when the non-ideal battery model (k > 0) is used. The intuition behind

such a robustness property lies in the nature of the NLPs Pi in the previous section:

observe that the solution depends on the values of Gi(w)gi(w) and the associated

constraints (2.13)-(2.15), while the only effect of the parameter k enters through the

inequalities T ∗i (w) ≤ T ∗j (w), j 6= i. Therefore, if a solution is obtained under k = 0

(a much easier problem which, as we have seen, can be reduced to a LP) and these

inequalities are still satisfied when k > 0, then there is no need to re-solve the Pi

NLPs. Naturally, when this property holds, the value of the resulting optimal network

lifetime is generally different, but the actual routing policy remains unchanged.

Let wi(k) denote the solution of problem Pi when the KBM is invoked with pa-

rameter k, including the ideal batterty case k = 0. The corresponding node lifetimes

are denoted by T ∗i (wi, k). The robustness property we identify rests on the following

lemma, which provides simple sufficient conditions under which wi(0) = wi(k) for any

k > 0.

Lemma 3: Consider the NLP Pi with solution wi(k) under battery parameter

k ≥ 0. If the initial conditions for the node energies satisfy Bj = Rj for all j =
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0, . . . , N − 1, then

wi(0) = wi(k) for any k > 0 (2.38)

Proof : Let rki (t), b
k
i (t) denote the node i battery state variables under k ≥ 0.

When k = 0, (2.11) becomes ṙ0
i (t) = −Gi(w

i(0))gi(w
i(0)). Therefore, for any j 6= i

we have

ṙ0
i (t)

ṙ0
j (t)

=
Gi(w

i(0))gi(w
i(0))

Gj(wi(0))gj(wi(0))
(2.39)

When k > 0, let zki (t) = bki (t)− rki (t) and note that by subtracting (2.11) from (2.12)

we have

żki (t) = Gi(w(t))gi(w(t))− 2kzki (t)

Fixing the routing vector w(t) to wi(0) and solving the differential equation above with

initial condition zki (0) = Bi−Ri = 0 by assumption, we get zki (t) = Gi(w
i(0))gi(w

i(0))
2k

(1−

e−2kt)

Using this in (2.11), we have

ṙki (t) =

−Gi(w
i(0))gi(w

i(0)) +
Gi(w

i(0))gi(w
i(0))

2
(1− e−2kt)

= −Gi(w
i(0))gi(w

i(0))
1 + e−2kt

2
(2.40)

Therefore,

ṙki (t)

ṙkj (t)
=
Gi(w

i(0))gi(w
i(0))

Gj(wi(0))gj(wi(0))
, k > 0

which is identical to (2.39). Thus, under k > 0, the inequalities T ∗i (wi, k) ≤ T ∗j (wi, k)

remain just as valid as T ∗i (wi, 0) ≤ T ∗j (wi, 0) under k = 0 and it follows that the

solution wi(k) is unaffected relative to wi(0), completing the proof. �

The next theorem is a direct consequence of Lemma 3:

Theorem 2: If the initial conditions for all node energies satisfy Ri = Bi,
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i = 0, . . . , N − 1, then the optimal routing policy under an ideal battery model,

k = 0, is unaffected when k > 0:

w∗(0) = w∗(k), k > 0

Proof : By assumption, Lemma 3 applies to all nodes i = 0, . . . , N − 1, i.e., wi(0) =

wi(k). Algorithm 1 gives w∗(k) as the solution of the NLP Pi such that maxi

{T ∗i (w)} = T ∗i (wi(k)) for some i for any k ≥ 0. It then follows from Lemma 3 that

w∗(0) = wi(0) = wi(k) = w∗(k). �

It should be noted that Bj = Rj for all j = 0, . . . , N−1 is a condition that is almost

always automatically satisfied by Remark 1: when a battery is initialized at node j,

it is normally “at rest”, therefore Bj = Rj. From a practical standpoint, Theorem

2 implies that we can obtain w∗(0) under the ideal battery model assumption using

a simple LP (see (Ning and Cassandras, 2009)) and still rely on this solution even if

the batteries are in fact non-ideal. Naturally, the resulting lifetimes are different, but

the computational effort involved to derive an optimal routing policy is substantially

reduced. Moreover, it makes the optimal routing policy independent of the parameter

k, which is often difficult to estimate.

2.3.4 Simulation examples

In order to illustrate the results of our analysis, let us consider a 7-node network as

shown in Fig. 2·2 where node coordinates are given next to each node. Nodes 1 and

7 are the source and base nodes respectively, while the rest are relay nodes. We set

Cs = 0.0001, Cf = Cr = 0.05, and β = 2 in the energy model. The total initial

energy is R = 100 and we assume all nodes have the same initial energy, so that

Ri = 16.67, i = 1, ..., 6. We also set initial conditions for the KBM at all nodes so

that Ri = Bi, i = 1, ..., 6. Table 2.1 shows the optimal routing probabilities for this
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network obtained through Algorithm 1 when ideal batteries are used (this can be

recovered in our analysis by setting k = 0 in applying Algorithm 1.) The optimal

network lifetime in this case is 54.55 and Table 2.2 shows all node lifetimes under

the optimal routing policy (we do not provide specific units in our examples, but,

based on standard known data, distance units in feet and time units in months or

weeks are reasonable.) Note that nodes 1-5 die virtually simultaneously, while the

lifetime of node 6 is considerably longer. This is because energy consumption at each

node depends on both the inflow rate to that node and the transmitting distances to

other nodes. In this example, node 6 is located close to the base, hence using little

energy in packet transmissions. In fact, by relocating node 6 to (120,120) and roughly

doubling its distance from the base, it was observed that all 6 nodes die at the same

time under the optimal policy. Another important observation in this example is that

node 2 receives only 34% of the network inflow and this happens because there is no

benefit to sending data packets to a relatively close relay node. The network topology

in Fig.2·2 and all energy model parameter values are taken from an example in (Wu

and Cassandras, 2005) where the routing problem was solved for the ideal battery

case. Our results under k = 0 recover almost the same routing probabilities and

the exact same lifetimes as in this example. Moreover, (Wu and Cassandras, 2005)

contains a comparison of the WSN lifetime obtained here with the one obtained using

a locally greedy policy, random routing, and the EAR policy in (Shah and Rabaey,

2002); it was shown that the former provides significant lifetime improvements over

all three alternatives.

Table 2.1: Optimal routing probs., 7-node network, ideal batteries

wij 1 2 3 4 5 6
1 N/A 0.343073 0.656927 0 0 0
2 N/A N/A 0.837081 0.000002 0 0.162917
3 N/A N/A N/A 0.971801 0 0.028199
4 N/A N/A N/A N/A 0.929019 0.070981
5 N/A N/A N/A N/A N/A 1
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Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

(94.35,110.94)

(69.08,76.25)

(35.8,50.47

(0,0)

(9.14,5.69)

(131.35,145.8)

(150,150)

Figure 2·2: Network topology-1

Node i 1 2 3 4 5 6
Lifetime 54.553 54.554 54.557 54.554 54.555 122.055

Table 2.2: Lifetimes under routing policy given in Table 2.1

Next, we revisit the same problem with the KBM battery dynamics (2.11)-(2.12).

Assuming k = 0.001 and using Algorithm A1, the optimal routing probabilities and

node lifetimes are given in Tables 2.3 and 2.4 respectively. It is interesting to observe

that even such a small value of k results in a lifetime improvement of approximately

3%, which is due to the recovery effect in the battery dynamics captured in (2.11)-

(2.12). Tables 2.5 and 2.6 provide the resulting optimal routing probabilities and

node lifetimes for two additional larger values of k, showing considerable network

lifetime improvements.

Comparing Tables 2.1 and 2.3, note that the optimal routing probabilities for the

ideal and non-ideal battery cases are virtually identical, thus confirming our result in

Theorem 2 (whose conditions are satisfied in this example.) As a result, one can adopt

in practice a simple ideal battery model, leading to a simple optimal routing solution

through a LP as in (Chang and Tassiulas, 2004) and (Ning and Cassandras, 2009).

Similar results are obtained for a symmetric network topology with the same positions
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for source and base nodes. As one would expect, all nodes die simultaneously due to

this symmetry.

wij 1 2 3 4 5 6
1 N/A 0.343110 0.656890 0 0 0
2 N/A N/A 0.837114 0 0 0.162886
3 N/A N/A N/A 0.971793 0 0.028207
4 N/A N/A N/A N/A 0.929022 0.070978
5 N/A N/A N/A N/A N/A 1

Table 2.3: Optimal routing probs., 7-node network, non-ideal batter-
ies (k = 0.001)

Node i 1 2 3 4 5 6
Lifetime 56.0697 56.0696 56.0695 56.0696 56.0697 129.795

Table 2.4: Lifetimes under routing policy given in Table 2.3 and k =
0.001

Next, we consider an example in which initial node energies are no longer identical,

specifically: R1 = 20, R2 = 17, R3 = 14, R4 = 11, R5 = 8, R6 = 5, while still

maintaining the condition Ri = Bi. We use the same network shown in Fig.2·2 and

only shift the source node to the point (-15,-15). Using Algorithm A1 the optimal

routing probabilities and network lifetime for different values of k are shown in Tables

2.7 and 2.8 respectively. As expected, the robustness property identified in Theorem

2 still applies.

2.4 A joint optimal routing and initial energy allocation prob-

lem

In this section, we go a step beyond routing as a mechanism through which we can

control the WSN resources by also controlling the allocation of initial energy over its

nodes so as to maximize the lifetime. An application where this problem arises is in a

network with rechargeable nodes. In this case, solving the joint optimal routing and
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Routing Probability k = 0 k = 0.002 k = 0.01
w12 0.343073 0.343110 0.343110
w13 0.656927 0.656890 0.656890
w14 0 0 0
w15 0 0 0
w16 0 0 0
w23 0.837081 0.837114 0.837113
w24 0.000002 0 0.000001
w25 0 0 0
w26 0.162917 0.162886 0.162886
w34 0.971801 0.971793 0.971793
w35 0 0 0
w36 0.028199 0.028207 0.028207
w45 0.929019 0.929022 0.929022
w46 0.070981 0.070978 0.070978
w56 1 1 1

Lifetime 54.554539 57.635541 71.157489
Improvement(%) N/A 5.65 30.43

Table 2.5: Optimal routing probabilities and network lifetime for a
7-node network (Fig.2·2)

Node i 1 2 3 4 5 6
k = 0.002 57.636 57.635 57.635 57.636 57.636 138.038
k = 0.01 71.157 71.157 71.157 71.157 71.158 195.12

Table 2.6: Lifetimes under routing policy given in Table 2.5

Routing Probability k = 0 k = 0.001 k = 0.01
w12 0.910030 0.910034 0.910034
w13 0 0 0
w14 0 0 0
w15 0 0 0
w16 0.089970 0.089966 0.089966
w23 0.950300 0.950301 0.950301
w24 0 0 0
w25 0 0 0
w26 0.049700 0.049699 0.049699
w34 0.889337 0.889332 0.889332
w35 0 0 0
w36 0.110663 0.110668 0.110668
w45 0.823208 0.823210 0.823210
w46 0.176792 0.176790 0.176790
w56 1 1 1

Lifetime 35.25 35.88 42.06
Improvement(%) N/A 1.79 19.32

Table 2.7: Optimal routing probabilities and network lifetime for a
7-node network with different initial energies
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i 1 2 3 4 5 6
k = 0 35.252 35.253 35.254 35.253 35.254 37.295

k = 0.001 35.882 35.882 35.882 35.882 35.882 36.616
k = 0.01 42.064 42.065 42.065 42.065 42.065 43.98

Table 2.8: Lifetimes under routing policy given by Table 2.7

initial energy allocation problem provides optimal recharging amounts maximizing

the network lifetime which may not correspond to full charges for all nodes.

Let us define the total initial energy available as R̄ and let R = [R0, . . . , RN−1].

From Theorem 1, we know that the optimal routing policy is fixed unless the topology

of the network changes. Then, we can formulate the following problem:

max
Ri,i=0,...,N−1
wij ,j=1,...,N−1

T (2.41)

s.t. T ≤ T ∗i (w,Ri), i = 0, . . . , N − 1∑
i≺j, j<N

wi,j ≤ 1, 0 ≤ wi,j ≤ 1, i, j = 0, . . . , N, i ≺ j

0 < Ri < min(Bi, R̄),
N−1∑
i=0

Ri = R̄

This is a NLP problem where the control variables are both the routing probabilities

wi,j and the initial energies Ri. In this case, T ∗i (w,Ri) is the solution of (2.24) for all

i = 0, . . . , N − 1, which is now dependent on both w and Ri. Differentiating (2.24)

with respect to Ri we get

1

2
− Gi(w)gi(w)

2

∂T

∂Ri

+ k

[
Bi −

Gi(w)gi(w)

2k

]
e−2kT ∂T

∂Ri

+

1

2
e−2kT − kRie

−2kT ∂T

∂Ri

= 0

which yields:

∂T

∂Ri

=
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1

2
(1 + e−2kT )[

Gi(w)gi(w)

2
(1 + e−2kT )− k(Bi −Ri)e

−2kT ]−1

Observe that ∂T
∂Ri

> 0 if and and only if

Bi −Ri <
Gi(w)gi(w)

2k
(1 + e2kT ) (2.42)

Recalling Remark 1, we may assume that Bi = Ri since all batteries are normally

initialized at an equilibrium state. In this case, (2.42) holds. Otherwise, (2.42)

becomes a condition we need to impose so as to ensure that ∂T
∂Ri

> 0 which will be

used in the result which follows.

If the solution of problem (2.41) is (w∗, R∗), then T ∗i (w∗, R∗i ) is the solution of

(2.24) under this routing vector and initial energy at node i. The following theorem

establishes the fact that this optimal solution is such that all nodes deplete their

energy at the same time.

Theorem 3: If condition (2.42) holds, the solution of problem (2.41) satisfies

T ∗ = T ∗0 (w∗, R∗0) = T ∗1 (w∗, R∗1) = · · · = T ∗N−1(w∗, R∗N−1) (2.43)

Proof : We use a contradiction argument. Let us assume that under the optimal

policy (w∗, R∗) not all nodes die together. We then define the following two index

sets:

S1 = {i : T ∗i (w∗, R∗i ) = T ∗} , S2 = {i : T ∗i (w∗, R∗i ) > T ∗}

According to our assumption, S2 is not empty and let j = arg mini∈S2{T ∗i (w∗, R∗i )} i.e.,

node j is the first one to die after time T ∗ and for all i ∈ S1 we have T ∗ = T ∗i (w∗, R∗i ) <

T ∗j (w∗, R∗j ) (if there are two or more nodes with the same value T ∗j (w∗, R∗j ), then we

select any one of them.) Keeping the routing vector to its optimal value w∗, we then
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perturb the energy allocation vector R∗ to a new vector R′ as follows:

R′i = R∗i + ε, for all i ∈ S1

R
′

j = R∗j − |S1|ε

R
′

k = Rk, for all k ∈ S2, k 6= j

where ε > 0 is sufficiently small to ensure R′j > 0. Since
∑N−1

i=0 R
′
i = R̄, it follows

that (w∗, R′) is a feasible policy. Under this policy, the node lifetimes are given by

T
′
i = T ∗i (w∗, R′i), the solution of (2.24) under (w∗, R′). Since we have shown that

∂T
∂Ri

> 0 under (2.42), we have

T
′

i =


T ∗i (w∗, R∗i ) + fi(ε) if i ∈ S1

T ∗i (w∗, R∗i )− fi(ε)|S1| if i = j
T ∗i (w∗, R∗i ) otherwise

where fk(x) is a continuous function such that fk(x) ≥ 0 and fk(0) = 0. Since fk(x)

is continuous, we can find a small enough ε > 0 and hence fi(ε) to guarantee that

T ∗ = T ∗i (w∗, R∗i ) < T
′

i < T
′

j , for all i ∈ S1

and the lifetime under (w∗, R′) is T
′
= mini∈S1{T

′
i } > T ∗.

Thus, by choosing a small enough ε > 0, the network lifetime under (w∗, R′) is

larger than under (w∗, R∗) which contradicts the optimality of (w∗, R∗). Therefore,

we conclude that S2 must be empty, which implies (2.43). �

Remark 3: In order to guarantee (2.43), it is necessary that T ∗i (w∗, R∗i ) < ∞.

Looking at (2.24) and recalling that gi(w) > 0, this is equivalent to assuming that

Gi(w) > 0, i.e., that no node is left unutilized.

Based on Theorem 3, we can simplify the NLP problem (2.41). In particular, we

solve it in two steps. In Step 1, assuming a fixed routing policy w, we determine

the corresponding optimal initial energy distribution policy by solving the set of
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equations:

T ∗0 (w,R0) = T ∗1 (w,R1) = · · · = T ∗N−1(w,RN−1) (2.44)

s.t.
N−1∑
i=0

Ri = R̄

Its solution is defined to be R∗(w) with an associated lifetime T ∗(w). Then, in Step

2 we search over the feasible set of w given by (2.15) to determine the optimal T ∗(w)

by using a standard nonlinear optimization solution procedure. We should point out,

however, that solving problem (2.44) to obtain parametric solutions for T ∗(w) and

R∗(w) is not a simple task and common solvers fail to accomplish it. Instead, we can

proceed by selecting one of the parametric equations for T ∗i (w,Ri) as an objective

function and add (2.44) as constraints to a new NLP problem below, whose solution

we can obtain with standard optimization solvers:

max
Ri,wij ,j=1,...,N−1

T ∗i (w,Ri) (2.45)

s.t. T ∗i (w,Ri)− T ∗j (w,Rj) = 0 i, j = 0, . . . , N − 1, i 6= j∑
i≺j, j<N

wi,j ≤ 1, 0 ≤ wi,j ≤ 1, i, j = 0, . . . , N, i ≺ j

0 < Ri < min(Bi, R̄),
N−1∑
i=0

Ri = R̄

Remark 4: As in Section 2.3, our analysis can recover the ideal battery case by

setting k = 0 in (2.11)-(2.12), which implies that T ∗i (w) = Ri [Gi(w)gi(w)]−1. This

simplifies the solution of (2.44) as follows. Setting Ki(w) = [Gi(w)gi(w)]−1, (2.44)

implies that

Ri =
K0(w)

Ki(w)
R0, i = 1, . . . , N − 1
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R0 = R̄

[
1 +

N−1∑
i=1

K0(w)

Ki(w)

]−1

=
R̄

K0(w)

[
N−1∑
i=0

1

Ki(w)

]−1

and it follows that

R∗i (w) =
R̄

Ki(w)

[
N−1∑
j=0

1

Kj(w)

]−1

, i = 1, . . . , N − 1

Then, the lifetime T ∗(w) is given by

T ∗(w) = K0(w)R0 = R̄

[
N−1∑
j=0

1

Kj(w)

]−1

=

R̄

[
N−1∑
i=0

Gi(w)

( ∑
i≺j, j<N

wi,jkij + ki,N

)]−1

Consequently, the solution of problem (2.41) is the same as that of the NLP

problem:

min
w

N−1∑
i=0

Gi(w)

( ∑
i≺j, j<N

wi,jkij + ki,N

)

s.t. 0 ≤ wi,j ≤ 1, 0 ≤ i, j ≤ N and i ≺ j∑
i≺j, j<N

wi,j ≤ 1, Gi(w) > 0

2.4.1 Simulation examples

In this section, we consider a numerical example for the joint optimal routing and

initial energy allocation problem. As in section 2.3.4, first the problem is solved for

a network with ideal node batteries and then using the KBM dynamics (2.11)-(2.12).

Let us consider the same network as in Fig. 2·2 except we relocate the source node

to (-15,-15). Table 2.9 shows the optimal routing probabilities and initial energies of

all nodes under different vaklues of k, including the ideal battery case where k = 0
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in (2.11)-(2.12). Note that the WSN lifetime with k = 0 is 63.33 which considerably

exceeds the value 54.55 seen in section 2.3.4, even though the distance between the

source and base nodes is larger in this case. Moreover, once again we observe that both

optimal initial energies and routing probabilities are the same over different values of

k. Finally, note the fact that the network lifetime coincides with all individual node

lifetimes, which are the same by Theorem 3, provides a strong justification for the

definition of network lifetime being that of the first node to deplete its energy.

Routing Probability k = 0.001 k = 0.002 k = 0.01
w12 1 1 1
w23 1 1 1
w34 1 1 1
w45 1 1 1
w56 1 1 1
R1 9.57 9.57 9.57
R2 23.53 23.53 23.53
R3 17.55 17.55 17.55
R4 18 18 18
R5 22.7 22.7 22.7
R6 8.65 8.65 8.65

Lifetime 65.3752 67.501 85.6695
Improvement(%) 3.23 6.59 35.27

Table 2.9: Optimal routing probabilities, initial battery energy and
network lifetime for a 7-node network

2.5 Lifetime maximization problem under a more general

nonlinear battery model

The results obtained under the KBM battery dynamics, pave the way for an investi-

gation of the same problem using a more accurate model. Next we adopt a detailed

dynamic battery model of which the KBM is a special case. Our goal is to investi-

gate whether the results obtained under the KBM are still preserved or the relatively

simple nature of the KBM is responsible for them. In what follows, we briefly review

a linear state space model (Zhang and Shi, 2009) derived from the diffusion-based
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model (Rakhmatov and Vrudhula, 2001). A one-dimensional diffusion equation de-

scribing the concentration behavior inside a battery (Rakhmatov and Vrudhula, 2001)

is given by:

J(x, t) = −D∂C(x, t)

∂x
∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
(2.46)

where C(x, t) represents the electrolyte concentration at time t at a distance x ∈

[0, ω] from the electrode (the distance between anode and cathode is 2ω). J(x, t)

stands for the electrolyte flux at time t at distance x and D denotes a constant

diffusion coefficient. Let the initial concentration be a constant C∗. As described in

(Rakhmatov and Vrudhula, 2001), applying the following two boundary conditions:

D
∂C(x, t)

∂x

∣∣∣∣
x=0

=
i(t)

νAF
, D

∂C(x, t)

∂x

∣∣∣∣
x=ω

= 0

where i(t) is the battery load, A is the area of the electrode, F is Faraday’s constant,

and ν is a scaling factor, the final solution for the concentration of electrolyte at the

electrode (x = 0) is (using * to denote convolution):

C(0, t) = C∗ − i(t)

νωFA
∗
(
1 + 2

∞∑
m=1

e
−
π2m2

ω2
Dt)

(2.47)

Defining ρ(t) = 1 − C(0, t)

C∗
, at t = 0 we have C(0, 0) = C∗ and ρ(0) = 0. Note

that during discharge, C(0, t) decreases, hence ρ(t) increases. When the battery is

depleted (electrolyte concentration reaches Ccutoff ), ρ(t) reaches the corresponding

threshold ρcutoff = (1 − Ccutoff/C∗). In order to derive a state space realization as

in (Zhang and Shi, 2009), we define y(t) = ρ(t)/ρcutoff which results in y(0) = 0 and

y(T ) = 1 at the failure time t = T . Replacing the infinite sum in (2.47) by a finite
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one with M terms, we obtain:

y(t) =
i(t)

α
∗ 1 +

i(t)

α
∗ 2

M∑
m=1

e−δmt

= [1 1...1]



i(t)

α
∗ 1

2i(t)

α
∗ e−δ1t

...
2i(t)

α
∗ e−δM t

 (2.48)

where δm = π2m2D/ω2 and α = C∗νωFAρcutoff . Next, we define the state vector

x(t) = [x0(t), ..., xM(t)]T such that:

ẋ0(t) =
1

α
i(t)

ẋm(t) =
2

α
i(t)− δmxm(t) m ∈ {1, 2, ...,M}

xm(0) = 0 m ∈ {0, 1, ...M}

(2.49)

which can be written as

x0(t) =
i(t)

α
∗ 1

xm(t) =
2i(t)

α
∗ e−δmt m ∈ {1, 2, ...,M}

(2.50)

Substituting (2.50) into (2.48), we have:

y(t) = [1 1...1]


x0(t)
x1(t)
...

xM(t)

 = [1 1...1]x(t) (2.51)

For each node i = 0, . . . , N − 1, yi(t) is the battery status indicator at time t.

Setting yi(0) = 0, it follows that yi(T ) = 1 which indicates that the battery is out of

charge at the failure time t = T .

We consider the energy consumption model as in Section 2.2.3. Similarly, the
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workload of node 0, u0(t), is given by

u0(t) = G0(w)

[ ∑
0≺j,j<N

w0,j(t)k0,j + k0,N

]
(2.52)

where G0(w) = 1. Also, for any node i = 1, . . . , N − 1, where we must include the

energy for both receiving and transmitting data packets, we can show that:

ui(t) = Gi(w)

[ ∑
i≺j,j<N

wi,j(t)ki,j + ki,N

]
(2.53)

Defining gi(w) =
∑

i<j,j<N wi,j(t)ki,j + ki,N the dynamic model (2.49) and (2.51) for

nodes i = 0, . . . , N − 1 becomes:

ẋi(t) = Aixi(t) + biGi(w(t))gi(w(t))

yi(t) = cxi(t) (2.54)

Ai =


0 0 ... 0
0 −δ1 ... 0
...

...
. . .

...
0 0 ... −δM

 (2.55)

= diag[0,−δ1, ...,−δM ](M+1)×(M+1)

bi = [
1

α
,

2

α
, ...,

2

α
]T c = [1 1...1]1×(M+1) (2.56)

This is a more general, high-dimensional model compared to the KBM with only

two state equations. Note that in the KBM, k is a crucial parameter modeling the

“recovery effect” in the battery dynamics, similar to the role that the D parameter

plays in (2.46).

Note that we consider identical battery characteristics for all nodes in the network,

i.e. Ai = Aj, bi = bj for all i, j = 0, ..., N − 1 (we will discuss the reason for this

assumption later in Remark 5). The vectors xi(t) = [xi0, ...xiM ]T for i = 0, ..., N − 1
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define the state variables for our problem. Finally, observe that by controlling the

routing probabilities wi,j(t) in (2.52) and (2.53) we directly control node i’s battery

discharge process.

2.5.1 Optimal control problem formulation

Our objective is to maximize the WSN lifetime by controlling the routing probabilities

wi,j(t). The maximum lifetime optimal control problem is formulated as follows:

min
w(t)
−

T∫
0

dt (2.57)

s.t. for i = 0, ..., N − 1

ẋi(t) = Axi(t) + bGi(w(t))gi(w(t)) (2.58)

yi(t) = cxi(t)

A = diag[0,−δ1, ...,−δM ](M+1)×(M+1)

b = [
1

α
,

2

α
, ...,

2

α
]T c = [1 1...1]1×(M+1)

Gi(w(t)) =
∑
k≺i

wk,i(t)Gk(w(t)) (2.59)

G0(w(t)) = 1

gi(w(t)) =
∑

i≺j,j<N

wi,j(t)kij + ki,N (2.60)

∑
i≺j,j<N

wi,j(t) ≤ 1, 0 ≤ wi,j(t) ≤ 1 (2.61)

min
i=0,...,N−1

yi(T ) = 1 (2.62)

where xi(t) = [xi0, ..., xiM ]T are the state variables representing node i’s battery

dynamics for i = 0, . . . , N − 1 and yi(t) =
∑M

j=0 xij(t) is the battery status indicator

at node i. Control constraints are specified through (2.61), where the first inequality

follows from the fact that
∑

i≺j<N wi,j(t) + wi,N(t) = 1. Finally, (2.62) provides
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boundary conditions for xi(t), i = 0, . . . , N − 1, at t = T requiring that the terminal

time is the earliest instant when yi(t) =
∑M

j=0 xij(t) = 1 for any node i (recall that

yi(T ) = 1 indicates battery depletion). In other words, at t = T we require that

the maximal value over all {y0(T ), . . . , yN−1(T )} is 1 or, equivalently, T = inft≥0{t :

yi(t) = 1 for at least some i = 0, . . . , N − 1}.

This is a classic minimum (maximum) time optimal control problem except for

two complicating factors: (i) The boundary condition (2.62) which involves the non-

differentiable min function, and (ii) The control constraints (2.61). In what follows,

we will use w∗(t) to denote the optimal routing vector, which provides a (not neces-

sarily unique) solution to this problem.

2.5.2 Optimal control problem solution

Our analysis is similar to that in Section 2.3, but it is complicated by the high-

dimensional dynamics in (2.58). We begin with the Hamiltonian for this optimal

control problem:

H(w, t, λ) = −1 +
∑
i<N

[λi0ẋi0 + λi1ẋi1 + ...+ λiM ẋiM ]

= −1 +
∑
i<N

[λi0
1

α
Gi(w(t))gi(w(t)) + ...+ λiM

( 2

α
Gi(w(t))gi(w(t))− δMxiM

)
] (2.63)

where λi0(t), ..., λiM(t) are the costates corresponding to xi0(t) ,..., xiM(t) at node i,

which must satisfy{
λ̇i0(t) = − ∂H

∂xi0
= 0

λ̇im(t) = − ∂H
∂xim

= −δmλim(t) m = 1, ...,M
(2.64)

Due to the nature of the state boundary conditions in (2.62), it is hard to derive

explicit expressions for the costates λij(t). Thus, similar to our procedure in Section

2.3, we proceed by considering each possible case of a node dying first, which we will



66

refer to as “scenario Si” under which 1 = yi(T ) ≥ yj(T ), j 6= i for some fixed node i.

2.5.3 Analysis of scenario Si

Under Si, we have the terminal time constraints yi(T ) = 1 and yj(T ) ≤ 1 for all

j 6= i. Consequently, all yj(t), hence xj(t), j 6= i, are unconstrained at t = T . The

next theorem establishes the property that, under a fixed network topology, there

exists a static optimal routing policy, i.e., there exists a vector w∗(t) which is time

invariant.

Theorem 4: If 1 = yi(T ) ≥ yj(T ), j 6= i, for some i and the network topology

is fixed, i.e., dij(t) = di,j = constant for all i, j = 0, . . . , N − 1, then there exists a

time-invariant solution of (2.57)-(2.62): w∗(t) = w∗(T ).

Proof : To derive explicit expressions for λi0(t),..., λiM(t) it is necessary to use

boundary conditions λi0(T ),..., λiM(T ). Since 0 ≤ yi(t) ≤ 1 for all i and t ∈ [0, T ],

the optimal control problem under Si is state-unconstrained except for yi(T ) =∑M
j=0 xij(T ) = 1. Thus, the terminal state constraint function Φ(xi(T ), ...,xN−1(T ))

is reduced to
∑M

j=0 xij(T ) and the costate boundary conditions are given by:

{
λim(T ) = ν ∂Φ(xi(T ),...,xN−1(T ))

∂xim
= ν m = 0, ...,M

λjm(T ) = 0 j 6= i m = 0, ...,M

where ν is an unspecified scalar constant. This allows us to solve the costate equations

in (2.64) to obtain for t ∈ [0, T ]:
λi0(t) = ν
λim(t) = νe−δm(t−T ), m = 1, ...,M
λjm(t) = 0 j 6= i m = 0, ...,M

(2.65)
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Using (2.65) in (2.63), we can simplify the Hamiltonian as follows:

H(w, t, λ) = −1 + λi0
1

α
Gi(w(t))gi(w(t)) +

M∑
j=1

λij(
2

α
Gi(w(t))gi(w(t))− δjxij)

(2.66)

Observe that the control variables wi,j(t) appear only in Gi(w(t)) and gi(w(t)) in the

problem formulation (2.57)-(2.62). Thus, we can set Ui(t) = Gi(w(t))gi(w(t)), i =

0, . . . , N − 1 to be the effective control variables with Ul ≤ Ui(t) ≤ Uu, where Ul ≥ 0

and Uu are, respectively, the lower bound and upper bound of Ui(t) for all t ∈ [0, T ].

Note that both are constant since their determination depends exclusively on (2.59),

(2.60) subject to (2.61), independent of the states. In particular, they depend on the

fixed network topology and the values of the energy parameters ki,j, ki,N in (2.60).

Applying the Pontryagin minimum principle to (2.66):

U∗i (t) = arg min
Ul≤Ui(t)≤Uu

H(Ui, t, λ
∗)

implies that the optimal control is of bang-bang type:

U∗i (t) =

{
Uu if ν < 0
Ul if ν > 0

(2.67)

Moreover, the optimal solution must satisfy the transversality condition

(
λ∗ dΦ

dt
+

L

)
t=T

= 0 where L = −1 and we have seen that Φ(xi(T ), ...,xN−1(T )) =
∑M

j=0 xij(T ).

Therefore,

−1 + ν
M∑
j=0

ẋij(T ) = 0

and it follows that ν = 1/ẏi(T ). Since yi(T ) = 1, yi(0) = 0 and 0 < yi(t) < 1 for all

t ∈ [0, T ), we have ẏi(T ) > 0, therefore, ν > 0. By (2.67), U∗i (t) = Ul for all t ∈ [0, T ].

