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Humanty Doomanty perched on a wall, 

Humanty Doomanty had a great fall, 

All of the circuits and all of the mem 

Took humanity’s place from them. 

 

— anonymous meatbag 
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ABSTRACT 

 Balancing subject learning and decoder adaptation is central to increasing brain 

machine interface (BMI) performance. We addressed these complementary aspects in 

two studies: (1) a learning study, in which mice modulated “beta” band activity to control 

a 1D auditory cursor, and (2) an adaptive decoding study, in which a simple recurrent 

artificial neural network (RNN) decoded intended saccade targets of monkeys. 

In the learning study, three mice successfully increased beta band power 

following trial initiations, and specifically increased beta burst durations from 157 ms to 

182 ms, likely contributing to performance. Though the task did not explicitly require 

specific movements, all three mice appeared to modulate beta activity via active motor 

control and had consistent vibrissal motor cortex multiunit activity and local field 

potential relationships with contralateral whisker pad electromyograms. The increased 

burst durations may therefore by a direct result of increased motor activity. These 

findings suggest that only a subset of beta rhythm phenomenology can be volitionally 

modulated (e.g. the tonic “hold” beta), therefore limiting the possible set of successful 

beta neuromodulation strategies. 
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In the adaptive decoding study, RNNs decoded delay period activity in 

oculomotor and working memory regions while monkeys performed a delayed saccade 

task. Adaptive decoding sessions began with brain-controlled trials using pre-trained 

RNN models, in contrast to static decoding sessions in which 300-500 initial eye-

controlled training trials were performed. Closed loop RNN decoding performance was 

lower than predicted by offline simulations. More consistent delay period activity and 

saccade paths across trials were associated with higher decoding performance. Despite 

the advantage of consistency, one monkey’s delay period activity patterns changed over 

the first week of adaptive decoding, and the other monkey’s saccades were more erratic 

during adaptive decoding than during static decoding sessions. It is possible that the 

altered session paradigm eliminating eye-controlled training trials led to either frustration 

or exploratory learning, causing the neural and behavioral changes. 

Considering neural control and decoder adaptation of BMIs in these studies, 

future work should improve the “two-learner” subject-decoder system by better modeling 

the interaction between underlying brain states (and possibly their modulation) and the 

neural signatures representing desired outcomes. 
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CHAPTER ONE: Learning and Adaptation in Brain Machine Interfaces 

 

Introduction 

 
Brain-machine interfaces (BMIs) are a proposed technology to provide mobility 

and independence to paralyzed and “locked-in” patients. However, a major limitation to 

the viability of BMIs as a medical treatment is low performance. Two fundamental and 

complementary components of BMI performance are the subject’s ability to learn to use 

the decoder, and the decoder’s adaptation to changes in the subject’s neural activity. We 

investigated both aspects in this dissertation and report on the following: (1) a BMI 

learning study in which mice controlled an auditory neurofeedback cursor, and (2) an 

adaptive BMI study in which a decoder was updated online as monkeys performed a 

delayed saccade task. Through this work we may better understand the distinct, but 

connected, roles of subject learning and decoder adaptation to create recommendations 

for higher BMI performance. 

The learning study focused on an important prerequisite of motor control: the 

decision to move in the first place. Patients may need “asynchronous” BMIs that 

determine when subjects want to be in rest or motor execution states, in contrast to 

common “synchronous” BMIs, which assume subjects intend to move during 

experimenter defined control periods. We established whether the beta sensorimotor 

rhythm (SMR), a classic neural signature of motor preparation, might be used as an 
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asynchronous control signal by training mice to increase beta SMR power in response to 

auditory neurofeedback. 

The adaptive study arose from an ongoing saccade BMI study (Brincat et al., 

2013b). A BMI that detects the direction of intended saccades could be extremely useful 

to locked-in patients, who generally have difficulty moving their eyes. Previously 

employed static decoders required hundreds of training trials each day, placing a large 

burden on the subjects. As a possible improvement, we implemented an adaptive 

recursive artificial neural network (RNN) that could reduce the need for training, and 

improve decoding performance over trials. Although preliminary offline simulations 

suggested good performance was possible, the closed loop RNN was lower performing 

than both the preliminary offline results and the closed loop static LDA decoder. We 

assessed whether changes in monkey behavior or internal cognitive factors drove poor 

performance.  

 

Subject Learning of BMI Control (Chapter Two) 

 
Non-adaptive BMI studies, in which the decoder is fixed, allow subjects to 

achieve high levels of BMI skill (Ganguly and Carmena, 2009). Important work has 

looked at the ability of individual neurons to modulate activity and tuning properties in 

BMI tasks (Fetz, 1969; Jarosiewicz et al., 2008; Ganguly et al., 2011; Chase et al., 2012; 

Koralek et al., 2012; Clancy et al., 2014). However important these studies are, relying on 

unit activity to decode motor intent may not be suitable over long term timescales, due to 

gliosis or electrode degradation (Chestek et al., 2011; Prasad et al., 2012). The viability 
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of using LFPs—rather than unit activity—as a decoding signal should be investigated, 

due to the robustness of LFP decoding over the life of the electrode (Chao et al., 2010; 

Flint et al., 2013). Furthermore, LFPs have been shown to contain more information than 

unit activity about behavioral state when fewer than 20 electrodes are available 

(Scherberger et al., 2005; Bansal et al., 2012; Flint et al., 2012). Many studies have 

looked at the capability of subjects to modulate various LFP bands or SMRs (Wyrwicka 

and Sterman, 1968; Wolpaw and McFarland, 2004; Bai et al., 2008; Hwang and 

Andersen, 2009; Pfurtscheller et al., 2010; Engelhard et al., 2013; Rouse et al., 2013; 

Wander et al., 2013), but fewer have been devoted to understanding the learning process 

through which volitional LFP modulation takes place, including relevant behavioral 

observations (Rouse et al., 2013; Orsborn et al., 2014; So et al., 2014). 

The ability of subjects to learn how to use decoders is a vital component of 

successful BMI systems, and our understanding of this process with LFPs is no less 

important. The motor cortex beta sensorimotor rhythm (SMR) is a good candidate for 

volitional modulation in motor BMIs, as a classic neural signature of sensorimotor 

activity (Sanes and Donoghue, 1993; Murthy and Fetz, 1996) that appears prominently in 

the entire cortical-basal ganglia loop (Cassidy et al., 2002; Kühn et al., 2004). The beta 

SMR has been successfully modulated in electroencephalography BMIs (Wolpaw and 

McFarland, 2004; Naros and Gharabaghi, 2015), but EEG cannot provide low level detail 

of the beta SMR modulation learning process. Up-regulation of the beta SMR is a more 

robust phenomenon than the beta ERD during both actual and imagined movement (Leeb 

et al., 2007; Bai et al., 2008; Pfurtscheller and Solis-Escalante, 2009; Pfurtscheller et al., 
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2010; Solis-Escalante et al., 2010) and does not require overt movement (Pfurtscheller et 

al., 2005). Furthermore, down-regulation of neural activity appears to be harder than up-

regulation, in general (Rouse et al., 2013; Clancy et al., 2014). 

We trained mice to increase beta band power in the vibrissal motor cortex to 

receive water reward. Mice increased the rate of water rewards received per session 

through successful neuromodulation, and not through a successful behavioral strategy. It 

appears that the neuromodulation may have been accomplished through the extension of 

low frequency (alpha and beta) burst durations and was accompanied by particular EMG 

signatures. 

 

BMI Decoder Adaptation (Chapter Three) 

 
Adaptive BMI studies have shown that performance can improve with adaptation 

(Orsborn et al., 2014), and trajectory precision drops as soon as adaptation ceases and the 

decoder is fixed (Orsborn et al., 2012; Flint et al., 2013). Fixed decoders might allow 

performance to stagnate (Bishop et al., 2014), unless only a small portion of the most 

stable neurons are utilized (Ganguly and Carmena, 2009). Unfortunately, the recording 

quality of units do not always remain stable or consistent (Chestek et al., 2011; Prasad et 

al., 2012) and the information and performance that can be extracted from neural 

recordings decreases with reduced numbers of neurons (Wessberg et al., 2000; Carmena 

et al., 2003; Ganguly and Carmena, 2009). Performance could be better if adaptive 

decoding methods are used that minimize instability in neural recordings over time. 
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Therefore, increasing the cost-benefit ratio of intracortical implants will likely require 

decoder adaptation. 

Even when decoders have good offline performance, their parameters change 

drastically after subject learning (Orsborn et al., 2012). Studies that recalibrate their 

decoders on a daily basis show high variability in performance (Taylor et al., 2002; 

Carmena et al., 2003; Gilja et al., 2012); it would be better to create decoders that had 

more consistent, high initial performance. Adaptation must be performed with caution, as 

even small changes in parameter weights can be highly detrimental to performance 

(Ganguly and Carmena, 2009). The timescale of adaptation has been researched before, 

from only one batch update (Gilja et al., 2012) to updates at every time step (Shpigelman 

et al., 2008; Vidaurre et al., 2011) to intermediate time scale updates (Orsborn et al., 

2012). Whether it is desirable to use frequent or infrequent updating may depend on how 

much learning you can expect subjects to achieve, or on the quality of the implants. There 

is some debate as to whether effective learning can occur with frequent parameter 

updates (Li et al., 2011; Orsborn et al., 2014), although it appears that fixed or more 

slowly adapting decoders allow more refined movements to develop (Danziger et al., 

2009), as well as biomimetic decoders as a starting point (Sadtler et al., 2014). Learning 

tends to occur as demand dictates—that is, units that have improper assignments of 

preferred direction tend to shift those preferred directions, and units that are weighted 

more heavily increase their modulation depth (Orsborn et al., 2014). While there is some 

debate as to what the best adaptation paradigm is (DiGiovanna et al., 2009; Li et al., 

2011; Gilja et al., 2012; Orsborn et al., 2012; Dangi et al., 2014; Marsh et al., 2015), it 
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appears clear that gradual modifications of biomimetic decoders are most intuitively 

learnable by subjects (Danziger et al., 2009; Sadtler et al., 2014). To this end, we trained 

a simple recurrent artificial neural network (RNN) with several generalization techniques 

on previously recorded data as a starting point for further adaptation of a delayed saccade 

BMI. 

Performance of the closed loop adaptive RNN was worse than both the offline 

RNN adaptation and a closed loop static LDA decoder. We suspect the poor adaptive 

performance during the delayed saccade task was due to changes in the monkeys’ 

strategies and motivation at the loss of initial eye control trials, and is not consistent with 

poor decoder adaptation parameters. 

 

Common Themes 

 
There are two common themes in these studies: (1) the use of LFPs as decoding 

features, and (2) the study of motor intention and behavior. 

LFPs at the opposite ends of the neural spectrum were used as features to decode 

different types of motor intention and activities on different timescales. In the learning 

study we looked at how low frequency LFPs (13-30 Hz) can be volitionally modulated 

over several seconds to inform decoders of an overall, broad subject motor state. In the 

adaptation study we looked at how high frequency LFPs (80-500 Hz) within a brief, time-

limited delay period can be decoded into dynamic motor activity. Furthermore, in the 

adaptive work, we briefly attempted to extract additional neural information by modeling 

the relationship between the low and high frequency LFP bands. The diversity of 
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processes for which various LFP frequency bands may inform decoders (Fontolan et al., 

2014; Bundy et al., 2016; Gao, 2016; Michalareas et al., 2016) is illustrated in these 

works as potential surrogates of missing spiking activity. 

Another common theme is the study of motor intention. In the learning study we 

used beta SMR frequencies as a “switch” for the intent to move and found that there was 

a direct connection between motor cortical activity and EMG activity. This connection 

was possibly a strategy or an outcome of learning the specific task requirement to 

generate high beta power. In the adaptation study we decoded delay period working 

memory to guess the directional intention of upcoming eye movements, the success of 

which was related to the stereotypy of post-delay saccades. In both studies we report on 

task-related motor behavior, which is not often reported in great detail in motor BMI 

studies, despite its obvious and important relationship to neural modulation in motor 

cortical areas. 
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CHAPTER TWO: Neural and behavioral correlates of learning a beta band 

neurofeedback task 

 

Abstract 

Motor brain machine interface (BMI) studies often assume the subject’s intention to 

move during rigidly structured trials and do not consider “rest” periods. Medical 

translation of motor BMIs to patient populations relies on successful asynchronous 

control, in which the patient is able to exert choice about when to control a BMI and 

when not to. We investigated the possibility of asynchronous control through a beta 

sensorimotor (SMR) rhythm brain “switch” in a neuromodulation task. 

Three mice successfully modulated vibrissal motor cortex (vM1) beta band power to 

control a 1D auditory cursor. Task performance was due to neuromodulation success and 

not to advantageous reward seeking responses. Reward threshold rates increased and 

latencies decreased, occurring soon after trial initiation. Task-related beta SMR activity 

consisted of bursting events, in agreement with several recent studies. Paralleling the 

neuromodulation learning was an increase in beta burst durations from 157 ms to 182 ms, 

suggesting they contributed to performance. Increased whisker pad electromyograms 

(EMG), and consistent multiunit activity and local field potential phase relationships 

between vM1 and contralateral EMG during task-related periods, indicate beta power 

modulation occurred during active motor control. Though the task did not explicitly 
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require specific movements, the consistency of the vM1-EMG relationships across all 

three mice suggest the increased burst durations may therefore be a direct result of 

increased motor activity durations. Further, the vM1-EMG phase coherence increased 

around reward threshold, at frequencies in the high beta range that are higher than normal 

mouse whisking frequencies are reported to be, suggesting a tonic “hold” beta was 

employed by all three mice to solve the neuromodulation task. 

The similarity with which mice solved the neuromodulation task suggests that only a 

subset of beta rhythm phenomenology can be volitionally modulated (e.g. the tonic 

“hold” beta), in this case through intentional extension of motor processes resembling a 

“hold”. If true, the possible set of successful beta neuromodulation strategies would 

therefore be limited. While we showed the feasibility of a brain “switch” for 

asynchronous BMI control, future neuromodulation studies should consider the 

underlying mechanisms of control, even within a particular rhythm. 
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Introduction 

Brain-machine interfaces (BMIs) have shown remarkable progress in the last 15 years 

(Taylor et al., 2002; Carmena et al., 2003; Guenther et al., 2009; Gilja et al., 2012), and 

continued progress could one day help paralyzed patients regain lost motor function 

(Collinger et al., 2013). However, almost all BMI studies use a paradigm of rigidly 

structured trials that disregard the motor state of the patient, assuming that a patient 

intends to move only if a trial is ongoing (“synchronous BMI”). While structured 

experiments have proven helpful to the progress BMI technology has made, translating 

the resulting decoders into real world applications would have limited benefits if the 

subject cannot exert choice over when to control the BMI and when not to (“rest 

periods”; e.g. when sleeping, reading, or conversing). Many BMI decoders show 

significant drift during rest periods (Chao et al., 2010), as the processing of decoding 

neural activity never ceases and BMIs interpret slight movement even when there is no 

intention to move. The inability of BMI decoders to distinguish between motor 

preparation and execution can further interrupt natural motor dynamics and force 

accommodations from the BMI subject (Canolty et al., 2012). Before motor BMIs can be 

translated from the laboratory, it is critical that they be able to determine the neural state 

of a subject to avoid improperly decoding non-existent motor commands (Ryu and 

Shenoy, 2009).  Only when BMIs are usable outside of a rigid trial structure 

(“asynchronous BMI”), will their full potential as medical devices be realized (Hochberg 

et al., 2012). 
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Unit activity has been used to detect changes in motor state (Achtman et al., 2007; 

Kaufman et al., 2014; Velliste et al., 2014), but long term unit activity is less stable than 

local field potentials (Chao et al., 2010; Chestek et al., 2011; Prasad et al., 2012; Flint et 

al., 2013). Further, LFPs contain more information than unit activity about behavioral 

state when few electrodes are available for recording (Bansal et al., 2012; Flint et al., 

2012), potentially due to a more consistent relationship between LFPs and states (Pesaran 

et al., 2002; Scherberger et al., 2005; Hwang and Andersen, 2009). LFP-based motor 

state detection has previously been demonstrated (Mason and Birch, 2000; Bai et al., 

2008; Fatourechi et al., 2008; Wang et al., 2012; Williams et al., 2013), and a potential 

LFP feature that has successfully been modulated in BMIs is the beta rhythm (Wolpaw 

and McFarland, 2004). 

The beta rhythm is a classic neural signature of sensorimotor activity (Sanes and 

Donoghue, 1993; Murthy and Fetz, 1996) that appears prominently in the entire cortical-

basal ganglia loop (Cassidy et al., 2002; Kühn et al., 2004) and could be a natural 

indicator of motor intent. Event-related synchronization (ERS; an increase in power) of 

beta occurs as rebounds after movement (Pfurtscheller and Lopes da Silva, 1999; Cassim 

et al., 2001; Pfurtscheller et al., 2005), and occurs during real and imagined movement 

preparation and planning (Shenoy et al., 2003; Scherberger et al., 2005; O’Leary and 

Hatsopoulos, 2006; Leeb et al., 2007; Kilavik et al., 2012; Torrecillos et al., 2015). These 

ERS events seen in trial-averaged data may, however, be constituted by an increased rate 

of bursting events, rather than sustained oscillatory events (Feingold et al., 2015; Jones, 

2016; Lundqvist et al., 2016; Sherman et al., 2016). Therefore, volitional modulation of 



 

 

12 

the beta sensorimotor rhythm (SMR) or these bursting events could be used as a “brain 

switch” by the subject to indicate when the BMI decoder should start or stop decoding 

(Pfurtscheller and Solis-Escalante, 2009). 

A potential problem with using the beta SMR is that there may be a reduction in SMR 

activity for paralyzed and “locked-in” patients (Kübler and Birbaumer, 2008). It may also 

be important to distinguish between motor imagery and motor execution (Birch et al., 

2002), which can be difficult because LFP dynamics underlying imagined movement 

parallel the dynamics underlying actual motor movement (do Nascimento et al., 2006; 

DaSalla et al., 2009; Miller et al., 2010). Neurofeedback training could help increase, 

restore, or maintain reduced beta SMR activity or assist in the differentiation of real 

versus imagined motor intent (Toppi et al., 2014). Further, if beta band activity is vital to 

motor learning (Feingold et al., 2015; Torrecillos et al., 2015; Cao and Hu, 2016; Tan et 

al., 2016), then successful neuromodulation of this activity could be important for 

patients recovering from stroke or other trauma (Daly and Wolpaw, 2008). 