We conclude that the optimal control problem under Si is reduced to the following
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optimization problem:

min
w(t)

Gi(w(t))gi(w(t)) (2.68)

s.t. (2.59)− (2.61) and 1 = yi(T ) ≥ yj(T ), j 6= i

When t = T , the solution of this problem is w∗(T ) and depends only on yj(T ), j 6= i,

and, as already argued, the fixed network topology and the values of the fixed energy

parameters ki,j, ki,N in (2.60). The same applies to any other t ∈ [0, T ), therefore,

there exists a time-invariant optimal control policy w∗(t) = w∗(T ), which minimizes

the Hamiltonian and proves the theorem. �

Note that there may exist multiple optimal control policies, including some that

may be time varying. Theorem 4 asserts that there is at least one which is time-

invariant, i.e., w∗(t) = w∗(T ) = w∗, and it remains to obtain the values of w∗i,j,

i = 0, . . . , N − 2 and j = 1, . . . , N − 1, by explicitly solving the optimization problem

(2.68). This requires knowledge of all yi(t), t ∈ [0, T ] in order to determine the values

of all yi(T ) and hence identify the node i such that 1 = yi(T ) ≥ yj(T ) and use the

values of yj(T ), j 6= i. This can be accomplished by solving the differential equations

(2.54)-(2.56), whose initial conditions are given as xim(0) = 0, i = 0, ..., N−1 and m =

0, ...,M , with w(t) = w, the unknown optimal routing vector. It is straightforward

to obtain xij(t) as follows:

xi0(t) =
1

α
Gi(w)gi(w)t

xij(t) =
2

αδj
Gi(w)gi(w)(1− e−δjt), j = 1, ...,M

Recall that yi(t) =
∑M

j=0 xij(t), the “critical time” T ∗i such that yi(T
∗
i ) = 1 and
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0 < yi(t) < 1 for all t ∈ [0, T ∗i ) is the solution of the nonlinear equation in T :

1

α
Gi(w)gi(w)T +

M∑
j=1

2

αδj
Gi(w)gi(w)(1− e−δjT ) = 1 (2.69)

which we write as T ∗i (w). Thus, we may rewrite the Si optimization problem as

follows

Pi : min
w
Gi(w)gi(w)

s.t. (2.59)− (2.61), T ∗i (w) ≤ T ∗j (w), j 6= i

where T ∗i (w) is the solution of (2.69) for all i = 0, . . . , N − 1. Note that Pi may not

always have a feasible solution.

Based on our analysis thus far, if we focus on a fixed scenario Si, the solution to

the optimal control problem is simply the solution of the NLP problem Pi. However,

since we do not know which node will die first, determining the value of i such that

T ∗i (w) ≤ T ∗j (w) for all j 6= i requires solving all Pi problems and find the best policy

among them. This is accomplished through the following algorithm, referred to as

A2.

Algorithm A2

1. Solve problem Pi for i = 0, ..., N − 1 to obtain T ∗i (w).

2. Set T ∗i (w) = −1 if a problem is infeasible.

3. The optimal lifetime is given by maxi {T ∗i (w)} and the corresponding optimal

policy w∗ is the one obtained for the associated problem Pi.

2.5.4 A Robustness Property of the Optimal Routing Policy

In this section, we show that the optimal routing vector w∗ obtained through Al-

gorithm A2 is robust with respect to the diffusion coefficient constant, D. This is
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similar to the robustness property established in Lemma 3 and Theorem 2 in Section

2.3.3 where it is shown that the solution of problem Pi is robust with respect to the

parameter k of the KBM in (2.8) and (2.9). Here, the intuition behind this property

lies in the nature of the NLPs Pi: observe that the solution depends on the values

of Gi(w)gi(w) and the associated constraints (2.59)-(2.61), while the only effect of

the parameter D enters through the inequalities T ∗i (w) ≤ T ∗j (w), j 6= i. Therefore,

if a solution is obtained under D = 0 and these inequalities are still satisfied when

D > 0, then the actual routing policy remains unchanged, while the value of the re-

sulting optimal network lifetime is generally different. Let wi(D) denote the solution

of problem Pi when the RVW model is invoked with parameter D, including the case

D = 0. The corresponding node lifetimes are denoted by T ∗i (wi, D). The robustness

property we identify rests on the following Theorem:

Theorem 5: The optimal routing policy under D = 0, is unaffected when D > 0

, i.e.,

w∗(0) = w∗(D) for any D > 0 (2.70)

Proof : Let yDi (t) denote the battery status indicator of node i under D ≥ 0. Recall

that δm = π2m2D/ω2, therefore, δm = 0 when D = 0 and the state equations in

(2.49) for node i become:

ẋi0(t) =
1

α
i(t)

ẋim(t) =
2

α
i(t) m ∈ {1, 2, ...,M}

Hence,

ẏ0
i (t) =

∑M
j=0 ẋij(t) = Gi(w

i(0))gi(w
i(0))

(1 + 2M)

α
. Therefore, for any j 6= i we

have

ẏ0
i (t)

ẏ0
j (t)

=
Gi(w

i(0))gi(w
i(0))

Gj(wi(0))gj(wi(0))
(2.71)

When D > 0, by fixing the routing vector w(t) to wi(0) and solving the differential
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equation (2.54)-(2.56) with initial condition xi(0) = 0, we get

yDi (t) =
1

α
Gi(w

i(0))gi(w
i(0))t+

M∑
j=1

2

αδj
Gi(w

i(0))gi(w
i(0))(1− e−δjt) (2.72)

Recall that δm =
π2m2D

ω2
, D is a constant multiplier in δj. Consequently we have

ẏDi (t) =
1

α
Gi(w

i(0))gi(w
i(0))

(
1 + 2

M∑
j=1

e−δjt

)

Therefore,

ẏDi (t)

ẏDj (t)
=
Gi(w

i(0))gi(w
i(0))

Gj(wi(0))gj(wi(0))
, D > 0

which is identical to (2.39). Thus, under D > 0, the inequalities T ∗i (wi, D) ≤

T ∗j (wi, D) remain just as valid as T ∗i (wi, 0) ≤ T ∗j (wi, 0) under D = 0 and it fol-

lows that the solution wi(D) is unaffected relative to wi(0). Note that Algorithm

A2 gives w∗(D) as the solution of the NLP Pi such that maxi {T ∗i (w)} = T ∗i (wi(D))

for some i for any D ≥ 0. Hence, w∗(0) = wi(0) = wi(D) = w∗(D). �

Remark 5: It should be noted that the robustness property of the optimal solu-

tion may not be valid if nodes have different battery parameters, i.e., Ai, bi in (2.55)

and (2.56) are not all the same. However, the time-invariant nature of the optimal

routing vector in Theorem 4 remains unaffected.

2.5.5 Optimal routing by solving a single NLP

Based on Theorem 4 (or Theorem 1 in Section 2.3), when the topology of the network

is fixed, there is at least one optimal routing policy which is time-invariant. Now,

by defining a new variable T as the network lifetime (the first node whose battery is

depleted), we merge Algorithm A2 (or Algorithm A1) into a single NLP problem

which determines an optimal routing vector and the network lifetime at the same
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time as follows:

max
w

T (2.73)

s.t. (2.59)− (2.61), T ≤ T ∗i (w)

Note that T ∗i (w) is the parametric solution of the node i lifetime based on the energy

dynamics considered for the battery. We consider the following three cases:

1. For nodes with ideal battery dynamics, the energy consumption is directly pro-

portional to the battery load, i.e.,
∂ri(t)

∂t
= −i(t) , T ∗i (w) =

Ri

Gi(w)gi(w)
where

Ri is the initial energy of node i.

2. For the KBM, as we have already observed the battery dynamics are:

ṙi(t) = −ii(t) + k(bi(t)− ri(t))

ḃi(t) = −k(bi(t)− ri(t))

and the battery lifetime, T ∗i (w), is the solution of the following equation:

Ri −
Gi(w)gi(w)

2
T − 1

2
[Bi −Ri −

Gi(w)gi(w)

2k
](e−2kT − 1) = 0

3. If we consider the diffusion model (2.54)-(2.56) to describe the battery dynamics,

T ∗i (w) is the solution of (2.69).

2.5.6 Simulation examples

In order to illustrate the results of our analysis, we consider the 7-node network shown

in Fig. 2·2 where node coordinates are given next to each node. Nodes 1 and 7 are

the source and base respectively, while the rest are relay nodes. We solve the problem

for a 2-state model (M = 1) and set Cs = 0.0001, Cf = Cr = 0.05, and β = 2 in the

energy model. We assume αi = 40375, i = 1, ..., 6 (Rakhmatov et al., 2002). Table
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2.10 shows the optimal routing probabilities and network lifetime for different values

for δm (D = 0 and D > 0) obtained through Algorithm A2. Note that D is a

constant multiplier in δm. To validate the robustness property discussed in Theorem

2, we apply the routing vector obtained when δm = 0 (column 2 of Table. 2.10),

w∗(0), to the Ti(w) equations with δm = (0.273)2m2 to see if it results in the same

network lifetime of 80723.17 (we do not provide specific units, but, based on standard

known data, distance units in feet and time units in minutes are reasonable for RVW

model). Table 2.11 shows node lifetimes under w∗(0) when δm = (0.273)2m2. It

is observed that adopting w∗(0), node 1 dies first and the network lifetime is equal

to that obtained by solving the NLP problem (2.73) when δm = (0.273)2m2. This

illustrates the robustness property as expected.

Remark 6: We should point out that solving (2.69) to obtain a parametric

solution for node i lifetime, Ti(w), is a hard task when we consider the battery model

with more than 2 state variables (M > 1). However, the robustness property of the

optimal solution with respect to the diffusion coefficient, D, obtained in Theorem 4,

allows us to find the optimal routing vector for the simpler case when D = 0 and

the same routing vector is optimal for other cases with D > 0. Assuming D = 0

(consequently δm = 0) in (2.49) and (2.51), we obtain a closed-form expression for

the lifetime of node i as Ti(w) =
α

(1 + 2M)Gi(w)gi(w)
. We can then find the optimal

routing vector for any value of M by solving a single NLP problem (2.73).

Reduction in computational complexity. In order to investigate the reduc-

tion in the computational effort needed to find the optimal routing probabilities using

the proposed “single NLP” formulation, we solve (2.73) for all three battery dynamic

models discussed in Section 2.5.5 and compare the CPU times with those needed

when implementing Algorithms A1 or A2. For the network in Fig. 2·3, we adopt

the diffusion-based model (δm = (0.273)2m2), the KBM (with k = 0.02), and the ideal
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Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

(0,0)

(60,30)

(30,60)

(70,75)

(100,95)

(120,125)

(90,110)

Figure 2·3: Network topology

Table 2.10: Optimal routing probabilities and network lifetime for a
7-node network with different diffusion coefficients

Routing (I) δm=0 (II) δm = (0.273)2m2

Probability
w1,2 0.495974 0.506774
w1,3 0.504026 0.493226
w1,4 0 0
w1,5 0 0
w1,6 0 0
w2,3 0.091704 0.132088
w2,4 0.279738 0.15061
w2,5 0.218011 0.334065
w2,6 0.157214 0.173207
w3,4 0.376457 0.183185
w3,5 0.197358 0.407184
w3,6 0.132955 0.218149
w4,5 0.326819 0.34064
w4,6 0.28053 0.300537
w5,6 0.295149 0.418332

Lifetime 26916.66 80723.17

Table 2.11: Node Lifetimes under w∗(0) when δm = (0.273)2m2

i 1 2 3
Ti(w

∗(0)) 80723.17 110347.25 100335.6
i 4 5 6

Ti(w
∗(0)) 303883.87 608865.92 550302.16
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battery model. The corresponding CPU times are as shown in Table 2.12 where one

can see that the new formulation offers a reduction in computation time of an order

of magnitude or more, with the understanding that this reduction depends on the

size of the network and its topology. Note that in order to obtain an optimal routing

vector using Algorithms A1 or A2, one should solve (N − 1) NLP problems.

Table 2.12: CPU time under different battery dynamics using Single
NLP formulation compared to Algorithm A1

Battery Dynamics Single NLP Algorithm A1
Diffusion model 430.62 sec 28098 sec

KBM 61.27 sec 450.12 sec
Ideal Battery 59.56 sec 500.16 sec

Remark 7: The extension to a network with multiple source nodes is straight-

forward. Let us assume a network with k source nodes, each with a data generation

rate of uk. Let us also assume that the source nodes do not act as relay nodes and

that each node routes data to nodes which are closer to the base station. The rest of

the analysis is the same as the problem with a single-source network. The optimal

control problem remains as in (2.57)-(2.62) (or (2.10)-(2.16)) except that the inflow

rate to each node becomes:

Gi(w(t)) = ui ∀i ∈ Ns,

Gi(w(t)) =
∑
j≺i

wj,i(t)Gj(w(t)) ∀i 6= Ns

where Ns is the set of all source nodes. Beginning with the Hamiltonian and defining

Scenario Si as we did in Section 2.3, one can show that there exists a time-invariant

optimal routing policy for networks with multi-source nodes and fixed topology.

2.5.7 Joint optimal routing and initial energy allocation

In this section, we incorporate the diffusion-based battery dynamics into the joint

optimal routing and initial energy allocation problem. Unlike our analysis for this
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problem in Section 2.4, here the battery model works based on changes in electrolyte

concentration, therefore, finding an optimal initial energy allocation for the nodes is

equivalent to finding an optimal initial electrolyte concentration for each one. Con-

sequently, we need to relate the battery residual energy to the equivalent electrolyte

concentration. We assume a linear relationship as follows: since we consider identical

batteries for all nodes, we define Rnom to be the rated energy of the battery. Then,

for each node we have Ri = SoCi ·Rnom where SoCi denotes the “state of charge” of

node i. One of the methods used to find the SoC of a battery is by measuring the

specific gravity (SG) of its electrolyte. For example, for a lead-acid battery, as the

SoC decreases through discharge, sulfuric acid is consumed and its concentration in

water decreases. Consequently, the SG of the solution is reduced in direct proportion

to the SoC (mpo, 2005). We assume a linear relationship between SoC and SG such

that SoCi = a · SGi + b where a and b can be calculated based on available SoC vs

SG lookup tables. Note that the electrolyte concentration is proportional to the SG

of the solution, i.e., SGi = σ ·Ci where Ci stands for the electrolyte concentration at

node i and σ is a constant coefficient which can be calculated based on the molecular

wight of the electrolyte and mass percent of the solution. Finally, initial energy is a

linear function of the initial electrolyte concentration:

Ri = m · Ci + n (2.74)

where m = Rnomaσ and n = Rnomb. Let us define the total initial energy available

as R̄ and let R = [R0, . . . , RN−1]. Using (2.74), we define corresponding terms for

electrolyte concentrations as C̄ and C = [C0, . . . , CN−1]. From Theorem 1, we know

that the optimal routing policy is fixed unless the topology of the network changes.
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Then, we can formulate the following problem:

max
Ci,i=0,...,N−1
wi,j ,j=1,...,N−1

T (2.75)

s.t. T ≤ T ∗i (w,Ci), i = 0, . . . , N − 1∑
i≺j, j<N

wi,j ≤ 1, 0 ≤ wi,j ≤ 1, i, j = 0, . . . , N, i ≺ j

− n
m
< Ci <

Rnom − n
m

,

N−1∑
i=0

Ci = C̄

C̄ =
R̄−Nn

m

This is a NLP problem where the control variables are both the routing probabilities

wi,j and the initial concentrations Ci for nodes i = 0, ..., N − 1. Looking at (2.74),

the constraints on Ci above are to ensure that the equivalent Ri stays between 0

and Rnom and that
∑N−1

i=0 Ri = R̄. In this case, T ∗i (w,Ci) is the solution of (2.69)

for all i = 0, . . . , N − 1, which is now dependent on both w and Ci. Recalling that

αi = νωFAρcutoffCi, we observe that unlike the problem discussed in the previous

section, α is not identical for all nodes in the network. Differentiating (2.69) with

respect to αi we get

Gi(w)gi(w)
∂T

∂αi
+

M∑
j=1

(
2Gi(w)gi(w)

∂T

∂αi
e−δjT

)
= 1

which yields:

∂T

∂αi
=

1

Gi(w)gi(w) + 2
∑M

j=1Gi(w)gi(w)e−δjT
> 0

Observe that
∂T

∂Ci
=
∂T

∂αi
· ∂αi
∂Ci

= νωFAρcutoff
∂T

∂αi
which results in

∂T

∂Ci
> 0.

If the solution of problem (2.75) is (w∗, C∗), then T ∗i (w∗, C∗i ) is the solution of

(2.69) under this routing vector and initial electrolyte concentration at node i. The

following theorem establishes the fact that this optimal solution is such that all nodes
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deplete their energy at the same time.

Theorem 6: The solution of problem (2.75) satisfies

T ∗ = T ∗0 (w∗, C∗0) = T ∗1 (w∗, C∗1) = · · · = T ∗N−1(w∗, C∗N−1) (2.76)

Proof : The proof is similar to the same problem using the KBM battery model

(see proof of Theorem 3 in Section 2.4). The critical fact needed in the proof is

∂T

∂Ci
> 0 (replacing

∂T

∂Ri

> 0 in the proof of Theorem 3). �

Remark 8: In order to guarantee (2.76), it is necessary that T ∗i (w∗, C∗i ) < ∞.

Looking at (2.69) and recalling that gi(w) > 0, this is equivalent to assuming that

Gi(w) > 0, i.e., that no node is left unutilized.

Similar to the way we proceeded in Section 2.4 and in view of Theorem 6, we

can simplify the NLP problem (2.75) by selecting one of the parametric equations

for T ∗i (w,Ci) as an objective function and add (2.76) as constraints to a new NLP

problem below, whose solution we can obtain with standard optimization solvers:

max
Ci,wi,j ,j=1,...,N−1

T ∗i (w,Ci) (2.77)

s.t. T ∗i (w,Ci)− T ∗j (w,Cj) = 0 i, j = 0, . . . , N − 1, i 6= j∑
i≺j, j<N

wi,j ≤ 1, 0 ≤ wi,j ≤ 1, i, j = 0, . . . , N, i ≺ j

− n
m
< Ci <

Rnom − n
m

,

N−1∑
i=0

Ci = C̄

2.5.8 Simulation examples

We provide a numerical example for the joint optimal routing and initial energy

allocation problem using the network in Fig. 2·4 with node coordinates shown next

to each node. We setm = 43.75, n = −200 in (2.74), Rnom = 25, R̄ = 100 (C̄ = 29.71)

, α = 40375, δm = 0.2732m2 and other numerical values as before. Table 2.13 shows
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the optimal routing probabilities and initial energies of all nodes. Note that the WSN

lifetime for this case is 98353 which is equal to the network lifetime when we consider

all batteries initially fully charged (Ri = Rnom, i = 1, ..., N−1) and we just control the

routing vector as discussed in Section 2.5.6. However, here we observe that only the

source node needs a fully charged battery. Finally, the fact that the network lifetime

coincides with all individual node lifetimes (as expected by Theorem 6), provides a

strong justification for the definition of network lifetime as the time when the first

node depletes its energy.

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

(0,0)

(44.14,40.69)

(70.8,85.47)

(104.08,111.25)

(129.35,145.94)

(166.35,180.8)

(215,215)

Figure 2·4: Network topology

2.6 Network Performance Under Security Threats

In this section we compare the WSN’s performance under our optimal routing policy

and the probabilistic routing policy introduced in (Shah and Rabaey, 2002) when a

cyber-attack takes place. We limit ourselves to an example aimed at simply illus-

trating the advantages of the optimal routing policy we have derived for a specific
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Table 2.13: Optimal routing probs., 7-node network, non-ideal bat-
teries

wi,j 1 2 3 4 5 6
1 N/A 1 0 0 0 0
2 N/A N/A 0.9784 0.0154 0.0041 0.0015
3 N/A N/A N/A 0.7978 0.1914 0.0097
4 N/A N/A N/A N/A 0.7082 0.2879
5 N/A N/A N/A N/A N/A 0.8325
Ri 25 16.6 14 14 14.4 16

form of attack. In (Shah and Rabaey, 2002) an Energy Aware Routing (EAR) pol-

icy is proposed in which a number of suboptimal paths are probabilistically selected

with the intent of extending the network lifetime by spreading the traffic and forc-

ing nodes in the network to deplete their energy at the same time. In EAR, each

node builds a cost information table and propagates local cost information to other

nodes. Costs are determined by the residual energy of each node and by the distances

between them. Each node also maintains a routing probability table determined by

local cost information. In this method, the routing probabilities are set periodically.

At the beginning of each period, the routing probabilities are computed recursively

as follows:

wi,j =
C−1
ij∑

k∈O{i}C
−1
ik

(2.78)

Cij = dk1ij r
k2
j + Cj for all j ∈ O{i} (2.79)

Ci =
∑
k∈O{i}

wi,jCij (2.80)

where wi,j is the routing probability on the edge (i, j), Cij is the cost of sending a data

packet from node i to the destination via node j and Ci is the average cost of sending

a packet from node i to the base station (Note that CN = 0 where N is the base

station). Moreover, rj is the residual energy of node j and k1 and k2 are weighting
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factors which can be chosen to find the minimum energy path or the path with the

most energy or a combination of the above (Shah and Rabaey, 2002). Since the EAR

method works based on the residual battery energy assuming ideal battery dynamics,

we likewise use the same settings and determine the optimal routing vector and the

network lifetime assuming ideal battery dynamics, i.e., Case 1) of problem (2.73).

Consider the network topology shown in Fig. 2·3. Table 2.14 shows the optimal

routing probabilities obtained by solving (2.73) under normal (no threat) conditions.

Under this routing policy, the network lifetime is 33.33. Figure 2·5 shows the routing

probability updates obtained using the EAR policy by computing routing probabili-

ties, wi,js, through (2.78)-(2.80) periodically when k1 = 5 and k2 = 1. Under the EAR

routing policy, the network lifetime is 25.94. As expected, our optimal routing policy

results in the longer lifetime compared to the EAR solution. Next, we investigate

Table 2.14: Optimal routing probs., 7-node network, ideal batteries

wi,j 1 2 3 4 5 6
1 N/A 0.3705 0.6295 0 0 0
2 N/A N/A 0.1792 0.2045 0.1843 0.1960
3 N/A N/A N/A 0.2665 0.2046 0.3338
4 N/A N/A N/A N/A 0.2133 0.3539
5 N/A N/A N/A N/A N/A 0.3627

the network performance under a “sink-hole attack,” one of the most severe routing

attacks in sensor networks (Krontiris et al., 2008), for the two routing policies. Under

a sink-hole attack, a compromised node broadcasts a fake low cost to the neighboring

nodes, thus enticing all such nodes to route packets to it. We will assume an attacker

uses the following strategy:

1. The attacker compromises one node in the network randomly

2. At each time kT , where T is the updating period for the routing probabili-

ties, the compromised node will (i) broadcast a fake near-zero cost (Ci) to all
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Figure 2·5: Routing probability updates under EAR policy

nodes with probability p to attract more flow; (ii) act as a normal node with

probability (1− p).

3. The compromised node corrupts all the packets it has received and forwards

them to other nodes to deplete their energy.

In particular, we compare the network performance under the attack in terms

of the normalized throughput (the ratio of the number of uncorrupted packets to

the total number of packets) for the EAR and our optimal policy. Recall that in

the EAR policy, each node i needs to know its neighbors’ residual energies, rj, and

average costs, Cj, ∀j ∈ Oi, to update its routing table. Thus, it is vulnerable to

faked-cost-based attacks. We will further illustrate this through the same network in

Fig. 2·3. Assume that node 2 is under sink-hole attack and that in each updating

period it broadcasts faked-cost information to its neighbors with probability p = 0.5.

Figure 2·6 shows how routing probability updates are affected in this scenario. Based
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Figure 2·6: Routing probability updates under EAR policy when node
2 is under attack

on the network topology, node 1 is the only node that sends data to node 2. One

can observe how routing probabilities from source node, node 1, to the other nodes,

[w12 w13 w14 w15 w16], are affected at the periods in which node 2 broadcasts faked-cost

data. On the other hand, our optimal policy uses the network topology to calculate

routing probabilities and is robust with respect to this kind of attacks. However, the

normalized throughput will be affected in both routing policies. Figure 2·7 shows

the normalized throughput as a function of the probability of broadcasting faked-

cost, p, when node 2 is under sink-hole attack. It can be observed that for this

specific example, under our optimal policy the normalized throughput drops to 63%,

but it is not sensitive to p. However, under the EAR policy it drops significantly

as p increases. This happens because our routing policy is calculated based on the

network topology and consequently robust with respect to p. Hence, the inflow rate

to the compromised node as well as the normalized throughput, are not affected by

the propagated faked-cost. On the other hand, in the EAR routing strategy, the data
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Figure 2·7: Normalized throughput vs prob. of broadcasting faked-
cost

inflow rate to the compromised node increases with p which drops the normalized

throughput correspondingly.

Remark 9: Depending on the network topology, it is possible that the optimal

routing policy dictates all data packets to be routed through a specific node, i, which

gives Gi = 1, (e.g., assume w1,2 = 1 in the previous examples). Under a sink-

hole attack, if this node is the compromised one, the normalized throughput drops to

zero. Clearly, this node should be a top priority in terms of protection against routing

attacks. One way to address this problem is to purposely deviate from the optimal

solution by routing a fraction q of data packets via node i and the remaining 1 − q

through other nodes. This randomization-by-design degrades the network lifetime

from its optimal value under normal operation (no attack), but protects the network

against becoming completely useless when under attack by increasing its normalized

throughput to 1− q.
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2.7 Summary

We have shown that an optimal routing policy for minimizing a fixed topology sensor

network’s lifetime is time invariant even when the batteries used as energy sources

for the nodes are modeled so as to take into account “non-ideal” phenomena such

as the rate capacity effect and the recovery effect. The associated fixed routing

probabilities may be obtained by solving a single Non-Linear Programming (NLP)

problems In addition, under very mild conditions, this optimal policy is independent

of the battery parameter. Therefore, one can resort to the case of ideal batteries

where the optimal routing problem is much simpler to solve and can be reduced

to a Linear Programming (LP) problem. We have also considered a joint routing

and initial energy allocation problem over the network nodes with the same network

lifetime maximization objective. In this case, the solution to this problem is given

by a policy that depletes all node energies at the same time and the corresponding

energy allocation and routing probabilities are obtained by solving an NLP problem.



86

Chapter 3

Lifetime Maximization for Wireless Sensor

Networks with a Mobile Source Node

3.1 Introduction

In Chapter 2, we studied the lifetime maximization problem for a fully static wireless

sensor network. This problem was previously studied in (Wu and Cassandras, 2005)

and (Chang and Tassiulas, 2004) by defining the WSN lifetime as the time until

the first node depletes its energy. We used the same definition in Chapter 2 and

observed that it is often the case that an optimal policy controlling a static WSN’s

resources leads to individual node lifetimes being the same or almost the same as

those of others, thus this definition is a good characterization of the overall network’s

lifetime in practice. We then relaxed the simplifying assumption of idealized batteries

used as energy sources for nodes and more elaborate models were used to capture

nonlinear dynamic phenomena that are known to occur in non-ideal batteries. A

somewhat surprising result was that again an optimal policy exists which consists of

time-invariant routing probabilities and that in fact this property is independent of

the parameters of the battery model. However, this attractive property for routing is

limited to a fixed network topology.

There are various ways to exploit WSN mobility and incorporating it into different

network components. For instance, in (Wang et al., 2005) sink mobility is exploited

for maximizing the network lifetime and a Linear Programming (LP) formulation
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is proposed in order to find the optimal sink node movement and sojourn time at

different nodes in the network. In (Shah et al., 2003) mobile nodes (mules) are used to

deliver data to the base station. In this chapter, we focus on the lifetime maximization

problem in WSNs when source nodes are mobile. This situation frequently arises when

a mobile sensor node is used to track one or more mobile targets or when there is a

large area to be monitored that far exceeds the range of one or more static sensors.

Adding mobility to nodes raises several questions. First, one can no longer expect

that a routing policy would be time invariant. Second, it is no longer reasonable

to define the WSN lifetime in terms of the the first node depleting its energy. For

instance, if a source node travels far from some relay nodes it was originally using, it

is likely that it should no longer rely on them for delivering data to the base station.

In this scenario, the network remains “alive” even when any or all of these relay

nodes die. Thus, in view of node mobility, we need to revisit the definition of network

lifetime. Finally, if a routing policy is time-varying, then it has to be re-evaluated

sufficiently fast to accommodate the real-time operation of a WSN.

In the sequel, we consider mobility added to the source node and assume that

any such node travels along a trajectory that it determines and which may or may

not be known in advance. We limit ourselves to a single source node (the case of

multiple mobile source nodes depends on the exact setting and is not addressed in

this thesis). While on its trajectory, the source node continuously performs sensing

tasks and generates data. Our goal is to derive an optimal routing scheme in order to

maximize the network lifetime, appropriately redefined to focus on the mobile source

node. Assuming first that the source node trajectory is not known in advance, we

formulate three optimal control problems (OCPs) with differences in their terminal

costs and terminal constraints and investigate how they compare in terms of the

optimal routing policy obtained, total energy consumption, and the actual network
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lifetime. We will also limit ourselves to ideal battery dynamics for all nodes. However,

adopting non-ideal battery models as in Chapter 2 does not change our analysis and

only complicates the solution computation. We then consider the more challenging

(from a computational perspective) problem where the source node’s trajectory is

known in advance, in which case this information can be incorporated into an optimal

lifetime maximization policy.

In Section 3.2, we define the network model and the energy consumption model is

presented in Section 3.3. In Section 3.4 we formulate the maximum lifetime optimiza-

tion problem for a WSN with a mobile source node whose trajectory is not known in

advance. Starting with a new definition for the network lifetime, we show that the

solution is a sequence of Non-Linear Programming (NLP) problems along the source

node trajectory. Numerical examples are included to illustrate our analytical results.

In Section 3.5, we consider the case when the source node trajectory is known in

advance and solve the corresponding optimal control problem using a standard nu-

merical solver. We also compare lifetimes between this case and that of no a priori

trajectory knowledge.

3.2 Network model

Consider a network with N+1 nodes where 0 and N denote the source and destination

(base station) nodes respectively. Nodes 1, ..., N−1 act as relay nodes to deliver data

packets from the source node to the base station. We assume the source node is

mobile and travels along a trajectory with a constant velocity while generating data

packets which need to be transferred to the fixed base through static relay nodes.

First, we assume the trajectory is not known in advance. Then, we discuss the case

when the trajectory is known in Section 3.5. Except for the base station whose energy

supply is not constrained, a limited amount of energy is available to all other nodes.
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Let ri(t) be the residual energy of node i, i = 0, . . . , N − 1, at time t. The dynamics

of ri(t) depend on the battery model used at node i. Here, we assume ideal battery

dynamics in which energy is depleted linearly with respect to the node’s load, Ui(t),

i.e.,

ṙi(t) = −U(t) (3.1)

The distance between nodes i and j at time t is denoted by di,j(t). Since the source

node is mobile, d0,j(t) is time-varying for all j = 1, ..., N . However, di,j(t) = di,j, i =

1, ..., N − 1, j = 2, ..., N are treated as time-invariant with the assumption that the

source node cannot be used as a relay, i.e., any node i > 0 must transfer data to other

relay nodes j > 0, j 6= i or directly to the base station node N . The source node can

send data packets to any of the relay nodes as well as to the base station, while relay

nodes can transmit/receive data packets to/from nodes in their transmission range.

Let O(i) and I(i) denote the set of nodes to/from which node i can send/receive data

packets respectively. Then, O(i) = {j : di,j ≤ τi} and I(i) = {j : dj,i ≤ τj} where

τi, i = 1, ..., N − 1 denotes the transmission range of node i. We define wij(t) to

be the routing probability of a packet from node i to node j at time t (equivalently,

a data flow from i to j) and the vector w(t) = [wij(t)]
′ defines the control in our

problem. Let us also define r(t) = [r0(t), ..., rN−1(t)] as the vector of residual energies

at time t. For simplicity, the data sending rate of source node 0 is normalized to 1

and let Gi(w) denote the data packet inflow rate to node i. Given these definitions,

we can express Gi(w) through the following flow conservation equations:

Gi(w) =
∑
k∈I(i)

wki(t)Gk(w), i = 1, . . . , N, G0(w) = 1 (3.2)



90

3.3 Energy Consumption Model

We use the energy consumption model similar to the model introduced for static

networks in Chapter 2. Therefore, for any node i = 1, . . . , N − 1, the workload Ui(t)

at that node is given by

Ui(w(t)) = Gi(w(t))[
∑
j∈O(i)

wij(t)(Csd
β
i,j(t) + Cf ) + Cr] (3.3)

and the workload U0(t) at the source node 0 (recalling that G0(w(t)) = 1) is given by

U0(w(t)) =
∑
j∈O(0)

w0j(t)(Csd
β
0,j(t) + Cf ) (3.4)

Assuming an ideal battery behavior for all nodes as in (3.1), the state variables for

our problem are ri(t), i = 0, ..., N − 1. Note that d0,j(t) = ‖(x0(t), y0(t))− (xj, yj)‖,

the Euclidean distance of the source node from any other node is known at any

time instant t (but not in advance) as determined by the source node’s trajectory.

Finally, observe that by controlling the routing probabilities wij(t) in (3.3) and (3.4)

we directly control node i’s battery discharge process.

3.4 Optimal control problem formulation

Our objective is to maximize the WSN lifetime by controlling the routing probabilities

wij(t). For a static network, where all nodes including the source node are fixed, as

we have already seen in Chapter 2, the network lifetime is usually defined as the

time until the first node depletes its battery, i.e., mini=0,...,N−1 ri(T ) = 0 requiring

that the terminal time is the earliest instant when ri(t) = 0 for any node i (Chang

and Tassiulas, 2004). However, when the source node is mobile, this definition of

network lifetime is no longer appropriate as explained in Section 3.2. In the sequel,

we formulate three optimal control problems for maximizing lifetime in a WSN with a
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mobile source node and investigate their relative effect in terms of an optimal routing

policy, total energy consumption, and the network lifetime.

3.4.1 Optimal Control Problem - I

We define the network lifetime as the time when the source node runs out of energy.

Consider a fixed time t0 when the source node is at position (x0(t0), y0(t0)) ∈ R2.

In the absence of any future information regarding the position of this node (e.g.,

the node may actually stop for some time interval before moving again), the rout-

ing problem we face is one of a fixed topology WSN similar to the one in (Wu and

Cassandras, 2005) (equivalent to the problem discussed in Chapter 2 with non-ideal

battery dynamics) but with different terminal state constraints due to the new net-

work lifetime definition. Thus, this instantaneous maximum lifetime optimal control

problem that the WSN faces at time t0 is formulated as follows, using the variables

defined in (3.2), (3.3) and (3.4):

min
w(t)
−

T∫
t0

dt (3.5)

s.t. ṙi(t) = −Ui(w(t)), ri(t0) = Rt0
i , i = 0, .., N − 1 (3.6)

Ui(w(t)) = Gi(w(t))[
∑
j∈O(i)

wij(t)(Csd
2
i,j + Cf ) + Cr], i = 1, ..., N − 1 (3.7)

U0(w(t)) =
∑
j∈O(0)

w0j(t)(Csd
2
0,j(t) + Cf ) (3.8)

d0,j(t) = ‖(x0(t0), y0(t0))− (xj, yj)‖, x0(t0), y0(t0) given

Gi(w(t)) =
∑
k∈I(i)

wki(t)Gk(w(t)), i = 1, .., N − 1 (3.9)

∑
j∈Oi

wij(t) = 1, 0 ≤ wij(t) ≤ 1, i = 0, . . . , N − 1 (3.10)

r0(T ) = 0 (3.11)
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r0(t) > 0, t ∈ [t0, T ); ri(t) ≥ 0, i = 1, .., N − 1, t ∈ [t0, T ] (3.12)

where ri(t), i = 0, ..., N − 1, are the state variables representing the node i battery

dynamics with the initial value of Rt0
i and (x0(t0), y0(t0)) are the given instantaneous

coordinates of the source node at time t0. Control constraints are specified through

(3.10). Finally, (3.11) provides the boundary conditions for r0(t) at t = T requiring

that the terminal time is the time when the source node depletes its energy.

Since at time t0 we do not have any knowledge about the future of the source

node trajectory and, consequently, the network topology at t > t0, we solve OCP-I

at t = t0 as if the topology were fixed to determine an instantaneous optimal routing

vector. Then, we re-solve the problem for the new topology at t = t0 + δ. Thus, as

the trajectory of the source node evolves, we discretize it using a constant time step

δ and solve OCP-I at time instants t0 + kδ, k = 0, 1, . . .. In what follows, we will use

w∗(t) to denote the optimal routing vector at any fixed time t.

Optimal control problem I solution

We begin with the Hamiltonian analysis for this optimal control problem (Bryson and

Ho, 1975).

H(r, x0, y0, w, λ, t) = −1 + λ0(t)(−U0(t)) +
N−1∑
i=1

λi(t)(−Ui(t)) (3.13)

where λi(t) is the costate corresponding to ri(t), i = 0, ..., N − 1 and must satisfy:

λ̇i(t) = −∂H
∂ri

= 0 i = 0, ..., N − 1 (3.14)

Therefore, λi, i = 0, ..., N−1, are constants. To determine their values we make use of

the boundary conditions which follow from (3.11), i.e., the terminal state constraint
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function is Φ(r(T )) = νr0(T ) and the costate boundary conditions are given by:

λi(T ) =
∂Φ(r0(T ), ..., rN−1(T ))

∂ri(T )
, i = 0, ..., N − 1

which implies that

λi = 0 i = 1, ..., N − 1, λ0 = ν (3.15)

where ν is some scalar constant. Finally, the optimal solution must satisfy the

transversality condition H(T ) + ∂Φ/∂t|t=T = 0, i.e.,

−1 + νṙ0(T ) + νṙ0(T ) = 0

which yields: ν = 1/2ṙ0(T ) < 0, where the inequality follows from (3.11) and (3.12)

which imply that ṙ0(T ) < 0 and consequently ν < 0.

Theorem 1: There exists a time-invariant solution of (3.5)-(3.12): w∗(t) =

w∗(T ), t ∈ [t0, T ].

Proof: Observe that the control variables wij(t) appear in the problem formulation

(3.5)-(3.12) only through Ui(w(t)). Applying the Pontryagin minimum principle to

(3.13):

[U∗0 (t), ..., U∗N−1(t)] = arg min
Ui≥0; i=0,...,N−1

H(Ui, t, λ
∗)

and making use of the fact that we found λi = 0, i = 1, ..., N − 1, we have:

U∗0 (t) = arg minU0(t)>0(−1− νU0(t)). Recalling that ν < 0, in order to minimize

the Hamiltonian, we need to minimize U0(t). Therefore, the optimal control problem

(3.5)-(3.12) is reduced to the following optimization problem which we refer to as

P1(t):

min
w(t)

U0(t) (3.16)
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s.t. Ui(w(t)) = Gi(w(t))[
∑
j∈O(i)

wij(t)(Csd
2
i,j + Cf ) + Cr], i = 1, ..., N − 1 (3.17)

U0(w(t)) =
∑
j∈O(0)

w0j(t)(Csd
2
0,j(t)

2 + Cf ) (3.18)

d0,j(t) = ‖(x0(t0), y0(t0))− (xj, yj)‖, x0(t0), y0(t0) given

Gi(w(t)) =
∑
h∈I(i)

whi(t)Gh(w), i = 1, . . . , N − 1 (3.19)

∑
j∈O(i)

wij(t) = 1, 0 ≤ wij(t) ≤ 1, i = 0, .., N − 1 (3.20)

T∫
t0

U0(t)dt = Rt0
0 (3.21)

When t = T , the solution of this problem is w∗(T ) and depends only on the fixed

network topology and the values of the fixed energy parameters in (3.18) and the con-

trol variable constraints (3.20). The same applies to any other t ∈ [t0, T ), therefore,

there exists a time-invariant optimal control policy w∗(t) = w∗(T ), which minimizes

the Hamiltonian and proves the theorem. �

We emphasize that the solution w∗(t) evaluated at t = t0, is time-invariant in the

sense that it does not depend on the energy dynamics in (3.6). However, this does not

mean that the optimal routing vector is time-invariant as the source node moves, i.e.,

that w∗(t0) = w∗(t0 + kδ) for all k = 0, 1, . . .. As already mentioned, we need to solve

OCP-I at t = t0 so as to determine w∗(t0). The value of Theorem 1 is that it allows

us to obtain an optimal routing vector through the following NLP, whereas otherwise

we would have to solve for an entire vector w∗(t), t ∈ [t0, T ] simply to recover the

initial value w∗(t0):

min
w(t0)

∑
j∈O(0)

w0j(t0)(Cs(d0,j(t0))2 + Cf ) (3.22)

s.t.
∑
j∈O(i)

wij(t0) = 1, 0 ≤ wij(t0) ≤ 1, i = 0, .., N − 1 (3.23)
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Since the solution w∗(t0) obtained through this NLP applies only at t = t0, w∗(t)

for t > t0 needs to be updated (unless the source node were to stop moving). Thus,

updating the value of t0 through t0 = kδ, k = 1, 2, . . ., we solve a sequence of problems

P1(t0), based on the associated source node positions (x0(t0), y0(t0)) as they become

available. Theorem 1 asserts that at each time step, there exists a fixed optimal

routing vector w∗(kδ) ≡ w∗k associated with the source node’s position. Thus, an

optimal routing vector at each time step is obtained by solving the corresponding

NLP:

min
wk

∑
j∈Ok(0)

wk0j(Cs(d
k
0,j)

2 + Cf ) (3.24)

s.t.
∑

j∈Ok(i)

wkij = 1, 0 ≤ wkij ≤ 1, i = 0, .., N − 1 (3.25)

where wk is a routing vector at step k, Ok(i) is the set of output nodes of i (which may

have changed since some relay nodes may have died), and dk0,j = ‖(xk0, yk0)− (xj, yj)‖

is the distance between the source node and node j at the kth step. Observe that

in (3.24) the objective value is minimized over wk0j, j ∈ Ok(0) leaving the remaining

routing probabilities wkij, i = 1, ..., N − 1, j ∈ Ok(i), subject only to the feasibility

constraints (3.25). Therefore, at each iteration, the source node sends data packets

to its nearest neighbors in Ok(0) in order to minimize its load. The remaining routing

probabilities need to be feasible according to (3.25). The simplest such feasible solu-

tion is obtained by sending the inflow of data packets to the neighbors of a relay node

uniformly, i.e., wkij =
1

|Ok(i)|
, i = 1, ..., N − 1. Finally, at the end of each iteration

we update the residual energy of all nodes (initial energies for the next iteration) as

follows:

rk+1
i = rki − Ui(wk) · δ (3.26)

If rk+1
0 ≤ 0 we declare the network to be dead. However, if rk+1

i ≤ 0, i = 1, .., N − 1,
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then we omit dead nodes and update the network topology to calculate w∗k+1 in the

next iteration with fewer nodes. Note that it is possible for all relay nodes to be dead

while rk+1
0 > 0, implying that the source node still has the opportunity to transmit

data directly to the base if N ∈ Ok+1(0).

The fact that the solution of P1(t) does not allow any direct control over the relay

nodes is a potential drawback of this formulation and motivates the next definition

of WSN lifetime.

3.4.2 Optimal Control Problem - II

As already mentioned, the optimization problem (3.24)-(3.25) does not directly con-

trol the way relay nodes consume their energy. To impose such control on their energy

consumption, we add
∑N−1

i=1 ri(T ) as a terminal cost to the objective function of the

optimal control problem (3.5)-(3.12) and formulate a new problem as follows:

min
w(t)

− T∫
t0

dt+ ε
N−1∑
i=1

ri(T )

 s.t. (3.6)− (3.12) (3.27)

where ε > 0 is a weight reflecting the importance of the total residual energy relative

to the lifetime as measured at time t. Thus, in order to minimize the terminal cost,

relay nodes are compelled to drive their residual energy to be as close to zero as

possible at t = T . This plays a role as we solve the sequence of problems resulting

for the source node movement: the inclusion of this terminal cost tends to preserve

some relay node energy which may become important in subsequent time steps. The

solution of (3.27) obviously results in a different network lifetime T ∗ relative to that

of problem (3.5)-(3.12), which is recovered when ε = 0. Thus, (3.27) may simply be

viewed as a generalization of (3.5)-(3.12) or, conversely, (3.5)-(3.12) is a special case

of (3.27).
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Optimal control problem II solution

The Hamiltonian based on the new objective function (3.27), as well as the costate

equations, are the same as (3.13) and (3.14) respectively. However, the terminal state

constraint is now

Φ(r(T )) = ε
N−1∑
i=1

ri(T ) + νr0(T )

and the costate boundary conditions are given by:

λi(T ) =
∂Φ(r0(T ), ..., rN−1(T ))

∂ri(T )
, i = 0, ..., N − 1

so that λi = ε, i = 1, ..., N − 1 λ0 = ν. Finally, the transversality condition

H(T ) + ∂Φ/∂t|t=T = 0 for this problem is

−1 + νṙ0(T ) + ε
N−1∑
i=1

ṙi(T ) + νṙ0(T ) + ε
N−1∑
i=1

ṙi(T ) = 0

resulting in

ν =
1− 2ε

∑N−1
i=1 ṙi(T )

2ṙ0(T )
≤ 0 (3.28)

Looking at (3.11) and (3.12) and as already discussed in the previous section, we

have ṙ0(T ) < 0. For the any relay node i = 1, ..., N − 1, there are two possible

cases: (i) Node i is not transmitting any data at t = T , i.e., the node is already

out of energy or the inflow rate to that node is zero, Gi(w(T )) = 0. In this case,

Ui(T ) = 0, consequently ṙi(T ) = 0. (ii) Node i is transmitting, i.e., Ui(T ) > 0,

therefore, ṙi(T ) < 0. It follows that
∑N−1

i=0 ṙi(T ) ≤ 0 and we conclude that ν ≤ 0.

Theorem 2: There exists a time-invariant solution of (3.27): w∗(t) = w∗(T ),

t ∈ [t0, T ].

Proof: The proof is similar to that of Theorem 1. First, observe that the control

variables wij(t) appear in the problem formulation (3.27) only through Ui(w(t)). Next,

applying the Pontryagin minimum principle to (3.13) and based on our analysis we
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get:

[U∗0 (t), ..., U∗N−1(t)] = arg min
Ui(t)≥0

[−1− νU0(t)− ε
N−1∑
i=1

Ui(t)] (3.29)

Recalling that ν ≤ 0 in (3.28), in order to minimize (3.29) the routing vector should

minimize U0(t) while maximizing ε
∑N−1

i=1 Ui(t). Therefore, the optimal control prob-

lem (3.27) can be written as the following problem P2(t):

min
w(t),ν

(U0(t) +
ε

ν

N−1∑
i=1

Ui(t)) s.t. (3.17)− (3.21) (3.30)

where ν < 0 is an unknown constant which must also be determined (if ν = 0, the

problem in (3.29) reduces to maximizing ε
∑N−1

i=1 Ui(t) and can be separately solved).

Using the same argument as in Theorem 1, at t = T , the solution w∗(T ) depends

only on the fixed network topology and the values of the fixed energy parameters

in (3.18) and the control variable constraints (3.17)-(3.20). The same applies to

any other t ∈ [t0, T ), therefore, there exists a time-invariant optimal control policy

w∗(t) = w∗(T ), which minimizes the Hamiltonian and proves the theorem. �

The intuition behind P2(t) in (3.30) is that one may prolong the network lifetime

by minimizing the load of the source node while maximizing the workload of relay

nodes. As in the case of Theorem 1, the value of Theorem 2 is that once again it

allows us to reduce the evaluation of the instantaneous routing vector w∗(t0) to a

NLP, rather than solving for a full vector w∗(t) just to get w∗(t0). Once again, this

does not mean that the full w∗(t) is time-invariant as the source node moves. As in the

case of P1(t), we proceed by discretizing the source node trajectory and determining

at step k an optimal routing vector w∗k and associated ν∗k by solving the following

NLP:

min
wk,νk

(
U0(wk) +

ε

νk

N−1∑
i=1

Ui(w
k)

)
s.t. (3.28) and (3.31)
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Ui(w
k) = Gi(w

k)[
∑

j∈Ok(i)

wkij(Csd
2
i,j + Cf ) + Cr] (3.32)

U0(wk) =
∑

j∈Ok(0)

wk0j(Cs(d
k
0,j)

2 + Cf ) (3.33)

Gi(w
k) =

∑
h∈Ik(i)

wkhiGh(w
k), i = 1, . . . , N − 1 (3.34)

∑
j∈Ok(i)

wkij = 1, 0 ≤ wkij ≤ 1, i = 0, . . . , N − 1 (3.35)

We then evaluate and update the energy level of all nodes using (3.26) and check the

terminal constraint (3.11) at the end of each iteration. If the source node is “alive”,

we update the network topology to eliminate any relay nodes that may have depleted

their energy in the current time step. Note that in order to solve (3.31)-(3.35) we also

need to determine νk so that it satisfies (3.28) with ṙ∗i (T ) = −Ui(w∗(T )) = −Ui(w∗k).

To do so, we start with an initial value and iteratively update it until (3.28) is satisfied.

This extra step adds to the problem’s computational complexity and motivates yet

another definition of WSN lifetime.

3.4.3 Optimal Control Problem - III

In this section, we revise the terminal constraint used in Problem I in order to improve

the total energy consumption in the network and possibly reduce the computational

effort required in P2(t) due to the presence of ν in (3.31) and (3.30). Thus, let us

replace the terminal constraint (3.11), i.e., r0(T ) = 0, by
∑N−1

i=0 ri(T ) = 0, therefore

redefining the WSN lifetime as the time when all nodes deplete their energy. Com-

pared to Problem II where we included
∑N−1

i=1 ri(T ) as a soft constraint on the total

residual relay node energy, here we impose it as a hard constraint. The following

result asserts that the source node 0 must still die at t = T , just as in Problem I.

Lemma 1: Consider (3.5)-(3.12) with (3.11)-(3.12) replaced by
∑N−1

i=0 ri(T ) = 0.

Then, ṙ0(T ) < 0.
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Proof: Proceeding by contradiction, suppose ṙ0(T ) = 0, consequently r0(t1) =

0 for some t1 < T and there must exist some node i > 0 such that ri(t1) > 0

otherwise the network would be dead at t1 < T . Then, w0j(t1) = 0. This implies that

Gj(w(t1)) = 0 for all j ∈ O(0), i.e., there is no inflow to process at any node j ∈ O(0),

therefore, Gi(w(t1)) = 0 at all nodes i > 0 contradicting the fact that ri(t1) > 0 for

some i > 0. �

Optimal control problem III solution

We apply the new terminal constraint to problem (3.5)-(3.12), i.e., replace (3.11)-

(3.12) by
N−1∑
i=0

ri(T ) = 0 (3.36)

The Hamiltonian is still the same as (3.13) and the costate equations remain as

in (3.14). However, the terminal state constraint, as well as the costate boundary

conditions, are modified as follows:

Φ(r(T )) = ν
N−1∑
i=0

ri(T ) (3.37)

λi(T ) = ν
∂Φ(r0(T ), ..., rN−1(T ))

∂ri(T )
= ν, i = 0, . . . , N − 1 (3.38)

Thus, the costates over all t ∈ [t0, T ] are identical constants, λ0(t) = ... = λN−1(t) =

ν. Similar to our previous analysis, we use the transversality condition H(T ) +

∂Φ/∂t|t=T = 0 to investigate the sign of ν: −1 +
∑N−1

i=0 νṙi(T ) + ν
∑N−1

i=0 ṙi(T ) = 0

and we get

ν =
2∑N−1

i=0 ṙi(T )
≤ 0

by examining all possible cases for the state of relay nodes at t = T as we did for

(3.28). Finally, applying the Pontryagin minimum principle leads to the following
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optimization problem P3(t):

min
w(t)

N−1∑
i=0

Ui(t) s.t. (3.17)− (3.20) and (3.39)

N−1∑
i=0

T∫
t0

Ui(t)dt =
N−1∑
i=0

Rt0
i (3.40)

This new formulation indicates that the optimal routing vector corresponds to a

policy minimizing the overall network workload during its lifetime, T . We can once

again establish the fact that there exists a time-invariant solution of (3.39)-(3.40)

w∗(t) = w∗(T ), t ∈ [t0, T ] with similar arguments as in Theorems 1 and 2, so we omit

this proof. We then proceed as before by discretizing the source node trajectory and

determining at step k an optimal routing vector w∗k by solving the NLP:

min
wk

N−1∑
i=0

Ui(w
k) s.t. (3.32)− (3.35) (3.41)

Note that problem (3.39)-(3.40) is not always feasible. In fact, its feasibility depends

on the initial energies of the nodes at each iteration, i.e., ri(t0) = Rt0
i , i = 0, .., N−1, in

(3.6). As we discussed it in Chapter 2 for a fixed network topology, if we can optimally

allocate initial energies to all nodes, this results in all nodes dying simultaneously,

which is exactly what (3.36) requires. More specifically, recalling Remark-4 in Chapter

2 for the problem with ideal battery dynamics, the optimal routing vector can be

obtained by solving the following NLP (Wu and Cassandras, 2005):

min
w

N−1∑
i=0

Gi(w)

( ∑
i≺j, j<N

wi,jkij + ki,N

)

s.t. 0 ≤ wi,j ≤ 1, 0 ≤ i, j ≤ N and i ≺ j∑
i≺j, j<N

wi,j ≤ 1, Gi(w) > 0
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which is equivalent to problem 3.41. We then determine the optimal initial energy

for each node R∗i , i = 0, ..., N − 1, through

R∗i (w) =
R̄

Ki(w)

[
N−1∑
j=0

1

Kj(w)

]−1

, i = 1, . . . , N − 1

This solution results in a scenario in which all nodes die simultaneously. where

Ki(w) = [Gi(w)gi(w)]−1 and R̄ is the total initial energy.

However, such degree of freedom does not exist in (3.39)-(3.40), therefore, one or

more instances of (3.41) for k = 0, 1, . . . is likely to lead to an infeasible solution for

the original problem since we cannot control Rk
i . Clearly, this makes the definition

of WSN lifetime through (3.36) undesirable. Nonetheless, we follow up on it for the

following reason: We will show next that (3.41), if feasible, is equivalent to a shortest

path problem and this makes it extremely efficient for on-line solution at each time

step along the source node trajectory. Thus, if we adopt a shortest path routing policy

at every step k, even though it is no longer guaranteed that this solves (3.41) since

(3.36) may not be satisfied for the values of Rk
i at this step, we can still update all node

residual energies through (3.26) and check whether rk+1
0 ≤ 0. The network is declared

dead as soon as this condition is satisfied, even if
∑N−1

i=0 rk+1
i ≥ 0. Although (3.36)

is not satisfied at the kth step, this approach provides a computationally efficient

heuristic for maximizing the WSN lifetime over the source node trajectory in the

sense that when rk+1
0 ≤ 0 at time kδ, the lifetime is T = kδ and this may compare

favorably to the solution obtained through the Problem II formulation where both

lifetimes satisfy r0(T ) = 0 with ṙ0(T ) < 0 (by Lemma 1). This idea is tested in

Section 3.4.4.
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Transformation of Problem III to a shortest path problem

The WSN can be modeled as a directed graph from the source (node 0) to a destina-

tion (node N). Each arc (i, j) is a transmission link from node i to node j. The weight

of arc (i, j) is defined as Qij = Cr+Cs ·d2
i,j +Cf (for the source node Cr = 0) which is

the energy consumption to receive one bit of information and transmit it from node

i to node j. A path from the source to the destination node is denoted by p with an

associated cost defined as Cp =
∑

(i,j)∈pQij. Clearly, for each bit of information, the

total energy cost to deliver it from the source node to the base station through path

p is Cp.

Theorem 3: If problem (3.39)-(3.40) is feasible, then its solution obtained using

(3.41), is equivalent to the shortest path on the graph weighted by the transmission

energy costs Qij for each arc (i, j).

Proof: We first prove that if the solution of (3.41) includes multiple paths from

node 0 to N where nodes in the path have positive residual energy, then the paths

have the same cost. We proceed using a contradiction argument. Suppose that in the

optimal solution there exist two distinct paths P ∗1 and P ∗2 such that CP ∗1 < CP ∗2 . Let

qP ∗1 and qP ∗2 be the amounts of information transmitted through P1 and P2 respectively

in a time step of length δ, i.e., qP ∗1 + qP ∗2 = G0 · δ.

In addition, let r̄∗k be the total amount of energy consumed under an optimal

routing vector w∗k over the time step of length δ, i.e., r̄∗k =
∑

i Ui(w
∗
k) · δ. It follows

that qP ∗1CP ∗1 + qP ∗2CP ∗2 = r̄∗k. Suppose we perturb the optimal solution so that an

additional amount of data ξ > 0 is transmitted through P ∗1 . Then:

(qP ∗1 + ξ)CP ∗1 + (qP ∗2 − ξ)CP ∗2 = r̄∗k + ξ(CP ∗1 − CP ∗2 ) < r̄∗k

This implies that
∑

i Ui(w
∗
k) is not the minimum cost and the original solution is not

optimal, leading to a contradiction.
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We have thus established that if the solution of (3.41) includes multiple paths

from node 0 to N where nodes in the path have positive residual energy, then the

paths have the same cost. Recall that arc weights correspond to energy consumed,

therefore the shortest path on the graph weighted by the transmission energy costs

guarantees the lowest cost to deliver every bit of data from the source node to the

base station, i.e., min
∑N−1

i=0 Ui(w
k). �

3.4.4 Numerical examples

In this section, we use a WSN example to compare the performance of different

formulations based on the three different network lifetime definitions we have con-

sidered. We consider a 6-node network as shown in Fig. 3·1. Nodes 1 and 6

are the source and base respectively, while the rest are relay nodes. Let us set

Cs = 0.0001, Cf = Cr = 0.05, and β = 2 in the energy model. We also set ini-

tial energies for the nodes Ri = 80, i = 1, ..., 5. Starting with the source node at

(x0(0), y0(0)) = (0, 0), we solve the two optimization problems (3.31)-(3.35) with

ε = 1 and the equivalent shortest path problem of (3.39) for OCPs II and III re-

spectively as the trajectory of the source node evolves. Since this trajectory is not

known in advance, in this example we assume the source node moves based on a ran-

dom walk as shown in Fig. 3·1. We first find the optimal routing vector by solving

(3.31)-(3.35) at each time step along the source node trajectory treating the network

topology as fixed for that step. Fig. 3·2 shows the routing vectors as well as the

evolution of residual energies of all nodes during the network lifetime, i.e., the time

when the source node depletes its battery.

We can see that at T = 187.6 the residual energy of the source node drops to

zero, hence that is the optimal lifetime obtained using the definition where the soft

constraint
∑N−1

i=1 ri(T ) is included in (3.27) with ε = 1. Next, we use the WSN

definition where
∑N−1

i=1 ri(T ) = 0 is used as a hard constraint. As already discussed,
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Figure 3·1: 6-node network with mobile source (node 1)

the corresponding problems (3.41) over the source node trajectory are generally results

in an infeasible solution for the original problem. Instead, we adopt the shortest path

routing policy at each step to exploit Theorem 3 with the understanding that the

result (for this particular WSN definition) is suboptimal. We consider the same

source node trajectory as in Fig. 3·1. The optimal routing vector updates as well as

the residual energy of the nodes during the network lifetime are shown in Fig. 3·3.

In this case T = 194.1, which is slightly longer than the one obtained in Fig. 3·2.(b)

with considerably less computational effort. Also, note that since the source node

always sends data packets through the shortest path, it never uses nodes 2 and 4 for

this particular trajectory. As expected, (3.39)-(3.40) is not feasible, however finding

the shortest path at each step in fact improves the network lifetime in the sense of

the first time when the source node depletes its energy. We point out, however, that

this is not always the case and several additional numerical examples show that this

depends on the actual trajectory relative to the relay node locations.

Recall that ε is the weight of the soft constraint in problem P2(t). Applying small

or large ε makes the problem closer to P1(t) or P3(t) respectively. Tab. 3.1 shows
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Figure 3·2: (a) Routing vector ; (b) Residual energies over time during
the network lifetime (Problem II)
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Figure 3·3: (a) Routing vector ; (b) Residual energies over time during
the network lifetime (Problem III)
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Table 3.1: Network lifetime using OCP-II for different values of ε

ε 0 0.1 0.5 1 8
T 203.1 199 198.8 187.6 160.5

the network lifetime for different values of ε. It is observed that in this scenario, it is

not optimal to encourage the nodes to die simultaneously which is often viewed as a

desirable heuristic. On the other hand, applying OCP-I (ε = 0) with uniform routing

probabilities for relay nodes, i.e., wkij = 1/|Ok(i)|, results in the longest lifetime

T = 203.1. Based on the numerical results, it is obvious that the definition of a static

WSN lifetime is not appropriate here. Finally, we observe that the routing vectors are

such that at each time step a subset of nodes is fully used (wij = 1) while the rest are

not used at all. This suggests the possibility of conditions under which a “bang-bang”

type of optimal routing policy, an issue which deserves further investigation.

3.5 Optimal Control Formulation when source node trajec-

tory is known in advance

In this section, we consider the case when we have full advance knowledge of the

source node trajectory and include this information in the optimal control problem.

Defining the WSN lifetime to be the time when the source node depletes its energy,

i.e., using the definition in OCP I, Section 3.4.1, the problem is formulated as follows:

min
w(t)
−

T∫
0

dt (3.42)

s.t. ṙi(t) = −Ui(w(t)), ri(0) = Ri, i = 0, .., N − 1 (3.43)[
ẋ0(t)
ẏ0(t)

]
=

[
fx(x0(t), y0(t))
fy(x0(t), y0(t))

]
, (x0(0), y0(0)) given (3.44)

Ui(w(t)) = Gi(w(t))[
∑
j∈O(i)

wij(t)(Csd
2
i,j + Cf ) + Cr], i = 1, ..., N − 1 (3.45)
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U0(w(t)) =
∑
j∈O(0)

w0j(t)(Csd
2
0,j(t) + Cf ) (3.46)

Gi(w(t)) =
∑
k∈I(i)

wki(t)Gk(w(t)), i = 1, .., N − 1 (3.47)

∑
j∈Oi

wij(t) = 1, 0 ≤ wij(t) ≤ 1, i = 0, . . . , N − 1 (3.48)

r0(T ) = 0 (3.49)

r0(t) > 0, t ∈ [0, T ); ri(t) ≥ 0, i = 1, .., N − 1, t ∈ [0, T ] (3.50)

where (3.44) specifies the trajectory of the source node. In this problem, the state

variables are the residual node energies, ri(t), as well as the source node location at

time t, (x0(t), y0(t)). One should note that we no longer need to use t0 as the initial

time, since we solve the problem for the entire network lifetime, i.e., t ∈ [0, T ].

Similar to Section 3.4.1, we obtain the Hamiltonian (Bryson and Ho, 1975):

H(w, t, λ) = −1 + λ0(t)(−U0(t)) +
N−1∑
i=1

λi(t)(−Ui(t))+

λx(t)fx(x0(t), y0(t)) + λy(t)fy(x0(t), y0(t)) (3.51)

As before, λi(t) is the costate corresponding to ri(t), i = 0, ..., N − 1 and we add

λx(t), λy(t) to be the costates of x0(t) and y0(t). Since in this case we know the

equation of motion for the source node in advance, this imposes terminal constraints

for the location of the source node at t = T . Thus, based on the dynamics in (3.44)

we can specify x0(T ) and y0(T ) as x0(T ) = Fx0(T ) and y0(T ) = Fy0(T ). Therefore,

the terminal state constraint is:

Φ(r(T ), x0(T ), y0(T )) =

νr0(T ) + µx(x0(T )− Fx0(T )) + µy(y0(T )− Fy0(T )) (3.52)
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where ν, µx, and µy are unknown constants. It is straightforward to show that λi(t),

i = 1, ..., N − 1 are as in (3.15). On the other hand, λx and λy must satisfy:

λ̇x(t) = −∂H
∂x0

= 2Csλ0(t)
∑
j∈O(0)

[w0j(t)(x0(t)− xj)]− λx(t)
∂fx
∂x0

− λy(t)
∂fy
∂x0

(3.53)

λ̇y(t) = −∂H
∂y0

= 2Csλ0(t)
∑
j∈O(0)

[w0j(t)(y0(t)− yj)]− λx(t)
∂fx
∂y0

− λy(t)
∂fy
∂y0

(3.54)

with boundary conditions:

λx(T ) =
∂Φ(r(T ), x0(T ), y0(T ))

∂x0(T )
= µx (3.55)

λy(T ) =
∂Φ(r(T ), x0(T ), y0(T ))

∂y0(T )
= µy (3.56)

The transversality condition H(T ) +
∂Φ

∂t

∣∣∣∣
t=T

= 0 gives:

− 1 + νṙ0(T ) + λx(T )ẋ0(T ) + λy(T )ẏ0(T ) + νṙ0(T )+

µxẋ0(T )− µx
dFx0(T )

dT
+ µyẏ0(T )− µy

dFy0(T )

dT
= 0 (3.57)

Owing to the complexity of (3.53) and (3.54), we cannot analytically obtain λx(t)

and λy(t). We shall also adjoin equality and inequality path constraints (3.48) and

(3.50) to the Hamiltonian and investigate optimality conditions at potential corner

points (Bryson and Ho, 1975).

The solution of this problem is computationally challenging. Thus, we solve this

optimal control problem (OCP) numerically using GPOPS-II (Patterson and Rao,

2014), a MATLAB-based general purpose optimal control software that approximates

a continuous-time OCP as a large sparse nonlinear programming problem (NLP) using

variable-order Gaussian quadrature collocation methods (Patterson and Rao, 2014).

The resulting NLP is then solved using IPOPT, an NLP solver. Fortunately, this

procedure can be done off line in advance of the source node initiating its known
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trajectory.