Neuromodulation has been performed by rats, cats, mice, monkeys, and humans in 

cortical and subcortical areas (Wyrwicka and Sterman, 1968; Wolpaw and McFarland, 

2004; Cerf et al., 2010; Kobayashi et al., 2010; Philippens and Vanwersch, 2010; Ludwig 

et al., 2011; Koralek et al., 2012; Sakurai and Takahashi, 2013; Grosse-Wentrup and 

Schölkopf, 2014), but little of this work details the behavior and neural-behavioral 

relationships accompanying the neuromodulation. 
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We investigated the use of beta oscillations in motor cortex as a “switch” for neural 

control of a BMI, due to the beta rhythm’s natural association with motor control, as well 

as the extended lifespan and usefulness of LFP signals over spiking activity (Wang et al., 

2014). Freely moving mice in a neurofeedback task received water reward by controlling 

an auditory pitch cursor. The cursor was controlled through a modified beta power 

measure from intracortical electrodes in vibrissal motor cortex (vM1). Beta power (13-30 

Hz) was normalized by broadband activity to reduce motion artifacts (Ludwig et al., 

2011). We were able to investigate the features of beta neuromodulation learning because 

the electrodes were intracortical. Recently, beta band activity has been found to occur in 

bursts, rather than sustained oscillations, in both the cortical and subcortical sensorimotor 

system (Feingold et al., 2015; Sherman et al., 2016) and in prefrontal areas involved with 

working memory and attentional control (Sacchet et al., 2015; Lundqvist et al., 2016). If 

beta band activity occurs in bursts, it is unclear how learned neuromodulation of beta 

activity would alter the power, duration, or rate of beta bursts. 

Neuromodulation performance improved quickly, increasing suddenly and plateauing in 

the 3
rd

 control session. These performance improvements were due to neuromodulation 

success—not through learned behavioral strategies. Post-hoc analysis of LFP data shows 

that the neural activity underlying the performance improvement were ~5 – 27 Hz beta-

range bursts that increased in median duration from 157 – 182 ms during task-related 

periods across the experiment. Beta-range bursts did not increase in power or rate during 

these same task-related periods. Increases in EMG power from ~12 – 38 Hz around 

reward threshold periods were associated with increases in task-related vM1 LFP-EMG 
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coherence and significant MUA-EMG phase preferences. The increases in EMG power 

and apparent drive of high beta EMG by vM1 suggest the possibility that the beta-range 

bursts resemble the tonic “hold” beta SMR previously described in monkeys and humans. 

This work illustrates the feasibility of using neurofeedback to create a beta-range “brain 

switch” for motor BMIs, but also provides evidence that neuromodulation studies should 

be mindful of the context in which rhythms are modulated. 
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Methods 

Overview 

All procedures were performed under protocols approved by the Boston 

University Institutional Animal Care and Use Committee guidelines. Freely moving mice 

received instantaneous neurofeedback of left vibrissal motor cortex (vM1) beta power 

and increased beta power relative to broadband power for water reward. 

Subjects 

Mice in this experiment came from homozygous and heterozygous Emx-Cre (Jin 

et al., 2000) and Ai32 (Madisen et al., 2012) lines, or subsequent cross-breeding (n = 5 

males). While the genetic modifications in these lines did not play a direct role in the 

experiments, these lines were used in anticipation of future experiments employing 

optogenetic stimulation. One of the five mice had a high rate of false alarms during the 

behavioral training phase and was never implanted for neurofeedback control. A second 

mouse had a relatively long recovery time after the implant surgery, and did not initiate 

many trials during neurofeedback sessions. We therefore curtailed this mouse’s 

participation in the experiment and its data is excluded from analysis. Data from three 

mice therefore remained for analysis. These mice will hereafter be referred to as mice A 

(Emx-Cre +/+), B (Emx-Cre –/+), and C (Ai32 –/+ Emx-Cre –/+), and were respectively 

P140, P127, and P85 at the start of training. 

Mice were maintained on a 12 hr light/dark schedule and given ad libitum access 

to food. Water was restricted the day before experimental sessions and continued 
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throughout a contiguous session block. Mice received up to 1 mL of water during the 

course of an experimental session through water rewards, and 1 mL of water several 

hours after the termination of each experimental session. 

Behavioral Task 

The arena (Figure 1A) was an open field with two adjacent nose ports: (a) a 

reward port for water delivery, and (b) a trial initiation port, that mice used to initiate 

trials (Erlich et al., 2011; Leventhal et al., 2012).  In preliminary work, we found that 

mouse-initiated trials stabilized motivation to perform and increased task participation.  

Further, mouse-initiated trials allow us the possibility of recognizing mouse intention to 

participate on a single trial basis. 

Upon trial initiation, the house light turned off and auditory feedback 

simultaneously started, indicating an ongoing trial (Figure 1B). If the beta power reward 

threshold was not met within 30 s (Koralek et al., 2012) or the mouse committed a false 

alarm and poked the reward port early, the trial ended and the house light turned on and 

feedback simultaneously stopped. If the reward threshold was met within 30 s (success), 

feedback stopped and a 10 kHz auditory tone (reward tone) played for 2-5 s. If the mouse 

poked the reward port while the reward tone was playing, water reward was provided and 

the house light turned on. If the reward tone stopped before the mouse poked the reward 

port, the house light turned on and no reward was provided. 

Auditory feedback was presented, in which the frequency of the tone was graded 

by a logistic function of the beta power ratio magnitude (see Decoding Features). EMG 

from the whisker pads was measured bilaterally. 
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We define the behavioral index (BI) as: 

𝐼𝑏𝑒ℎ =
𝑇𝑃 − 𝐹𝐴

𝑇𝑃 + 𝐹𝐴
 

where 𝑇𝑃 is the number of true positives (i.e. rewards received), and 𝐹𝐴 is the number of 

false alarms. The range of this value is [-1, 1], with -1 indicating all false alarms, and 1 

indicating all true positives. 

 

 

Figure 1: Description of Experiment 

(a) Behavioral arena schematic. Two nose ports control the flow of the 

behavioral task: the trial initiation port (bottom port) and the reward port 

(top port). (b) Task flow. Inter-trial interval (ITI) periods ended when 

mice initiated trials by breaking an infrared beam in the initiation port. 

Upon trial initiation, the neurofeedback auditory tone was played. If mice 

entered the reward port prior to reward availability, the trial resulted in a 
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false alarm (red box), the trial was ended, and the ITI period began. If 

mice successfully reached reward threshold (dark green box), a 10 kHz 

reward tone played and they had 2-5 s to retrieve the water reward (light 

green box) before the ITI period began. If 30 s elapsed without a false 

alarm and without reward availability (yellow box), the trial ended, 

feedback stopped, and the ITI period began. (c) Histology from mouse C 

shows electrode tracts in layer 5 of vM1. This slice shows the location of 

the reference electrode and is located approximately 0.86 mm anterior to 

bregma. Red scale bar represents 1 mm. (d) Offline BPR calculation 

confirms accuracy of online BPR calculation. Top: an example of the 

corresponding offline (blue) and online (orange; PowerBand, i.e. 

exponential filter) BPR calculations. Bottom: an example of the 

corresponding offline (blue) and online (orange; beta bandpass RMS) BPR 

calculations. Note the ranges for both the PowerBand and RMS online 

calculations do not match the offline BPR calculations, but that the heights 

of the peaks are similar in scale. 

 

Microelectrode Arrays and Implantation 

After mice were trained to seek water reward in response to a 10 kHz auditory 

tone after ignoring a random auditory tone (1-5 kHz), they were implanted in left 

vibrissal motor cortex with a microelectrode array (vM1; -1.0 mm ML of bregma, +1.0 

mm AP of bregma) at an approximate depth of 800 μm to target layer 5 (Paxinos and 
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Franklin, 2001; Parikh et al., 2009; Matyas et al., 2010; Xu et al., 2012). The arrays were 

custom 13 channel fixed electrode arrays (approximately 1.5 mm diameter array, 50 µm 

Teflon coated tungsten wires, ~100-150 kΩ impedance). The reference wire was ~1 mm 

longer than the other 12 wires, targeted to the subcortical white matter. Three ground 

wires were wrapped around steel screws (00-90 x 1/16, Antrin Miniature Specialties, 

Inc.) attached to the skull over the cerebellum, and the left and right cortices. The arrays 

were then fixed to the ground screws using dental cement. 

EMG stereotrodes were created from twisted strands of two 50 µm (100 µm 

Teflon coated) stainless steel wire (~1 MΩ impedance). One of the wires was cut 1 mm 

shorter to create a potential differential. The stereotrodes were threaded subcutaneously 

into the bilateral whisker pads, as described previously (Schroeder and Ritt, 2013). 

Histology 

Animals were sacrificed and perfused with 0.1 M phosphate buffer and then 4% 

paraformaldehyde solution. Brains were extracted, placed into a 30% glucose solution, 

and then sliced at 60 µm. The slices were treated with 1% Triton X-100 detergent, stained 

with DAPI, and fixed on slides with ProLong Gold antifade reagent. Images were 

captured using a Nikon Eclipse Ni-E fluorescent microscope and processed with Nikon 

NIS-Elements Advanced Research software. 

Histological slices confirm the placement of the recording electrodes within 

deeper layers of motor cortex, especially vM1, and the reference electrode below motor 

cortex within the white matter or lateral ventricles (Figure 1C). Some cortical damage 

was visible, but due to the length of time (~3 – 6 months) between implantation and 
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sacrifice, it is unclear to what extent the cortex was damaged during the time of data 

collection for this work. Based on the presence of MUA (see MUA Activity), we believe 

the cortex to have been reasonably healthy during the relevant recording period. 

Neural Recordings 

 All neural data were recorded using a TDT RZ2 BioAmp Processor and a TDT 

PZ2 Preamplifier (Tucker-Davis Technologies) at a 24.4 kHz sampling rate. All non-

EMG data were low pass filtered at 150 Hz using a 4th order non-causal Butterworth 

filter and downsampled to 488 Hz for offline processing of LFPs, unless otherwise noted. 

EMG was processed as follows: (1) the two signals from the stereotrode were subtracted 

from each other, (2) this differential signal was band pass filtered from 200-3000 Hz 

using a 2nd order non-causal Butterworth filter, (3) this band passed signal was low pass 

filtered at 40 Hz using a 2nd order non-causal Butterworth filter, and (4) the resulting 

signal was downsampled to 244 Hz for offline processing. 

 At the start of each recording session, “bad” electrodes were identified via visual 

and auditory inspection and were excluded from online neurofeedback control. All 

remaining electrodes were considered “good”. Only mouse C had any “bad” electrodes 

for the brain control sessions analyzed (n=1 – 4 electrodes per session). All 12 of mice 

A’s and B’s recording electrodes were considered “good” for these analyses. 

Recording Sessions 

Two different online power calculation methods were used to determine real time 

BPR values (see Decoding Features). Mice A and B began using the first method 
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(exponential filter) for 12 brain control sessions before switching to the second method 

(RMS filter). Mouse C used the second method exclusively. The important comparison to 

be made in this work is the development of neuromodulation skill by novice subjects, and 

not how subjects use particular power filters. Therefore, to help ensure a fair comparison 

of neuromodulation skill development between the three mice, we only consider those 

first 12 brain control sessions for mice A and B in which the exponential filter was used. 

Rodents show relatively little desire for water within 24 hours of water 

deprivation (Stellar and Hill, 1952; Dufort and Abrahamson, 1966). Even when over-

trained in the neuromodulation task, the three mice initiated significantly fewer trials 

during the first session in a contiguous block of session days (median 169 vs. 222, 

𝑝 = 0.0014, Wilcoxon rank sum test, Holm-Bonferroni corrected) and significantly more 

timed out trials per trial initiation occurred during these first sessions (median 0.09 vs. 

0.02, 𝑝 < 0.001, Wilcoxon rank sum test, Holm-Bonferroni corrected). A lack of 

motivation during recent water deprivation is therefore a potential confound and we 

excluded these initial sessions from further analysis (2 sessions each for mice A and B). 

After exclusion, there were only ten sessions remaining for the first method (exponential 

filter) for each of mice A and B. All analyses are based on these first ten, non-initial 

sessions for the first two mice, and the first ten sessions of the third mouse using the 

second method (RMS filter). 

Decoding Features 

 Previous work has used a simple beta power threshold in a sliding window to 

signal motor intent (Leeb et al., 2007). However, the subject in Leeb et al. was a 
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stationary human who was confined to the wheelchair, whereas our task involves freely 

moving mice. As discussed in previous studies (Ludwig et al., 2011), motion artifacts are 

possibly confounds and we therefore corrected for broadband power increases by using a 

beta power ratio (BPR). BPR is defined as the power in the 13-30 Hz band (i.e. beta) 

normalized by the power in the 1-80 Hz band (broadband LFP), similar to previous 

normalization strategies (Hamada et al., 1999; Shaw and Chew, 2003; Kropotov et al., 

2005; Sun and Dan, 2009; Rouse et al., 2013; Williams et al., 2013; Khanna and 

Carmena, 2015). 

We used two methods of calculating the power in the beta band. The first method 

used TDT’s PowerBand module, which calculates instantaneous power using exponential 

filters of the cosine and sine of the neural data. The second method was bandpass filtering 

the raw neural signals, and then calculating the RMS of these filtered data. We will refer 

to the PowerBand module method as the “exponential filter”, and the RMS method as the 

“RMS filter”. 

The PowerBand module calculates power via the following equation: 

𝑆𝑡 = 𝑐𝑜𝑠𝐴𝑣𝑔𝑡
2 + 𝑠𝑖𝑛𝐴𝑣𝑔𝑡

2 + 2|(𝑐𝑜𝑠𝐴𝑣𝑔𝑡 ∗ 𝑠𝑖𝑛𝐴𝑣𝑔𝑡)| 

where 𝑐𝑜𝑠𝐴𝑣𝑔𝑡 and 𝑠𝑖𝑛𝐴𝑣𝑔𝑡 are exponential moving averages of the cosine- and sine-

multiplied values of the neural data: 

𝑐𝑜𝑠𝐴𝑣𝑔𝑡+1 = (1 − 𝜏) ∗ 𝑐𝑜𝑠𝑡 + 𝜏 ∗ 𝑐𝑜𝑠𝐴𝑣𝑔𝑡 

𝑠𝑖𝑛𝐴𝑣𝑔𝑡+1 = (1 − 𝜏) ∗ 𝑠𝑖𝑛𝑡 + 𝜏 ∗ 𝑠𝑖𝑛𝐴𝑣𝑔𝑡 

where 𝜏 is the exponential weighting of the average, determined by the bandwidth 𝐵 and 

the sampling frequency 𝐹𝑠: 
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𝜏 = 𝑒−2𝜋∗𝐵∗𝐹𝑠 

and 𝑐𝑜𝑠𝑡 and 𝑠𝑖𝑛𝑡 are the instantaneous products of the neural signal and the cosine and 

sine functions: 

𝑐𝑜𝑠𝑡 = 𝑥𝑡 cos(2𝜋𝜑𝑡) 

𝑠𝑖𝑛𝑡 = 𝑥𝑡 sin(2𝜋𝜑𝑡) 

where 𝜑 is the center frequency of the band. 

For mice A and B, we used three PowerBand modules to calculate power in the 

0.5-55.5, 64-80, and 14-30 Hz bands (𝜑 = 25.5, 𝐵 = 50; 𝜑 = 72, 𝐵 = 16; and 𝜑 = 22, 

𝐵 = 16, respectively). The 14-30 Hz band power was divided by the sum of the power in 

the 0.5-55.5 and 64-80 Hz bands. For mouse C, we used the RMS of the 1-57, 63-80, and 

13-30 Hz causally filtered neural data (12 dB/octave filter rolloff). 

A single average BPR was calculated from the BPR of all individual electrodes. 

This average BPR was smoothed by 600 ms (Koralek et al., 2012) for the PowerBand 

calculation, and the RMS values were smoothed by 1000 ms. We also compared both 

online BPR calculation methods (exponential and RMS) and an offline version that 

calculated power through the multitaper method (chronux.org) and was then summed and 

normalized similarly to the online BPR estimate (Figure 1D). The online BPR calculation 

is noisy and has a different range than the offline calculation, but has a similar relative 

scale and peaks at similar times. 

BPR Threshold Determination 

After implantation, mice were given approximately a week to recover from 

surgery and were then recorded during pre-brain control sessions to determine the 
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appropriate value of the BPR reward threshold. Mice A and B each ran two pre-brain 

control sessions. Due to recording quality issues, we ignored the first pre-brain control 

session for both mice A and B. BPR threshold values were determined from the 

remaining pre-brain control session for each mouse. Mouse C ran five pre-brain control 

sessions and we determined a BPR reward threshold value as the average BPR threshold 

of these sessions. 

We individually calibrated the BPR threshold offline for each mouse using the 

pre-brain control session BPR data. We iteratively adjusted the BPR threshold value until 

mice would have reached reward threshold 80 times in a 40 min session (i.e. two 

rewards/min). This initial rate of reward was found to be appropriate in initial modeling 

because it was low enough to allow improvement and not so infrequent to demotivate 

mice unfamiliar with the brain control task. 

Neurofeedback 

Auditory tone frequency was altered in real time, according to: 

𝐻𝑧𝑡 =
4040

1 + 𝑒

−

(

 
 4.6(𝐵𝑃𝑅𝑡−𝐵𝑃𝑅𝑚𝑒𝑎𝑛)

(𝐵𝑃𝑅𝑡ℎ𝑟𝑒𝑠ℎ−𝐵𝑃𝑅𝑚𝑒𝑎𝑛)
⁄

)

 
 

+ 1000 

where 𝐻𝑧𝑡 is the auditory frequency at time 𝑡, 𝐵𝑃𝑅𝑡 is the online BPR at time 𝑡, 

𝐵𝑃𝑅𝑡ℎ𝑟𝑒𝑠ℎ is the BPR reward threshold for the mouse, and 𝐵𝑃𝑅𝑚𝑒𝑎𝑛 is the mean of 

𝐵𝑃𝑅𝑡ℎ𝑟𝑒𝑠ℎ and the 1
st
 percentile of the BPR values found from the pre-brain control 

sessions. This logistic function bounds the feedback frequency between 1000 Hz as 

𝐵𝑃𝑅 → ∞− and 5040 Hz as 𝐵𝑃𝑅 → ∞+, and 5000 Hz (reward target) at 𝐵𝑃𝑅𝑡 =
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𝐵𝑃𝑅𝑡ℎ𝑟𝑒𝑠ℎ. In preliminary work, we found a logistic function necessary because the 

limited value range allows the same parameter values to be used over the entire 

experimental life of a mouse, regardless of any signal quality changes or BPR drift. 