3.5.1 Numerical Examples

Consider a 5-node network as shown in Fig. 3·4 in which nodes 1 and 5 are the source

and base respectively while the rest are relay nodes. First we assume the source node

travels along a straight line with a constant velocity, then, ẋ0(t) = vx, ẏ0(t) = vy

in (3.44) with vx = 1 and vy = 2/3. We consider the energy model parameters

similar to those in section 3.4.4 and set the initial energies for the nodes as R1 = 140

and R2,3,4 = 100. Assuming (x0(0), y0(0)) = (0, 0), we solve the corresponding OCP

(3.42)-(3.50) using GPOPS-II. Fig. 3·5 shows the routing vector during the network

lifetime as well as evolution of the residual energies of all nodes while the source node

travels.
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Figure 3·4: 5-node network with mobile source

As observed in Fig. 3·5, in this scenario the source node always sends data packets

to the nearest neighbor in order to prolong its lifetime. First, it sends 100% of the

generated data to node 2 until it dies at time 51.6. Then, it sends data packets to the
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Figure 3·5: (a) Residual energies over time during the network life-
time; (b) Optimal routing vector
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next available nearest relay node, node 3. Once node 3 runs out of energy, t = 65.3,

the source node transmits data packets to the base via node 4. Finally, at t = 116.8

the source node depletes its energy. This optimal solution suggests a greedy policy

in which each node sends the inflow of data packets to its available nearest neighbor.

Fig. 3·6 shows the routing vector and evolution of residual energies of all nodes under

this greedy policy for the same scenario as in Fig. 3·4. It is observed that the greedy

policy results in almost the same lifetime for the network.

Next we consider a more interesting example in which the source node travels over

a sinusoidal trajectory described through ẋ0(t) = vx, ẏ0(t) = AB cos(Bt) in (3.44)

with vx = 1 and A = 55 and B = 1/15. Solving the corresponding OCP, Fig. 3·7

shows the network topology and source node trajectory during its lifetime and Fig.

3·8 shows all nodes residual energies as well as the optimal routing vector in this

scenario. Unlike the previous example, here the optimal routing vector is such that it

prolongs the lifetime of node 3, resulting in extending source node lifetime. In other

words, due to the prior knowledge of the source node trajectory, it is optimal that

node 3 remains alive for a longer time compared to the scenario shown in Fig. 3·4.

Thus node 2 just sends half of its inflow packets to node 3. Applying the nearest-

neighbor greedy policy to the same scenario, Fig. 3·9 shows the evolution of residual

energies as well as the greedy routing vector. It is observed that the greedy policy is

not optimal in this case and results in the network lifetime of 211 < 298.7 obtained

under the optimal policy.
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Figure 3·6: (a) Residual energies over time during the network life-
time; (b) Routing vector under greedy policy
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Figure 3·7: 5-node network with mobile source

Finally, we investigate how the prior knowledge of the source node’s motion dy-

namics helps improving network lifetime. To do so, we consider the same sinusoidal

trajectory while we assume there is no information about the equation of motion

and the source node trajectory evolves with a time step of δ = 1. We then find the

network lifetime applying OCPs II and III introduced in Section 3.4. Fig. 3·10 shows

the nodes’ residual energies over time under the routing policies resulting from both

formulations II and III with T = 112.9 and T = 147.3 respectively. It is observed

that the lack of knowledge of the source node trajectory in this case results in a life-

time which is less than half of the optimal value T ∗ = 298.7 obtained with advance

knowledge of the source node trajectory.
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Figure 3·8: (a) Residual energies over time during the network life-
time; (b) Optimal routing vector for the sinusoidal trajectory
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Figure 3·9: (a) Residual energies over time during the network life-
time; (b) Routing vector under the greedy policy for the sinusoidal
trajectory
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Figure 3·10: (a) Residual energies over time (Problem II); (b) Resid-
ual energies over time (Problem III)

3.6 Summary

We have redefined the lifetime for WSNs with a mobile source node to be the time

until the source node runs out of energy. When the mobile node’s trajectory is

unknown in advance, we have shown that optimal routing vectors can be evaluated

as solutions of a sequence of NLPs as the source node trajectory evolves. When

the mobile node’s trajectory is known in advance, we formulate an optimal control

problem which requires an explicit off-line numerical solution. Our examples show

that the prior knowledge of the source node’s motion dynamics considerably increases

the network lifetime.
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Chapter 4

Optimal Routing and Charging of

Energy-Limited Vehicles in Traffic

Networks

4.1 Introduction

As reported by the U.S. Department of Energy, transportation was responsible for

almost three-quarters of total U.S. petroleum consumption in 2014. From increasing

energy security to reducing emissions of greenhouse gases, Battery-Powered Vehicles,

such as Electric Vehicles (EVs), offer a revolutionary pathway to an energy efficient,

environmentally friendly transportation system. On the other hand, based on the In-

ternational Energy Agency (IEA) road-map vision (IEA, 2011), at least 50% of Light

Duty Vehicle (LDV) sales worldwide should include Electric and Plug-in Hybrid Elec-

tric Vehicles (EVs/PHEVs) by 2050. This significant rise of BPVs in traffic networks

has introduced new challenges in classical network routing problems (Laporte, 1992).

In particular, by integrating BPVs into traffic flows, we deal with a network routing

problem in which the routing decision can be affected by the dynamic behavior of

a physical attribute of some entities. Here, the key physical attribute is energy. In

general, BPVs face significant battery-related challenges which are crucial in rout-

ing problems including limited driving range, long recharge time, sparse coverage of

charging stations, and the BPV energy recuperation ability (Artmeier et al., 2010)

which can be exploited. The Regenerative Braking System (RBS) causes the energy
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recuperation ability in EVs which can be exploited to extend their cruising range.

In this context, (Artmeier et al., 2010) addresses an energy-optimal routing problem.

Incorporating the recuperation ability and energy constraints, the general shortest-

path algorithm is extended to be adaptable for this problem. Considering both lim-

ited energy supply and energy recuperation ability, (Eisner et al., 2011) studies the

energy-efficient routing problem for EVs. Employing a generalization of Johnson’s

potential shifting technique to the famous Dijkstra’s algorithm, a computationally

efficient route planning algorithm is proposed in this work. This algorithm is appli-

cable to any road network graph whose edge costs represent energy consumption or

energy recuperation. In (Sachenbacher et al., 2011) the problem of energy-optimal

routing for EVs, subject to specific characteristics such as the energy recuperation,

battery capacity limitations and dynamic energy cost, is studied in a graph-theoretic

context and a heuristic algorithm is proposed to find the optimal path.

Minimizing the length of the path, (Siddiqi et al., 2011) studies a multi-constrained

route optimization problem for EVs. Applying penalty function method, the problem

is transformed into an unconstrained optimization problem, then a particle swarm op-

timization algorithm is proposed to find a suboptimal solution. In (Khuller et al.,

2011) algorithms for several routing problems including the shortest path and the

Traveling Salesman Problem (TSP) are proposed by incorporating all costs in terms

of gas prices. The goal is to find the cheapest route for an origin-destination pair or

the cheapest tour in the case of TSP. For the shortest path problem, equivalent to our

single vehicle routing problem, a Dynamic Programming (DP) algorithm is proposed

to find a least cost path from an origin to a destination in a network with inhomoge-

neously priced refueling stations. The same problem is revisited by authors in (Sweda

and Klabjan., 2012) where the recharging cost is assumed as a nonlinear function of

the battery charging level. Again, the goal is to find a minimum-cost path for an
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EV. Discretizing the state space, a DP based algorithms is proposed to determine

the optimal path. (Schneider et al., 2014) introduces the Electric Vehicle Routing

Problem with Time Windows and recharging stations (E-VRPTW). In this paper,

the charging scheme simply forces vehicles to be always fully recharged. In (Worley

et al., 2012), the problem of locating charging stations and also determining opti-

mal routes for commercial electric vehicles is formulated as an integer programming

problem. Combinatorial optimization methods for different aspects of EV manage-

ment such as energy-efficient routing and facility location problems are studied in

(Touati-Moungla and Jost, 2012). In recent work, (He et al., 2014) investigates the

user-optimal network flow equilibrium with different scenarios for flow dependency of

energy consumption of Battery Electric Vehicles (BEVs).

In this thesis, our objective is to study a vehicle total traveling time minimiza-

tion problem (including both the time on paths and at charging stations), where an

energy constraint is considered so that the vehicle is not allowed to run out of power

before reaching its destination. We view this as a network routing problem where ve-

hicles control not only their routes but also times to recharge at various nodes in the

network. We First investigate the problem in a network with homogeneous charging

nodes. Then, we study a more complicated case in which charging nodes are inhomo-

geneous meaning that the charging rate is a node-dependent parameter. We address

the problem from two different point of views: user-centric vs system-centric. For the

user-centric case, first we formulate the problem as a MINLP which is the exact formu-

lation. We then reduce the problem’s complexity by decomposing it into two simpler

LP problems. Correspondingly, we separately determine route selection through a

Linear Programming (LP) problem and then recharging amounts through another

LP problem. Since we do not impose full recharging constraints, the solutions ob-

tained are more general than, for example, in (Schneider et al., 2014) and recover full
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recharging when this is optimal. For the network with homogeneous charging nodes,

this problem decomposition doesn’t affect the optimality of the solution, however

for the network with inhomogeneous charging nodes, the solution of the decomposed

LP for route selection is sub-optimal in general. Next we study the system-centric

problem in which a traffic flow model is used to incorporate congestion effects. This

system-wide optimization problem appears to have not yet attracted much attention.

By grouping vehicles into “subflows” we are once again able to decompose the prob-

lem into route selection and recharging amount determination, although we can no

longer reduce the former problem to an LP. Again, the global optimality of the so-

lution of the decomposed route selection problem is not guaranteed for the network

with inhomogeneous charging modes. Moreover, we provide an alternative flow-based

formulation such that each subflow is not required to follow a single end-to-end path,

but may be split into an optimally determined set of paths. This formulation reduces

the computational complexity of the MINLP problem by orders of magnitude with

numerical results showing little or no loss in optimality. We further study the “price

of anarchy” for the multi-vehicle routing problem so as to determine the difference

in performance between selfish routing and system-optimal routing. We then address

the issue of selecting the number of subflows, seeking to keep it as small as possible.

Finally, We relax the assumption that every arriving vehicle is an EV and consider

both EVs with energy constraints and Non-Electric Vehicles (NEVs) in the inflow

to the network. We again seek to optimize a system-centric objective by optimally

routing NEVs and EVs along with an optimal policy for charging EVs along the way

if needed.

The structure of the chapter is as follows. In Section 4.2, we introduce and

address the single-vehicle routing problem and identify properties which lead to its

decomposition. In Section 4.3, the multi-vehicle routing problem is formulated, first as
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a MINLP and then as an alternative flow optimization problem. We also investigate

the price of anarchy for this problem and provide simulation examples illustrating

our approach and giving insights on the relationship between recharging speed and

optimal routes. In Section 4.4 we define a criterion and a systematic procedure for the

proper selection of the number of subflows. In Section 4.5, the multi-vehicle routing

problem in revisited when the inflow to the netwrok contains both EVs and non-EVs.

4.2 Single Vehicle Routing

The single vehicle routing problem represents the “user-centric” point of view in

which the objective is to find the optimal path and charging policy for a single EV

minimizing its total traveling time. We consider a traffic network modeled as a

directed graph G = (N ,A) with N = {1, . . . , n} and |A| = m (see Fig. 4·1). Node

i ∈ N /{n} represents a charging station and (i, j) ∈ A is an arc (link) connecting

node i to j. We assume for simplicity that all nodes have a charging capability,

although this is not necessary (we can model the network with some nodes without

charging capability as a network with inhomogeneous charging nodes). We also define

I(i) and O(i) to be the set of start nodes (respectively, end nodes) of arcs that are

incoming to (respectively, outgoing from) node i, that is, I(i) = {j ∈ N|(j, i) ∈ A}

and O(i) = {j ∈ N|(i, j) ∈ A}.

We are first interested in a single-origin-single-destination vehicle routing problem.

Nodes 1 and n respectively are defined to be the origin and destination. For each

arc (i, j) ∈ A, there are two cost parameters: the required traveling time τij and

the required energy consumption eij on this arc. Note that τij > 0 (if nodes i and

j are not connected, then τij = ∞), whereas eij is allowed to be negative due to

a BPV’s potential energy recuperation effect (Artmeier et al., 2010). Letting the

vehicle’s charge capacity be B, we assume that eij < B for all (i, j) ∈ A. Since
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we are considering a single vehicle’s behavior, we assume that it will not affect the

overall network’s traffic state, therefore, τij and eij are assumed to be fixed depending

on given traffic conditions at the time the single-vehicle routing problem is solved.

Clearly, this cannot apply to the multi-vehicle case in the next section, where the

decisions of multiple vehicle routes affect traffic conditions, thus influencing traveling

times and energy consumption. Since the BPV has limited battery energy it may not

be able to reach the destination without recharging. Thus, recharging amounts at

charging nodes i ∈ N are also decision variables.

We denote the selection of arc (i, j) and energy recharging amount at node i by

xij ∈ {0, 1}, i, j ∈ N and ri ≥ 0, i ∈ N /{n}, respectively. Moreover, since we take

into account the vehicle’s energy constraints, we use Ei to represent the vehicle’s

residual battery energy at node i. Then, for all Ej, j ∈ O(i), we have:

Ej =

{
Ei + ri − eij if xij = 1
0 otherwise

(4.1)

which can also be expressed as

Ej =
∑
i∈I(j)

(Ei + ri − eij)xij, xij ∈ {0, 1}

The problem objective is to determine a path from 1 to n, as well as recharging

amounts, so as to minimize the total elapsed time for the vehicle to reach the desti-

nation. Fig. 4·1 is a sample network for this vehicle routing problem. We formulate

a MINLP problem as follows:

min
xij ,ri, i,j∈N

n∑
i=1

n∑
j=1

τijxij +
n∑
i=1

n∑
j=1

rigxij (4.2)

s.t.
∑
j∈O(i)

xij −
∑
j∈I(i)

xji = bi, for each i ∈ N (4.3)

b1 = 1, bn = −1, bi = 0, for i 6= 1, n (4.4)
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Figure 4·1: A 7-node network example for routing with recharging
nodes.

Ej =
∑
i∈I(j)

(Ei + ri − eij)xij, for j = 2, . . . , n (4.5)

0 ≤ Ei ≤ B, E1 given, for each i ∈ N (4.6)

xij ∈ {0, 1}, ri ≥ 0 (4.7)

where g is the charging time per energy unit, i.e., the reciprocal of a fixed charging

rate. Here, we assume homogeneous charging nodes, i.e., the charging rate, g, is iden-

tical for all nodes. The constraints (4.3)-(4.4) stand for the flow conservation, which

implies that only one path starting from node i can be selected, i.e.,
∑

j∈O(i) xij ≤ 1

(Bertsimas and Tsitsiklis, 1997). It is easy to check that this also implies xij ≤ 1

for all i, j since b1 = 1, I(1) = ∅. Constraint (4.5) represents the vehicle’s energy

dynamics. Finally, (4.6) indicates that the vehicle cannot run out of energy before

reaching a node or exceed a given capacity B. All other parameters are predeter-

mined according to the network topology. The more general case of inhomogeneous

charging nodes will be addressed in Section 4.6.

4.2.1 Properties

Rather than directly tackling the MINLP problem (4.2)-(4.7), we derive some key

properties which will enable us to simplify the solution procedure. The main difficulty

in this problem lies in the coupling of the decision variables, xij and ri, in (4.5).
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The following lemma will enable us to exclude ri from the objective function by

showing that the difference between the total recharging energy and the total energy

consumption while traveling is given only by the difference between the vehicle’s

residual energy at the destination and at the origin.

Lemma 1: Given (4.2)-(4.7),

n∑
i=1

n∑
j=1

(rixij − eijxij) = En − E1 (4.8)

Proof : From (4.5), we sum up both sides to get:

n∑
j=2

Ej −
n∑
j=2

∑
i∈I(j)

Eixij =
n∑
j=2

∑
i∈I(j)

(ri − eij)xij (4.9)

Moreover, we can write

n∑
j=2

∑
i∈I(j)

Eixij =
∑
i∈I(2)

Eixi2 + · · ·+
∑
i∈I(n)

Eixin

representing the sum of Ei on the selected path from node 1 to n, excluding En. On

the other hand, from (4.5) we have Ei = 0 for any node i not selected on the path.

Therefore,
∑n

j=2 Ej is the sum of Ei on the selected path from node 1 to n, excluding

E1. It follows that
n∑
j=2

Ej −
n∑
j=2

∑
i∈I(j)

Eixij = En − E1 (4.10)

Returning to (4.9), we use (4.10) and observe that all terms in the double sum∑n
i=1

∑n
j=1(ri − eij)xij are zero except for those with i ∈ I(j), we get

n∑
i=1

n∑
j=1

(ri − eij)xij =
n∑
j=2

∑
i∈I(j)

(ri − eij)xij =
n∑
j=2

Ej −
n∑
j=2

∑
i∈I(j)

Eixij = En − E1

which proves the lemma.�

In view of Lemma 1, we can replace
∑n

i=1

∑n
j=1 rigxij in (4.2) by (En − E1)g +
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∑n
i=1

∑n
j=1 eijgxij and eliminate the presence of ri, i = 2, . . . , n−1, from the objective

function. Note that E1 is given, leaving us only with the task of determining the value

of En. Now, let us investigate the recharging energy amounts r∗i , i = 1, . . . , n− 1, in

an optimal policy. There are two possible cases: (i)
∑

i r
∗
i > 0, i.e., the vehicle has

to get recharged at least once, and (ii)
∑

i r
∗
i = 0, i.e., r∗i = 0 for all i and the vehicle

has adequate energy to reach the destination without recharging. For Case (i), we

establish the following lemma.

Lemma 2: If
∑

i r
∗
i > 0 in the optimal routing policy, then E∗n = 0.

Proof : We use a contradiction argument. Assume we have already achieved an

optimal route where E∗n > 0 and the objective function is J∗ =
∑

i∈P (τi,i+1 + r∗i g) for

an optimal path denoted by P . Without loss of generality, we re-index nodes so that

we may write P = {1, . . . , n}. Then, each i ∈ P such that i < n on this optimal path

satisfies:

E∗i+1 = E∗i + r∗i − ei,i+1 (4.11)

Consider first the case where r∗n−1 > 0. Let us perturb the current policy as follows:

r
′
n−1 = r∗n−1 −∆, and r

′
i = r∗i for all i < n− 1, where ∆ > 0. Then, from (4.11), we

have

E∗n = E1 +
n−1∑
i=1

(r∗i − ei,i+1)

Under the perturbed policy,

E
′

n = E1 +
n−1∑
i=1

(r
′

i − ei,i+1) = E1 +
n−1∑
i=1

(r∗i − ei,i+1)−∆ = E∗n −∆

E
′

i = E∗i , for all i < n

and, correspondingly,

J
′
=

n−1∑
i=1

(τi,i+1 + r
′

ig) =
n−1∑
i=1

(τi,i+1 + r∗i g)−∆g = J∗ −∆g
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Since E∗n > 0, we may select ∆ > 0 sufficiently small so that E
′
n > 0 and the perturbed

policy is still feasible. However, J
′

= J∗ −∆g < J∗, which leads to a contradiction

to the assumption that the original path was optimal.

Next, consider the case where r∗n−1 = 0. Then, due to E∗n > 0 and ei,i+1 > 0 for

all i ∈ P , we can always find some j ∈ P, j < n such that E∗j > 0, r∗j−1 > 0 and

r∗k = 0 for k > j. Thus, still due to (4.11), we have

E∗j = E∗n +
n−1∑
k=j

ek,k+1 > 0

At this time, since r∗j−1 > 0, the argument is similar to the case r∗n−1 > 0, leading

again to the same contradiction argument and the lemma is proved. �

Turning our attention to Case (ii) where r∗i = 0 for all i ∈ {1, . . . , n}, observe

that the problem (4.2) can be transformed into

min
xij, i,j∈N

n∑
i=1

n∑
j=1

τijxij (4.12)

s.t.
∑
j∈O(i)

xij −
∑
j∈I(i)

xji = bi, for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i 6= 1, n

Ej =
∑
i∈I(j)

(Ei − eij)xij, for j = 2, . . . , n (4.13)

0 ≤ Ei ≤ B, E0 given, for each i ∈ N

xij ∈ {0, 1} (4.14)

In this case, the constraint (4.13) gives

n∑
j=2

Ej −
n∑
j=2

∑
i∈I(j)

Ei = −
n∑
j=2

∑
i∈I(j)

eijxij
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Using (4.10) and Ei ≥ 0, we have

En = E1 −
n∑
j=2

∑
i∈I(j)

eijxij ≥ 0

and it follows that
n∑
i=1

n∑
j=1

eijxij ≤ E1 (4.15)

With (4.15) in place of (4.13), the determination of x∗ij boils down to an integer linear

programming problem in which only variables xij, i, j ∈ N , are involved, a much

simpler problem.

We are normally interested in Case (i), where some recharging decisions must be

made, so let us assume the vehicle’s initial energy is not large enough to reach the

destination. Then, in view of Lemmas 1 and 2, we have the following theorem.

Theorem 1: If
∑

i r
∗
i > 0 in the optimal policy, then x∗ij, i, j ∈ N , in the original

problem (4.2) can be determined by solving a linear programming problem:

min
xij, i,j∈N

n∑
i=1

n∑
j=1

(τij + eijg)xij (4.16)

s.t.
∑
j∈O(i)

xij −
∑
j∈I(i)

xji = bi, for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i 6= 1, n

0 ≤ xij ≤ 1

Proof : Given Lemmas 1 and 2, we know that the optimal solution satisfies
∑

i

∑
j r
∗
i x
∗
ij

=
∑

i

∑
j eijx

∗
ij − E1. Consequently, we can change the objective (4.2) to the form

below without affecting optimality:

min
xij, i,j∈N

n∑
i=1

n∑
j=1

(τij + eijg)xij − E1g

Since ri no longer appears in the objective function and is only contained in the energy



130

dynamics (4.5), we can choose any ri satisfying the constraints (4.5)-(4.6) without

affecting the optimal objective function value. Therefore, x∗ij can be determined by

the following problem:

min
xij, i,j∈N

n∑
i=1

n∑
j=1

(τij + eijg)xij − E1g

s.t.
∑
j∈O(i)

xij −
∑
j∈I(i)

xji = bi, for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i 6= 1, n

xij ∈ {0, 1}

which is a typical shortest path problem formulation. Moreover, by the property

of minimum cost flow problems (Hillier and Lieberman, 2005), the above integer

programming problem is equivalent to the linear programming problem with the

integer restriction of xij relaxed. Finally, since E1 is given, the problem reduces to

(4.16), which proves the theorem. �

Note that using Theorem 1, an optimal path is determined by solving a LP problem

and since this is a convex optimization problem (Boyd and Vandenberghe, 2004), the

solution is the global optimum.

Transformation of the single-vehicle routing problem to a shortest path

problem

We can show that the optimal path obtained using LP formulation (4.16), is

equivalent to the shortest path on the graph weighted by the traveling costs for each

arc (i, j). The weight of arc (i, j) is defined as wij = τij+eijg which is the total elapsed

time for traveling through link (i, j) and getting ri = eij unit of charge at node i.

A path from the origin to the destination node is denoted by p with an associated

cost defined as Wp =
∑

(i,j)∈pwij. Clearly, for an EV with no initial energy at the

origin node, i.e., E1 = 0, the total elapsed time to travel from the origin node to the



131

destination through path p is Wp (Note that the EV will receive
∑

(i,j)∈p eij unit of

energy while traveling and En = 0 at the destination node). One can observe that

Wp is identical to the cost function in (4.16) when corresponding xij s, ∀(i, j) ∈ ps

are equal to one. Similarly, when we find the shortest path, p∗, the optimal cost is

calculated as: Wp∗ − E1 ∗ g.

4.2.2 Determination of optimal recharging amounts r∗i

Once we determine the optimal route, P , in (4.16), it is relatively easy to find a

feasible solution for ri, i ∈ P , to satisfy the constraint (4.5), which is obviously

non-unique in general. Then, we can introduce a second objective into the problem,

i.e., the minimization of charging costs on the selected path, since charging prices

normally vary over stations. As before, we re-index nodes and define P = {1, ..., n}.

We denote the charging price at node i by pi. Once an optimal route is determined,

we seek to control the energy recharging amounts ri to minimize the total charging

cost dependent on pi, i ∈ N /{n}. This can be formulated as a multistage optimal

control problem:

min
ri, i∈P

∑
i∈P

piri (4.17)

s.t. Ei+1 = Ei + ri − ei,i+1

0 ≤ Ei ≤ B, E1 given

ri ≥ 0 for all i ∈ N

This is a simple linear programming problem where Ei and ri are both decision

variables.

Finally, we note that Theorem 1 holds under the assumption that charging nodes

are homogeneous in terms of charging speeds (i.e., the charging rate 1/g is fixed).

However, our analysis allows for inhomogeneous charging prices. The case of node-
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dependent charging rates will be addressed in Section 4.6 and it will be shown that

we still can do the problem decomposition, although the global optimality is not be

guaranteed in general. Thus, alternative techniques need to be explored in order to

reduce the computational complexity of the problem in that case.

It is important to ensure that a solution to the overall problem is computationally

efficient, since it may have to be repeatedly obtained during the course of a vehicle’s

trip: although we treat the state variable Ei as deterministic, in reality there is noise

in the process which may force a re-evaluation of routing and charging at each node

when Ei+1 is observed and may satisfy Ei+1 = Ei + ri − ei,i+1 + wij where wij is

a random variable. In this case, one can re-solve the optimal routing and charging

problem for the vehicle with new initial conditions at node i+ 1, which is possible as

long as we only have to deal with the simple problems (4.16) and (4.17).

4.3 Multiple Vehicle Routing

Next, we investigate the system-centric problem, referred to as the multiple-vehicle

routing problem, in a network with homogeneous charging nodes. As opposed to

the user-centric policy, here we determine the routing and charging policies so as

to optimize a system-wide objective. Thus, as discussed in Section 4.2, the first

technical difficulty here is the need to incorporate the effect of traffic congestion

on both traveling time and energy consumption; therefore, the variables τij and eij

no longer have fixed values. A second difficulty is the implementation of an optimal

routing policy, which requires signaling mechanisms and possibly incentive structures

to enforce desired routes assigned to vehicles. This raises a number of additional

research issues which are beyond the scope of this thesis and likely to be addressed

by the advent of Connected Automated Vehicles (CAVs).

If we proceed as in the single vehicle case, i.e., determining a path selection through
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xkij, i, j ∈ N , and recharging amounts rki , i ∈ N /{n} for all vehicles k = 1, . . . , K,

for some K, then the dimensionality of the solution space is prohibitive. Moreover,

the inclusion of traffic congestion effects introduces additional nonlinearities in the

dependence of the travel time τij and energy consumption eij on the traffic flow

through arc (i, j), which now depend on x1
ij, · · · , xKij . Instead, we will proceed by

grouping subsets of vehicles into N “subflows” where N may be selected to render

the problem manageable (see Section 4.4).

Let all vehicles enter the network at the origin node 1 and let R denote the rate

of vehicles arriving at this node. Viewing vehicles as defining a flow, we divide them

into N subflows (we will discuss the effect of N in Section 4.3.4), each of which may

be selected so as to include the same type of homogeneous vehicles (e.g., vehicles

with the same initial energy). Thus, all vehicles in the same subflow follow the same

routing and recharging decisions so that we only consider energy recharging at the

subflow level rather than individual vehicles. Note that asymptotically, as N → ∞,

we can recover routing at the individual vehicle level.

Clearly, not all vehicles in our system are EVs, in which case these can be treated

as uncontrollable interfering traffic and are accommodated in our analysis as long as

their flow rates are known. For simplicity, we will assume here that every arriving

vehicle is an EV and joins a subflow. However, we will show in Section 4.5 how the

problem can be solved by optimizing over both EVs and non-EVs.

Our objective is to determine optimal routes and energy recharging amounts for

each subflow of vehicles so as to minimize the total elapsed time of these vehicle

flows traveling from the origin to the destination. The decision variables consist of

xkij ∈ {0, 1} for all arcs (i, j) and subflows k = 1, . . . , N , as well as charging amounts

rki for all nodes i = 1, . . . , n − 1 and k = 1, . . . , N . Given traffic congestion effects,

the time and energy consumption on each arc depends on the values of xkij and the
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fraction of the total flow rate R associated with each subflow k; the simplest such

flow allocation (which we will adopt) is one where each subflow is assigned R/N .

Let xij = (x1
ij, · · · , xNij )T and ri = (r1

i , · · · , rNi )T . Then, we denote the traveling time

(delay) a vehicle will experience through link (i, j) by some nonlinear function τij(xij).

The corresponding energy consumption of the kth vehicle subflow through link (i, j)

is a nonlinear function denoted by ekij(xij). As already mentioned, τij(xij) and ekij(xij)

can also incorporate the influence of uncontrollable (non-EV) vehicle flows, which

can be treated as parameters in these functions (we discuss this further in Section

4.5). Similar to the single vehicle case, we use Ek
i to represent the residual energy

of subflow k at node i, given by the aggregated residual energy of all vehicles in the

subflow. If the subflow does not go through node i, then Ek
i = 0. The problem

formulation is as follows:

min
xij,ri, i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

(
τij(xij)x

k
ij

R

N
+ rki gx

k
ij

)
(4.18)

s.t. for each k ∈ {1, . . . , N} :∑
j∈O(i)

xkij −
∑
j∈I(i)

xkji = bi, for each i ∈ N (4.19)

b1 = 1, bn = −1, bi = 0, for i 6= 1, n (4.20)

Ek
j =

∑
i∈I(j)

(Ek
i + rki − ekij(xij))x

k
ij, j = 2, . . . , n (4.21)

Ek
1 is given, Ek

i ≥ 0, for each i ∈ N (4.22)

xkij ∈ {0, 1}, rki ≥ 0 (4.23)

Obviously, this MINLP problem is difficult to solve. However, as in the single-vehicle

case, we are able to establish some properties that will allow us to simplify it.
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4.3.1 Properties

Even though the term τij(xij) in the objective function is no longer linear in general,

for each subflow k the constraints (4.19)-(4.23) are still similar to the single-vehicle

case. Consequently, we can derive similar useful properties for this problem in the

form of the following two lemmas.

Lemma 3: For each subflow k = 1, . . . , N ,

n∑
i=1

n∑
j=1

(rki − ekij(xij))x
k
ij = Ek

n − Ek
1 (4.24)

Proof : From (4.21), we sum up both sides of the equation as follows:

For each k :

n∑
j=2

Ek
j =

n∑
j=2

∑
i∈I(j)

(Ek
i + rki − ekij(xij))x

k
ij

=⇒
n∑
j=2

Ek
j −

n∑
j=2

∑
i∈I(j)

Ek
i x

k
ij =

n∑
j=2

∑
i∈I(j)

(rki − ekij(xij))x
k
ij (4.25)

Moreover,
∑n

j=2

∑
i∈I(j) E

k
i x

k
ij =

∑
i∈I(j) E

k
i

∑n
j=2 x

k
ij representing the sum of Ek

i on

the selected path from node 1 to n. On the other hand, from (4.21) we have Ek
i = 0

for node i not selected on the route. Therefore,

n∑
j=2

Ek
j −

n∑
j=2

∑
i∈I(j)

Ek
i x

k
ij = Ek

n − Ek
1

Back to (4.25),

∑
i

∑
j

(rki−ekij(xij))x
k
ij =

n∑
j=2

∑
i∈I(j)

(rki−ekij(xij))x
k
ij =

n∑
j=2

Ek
j−

n∑
j=2

∑
i∈I(j)

Ek
i x

k
ij = Ek

n−Ek
1

which proves the result.�

Similar to Lemma 2, we can determine Ek∗
n when

∑
i r
k∗
i > 0 by Lemma 4:
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Lemma 4: If
∑n

i=1 r
k∗
i > 0 in the optimal routing policy, then Ek∗

n = 0 for all

k = 1, . . . , N .