MUA Activity 

 Multi-unit activity was extracted through a two-step process. First we applied a 

bandpass filter to the raw neural recordings between 300-5000 Hz using a non-causal 6
th

 

order Butterworth filter. The bandpassed neural activity was then inverted so that only 

negative-going spikes were detected. MUA windows (~1.5 ms) were selected using the 

following threshold (Quiroga et al., 2004): 

𝑇ℎ𝑟 = 4𝜎𝑛 

𝜎𝑛 = 𝑚𝑒𝑑𝑖𝑎𝑛 {
|𝑥|

0.6745
} 

where 𝜎𝑛 is an approximate standard deviation that reduces the effect of high spike 

amplitudes and bursting or fast-firing units on the standard deviation, and 𝑥 is the 

bandpassed neural activity. MUA windows were then aligned to the maximum value of 

the window, in contrast to aligning on the threshold crossing times. 

 Second, we performed the following three quality control steps on the extracted 

MUA windows to exclude MUA activity that was likely due to noise: 

MUA activity that occurred during LFP signal saturation (|𝐿𝐹𝑃𝑥| > 0.8 𝐿𝐹𝑃𝑀𝐴𝑋) was 

considered to be noise and was excluded. 

MUA activity with a full-width half-max (FWHM) ≥ 10 samples (~0.41 ms) had shapes 

that appeared to be noise and were excluded. 
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MUA activity was binned in 1 ms bins across all 12 recording electrodes, and any 

MUA windows that occurred in the same 1 ms bin across ≥ 6 electrodes were considered 

to be noise and were excluded. To determine that this step was necessary, we permuted 

the ISIs of all MUA windows across all 12 electrodes 100 times to generate 95% 

confidence bands of random spiking activity and determined that coincident spikes 

should not generally occur in greater than ~2 electrodes,  again assuming the spikes are 

completely random. Given that spiking activity is not completely random, we made the 

cutoff for coincident MUA windows 6 electrodes, to allow for the possibility that some 

coincident spikes are due to synchronization of neural activity or an increased firing rate. 

The mean MUA shapes appear to be neural and the retention rate of MUA windows after 

these quality control steps were 73.3%, 78.6%, and 54.9% of all detected MUA windows, 

respectively for the three mice. 

Burst Analysis 

We used methods similar to previous studies to determine the existence and 

duration of beta band bursting activity (Feingold et al., 2015; Lundqvist et al., 2016). 

First, we chose frequencies appropriate for each mouse, based on the largest power 

increases seen 0 – 250 ms prior to reward availability (16-25 Hz, 10-27 Hz, and 5-17 Hz 

for mice A, B, and C, respectively). Then we band passed the raw neural data using a 4
th

 

order non-causal Butterworth filter and these mouse-specific frequencies. Next, we 

calculated the Hilbert envelope of the band pass filtered data, and defined the existence of 

bursts where the envelope exceeded 3 times the median value of the envelope, and the 

duration of those bursts as the continuous data above 1.5 times the median value.  
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Results 

Mice Learn the Neuromodulation Task 

Mice successfully learned the neuromodulation task and several lines of evidence 

suggest mice accomplished this feat through proficiency in neuromodulation and not to 

advantageous behavioral strategies such as delayed reward seeking responses. 

Raw LFP traces (Figure 2) indicate that there are two major variations of activity that 

occurred at reward threshold when the online decoder calculated a high BPR: (1) a 

visually classical beta oscillation, in which the hallmark arch shape repeats at 13-30 Hz, 

and (2) large negative impulse-like activity, which could be a local motor potential 

(Schalk et al., 2007). Spectrograms of the neural data around reward availability periods 

show a power increase in frequencies overlapping the 13-30 Hz range, compared to 

random baseline periods (Figure 3A). We also saw a progressive increase in the 13-30 Hz 

range in session-wide LFP spectra (Figure 3B) that could be due to increased numbers of 

beta band bursts over sessions. 

Mice successfully learned the neuromodulation task, as measured by the behavior 

index (BI). The rising BI indicates a decrease in the number of false alarms committed 

relative to the number of true positives over the ten brain control sessions (Figure 4A, 

top). The mean BI for all mice begins at −0.5 (i.e. 25% true positives) and peaks at 

+0.35 (i.e. 68% true positives) during session 9. There was a large increase in mean BI at 

session 3 that could be due to reward seeking strategies and/or successful 

neuromodulation—inhibition of reward seeking at inappropriate times would inherently 

decrease the number of FAs, and successful neuromodulation would increase the chances 
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that reward seeking occurs during reward availability. However, neuromodulation 

performance is likely the proximal cause for the BI jump at session 3, based on several 

reward threshold timing measurements that improved during the same session. 

The most direct evidence for the neural origins of task success is that the rate of 

threshold events quickly increases and their timing is tied to trial initiation. Mice quickly 

increased the rate of BPR threshold events (Figure 4A, middle), irrespective of whether 

the threshold event occurred within a trial (i.e. whether or not a reward was associated 

with the event). With only one exception (mouse B, session 6), all mice had higher 

threshold event rates from session 3 onwards than in either of the first two sessions, 

which is a direct result of successful neuromodulation and tightly corresponds with the BI 

jump at session 3. Mice may have learned to increase overall levels of motor activity to 

generate more reward threshold events at random times. However, we found that 

threshold events occurred shortly after trial initiation (Figure 4A, bottom). We 

determined that the post-initiation threshold event latency distributions were not random 

by shuffling inter-trial interval times and finding the successive reward threshold events. 

By breaking this time dependence on the actual trial initiation times, we found that all 

three mice had a significant increase in reward threshold latencies sooner than 2 s after 

trial initiation, and that the shuffled reward threshold latencies looked more like an 

exponential distribution that is indicative of randomly occurring events (Figure 4B). 

Therefore, it seems probable that neural strategies are at least partially responsible for the 

increase in neuromodulation task performance, but did the mice engage in any reward 

seeking strategies that could also have increased performance? 
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Mice could have adopted a strategy of simply waiting long enough for a threshold 

event to occur before seeking reward, that means we would expect the false alarm (FA) 

latency to be significantly shorter than the true positive (TP) latency. In other words, 

false alarms would be caused simply because mice sought reward too quickly, and so the 

true positive latency would be longer, on average. If the TP and FA latencies are similar, 

however, then the reward seeking responses are relatively random and any increase in the 

number of TPs relative to FAs must be due to the ability of mice to generate threshold 

events soon after trial initiation. We found the latter relationship to be true: median 

latencies to TPs and FAs from trial initiation were similar across most sessions for all 

mice (Figure 4C). This suggests that mice tended to seek reward at random intervals and 

that the success rate depended on the latency to reward threshold from trial initiation. 

Moreover, both the TP and FA latencies decreased over the first 3-4 sessions, and then 

generally remained constant for the remaining sessions, arguing against the possibility 

that TPs increased and FAs decreased because the mice simply waited longer to respond. 

TP and FA responses were similar enough, however, that we wondered whether mice 

were seeking reward entirely randomly or whether it at least partially depended on 

auditory feedback frequency. If TP response latencies were completely random, the 

probability density should resemble an exponential distribution. However, mice reliably 

sought reward ~250 to 650 ms after reward tone, with a notable decrease in response 

probability ~0 to 250 ms after reward tone. These data indicate that reward seeking was a 

response to the reward tone. 
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Figure 2: Raw LFP examples 

Five random LFP traces (black) are shown for each of the three mice (top 

to bottom, respectively). Each trace is centered on the 2 s around reward 

availability. The bandpassed LFP traces (13-30 Hz; shown in red) are 

plotted for comparison. There are varying degrees to which classically-

defined beta band activity occurred. For example, most of the raw traces 
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for the first two mice (A and B) have many bouts of classical beta band 

activity, including true 13-30 Hz oscillations and the hallmark arch shape. 

In contrast, the third mouse (C; bottom) had little classically-defined beta 

band activity, but instead had only brief moments in a true 13-30 Hz 

regime, without the appropriate arch shape. Also note that there may not 

be large 13-30 Hz oscillations on a given electrode around reward 

availability, but that there would be ~11 other electrodes with concurrent 

activity that may have had larger 13-30 Hz oscillations that increased the 

BPR value at that time. 
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Figure 3: Beta band power increased over sessions 

(a) Mice showed an overall increase in ~5 – 45 Hz power around reward 

availability. All spectrograms are normalized by random epochs. Red 

dashed lines indicate frequency bands in which there was a large increase 

in power 0 – 250 ms prior to reward availability. These subject-specific 

frequency bands are used for burst analyses (see Bursts Underlie Beta 

Band Neuromodulation). (b) LFP spectra show bumps in the 15 – 30 Hz 

range that increased over sessions. Spectra are from random epochs. 
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Figure 4: Task performance increases are due to neuromodulation success and not due to reward seeking 

strategies 

(a) Behavior index (BI) increases over sessions (top) are supported by 

increases in threshold rates (middle) and decreases in reward threshold 

latencies (bottom). Note the BI jump in session 3 is accompanied by a 

similar jump in the threshold rate and drop in threshold latency in session 

3. This result suggests the BI increase is at least partially due to 

neuromodulation success. (b) Reward threshold latencies were tied to trial 

initiation times. Early session (1-3) latencies (gray) occur within a similar 

distribution as random bootstrapped latencies (red). Late session (8-10) 

latencies (black) occurred earlier than by chance, suggesting that mice 
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learned to produce threshold events soon after trial initiations. 

Bootstrapped latencies were generated by permuting the inter-trial 

intervals (ITIs). (c) True positive and false alarm latencies decreased over 

sessions and are not substantially different, indicating that the BI increase 

was not due to delayed reward seeking responses. 

 

Bursts Underlie Beta Band Neuromodulation 

Recent evidence suggests that trial-averaged spectrograms misrepresent the neural 

activity that occurs at the single-trial basis (Feingold et al., 2015; Lundqvist et al., 2016; 

Sherman et al., 2016). For instance, trial-averaged spectrograms might suggest prolonged 

activity in the beta band range during the preparatory period before a reach (Sanes and 

Donoghue, 1993), when in fact the power increase seen over time periods as long as a 

few seconds may only be the result of an increase in the rate of short ~100 – 200 ms burst 

events. 

Although the reward criterion of our neuromodulation task was to increase power 

in the 13-30 Hz band relative to broadband power, our mice generated power increases in 

various frequencies bands between ~5 – 45 Hz (Figure 3A). We therefore used mouse-

specific frequency bands (16 – 25 Hz, 10 – 27 Hz, and 5 – 17 Hz, for mouse A, B, and C, 

respectively) with increased power over the 250 ms before reward threshold to 

investigate whether the power increase consisted of bursting events. 

To establish that the increased power consisted of bursts, rather than prolonged 

rhythmic activity, we first looked at the duration of the elevated power events using 
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methods similar to recent work (Feingold et al., 2015; Lundqvist et al., 2016; Sherman et 

al., 2016). The median duration of elevated power events across all “good” electrodes in 

all brain control sessions was 205, 133, and 207 ms for mouse A, B, and C, respectively, 

which correspond to 3.3 – 5.1, 1.3 – 3.6, and 1.0 – 3.5 cycles per event, depending on 

frequency. These median durations are similar to previous descriptions of beta bursts 

(Murthy and Fetz, 1992, 1996; Leventhal et al., 2012; Feingold et al., 2015; Lundqvist et 

al., 2016) and suggest the possibility that beta range bursts underlie the power increases 

seen around reward threshold. 

We next looked at the density of bursts around both trial initiation and trial 

termination (when the mouse either commits a FA or TP, or the 30 s trial time limit was 

reached). There was a large increase in burst density starting ~0.5 s before trial initiation, 

which dropped to or below chance density for ~0.5 s starting at trial termination, when 

mice sought reward or had otherwise not yet initiated the next trial (Figure 5). The large 

increase in burst density from ~0.5 s prior to trial initiation until trial termination suggests 

bursting activity was enhanced during trial-related time periods. We therefore defined 

bursts to be “task-related” if their onset occurred between 0.5 s before trial initiation and 

0 s from trial termination (Figure 6A). Having defined task-related burst events, we found 

the median task-related burst durations for two of the three mice were lower than all task- 

and non-task-related bursts (144, 142, and 184 ms for mouse A, B, and C, respectively, 

corresponding to 2.3 – 3.6, 1.4 – 3.8, and 0.9 – 3.1 cycles, depending on frequency). 

Therefore, it is possible that whatever behavioral or neural strategies the mice use to 
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solve the neuromodulation task may be inherently different than incidental beta burst-

producing activities. 

We next asked if the neuromodulation performance increase over sessions was 

due to an increase in the amplitude of task-related bursts, given the explicit reward state 

of high 13-30 Hz power. The median-normalized RMS of the task-related bursts did not 

significantly increase over sessions, although the slope approached significance (Figure 

6B; 𝑝 = 0.09, permutation test, 𝑝 = 0.18 after Holm-Bonferroni correction). We then 

wondered if the performance improvement was due to an increased rate of task-related 

bursts, due to the lack of significant increase in burst RMS and the increase in burst 

density around trials. Again, the rate of task-related bursts did not significantly increase, 

although the slope approached significance (Figure 6C; 𝑝 = 0.09, permutation test, 

𝑝 = 0.18 after Holm-Bonferroni correction). We also measured the median duration of 

task-related bursts and found that they significantly increased from 157 ms to 182 ms 

(Figure 6D; 𝑝 = 0.01, permutation test, 𝑝 = 0.03 after Holm-Bonferroni correction). The 

25 ms change corresponds to a median increase of ~0.1 – 0.7 cycles per burst, depending 

on the frequency (5 – 27 Hz). 

These durations agree well with the literature, increase over sessions, and may be 

a major driver of neuromodulation task success. Both the power and rate of the task-

related bursts do not significantly increase, and could indicate that they are not the 

proximal causes of neuromodulation task success. In sum, the trial-averaged power 

increases seen around reward threshold appear to be generated by an increase in the 
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duration and density of task-related burst events, rather than through an increase in the 

power of extended oscillations. 

 

Figure 5: Beta band range bursts underlie beta band power increases 

Examples of elevated beta range bursts during the last session of each 

mouse. Red lines: elevated power event (i.e. a “burst”). Blue dots: reward 

threshold events. The number of beta bursts increased ~0.5 s prior to trial 

starts and dropped at trial termination. Reward threshold events occurred 
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during periods of dense beta bursts. The mice had different progressions of 

beta burst generation during this session; mouse A gradually increased the 

production of burst events, mouse B had a fairly sudden drop in the 

production of burst events, and mouse C had a very distinct period of burst 

production in the middle of the session. Mice A and B generated reward 

threshold events throughout their sessions, but mouse C only had reward 

threshold events during the period of increased burst production. Traces 

are in trial order (first trial at bottom, last trial at top), and a random 

“good” electrode was selected for display in each trial. Left plots: mouse 

A. Center plots: mouse B. Right plots: mouse C. 
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Figure 6: Beta range burst durations increased over sessions 

(a) Burst density increased ~0.5 s before trial initiation and decreased 

around trial termination. This time range defines the period of “task-

related” bursts. Early burst densities (gray) were lower than late burst 

densities (black) and were similar to chance burst densities (red). Chance 

burst densities were derived from 10000 random epochs from all sessions. 

Top row: mouse A. Middle row: mouse B. Bottom row: mouse C. (b) The 

median normalized burst RMS did not increase over sessions (p=0.09 

uncorrected p-value, 10000 permutations of Theil Sen fit). Inset: 

histogram of permuted Theil Sen fit slopes and the slope of the unshuffled 

data. (c) The rate of burst events did not increase over sessions (p=0.09 
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uncorrected p-value, 10000 permutations of Theil Sen fit). Inset: 

histogram of permuted Theil Sen fit slopes and the slope of the unshuffled 

data. (d) Burst durations increased over sessions (p=0.01 uncorrected p-

value, 10000 permutations of Theil Sen fit, p=0.03 Holm-Bonferroni 

corrected p-value). Inset: histogram of permuted Theil Sen fit slopes and 

the slope of the unshuffled data. 
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Beta band neuromodulation is achieved through active motor control 

Previous neuromodulation studies noted that animals adopt various motor 

behaviors as part of their task strategies (Wyrwicka and Sterman, 1968; Gage et al., 2005; 

Ludwig et al., 2011). Our mice were implanted in left vibrissal motor cortex, leaving 

open the question of whether they adopted whisking behaviors during the 

neuromodulation task. Behavioral, video, and EMG data suggest that successful 

neuromodulation required active task engagement (or an “intention” to participate), and 

that BPR increases were concurrent with increases in EMG activity and consistent vM1-

EMG MUA and LFP relationships suggestive of motor “holding”. 

BMI performance is dependent on motivation (Musallam et al., 2004). In the 

present task, mice appeared to be engaged in the task at the beginning of experimental 

sessions, as seen by the rate of trial initiations (Figure 7A). However, later in those 

sessions when mice were closer to satiation, the rate of trial initiations decreased and trial 

time outs began to occur. If TPs were dependent on behavioral response strategies rather 

than neuromodulation performance, the trial time outs would likely have been TPs 

instead. Video data also suggest that mouse orientation at the moment of trial initiation 

indicated whether a timed out trial would occur (Figure 7A). Normalized and averaged 

video frames taken from the moment of trial initiation in which reward was received 

show an overall body orientation of the mouse’s nose in or near the initiation port and the 

rear of the mouse aimed away from the initiation port, suggesting that mice intended to 

initiate trials in which they successfully modulate beta-range activity. In contrast, video 

frames taken from the moment of trial initiation in which time outs occurred show no 
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common body orientation on average, suggesting that mice may have accidentally 

initiated these trials and are not actively participating in the neuromodulation task 

(anecdotally, timed out trials generally seemed to be initiated with paws, tails, or 

abdomens). Therefore, successful modulation of beta-range power might have required 

motivation and some form of intention to participate in the task. 

We also analyzed EMG power to determine whether neuromodulation was an 

active process. Overall EMG activity between the first 3 s of true positive and timed out 

trials (up to but not including reward availability) was higher for true positive trials (data 

not shown). Because trial time outs occurred late in sessions when mice were more 

satiated, this finding suggests ongoing whisker or orofacial movements occurred more 

often during trials in which mice were more likely to “intend” to participate in the task or 

to receive reward. We examined EMG around reward threshold and found that there was 

a temporally-precise and frequency-specific bilateral increase in the 10-38 Hz band 

starting ~400 ms before reward availability (Figure 7B). The power increase was greater 

in the right (contralateral) EMG than the left EMG for mice B and C. A relatively flat 

band in the spectrogram appears between ~8 – 16 Hz over the entire analysis window for 

all three mice, within normal mouse whisking frequencies (Cao et al., 2012). Foveal 

whisking occurs at higher frequencies than exploratory whisking (Berg and Kleinfeld, 

2003), and a whisker tracking study reported the whisking frequency of freely exploring 

mice to be ~15 – 25 Hz, with high frequency activity (~37 Hz) at the set points (Voigts et 

al., 2008). These data could indicate that ~8-16 Hz whisking occurs within broad time 

periods around reward threshold for all three mice, but that reward threshold conditions 
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are contingent on neural processes that produce additional EMG activity in the 16-35 Hz 

range, possibly small amplitude whisking. We therefore suspect that mice may involve 

whisking and control of beta frequency whisker EMG activity as part of their 

neuromodulation strategy. 

Previous studies noted potential whisk-by-whisk motor control based on vM1-

EMG coherence in the rat (Ahrens and Kleinfeld, 2004), and we saw increases in LFP-

EMG coherence and MUA-EMG phase preferences that suggest a direct vM1 drive of 

vibrissa motions. LFP-EMG coherence within ~6 – 16 Hz increased bilaterally in all 

three mice over the ~1 s before reward availability, but the right whisker pad had much 

more consistent increases in beta-range (~14 – 38 Hz) LFP-EMG coherence (Figure 7C). 

Additionally, there was a positive slope of the coherence phase in the beta range for the 

right EMG (data not shown) that is consistent with vM1 LFPs leading EMG activity and 

driving coherence, rather than whisker pad afference leading LFPs and driving coherence 

(Schoffelen et al., 2005). The more consistent increase in right EMG-left vM1 LFP 

activity and vM1-leading LFPs are consistent with contralateral control of the whisker 

pads. 

We also looked at vM1 MUA and found that many of the 12 electrodes (n=3-10) 

in left vM1 were significantly phase-selective to bilateral EMG (Figure 7D). MUA with 

significant EMG phase preferences fell within a consistently narrow range for all mice 

(−𝜋 6⁄ < 𝜃 < 0). These phases occur just before EMG peak, which corresponds to the 

onset of whisker protraction during normal whisking behavior (Schroeder and Ritt, 

2013). Though the angular dispersion values were low (𝑟~0.02 − 0.27), even low spike-
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field coherence can indicate significant numbers of units are synchronized with the field 

(Baker et al., 2003). In our task it may only suggest direct vM1 control of high frequency 

whisker pad EMG activity—as opposed to whisk-by-whisk control—with a slight 

contralateral bias due to the increased contralateral LFP coherence. 

 

Figure 7: Beta band neuromodulation is an active process driven by vM1 

(a) Top: Timed out trials (TO; blue) occur late in sessions, suggesting the 

involvement of motivation in neuromodulation success. Trials that time 

out generally occur during plateaus in rewards (black) and false alarms 

(FAs; red). These plateaus occur after a sharp rise in rewards and/or FAs, 

indicating the mice slow the pace at which they initiate trials. The 

reduction in trial initiation and increase in trial time outs suggest that some 
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level of task motivation or “effort” is vital for beta neuromodulation 

success. Shown are sessions 6 – 10 for mice A, B, and C (top to bottom 

rows, respectively). Bottom: Timed out trials occur when mice do not 

intend to participate in the neuromodulation task. At left is the mean frame 

at trial initiation for TP trials for mouse B. In the center is the single video 

frame with the highest correlation to the mean TP trial initiation frame, for 

comparison. At right is the mean frame at trial initiation for TO trials for 

mouse B. Note that the general shape and features of the mice are visible 

in the left frame, and that there is no discernible mouse shape in the frame 

on the right, despite there being fewer frames in the average (n=142 TOs 

vs. n=671 TPs). (b) High beta band range EMG power increases around 

reward threshold. Contralateral EMG power (right EMG; bottom row) 

increases more than ipsilateral EMG power (left EMG; top row), 

suggesting a need to increase motor output from left vM1 during beta 

neuromodulation. The contralateral EMG power increase for mouse C is 

in lower frequencies than mice A and B, which corresponds well with the 

lower frequency beta band LFP power increase of mouse C around reward 

threshold (~5-17 Hz, Figure 3). Left column: mouse A. Center column: 

mouse B. Right column: mouse C. Power is normalized by random 

epochs. (c) Beta band range LFP-EMG coherence increases around reward 

threshold. There is a fairly consistent ~6 – 16 Hz LFP-EMG coherence for 

all mice, but contralateral EMG coherence (LFP-right EMG; bottom row) 
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increases more in the high beta band range (~14 – 38 Hz) than ipsilateral 

EMG coherence (LFP-left EMG; top row). LFP-EMG coherence of 

random epochs was subtracted from the -1 s to 0.5 s around reward 

availability. (d) EMG phase preferences of task-related MUA suggest vM1 

drives high frequency whisker pad EMG activity. The mean phase 

preference of all significant MUA phase preferences for both left and right 

EMG for all three mice lie within a very narrow range (−𝜋 6⁄ < 𝜃 < 0), 

corresponding to the onset of whisker protraction (Schroeder and Ritt, 

2013). Below each plot is the EMG frequency range over which the MUA 

activity was tested. Red radial lines: statistically significant MUA activity 

(𝑝 ≤ 0.001, uncorrected Rayleigh z test). Black radial lines: statistically 

insignificant MUA activity (𝑝 > 0.001, uncorrected Rayleigh z test). 

Upper right text (e.g. “0.08”): angular dispersion 𝑟 value at the outer ring; 

inner ring is half that value. Lower right text (e.g. “n=3”): number of 

electrodes (out of 12) for which MUA phase preference was statistically 

significant. 
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Discussion 

Mice quickly learned the neuromodulation task in the 3
rd

 session, with modest 

performance gains over the remaining sessions. This timescale of learning is very similar 

to other studies in which mice modulated neural activity to control an auditory cursor 

(Koralek et al., 2012; Clancy et al., 2014). Reward threshold LFP power increases 

occurred mostly in beta frequencies (~5 – 40 Hz), which consisted of an increase in the 

density of beta range burst events rather than an increase in the magnitudes of extended 

oscillations. Task performance improvements were likely due to neuromodulation 

strategies that include increases in duration of the underlying beta range bursts. 

Contralateral whisker pad EMG activity also increased in the beta range (~12 – 38 Hz) 

around reward threshold and had high LFP beta coherence and consistent MUA-EMG 

beta phase preferences. 

The coincident increases of LFP and EMG beta power coupled with beta LFP-

EMG coherence and MUA beta phase preferences is suggestive of frequency-specific 

motor patterns consistent with “holding” or other high frequency orofacial motor control. 

Beta band control in our task and the increased durations of beta bursts may therefore be 

due to intentional increases in the duration of active motor processes. The rapidity with 

which mice learned the neuromodulation task and similarity of LFP- and MUA-EMG 

relationships across all three mice suggests a common, accessible mechanism of beta 

burst production that motor “holding” or similar cycle-by-cycle orofacial motor control 

would parsimoniously explain. 
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Tonic “Hold” Motor Output Driven by vM1 

Normally, LFP power in beta frequencies decreases at the onset of movement, 

rather than increases. One exception to this is the “hold period” beta SMR. Based on 

LFP, MUA, and EMG evidence, our mice may have learned to actively “hold” their 

whiskers, similarly to previous studies in monkeys and humans in which beta band power 

and coherence increases during tonic hold periods and sensorimotor maintenance (Kilner 

et al., 2004; Omlor et al., 2007; Engel and Fries, 2010). The beta range activity we then 

see could be static, rather than dynamic, muscle control and the burst event density 

decrease that occurs just as mice seek reward in response to the reward tone would then 

correspond to the initiation of dynamic movement when beta power decreases (Donoghue 

et al., 1998). This interpretation fits with classical descriptions of the beta SMR, as 

similar beta LFP-EMG relationships have been reported in macaque monkeys (Baker et 

al., 1997) and humans (Schoffelen et al., 2005; van Ede and Maris, 2013). High gamma 

coherence (40 – 47 Hz) has also been reported in humans during a bimanual wrist 

extension task (Schoffelen et al., 2011), which supports the possibility of high frequency 

vM1-EMG coherence in mice. The consistent MUA-EMG phase relationship we found 

also supports the possibility of vM1-high frequency EMG control. There is no current 

consensus as to how vM1 activity relates to vibrissa movements (Castro-Alamancos, 

2006; Hill et al., 2011) and EMG activity, and the particular task requirements of this 

study could have altered normal vM1-whisker pad dynamics. Mice could have generated 

increases in BPR via motor artifacts (Ganguly and Kleinfeld, 2004) or intrinsic control 

that is dissociable from movement (Lebedev et al., 2005; Moritz and Fetz, 2011), 
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although we suspect the latter possibility is unlikely (see below). The high frequency 

EMG activity (approximately in the beta range) may therefore be related to tonic “hold” 

activity. 

Alternatively, our mice might not have been generating “true” beta SMRs, but 

were rather controlling whisking or orofacial behaviors on a cycle-by-cycle basis (Berg 

and Kleinfeld, 2003; Ahrens and Kleinfeld, 2004). This locking could be achieved by a 

phase reset of the whisking cycle by layer V cells (Brecht et al., 2004). Ahrens and 

Kleinfeld (2004) noted the increase in vibrissal motor cortical LFP power just prior to 

exploratory whisking occurred between 4 – 10 Hz, which could partially explain the 

lower bound on the frequency range we saw in mouse C’s bursting activity around 

reward availability (5-17 Hz). Previous studies reported 7-11 Hz coherence increases 

between rat barrel cortical LFPs and whisker EMG during goal-directed behavior, 

compared to exploratory whisking (Ganguly and Kleinfeld, 2004). Given the strong 

reciprocal connectivity between vM1 and vS1 (Farkas et al., 1999; Mao et al., 2011), 

there could be similar coherence or power increases in motor cortex during our goal-

directed task. This increase in vM1 power or vM1-vS1 coherence potentially involves 

modulation of whisking or other orofacial behaviors, at higher frequencies due to our task 

requirements, even though much of the motor drive for orofacial behavior originates in 

the brain stem (Kleinfeld et al., 2014). We saw a large bilateral decrease in ~0 – 8 Hz 

LFP-EMG coherence for all mice that temporally coincides with the reward seeking 

response period (Figure 7C). We speculate this large decrease in coherence was due to 

the cessation of goal-directed whisking, and not due to decreased whisking alone because 
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the EMG power still increased over baseline in these frequencies at this time (Figure 7B). 

Cycle-by-cycle control occurs at lower frequencies than tonic “hold” beta, however, so 

only the low frequency EMG activity (up to the low beta range) may therefore be related 

to goal-directed whisking. 

In sum, a tonic “hold” (or similar) motor output may have been the successful 

neuromodulation strategy responsible for the beta band range EMG activity and vM1-

EMG relationships seen. 

 

Increases of Beta Burst Durations 

Lundqvist et al. (2016) reported no change in the duration of beta bursts, and 

claimed this as a predicted outcome of their model. The change in beta burst duration 

observed in the present study may result from the fact that beta band activity is directly 

tied to reward in our task, whereas features of beta band activity in Lundqvist et al. are 

correlative measures. In other words, our subjects had an interest in potentiating or 

activating neural connections involved in beta band activity—and received 

neurofeedback expressly for them to do so. If the increasing burst durations are a 

prolonging of normal oscillatory bursting processes, then it is possible that plasticity 

mechanisms, such as an increase in GABAA conductance, are responsible (Baker and 

Baker, 2002). 

Otherwise, if these bursts are direct drivers of motor activity (as we suspect), then 

the mice may simply be extending those motor processes in a more deliberate manner for 

reward. In support of this latter possibility, Sherman et al. (2016) built on previous work 
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to model the potential mechanisms of beta bursts in somatosensory cortex (Jones et al., 

2009; Sherman et al., 2016) and found that broad proximal drive of layer 2/3 and 5 

pyramidal cells, coupled with distal inputs consisting of 10 Hz bursts lasting a beta period 

could be responsible. Whisker control on a cycle-by-cycle basis or tonic “hold” beta 

synchrony may require vM1 to receive the commensurate number of distal input bursts 

from higher cortical areas, or from S1 as part of normal closed loop sensorimotor control. 

In this possibility, the increase in beta burst durations we see could simply be a result of 

intentional increases in the duration of motor output and not due to plasticity. 

 

Controllable Beta vs. Automatic Beta 

Given broad freedom to solve the task using a strategy of their choosing, all three 

mice performed successful trials approximately as follows: (1) poke the snout into the 

trial initiation port, and (2) remain within the trial initiation port while continuously 

performing various orofacial behaviors, including whisking, licking, biting, and sniffing, 

until the reward tone sounded. Throughout this basic procedure, the vM1-EMG 

relationship—as quantified by task-related LFP-EMG coherence changes and MUA-

EMG spike-field coherence—appeared highly similar among the three mice. No “action” 

was being decoded, as the mice had no requirement other than to increase the BPR value, 

yet the EMG patterns and vM1-EMG relationships were relatively consistent between the 

three mice. 

One possibility may explain the similarities: the requirement to increase the BPR 

value may not be as generic as we thought—while there may be more than one 
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mechanism to generate beta rhythms, they may not all be volitionally controllable (Wood 

et al., 2014). Beta band activity that is possible to neuromodulate may be a more 

“intentional” beta that occurs within a narrow behavioral context. For example, motor 

command adjustment preparatory-beta (Torrecillos et al., 2015) and tonic-hold beta 

(Baker et al., 1997) may be more intentional activity or is otherwise more “controllable”, 

whereas error salience/forward model updating rebound-beta (Torrecillos et al., 2015; 

Cao and Hu, 2016; Tan et al., 2016) may be a more automatic process associated with 

neural plasticity and motor learning. The consistent vM1-EMG relationships and BPR 

increases during high EMG suggest the likelihood that the modulated beta rhythm was of 

the tonic-hold variety. This directly implicates tonic hold of those muscles for which the 

vM1 cortical area controls, implying the inter-mouse behavioral similarity. If these bursts 

are direct drivers of motor activity, then the increasing burst durations we found may 

simply be the mice extending those motor processes in a more deliberate manner for 

reward. The rapidity with which mice learn the task further supports the idea that the 

mechanism of beta power production may have been a pre-existing capability exploited 

for reward. Future neuromodulation studies may wish to consider the context and 

mechanisms under which the particular rhythm is generated to prevent over-generalizing 

their conclusions (Jones, 2016). 

 

Relationship to Previous Studies 

Our burst durations are similar to previous findings, which found most bursts to 

last ~2 – 4 cycles (Figure 8). We included frequencies lower than the beta range in our 
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burst analysis, which we believe is necessary due to the power increases seen in the trial-

averaged spectrograms. Feingold et al. (2015) did not include frequencies lower than 13 

Hz in their analyses, despite the visible increase in power down to ~10 Hz. This 

exclusion appears based on the traditional definition of the beta rhythm as 13 – 30 Hz 

activity, which empirical data does not always support (Whittingstall and Logothetis, 

2009). 

 

Specific Implementation of Experiment 

The electrode arrays spanned a larger area than vM1, so it is possible that neural 

activity was not entirely representative of vibrissal-related activity, and could have also 

included upper lip/muzzle, forelimb, eye/eye lid, neck, digit, wrist, or jaw-related activity 

(Pronichev and Lenkov, 1998; Matyas et al., 2010; Tennant et al., 2011; Xu et al., 2012). 

Indeed mice appeared to perform various orofacial behaviors such as licking, biting, and 

sniffing while they remained in the trial initiation port, attempting to increase the BPR 

value. Beta range activity is more widespread than higher frequency activity, however 

(Miller et al., 2009b), so the inclusion of some extra-whisker pad activity may not overly 

confound our interpretation. 

During preliminary work, we attempted to run this experiment using decreases in 

13-30 Hz band power as a reward condition, but real time calculations of this power band 

were generally at ‘floor’ and decreases were not possible. However, a “brain switch” 

based on beta ERS could be more promising than one based on beta ERD for several 

reasons. First, the time course of beta ERD in motor cortex is highly variable across task 
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conditions (Stančák et al., 1997; Tzagarakis et al., 2010; Fujioka et al., 2012). Second, 

beta ERS is a more robust phenomenon than ERD during both actual and imagined 

movement (Bai et al., 2008; Pfurtscheller and Solis-Escalante, 2009; Pfurtscheller et al., 

2010; Solis-Escalante et al., 2010; Zaepffel et al., 2013); in one study a paralyzed subject 

moved a virtual wheelchair through motor imagery beta ERS with no false positive 

detections (Leeb et al., 2007). Third, beta SMRs are more prominent during periods of 

increased sensorimotor activity than during rest (MacKay and Mendonça, 1995; 

Takahashi et al., 2011). Finally, down-regulation of neural activity appears to be more 

difficult to achieve than up-regulation (Fetz and Baker, 1973; Kobayashi et al., 2010; 

Rouse et al., 2013; Clancy et al., 2014; Ramot et al., 2016), which is in strong agreement 

with our preliminary data. This may be an issue specific to our hardware setup, however, 

and we would not rule out other methods of training mice to decrease 13-30 Hz band 

power. 

The increase in burst density prior to trial initiation and the decrease in density 

beginning around reward availability just prior to trial termination argue against motion 

artifact as the major cause of burst events because the required action for both trial 

initiation and termination is extremely similar (i.e. breaking an infrared beam in almost 

identical nose ports, save the water spout in the reward port). Therefore, if motion artifact 

was the cause of the beta burst, we would likely see similar increases in the burst rate at 

both trial initiation and during and after termination. Instead, the burst density near trial 

termination peaks just before reward availability, and then decreases over the following 
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~400 – 600 ms, which tightly corresponds to the reward response latency while mice are 

actively moving towards the reward port. 