Proof : Assume we have already achieved the optimal routes for these k vehicle

subflows such that Ek∗
n > 0 and the contribution of kth subflow to the objective

function value

J∗k =
n∑
i=1

n∑
j=1

τij(xij)x
k∗
ij

R

N
+

n∑
i=1

n∑
j=1

rk∗i gx
k∗
ij

Since only the second part of the objective function is dependent on rki , we only need

to concentrate on the value of
∑n

i=1

∑n
j=1 r

k∗
i gx

k∗
ij . Then each i < n on this route

satisfies:

Ek∗
i+1 = Ek∗

i + rk∗i − ei,i+1 (4.26)

where ei,i+1 is the value of ekij(xij) on the determined route by xk∗ij for all k. Now if

rk∗n−1 > 0, then let us perturb the current policy by

rk
′

n−1 = rk∗n−1 −∆

rk
′

i = rk∗i , for all i < n− 1

where ∆ > 0. Then according to (4.26), under the perturbed policy

Ek′

n = Ek∗
n −∆

Ek′

i = Ek∗
i , for all i < n

and correspondingly J
′

k = J∗k −∆g. Since Ek∗
n > 0, then as long as we make ∆ small

enough such that Ek′
n > 0, the perturbed policy is still feasible. However, J

′

k is smaller

than J∗k , which draws a contradiction to the assumption. Now if rk∗n−1 = 0, then due

to Ek∗
n > 0 and ei,i+1 > 0 for all i, we can always find some j < n such that Ek∗

j > 0,
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rk∗j−1 > 0 and rk∗l = 0 for l > j. Thus, still owing to (4.26), we have

Ek∗
j = Ek∗

n +
n−1∑
l=j

el,l+1 > 0

At this time, since rk∗j−1 > 0, the argument is similar to the case rk∗n−1 > 0, in which

the lemma can be justified by the contradiction argument. Consequently, the lemma

is proven. �

In view of Lemma 3, we can replace
∑n

i=1

∑n
j=1 r

k
i gx

k
ij in (4.18) by (Ek

n −Ek
1 )g +∑n

i=1

∑n
j=1 e

k
ij(xij)gxij and eliminate, for all k = 1, . . . , N , the presence of rki , i =

1, . . . , n−1, from the objective function similar to the single-vehicle case. Since Ek
1 is

given, this leaves only the task of determining the value of Ek
n. There are two possible

cases: (i)
∑

i r
k∗
i > 0, i.e., the kth vehicle subflow has to get recharged at least once,

and (ii)
∑

i r
k∗
i = 0, i.e., rk∗i = 0 for all i and the kth vehicle subflow has adequate

energy to reach the destination without recharging.

Similar to the derivation of (4.15), Case (ii) results in a new constraint∑
i

∑
j e

k
ij(xij)x

k
ij ≤ Ek

1 for subflow k. However, since ekij(xij) now depends on all

x1
ij, . . . , x

N
ij , the problem (4.18)-(4.23) with all rki = 0 is not as simple to solve as was

the case with (4.12)-(4.14). Let us instead concentrate on the more interesting Case

(i) for which Lemma 4 applies and we have Ek∗
n = 0. Therefore, along with Lemma

3, we have for each k = 1, . . . , N :

n∑
i=1

n∑
j=1

rki x
k
ij =

n∑
i=1

n∑
j=1

ekij(xij)x
k
ij − Ek

1

Then, proceeding as in Theorem 1, we can replace the original objective function

(4.18) and obtain the following new problem formulation to determine xk∗ij for all
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i, j ∈ N and k = 1, . . . , N :

min
xij, i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

(
τij(xij)x

k
ij

R

N
+ ekij(xij)gx

k
ij

)
(4.27)

s.t. for each k ∈ {1, . . . , N} :∑
j∈O(i)

xkij −
∑
j∈I(i)

xkji = bi, for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i 6= 1, n

xkij ∈ {0, 1}

Since the objective function is no longer necessarily linear in xkij, (4.27) cannot be

further simplified into an LP problem as in Theorem 1. The computational effort

required to solve this problem heavily depends on the dimensionality of the network

and the number of subflows. Nonetheless, from the transformed formulation above,

we are still able to separate the determination of routing variables xkij from recharging

amounts rki . Similar to the single-vehicle case, once the routes are determined, we

can obtain any rki satisfying the energy constraints (4.21)-(4.22) such that Ek
n = 0,

thus preserving the optimality of the objective value. To further determine rk∗i , we

can introduce a second level optimization problem similar to the single-vehicle case

in (4.17). Next, we will present an alternative formulation for the original problem

(4.18)-(4.23) which leads to a computationally simpler solution approach.

4.3.2 Flow control formulation

We begin by relaxing the binary variables in (4.23) and letting 0 ≤ xkij ≤ 1. Thus,

we switch our attention from determining a single path for any subflow k to several

possible paths by treating xkij as the normalized vehicle flow on arc (i, j) for the kth

subflow. This is in line with many network routing algorithms in which fractions xij

of entities are routed from a node i to a neighboring node j using appropriate schemes
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ensuring that, in the long term, the fraction of entities routed on (i, j) is indeed xij

(Gallager, 1977). Following this relaxation, the objective function in (4.18) is changed

to:

min
xij,ri, i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

τij(xij)x
k
ij

R

N
+

n∑
i=1

N∑
k=1

rki g

Moreover, the energy constraint (4.21) needs to be adjusted accordingly. Let Ek
ij

represent the fraction of residual energy of subflow k associated with the xkij portion

of the vehicle flow exiting node i. Therefore, the constraint (4.22) becomes Ek
ij ≥ 0.

We can now capture the relationship between the energy associated with subflow k

and the vehicle flow as follows:∑
h∈I(i)

(Ek
hi − ekhi(xij)) + rki

 xkij∑
h∈I(i) x

k
hi

= Ek
ij (4.28)

Ek
ij∑

j∈O(i) E
k
ij

=
xkij∑

j∈O(i) x
k
ij

(4.29)

In (4.28), the energy values of different vehicle flows entering node i are aggregated and

the energy corresponding to each portion exiting a node, Ek
ij, j ∈ O(i), is proportional

to the corresponding fraction of vehicle flows, as expressed in (4.29). Clearly, this

aggregation of energy leads to an approximation, since one specific vehicle flow may

need to be recharged in order to reach the next node in its path, whereas another might

have enough energy without being recharged. This approximation foregoes controlling

recharging amounts at the individual vehicle level and leads to approximate solutions

of the original problem (4.18)-(4.23). Several numerically based comparisons are

provided in the next section showing little or no loss of optimality relative to the

solution of (4.18).

Adopting this formulation with xkij ∈ [0, 1] instead of xkij ∈ {0, 1}, we obtain the
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following simpler nonlinear programming problem (NLP):

min
xij,ri, i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

τij(xij)x
k
ij

R

N
+

n∑
i=1

N∑
k=1

rki g (4.30)

s.t. for each k ∈ {1, . . . , N} :∑
j∈O(i)

xkij −
∑
j∈I(i)

xkji = bi, for each i ∈ N (4.31)

b1 = 1, bn = −1, bi = 0, for i 6= 1, n∑
h∈I(i)

(Ek
hi − ekhi(xij)) + rki

 xkij∑
h∈I(i) x

k
hi

= Ek
ij (4.32)

Ek
ij∑

j∈O(i) E
k
ij

=
xkij∑

j∈O(i) x
k
ij

(4.33)

Ek
ij ≥ 0, (4.34)

0 ≤ xkij ≤ 1, rki ≥ 0 (4.35)

As in our previous analysis, we are able to eliminate ri from the objective function

in (4.30) as follows.

Lemma 5: For each subflow k = 1, . . . , N ,

n∑
i=1

rki =
n∑
i=1

n∑
j=1

ekij(xij) +
∑
i∈I(n)

Ek
in −

∑
i∈O(1)

Ek
1i

Proof : Summing (4.32) over all i = 1, . . . , n gives

n∑
i=1

rki =
n∑
i=1

n∑
j=1

ekij(xij) +
n∑
i=1

∑
j∈O(i)

Ek
ij −

n∑
i=1

∑
h∈I(i)

Ek
hi

and using (4.31),(4.33), we get

n∑
i=1

rki =
n∑
i=1

n∑
j=1

ekij(xij) +
∑
i∈I(n)

Ek
in −

∑
i∈O(1)

Ek
1i

which proves the lemma. �
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Similar to Lemma 3, we can easily see that if
∑

i r
k∗
i > 0 under an optimal routing

policy, then
∑

i∈I(n) E
k∗
in = 0. In addition,

∑
i∈O(1)E

k
1i = Ek

1 , which is given. We can

now transform the objective function (4.30) into (4.36) and determine the optimal

routes xk∗ij by solving the following NLP:

min
xij

i,j∈N

N∑
k=1

(
n∑
i=1

n∑
j=1

[
τij(xij)x

k
ij

R

N
+ ekij(xij)g

]
− Ek

1

)
(4.36)

s.t. for each k ∈ {1, . . . , N} :∑
j∈O(i)

xkij −
∑
j∈I(i)

xkji = bi, for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i 6= 1, n

0 ≤ xkij ≤ 1

Note that in the above formulation, the nonlinearity appears in the objective function

due to the traffic congestion effect on traveling time and energy consumption. Thus,

if τij(xij)x
k
ij

R

N
and ekij(xij) are convex functions, the NLP is a convex optimization

problem and the global optimum can be found generally fast. Once we find the

optimal routes, the values of rki , i = 1, . . . , n, k = 1, . . . , N , can be determined so

as to satisfy the energy constraints (4.32)-(4.34), and they are obviously not unique.

We may then proceed with a second-level optimization problem to determine optimal

values similar to Section 4.2.2.

4.3.3 Objective function selection

The selection of τij(xij) in either (4.27) or (4.36) is based on models originating in

the traffic engineering literature. Here, we use a commonly used relationship between

speed and density of a vehicle flow as in (Ho and Ioannou, 1996), (Kuhne and Rodiger,
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1991), (Haefner and Li, 1998):

v(k(t)) = vf

(
1−

(
k(t)

kjam

)p)q
(4.37)

where vf is the reference speed on the road without traffic, k(t) represents the density

of vehicles on the road at time t and kjam the saturated density for a traffic jam. Note

that we can replace k(t)/kjam in (4.37) with f(t)/fjam, where f(t) is the vehicle flow

on the road at time t and fjam represents the maximum capacity of the road. The

parameters p and q are empirically identified for actual traffic flows. Given a network

topology (i.e., a road map), the distances dij between nodes and the capacity of links,

f ijjam, are known. Let us assume EVs enter the network at a rate of R veh./min. We

then evenly divide the EV inflow into N subflows and the total flow entering link

(i, j) becomes fij =
∑

k x
k
ij

R

N
. Then, the time a vehicle spends on link (i, j) becomes

τij(xij) =
dij

vf (1− (
fij

f ijjam
)p)q

(4.38)

In Chapter 6 we show how to estimate the delay function using real traffic data.

Note that in order to prevent the inflow entering each link from exceeding its

capacity, we add the following inequality constraint to the problem formulation (4.27)

and (4.36): ∑
k

xkij
R

N
≤ f ijjam (4.39)

As for ekij(xij), we assume the energy consumption rates of subflows on link (i, j) are

all identical, proportional to the distance between nodes i and j, giving ekij(xij) =

edijR/N .

Therefore, we aim to solve the multi-vehicle routing problem using (4.27) which
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Table 4.1: dij values for network of Fig. 4·1 (miles)

d12 d14 d15 d23 d24 d46 d56 d37 d47 d67
5 6.2 7 3.5 5 3.6 4.3 6 6 4

in this case becomes:

min
xkij

i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

 dijx
k
ij
R
N

vf (1− (
R/N

∑
k x

k
ij

f ijjam
)p)q

+ egdij
R

N
xkij

 (4.40)

s.t. for each k ∈ {1, . . . , N} :∑
j∈O(i)

xkij −
∑
j∈I(i)

xkji = bi, for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i 6= 1, n∑
k

xkij
R

N
≤ f ijjam, ∀(i, j) ∈ A

xkij ∈ {0, 1}

4.3.4 Numerical Examples

For simplicity, we let vf = 1 mile/min, R = 1 veh./min, p = 2, q = 2 and eg = 1

and f ijjam = 1 veh./min ∀(i, j) ∈ A. The network topology used is that of Fig.

4·1, where the distance of each link is shown in Tab. 4.1. To solve the nonlinear

binary programming problem (4.40), we use the optimization solver Opti (MATLAB

toolbox for optimization). The results are shown in Tab. 4.2 for different values

of N = 1, . . . , 30. It can be observed that vehicles are mainly distributed through

three routes and the traffic congestion effect makes the flow distribution differ from

following the shortest path. The number of decision variables (hence, the solution

search space) rapidly increases with the number of subflows. However, looking at

Fig. 4·2 which gives the performance in terms of our objective function in (4.40) as a

function of the number of subflows, one can observe that the optimal objective value
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quickly converges with no significant fluctuations beyond N = 10. Thus, even though

the best solution is found when N = 25, a near-optimal solution can be determined

under a small number of subflows. This suggests that one can rapidly approximate

the asymptotic solution of the multi-vehicle problem (dealing with individual vehicles

routed so as to optimize a systemwide objective) based on a relatively small value of

N .

Table 4.2: Numerical results for sample problem

N 1 2
obj 1.22e9 37.077

routes 1→ 4→ 7 1→ 4→ 7
1→ 2→ 3→ 7

N 3 4
obj 31.7148 32.8662

routes
(1→ 4→ 7)

1→ 2→ 3→ 7
1→ 5→ 6→ 7

(1→ 4→ 7)× 2
1→ 2→ 3→ 7
1→ 5→ 6→ 7

N 5 6
obj 32.1921 31.7148

routes
(1→ 4→ 7)× 2

(1→ 2→ 3→ 7)× 2
1→ 5→ 6→ 7

(1→ 4→ 7)× 2
(1→ 2→ 3→ 7)× 2
(1→ 5→ 6→ 7)× 2

N 10 15
obj 31.5279 31.4851

routes
(1→ 4→ 7)× 4

(1→ 2→ 3→ 7)× 3
(1→ 5→ 6→ 7)× 3

(1→ 4→ 7)× 5
(1→ 2→ 3→ 7)× 5
(1→ 5→ 6→ 7)× 4
(1→ 4→ 6→ 7)× 1

N 25 30
obj 31.4513 31.4768

routes

(1→ 4→ 7)× 9
(1→ 2→ 3→ 7)× 8
(1→ 5→ 6→ 7)× 7
(1→ 4→ 6→ 7)× 1

(1→ 4→ 7)× 11
(1→ 2→ 3→ 7)× 10
(1→ 5→ 6→ 7)× 8
(1→ 4→ 6→ 7)× 1

Next, we obtain a solution to the same problem (4.40) using the alternative NLP

formulation (4.36) where 0 ≤ xkij ≤ 1. Since in this example all subflows are identical,

solving the NLP relaxed problem results in the same routing probabilities for all

subflows, i.e., x1
ij = ... = xNij . Therefore, we can further combine all xkij over each link

(i, j) and formulate the following N -subflow relaxed problem, referred to as N -NLP,

giving the total normalized flow on each link, xij,∀(i, j) ∈ A which is independent of
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Figure 4·2: Performance as a function of N (No. of subflows)

N :

min
xij , i,j∈N

n∑
i=1

n∑
j=1

(
dijxijR

vf (1− (Rxij/f
ij
jam)p)q

+ egdijRxij

)
(4.41)

s.t.
∑
j∈O(i)

xij −
∑
j∈I(i)

xji = bi, for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i 6= 1, n

xijR ≤ f ijjam

0 ≤ xij ≤ 1

This is a relatively easy to solve NLP problem. It can be readily shown that the ob-

jective function is convex. In particular,
dijxijR

vf (1− (xij)p)q)
is convex over 0 ≤ xij ≤ 1

and egdijRxij is a linear function, therefore, their positive weighted sum is a convex

function and (4.41) is a convex optimization problem whose solution is a global opti-

mum. Using the same parameter settings as before, we obtain the objective value of
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31.45 mins and the optimal routes are:

35.88% of vehicle flow: (1→ 4→ 7)

31.74% of vehicle flow: (1→ 2→ 3→ 7)

27.98% of vehicle flow: (1→ 5→ 6→ 7)

4.44% of vehicle flow: (1→ 4→ 6→ 7)

Compared to the best solution (N = 25) in Tab. 4.2 and Fig. 4·2, the difference in

objective values between the integer and flow-based solutions is less than 0.1%. This

supports the effectiveness of a solution based on a limited number of subflows in the

MINLP problem.

Larger networks. We have also considered a more topologically complex network

with 13 nodes and 20 links as shown in Fig. 4·3. The number on each link indicates

the distance between adjacent nodes. We assume all other numerical values to be

similar to the previous example. Fig. 4·2 shows the performance in terms of the

objective function in (4.40) vs the number of subflows for this network. We can see

that the optimal objective value converges around N = 10.

Now, let us solve the N -subflow relaxed problem (4.41) for this network with the

same parameter settings as those in Section 4.3.4 to check for its accuracy. We ob-

tain the optimal objective function value as 57.63 min which is almost equal to the

optimal traveling time of 57.65 min obtained for N = 35 in the MINLP formulation.

The optimal routing probabilities are as follows:

34.77% of vehicle flow: (1→ 2→ 3→ 4→ 5→ 13)

27.52% of vehicle flow: (1→ 9→ 10→ 11→ 12→ 13)

24.89% of vehicle flow: (1→ 6→ 10→ 7→ 8→ 13)



147

10.81% of vehicle flow: (1→ 6→ 3→ 8→ 13)

1.71% of vehicle flow: (1→ 9→ 10→ 7→ 8→ 13)

0.31% of vehicle flow: (1→ 6→ 3→ 4→ 5→ 13)

Figure 4·3: A 13-node network example for routing with recharging
nodes.

CPU time Comparison. Based on our simulation results we conclude that the

flow control formulation is a good approximation of the original MINLP problem.

Tab. 4.3 compares the computational effort in terms of CPU time for both formu-

lations to find optimal routes for the two sample networks we have considered. Our

results show that the flow control formulation results in a reduction of about 5 or-

ders of magnitude in CPU time with virtually identical objective function values (the

difference between objective values of NLP and MINLP with near optimal N is less

than 1%) .

Effect of recharging speed on optimal routes. Once we determine the op-

timal routes, we can also ascertain the total time spent traveling and recharging re-

spectively, i.e., the first and second terms in (4.41). Obviously the value of eg, which

captures the recharging speed, determines the proportion of traveling and recharging
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Table 4.3: CPU time for sample problems

Fig. 4·1 Net. MINLP MINLP NLP approx.
N 2 10(near opt) -

obj 37.08 31.53 31.45
CPU time(sec) 312 9705 0.07
Fig. 4·3 Net. MINLP MINLP NLP approx.

N 2 15(near opt) -
obj 68.05 57.76 57.63

CPU time(sec) 820 10037 0.2

amount as well as the route selection. As shown in Tab. 4.4, the larger the product

eg is, the slower the recharging speed, therefore the more weighted the recharging

time in the objective function becomes. In this case, flows tend to select the shortest

paths in terms of energy consumption. Conversely, if the recharging speed is fast, the

routes are selected to prioritize the traveling time on paths.

Table 4.4: Numerical results for different values of eg for network of
Fig. 4·1

eg 0.1 1 10
total time 18.94 31.45 154.48

time on paths 17.55 17.58 19.45
time at stations 1.39 13.87 135.03

optimal routes

31.53% : (1→ 2→ 3→ 7)
32.97% : (1→ 4→ 7)
28.58% : (1→ 5→ 6→ 7)
5.78% : (1→ 4→ 6→ 7)
1.14% : (1→ 2→ 4→ 7)

31.74% : (1→ 2→ 3→ 7)
35.88% : (1→ 4→ 7)
27.98% : (1→ 5→ 6→ 7)
4.40% : (1→ 4→ 6→ 7)

32.35% : (1→ 2→ 3→ 7)
49.63% : (1→ 4→ 7)
18.02% : (1→ 5→ 6→ 7)

Price of Anarchy. In order to compare system performance under a user-

optimal (single-vehicle routing problem) policy and a system-optimal (multiple-vehicle

routing problem) policy, we investigate the Price of Anarchy (PoA) for this problem.

To make this comparison, we consider two different scenarios:

1. A single driver acts selfishly. We control all vehicles to follow system-

optimal paths and assume that a single driver acts selfishly. We then investigate this

driver’s total traveling time and the possible gain resulting from this deviation.

Let us consider the numerical example in Section 4.3.4 for the network shown in
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Fig. 4·1. The system-optimal flows are obtained by solving the NLP problem (4.41).

Under these flows, let us calculate the traveling time, τ cij, of all links (i, j) ∈ A with

positive flows using (4.38) as shown in Tab. 4.5. Assuming the energy consumption on

Table 4.5: Traveling time on each link for the network shown in Fig.
4·1 under system-optimal flows

τ c12 τ c14 τ c15 τ c23 τ c24 τ c46 τ c56 τ c37 τ c47 τ c67
6.18 8.83 8.24 4.33 5 3.61 5.06 7.42 7.90 4.99

each link is equal to the distance of that link, the total traveling time experienced by

an individual EV, TEV , depends on the system-optimal path assigned to its subflow,

P :

TEV =
∑

(i,j)∈P

(τ cij + eijg)

Total Traveling time for a single EV in flow (1→ 4→ 7) : 28.94 min

Total Traveling time for a single EV in flow (1→ 2→ 3→ 7) : 32.43 min

Total Traveling time for a single EV in flow (1→ 5→ 6→ 7) : 33.59 min

Total Traveling time for a single EV in flow (1→ 4→ 6→ 7) : 31.24 min

Now if we solve the single-vehicle routing problem for a lone EV in the network,

the user-optimal path is (1 → 4 → 7) with a traveling time of 28.94 min. Thus,

in the system-optimal problem, vehicles assigned to the subflows following this path

experience the same traveling time as if they act selfishly and follow the user-optimal

path. However, vehicles assigned to other subflows will experience longer traveling

times in order to reduce the total elapsed time for the whole inflow. For instance, a

single EV can gain 13.86% in its traveling time by acting selfishly and deviating from

the subflow assigned to path (1→ 5→ 6→ 7) and joining path (1→ 4→ 7).

2. All drivers act selfishly. In this case, the flow will be in a Nash equilibrium
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where no single user can incur a gain by changing its own strategy (Youn and Jeong,

2008). Based on Wardrop’s principle, the equilibrium occurs at flows that minimize

the potential function (Roughgarden, 2005)

φ(f) =
∑

(i,j)∈A

fij∫
0

ηij(x)dx (4.42)

where ηij(x) is the travel time incurred by traffic that traverses link (i, j) as a function

of the link congestion (Rxij in (4.41)). The PoA is defined as the ratio of the total

system cost (the total elapsed time) under Nash equilibrium to the total cost under

the social-optimal flows. Tab. 4.6 shows the normalized Nash-equilibrium flow, xeij,

on each link (i, j) of the network shown in Fig. 4·1 resulting in the following selfish

routing:

46.4% of vehicle flow: (1→ 4→ 7)

30.7% of vehicle flow: (1→ 2→ 3→ 7)

21.4% of vehicle flow: (1→ 5→ 6→ 7)

1.5% of vehicle flow: (1→ 4→ 6→ 7)

Applying Nash-equilibrium flows into the system-wide objective function (4.41), the

Table 4.6: Normalized Nash-equilibrium flows

xe12 xe14 xe15 xe23 xe24 xe46 xe56 xe37 xe47 xe67
30.7 47.9 21.4 30.7 0 1.5 21.4 30.7 46.4 22.9

total traveling time is 32.27 min which is higher than the optimal cost of 31.45 ob-

tained under the social-optimal policy and the price of anarchy is PoA = 1.038.
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4.4 Selection of the Number of Subflows

We begin with the observation that the objective function as well as the constraints

of the flow control formulation (NLP) (4.36) are the same as those of the MINLP

formulation (4.27), except for the relaxed binary constraints, i.e., 0 ≤ xkij ≤ 1. Thus,

in general, the optimal objective value of the NLP problem will be equal or lower

than that of the MINLP problem. We seek the best value of N to render the problem

computationally manageable.

Similar to the numerical examples in Section 4.3.4, we focus on the case where

we divide the total vehicle inflow, R, into N sublows each with a rate of R/N . In

this case, solving the NLP problem results in the same routing probabilities for all

subflows, i.e., x1
ij = ... = xNij . Therefore, we can combine them and reformulate the

problem as an N -subflow relaxed problem, referred to as “N -NLP”, giving the total

normalized flow on each link, xij, (i, j) ∈ A (see (4.41)).

In Section 4.3.4, the numerical results show that the optimal objective value

quickly converges for a small value of N . Thus, even though the best solution may

be found for a larger N , a near-optimal solution can be determined under a small

number of subflows. This suggests that we can approximate the asymptotic solution

of the multi-vehicle problem based on a relatively small value of N . Our goal is to find

a lower bound, N∗, for the number of subflows, such that by selecting any N ≥ N∗,

we can guarantee that the N -NLP solution will be in a given neighborhood of the

MINLP solution. To do so, first we proceed as follows.

Let π be the number of different paths from the origin node to the destination

node in a given graph, and let xp denote the normalized amount of flow through path

p, p = 1, ..., π determined using the solution of the N -NLP problem (4.36). Based on

that, we define active paths to be those with non-zero flow, i.e., paths with xp > 0.

Let us assume there are q ≤ π active paths; then, let x̃p denote the normalized flow
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on active path p, p = 1, ..., q.

Next, we define Np(N) to be the number of subflows assigned to active path p

obtained by the MINLP solution with N subflows. We write Np(N) to emphasize that

the MINLP solution depends on the choice of N . Then,
Np(N)

N
is the normalized

flow on path p obtained by solving the MINLP problem with N subflows. Noting

that N is an integer, the best N is the one that minimizes the deviation from the

normalized flows obtained by solving the NLP problem (lower bounds to the MINLP

solutions), i.e.,

min
N≥1
|Np(N)

N
− xp|, p = 1, ..., π

Since the computational complexity of the MINLP problem increases with N , the

selection of N is a trade-off between a near-optimal solution and the computational

effort required to solve the problem. To address this trade-off, let us define the

average deviation between the optimal routing probabilities of the active paths ob-

tained by solving the N -NLP problem, x̃p, p = 1, ..., q, and the normalized flows

obtained by solving the MINLP problem, Np(N)/N , as a near-optimality metric, i.e.,

1

q

∑q
p=1 |

Np(N)

N
− x̃p|. Then, we define a “desired accuracy”, δ, as the upper bound

for this metric and seek to determine values of N that satisfy:

1

q

q∑
p=1

|Np(N)

N
− x̃p| ≤ δ (4.43)

Based on (4.43), we seek the critical N∗ such that by selecting N ≥ N∗ the average

deviation between the N -NLP and MINLP solutions does not exceed δ, i.e.,

N ≥
∑q

p=1 |Np(N)−Nx̃p|
qδ

(4.44)

We define:

N∗ = d
maxN≥1(

∑q
p=1 |Np(N)−Nx̃p|)
qδ

e (4.45)



153

Since the numerator of N∗ is an upper bound for the numerator in the right hand

side of (4.44) and noting that δ and q are constants, choosing N ≥ N∗ guarantees

that the average deviation between the NLP and MINLP solutions never exceeds our

desired accuracy, δ. However, since Np(N) is a function of N , finding a closed-form

expression for maxN≥1(
∑q

p=1 |Np(N)−Nx̃p|) in the numerator of (4.45) is not easy. To

address this issue, we propose a method which efficiently and accurately estimates the

MINLP solution. Then, using these estimates, to be referred as N̂p(N), p = 1, .., π, for

a large range of the number of subflows, N , we can find maxN≥1(
∑q

p=1 |N̂p(N)−Nx̃p|

and select the proper N∗ using (4.45).

Algorithm 1 MINLP Solution Estimation Algorithm
Input: N
Output: estimation for MINLP solution, N̂p, p = 1, .., π

Initialization: Set N̂p = 0, p = 1, .., π.

1: Solve N -NLP problem and identify active paths and corresponding x̃p, p = 1, .., q
2: Form the set of all possible combinations for assigning N subflows to q active

paths, SN , for each i ∈ SN , N i
p is the number of subflows allocated to path p for

the ith such assignment.
3: Find the best assignment, i∗, so that
i∗ = arg mini∈SN (

∑q
p=1 |N i

p/N − x̃p|)/q
4: Set N̂p = N i∗

p for active paths.

End

As described in Algorithm 1, first, we solve the N -NLP problem and find the

optimal objective value and optimal normalized flow on each link (i, j), xij. Next, we

determine the active paths and their corresponding optimal normalized flow, x̃p, p =

1, ..., q. Since the objective functions of the MINLP and NLP problems are the same,

the MINLP solution for each N , assigns the subflows to the active paths such that

the deviation between the corresponding normalized flows, Np(N)/N , and the N -NLP

solution, x̃p, p = 1, .., q, is minimized. Therefore, to estimate the MINLP solution,

N̂p, for each value of N , we consider all possible combinations of assigning N subflows

to the q active paths and form a set SN . There are

(
N + q − 1

N

)
different such
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assignments (cardinality of set SN). Let N i
p denote the number of subflows allocated

to path p, p = 1, ..., q in the ith such assignment, i ∈ SN . For each assignment

i, the equivalent normalized flows on active paths become [N i
1/N, ..., N

i
q/N ] where∑q

p=1N
i
p = N . For each value of N , i∗ is the “best assignment” if it results in the

minimum average deviation from the N -NLP solution among all i ∈ SN . i.e.,

i∗ = arg min
i∈SN

1

q

q∑
p=1

|
N i
p

N
− x̃p| (4.46)

For each value of N , we set the i∗ assignment as the estimate of the optimal routing

of subflows (MINLP solution), N̂p = N i∗
p , p = 1, .., q and N̂p = 0 for non-active paths.

Finally, for a given graph one can create a lookup table of the estimates of the MINLP

solution for a range of N and find maxN≥1(
∑q

p=1 |N̂p(N)−Nx̃p|) to calculate N∗ for

a desired δ using (4.45).

Remark 1 - A simple way of intuitively determining the critical N is as follows:

defining x̂ = minp x̃p, x̂ is the least fraction of inflow obtained by the N -NLP problem

to flow through an individual path. If we choose N = d1
x̂
e, the MINLP solution will

have a chance to send at least one subflow through the same path and the normalized

flows obtained by the MINLP will be close to the NLP solution. Obviously, it may

not be the best N and there is no guarantee for such N to satisfy the bound defined

in (4.43). However, our simulation results show that it is a good “rule of thumb” for

selecting N .

4.4.1 Numerical Example

Consider the 7-node graph shown in Fig. 4·1 with the same parameter values as in

Section 4.3.4. The N -NLP solution is shown in Tab. 4.7.

Using the optimal xijs we determine each active path and corresponding x̃p:

x̃1 = 31.73% Path1 : (1→ 2→ 3→ 7)
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Table 4.7: Optimal Normalized flow on each link (xij) obtained by
solving N -NLP problem

x12 x14 x15 x23 x24

31.73% 40.28% 27.98% 31.73 % 0
x46 x56 x37 x47 x67

4.40% 27.98% 31.73% 35.88% 32.39%

x̃2 = 4.40% Path2 : (1→ 4→ 6→ 7)

x̃3 = 35.88% Path3 : (1→ 4→ 7)

x̃4 = 27.98% Path4 : (1→ 5→ 6→ 7)

In this example, there are 4 active paths. Fig. 4·4 shows the average deviation be-

tween the NLP solution and the normalized flows obtained by the estimated MINLP

solutions for N = 1, ..., 72. Tab. 4.8 shows the best assignments in the form

[N̂1 N̂2 N̂3 N̂4] (corresponds to [Path1 Path2 Path3 Path4]) for different values of

N . In Fig. 4·4, we observe that the minimum average deviation occurs for N = 25

with the closest objective value to the NLP problem and the following normalized

flows:

N1/N = 8/25 = 32% Path1 : (1→ 2→ 3→ 7)

N2/N = 1/25 = 4% Path2 : (1→ 4→ 6→ 7)

N3/N = 9/25 = 36% Path3 : (1→ 4→ 7)

N4/N = 7/25 = 28% Path4 : (1→ 5→ 6→ 7)

which are almost identical to the NLP solution, x̃p, p = 1, ..., 4. In this particular

example x̂ = minp=1,..,4 x̃p = 0.044 which suggests the same number of subflows based

on the simple “rule of thumb” in Remark 1.

Finally, we investigate the correctness of the bound defined in (4.44) for different
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Table 4.8: Estimates for the MINLP solution for different values of N

N Estimated N Estimated N Estimated
N̂1, ..., N̂4 N̂1, ..., N̂4 N̂1, ..., N̂4

1 0 0 1 0 25 8 1 9 7 49 15 2 18 14
2 1 0 1 0 26 8 1 10 7 50 16 2 18 14
3 1 0 1 1 27 9 1 10 7 51 16 2 19 14
4 1 0 2 1 28 9 1 10 8 52 16 2 19 15
5 2 0 2 1 29 9 1 11 8 53 17 2 19 15
6 2 0 2 2 30 10 1 11 8 54 17 3 19 15
7 2 0 3 2 31 10 1 11 9 55 18 2 20 15
8 3 0 3 2 32 10 1 12 9 56 18 2 20 16
9 3 0 3 3 33 11 1 12 9 57 18 3 20 16
10 3 0 4 3 34 11 1 12 10 58 18 3 21 16
11 4 0 4 3 35 11 1 13 10 59 19 3 21 16
12 4 1 4 3 36 11 2 13 10 60 19 3 21 17
13 4 0 5 4 37 12 2 13 10 61 19 3 22 17
14 4 1 5 4 38 12 2 13 11 62 20 3 22 17
15 5 1 5 4 39 12 2 14 11 63 20 3 22 18
16 5 1 6 4 40 13 2 14 11 64 20 3 23 18
17 5 1 6 5 41 13 2 15 11 65 21 3 23 18
18 6 1 6 5 42 13 2 15 12 66 21 3 24 18
19 6 1 7 5 43 14 2 15 12 67 21 3 24 19
20 6 1 7 6 44 14 2 16 12 68 22 3 24 19
21 7 1 7 6 45 14 2 16 13 69 22 3 25 19
22 7 1 8 6 46 15 2 16 13 70 22 3 25 20
23 7 1 8 7 47 15 2 17 13 71 23 3 25 20
24 8 1 8 7 48 15 2 17 14 72 23 3 26 20
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Figure 4·4: Average deviation between the solution of the NLP and
estimated solution of the MINLP problem for different values of N

values of δ. It can be seen in Fig. 4·4 that by selectingN ≥ N∗, calculated for different

values of δ in Tab. 4.9, the average deviation never exceeds our desired accuracy, δ,

which shows the validity of the proposed criterion in (4.45). Increasing the upper

bound of the average deviation allows us to select smaller N and consequently the

problem size and associated computational complexity decreases. This demonstrates

the trade-off between proximity to optimality and computational effort required to

solve the problem.