Notable similarities between mice A and B and their differences to mouse C could 

be due to the unique online filter used to calculate mouse C’s BPR. Mouse C had a lower 

range of frequencies in which power increased around reward threshold for both its LFPs 

and EMGs, for instance. The particularities of the real time filters used could have 

inadvertently taught the mice to solve the neuromodulation task through different neural 

and behavioral strategies, although we showed LFP- and MUA-EMG relationships were 

reasonably similar. 

 

Feasibility of Beta SMR Brain “Switch” 

Whether beta range activity used in this context is a viable brain “switch” is yet to 

be settled. Beta band activity appears to consist of bursts that increased in duration and 

not in amplitude, therefore a beta “switch” based on duration might be more successful. 

Additionally, the timescale on which mice reached reward threshold after trial initiation 

suggests that motor BMIs could be “switched” in a matter of seconds. This would be a 

long time by healthy standards and is not as fast as previous studies determining the idle 

state from spiking data (Velliste et al., 2014), but is a reasonable solution if only LFP 

data is available and the threshold of activity needs to be difficult enough to achieve to 

avoid false positives. 
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Figure 8: Burst results compared to previous descriptions 

The present findings on burst frequency and durations are comparable to 

previous descriptions in the literature. Gray boxes: the 16th – 84th 

percentile (i.e. approximately the median ±1 STD) burst durations of the 

three mice from the present experiment. Colored boxes: reported 

frequency and duration ranges from previous studies (Murthy and Fetz, 

1992, 1996; Leventhal et al., 2012; Feingold et al., 2015; Lundqvist et al., 

2016; Sherman et al., 2016). Black lines: the number of waveform cycles 

as calculated by frequency and duration (number of cycles as labeled). 
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CHAPTER THREE: Neural and behavioral strategies during adaptive decoding of 

a delayed saccade task 

 

Introduction 

 
Brain-machine interfaces (BMIs) are quickly becoming more usable (Collinger et 

al., 2013). A primary concern for BMIs, however, is the development of decoding 

algorithms that are able to adapt to changes in neural measurements that result from both 

endogenous and exogenous processes to the brain. Some factors are well known to affect 

neural activity and measurements, such as the level of attention, plasticity, alertness, 

gliosis, electrode drift, and alternative control strategies (Pichiorri et al., 2011; Collinger 

et al., 2013; Perge et al., 2013), but there are also less common factors like self-perceived 

ability to control technology and the presence of unusual neurotransmitters that can also 

have an effect (Witte et al., 2013). Changes in any one of these factors could lead to a 

decrease in BMI decoding performance. The goal of adaptive decoding is to allow 

appropriate changes to the decoding model so that BMI performance is maintained or 

improved, despite fundamental alterations to the underlying neural activity or 

measurements. 

An issue related to neural alterations and measurement drift is that decoder 

performance can be dependent on daily calibration sessions, which delays 

implementation and often requires the involvement of an onsite expert. It would benefit 
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users to reduce or eliminate the amount of calibration required for optimal BMI decoding. 

In this study, we attempt to address both issues; can we reduce the number of calibration 

trials required before a BMI becomes usable, and can we also adapt the decoding 

algorithm to ongoing changes in neural activity? 

One method of reducing calibration time would be to pre-train a decoding model 

and then use that model as a basis for iterative, closed loop learning (Williams et al., 

2013). This training method would be one example of adaptive decoding. Due to the 

importance of using non-linear, spatiotemporal decoding methods for neural data (Chapin 

et al., 1999), we used a Jordan network, otherwise known as a simple recurrent neural 

network (RNN). 

An additional method of reducing calibration time is to avoid using spiking data 

as the basis for decoding. Spike sorting is generally a manual process performed by 

experts that produces questionable results (Harris et al., 2000; Wood et al., 2004), and 

minor electrode displacements can drastically alter the recorded spike waveforms, 

negating any previous spike sorting (Harris et al., 2000). A potential alternative is to use 

power in the 80-500 Hz frequency band as a reasonable correlate of spiking activity 

(Manning et al., 2009; Miller et al., 2009a; Miller, 2010). Using this frequency band 

precludes the need for a sorting process and may be more resilient to changes in electrode 

placement, given the distributed nature of the signal sources. Furthermore, as with 

decoding algorithms that use multi-unit activity, there is less need for pre-session trials in 

which the researcher records data purely for the purpose of spike sorting (DiGiovanna et 

al., 2009). 
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Researchers have attempted closed-loop paradigms to improve the decoder, as 

well as improve the method of stimulation (Fernandez-Vargas et al., 2013). 

The frequency of feedback in adaptive BMIs is an important factor in how subjects learn. 

Many previous closed loop adaptive decoders have been used in dynamic control tasks in 

which the subject receives continuous feedback (Chapin et al., 1999; Wessberg et al., 

2000; Taylor et al., 2002; Wolpaw and McFarland, 2004; Gage et al., 2005; Vidaurre et 

al., 2006; Wahnoun et al., 2006; DiGiovanna et al., 2009; Vidaurre and Blankertz, 2010; 

Ludwig et al., 2011; Gürel and Mehring, 2012). Relatively few studies looked at 

adaptation in discrete classification tasks where the feedback is only given at the end of a 

trial after a decision has been made, either offline (Bishop et al., 2014) or in a closed loop 

(Bryan et al., 2013). Based on ongoing work (Brincat et al., 2013a, 2013b), we first used 

an adaptive model offline to classify upcoming saccades using 80-500 Hz delay period 

activity. Offline decoding success was high enough to warrant maintaining the same 

paradigm in a closed loop adaptation experiment. 

Preliminary offline work of an adaptive simple recurrent artificial neural network 

(RNN) showed promising results that suggested closed loop decoding and adaptation of 

discrete eye movements was feasible (Torene et al., 2013). Performance of RNNs pre-

trained on previous sessions began above chance (~50 – 65%; chance = 16.7%) and 

increased over the first ~100 trials to asymptotic performance (~70 – 80%), which was 

comparable to LDA performance which required 300 correctly decoded training trials at 

the beginning of each session (Brincat et al., 2013b). RNNs utilizing generalization 

techniques (see Adaptation Strategy) had higher next day performance than non-
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generalized RNNs. Based on these results, we attempted to run the adaptive RNN in a 

closed loop with two monkeys, but the closed loop results did not match offline results, 

which is not unexpected (Koyama et al., 2010). We saw an initial increase in 

performance over the first few adaptive sessions in the two monkeys (from ~25% to 

~75% correct for monkey C, and from ~36% to ~54% correct for monkey J), but 

performance then fell for the remaining five sessions (~23% for monkey C, and ~31% for 

monkey J). 

 

Methods 

 

Overview 

 This study utilized existing data from an ongoing experiment (Brincat et al., 

2013a, 2013b). Two macaques performed a delayed saccade task during which neural 

activity was recorded from three cortical areas associated with eye movement planning 

and execution: the dorsolateral prefrontal cortex (dlPFC), frontal eye field (FEF), and 

supplementary eye field (SEF) (Bruce and Goldberg, 1985; Funahashi et al., 1989, 1993; 

Schall, 1991; Dias and Bruce, 1994). A simple recurrent neural network (RNN) used the 

power of the 80-500 HZ band as inputs to decode saccadic eye movements. The RNN 

was initially batch trained, and then iteratively trained on subsequent novel data. 

Subjects 

Two male monkeys were used in this study: a macaca fascicularis (monkey C), 

and a macaca mulatta (monkey J). Both monkeys were implanted in areas dlPFC, FEF, 
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and SEF with three 32-channel electrode arrays. Monkey C was implanted in the left 

hemisphere, and monkey J was implanted in the right hemisphere. 

Behavioral Task 

A 6-choice delayed saccade task was performed by monkeys C and J in two 

conditions: eye-control and brain-control (Figure 9).  In the eye-control condition, 

crosshairs appeared in the center of a computer monitor, indicating the start of the trial.  

The subject was required to maintain fixation on the crosshairs for 500 ms and a target 

briefly flashed in one of six possible locations.  After a delay period of 750 ms from the 

disappearance of the flashed target, the crosshairs disappeared and the macaque was then 

allowed to saccade to the location of the target.  If the macaque made a saccade to the 

correct target, the trial was considered a success and a juice reward was provided.  In the 

brain-control condition, neural activity recorded during the 750 ms delay period was used 

as input to the RNN (see Data Collection and Decoding Features) and reward was 

dependent on the output of the decoder. 
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Figure 9: Delayed saccade task 

If subjects maintain fixation on a center target for 500 ms, a target is cued 

for 350 ms. After the target disappears, the 750 ms delay period elapses, 

during which the subject must maintain fixation on the center of the 

screen. Once the center fixation target disappears, the subject is then free 

to saccade towards the cued target (eye control trials), or the decoder 

makes a decision about the subject’s intended target (brain control trials). 

Saccades or decoder decisions towards the cued target are correct and 

rewarded (top right), while saccades or decoder decisions to other targets 

are incorrect and not rewarded (middle right). Figure adapted from 

(Brincat et al., 2013b). 
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Data Collection and Decoding Features 

 Three 32-channel BlackRock arrays (96 total channels; 400 µm spacing) were 

implanted in the left (monkey C) and right (monkey J) hemispheres, in areas dlPFC, SEF, 

and FEF, which are associated with working memory and eye movement planning and 

execution (Bruce and Goldberg, 1985; Funahashi et al., 1989, 1993; Schall, 1991; Dias 

and Bruce, 1994). Data was recorded at 30 kHz. The signal was bandpass filtered 

between 80-500 Hz using a 3rd order Butterworth filter and the 750 ms delay period was 

divided into ten 75 ms time bins. Each trial provided a 96×10 input array to the RNN, 

where the power of the 80-500 Hz band for each of the 96 channels at time step 𝑡 was 

sequentially input at time step 𝑡. The 80-500 Hz frequency band is thought to be a proxy 

for nearby suprathreshold neural activity (Manning et al., 2009; Miller et al., 2009a; Ray 

and Maunsell, 2011) and a reasonable substitute for spikes, as unit sorting is not 

necessary for good decoding performance (Stark and Abeles, 2007; Fraser et al., 2009). 

Furthermore, this band was determined to have the highest decoding power in a LDA 

decoder from among the delta, theta, alpha, beta, and gamma bands, as well as from both 

MUA and single unit activity (Brincat et al., 2013a). Details of the LDA decoder are 

provided elsewhere (Brincat et al., 2013b). All data used in this study came from trials 

that were deemed correct by the closed loop LDA decoder. 

All computation and analyses were from custom written scripts in MATLAB 

(R2011a, 64 bit). The computer on which the simulations were run had an Intel Core i5-

2400 (3.10 GHz) CPU and 8 GB of RAM. 
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RNN Overview 

We used a simple RNN to decode neural activity, with the intent of capturing any 

oscillatory dynamics occurring during the delay period (Elman, 1990). Recurrent 

connections in a simple RNN use the outputs from the previous time step as additional 

inputs within the same layer for the subsequent time step. The RNN consisted of one 

input layer with 97 nodes (96 electrodes + 1 bias), two logistic hidden layers with 111 

and 61 units that were fully connected with a delay of one time step (110 hidden + 1 bias 

in the first layer and 60 hidden + 1 bias in the second), and one softmax output layer with 

6 nodes (one for each target). Softmax output values are constrained between 0 and 1 to 

represent the probabilities of their respective targets being the desired choice of the 

monkey at each 75 ms time step in the 750 ms delay period. Initial weights were 

randomly drawn from the normal distribution (𝜇 = 0, 𝜎 = 1) and were adjusted with 

gradient descent backpropagation. 

At each decoded time step, the target with the largest output is tabulated, and the 

final answer for each trial is a weighted mode of the ten responses. The weighted mode 

favors RNN output closer to the time of eye movement than stimulus presentation to 

reduce any effect early stimulus artifacts may have on decoding (Mohler et al., 1973; 

Bruce and Goldberg, 1985; Thompson et al., 2005; Tremblay et al., 2015). It does this by 

weighting the output value at time 𝑡 approximately as 𝑤~𝑒0.1𝑡, for 𝑡 = {1 ≤ 𝑡 ≤ 10, 𝑡 ∈

ℕ}. For example, it is possible that the responses for the first six time steps will conclude 

that target A is the correct target and the responses for the last four time steps will 
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conclude target B is the correct target, which means the final output will be target B, 

rather than target A (i.e. ∑ 𝑒0.1𝑡6
𝑡=1 ~8.6 is less than ∑ 𝑒0.1𝑡10

𝑡=7 ~9.4). 

Adaptation Strategy 

 An initial RNN model for each monkey was batch trained using correct trials 

from several previous static LDA decoding sessions and then iteratively trained after each 

sequential trial during the following adaptive decoding session (DiGiovanna et al., 2009; 

Vidaurre et al., 2011). The values of the learning and regularization parameters were 

decreased for online adaptation so that weight modifications would build slowly upon the 

batch-trained model (see Appendix for specific learning parameter values). Iterative 

gradient descent learning performed on an initially biomimetic decoder with a small 

enough learning rate should be relatively easy to learn by subjects (Danziger et al., 2009; 

Sadtler et al., 2014). 

Previous work showed that lack of generalization is a potential issue with 

adaptive decoders (DiGiovanna et al., 2009), so in preliminary work (Torene et al., 2013) 

we looked at four regularization techniques to increase the initial performance of models 

trained from previous sessions’ models: dropout (Srivastava et al., 2014), L2 weight 

decay (Krogh and Hertz, 1992a), artificial data generation using temporal bootstrapping 

(Barton and Schruben, 2001), and Bayesian targets (see Appendix for more details). 

Dropout approximates the training of 2𝑛 different network architectures (where 𝑛 is the 

total number of hidden units) which is a form of bagging for RNNs. L2 weight decay 

ensures that only meaningful weights stay large and that weights are less biased by the 

specific training set. Input resampling helps decrease the variance of the model by 



 

 

66 

artificially increasing the size of the training set. Bayesian targets relaxes the assumption 

that the neural activity is always representative of the true intention (or working memory) 

to saccade to the correct target; altering training data based on reasonable assumptions 

about user intent potentially contributes more performance increases than even retraining 

a decoder (Fan et al., 2014). 

Several RNN decoding models were generated for each monkey prior to online 

closed loop adaptation. The best model for each monkey, as determined by test error rate 

during batch training, was selected as the starting point for adaptation. Preliminary work 

showed the generalization techniques reduced model bias and that models with higher 

batch performance had higher initial performance on subsequent sessions (Torene et al., 

2013). 

Offline Training Paradigm 

 We looked at two sets of three consecutive days of data, for a total of six days of 

data. Both sets of data were collected in August (15-17) and November (26-28) of 2012. 

In these sessions, the macaque’s performance was determined by a static LDA decoder, 

although the macaque was also allowed to move its eyes toward the target. For this 

offline analysis, only trials that were correctly decoded by the LDA decoder were used to 

train and test the RNN. 

RNNs were trained in two phases for this study (Figure 10). The first phase 

utilized batch training on data from four of the six days (August 15-16 and November 26-

27; “previous days”). The second phase took the resulting models from the previous days 

and applied online learning to them using data from a separate set of four days (August 
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16-17 and November 27-28; “subsequent days”). Each model was trained on two 

consecutive days of data in order to look at the feasibility of using historical data as a 

basis for the decoding of future data. On the previous days, each model was batch trained 

on the entire day’s data, using 70% training, 20% validation, and 10% testing blocks 

chosen at random to find the optimal model for that day. Each batch iteration consisted of 

a block of 500 random training trials. 

On the subsequent days, the batch trained model from the previous day was 

trained online using sequential trials, with 79% training and 20% validation blocks. 

Validation trials were selected randomly to avoid the possibility that we would be 

training towards late neural patterns of the monkey. Remaining trials in the training set, 

however, were presented in chronological order to simulate original conditions as best we 

could. The remaining 1% of trials was eliminated purely for programming expedience 

and is ignored for all offline analyses (these trials amounted to 17 and 11 trials per 

session for August and November, respectively, out of a total of ~1635 trials for each 

session in August and ~1068 trials for each session in November). Each online training 

iteration consisted of a cumulative block of all training trials up to the current trial. 

Previous day batch model iterations were selected against the validation block, 

and final batch model performance was measured against the testing block. Test 

performance of the batch models was used in all final model selections. Next day online 

models were not chosen and therefore performance for each online training iteration was 

measured directly against the validation block, as that serves as the theoretical 

performance of the model for some block of unseen trials. 
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Batch training parameter values were determined through semi-automated 

exploration of performance for August 15. Once reasonable values were found manually, 

they were iterated upon to reach “best” parameter values for the number of hidden units 

and layers, learning rate, dropout rate, L2 weight decay, temporal input bootstrapping 

rate, and Bayesian target value. A three point moving average of test error was used to 

determine the best value for a given parameter, in which the center point with the lowest 

average test error was defined as the best value. Once found, the next parameter was 

iterated upon to find its best value. In this way, the cycle was repeated until lowest test 

errors were obtained from whole day batch training. 

Appropriate online training parameter values were determined in a similar fashion 

as batch training parameter values, except that only August 15 was tested, and a relative 

proportion of batch training parameter values was chosen for all remaining online 

training parameter values. Many learning parameters were scaled down for online 

training so that learning built slowly upon the existing batch trained model. To determine 

whether the models would perform consistently, ten iterations of the three day training 

sequence (1st day batch/2nd day online, 2nd day batch/3rd day online) were run for both 

August and November, using both standard and generalized RNNs, for a total of 80 

previous day batch/subsequent day online training simulation pairs. 



 

 

69 

 

Figure 10: Offline model adaptation sequence 

“Previous day” models (Day 1 and Day 2, top) are trained and selected 

through the standard training-validation-test (black, red, and green, 

respectively) data sets. Best models are selected via the highest validation 

performance, and the test performance is the final performance statistic 

considered. “Subsequent day” adaptive models (Day 2 and Day 3, bottom) 

are trained via the training data set, and tested against the validation data 

set after each new training trial. The running validation performance is the 

final performance statistic considered. 
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Closed Loop Training Paradigm 

 Closed loop training used the same batch training and online training parameter 

values as in the offline preliminary work. Monkeys C and J performed 5 and 6 

(respectively) preliminary static LDA decoder training sessions and all correct trials from 

these sessions for each monkey were used to build 10 batch models, from which the best 

model was used as the basis for online training. At the beginning of each static LDA 

decoder session, monkeys performed 300 training trials in which reward was contingent 

on eye movements and not on decoder output. There were no transition sessions during 

which there was a gradual decrease in the number of training trials from 300 to 0 (i.e. 

immediate adaptive decoding). Each monkey performed 9 adaptive RNN decoding 

sessions. After each session was completed, the correct trials from the session were added 

to the pool of initial batch decoder training sessions to create a new initial model for the 

next session. Ten adaptive sessions were planned, but the experiment was stopped early 

due to fears that low closed loop task performance would be detrimental to future task 

performance in unrelated experiments. 

Reconstruction of 80-475 Hz Power 

We reconstructed 80-475 Hz power in each of the 96 electrodes during the delay 

period using the power of low frequency activity. The power of various frequency bands 

was calculated by bandpassing the entire session’s offline LFP using a non-causal 6
th

 

order Butterworth filter between the two frequencies of interest, then taking the RMS of 

the Hilbert envelope during the ten 75 ms time steps of each delay period. Phases were 
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also calculated during exploration, but phase information was not used in the final 

iteration of this process, so we will not go into detail. 

A feedforward artificial neural network (ANN) with one hidden layer of 100 

logistic units was used for 80-475 Hz power reconstruction. The ANN was regularized 

using dropout, and L1 and L2 weight decay. 

 

Results 

Offline Performance 

Ten iterations of the three day training sequence (1st day batch/2nd day online, 

2nd day batch/3rd day online) were run for both August and November, using both 

standard and generalized RNNs for a total of 80 previous day batch/subsequent day 

online training simulation pairs. 

Generalization of the RNN is the key to improved performance. Figure 11 shows 

a representative previous day batch training sequence comparison between a standard 

RNN with no generalization features, and a generalized RNN with dropout, L2 weight 

decay, artificial input bootstrap generation, and Bayesian targets. Features of this 

example that are common to many other examples is that the standard RNN reaches its 

maximum validation value earlier than the generalized RNN, but that the training and 

validation rates diverge noticeably—the training success rate often reaches 100%, but the 

maximum validation rate averages 78% and 70% for August and November, respectively. 

This is in contrast to the generalized RNN, in which the training and validation rates 

remain highly similar throughout training, and the maximum validation rate averages 
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83% and 80% for August and November, respectively. Generalization also increases 

batch test performance (Figure 12). 

In all four online training cases (August 16 and 17, and November 27 and 28), the 

generalized RNNs outperformed the standard RNNs (Figure 13). In all but one instance, 

there was a significant difference between initial online performance of the generalized 

and standard RNNs. Final online performance of the generalized RNNs was significantly 

higher than the standard RNNs for all four days (𝑝 < 0.01 for each case, Holm-

Bonferroni corrected). 

To understand whether it is possible to estimate subsequent online performance of 

the generalized RNNs based on previous day batch performance, we calculated Pearson’s 

correlations between three performance measures: 1) previous day batch test performance 

and subsequent day initial online validation performance; 2) previous day batch test 

performance and subsequent day final online validation performance; and, 3) subsequent 

day initial online validation performance and subsequent day final online validation 

performance (Figure 14). All three correlation measures were found to be significant (ρ = 

0.34, p < 0.05; ρ = 0.45, p < 0.01; and ρ = 0.72, p < 0.00001, respectively; Holm-

Bonferroni corrected). These correlations suggest that best practice is to generate several 

models on the previous day, and use the model with the highest performance and ignore 

those with poor performance to increase the chances of achieving good success rates on 

the following day. 

Final online performance of the generalized RNNs was significantly higher than 

initial online performance (p < 0.01 for all subsequent days, Student’s t-test, Holm-
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Bonferroni corrected). Mean initial online performance of the generalized RNNs was 

61.2% correct, while mean final online performance was 77.4% correct. Individual days 

had better or worse performance. 

Decoding performance of individual targets for the previous day batch trained 

models suggests performance suffers from unilateral implants. The upper and right 

portions of visual space were better decoded than the lower left portion of visual space 

(Figure 15). This is likely due to the left-lateralized implants, as left dlPFC, FEF, and 

SEF are thought to be responsible for eye movements to the right half of visual space. 

We looked at the largest 1% of weights (by magnitude)  in each layer for a 

random model for Monkey C to determine whether any general statements could be made 

regarding the appropriateness of using RNNs as decoders (Figure 16). Three key features 

suggest RNNs to be highly appropriate decoding models. First, most of the largest 

weights from the input layer are fed forward from SEF, which indicates it to be the most 

informative cortical area for target intention. This was shown independently through 

related work in the same monkey (Brincat et al., 2013b). Second, the largest weights in 

the output layer were feedforward connections from the 2
nd

 hidden layer to targets 1, 2, 

and 6, which are the three contralateral targets to the implanted hemisphere. This is 

consistent with cross-callosal processing and is recognized as most informative by the 

RNN. Third, recurrent connections were major constituents of the largest weights in each 

layer, suggesting the importance of a recurrent model for decoding delay period activity 

instead of a simple feedforward model. 
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Finally, we also established the practical matter of whether closed loop decoding 

using the generalized RNN could be accomplished in real time. While it can take several 

hours to derive a base model from batch training, online training and decoding occurred 

faster than real time. We reran 10 iterations of the online training while timing them. It 

took an average of 149 ms (± 33 ms STD) per 750 ms delay to train the models online. 

There are ten time steps decoded during each delay (75 ms each), which indicates that 

each training iteration took approximately 15 ms. This suggests that models using the 

current parameters and computer hardware can be trained online at a rate of up to 67 

times per second, ignoring the time required by preprocessing functions. 

Altogether, we established that the generalized RNN should be used instead of the 

standard version, RNNs were a reasonable method for closed loop decoding of saccades, 

and they could be used in real time. 

 

 

Figure 11: RNN generalization improves batch model validation rate 

Generalization techniques improve offline batch model validation set 

performance. Left: training set performance of standard RNN approaches 
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100%, while validation set performance reaches a maximum of ~70%. 

Right: training and validation set performances of the generalized RNN 

both approach ~80%. 

 

 

Figure 12: RNN generalization improves batch model test rate 

Generalization techniques improve initial offline batch model test set 

performance. Shown are the test performances for the four “previous” 

offline decoding days. Ten model instances for each of the standard and 

generalized RNN show clear performance improvements of the 

generalized RNNs over standard RNNs for November. Closed loop LDA 

decoding performance is shown in green, for comparison. 

 

 

Figure 13: Online adaptation performance increases in offline simulations 

“Next” day validation set performance shows online decoder adaptation 

improvement. Shown are the offline adaptation validation set performance 
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averages (± s.e.m.) of the 10 generalized models (black) and 10 standard 

models (red) on the four “next” days. Average generalized performance is 

comparable to static LDA performance, and indeed exceeds LDA 

performance for Aug 16 and 17. Note that validation set performance 

begins far above chance (~16.7%) at the beginning of each session, and 

increases to asymptotic performance within ~100 trials. 

 

 

Figure 14: Better performing batch models have better online performance 

Positive correlation of validation and test set performance statistics predict 

benefits for choosing models with the highest “previous” day 

performance. Left: a significant positive correlation was found between 

previous day test set performance and next day initial validation set 

performance ( 𝝆 = 𝟎. 𝟑𝟒, 𝒑 < 𝟎. 𝟎𝟓 ; Holm-Bonferroni corrected). 

Middle: a significant positive correlation was found between previous day 

test set performance and next day final validation set performance 
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(𝝆 = 𝟎. 𝟒𝟓, 𝒑 < 𝟎. 𝟎𝟏; Holm-Bonferroni corrected). Right: a significant 

positive correlation was found between next day initial and final validation 

set performance (𝝆 = 𝟎. 𝟕𝟐, 𝒑 < 𝟎. 𝟎𝟎𝟎𝟎𝟏; Holm-Bonferroni corrected). 

These correlations make the strong case that the best performing 

“previous” day batch-trained models should be selected for “next” day 

online adaptation. Gray and black circles: generalized RNN performances. 

Red and pink dots: standard RNN performances for comparison (no 

statistical tests were performed on these data). 
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Figure 15: Higher contralateral than ipsilateral decoding performance 

Target-specific batch test set performance is consistent with contralateral 

implant location. Monkey C had left lateral implants, and the targets in the 

right field of view (targets 1, 2, and 6) had higher decoding performance, 

which is consistent with previous studies and suggests RNN models 

learned relevant features of the data. Left column: standard RNN model 

performance shows that right lateral targets can have extremely high 

performance (e.g. 89% for target 2 in August), but left lateral target 
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performance suffers (e.g. 36% for target 5 in November). Right column: 

target-specific performance of generalized RNN models is higher than 

standard RNN models in all cases except two (targets 2 and 4 in August). 

These data suggest that bilateral implants would improve performance. 

 

Figure 16: RNN weights consistent with related findings 

Largest 1% of weights per layer, by magnitude, of one example model for 

Monkey C show three key features suggesting RNNs are reasonable 

decoding models: (1) most of the largest weights in layer 1 are derived 

from SEF electrodes, which independently confirms results from related 

work showing SEF to be most informative of target selection in monkey C 

(Jia dissertation); (2) many of the largest weights are recurrent instead of 
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feedforward, suggesting the importance of using recurrence; (3) the three 

targets in the output layer with the largest weights are contralateral targets 

to the implanted hemisphere (targets 1, 2, and 6). Red and green lines: 

positive feedforward and recurrent connections, respectively. Blue and 

purple lines: negative feedforward and recurrent connections, respectively. 

 

Closed Loop Decoding Performance 

 Monkeys C and J each performed 9 closed loop adaptive RNN sessions after 

performing 5 and 6 closed loop static LDA decoding sessions, respectively. Adaptive 

RNN sessions began immediately under brain control, which contrasts with the static 

LDA decoding session paradigm of starting with 300 training trials performed under eye 

control. 

Closed loop adaptive RNN performance was not as high as offline performance, 

nor was it as high as closed loop static LDA decoder performance (Figure 17). As may be 

expected from the offline decoding results, higher overall decoding performance was 

achieved for contralateral targets than ipsilateral targets (Figure 18). This trend was also 

seen within sessions (Figure 19). 

The decrease in closed loop performance compared to the preliminary offline 

analysis could possibly be due to excessively large learning parameters, which would 

cause divergent weight changes. This possibility is unlikely due to the preliminary offline 

results, which indicate that performance should improve if the subject performs the task 

in complete ignorance of the decoder or changes to the decoder. The decrease in closed 
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loop adaptive RNN performance compared to the closed loop static LDA decoding 

performance is possibly due to the inappropriateness of a RNN for this decoding task. 

Again, this is unlikely due to excellent offline results. 

An issue which could explain both unfavorable performance comparisons is that 

the task paradigm change was unexpected and aversive to the monkeys. Prior to the 

closed loop adaptive RNN decoding sessions, monkeys performed 300-500 training trials 

at the beginning of each session in which eye movements determined whether reward 

was received. Because healthy motor behavior is much more accurate than BMI 

decoders, it is possible that the monkeys were used to easy reward at the beginning and 

became frustrated with the adaptive decoding task, or possibly did not understand the 

new task parameters, yet understood the task parameters to have changed. 

Session-level analysis suggests that most of the adaptive RNN performance was 

due to the performance of previous day batch-trained models and not due to within-

session adaptation or learning for either monkey C (Figure 20) or monkey J (Figure 21). 

Least means square fits of session performance show that few decoders increased in 

performance within a session. Given that performance remained relatively constant 

within sessions, this suggests that poor closed loop performance was not due to problems 

with the model or learning parameters, but perhaps to factors external to the model such 

as monkey reaction to the change in task paradigm (i.e. starting sessions with brain 

control instead of eye control). 
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Figure 17: Closed loop RNN performance worse than offline and closed loop LDA 

Closed loop adaptive RNN performance is more variable and lower 

performing than the static LDA decoder. For both monkeys, RNN 

performance was always above chance (16.7%), but did not match overall 

LDA performance. RNN performance for individual sessions occasionally 

exceeded mean LDA performance (RNN session 4 for Monkey C, and 

RNN sessions 4 and 5 for Monkey J), but this was the exception. Left: 

Monkey C static LDA and adaptive RNN performance. Right: Monkey J 

static LDA and adaptive RNN performance. Decoding success is 

determined by trials in which the decoders guessed the target (i.e. 
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monkeys successfully initiated a trial and did not prematurely break 

fixation). 

 

Figure 18: Higher contralateral than ipsilateral decoding performance 

Closed loop adaptive RNN confusion matrix shows wider target confusion 

than static LDA decoder. Left column: Monkey C confusion matrices for 

LDA (top left) and RNN decoders (bottom left). Right column: Monkey J 

confusion matrices for LDA (top right) and RNN decoders (bottom right). 
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Grayscale numbering within the boxes indicates the Expected Target is 

contralateral to the implant; red numbering indicates ipsilateral. 

 

Figure 19: Higher online contralateral than ipsilateral performance 

Contralateral closed loop RNN decoding performance is higher than 

ipsilateral performance and suggests the RNN models decoded reasonable 

features in the neural data. Top: Average contralateral (black) and 

ipsilateral (red) target performance for monkey C. Bottom: Average 

contralateral (black) and ipsilateral (red) target performance for monkey J. 

Note that large transients occur at the start of the data, due to peculiarities 

in individual session data and are averaged out as more sessions’ trials 
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begin to apply to the data. These transients do not genuinely represent 

sudden changes in adaptation performance and long term trends should be 

paid more attention. Each trace is an average of 25-trial moving averages 

for each target, which is why success rates do not appear until ~125 trials. 

 

Figure 20: Monkey C performance not due to within-session adaptation 

Few sessions show clear performance improvements, but performance 

generally begins above chance. This suggests that closed loop 

performance largely relied on a reasonable starting model. Red traces: 

moving average of 50 trials. Straight red lines: least mean square session 

performance. Black dashed line: chance performance (~16.7%). Black 
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titles: session identifiers. Sessions are ordered from left to right, top to 

bottom. % Correct is determined by trials in which the decoders guessed 

the target (i.e. monkeys successfully initiated a trial and did not 

prematurely break fixation). 

 

Figure 21: Monkey J performance not due to within-session adaptation 

Few sessions show clear performance improvements, but performance 

generally begins above chance. This suggests that closed loop 

performance largely relied on a reasonable starting model. Red traces: 

moving average of 50 trials. Straight red lines: least mean square session 

performance. Black dashed line: chance performance (~16.7%). Black 
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titles: session identifiers. Sessions are ordered from left to right, top to 

bottom. % Correct is determined by trials in which the decoders guessed 

the target (i.e. monkeys successfully initiated a trial and did not 

prematurely break fixation). 

Neural Correlates of Closed Loop Performance 

At the end of the first week of adaptive RNN decoding, monkey C’s FEF activity 

patterns during correctly decoded targets had changed substantially (Figure 22). On the 

contrary, monkey J’s neural activity patterns appear to have remained relatively stable 

(Figure 23). Whether the changes in monkey C’s neural patterns were led by attempted 

learning of the decoder, or were shaped by the decoder’s adaptation is unclear. 

Expanding on this, it is unclear whether stable neural activity is a better strategy for 

decoding success, or if correctly decoded targets require particular activation patterns and 

the trials shown is merely a selection bias. 

If initial models are generated based on data from previous sessions, then we 

wondered whether neural activity correlations between sessions had an effect on 

decoding performance of the current session (Figure 24). Monkey C’s inter-session 

neural correlations were lower overall than monkey J, although monkey C’s adaptive 

performance was often higher than monkey J. Nonetheless, we found a significant 

positive relationship between inter-session neural correlations and performance for each 

monkey (Figure 25; 𝑝 = 0.017 and 𝑝 = 0.022 for monkey C and J, respectively, 

Spearman’s rank correlation, Bonferroni corrected). Therefore, consistent neural activity 

appears to benefit decoder performance, which questions why monkey C’s neural activity 
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changed from the beginning to the end of the first week. Either the decoder forced 

monkey C’s patterns to change by adapting improperly, or monkey C attempted to 

improve performance improperly, or changes in FEF activity, specifically, did not 

adversely impact the decoder. 

Given the relative similarity of the cortical activation map between targets (Figure 

22 and Figure 23), and yet the performance difference between ipsilateral and 

contralateral targets (Figure 19), we wondered how decoding performance within each 

target group changed over the course of an adaptive session. Muscle synergies are 

controlled by primary motor cortical neurons (Holdefer and Miller, 2002), so it is 

possible that proximal oculomotor areas are cooperative with respective to similar eye 

movements and/or movement goals. If so, then we might expect performance within 

contralateral targets and within ipsilateral targets to be positively correlated. On the other 

hand, if neural control of saccades or intended saccades within local cortical areas is 

competitive, we might expect laterality-specific performance changes across a session to 

be negatively correlated. We calculated within-session performance correlation of all 

target pairs and found the only ostensibly consistent pattern to be that ipsilateral targets 

increase or decrease in performance over time together (Figure 26). This could possibly 

suggest synergistic activity within working memory areas and oculomotor areas for 

ipsilateral goals. Alternatively, there could be such a relative absence of ipsilateral target 

processing that any increase in ipsilateral target decoding success “spills over” to nearby 

targets and increases the odds that a nearby target is decoded. 
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Figure 22: Monkey C neural activity patterns change 

The neural activity patterns of monkey C changed over the course of the 

first week. Shown are the mean array activity patterns for the first (top) 

and last (bottom) session of the first week of adaptive RNN decoding 

during the 5
th

 time step of CORRECT trials only. Activity in SEF remains 

substantially similar, but FEF activity changes considerably. It is unclear 

whether the neural pattern changes were due to the subject attempting to 

learn the decoder, and/or if preferred activity patterns were shaped by the 
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decoder adaptations. Shown are the six targets (as labeled). Note how 

similar the activity is between targets within the same session. All activity 

is normalized across all electrodes within a session. Although there does 

not appear to be much activity in PFC, there may still be substantial 

information decoded from this area. 