Table 4.9: Critical number of subflows, N∗, for different values of δ

δ = 0.01 N∗ = 33
δ = 0.02 N∗ = 17
δ = 0.03 N∗ = 11

Our numerical results show that the optimal routing obtained by solving the

MINLP problem is exactly the same as our estimate, i.e., the best assignment corre-
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sponding to the minimum average deviation with the NLP solution for each N . This

can be verified by comparing the results in Tab. 4.2 and Tab. 4.8 for different values

of N .

4.5 Multiple-Vehicle Routing Problem in the Presence of

Non-Electric Vehicle Flows

In this section, we extend our approach by involving both EV and Non-EV (NEV)

flows. Let all vehicles enter the network at node 1 and let R denote the rate of

vehicles arriving at this node. Assuming a fraction P of NEVs in the inflow, NEVs

and EVs enter the network with flow rates given by RP and R(1 − P ) respectively.

We propose two different ways to incorporate the effect of NEV flows. In the first

method, we assume the flow of NEVs on each link (i, j), fNEVij , is known (e.g., Nash

equilibrium flows or socially-optimal flows are determined) and we can calculate the

residual capacity for each link accordingly, i.e., f ijjam − fNEVij . Thus, the problem is

reduced to the multi-vehicle routing problem with all arriving vehicles as EVs with

the residual capacity for links which has already been discussed.

Our second method is to reformulate an optimization problem in order to control

both EV and NEV flows. Similar to our approach in Section 4.3, we group EVs

as well as NEVs into subflows. In particular we divide the inflow of NEVs into a

fixed number of subflows, M (e.g., the number of distinct paths from the origin to

the destination node) and the inflow of EVs into N subflows. Our objective is to

determine optimal routes for NEV subflows and optimal routes, as well as energy

recharging amounts, for each EV subflow so as to minimize the total elapsed time of

these subflows from origin to destination. Note that for NEVs, we do not consider the

refueling process as part of this optimization problem. The decision variables consist

of (i) xkij ∈ {0, 1}, k = 1, ..,M and ylij ∈ {0, 1}, l = 1, .., N , corresponding to the
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selection of link (i, j) by NEV and EV subflows respectively, and (ii) charging amounts

rli for EV subflows for all nodes i = 1, . . . , n − 1 and subflows l = 1, . . . , N . Given

traffic congestion effects, the time and energy consumption on each link depends on

the values of xkij, y
l
ij and the fraction of the total flow rate R associated with the

kth NEV subflow or the lth EV subflow. As in Section 4.3, the simplest such flow

allocation is to assign each subflow the same rate, i.e., every NEV subflow k = 1, ..,M

is assigned a rate RP/M and every EV subflow l = 1, . . . , N is assigned a rate

R(1−P )/N . Let xij = (x1
ij, · · · , xMij , y1

ij, · · · , yNij )T and ri = (r1
i , · · · , rNi )T where rli is

the amount of charge selected by the lth EV subflow at node i. Similar to Section 4.3,

we denote the traveling time (delay) a vehicle will experience through link (i, j) by

some nonlinear function τij(xij). The corresponding energy consumption for the lth

subflow of EVs through (i, j) is a nonlinear function denoted by elij(xij). Finally, El
i

represents the residual energy of subflow l of EVs at node i, given by the aggregated

residual energy of all EVs in the subflow. The optimization problem is formulated as

follows:

min
xij,ri, i,j∈N

[ n∑
i=1

n∑
j=1

M∑
k=1

τij(xij)x
k
ij

RP

M
+

n∑
i=1

n∑
j=1

N∑
l=1

(
τij(xij)y

l
ij

R(1− P )

N
+ rligy

l
ij

)]
(4.47)

s.t. for each k ∈ {1, . . . ,M} :∑
j∈O(i)

xkij −
∑
j∈I(i)

xkji = bi, for each i ∈ N (4.48)

b1 = 1, bn = −1, bi = 0, for i 6= 1, n (4.49)

for each l ∈ {1, . . . , N} :∑
j∈O(i)

ylij −
∑
j∈I(i)

ylji = bi, for each i ∈ N (4.50)

b1 = 1, bn = −1, bi = 0, for i 6= 1, n (4.51)
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El
j =

∑
i∈I(j)

(El
i + rli − elij(xij))y

l
ij, j = 2, . . . , n (4.52)

El
1 is given, El

i ≥ 0, for each i ∈ N (4.53)

xkij ∈ {0, 1}, ylij ∈ {0, 1}, rli ≥ 0 (4.54)

In the above formulation, (4.47) is the objective function which for NEVs is the first

sum representing the overall traveling time from origin to destination by adding the

link traveling times τij(xij) when xkij = 1. For EVs, the second sum includes the

charging times rlig when ylij = 1 and an EV subflow selects node l for charging. The

constraints (4.48)-(4.49) and (4.50)-(4.51) represent flow conservation for NEV and

EV subflows respectively, while (4.52)-(4.53) shows the energy dynamics for each EV

subflow. This is a Mixed Integer Non-Linear Programming Problem (MINLP) with

(M + N)m + 2(n − 1)N variables. Similar to our discussion in Section 4.3.1, one

can exploit some properties of the optimal solution and energy dynamics in order

to decompose this problem into route selection and recharging amount determina-

tion and reduce the problem dimensionality. We omit numerical results, which lead

to observations similar to those presented in Section 4.3.4, including a behavior of

performance as a function of the number of subflows similar to that of Fig. 4·2.

4.6 Routing of energy-aware vehicles in networks with inho-

mogeneous charging nodes

In this section, we relax the homogeneity assumption for charging stations and inves-

tigate the routing problem for BPVs through a network of “inhomogeneous” charging

nodes, i.e., charging rates at different nodes are not identical. In fact, depending on

an outlet’s voltage and current, charging an EV battery could take anywhere from

minutes to hours and the Society of Automotive Engineering (SAE) classifies charg-

ing stations into three categories (Joos et al., 2010), (Bai et al., 2010), (J17, 2012)
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as shown in Tab. 4.10. Thus, charging rates and times are highly dependent on the

class of the charging station and they clearly affect the solution of our optimization

problem.

Table 4.10: Classification of charging stations (Bai et al., 2010)

Charge Nominal Supply Max. Current Miles per every
Method Voltage(volts) (Amps) hour charging

AC Level 1 120 VAC, 1-phase 12 A < 5
AC Level 2 208-240 VAC, 1-phase 32 A up to 62

DC Charging 300 - 460VDC 400 A Max. up to 300

In the sequel, we study both user-centric and system-centric routing problems in a

network with inhomogeneous charging nodes. Using similar frameworks as those pro-

vided for a network with homogeneous charging nodes, we generalize our formulations

such that they recover the homogeneous case as well.

4.6.1 Single Vehicle Routing

The network model is similar to the one introduced in Section 4.2 in which each

node i ∈ N /{n} represents a charging station with gi denoting the charging time

per unit of energy at node i. For the network with homogeneous charging nodes,

gi = gj ∀i, j ∈ A. In contrast, here gi, i = 1, . . . , n, are node-dependent parameters

and not identical. Without loss of generality, we assume all nodes have a charging

capability (if node i does not have such capability, we can simply set gi =∞).

Considering τij and eij as fixed parameters as explained in Section 4.2, we formu-

late the user-centric problem as follows:

min
xij ,ri, i,j∈N

n∑
i=1

n∑
j=1

τijxij +
n∑
i=1

n∑
j=1

rigixij (4.55)

s.t.
∑
j∈O(i)

xij −
∑
j∈I(i)

xji = bi, for each i ∈ N (4.56)

b1 = 1, bn = −1, bi = 0, for i 6= 1, n (4.57)
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Ej =
∑
i∈I(j)

(Ei + ri − eij)xij, for j = 2, . . . , n (4.58)

0 ≤ Ei ≤ B, E1 given, for each i ∈ N (4.59)

xij ∈ {0, 1}, ri ≥ 0 (4.60)

This is a Mixed Integer Non-Linear Programming (MINLP) problem with m+2(n−1)

variables and it will be referred to as P1. A crucial difference between P1 and MINLP

(4.2)-(4.7), for the homogeneous case, is that here the charging rates gi in (4.55) are

node-dependent.

Properties

Similar to our approach in Section 4.2.1, we reduce the computational complexity of

P1 by deriving some key properties of an optimal solution. Applying these properties

we obtain a lower-dimensional problem with m+ (n− 1) variables.

Lemma 6: Given (4.55)-(4.60), an optimal solution {xij, ri, Ei}, i, j ∈ N satisfies:

n∑
i=1

n∑
j=1

(rixij − eijxij)gi =
n∑
i=1

n∑
j=1

(Ej − Ei)gixij (4.61)

=
n∑
i=1

n∑
j=1

Ej(gi − gj)xij − E1g1 (4.62)

Proof : Multiplying both sides of (4.1) by gi gives:

Ejgi =


(Ei + ri − eij)gi if xij = 1,

0 otherwise .

which can be expressed as

∑
i∈I(j)

Ejgixij =
∑
i∈I(j)

(Ei + ri − eij)gixij
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Summing both sides over j = 2, . . . , n and rearranging yields:

n∑
j=2

∑
i∈I(j)

Ejgixij −
n∑
j=2

∑
i∈I(j)

Eigixij

=
n∑
j=2

∑
i∈I(j)

(ri − eij)gixij

Based on (4.1), Ei = 0 for all nodes which are not in the selected path. Thus we can

rewrite the equation above as

n∑
i=1

n∑
j=1

(rixij − eijxij)gi =
n∑
i=1

n∑
j=1

(Ej − Ei)gixij

which establishes (4.61). Finally, (4.62) follows by observing that if P is an optimal

path we can re-index nodes so that P = {1, ..., n} with gn = 0. Thus, we have∑n
i=1

∑n
j=1 Eigixij = E1g1 + . . . + En−1gn−1 which can also be written as E1g1 +∑n

i=2

∑n
j=2 Ejgjxij where xij = 0 for all (i, j) not in the optimal path. Therefore,

n∑
i=1

n∑
j=1

(Ej − Ei)gixij =
n∑
i=1

n∑
j=1

Ej(gi − gj)xij − E1g1

which proves (4.62).�

Lemma 7: If
∑

i r
∗
i > 0 in the optimal routing policy, then E∗n = 0.

Proof: This is the same as the homogeneous charging node case; see Lemma 2 in

Section 4.2.1.

Using Lemma 6, we replace
∑n

i=1

∑n
j=1 rigixij in (4.55) and eliminate the presence

of ri, i = 2, . . . , n − 1, from the objective function and the constraints. Thus, P1 is

reduced to the following MINLP problem referred to as P2:

min
xij ,Ei
i,j∈N

n∑
i=1

n∑
j=1

(
τijxij + eijgixij + Ej(gi − gj)xij

)
− E1g1 (4.63)

s.t
∑
j∈O(i)

xij −
∑
j∈I(i)

xji = bi (4.64)
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b1 = 1, bn = −1, bi = 0 for i 6= 1, n (4.65)

0 6 Ej − (Ei − eij)xij 6 B ∀ i, j ∈ N (4.66)

0 6 Ei 6 B, E1 given, ∀ i ∈ N (4.67)

xij ∈ {0, 1} (4.68)

Constraint (4.66) is derived from (4.58). Assuming xij = 1, i.e., arc (i, j) is part of

the optimal path, we can recover ri = Ej −Ei + eij and constraint (4.66) is added to

prevent any vehicle from exceeding its capacity B in an optimal path. Solving this

problem gives both an optimal path and residual battery energy at each node.

Although P2 has fewer decision variables, it is still a MINLP which is hard to

solve for large networks. Specifically, the computation time is highly dependent on

the number of nodes and arcs in the network. In what follows we introduce a locally

optimal charging policy, leading to a simpler problem, by arguing as follows. Look-

ing at (4.63), the term
∑n

i=1

∑n
j=1Ej(gi − gj)xij is minimized by selecting each Ej

depending on the sign of (gi − gj):

Case 1: gi − gj < 0, i.e., node i has a faster charging rate than node j. Therefore,

Ej should get its maximum possible value, which is B − eij. This implies that the

vehicle must be maximally charged at node i.

Case 2: gi− gj > 0, i.e., node j has a faster or same charging rate as node i. In this

case, Ej should get its minimum value Ej = 0. This implies that the vehicle should

get the minimum charge needed at node i in order to reach node j.

We define πC to be the charging policy specified as above and note that it does

not guarantee the global optimality of Ei thus selected in (4.63) which can easily

be checked by a counterexample. However, it allows us to decompose the optimal

routing problem from the optimal charging problem. If, in addition, we consider only

solutions for which the vehicle is recharged at least once (otherwise, the vehicle is
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not energy-constrained and the problem is of limited interest), we can obtain the

following result.

Theorem 2: If
∑

i r
∗
i > 0 (i.e., the vehicle has to be recharged at least once), then

under charging policy πC, the solution x∗ij, i, j ∈ N , of the original problem (4.55)

can be determined by solving the LP problem:

min
xij,i,j∈N

n∑
i=1

n∑
j=1

(
τij + eijgi +K(gi − gj)

)
xij (4.69)

K =


B − eij if gi < gj,

0 otherwise .

(4.70)

s.t.
∑
j∈O(i)

xij −
∑
j∈I(i)

xji = bi (4.71)

b1 = 1, bn = −1, bi = 0 fori 6= 1, n (4.72)

0 6 xij 6 1 (4.73)

Proof : Applying charging policy πC in (4.63) we change the objective function to∑n
i=1

∑n
j=1

(
τij + eijgi +K(gi − gj)

)
xij − E1g1 where K is as in (4.70). Therefore,

x∗ij can be determined by the following problem:

min
xij,i,j∈N

n∑
i=1

n∑
j=1

(
τij + eijgi +K(gi − gj)

)
xij − E1g1

K =


B − eij if gi < gj,

0 otherwise .

s.t.
∑
j∈O(i)

xij −
∑
j∈I(i)

xji = bi, for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i 6= 1, n

xij ∈ {0, 1}
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which is a typical shortest path problem formulation. Then, similar to our argument

in proof of Theorem 1, the above integer programming problem is equivalent to the

LP with the integer restriction on xij relaxed. Finally, since E1 and g1 are given, the

problem reduces to (4.69), which proves the theorem. �

Note that If gi = gj for all i, j in (4.69), the problem reduces to the homogeneous

charging node case with the same optimal LP formulation as in Theorem 1. With

gi 6= gj however, the LP formulation cannot guarantee global optimality, although

the routes obtained through Theorem 2 may indeed be optimal, in which case the

optimal charging amounts are obtained as described next.

Determination of optimal recharging amounts r∗i

Once we determine an optimal route P , it is relatively easy to find a feasible solution

for ri, i ∈ P , to satisfy the constraint (4.5) and minimize the total charging time

on the selected path. It is obvious that the optimal charging amounts r∗i are non-

unique in general. Without loss of generality we re-index nodes so that we may write

P = {1, ..., n}. Then, the problem resulting in an optimal charging policy is

min
ri, i∈P

∑
i∈P

giri (4.74)

s.t. Ei+1 = Ei + ri − ei,i+1

0 ≤ Ei ≤ B, E1 given

ri ≥ 0 for all i ∈ N

This is an LP where Ei and ri are decision variables. Unlike the homogeneous charging

node problem where the objective function includes charging prices pi associated with

nodes, i.e.,
∑

i∈P piri, this is not the case here, since there is a tradeoff between

selecting faster-charging nodes and possible higher costs at such nodes. However,

the advantage of the decoupling approach is that if an optimal path is determined,
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an additional cost minimization problem can be formulated to determine optimal

charging times at nodes on this path.

4.6.2 Multiple Vehicle Routing

Next, we investigate the system-centric problem in a network with inhomogeneous

charging nodes. As in Section 4.3, we formulate the problem by grouping subsets of

vehicles into N subflows.

We define R as the EV flow rate entering the network at node 1. Similar to

our approach for the network with homogeneous charging nodes, we divide it into N

subflows and formulate the problem at the subflow-level by assuming that all vehicles

in the same subflow follow the same routing and recharging decisions. Clearly, it

is not realistic to consider all vehicles in the system as EVs. In Section 4.5 we have

addressed the routing problem for vehicle flows including both Electric Vehicles (EVs)

and Non-Electric Vehicles (NEVs) for a network with homogeneous charging nodes.

In (Pourazarm and Cassandras, 2015) we have shown that a similar framework and

analysis as for the problem with the assumption of all inflow of vehicles as EVs, are

applicable. Thus, in this section we focus on routing of EVs while the NEV flows

are not part of our optimization process. Instead, we treat them as uncontrollable

interfering traffic and assume that their flow rates are known. Our goal is to minimize

the total elapsed time (latency) of the EVs traveling from origin to destination by

determining optimal routes and energy recharging amounts for each vehicle subflow.

Defining the state and decision variables as we did in Section 4.3, the problem is

formulated as the following MINLP with N(m+ 2(n− 1)) variables:

min
xij,ri, i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

(
τij(xij)x

k
ij

R

N
+ rki gix

k
ij

)
(4.75)

s.t. for each k ∈ {1, . . . , N} :
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∑
j∈O(i)

xkij −
∑
j∈I(i)

xkji = bi, for each i ∈ N (4.76)

b1 = 1, bn = −1, bi = 0, for i 6= 1, n (4.77)

Ek
j =

∑
i∈I(j)

(Ek
i + rki − ekij(xij))x

k
ij, j = 2, . . . , n (4.78)

Ek
1 is given, Ek

i ≥ 0, for each i ∈ N (4.79)

xkij ∈ {0, 1}, rki ≥ 0 (4.80)

The difference from the MINLP formulated in Section 4.3 is that we consider different

charging rates gi in the objective function. In the sequel, we discuss some properties

of the optimal solution allowing us to reduce the complexity of this MINLP problem

as we did for the user-centric case.

4.6.3 Properties

It can be seen that for each subflow k, the constraints (4.76)-(4.80) are similar to

those in the user-centric case, though the term τij(xij) in the objective function is no

longer linear in general. Consequently, we can derive similar useful properties in the

form of the following lemmas (proofs are very similar to those of the user-centric case

and are omitted).

Lemma 8: An optimal solution {xij, ri}, i, j ∈ N satisfies:

n∑
i=1

n∑
j=1

N∑
k=1

rki gix
k
ij −

n∑
i=1

n∑
j=1

N∑
k=1

ekij(xij)gix
k
ij (4.81)

=
n∑
i=1

n∑
j=1

N∑
k=1

(Ek
j − Ek

i )gix
k
ij

=
n∑
i=1

n∑
j=1

N∑
k=1

Ek
j (gi − gj)xkij −

N∑
k=1

Ek
1g1 (4.82)

Lemma 9: If
∑

i r
k∗
i > 0 in the optimal routing policy, then Ek∗

n = 0 for k = 1, ..., N .
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Using Lemma 3, we replace
∑n

i=1

∑n
j=1

∑N
k=1 r

k
i gix

k
ij in (4.75) through (4.82) and

rki , i = 1, . . . , n − 1, k = 1, . . . , N , is eliminated from the objective function (4.75).

The term
∑N

k=1E
k
1g1 is also removed because it has a fixed value. Thus, a new MINLP

formulation with N(m+ (n− 1)) variables is obtained to determine xk∗ij and Ek∗
i for

all i, j ∈ N and k = 1, . . . , N as follows:

min
xkij ,E

k
i

i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

[
τij(xij)x

k
ij

R

N
+ (ekij(xij)gi + Ek

j (gi − gj))xkij
]

(4.83)

s.t. for each k ∈ {1, . . . , N} :∑
j∈O(i)

xkij −
∑
j∈I(i)

xkji = bi (4.84)

b1 = 1, bn = −1, bi = 0 for i 6= 1, n

0 ≤ Ek
j − (Ek

i − ekij(xij))x
k
ij ≤ Bk ∀(i, j) ∈ A (4.85)

Ek
1 is given, Ek

i ≥ 0, for each i ∈ N (4.86)

xkij ∈ {0, 1} (4.87)

Note that inequality (4.85) is derived from (4.78). Assuming xkij = 1, i.e., arc (i, j) is

part of the optimal path for the kth subflow, rki = ekij(xij) + Ek
j − Ek

i . Thus, (4.85)

ensures the optimal solution Ek∗
i results in a feasible charging amount for the kth

subflow, 0 ≤ rki ≤ Bk where Bk is the maximum charging amount kth subflow can

get. This value should be predetermined for each subflow based on the vehicle types

and the fraction of total inflow in it. Similar to our approach for the single-vehicle case,

once we determine Ek∗
i we can simply calculate optimal charging amounts using (4.78).

Although this new formulation has fewer decision variables than the exact MINLP, its

complexity still highly depends on the network size and number of subflows. Similar

to the charging policy πC used in Theorem 2, we introduce a charging policy by

arguing as follows. Looking at (4.83), the term
∑n

i=1

∑n
j=1

∑N
k=1E

k
j (gi − gj)xkij is
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minimized by selecting each Ek
j depending on the sign of (gi − gj):

Case 1: gi < gj, i.e., node i has faster charging rate than node j. Therefore, Ek
j

should get its maximum value, i.e., the kth subflow should get its maximum charge

at node i.

Case 2: gi > gj, i.e., the charging rate of node j is greater than or equal to node i.

Therefore, Ek
j should get its minimum value of 0. This implies that the kth subflow

should get the minimum charge needed at node i in order to reach node j.

Applying this policy in (4.83) and changing the objective function accordingly, we

achieves the problem decomposition as follows:

min
xkij

n∑
i=1

n∑
j=1

N∑
k=1

[
τij(xij)x

k
ij

R

N
+ (ekij(xij)gi +K(gi − gj))xkij

]
(4.88)

K =


Bk − ekij(xij) if gi < gj,

0 otherwise

(4.89)

s.t. for each k ∈ {1, . . . , N} :∑
j∈O(i)

xkij −
∑
j∈I(i)

xkji = bi (4.90)

b1 = 1, bn = −1, bi = 0 for i 6= 1, n

xkij ∈ {0, 1} (4.91)

Unlike the user-centric case, the objective function is no longer necessarily linear in

xkij, therefore, (4.88) cannot be further simplified into an LP problem as in Theorem

2. Nonetheless, we are still able to decompose the original problem into two smaller

problems: a MINLP to determine routing variables xkij and a NLP to find recharging

amounts rki over the optimal routes. Similar to the single-vehicle case, once the

optimal routes for all subflows, P k, k = {1, ...N}, are determined, we can obtain rki by

formulating a corresponding NLP which minimizes
∑N

k=1

∑
i∈Pk r

k
i gi while satisfying
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the energy constraints (4.78)-(4.79). The computational effort required to solve this

problem with Nm decision variables, depends on the dimensionality of the network

and the number of subflows.

On should note that if gi = gj for all i, j in (4.88), the problem reduces to the

homogeneous charging node case with the exact same MINLP formulation as in 4.3 for

obtaining an optimal path. However, the decomposed problem here, cannot guarantee

an optimal solution because of the locally optimal charging policy πC which may not

be feasible in a globally optimal solution (xk∗ij , E
k∗
i ).

Next, we present an alternative formulation of (4.75)-(4.80) leading to a compu-

tationally simpler solution approach.

4.6.4 Flow control formulation

Similar to the flow control formulation for the network with homogeneous charging

stations, we begin by relaxing the binary variables in (4.80) by letting 0 ≤ xkij ≤ 1.

Following this relaxation, the objective function in (4.75) is changed to:

min
xij,ri, i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

τij(xij)x
k
ij

R

N
+

n∑
i=1

N∑
k=1

rki gi

We then adjust the energy constraints and dynamics according to (4.28) and (4.29)

and obtain the following simpler nonlinear programming problem (NLP):

min
xij,ri, i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

τij(xij)x
k
ij

R

N
+

n∑
i=1

N∑
k=1

rki gi (4.92)

s.t. for each k ∈ {1, . . . , N} :∑
j∈O(i)

xkij −
∑
j∈I(i)

xkji = bi, for each i ∈ N (4.93)

b1 = 1, bn = −1, bi = 0, for i 6= 1, n
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∑
h∈I(i)

(Ek
hi − ekhi(xij)) + rki

 · xkij∑
h∈I(i) x

k
hi

= Ek
ij (4.94)

Ek
ij∑

j∈O(i) E
k
ij

=
xkij∑

j∈O(i) x
k
ij

(4.95)

Ek
ij ≥ 0, (4.96)

0 ≤ xkij ≤ 1, rki ≥ 0 (4.97)

As in our previous analysis, we are able to eliminate ri from the objective function

in (4.92) as follows.

Lemma 10: For each subflow k = 1, . . . , N ,

n∑
i=1

rki gi =
n∑
i=1

n∑
j=1

ekij(xij)gi +
n∑
i=1

∑
j∈O(i)

Ek
ijgi −

n∑
i=1

∑
h∈I(i)

Ek
higi

=
n∑
i=1

n∑
j=1

ekij(xij)gi +
n∑
i=1

∑
j∈O(i)

Ek
ij(gi − gj)

Proof : Multiplying (4.94) by gi and summing over all i = 1, . . . , n , then using (4.93)

and (4.95) proves the lemma. �

Using Lemma 5 we change the objective function (4.92) to:

n∑
i=1

n∑
j=1

N∑
k=1

(
τij(xij)x

k
ij

R

N
+ ekij(xij)gi

)
+

n∑
i=1

n∑
j=1

N∑
k=1

Ek
ij(gi − gj) (4.98)

Once again, we adopt a charging policy πC as follows:

Case 1: If gi < gj, then Ek
ij gets its maximum value (Bk − ekij(xij))x

k
ij.

Case 2: If gi ≥ gj, then Ek
ij gets its minimum value 0.

Applying this policy in (4.98) we can transform the objective function (4.92) to

(4.99) and determine near-optimal routes xk∗ij by solving the following NLP:
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min
xij

i,j∈N

N∑
k=1

n∑
i=1

n∑
j=1

[
τij(xij)x

k
ij

R

N
+ ekij(xij)gi +K(gi − gj)

]
(4.99)

K =


(Bk − ekij(xij))x

k
ij if gi < gj,

0 otherwise

s.t. for each k ∈ {1, . . . , N} :∑
j∈O(i)

xkij −
∑
j∈I(i)

xkji = bi, for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i 6= 1, n

0 ≤ xkij ≤ 1

Once again, there is no guarantee of global optimality due to applying charging policy

πC. The values of rki , i = 1, . . . , n, k = 1, . . . , N , can then be determined so as to

satisfy the energy constraints (4.94)-(4.96), and minimizing
∑N

k=1

∑n
i∈Pk r

k
i gi. Note

that in the above formulation, the nonlinearity appears in the objective function due

to the traffic congestion effect on traveling time and energy consumption. Thus, if

τij(xij)x
k
ij and ekij(xij) are convex functions, the NLP is a convex optimization problem

and its solution can be found generally fast (Note that this is not in general the global

optimum of the main problem). Finally, if gi = gj for all i, j in (4.99), the problem

reduces to the homogeneous charging node case with the same exact NLP flow control

formulation as in 4.3.

4.6.5 Objective function selection using actual traffic data

We now explain how to estimate the delay function, τij(xij), in either (4.75) or (4.99)

using the same actual traffic dataset from the Eastern Massachusetts transportation

network and based on the analysis given in (Zhang et al., 2016). We assume that the
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delay functions have the following form (Bertsimas et al., 2014):

τij (fij) = t0ijh

(
fij
Cij

)
, (4.100)

where t0ij is the free-flow travel time of link (i, j) ∈ A, h(·) is strictly increasing and

continuously differentiable on R+, and fij and Cij denote the flow and the effective

capacity of link (i, j) ∈ A respectively. The goal is to estimate h(·) functions based

on actual traffic data.

The dataset at our disposal, provided by the Boston Region Metropolitan Planning

Organization (MPO), includes spatial average speeds and the flow capacity for each

road segment of major roadways and arterial streets of Eastern Massachusetts (see

Fig. 4·5).

Figure 4·5: Road map of Eastern Massachusetts

We consider an interstate highway subnetwork, as shown in Fig. 4·6, and assume

that the observed traffic data correspond to user (Wardrop) equilibria. Applying

Greenshield’s traffic flow model (Greenshields et al., 1935), we first convert the spatial
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Figure 4·6: (a) An interstate highway sub-network of Eastern Mas-
sachusetts ( the blue numbers indicate node indices); (b) The topology
of the sub-network

average speed data into equilibrium flows for each road segment. Then, by adopting

the estimated traffic flows we obtain Origin-Destination (O-D) demand matrices. Fi-

nally, we formulate appropriate inverse problems (Bertsimas et al., 2014) to recover

the per-road cost (congestion) functions determining user route selection for each

month and time-of-day period (details are provided in (Zhang et al., 2016)). Apply-

ing polynomial kernels in the corresponding Quadratic Programming (QP) problem

(Zhang et al., 2016), we estimate cost functions h(·) as polynomial functions. We

estimate the cost functions for different scenarios: AM (7 am – 9 am), MD (11 am –

1 pm), PM (5 pm – 7 pm), and NT (9pm – 11 pm) for each day of January, April,

July, and October, all in 2012.

The estimated h(·) functions corresponding to five different time periods for month

April are shown in Fig. 4·7. We observe that the costs for the AM/PM peaks are much

more sensitive to traffic flows than for the other three time periods (MD, NT, and

weekend). This can be explained by taking into account the traffic condition during
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a day: from a congested road network in the AM/PM period to an uncongested road

network during MD, NT, or weekend periods.

Let us consider the estimated equilibrium flow on each link as the uncontrolled

NEV flow. Then, our goal is to determine system-optimal routes and charging policies

for the EV flow entering the network. Let us assume that EVs enter the network at

a rate of R veh./hr. We then evenly divide the EV inflow into N subflows and the

total flow entering link (i, j) becomes:

fij =
∑
k

xkij
R

N
+ f eqij (4.101)

where the first term represents the assignment of EV subflows to link (i, j) and the

second term is the equilibrium flow for NEVs inferred from the average speed data.

Therefore, the time a vehicle spends on link (i, j) becomes

τij(xij) = t0ijh


∑

k(x
k
ij

R

N
) + f eqij

Cij

 (4.102)
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Figure 4·7: Comparison of the estimated cost functions corresponding
to different time periods.

As for ekij(xij), we assume that the energy consumption rates of subflows on link
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(i, j) are all identical, proportional to the distance between nodes i and j, giving

ekij(xij) = αdij
R

N

Therefore, the objective function in problems (4.88)-(4.91) and (4.99) in this case

becomes

min
xkij

i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

[
t0ijh


∑

k(x
k
ij

R

N
) + f eqij

Cij

xkij
R

N
+ αdijgix

k
ij

R

N
+K(gi − gj)

]
(4.103)

4.6.6 Numerical examples for the Eastern Massachusetts transportation

network.

We consider the same sub-network shown in Fig. 4·6. Our goal is to determine

system-optimal routes and charging policies for the flow of EVs traveling from node 1

to node 8 while the effect of NEV flows on the traffic congestion should be included in

the cost function. As discussed in Section 4.6.5, we use real traffic data to calculate

the uncontrolled NEV flow on each link. To do so, we use the average speed data on

each road segment and infer the average flow data on that using the Greenshield’s

traffic flow model. Next, the calculated flow for all segments composing a link are

aggregated in order to calculate the uncontrolled NEV flow on each link (Zhang et al.,

2016). Tab. 4.11 shows the calculated average flow on each link of the sub-network

on April 3 during AM period and we consider them as the user equilibrium flow, f eqij ,

in (4.101). We then use the data-driven estimated cost function in our formulations.