 

Figure 23: Monkey J neural activity patterns are stable 

The neural activity patterns of monkey J appeared to change very little 

over the course of the first week. Shown are the mean array activity 

patterns for the first (top) and last (bottom) session of the first week of 
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adaptive RNN decoding during the 5
th

 time step of CORRECT trials only. 

Activity in all three cortical areas appears to have remained substantially 

similar. Shown are the six targets (as labeled). Note how similar the 

activity is between targets within the same session. All activity is 

normalized across all electrodes within a session. 

 

Figure 24: Performance related to neural similarity to previous sessions 

Correlations of 80-500 Hz electrode power in “next” sessions with 

“previous” sessions suggest decoding performance is dependent on neural 

activity similarity to that which was used to construct the initial RNN 

model. Top plot: monkey C previous and current session correlation of 80-



 

 

92 

500 Hz power. Bottom plot: monkey J previous and current session 

correlation of 80-500 Hz power. Black and red bars on left: contralateral 

and ipsilateral targets, respectively. Black line overlay: decoding 

performance (corresponding to the data from Fig. X), with top of graph 

indicating 100% success and the bottom indicating 0%. 

 

Figure 25: Better performance with consistent inter-session neural activity 

Correlations of 80-500 Hz power during closed loop adaptive RNN “next” 

sessions to “previous” sessions’ 80-500 Hz power show significant 

correlations to decoding performance for both monkeys ( 𝑝 = 0.017 , 
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𝑝 = 0.022 , Spearman’s rank correlation, Bonferroni corrected). Top: 

monkey C. Bottom: monkey J. Red dashed lines: least means square fit. 

 

Figure 26: Decoding performance of ipsilateral targets changes together 

Significant target performance trend correlations suggest ipsilateral target 

performances are positively correlated and may increase and decrease at 

similar times. All other correlations suggest no consistent pattern of inter-

target adaptation or learning. Some targets conflict with each other during 

learning/adaptation, and some improve with each other. Shades of red and 

blue: significant positive and negative (respectively) target performance 

correlations across all closed loop RNN decoding sessions. The white 

diagonal squares from lower left to upper right are the same target 

correlations and are not shown. Contra: contralateral targets. Ipsi: 
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ipsilateral targets. Left: monkey C. Right: monkey J. Spearman rank 

correlations were Bonferroni corrected for the number of sessions (n=9) 

and target combinations (n=15). 

Behavioral Correlates of Closed Loop Performance 

We attempted to understand the behaviors associated with closed loop decoder 

performance. To differentiate which behaviors were due to trial type (eye control vs. 

brain control) and session type (i.e. static vs. adaptive), we divided each session into 

training-equivalent trials and test-equivalent trials. We defined training-equivalent trials 

to be the actual initial eye-control training trials performed at the beginning of static LDA 

sessions (𝑛 = 379.2 ± 68.6 and 𝑛 = 322 ± 6.7 trials per LDA session for monkeys C 

and J, respectively) and the first 379 and 322 brain control trials at the start of each 

adaptive RNN session for monkeys C and J, respectively. Test-equivalent trials were all 

trials in these sessions that occurred after the training-equivalent trials. 

First we looked at saccades during the first 500 ms after GO for correctly decoded 

training-equivalent trials for both the static LDA and adaptive RNN sessions (Figure 27). 

Monkey J displayed more erratic saccade behavior during this period, which could either 

be a behavioral strategy for the task type (i.e. eye- vs. brain-controlled) or the session 

type (i.e. static LDA vs. adaptive RNN). Monkey C appeared to maintain a similar, 

direct-saccade strategy during this training-equivalent period for the both session types. 

We then looked at the first 500 ms after GO for correctly decoded test-equivalent trials 

(Figure 28). Monkey J’s saccades were again more erratic for adaptive RNN sessions 

than for static LDA sessions, despite the fact that the actual behavior performed after the 
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GO signal is irrelevant to the decoder. Monkey J’s erratic saccade strategy seems 

therefore more likely due to the session type, and not due to expectations from the session 

time period (i.e. early vs. late), given the similarity of eye motions between the test- and 

training-equivalent trials during static and adaptive decoding. Monkey C, again, 

maintained very consistent, direct saccade behavior and therefore may not have altered its 

strategy. 

While both monkeys displayed individual differences in behavioral strategy in the 

spatial extent of their saccades, we wondered if either displayed temporal differences. We 

therefore looked at saccades during the 120 ms express saccade period (Paré and Munoz, 

1996), during which there is little possibility that monkeys could react to the trial 

outcome (Figure 29). Monkey C again appears to have maintained a consistent timing of 

saccade behavior, and monkey J again appears to have altered its behavioral strategy 

depending on the trial type. Under brain control, monkey J appears to delays its saccades 

more than with eye control. 

We wondered how erratic saccades were associated with decoder performance, so 

we compared saccades during correctly- and incorrectly-decoded test-equivalent trials for 

both static and adaptive sessions (Figure 30). Eye movements during incorrectly decoded 

trials tended to occur over a wider area and were less stereotyped than during correctly 

decoded trials. One possible exception to this may be monkey C’s static decoding 

sessions, where we see slightly more erratic activity for correctly decoded trials. In this 

case, the correctly decoded trials still display relatively stereotyped saccades, however, so 

it is unclear what conclusions to draw from this. 
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To verify that erratic saccades were associated with incorrect decoding, we looked 

at the distribution of saccadic distance from the mean saccades for each of the six targets 

during the first 0-350 ms after GO for both correct and incorrect test-equivalent trials 

(Figure 31). Curiously, correctly decoded trials had more divergent saccades than 

incorrectly decoded trials for both monkeys during the static LDA decoding sessions 

(𝑝 < 0.001 for both monkeys C and J; Wilcoxon rank-sum test, Holm-Bonferroni 

corrected). Notably, this trend reversed for both monkeys during the adaptive RNN 

decoding task (𝑝 < 0.001 for both monkeys C and J; Wilcoxon rank-sum test, Holm-

Bonferroni corrected) and correctly decoded trials had less divergent saccades than 

incorrectly decoded trials. To what extent this pattern remained true on a per target basis 

could potentially elucidate meaning, given the laterality of the implants. We performed a 

similar analysis, breaking the data down by target (Figure 32) and found that on a per 

target basis, the relationship between saccade divergence and static decoding 

performance largely disappeared. Only one target for monkey J continued to show the 

curious positive relationship between saccade divergence and decoding success during 

static LDA decoding sessions. On the other hand, we found that the majority of targets 

continued to show the relationship between saccade stereotypy and decoding 

performance during adaptive RNN sessions. One ipsilateral and two contralateral targets 

for monkeys C and J, respectively, showed no significant relationship. In general, correct 

decoding during adaptive sessions was followed by more stereotyped saccades and there 

was little relationship between saccade divergence and decoding performance during 

static sessions. These results help explain why monkey C may have maintained such 
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consistent saccade behavior during the adaptive decoding sessions, but leaves in doubt 

the strategy of monkey J, who appears to have had more divergent saccades in adaptive 

than static decoding sessions. Had monkey J attempted to maintain more consistent 

behavior during adaptive decoding, it might have enjoyed higher decoding performance. 

It is possible that monkey J may not have been attempting a cohesive strategy to 

solve the adaptive brain control task, potentially due to frustration with the adaptive task 

paradigm shift eliminating early eye control trials. To determine whether this is a 

possibility, we looked at the number of fixation errors (both fixation breaks before GO 

and no fixation before the delay period) committed during the training-equivalent trials 

for both the static and adaptive decoding sessions (Figure 33). While monkey C’s fixation 

errors did not meaningfully change between the static and adaptive decoding sessions, 

monkey J’s fixation breaks increased dramatically during the training-equivalent trials of 

adaptive sessions. This false starting could be a sign of either impatience or frustration, or 

a misunderstanding of the new task paradigm. We wondered if there was a relationship 

between fixation errors and adaptive decoding performance (Figure 34). We compared 

both the number of fixation breaks and no-fixation trials to the decoding success rate 

(which includes only trials in which the decoder made a guess and excludes all fixation 

break and no-fixation trials) for all adaptive decoding sessions and found that there was 

only one significant correlation between monkey C’s fixation breaks and decoding 

performance (𝜌 = −0.82, 𝑝 = 0.038, Spearman rank correlation, Holm-Bonferroni 

corrected). Several other correlations approached significance prior to multiple 

comparisons correction, including monkey J’s fixation breaks and decoding success. The 
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negative relationship between fixation break rates and decoding success hints that there 

could either be a drop in decoding performance due to the neural state underlying the 

increased proclivity to commit fixation breaks (i.e. false starts, possibly) or the fixation 

breaks are merely a behavioral response to poor decoding. The false starts could indicate 

impatience or frustration due to the experimental paradigm change of eliminating the eye 

controlled training trials at the beginning of each session. It is also possible that the false 

starts were reactions to the poor decoding and did not in-and-of-themselves adversely 

affect decoder performance. 

 

Figure 27: Individual behavioral strategies for eye vs. brain control 
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The difference between saccades during training-equivalent trials of static 

and adaptive decoding sessions could indicate behavioral strategy changes 

due to whether trial is eye- or brain-controlled. Traces represent the 

nearest 68% of eye motions to the target mean saccades (approximately ±1 

STD) for both monkey C (left column) and monkey J (right column) 0-500 

ms after GO signal during CORRECT training eye control trials at the 

beginning of static LDA sessions (top row) and an equivalent number of 

brain control trials at the start of adaptive RNN sessions (bottom row). 

Monkey C (left column) maintained similar behavioral strategies to solve 

both the adaptive decoding task and the eye control task. Monkey J (right 

column) changed behavioral strategies to solve the adaptive decoding task. 

Traces are colored by expected target. 
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Figure 28: Individual behavioral strategies for static vs. adaptive sessions 

Monkeys display individual behavioral strategies between static and 

adaptive decoders. Traces represent the nearest 68% of eye motions from 

the target mean saccades (approximately ±1 STD) for both monkey C (left 

column) and monkey J (right column) 0-500 ms after GO signal during 

CORRECT test-equivalent brain control trials for both static LDA 

decoding sessions (top row) and adaptive decoding sessions (bottom row). 

Monkey C (left column) has very consistent direct-to-target saccade 

behavior for both the static and adaptive decoding sessions. Monkey J 
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(right column) has more consistent per-target saccade behavior for the 

static decoding sessions (top right) and slightly more erratic saccade paths 

to both ipsilateral (right targets) and contralateral (left targets) targets for 

adaptive decoding sessions (bottom right). Monkey J’s behavioral strategy 

differences are more likely due to the difference between the two decoding 

methods, and not due to expectations from the session time period (i.e. 

early vs. late), given the similarity of eye motions between these test-

equivalent trials and the training-equivalent trials during static and 

adaptive decoding (c.f. Figure 27). It is possible that monkey C’s 

consistent behavior aided in its adaptive RNN performance. Traces are 

colored by expected target. 

 

Figure 29: Monkey J changes behavioral strategy under brain control 

Traces represent the nearest 90% of eye motions from the target mean 

saccades for both monkey C (left two columns) and monkey J (right two 
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columns) 0-120 ms after GO during both CORRECT and INCORRECT 

training- (1
st
 and 3

rd
 columns) and test-equivalent (2

nd
 and 4

th
 columns) 

trials for both static LDA decoding sessions (top row) and adaptive RNN 

decoding sessions (bottom row). Note that monkey C’s eye motions 120 

ms after GO are qualitatively similar for both static LDA and adaptive 

RNN training- and test-equivalent trials. Monkey J’s eye motions for 

training-equivalent static LDA trials are faster than its eye motions for any 

other combination of session or trial types. Traces are colored by expected 

target. 
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Figure 30: Incorrect decoding responses associated with less stereotyped saccades 

Traces represent all eye motions for both monkey C (left column) and 

monkey J (right column) 0-350 ms after the GO signal during CORRECT 

(black) and INCORRECT (red) test-equivalent brain control trials for both 

static LDA decoding sessions (top row) and adaptive RNN decoding 

sessions (bottom row). Note that eye movements occurring during 

incorrectly decoded trials tend to occur over a wider area than eye 

movements during correctly decoded trials. One apparent exception may 

be monkey C’s static decoding sessions (top left). 
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Figure 31: Saccade stereotypy positively associated with correct RNN decoding 

We looked at the relationship between saccade deviance from the target 

mean saccade and decoding performance and found that correctly decoded 

trials had more divergent saccades than incorrectly decoded trials for both 

monkeys during the static LDA decoding sessions (top row). Importantly, 

this trend was reversed for both monkeys during the adaptive RNN 

decoding task (bottom row) and correctly decoded trials had less divergent 

saccades than incorrectly decoded trials. All axes in all plots are equal. All 

comparisons were made using the Wilcoxon rank sum test, and p-values 
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were Holm-Bonferroni corrected. Note the pdfs are scaled for clear 

viewing. 

 

Figure 32: Positive performance-stereotypy association specific to RNN decoding 

Distance from target mean saccade has larger detrimental effect on 

adaptive decoding than static decoding. We performed similar analysis as 

in Figure 31, broken down by target to determine whether there is a target-

specific effect, given the laterality of the implants. In general, static 

decoding sessions (1
st
 and 3

rd
 row) did not have significant differences 

between correct and incorrect saccade deviations on a target-specific level, 
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but adaptive decoding sessions (2
nd

 and 4
th

 rows) did. Top two rows: 

monkey C. Bottom two rows: monkey J. All comparisons were made 

using the Wilcoxon rank sum test, and p-values were Holm-Bonferroni 

corrected. Note the pdfs are scaled for clear viewing. 

 

Figure 33: Monkey J has more fixation errors during adaptive sessions 

Monkey J (right) increases the number of fixation break errors during the 

training-equivalent trials (~350) of adaptive sessions. This false starting 

could be a sign of impatience or frustration. Monkey C (left) did not 

meaningfully alter its fixation error trends between static and adaptive 



 

 

107 

decoding sessions. Note the oscillations in the data for monkey C 

correspond to the weekly session cycle. 

 

Figure 34: Fixation break rate inversely correlated with decoding performance 

Top row: Success rate (left y axis) and fixation errors (right y axis; note 

the values decrease) for Monkeys C and J (left and right). There is an 

apparent negative correlation between the fixation errors and decoding 

performance. Left middle: a significant negative correlation was found for 

the fixation break rate and decoding performance for Monkey C (𝝆 =

−𝟎. 𝟖𝟐, 𝒑 = 𝟎. 𝟎𝟑𝟖 ; Spearman rank correlation, Holm-Bonferroni 

corrected). Right middle: a negative correlation was found for the fixation 
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break rate and decoding performance for Monkey J, but did not survive 

multi-comparison correction. Bottom row: No significant correlations 

were found between no fixation rate and decoding performance. These 

results suggest that monkey frustration was exhibited through fixation 

breaks. 

Reconstruction of 80-475 Hz Power 

In the learning study, we studied the feasibility of using beta band power as a 

“switch” for brain machine interfaces. One of the reasons for selecting this band was the 

robustness of low frequency neural measurements, in the face of mechanical or biological 

changes in the recording system. High frequency activity above ~70-80 Hz is purported 

to be a marker of non-linear neuronal activity, such as spiking (Manning et al., 2009; 

Miller et al., 2009a), and could be a more robust decoding feature than spikes, so it was 

reasonable to use this neural feature for decoding. In contrast, lower frequency power in 

dlPFC, SEF, and FEF was found not be as informative for decoding saccades in related 

work (Brincat et al., 2013a). 

A potential reason for a lack of decoding success using low frequency LFPs is 

that they may be representative of top-down signaling (Engel and Fries, 2010; Buschman 

et al., 2012; Friston et al., 2015) or are otherwise associated with “input” to an area, 

rather than “output” from an area, which may be more closely tied to high frequency 

LFPs or MUA (Logothetis, 2003; Gao, 2016). We wondered if we could leverage the 

robustness of low frequency LFP measurements while increasing the information 

extracted from them by modeling cross-frequency interactions between low and high 
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frequencies and reconstructing the high frequency “output” activity (Brincat et al., 

2013a). This way we may be able to “encode” some of the underlying transformations 

between low frequency input to an area and the 80-475 Hz marker of output from the 

area, which was shown to be the most informative frequency band of saccade direction 

during the delay period (Brincat et al., 2013a). 

We performed phase-amplitude (PAC) and amplitude-amplitude (AAC) cross-

frequency coupling analyses of several low frequency bands to an offline measurement of 

80-475 Hz power. For all sessions of each monkey, we selected random pairs of 

electrodes and calculated phase-amplitude coupling in 1 Hz bands from 1 – 5 Hz to 80-

475 Hz power, and amplitude-amplitude coupling of the 1 – 2, 2 – 4, 4 – 7, 7 – 12, 12 – 

20, 20 – 30, and 30 – 50 Hz frequency bands to 80-475 Hz power. These CFC analyses 

are not rigorous and were performed simply to determine potential decoding features for 

recreating 80-475 Hz activity; detailed CFC analyses are left to colleagues in ongoing 

work (Jia, dissertation). Monkey C commonly displayed 2-3, 3-4, and 4-5 Hz PAC and 1-

2, 12-20, and 30-50 Hz AAC, and monkey J commonly displayed 1-2 and 2-3 Hz PAC 

and 1-2, 2-4, and 12-20 Hz AAC. We calculated the phases and amplitudes of these PAC 

and AAC bands for each electrode during the ten 75 ms time steps of the delay period for 

80-475 Hz encoding. Though studies have shown the utility of phase in determining 

motor intent (Rubino et al., 2006), several iterations of development led us to eliminate 

PAC inputs and further narrow our feature selection to the 1 – 2, 12 – 20, and 30 – 50 Hz 

AAC bands for monkey C, and the 1 – 2, 2 – 4, and 12 – 20 Hz AAC bands for monkey J. 
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We used a simple feedforward artificial neural network (ANN) with one hidden 

layer (100 logistic units) to reconstruct 80-475 Hz activity for each of the 96 electrodes 

during the delay period. We calculated the RMS error (RMSE) and found both the 

validation and test set results closely matched, indicating a lack of overfitting (Figure 35). 