As stated earlier, the cost function is in polynomial form since we apply polynomial

kernels in the corresponding QP problem. For the April-Workday-AM period, the
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Table 4.11: Uncontrolled NEV flow on each link during AM period
[No. veh/hr]

f eq12 f eq21 f eq13 f eq31 f eq23 f eq32 f eq24 f eq42 f eq35 f eq53 f eq36 f eq63
1287 1271 1725 1740 1713 3757 2231 172 3352 4870 3678 4218
f eq45 f eq54 f eq56 f eq65 f eq48 f eq84 f eq57 f eq75 f eq67 f eq76 f eq78 f eq87

4171 875 2464 2039 863 2099 4154 2802 3661 3776 1796 560

estimated h(·) function in (4.102) has the following form (red curve in Fig. 4·7):

h(x) =0.11x8 − 0.4705x7 + 0.946x6 − 0.9076x5 + 0.6238x4

− 0.1973x3 + 0.057x2 − 0.0032x+ 1 (4.104)

Applying this function in (4.102), we obtain the delay function for each link (i, j),

τij, based on actual traffic data. For the energy consumption function we set α = 0.3

and distances between nodes are as shown in Tab. 4.12.

Table 4.12: Distance [mile] of all links in the sub-network in Fig. 4·6

d12 d21 d13 d31 d23 d32 d24 d42 d35 d53 d36 d63
21.49 22.83 32.03 32.7 10.08 11.98 37.63 38.67 16.21 16.8 12.88 12.94
d45 d54 d56 d65 d48 d84 d57 d75 d67 d76 d78 d87
6.94 17.16 10.77 10.68 24.43 24.37 12.51 12.33 16.51 16.3 13.92 14.19

We assume the network has inhomogeneous charging nodes with a level 2 charging

station at node 3 (charging rate of g2 = 1/6 [hr/kWh]) and level 1 charging stations (

charging rate of g1 = 41.67/60 [hr/kWh]), for the rest, i.e., G = [g1 g1 g2 g1 g1 g1 g1].

In our approach, we need to identify N subflows and we do so by evenly dividing the

entire vehicle inflow into N subflows, each of which has R/N vehicles per unit time. In

order to verify the accuracy of different formulations, we numerically solve the optimal

(exact MINLP) and near-optimal problems (decomposed MINLP). Let us set R =

1492 [Veh./hr] as the flow of EVs traveling from node 1 to node 8. Tab. 4.13 shows

both optimal routes and suboptimal routes obtained by solving both formulations for
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different values of N ∈ [1, . . . , 11] and G = [
41.67

60

41.67

60

1

6

41.67

60

41.67

60

41.67

60

41.67

60
].

We observe that vehicles are mainly distributed through two routes and the traffic

congestion effect makes the flow distribution differ from the shortest path, 1→ 3→

5 → 7 → 8. The number of decision variables (hence, the solution search space)

Number of subflows
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Figure 4·8: Performance as a function of N (No. of subflows)

rapidly increases with the number of subflows. However, looking at Fig. 4·8 which

gives the performance in terms of our objective functions in (4.75) and (4.88) as a

function of the number of subflows, observe that the optimal objective value (exact

MINLP) quickly converges around N = 3. Thus, even though the best solution

is found when N = 11, a near-optimal solution can be determined under a small

number of subflows. This suggests that one can rapidly approximate the asymptotic

solution of the multiple-vehicle problem (dealing with individual vehicles routed so

as to optimize a system-wide objective) based on a relatively small value of N .

Another observation is that although the decomposed problem is a suboptimal
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Table 4.13: Numerical results for sample problem

P3 P5
N 1 1

obj 1.8341e4 1.9182e4
routes 1→ 3→ 5→ 7→ 8 1→ 3→ 5→ 7→ 8

N 2 2
obj 1.806e4 1.8905e4

routes 1→ 3→ 5→ 7→ 8 1→ 3→ 5→ 7→ 8
1→ 3→ 6→ 7→ 8 1→ 3→ 6→ 7→ 8

N 3 3
obj 1.8024e4 1.8865e4

routes 1→ 3→ 5→ 7→ 8(×2) 1→ 3→ 5→ 7→ 8(×2)
1→ 3→ 6→ 7→ 8 1→ 3→ 6→ 7→ 8

N 4 4
obj 1.8053e4 1.8895e4

routes 1→ 3→ 5→ 7→ 8(×3) 1→ 3→ 5→ 7→ 8(×3)
1→ 3→ 6→ 7→ 8 1→ 3→ 6→ 7→ 8

N 5 5
obj 1.8024e4 1.8865e4

routes 1→ 3→ 5→ 7→ 8(×3) 1→ 3→ 5→ 7→ 8(×3)
1→ 3→ 6→ 7→ 8(×2) 1→ 3→ 6→ 7→ 8(×2)

N 6 6
obj 1.8024e4 1.8865e4

routes 1→ 3→ 5→ 7→ 8(×4) 1→ 3→ 5→ 7→ 8(×4)
1→ 3→ 6→ 7→ 8(×2) 1→ 3→ 6→ 7→ 8(×2)

N 7 7
obj 1.803e4 1.8871e4

routes 1→ 3→ 5→ 7→ 8(×4) 1→ 3→ 5→ 7→ 8(×4)
1→ 3→ 6→ 7→ 8(×3) 1→ 3→ 6→ 7→ 8(×3)

N 8 8
obj 1.8022e4 1.8862e4

routes 1→ 3→ 5→ 7→ 8(×5) 1→ 3→ 5→ 7→ 8(×5)
1→ 3→ 6→ 7→ 8(×3) 1→ 3→ 6→ 7→ 8(×3)

N 9 9
obj 1.8024e4e4 1.8865e4

routes 1→ 3→ 5→ 7→ 8(×6) 1→ 3→ 5→ 7→ 8(×6)
1→ 3→ 6→ 7→ 8(×3) 1→ 3→ 6→ 7→ 8(×3)

N 10 10
obj 1.8024e4 1.8865e4

routes 1→ 3→ 5→ 7→ 8(×6) 1→ 3→ 5→ 7→ 8(×6)
1→ 3→ 6→ 7→ 8(×4) 1→ 3→ 6→ 7→ 8(×4)

N 11 11
obj 1.8021e4 1.8862e4

routes 1→ 3→ 5→ 7→ 8(×7) 1→ 3→ 5→ 7→ 8(×7)
1→ 3→ 6→ 7→ 8(×4) 1→ 3→ 6→ 7→ 8(×4)
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formulation it results in the same paths as those obtained by solving the exact MINLP.

Next, we obtain a solution to the same problem using the NLP formulation (4.99)

with 0 ≤ xkij ≤ 1. Since in this example all subflows are identical, we can further

combine all xkij over each (i, j), leading to the N -subflow relaxed problem:

min
xij

i,j∈N

n∑
i=1

n∑
j=1

[
t0ijh

(
xijR + f eqij

Cij

)
xijR+

αdijgixijR +K(gi − gj)
]

(4.105)

K =


(B − edijR)xij if gi < gj,

0 otherwise

s.t.
∑
j∈O(i)

xij −
∑
j∈I(i)

xji = bi, for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i 6= 1, n

0 ≤ xij ≤ 1

This is a relatively easy to solve NLP problem. It is obvious from Fig. 4·7 that the

h(·) function during AM period is a strictly convex function, thus the solution of this

NLP is a unique global optimum. Using the same parameter settings as before, we

obtain the objective value of 1.8862e45 hrs and the optimal routes are:

63.24% of vehicle flow: (1→ 3→ 5→ 7→ 8)

36.76% of vehicle flow: (1→ 3→ 6→ 7→ 8)

Compared to the best solution (N = 11) in Fig. 4·8, the difference in objective

values between the integer and flow-based solutions is less than 4.7%. This supports

the effectiveness of a solution based on a limited number of subflows in the MINLP

problem.
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Effect of EV inflow on optimal routes. Tab. 4.14 shows the optimal paths

obtained by solving both exact MINLP and the NLP relaxed problems (4.105) for

different values of EV inflow, R. It is observed that the optimal routes will change

with the inflow rate. For lower flows, e.g., R = 300 , it is optimal that all EVs travel

through the shortest path which means the corresponding change in
fij
Cij

in (4.100)

is negligible. However, higher flows may cause congestion in some links, i.e., larger

values of
fij
Cij

in (4.100), resulting in larger delays on those links τij. Consequently,

some EVs should deviate from the shortest path in the optimal routing.

Table 4.14: Effect of flow rate, R, on Optimal routes

R=300 [Veh./hr]
P3 N = 1 N = 2

routes 1→ 3→ 5→ 7→ 8 1→ 3→ 5→ 7→ 8(×2)
NLP ⇒ 100% of EV flow:(1→ 3→ 5→ 7→ 8)

R=1492 [Veh./hr]
P3 N = 1 N = 11

routes 1→ 3→ 5→ 7→ 8 1→ 3→ 5→ 7→ 8(×7)
1→ 3→ 6→ 7→ 8(×4)

NLP ⇒ 63.24% of EV flow:(1→ 3→ 5→ 7→ 8)
36.76% of EV flow:(1→ 3→ 6→ 7→ 8)

R=2984 [Veh./hr]
P3 N = 1 N = 7

routes 1→ 3→ 5→ 7→ 8 1→ 3→ 5→ 7→ 8(×3)
1→ 3→ 6→ 7→ 8(×3)
1→ 2→ 3→ 5→ 7→ 8

42.21% of EV flow:(1→ 3→ 5→ 7→ 8)
NLP ⇒ 41.32% of EV flow:(1→ 3→ 6→ 7→ 8)

16.47% of EV flow:(1→ 2→ 3→ 5→ 7→ 8)

CPU time Comparison. Tab. 4.15 compares the computational effort in terms

of CPU time for exact and decomposed MINLP problems and the flow control for-

mulation to find optimal routes for the sample network shown in Fig. 4·6. Our

results show that the flow control formulation provides a reduction of about 3 orders

of magnitude in CPU time with almost the same solution as the optimal solution.

Selection of the number of subflows. Since the problem size increases with
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Table 4.15: CPU time for sample problem

Fig.4·6 P3 P5 NLP approx.
N 8(near opt) 8(near opt) -

CPU time(sec) 48179 10267 54

the number of subflows, N , a proper selection of this number is essential to render the

problem computationally manageable and reflects a trade-off between proximity to

optimality and computational effort needed to solve the problem. Our numerical re-

sults have shown that a small number of subflows are adequate to obtain convergence

to near-optimal solutions. In Section 4.4 we have proposed a criterion and procedure

for appropriate choice of the number of subflows for the network with homogeneous

charging stations. In brief, the key idea is based on the fact that the decomposed

MINLP problem (4.88)-(4.91) obtains the optimal solution for the homogeneous net-

work (gi = gj ∀i, j), thus the corresponding relaxed NLP, i.e., problem (4.105) with

gi = gj, gives a lower bound for the optimal objective value. We then defined a

critical number of subflows, N∗, which guarantees near optimality and showed that

by selecting N so that N > N∗, the average deviation between NLP solution and

MINLP solution with N subflows never exceeds a predefined upper bounds.

For the network with inhomogeneous charging stations one should note that adopt-

ing a locally optimal charging policy, the decomposed MINLP (4.88)-(4.91) is sub-

optimal in general. Therefore, the corresponding relaxed NLP does not give a lower

bound for the optimal objective value, though it does for the decomposed suboptimal

MINLP. Nevertheless, since the routes obtained by solving the decomposed MINLP

are near-optimal and the relaxed NLP gives a lower bound for its objective value, we

may still use the same procedure as in Section 4.4 for selecting a “good” N . In our

numerical results, it is observed that both exact and decomposed MINLP problems

result in the same solutions for different values of N . Furthermore, for the value N
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with the lowest objective value, N = 11, the normalized flow on each path, that is

4/11 = 36.36% for 1→ 3→ 6→ 7→ 8 and 7/11 = 63.64% for 1→ 3→ 5→ 7→ 8,

has the least deviation from the solution of the NLP problem which is the main idea

in the selection of N .

4.7 Summary

We have introduced energy constraints into vehicle routing in traffic networks and

studied the problem of minimizing the total elapsed time for vehicles to reach their

destinations by determining routes, as well as recharging amounts, when there is no

adequate energy for the entire journey. We have studied the problem in two different

settings: in network with homogeneous charging nodes vs in network with inhomoge-

neous charging nodes. For a single vehicle problem (user-centric problem), we have

shown how to decompose this problem into two simpler problems. For a multi-vehicle

problem (system-centric problem), we solved the problem by aggregating vehicles into

subflows and seeking optimal routing decisions for each such subflow. One critical fac-

tor in this problem is the selection of the number of subflows. Our numerical results

showed that a small number of subflows is adequate to obtain convergence to near-

optimal solutions. Thus, we defined a critical number of subflows which guarantees

near-optimality. In particular, we show that by selecting the number of subflows to

be equal to or larger than a critical number N∗, i.e., N ≥ N∗, the average deviation

never exceeds the predefined upper bound. Therefore, by selecting a desired com-

plexity needed to solve the problem. We also reformulated the multi-vehicle routing

problem in order to incorporate the effect of NEVs on traffic congestion. We then

applied real traffic data from the Eastern Massachusetts transportation network and

investigated the user-optimal vs social-optimal routing policies for different scenarios.
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Chapter 5

Optimal Routing of Electric Vehicles in

Networks with Charging Nodes: A

Dynamic Programming Approach

5.1 Introduction

In Chapter 4, we studied the vehicle total traveling time minimization problem in

a network containing inhomogeneous charging nodes. For the single EV routing

problem, formulated as a MINLP, we proved certain optimality properties allowing

us to reduce the dimensionality of the original problem. Further, by adopting a locally

optimal charging policy, we derived a Linear Programming (LP) formulation through

which near-optimal solutions are obtained. For a multi-vehicle problem, where traffic

congestion effects are included and a system-wide objective is considered, a similar

approach was used by grouping vehicles into subflows. Despite the properties of the

problem that we have exploited, its solution remains computationally demanding for

real-time applications. This motivates the study of alternative solution techniques.

Thus, in this chaper we formulate the single EV routing problem as a Dynamic

Programming (DP) problem by discretizing vehicle residual energy at each node.

This model is identical for both homogeneous and inhomogeneous charging nodes

and allows us to find an optimal routing and charging policy for both cases in CPU

time which is about two orders of magnitude lower compared to solving the MINLP

problem introduced in Chapter 4. We then study the much more challenging multi-
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EV routing problem, where a traffic flow model is used to incorporate congestion

effects. Similar to our approach in Chapter 4, by grouping vehicles into subflows we

are able to reduce the complexity of the original problem and provide a DP-based

algorithm to determine optimal routing and charging policies at the EV subflow level.

In this case, the problem size significantly increases with the number of subflows and

the DP algorithm is eventually outperformed by our earlier MINLP approach as the

number of subflows increases.

The structure of the chapter is as follows. In Section 5.2, we address the single-EV

routing problem in a network with inhomogeneous charging nodes and formulate it as

a DP problem. We then derive an iterative algorithm to solve it recursively. In Section

5.3, the multi-EV routing problem is also formulated as a DP. Simulation examples are

included illustrating our approach and providing insights on the relationship between

recharging speed and optimal routes.

5.2 Single Vehicle Routing

Similar to Chapter 4, we assume that a network is defined as a directed graph

G = (N ,A) with N = {1, . . . , n} and |A| = m . Node i ∈ N/{n} represents a

charging station and (i, j) ∈ A is an arc connecting node i to j. First, we deal with

a single-origin-single-destination vehicle routing problem in a network of inhomoge-

neous charging stations. Nodes 1 and n respectively are defined to be the origin and

destination. For each arc (i, j) ∈ A, there are two cost parameters: the required trav-

eling time τij and the energy consumption eij. Letting the vehicle’s charge capacity

be B, we assume that eij < B for all (i, j) ∈ A. As explained in Chapter 4, τij and

eij are fixed depending on given traffic conditions at the time the single-vehicle rout-

ing problem is solved. Since the EV has limited battery energy, it may not be able

to reach the destination without recharging. Thus, recharging amounts at charging
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nodes i ∈ N are also decision variables.

5.2.1 Dynamic Programming Formulation

In Chapter 4, first we formulated this problem as a MINLP which is computation-

ally expensive. We then proceeded by decomposing it into two linear programming

(LP) problems obtainng a near-optimal solution (for networks with inhomogeneous

charging nodes). Here, we formulate the same problem in a DP setting and obtain

optimal (not just near-optimal) solutions. The algorithm is based on the following

formulation.

We define Q(i, Ei) to be the minimum elapsed time, including traveling and

recharging times, to the destination node when starting at node i with Ei units

of energy. Our goal, therefore, is to determine Q(1, E1) where E1 is given. Assuming

the EV maximum charging capacity is B, we have to consider all possible values of

Ei ∈ [0, B]. To do so, we discretize the range [0, B] and form a set of all possible values

for Ei. Our algorithm is centered on the standard principle of optimality (Bertsekas,

2012) based on which, Q(i, Ei) is obtained using the following iterative equation:

Q(i, Ei) = min
j∈O(i), 0≤Ej≤B

s.t 0≤Ej−Ei+eij≤B

[ Cost to go︷ ︸︸ ︷
Q(j, Ej) +

One step cost︷ ︸︸ ︷
τij + (Ej − Ei + eij)gi

]
(5.1)

where the state is [i, Ei] and there are two control variables: the amount to charge

at each state, ri, and the next node to route the EV to, j ∈ O(i), dictated by

the graph topology. The charge amount ri is constrained by the energy dynamics,

Ej = Ei + ri − eij and by 0 ≤ ri ≤ B. This iterative process leads to the optimal

solution because when an optimal policy is found from state [j, Ej] to the destination

for all feasible values of j and Ej, then the route from node i to the destination

node via node j will also be optimal. Under proper technical conditions, the iterative
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process generated through (5.1) converges to the optimal value of Q. The detailed

steps of the DP algorithm for this problem are given next.

Initialization: We have shown in previous chapter that if an EV receives any

positive charge in the optimal path, i.e.,
∑

i r
∗
i > 0, the EV residual energy at the

destination is zero, i.e., E∗n = 0. Therefore, the cost value at the destination node is

Q(0)(n, 0) = 0. Motivated by Dijkstra’s algorithm for the shortest path problem, we

set the initial elapsed time for all other states to infinity, i.e.,

Q(0)(n,En) =


0 if En = 0,

∞ if En > 0.

(5.2)

Q(0)(i, Ei) =∞ ∀i ∈ N \ n, 0 ≤ Ei ≤ B (5.3)

Iteration steps: The update of Q values can be carried out starting from any

state. For convenience, we start at the source node, i.e., [1, E1]. At the kth iteration,

the Q values are updated as follows: Q(k)(n,En) = Q(0)(n,En) and

Q(k)(i, Ei) = min
j∈O{i}, 0≤Ej≤B

s.t 0≤Ej−Ei+eij≤B

[Q(k−1)(j, Ej)+τij + (Ej − Ei + eij)gi]

∀i ∈ N \ n, 0 ≤ Ei ≤ B (5.4)

We seek limk→∞Q
(k)(i, Ei) = Q∗, therefore, the algorithm stops when Q(k)(i, Ei) =

Q(k−1)(i, Ei) for all i ∈ N , 0 ≤ Ei ≤ B. The optimal route can then be determined

by choosing the next state, minimizing Q(i, Ei). Without loss of generality, we re-

index nodes so that we may write the optimal path as P = {1, ...,m}. Then, the

optimal charging amount at each node on the optimal path is calculated through

ri−1 = Ei − Ei−1 + ei−1,i with i = 2, ...,m, and E1 given.
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5.2.2 Numerical Example

To investigate the effectiveness of the DP algorithm, we consider a grid graph with

49 nodes and 84 edges as shown in Fig. 5·1, where the traveling time, τij, and energy

consumption, eij on each edge are shown in red and blue numbers respectively. Fig.
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Figure 5·1: A 49-node grid network with inhomogeneous charging
nodes.

5·1 shows the optimal path for the network with homogeneous charging stations

(G = [g1, ..., gn−1], gi = 1 ∀ i) and inhomogeneous charging stations G =[ 1 1 1 1

1 1 1 5 5 1 1 1 1 1 1 5 1 1 1 1 1 1 5 1 1 1 1 1 1 5 1 1 1 1 1 1 5 5

5 1 1 1 1 1 1 5 5 5] as the green and red routes respectively. For the network
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with homogeneous stations, the optimal charging policy suggests that the EV requires

just enough charge at each node to reach the next node on the optimal path, e.g.,

if E1 = 0 then r∗i = ei,i+1, i ∈ P . In contrast, for the network with inhomogeneous

charging nodes with a G vector as above, the optimal charging amount at each node

on the optimal path is as follows:

r1 = 5 r2 = 5 r3 = 1 r10 = 1 r17 = 2 r24 = 2

r31 = 5 r38 = 0 r39 = 0 r40 = 6 r47 = 0 r48 = 0

The algorithm execution is very fast for this graph and converges to the optimal

solution in 13 iterations in less than 10 sec for both homogeneous and inhomogeneous

charging nodes. In contrast, a MINLP solver requires more than 1000 sec to find the

optimal solution for the same graph with homogeneous charging nodes.

5.3 Multiple Vehicle Routing

The results obtained for the single vehicle routing problem pave the way for the inves-

tigation of multi-vehicle routing, where we seek to optimize a system-wide objective

by routing and charging vehicles through some network topology. This is a much

more challenging problem, the main technical difficulty being the need to consider

the influence of traffic congestion on both traveling time and energy consumption.

As in Chapter 4, we proceed by grouping subsets of vehicles into N subflows

where N may be selected to render the problem manageable. Let all vehicles enter

the network at node 1 and let R denote the rate of vehicles arriving at this node.

Viewing vehicles as defining a flow, we divide them into N subflows. Thus, all vehicles

in the same subflow follow the same routing and recharging decisions so that we only

consider control at the subflow level rather than individual vehicles. Our objective is

to determine optimal routes and energy recharging amounts for each vehicle subflow
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so as to minimize the total elapsed time of these flows from origin to destination.

5.3.1 Dynamic Programming Formulation

Our goal here is to develop a DP algorithm to solve this problem and compare its

computational cost to the solution methods in Chapter 4. Note that the problem size

dramatically increases with the number of subflows, N . Our first step is to construct

a new graph at the subflow level, Gsf = (Nsf ,Asf ), given a road network G = (N ,A)

and the number of subflows, N . In this graph, each node in Nsf represents a feasible

combination of nodes in G among which all subflows may be distributed. To make this

clear, consider the road network shown in Fig. 5·2. In order to map the original graph

Figure 5·2: A 7-node road network with inhomogeneous charging
nodes.

G into the subflow-level graph Gsf , we define each of its nodes as Yi = (yi1..., y
i
N)

where i = 1, 2, . . . indexes these nodes and yik is the location of the kth subflow in

G. Fig. 5·3 is the subflow-level graph Gsf constructed from Fig. 5·2 when the total

inflow, R, is divided into 2 subflows (N = 2). In this case, Gsf consists of 25 nodes.

As an example, in Fig. 5·3 node 3(2 4) represents a node with index i = 3 mapping

the first and second subflows to nodes 2 and 4 in G respectively, i.e., it represents

a routing decision at node 1 in G for sublow 1 to travel from 1 to 2 and for sublow

2 to travel from 1 to 4, noting that O(1) = {2, 4, 5}. Clearly, Gsf is much larger

than the original road network G, even for N = 2. Table 5.1 shows the number

of nodes and edges in the subflow-level graph for different values of N for the road

network in Fig. 5·2. As we did for the single EV, we need to consider all possible
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Figure 5·3: Subflow-level graph showing all feasible combination of
nodes via which subflows may travel

Table 5.1: Subflow-level graph size for different number of subflows
for road network shown in Fig. 5·1

Number of subflows (N) Number of nodes Number of edges
2 25 54
3 91 268
6 4825 31914

combinations for the residual energies at each node in the subflow-level graph. Thus,

we define Ei = [Ei
1, ..., E

i
N ]. When a decision is made at a node in Gsf , we need

to calculate its effect on the travelling time and energy consumption over each edge

(i, j) ∈ A due to the potential traffic added to this edge. This requires information

on the number of subflows routed through each link (i, j). Recalling that |A| = m,

let us index all edges (i, j) ∈ A as {1, ...,m}. Next, we define an auxiliary vector

for each pair (Yi,Ei) in Gsf denoted by Si = [si1, ..., s
i
m] where sil is the number of

subflows through the lth edge in G = (N ,A) starting from node Yi ∈ Nsf with

residual energies Ei, i.e., sil ∈ {0, 1, ..., N} and l = 1, ...,m. In other words, Si is a

function of the state variables (Yi,Ei) and includes the data required to calculate

traveling time and energy consumption amounts on each edge. Specifically, traveling

from node Yi to node Yj in the Gsf , τ
k
yi,yj

and ekyi,yj represent the traveling time and
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energy consumption on the edge (yik, y
j
k) in the original graph for the kth subflow

respectively and their values depend on the traffic congestion on the edge which is a

function of sil ∈ Si. More precisely, we define the “edge indexing operation”, δ(yik, y
j
k),

assigning a single edge index l to a pair of node indices (yik, y
j
k), i.e., δ(yik, y

j
k) = l.

Note that sil is updated based on the decision made at node Yi which determines the

next node, Yj, and residual energy Ej. Clearly,

sil = sjl +
N∑
k=1

1[δ(yik, y
j
k) = l] (5.5)

where 1[.] is the indicator function. Thus, the term
∑N

k=1 1[δ(yik, y
j
k) = l] captures the

added congestion imposed by edge (Yi,Yj) ∈ Asf on the lth edge in A. Let S(i, j) be

defined as the m-dimensional vector with the qth element sq(i, j) =
∑N

k=1 1[δ(yik, y
j
k) =

q] and q = 1, ...,m. Therefore, (5.5) can be written in vector form as: Si = Sj+S(i, j).

It’s worth to mention that, in contrast with the single-EV problem where we assume

fixed parameters for the traveling time and energy consumption on each edge, for

the multiple-EV problem these parameters are dependent on the traffic congestion

(routing decision) which makes the problem much harder.

We define Q(Yi,Ei) to be the minimum total elapsed time to the destination

node in Gsf starting from node Yi = (yi1, ..., y
i
N) ∈ Nsf with Ei = (Ei

1, ..., E
i
N) units

of energy. Our goal then is to determine Q(Y1,E1) where Y1 = (1, ..., 1) and E1

is a given amount of energy for the whole inflow (divided among suubflows) to the

network. Let Bk be the maximum charging amount subflow k can receive based on its

vehicle type. Then, we need to consider all possible feasible values of Ei = (Ei
1, ..., E

i
N)

such that Ei
j ∈ [0, Bj], ∀j = 1, .., N and ∀i. To do so we need to dicretize this range

accordingly.

The algorithm works based on the following DP formulation over the subflow-level

graph. Similar to (5.1), Q(Yi,Ei) is calculated using the iterative equation
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Q(Yi,Ei) = min
Yj∈O{Yi}, 0≤Ejk≤B

k

s.t 0≤Ejk−E
i
k+ekyi,yj (Sj)≤Bk

k=1,...,N

[
Q(Yj,Ej) +

N∑
k=1

τ kyi,yj(S
j)

+
N∑
k=1

(Ej
k − E

i
k + ekyi,yj(S

j))gik + C(Yi,Yj,Sj)
]

(5.6)

In (5.6), Q(Yj,Ej) denotes the minimum cost to go from node Yj = (yj1, ..., y
j
N)

with residual energies Ej = (Ej
1, ..., E

j
N) to the destination node. The one-step cost

consists of three parts. The first term,
∑N

k=1 τ
k
yi,yj

(Sj), is the total elapsed time to

travel from Yi to Yj in Gsf . The second term,
∑N

k=1(Ej
k−Ei

k+ekyi,yj(S
j))gik, shows the

total recharging time, and the third term, C(Yi,Yj,Sj) is necessary to evaluate the

added edge travel times and energy consumption resulting from the specific routing

decision. Note that τ kyi,yj(S
j) and ekyi,yj(S

j) are computed based on the corresponding

sil (updated based on a decision at node Yi). Adding the edge (Yi,Yj) ∈ Asf , may

change the travel times on the arcs previously used in computing Q(Yj,Ej), and it

should be modified accordingly. To do so, we add the term C(Yi,Yj,Sj):

C(Yi,Yj,Sj) =
∑
l∈Aij

(sjl )[τl(s
i
l)− τl(s

j
l )] (5.7)

where Aij = {l : sjl > 0 and sl(i, j) > 0} for l = 1, ....,m, is a set containing the

intersection between edges in the route from node Yj to the destination and edges in

(Yi,Yj) ∈ Asf .

Recall that the energy dynamics on the optimal path for each subflow are Ej
k =

Ei
k + rki − ekyi,yj(S

j), k = 1, ..., N , the constraint 0 ≤ Ej
k − Ei

k + ekyi,yj(S
j) ≤ Bk is the

feasibility constraint for amount of charge subflow k may receive at each node, rki .

We seek limk→∞Q
(k)(Yi,Ei) = Q∗. In the sequel, we describe the detailed steps
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of the DP algorithm.

Initialization: Based on our analysis in Chapter 4, we know that if subflow

k gets charge on the optimal path, the optimal residual energy at the destination

for that subflow is zero. Therefore, assuming all subflows will get charge in their

journey, it is obvious that the only option for the cost value at the destination node

is Q(0)(YD,ED = 0) = 0 where D is the index of the destination node in the subflow-

level graph, e.g., node 25 in Fig. 5·3. For the other nodes, motivated by Dijkstra’s

algorithm for the shortest path problem, we set the initial traveling time for all other

cases to infinity, i.e.,

Q(0)(YD,ED) =


0 if ED = 0,

∞ if ED > 0.

(5.8)

Q(0)(Yi,Ei) =∞ ∀Yi ∈ Nsf \YD, 0 ≤ Ei
k ≤ Bk (5.9)

Iteration Steps: The update of Q values can be carried out starting from any

node. However, we start it at source node. The Q values are updated as follows:

Q(k)(YD,ED) = Q(0)(YD,ED) and

∀Yi ∈ Nsf \YD, 0 ≤ Ei
k ≤ Bk :

Q(k)(Yi,Ei) = min
Yj∈O{Yi}, 0≤Ejk≤B

k

s.t 0≤Ejk−E
i
k+ekyi,yj (Sj)≤Bk

k=1,...,N

[
Q(k−1)(Yj,Ej) +

N∑
k=1

τ kyi,yj(S
j)

+
N∑
k=1

(Ej
k − E

i
k + ekyi,yj(S

j))gik + C(Yi,Yj,Sj)
]

(5.10)

The algorithm stops as soon as

Q(k)(Yi,Ei) = Q(k−1)(Yi,Ei) ∀Yi ∈ Nsf , 0 ≤ Ei
k ≤ Bk k = 1, ..., N .
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5.3.2 Numerical Examples

Consider the 7-node road network in Fig. 5·2 where the distance of each edge is

shown. In order to model traffic congestion, the relationship between the speed and

density of a vehicle flow is estimated as

v(k(t)) = vf

(
1−

(
k(t)

kjam

)p)q
(5.11)

where vf is the reference speed on the road without traffic, k(t) represents the density

of vehicles on the road at time t and kjam denotes the saturated density for a traffic

jam. The parameters p and q are empirically identified for actual traffic flows. we

assume the energy consumption rates of subflows on arc (i, j) ∈ A are all identical,

proportional to the distance between nodes i and j in the road network, giving ekyi,yj =

e · dl ·
R

N
, where (yik, y

j
k) corresponds to the lth edge in A.

For simplicity we divide the total inflow R into N identical subflows, each of which

has R/N vehicles per unit of time. Fig. 5·3 shows the subflow-level graph for this

example for N = 2. Now in the subflow-level graph, the time subflow k spends on

arc (yik, y
j
k) becomes:

τ kyi,yj =
(
dl ·

R

N

)(
vf (1− (

sil
N

)p)q
)−1

sil determines the number of subflows (density) through this edge starting from node

Yi to the destination node YD.

In order to examine the efficiency of the DP algorithm, we solve the problem for

the network with homogeneous charging nodes with gi = 1 ∀i ∈ N for different value

of N . Table. 5.2 compares the solution and CPU times (computational effort) for

different values of number of subflows. It is obvious from our results that as number

of subflows, N , increases, DP loses its efficiency and will be computationally more

expensive than MINLP. On the other hand, our analysis and numerical examples in
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Chapter 4 show that our proposed flow control formulation for the same problem

results in a reduction of about 4 orders of magnitude in CPU time with near optimal

solution. We have also shown that using the NLP solution and its objective value

as a lower bound for the optimal objective value, we can find a good value for the

number of subflows, N , which render the problem computationally manageable.

Table 5.2: Numerical results for sample problem

MINLP DP
N 2 2

obj 116.67 116.67
routes 1→ 2→ 3→ 7 1→ 2→ 3→ 7

1→ 4→ 7 1→ 4→ 7
CPU time (sec) 1674.2 79.17

N 3 3
obj 99.68 99.68

routes 1→ 2→ 3→ 7 1→ 2→ 3→ 7
1→ 4→ 7 1→ 4→ 7

1→ 5→ 6→ 7 1→ 5→ 6→ 7
CPU time (sec) 1752.5 5534.6

N 6 6
obj 99.68 NA

routes 1→ 2→ 3→ 7(×2)
1→ 4→ 7(×2) NA

1→ 5→ 6→ 7(×2)
CPU time (sec) 2579 NA

5.4 Conclusions and future work

We have studied the problem of minimizing the total elapsed time for energy-constrained

vehicles to reach their destinations, including recharging when there is no adequate en-

ergy for the entire journey. In this chapter, we have formulated both user-centric and

system-centric problems as DP problems. For a single vehicle problem (user-centric),

this approach is very efficient and determines an optimal solution in seconds. For

a multi-vehicle problem (system-centric), where traffic congestion effects are consid-

ered, we used a similar approach by aggregating vehicles into subflows and seeking



198

optimal routing decisions for each such subflow. In this case, our DP algorithm works

well for a small number of subflows but as the number of subflows increases, it loses

its efficiency.
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Chapter 6

The Price of Anarchy in Transportation

Networks Using Actual Traffic Data

6.1 Introduction

A transportation (traffic) network is a system with non-cooperative agents (drivers)

in which each driver seeks to minimize her own cost by choosing the best route

(resources) to reach her destination without taking into account the overall system

performance. In these systems, the cost for each agent depends on the resources it

chooses as well as the number of agents choosing the same resources (Wang et al.,

2015). In such a non-cooperative setting, one often observes convergence to a Nash

equilibrium, a point where no agent can benefit by altering its actions assuming that

the actions of all the other agents remain fixed (Youn and Jeong, 2008). However, it

is known that the Nash equilibrium is not always the best strategy from the system’s

point of view and results in a suboptimal behavior compared to the socially optimal

policy. In a transportation network with selfish drivers, each agent (driver) follows the

path (we will use “path” and “route” interchangeably) derived from a user optimal

policy. In order to quantify the social suboptimality of selfish driving, we use the Price

of Anarchy (POA) as a measure to compare system performance under a user-optimal

policy vs. a system-optimal policy.

The equilibrium flow in traffic networks, known as “Wardrop equilibrium,” is the

solution of the Traffic Assignment Problem (TAP) (Dafermos and Sparrow, 1969),
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(Patriksson, 2015). In the transportation science literature, the TAP, which will be

termed “forward problem” in what follows, has been extensively explored; see, e.g.,

(Patriksson, 2015) and the references therein. To solve the TAP, we need to know

a priori the specific cost function, as well as the Origin-Destination (O-D) demand

matrix.

Recent developments in data-driven inverse optimization techniques (Bertsimas

et al., 2014) enable the estimation of the cost (usually, the travel time) functions given

the observations of the equilibrium flows from a large-scale transportation network.

This facilitates a better understanding of the underlying dynamics of the transporta-

tion system itself. In addition, with cost function estimates at our disposal, we can

address the issue of improving a traffic network’s performance by controlling traffic

flows, hence, contributing to the design of better transportation systems that serve

Smart Cities.

In this chapter, we leverage actual traffic data provided to us by the Boston Region

Metropolitan Planning Organization (MPO). Applying a traffic flow model, we first

infer equilibrium flows on each segment from the spatial average speed data. Then,

by adopting the estimated traffic flows we obtain O-D demand matrices. Finally,

we formulate a system-centric problem in which agents, here drivers, cooperate to

optimize the overall system performance. This allows us to estimate the POA for a

sub-network so as to determine the difference in network performance between selfish

routing (non-cooperative) and system-optimal routing (cooperative).

The rest of this chapter is organized as follows. In Sec. 6.2 we present the models

and methods we apply to the traffic data. In Sec. 6.3 we provide descriptions of the

datasets we use. We elaborate on data processing tasks in Sec. 6.4. We quantify

the POA for the transportation network in Sec. 6.5, where numerical results for a

subnetwork are included to illustrate our approaches.
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6.2 Models and Methods

In this section we describe the network model and provide the formulations for opti-

mization problems obtaining the Nash flows and social optimum flows.

6.2.1 Transportation network model

Consider a directed graph, denoted by (V ,A), where V denotes the set of nodes and

A the set of links. Assume it is strongly connected. Let N ∈ {0, 1,−1}|V|×|A| be the

node-link incidence matrix, and ea the vector with an entry equal to 1 corresponding

to link a and all the other entries equal to 0.

Let w = (ws, wt) denote an origin-destination (O-D) pair and

W = {wi : wi = (wsi, wti) , i = 1, . . . , |W|}

the set of all O-D pairs. Denote by dw ≥ 0 the amount of the flow demand from ws to

wt. Let dw ∈ R|V| be the vector which is all zeros, except for a −dw in the coordinate

corresponding to node ws and a dw in the coordinate corresponding to node wt.

Let Ri be the index set of simple routes (a simple route is a route without cycles)

connecting O-D pair i. For all a ∈ A, r ∈ Ri, and i ∈ {1, . . . , |W|}, define the

link-route incidence by

δira =


1, if route r ∈ Ri uses link a,

0, otherwise.

Let xa be the total link flow on link a ∈ A and x the vector of these flows. Let

ta(x) : R|A|+ → R+ be the cost function for link a ∈ A; in particular, when ta(x)

only depends on xa, we also write ta(x) as ta(xa). In addition, denote by t(x) the

vector-valued function whose ath component is ta(x).

Let us assume that the cost functions have the following form (Bertsimas et al.,
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2014),(Branston, 1976):

ta (xa) = t0ag

(
xa
ma

)
, (6.1)

where t0a is the free-flow travel time of a ∈ A, g(·) is strictly increasing and continu-

ously differentiable on R+, and ma is the effective flow capacity of a ∈ A.

Let F be the set of feasible flow vectors defined by

F =

{
x : ∃xw ∈ R|A|+ s.t. x =

∑
w∈W

xw, Nxw = dw, ∀w ∈ W

}
,

where xw is the flow vector attributed to O-D pair w.

6.2.2 Selfish routing

As it is discussed, a transportation network is a system with non-cooperative agents

(drivers) competing to optimize their own costs (traveling time) by utilizing resources

(link capacity). In such setting when every agent acts selfishly, one often observes

convergence to a Nash equilibrium. In transportation networks the equilibrium flow

is known as “Wardrop equilibrium”.

Wardrop equilibrium. A feasible flow x∗ ∈ F is a Wardrop equilibrium if for

every O-D pair w ∈ W , and any route connecting (ws, wt) with positive flow in x∗,

the cost of traveling along that route is less than or equal to the cost of traveling

along any other route that connects (ws, wt). Here, the cost of traveling along a route

is the sum of the costs of each of its constituent links (Bertsimas et al., 2014).

It is a well-known fact that the Wardrop equilibrium is the solution of the Traffic

Assignment Problem (TAP). TAP can be formulated as the following optimization

problem (Dafermos and Sparrow, 1969), (Patriksson, 2015):

min
x∈F

∑
a∈A

xa∫
0

ta (s) ds. (6.2)
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6.2.3 Socially optimal routing

Assuming a network with multiple O-D pairs, the total latency of the network is

defined as follows:

L(x) =
∑
a∈A

xata(xa). (6.3)

In order to find socially optimum flows we formulate the following optimization prob-

lem (Patriksson, 2015) (Pourazarm and Cassandras, 2016):

min
x∈F

∑
a∈A

xata(xa). (6.4)

The problem above is a Non-Linear Programming (NLP) problem in which the non-

linearity comes from the cost function ta(xa). The solution of this problem, x∗a, obtains

the optimal flow on each link minimizing the total latency in the network.

6.2.4 Price of Anarchy

The POA is a measure to quantify the system performance under user-optimal policy

vs. system-optimal policy. In a traffic network it is defined as the ratio between the

total latency, i.e., the total travel time over all drivers in different O-D pairs, obtained

under Wardrop flows and that obtained under social-optimal flows. Let now x∗ and

xne denote the socially optimum and the Wardrop link flow vectors respectively. Then,

the POA is defined as

POA =
L(xne)

L(x∗)
. (6.5)



204

6.3 Data Set Description

6.3.1 Speed dataset description

The actual traffic data provided by the MPO is a dataset of 51.2 GB consisting of 861

CSV files, each with more than 1 million lines of data. The dataset includes the spatial

average speeds for major roadways and arterial streets in Eastern Massachusetts for

the year 2012. The average speed within a given unit of spatial reference is calculated

by aggregating observed speeds from billions of data points. Specifically, it is derived

by combining data from physical traffic sensors (e.g., induction loop sensors, toll tag

readers, etc), as well as all available data from probe vehicles (equipped with on-board

GPS devices returning speed and location back to a central system) that fall within

a specific segment of a road for a particular time window.

The dataset includes traffic data for more than 13,000 road segments (with the

average distance of 0.7 miles; see Fig. 6·1) of Eastern Massachusetts, covering the

average speed for every minute of the year 2012.

For each road segment, identified with a unique tmc (traffic message channel)

code, the dataset provides information such as speed data (instantaneous, average

and free-flow speed) in mph, date and time, and traveling time (minute) through

that segment. Table 6·2 shows a few sample lines of the speed dataset. Note that a

road typically consists of many segments.

6.3.2 Capacity dataset description

The flow capacity (vehicles/hour) dataset, provided by the MPO, includes capacity

data – vehicle counts for each road segment – for more than 100,000 road segments

(average distance of 0.13 miles) in Eastern Massachusetts. In particular, the capacity

data is given for four different time periods (AM: 6 am – 9 am, MD: 9 am – 3 pm,

PM: 3 pm – 6 pm, and NT: 6 pm – 6 am) in a day. For each time period, the total
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Figure 6·1: All available road segments in the road map of Eastern
Massachusetts.

Figure 6·2: Sample lines from speed dataset

roadway capacity for all available lanes for that time period is given. These values are

calculated based on the share of daily traffic counts in each hour of that time period.

For each time period there exists a period capacity factor applied to represent peak
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hour conditions within that period. These factors are as follows: 2.5 for AM, 4.75 for

MD, 2.5 for PM, and 7 for NT. Then, the total roadway capacity for a time period is

the product of the capacity/lane/hour, the number of lanes, and the capacity factor.

In our experiments, we need flow capacity on each segment in vehicle counts per

hour. Thus, for each time period we scale the given vehicle counts by the inverse of

the corresponding capacity factor.

6.3.3 Matching capacity data with speed data

Note that, in the capacity dataset, the ID for a road segment is named road inventory

ID, and the segments are not absolutely identical with those in the speed dataset.

Based on the geographic longitude and latitude, we have built up a dictionary map-

ping segments with tmc code to capacity dataset road inventory ID, through which

we can read the capacity data for each road segment in the speed dataset.

6.4 Data Processing

6.4.1 Preprocessing

Calculating average speed and free-flow speed

First, we select the time instances set T consisting of each minute of AM (7 am – 9

am), MD (11 am – 1 pm), PM (5 pm – 7 pm), and NT (9 pm – 11 pm) for each day

of January, April, July, and October, all in 2012. Note that the selected AM (resp.,

MD, PM, NT) period is a subinterval of the AM (resp., MD, PM, NT) period in the

capacity dataset. Then, we calculate the average speed for each segment separately

for the four time periods, each of which lasts 120 minutes. Finally, for each segment,

we compute a reliable proxy of the free-flow speed by using the 85th-percentile point

of the observed speeds on that segment for all the time instances belonging to T .
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Selecting a sub-network

To reduce the computational burden while capturing the key elements of the Eastern

Massachusetts road network, we only consider a representative interstate highway

sub-network as shown in Fig. 6·3(a), where there are 701 road segments, composing

a road network with 8 nodes and 24 links. We depict the topology of this sub-network

in Fig. 6·3(b).
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Figure 6·3: (a) An interstate highway sub-network of Eastern Mas-
sachusetts (a sub-map of Fig. 6·1; the blue numbers indicate node
indices); (b) The topology of the sub-network (the numbers beside ar-
rows are link indices, and the numbers inside ellipses are node indices).

Inferring flow data from the speed dataset

In order to infer flow data from the speed data for each link, we use the a macroscopic

traffic flow model. Macroscopic models represent how the behavior of one parameter

of traffic flow (density, speed and flow) changes with respect to another. In particular
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we use the Greenshield’s traffic model (Greenshields et al., 1935) which assumes a

linear speed-density relationship as illustrated in Fig. 6·4(a). The equation for this

relationship is as below:

v = vf (
vf
kj

).k (6.6)

where v is the mean speed at density k, vf is the free speed and kj is the jam

density. Equation (6.6) is often referred to as the Greenshields model. It indicates

that when density becomes zero, speed approaches free flow speed (i.e., v → vf when

k → 0).

The relation between flow and density is parabolic in shape as shown in figure

6·4(b) and can be derived as follows: It is known that q = k.v, where q is the vehicle

flow. Now substituting v with equation (6.6) we get

q = vf .k − (
vf
kj

).k2 (6.7)

To find density at maximum flow, i.e., kmax at qmax in figure 6·4(b), differentiate

equation (6.7) with respect to k and equate it to zero. i.e.,

dq

dk
= vf −

vf
kj

2k = 0→ kmax = kj/2 (6.8)

Therefore, density corresponding to maximum flow is half the jam density. Substi-

tuting (6.8) in (6.7), one can show that qmax =
vf .kj

4
. This means that exceeding

kmax, results in congestion and flow reduction. In other words, when the density

is in the range 0 ≤ k ≤ kmax, the road is uncongested and the flow monotonically

increases with k, while for kmax < k ≤ kjam, the road is congested and consequently

the flow decreases with k and eventually q → 0 when k → kjam. Thus, as shown in

figure 6·4(b), each value of q corresponds to 2 different values of density., k1 for the

uncongested case and k2 for congested case.

Similarly we can find the relation between speed and flow. For this, put k = q/v
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in equation (6.6). We get,

q = kj.v −
kj
vf
v2 (6.9)

This relationship is again parabolic and is shown in figure 6·4(c).

Aggregating flows of the segments on each link

Let {vja, tja, v0j
a , t

0j
a ,m

j
a; j = 1, . . . , Ja} denote the available observations (vja, t

j
a), and

parameters (v0j
a , t0ja , mj

a) of the segments composing link a ∈ A, where, for each

segment j, vja (resp., v0j
a ) is the speed (resp., free-flow speed; miles/hour), tja (resp.,

t0ja ) is the travel time (resp., free-flow travel time; hour), and mj
a is the flow capacity,

equivalent to qmax in Fig. 6·4(b), (vehicles/hour). Using the Greenshield’s model, we

calculate the flow on segment j by

xja =
4mj

a

v0j
a
vja −

4mj
a

(v0j
a )2

(vja)
2. (6.10)

In our analysis, we enforce vja ≤ v0j
a to make sure that the flow given by (6.10) is

nonnegative. In particular, if for some time instance vja > v0j
a (this rarely happens),

we set vja = v0j
a in (6.10), thus leading to a zero flow estimation for this time instance.

Aggregating over all segments composing link a we compute:

xa =

∑Ja
j=1 x

j
at
j
a∑Ja

j=1 t
j
a

, t0a =
∑Ja

j=1
t0ja , ma =

∑Ja
j=1m

j
at

0j
a∑Ja

j=1 t
0j
a

,

where xja is given by (6.10) and t0ja = vjat
j
a/v

0j
a , j = 1, . . . , Ja.

Processing flow data such that the flow conservation law is satisfied

For a ∈ A, let x̂a denote the original estimate of the flow on link a, and xa its

adjustment. Solve the following Least Squares Problem (LSP):

min
x

∑
a∈A

(xa − x̂a)2 (6.11)
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(a) Speed vs. Density

(b) Flow vs. Density

(c) Speed vs. Flow

Figure 6·4: Relationships between speed, density, and flow based on
Greenshield’s traffic flow model
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s.t.
∑
a∈I(i)

xa =
∑
a∈O(i)

xa, ∀i ∈ V ,

xa ≥ 0, ∀a ∈ A,

where the 1st constraint enforces flow conservation for each node i ∈ V , where I(i)

(resp., O(i)) denotes the set of links entering (resp., outgoing) to (resp., from) node

i.

6.4.2 Estimating the O-D demand matrix

Note that we need to know the O-D demand information (compiled into a matrix)

in both the forward problem formulation (6.2) and the socially optimum formulation

(6.4). Based on the parameters and flows of the road network, we borrow the General

Least Squares (GLS) method (Hazelton, 2000) to estimate the desired O-D demand

matrix, using the following steps:

Obtaining link-route incidence matrix

We assume that each node could be an origin and a destination; for the subnetwork

shown in Fig. 6·3(a), there are 8× (8− 1) = 56 O-D pairs in total. We then identify

feasible routes for each O-D pair, thereby obtaining a 24 × 314 link-route incidence

matrix. (recall the definition of link-route incidence in Sec. 6.2; 314 routes identified

in total).

Implementing GLS method

Vectorize the O-D demand matrix as λ. Let A be the link-route incidence matrix

and P = [pir] the route choice probability matrix, where pir is the probability that

a traveler between O-D pair i uses route r. Let {x(k); k = 1, . . . , K} denote K

observations of the flow vector and x̄ the average. Then, the O-D demand matrix
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estimation problem is equivalent to the following generalized least squares problem

(Hazelton, 2000):

max
P�0, λ�0

−1

2

K∑
k=1

(
x(k) −AP′λ

)′
S−1

(
x(k) −AP′λ

)
,

s.t. pir = 0 ∀(i, r) ∈ {(i, r) : r /∈ Ri},

P1 = 1,

where S = (1/(K − 1))
∑K

k=1

(
x(k) − x̄

)(
x(k) − x̄

)′
is the sample covariance matrix.

For more details about the implementation of GLS method, please refer to (Zhang

et al., 2016). Solving This problem obtains the O-D demand vector minimizing the

distance between the resulting flow vector and different flow observations for a spe-

cific scenario. Using this formulation, we can estimate the O-D demand vector on

a monthly basis or more accurately on a daily basis based on our choice of observa-

tions, x(k)s. As an example, if we want to estimate the average O-D demand vector for

working days in April - PM period on a monthly basis, our choices for flow vector ob-

servations x(k), k = 1, ...., K are among 21×120 different flow vectors corresponding

to 21 different working days and 120 different flow vectors according to 120 minutes

between 5 PM and 7 PM.

6.4.3 Estimating cost functions

Here, we briefly explain how the cost function (6.1) can be derived from actual traffic

data. The whole process is beyond the scope of this thesis and we borrow it from

(Zhang et al., 2016). Using the estimated flow data and the O-D demand matrices,

(Zhang et al., 2016) estimates the cost functions for 20 different scenarios. To do

so, (Zhang et al., 2016) formulates appropriate inverse Variational Inequality (VI)

problems to recover the per-road cost (congestion) functions determining user route
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selection for each month and time-of-day period. Applying polynomial kernels in the

corresponding Quadratic Programming (QP) problem, (Zhang et al., 2016) estimates

cost functions g(.) in (6.1) as polynomial functions. It estimates the cost functions

for different scenarios: AM (7 am – 9 am), MD (11 am – 1 pm), PM (5 pm – 7

pm), and NT (9pm – 11 pm) for each day of January, April, July, and October, all

in 2012. The estimated g(.) functions corresponding to five different time periods for

mentioned months are shown in Fig. 6·5 We observe that the costs for the AM/PM

peaks are much more sensitive to traffic flows than for the other three time periods

(MD, NT, and weekend). This can be explained by taking into account the traffic

condition during a day: from a congested road network in the AM/PM period to an

uncongested road network during MD, NT, or weekend periods.

6.5 Numerical Results

In this section, we investigate the POA for the network shown in Fig. 6·3(a). First,

we consider a specific time period in a day during the year 2012 and use the corre-

sponding cost function estimated from data. As discussed in Section 6.4.1, adopting

Greenshield’s traffic flow model, the Wardrop flow on each link has been calculated

using speed and capacity datasets for each minute of a time period. Thus, in order

to quantify the POA we calculate socially optimal flows by solving problem (6.4).

As an example we calculate the POA for the PM (5 pm – 7 pm) period of Wednes-

day, Oct. 10, 2012. The corresponding O-D demand matrix includes 42 active O-D

pairs with nonzero flow demands. Fig. 6·6 shows the socially optimum vs. average

user-optimum flows on each link on Oct. 10 during the PM period. We can observe

that for some links (e.g., links 5 and 11), there exist significant differences in the link

flow values between selfish behavior and system-centric behavior suggesting several

potential opportunities to improve the system performance. We then look at the POA
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Figure 6·5: Comparison of the estimated cost functions corresponding
to different time periods.
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Figure 6·6: (a) Social-opt. (green) and user-opt. (red) flows on links
0 to 11; (b) Social-opt. (green) and user-opt. (red) flows on links 12 to
23.
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for a specific time period in a whole month. Fig. 6·7 shows the POA for the PM

period during April 2012. It is observed that POA > 1 for all days in April during

the PM period. In the worst case, on April 12 and April 22, POA ' 2, which means

that the system is considerably inefficient under selfish driving. On the other hand,

POA = 1.23 in the best case showing that we can reduce the total latency in the

network by at least 23% if drivers follow socially optimal paths.
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Figure 6·7: POA for PM period (5–7 pm) in April based on avg. flow
on each link.

As an alternative way of quantifying the POA, we also assume a scenario in which

all drivers use socially optimum routing and a single driver acts selfishly. In this

scenario, we assume the user has prior knowledge about the total delay on each path

of the desired O-D pair. The selfish driver deviates from the social optimum flow by

traveling through the shortest path, thus, enjoying less traveling time. In our example,

under the social optimum policy, the latency a driver experiences over each link is

shown in Tab. 6.1. Now, a driver joining the flow of O-D pair 1-6, can choose one

of the four paths from node 1 to node 6 (refer to Fig. 6·3(b)): Path1 : 1 → 3 → 6;

Path2 : 1 → 2 → 3 → 6; Path3 : 1 → 3 → 5 → 6 and Path4 : 1 → 2 → 3 → 5 → 6

with traveling times 0.654, 0.651, 0.872, and 0.869 hr respectively. If the driver acts
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selfishly and joins the shortest path, path2, instead of her assigned path, path4, she

will gain 25.08% in traveling time.

Table 6.1: Traveling time (hr) on each link under system-optimal
flows.

edge No. 0 1 2 3 4 5
t∗a 0.310 0.329 0.455 0.465 0.143 0.169

edge No. 6 7 8 9 10 11
t∗a 0.533 0.551 0.242 0.252 0.199 0.205

edge No. 12 13 14 15 16 17
t∗a 0.239 0.247 0.175 0.173 0.343 0.344

edge No. 18 19 20 21 22 23
t∗a 0.19 0.19 0.26 0.26 0.194 0.201

6.6 Summary

In this chapter, we study a large-scale transportation network (Eastern Massachusetts)

using actual traffic data obtained from the Boston Region Metropolitan Planning Or-

ganization (MPO) for the year 2012. Estimating equilibrium flows and O-D demand

matrices, we quantify the Price of Anarchy (POA) for a interstate highway subnet-

work for Eastern Massachusetts. Our findings measure the price the society is paying

due to non-cooperative behavior of its members and could provide useful suggestions

to the efforts of building a smarter city.
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Chapter 7

Conclusions and Future Directions

In this dissertation we focused on applying several control and optimization method-

ologies to different classes of energy-aware battery-powered systems.

First, we revisited the lifetime maximization problem for wireless sensor networks

with fixed topology and incorporated non-ideal battery dynamics for nodes in order

to take into account non-ideal phenomena in batteries, i.e., the rate capacity effect

and the recovery effect. For the static networks the network lifetime is defined as

the earliest time that the first node runs out of energy. We started our analysis by

adopting Kinetic Battery Model (KBM) and generalized our results by utilizing a

more elaborate battery model, the diffusion based model, of which KBM is a special

case. Formulating the problem in the optimal control framework, we have shown

that there exist a time-invariant optimal routing policy which maximizes the network

lifetime, even with non-linear battery dynamics. The computational complexity of

the original OCP problem has been reduced by showing that the associated fixed

routing probabilities can be obtained by solving a set of relatively simple Non-Linear

Programming (NLP) problems. In addition, under very mild conditions, this optimal

policy is independent of the battery parameter model. This robustness property leads

to the fact that, one can resort to the case of ideal batteries where the optimal routing

problem is much simpler to solve and can be reduced to a Linear Programming (LP)

problem. Then, considering a non-ideal, more realistic battery model, and applying

the optimal routing policy, we reach a more precise estimate for the network lifetime.
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We have also considered a joint routing and initial energy allocation problem over the

network nodes with the same network lifetime maximization objective. In this case,

the solution to this problem is given by a policy that depletes all node energies at

the same time and the corresponding energy allocation and routing probabilities are

obtained by solving a NLP problem. We have also investigated the security benefits

of probabilistic routing compared to other routing policies under an energy-depletion

attack.

Second, we have considered the case when the source node is mobile while the relay

nodes are static. We assumed that any such mobile node travels along a trajectory

that it determines and which may or may not be known in advance. While on its

trajectory, the source node continuously performs sensing tasks and generates data.

Adding mobility to the source node, we have redefined the lifetime to be the time until

the source node depletes its energy. When the mobile node’s trajectory is unknown

in advance, we have introduced three versions of an optimal control problem aiming

at this lifetime maximization. We have shown that in all cases, the solution can be

reduced to a sequence of Non-Linear Programming (NLP) problems solved on line as

the source node trajectory evolves. For the more challenging (from a computational

perspective) problem, where the source node’s trajectory is known in advance, this

information can be incorporated into an optimal lifetime maximization policy. We

have formulated the problem as an optimal control problem and solved the problem

using a numerical solver. Based on our numerical results, It has been observed that

the prior knowledge of the source node’s motion dynamics considerably increases the

network lifetime.

Third, motivated by the significant role of recharging in battery-powered vehi-

cles, we have studied the problem of minimizing the total elapsed time for energy-

constrained vehicles to reach their destinations, including recharging when there is no
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adequate energy for the entire journey. We have investigated two versions of this prob-

lem: user-optimal scenario vs. system-optimal scenario. For the user-centric problem,

referred as the single-vehicle routing problem, the problem has been formulated as a

Mixed-Integer Non-Linear Programming (MINLP) optimization problem which is the

exact formulation. Adopting some properties of the optimal solution and applying

a locally optimal charging policy, we have reduced the complexity of the problem

by decomposing it into two simpler linear programming problems. This problem de-

composition yields near-optimal solutions for networks with inhomogeneous charging

nodes and optimal solutions for networks with homogeneous nodes. We have also

proposed a Dynamic Programming algorithm which finds optimal solutions for both

homogeneous and inhomogeneous charging nodes with less computational complexity.

For the system-centric problem, referred as the multi-vehicle problem, where traffic

congestion effects are incorporated, we used a similar approach by aggregating vehi-

cles into subflows and seeking optimal routing decisions for each such subflow. Again

the exact formulation for this problem is a MINLP and its computational complexity

directly depends on the network size and the number of subflows. We have found

that a low number of subflows is adequate to obtain convergence to near-optimal

solutions. As an alternative approach, we also introduced a flow-based formulation

which yields approximate solutions with a computational cost reduction of several

orders of magnitude, so they can be used in problems of large dimensionality. Since

the problem size increase with the number of subflows, its appropriate selection is

crucial to render the problem computationally manageable. To do so, we have de-

fined a critical number of subflows which guarantees near-optimality. In particular,

we have shown that by selecting the number of subflows to be equal to or larger than

a critical number, the average deviation from the optimal solution never exceeds a

predefined upper bound. Therefore, by selecting a desired accuracy one can choose
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between proximity to optimality and computational effort needed to solve the prob-

lem. Finally, we have proposed a DP algorithm for multi-vehicle routing problem

which works well for a small number of subflows but as the number of subflows in-

creases, it loses its efficiency.

we have studied a more general version of the problem in which the vehicle flow con-

sists of both Electric Vehicles (EVs) and Non-Electric Vehicles (NEVs). We solved the

problem by aggregating vehicles into subflows and seeking optimal routing decisions

for each such subflow.

Finally, we have studied the system performance in transportation networks using

actual traffic data. Considering the total traveling time that all drivers experience to

travel through different Origin-Destination (OD) pairs in the network as the metric,

we compared the system performance under two different strategies: user-centric vs.

system-centric. In particular we have investigated the system performance of an

interstate highway subnetwork of the Eastern Massachusetts road network. To do

so, by use of a traffic flow model, we first inferred Wardrop equilibrium flows from

the spatial average speed and per-road flow capacity datasets. We then estimated

the OD demand matrices accordingly. Incorporating the OD demand matrices and

data-driven latency functions, we then calculated social optimum flows by solving

a system-centric optimization problem for different months and time-of-day periods.

Finally, we have quantified the POA as a ratio of system performance under the

user-optimal policy to that under the system-optimal policy.
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7.1 Future Directions

7.1.1 Extensions for lifetime maximization problem for static wireless

sensor networks

So far, we have developed a centralized scheme which requires global location infor-

mation, to find optimal routing policy for static WSN. Thus, an obvious direction

to pursue is developing distributed versions of the same optimal routing and energy

allocation problem approaches. Decentralized algorithms for the problem with ideal

battery models have been already proposed (e.g., (Madan and Lall, 2006) ). Thanks

to the robustness property of the optimal routing, one may apply similar approach

by assuming ideal batteries and the solution would be optimal for the nodes with

non-ideal battery model too.

7.1.2 Extensions for lifetime maximization problem for wireless sensor

networks with mobile source nodes

In our network model we have considered a single mobile source node. The work can

be extended by considering multiple mobile source nodes. The network model as well

as problem formulation for this case depend on the exact setting, e.g. various sensor

types for mobile nodes, different priorities for delivering data packets, number of base

stations, and motion dynamics of mobile nodes.

For the case of a single mobile source node, we have assumed two extreme cases:

having full knowledge vs. no knowledge about the source node trajectory in advance.

Our numerical examples show that the prior knowledge of the source node’s motion

dynamics considerably increases the network lifetime. An interesting extension of this

work is to explore properties of the OCP solution in this case as well as to explore the

case when we have partial knowledge about the source node trajectory in advance.

For this case, a receding horizon approach seems to be a natural framework.
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7.1.3 Extensions to Optimal Routing of Energy-limited Vehicles

In our network model, we have considered unlimited capacities for charging stations

and vehicles begin the charging process as soon as they reach a charging station.

However in practice, it may happen that there is no free station available and the

EV must wait until a station becomes free. Thus, the work can be extended by

introducing more realistic characteristics, such as queuing capacities, for the charging

stations. This extension can be done by adding capacity constraints for all charging

nodes imposing the total flow that can enter a charging node can not exceed a certain

upper bound. One can then split such node into two connected nodes with the link

capacity equal to the node capacity and back to the case when we only have link

capacities in the network (Bertsimas and Tsitsiklis, 1997).

The problem can also be extended by taking into account constraints imposed by

the grid capacity into the optimization problem framework to illustrate the signifi-

cance of vehicle-grid integration. These constraints may limit the ability of vehicles

to immediately be charged upon reaching a charging node too.

In the multi-vehicle routing problem, we have formulated the problem in the

subflow-level and assume all vehicles in a subflow follow the same optimal policy. In

fact, we have assumed that the vehicles assigned to a subflow are from a homogeneous

type, i.e., size or residual energy. As a matter of fact, the arrival rate of different types

of vehicles is random. Thus, the work can be extended by considering random vehicle

types in each subflow and also to provide recharging decision for each individual

vehicle in a subflow.

The system-centric routing problem can also be extended by considering stochastic

vehicle flows where the objective is to minimize average vehicle travel times or to

periodically re-solve the routing problem based on new traffic flow data.

Another important extension of this work is that of implementing an optimal
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routing and recharging policy for multi-vehicle routing problem. This is a challeng-

ing problem for two reasons. First, individual drivers need to be provided explicit

guidance by the central controller who determines policy. Second, a driver needs

to have the proper incentives to follow this policy. While the first difficulty may

be addressed through Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)

communication capabilities which are increasingly being made available to vehicles,

the second one is more fundamental, since it concerns the behavior of drivers who

are generally “selfish” and concerned with their own individual optimal policy. How-

ever, the emerging trend towards Connected Autonomous Vehicles (CAVs) is likely

to facilitate a centrally derived system-centric optimal routing policy which could be

implemented through CAVs, a research topic of growing interest.

For future research, it might also be interesting to investigate the potential of using

reinforcement learning algorithms that would aim the vehicles to learn online how to

minimize the total elapsed time to reach their destinations. In this context, each

vehicle through its daily interaction with other vehicles and exploration of different

feasible routes could eventually learn the optimal one for a given commute.

7.1.4 Extensions to data-driven estimation of Origin-Destination demand

matrices

So far, we have used a GLS method to estimate the OD demand matrices for a

relatively small network. Solving this problem, heavily depends on the network size

and the total number of paths connecting different O-D pairs in the network. In

fact, we are unable to use the same GLS method for large networks. Thus, the work

can be extended by developing new algorithms to estimate O-D demand matrices

for large networks. One direction to explore is to modify the existing algorithm by

leveraging a bi-level optimization problem formulation. This method will allow to

estimate OD demand matrices for a given larger network based on the OD demands
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of its representative (landmark) subnetworks. Another direction to investigate is to

decompose the network into multiple subnetworks, then to estimate the O-D demand

matrices for the larger network by aggregating the results obtained for the smaller

subnetworks. Finally, one may adjust the obtained initial demand matrix to minimize

the difference between the solution of the traffic assignment problem and the average

observed flow vector.
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