How the RMSE values translate to reconstruction accuracy depends on overall 80-475 Hz 

power of the electrodes. We compared actual and reconstructed values during a high 

RMSE session (monkey C’s 2
nd

 adaptive RNN session RMSE ~4) and a low RMSE 

session (monkey J’s 2
nd

 adaptive RNN session RMSE ~1) and found that although 

temporal fluctuations within the delay period are lost, overall 80-475 Hz power 

reconstruction for a given trial was excellent for all electrodes, despite the apparent range 

of RMSE values (Figure 36). Versions of the ANN with recurrent connections did not 

improve the fidelity of the temporal fluctuations. 

The 1-2 Hz band appears to be especially important for reconstructing 80-475 Hz 

power, based on the largest 0.5% of network weights (by magnitude and excluding the 

bias weights) in each layer of the ANNs (Figure 37). The inputs for this band consistently 

had many of the largest outgoing weights to the hidden layer across both monkeys, many 

sessions, and many of the 20 generated reconstruction models for each session. This 

could suggest that inputs to dlPFC, SEF, and FEF oscillating between 1-2 Hz are 

consistent, large factors of 80-475 Hz output activity in these cortical areas. Another 

common finding is that within each session there were several consistent output units 

with large incoming weights for many of the reconstruction models generated for that 

particular session, which could be because of those electrodes’ high 80-475 Hz power. 
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An example of this can be seen in Figure 37, where monkey C’s electrode 35 (in SEF) 

with the extreme power has many of the largest incoming weights from the hidden layer. 

This reconstruction work was intended to increase the information available to 

RNN decoders. We hoped to accomplish this in one of two ways: (1) use the hidden layer 

activations as an “encoder” of the low-frequency-input to high-frequency-output 

transformation to either be used as the inputs or as additional inputs to RNN decoders as 

previously described, or (2) use a reconstruction ANN and an adaptive RNN as the first 

and second stages of a deep neural network. 

Preliminary attempts were made to address both of these possible methods, with 

limited success. First, we used the reconstruction ANN’s hidden layer “encoder” as both 

inputs and additional inputs to the previously described RNN architecture, with little 

decoding performance. Second, we made partial attempts to test a deep neural network 

and reasoned that if we were able to reconstruct the 80-475 Hz power using low 

frequency power with reasonably high fidelity, then it should be possible for a RNN with 

the equivalent number of layers to learn the weights for the additional step of decoding 

the reconstructions to guess the saccade target. This was also not successful, but we did 

not properly pre-train this deep neural network as described in (2). The lack of success in 

using low frequency activity to decode saccades could either be due to a genuine lack of 

information in these frequency bands (Brincat et al., 2013a) or to inappropriate RNN 

architectures or learning parameters. Either method could potentially provide more 

decoding power but, due to time constraints, will have to be investigated in future work. 
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Figure 35: Reconstruction models did not overfit data 

Close validation and test RMSE values indicate that the reconstruction 

models did not overfit the data. 
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Figure 36: Good 80-475 Hz reconstruction accuracy 

Example of 80-475 Hz electrode power reconstruction demonstrates 

excellent accuracy of encoding model and that the RMSE measures are 

likely affected by absolute power levels in the neural recordings. Note 

electrode 35 (in SEF) for monkey C (top) has relatively high power, but 

that overall reconstruction of the electrodes is good. The overall power of 

the electrodes for monkey J (bottom) is lower, and reconstruction is still 

good. The temporal variation is not encoded with high fidelity, but overall 

electrode power levels are captured accurately. Top: 80-475 Hz power 

reconstruction for trial 10 from monkey C’s session 20140304. Bottom: 
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80-475 Hz power reconstruction for trial 34 from monkey J’s session 

20140304. 

 

Figure 37: 1 – 2 Hz LFP power consistently a large factor in 80-475 Hz power 

Largest 0.5% of network weights (by magnitude) suggest 1-2 Hz power is 

a consistent, large factor of 80-475 Hz power. Shown above are each 1 of 

20 encoding models generated for each of the same two sessions shown in 

Fig. ENC EXAMPLE. Top: largest 0.5% of weights (excluding the bias 
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weights) in each layer for 1 of 20 encoding models from monkey C’s 

session 20140304. Bottom: largest 0.5% of weights (excluding the bias 

weights) in each layer for 1 of 20 encoding models from monkey J’s 

session 20140304. A common finding from many of the encoding models 

across many of the sessions is that the 1-2 Hz power inputs have many of 

the largest outgoing weights. Another common finding is that there are 

several output units from each session with similarly large incoming 

weights for many of the encoding models generated for that particular 

session. At the top of each plot is one reconstructed time step from the 

same examples shown in Fig. ENC EXAMPLE. Note that for monkey C 

(top), electrode 35 with the extreme power (in SEF) has many of the 

largest incoming weights from the hidden layer, suggesting that the 

commonality of several output units frequently having the largest 

incoming weights could be due to high 80-475 Hz power levels. 

 

Discussion 

 
We showed the feasibility of a generalized simple RNN to adapt to novel trial 

data offline. Closed loop adaptive RNN decoding performance was considerably lower 

than both offline RNN and closed loop static LDA decoding performance. Contralateral 

targets were decoded more successfully than ipsilateral targets in both offline and closed 

loop RNN decoding, which is likely a direct consequence of the unilateral implants 

(Bruce and Goldberg, 1985). 
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Closed loop calibration trials could be eliminated through the creation of pre-

trained biomimetic decoding models, which both our offline and closed loop results 

support. Initial performance of both the offline and closed loop decoding models was 

above chance in most cases. While offline adaptive performance consistently increased 

throughout a session, closed loop adaptive performance sometimes increased but most 

often remained flat or decreased. 

 

While the data do not specifically address whether the adaptive RNN would adapt 

to fundamental changes in the neural measurements, the data suggest that it could. Initial 

performance of the offline decoding models was worse than previous day batch 

performance of those same models, indicating that changes occurred in the neural 

measurements between days (e.g. electrode drift or neural plasticity). If a change had not 

occurred at some point between the previous and next day’s trials, then those offline 

models would have performed similarly. Performance thereafter increased, suggesting 

that a closed loop model is likely to adapt to whatever changes occurred—in the absence 

of subject awareness to the decoding task and model. 

We should not be surprised that our closed loop results were different than offline 

results and that the subject-decoder interaction was detrimental to the closed loop 

adaptation process (Suminski et al., 2010). Given the biomimetic nature of the decoder 

and the good performance of the offline simulation, we suspect that poor closed loop 

performance was caused by subject frustration or confusion with the elimination of 

preliminary eye control training trials (Orsborn et al., 2011). Prior to the closed loop 
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RNN sessions, eye control determined task success and reward for 300 successful trials 

and only afterwards was brain control required. For the closed loop RNN sessions, brain 

control started on the first trial. This alteration to the task paradigm may have frustrated 

the monkeys, decreasing motivation and task participation. Subject motivation has been 

shown to be vital to decoder performance (Musallam et al., 2004). Initial closed loop 

performance was comparable to initial offline performance, which suggests that any 

differences between offline and closed loop adaptation performance are more likely to be 

due to subjects’ responses to the decoder than to improper training of the initial batch 

models. 

Whether the recorded changes seen in the neural data were of biological or 

electromechanical origin is unknown, but the correlation of 80-500 Hz power between 

days sometimes changed significantly. Given the relative inter-session stability of 80-500 

Hz electrode power correlations between the static LDA sessions and the higher 

variability of these correlations starting with the adaptive RNN sessions, it is possible that 

subjects altered their neural control strategies in response to the adaptive decoding task 

itself or to the task paradigm change. That Monkey C’s FEF activity had the largest 

change after the first week of decoding possibly suggests the possibility of a neural 

strategy change of saccade “effort”, as FEF disruption was found to adversely impact 

saccade magnitude (Cameron et al., 2015). 

It is possible that the learning parameters of the decoder were not appropriate, 

considering the ability of the subjects to learn (Ganguly and Carmena, 2009). Even 

though we generated successful decoding models using identical learning parameters and 
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RNN architectures using data sets 104 days apart in the preliminary offline analysis, the 

potential for uncontrolled co-adaptation exists if the RNN weights changed too rapidly. 

Either the subjects or the decoders may have been overcompensating with their respective 

correction mechanisms, given the difference between effective learning of static decoders 

(Ganguly and Carmena, 2009) and effective learning during closed loop decoding (Kim 

et al., 2008; Chase et al., 2009; Koyama et al., 2010; Cunningham et al., 2011). 

Anecdotal reports suggest that simpler decoding algorithms with more direct 

causes and effects, such as population decoding, are easier to learn by BMI subjects. 

Linear decoders are capable of adapting to non-stationary neural signals (Gürel and 

Mehring, 2012), but it is unclear if simpler decoding methods will result in better long-

term control and recurrence could allow better decoding of motor sequences (Jordan, 

1986). Until we arrive at a comprehensive theory on motor control, we assume the 

possibility of efficient control through complex decoding methods, given enough time to 

learn. This is analogous to healthy humans who generate movements despite having no 

conscious control over specific neurons and do not achieve skilled motor control for 

years. 

 

The two monkeys displayed opposing behavioral strategies. Monkey C’s saccades 

after GO were both spatially and temporally consistent, whereas monkey J’s saccades 

were more spatially inconsistent for adaptive RNN sessions and quicker during eye 

control trials. Monkey C’s strategy may therefore have been to simply maintain 

consistent delay period neural activity, no matter the trial conditions. On the other hand, 
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monkey J may have adjusted strategies for both eye- vs. brain-control trials and static vs. 

adaptive sessions. Monkey J’s saccades were more spatially erratic for the adaptive 

sessions, which could either be a sign of attempted learning of the decoder or frustration 

due to the elimination of eye control trials. Additionally, monkey J’s saccades were faster 

during eye control, many of which occurred within the express saccade period (Paré and 

Munoz, 1996). Despite that the behavioral response after GO should have no direct 

bearing on the decoder response from the delay period activity, the delay period activity 

should, on the contrary, have some bearing on the behavioral response. Therefore, why 

monkey J appears to have segregated its behavioral response profile into spatial (static-

decoder-direct-saccade / adaptive-decoder-erratic-saccade) and temporal (eye-control-

fast-saccade / brain-control-slow-saccade) modes is unclear. 

Addressing the spatial difference in saccades, the mathematics of the adaptive 

RNN and the static LDA decoders is vastly different. The RNN could then very well have 

learned different features or applied different meanings to those features than what the 

LDA decoder did. Once monkey J switched to the RNN decoder after being accustomed 

to the LDA decoder, the apparently erratic saccades may actually have been the outcome 

of strategic attempts to find appropriate delay period neural activity that would better 

align with RNN feature preferences. Temporally, it is possible that monkey J learned to 

better control the static LDA decoder using slightly delayed saccades and continued this 

learned behavior with the adaptive decoder, rightfully not respecting or understanding the 

difference in the underlying decoding methods. All in all, although monkey J displays 

more behavioral differences that could have been learning attempts, monkey C’s 



 

 

120 

consistent behavior may have been partially responsible for its higher adaptive RNN 

performance than monkey J. 

 

The timescale of feedback is a factor in subject learning. Few adaptation studies 

utilized discrete classification tasks in which feedback is only provided at the end of a 

trial (Bryan et al., 2013; Bishop et al., 2014). In our case, the monkeys only received 

feedback at the end of a 750 ms delay period, which reduces the association between 

neural activity and desired outcome. Normal visuomotor and sensorimotor feedback 

processing times, in contrast, occur on the order of ~100ms (Zelaznik et al., 1983; Liu et 

al., 2005; Pruszynski et al., 2011). One could imagine that monkey J’s delayed saccades 

after GO during brain control was a strategy to continue delay period activity through 

feedback to better connect the underlying brain activity to the decoding outcome. It may 

also be that monkey J’s motor activity was reduced during brain control, as subjects in 

previous BMI studies have also done (Taylor et al., 2002; Velliste et al., 2008). Why 

monkey C did not appear to explore the behavioral and neural feature space as readily as 

monkey J to solve the brain control task is unknown. Monkey C had overall higher 

performance, however, and we showed that stable neural activity was advantageous, so it 

may have been that monkey C was attempting the best strategy. 

The rate and timescale of adaptation is also a large factor in decoder performance. 

Though Orsborn et al. conclude that decoder adaptation is best applied in mini batches on 

an intermediate time scale of several minutes to allow the subject to co-adapt, there is no 

obvious reason why continuous, slow learning could not also be similarly advantageous 
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(Wu and Hatsopoulos, 2008; Orsborn et al., 2011, 2012). The learning rate of an RNN 

could be set low enough that a subject should be able to co-adapt readily. After all, it is 

likely sudden, drastic changes in decoding outcomes that defy expectations which cause 

subjects to alter neural patterns and realign their forward models. This again could help 

explain why the session paradigm change of eye control trial removal could have been 

disruptive enough for the monkeys to overcorrect. 

 

The lack of success utilizing the high frequency reconstruction ANN hidden layer 

“encoder” as inputs to the previously described RNN architecture is surprising, given the 

high fidelity of the reconstructions. It is possible that the inability to recreate the small 

temporal fluctuations in power is a sign of a much larger problem than it would seem. 

The “encoder” that appears to perform so well may, in fact, not be modeling the 

underlying neural processes converting low frequency input to high frequency output 

with any accuracy whatsoever. Indeed, the bias weights are almost uniformly the largest 

weights going from the hidden layer to the output layer, suggesting a common baseline of 

80-475 Hz power, with only minor variation based on the target. Visualization of the per-

target electrode activations partially confirms this. Delta band EEG power was found to 

positively correlate with MUA activity (Whittingstall and Logothetis, 2009), so it is 

reasonable that the next most common group of large weights were from the 1-2 Hz 

amplitude inputs to the hidden layer. There is only ~1 cycle of 1-2 Hz during the 750 ms 

delay period window, which means there is not likely to be large variations in 1-2 Hz 

amplitude during this time. Had we kept 1-2 Hz phase as an input, we might have better 
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reconstructed the variations of 80-475 Hz power within the delay period (Whittingstall 

and Logothetis, 2009). 

It is also possible that different RNN learning parameters need to be used due to 

the different methods of closed loop and offline power calculation and the range of their 

values (the closed loop method generally produced lower values). However, given the 

relative accuracy of the reconstructions, the two-part deep neural network may be a 

possibility and could help reduce training time of such a network. Additionally, deep 

neural networks may better capture natural dynamics that could lead to improved 

decoding performance (Guclu and van Gerven, 2015; Sussillo et al., 2015).
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CHAPTER FOUR: Integrating Learning and Adaptation 

 

Results of Learning and Adaptation Studies 

 
The learning study had mice controlling an auditory cursor, by modulating beta 

band power in vibrissal motor cortex (Torene et al., 2015). Learning to control beta band 

power using auditory neurofeedback would be a more effective feedback modality than 

visual feedback for visually impaired people, including some ALS patients, assuming low 

dimensional control (McCreadie et al., 2013). We studied the neural and behavioral 

correlates of learning in an LFP-based decoder in the context of motor state detection 

(Mason and Birch, 2000; Bai et al., 2008; Fatourechi et al., 2008; Wang et al., 2012). 

Previous studies failed to distinguish between motor imagery and motor execution (Birch 

et al., 2002), which is problematic because LFP dynamics underlying imagined 

movement look very much like the dynamics underlying actual motor movement (do 

Nascimento et al., 2006; DaSalla et al., 2009; Miller et al., 2010). If we are able to train 

subjects to volitionally control beta SMR power, it could serve as an appropriately high 

SNR motor intent signal distinguishable from motor imagery. This would allow an 

inflated threshold for BMI execution, which could reduce the number of false positives 

occurring during motor imagery or rest. Furthermore, while several studies have made 

behavioral observations of subjects during BMI learning (Lebedev et al., 2005; Velliste et 
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al., 2008; Moritz and Fetz, 2011), few have thoroughly analyzed the behavioral correlates 

of learning to modulate LFPs. 

Mice in our neuromodulation learning study increased performance quickly over 

the course of a few sessions. They were able to perform the task via production of beta 

range burst activity, and not through behavioral strategies. The beta range bursts 

increased in duration and not in amplitude or rate of occurrence, although these last two 

features likely contributed to performance. MUA in vM1 appeared to drive high 

frequency EMG activity in the beta range during task-related periods. 

The adaptation study applied adaptive decoding methods to predict saccade 

direction in monkeys (Brincat et al., 2013b; Torene et al., 2013). Only very recent work 

has attempted to decode similar activity (Graf and Andersen, 2014; Ohmae et al., 2015; 

Boulay et al., 2016). The focus of the current study is the adaptive component for discrete 

classification in a closed loop setting. A previous discrete offline classifier was 

adaptively trained on a daily basis to predict reach direction, which showed that using 

decoding parameters from a previous day could help or hinder initial performance on the 

next day (Bishop et al., 2014). Previous studies have used adaptive artificial neural 

networks in co-adaptive paradigms, although either generalization was problematic, or 

the decoding was continuous rather than discrete (DiGiovanna et al., 2009; Sussillo et al., 

2012). We investigated the use of simple RNNs in a discrete decoding paradigm, and we 

implemented several generalization techniques to provide the simplest, most biomimetic 

decoder on which to make small adaptations to maintain consistent performance 

(Danziger et al., 2009; Sadtler et al., 2014). After promising results from offline 
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simulation, we tested our classifier online with two macaque monkeys. The classifier was 

recalibrated after each trial, but after brief improvement performance became poor. The 

causes of the poor performance are unclear, but are vital to our understanding of how to 

solve the “two-learner” problem (DiGiovanna et al., 2009; Shenoy and Carmena, 2014), 

in the case of co-adaptive BMI systems (Dangi et al., 2013; Merel et al., 2015). 

Whereas offline simulation of the adaptive RNN decoding was successful, closed 

loop adaptive RNN decoding was less successful. As may be expected, we found that 

maintaining similar neural activations and behavioral responses was associated with 

higher decoding performance. The monkeys’ awareness of closed loop decoding likely 

altered their learning strategies, especially in light of the session paradigm change in 

which initial eye control training trials were eliminated from the adaptive decoding 

sessions. 

We studied neural and behavioral responses of the mice and the monkeys in the 

learning and adaptation studies and found that the two cohorts had varying levels of 

control strategy similarity. While the two monkeys displayed several neural and 

behavioral strategies in a 6-choice delayed saccade task, mice had highly similar 

behavioral correlates of successful task performance. Given broad freedom to solve the 

task using whichever strategy of their choosing, all three mice performed successful trials 

roughly as follows: (1) poke the snout into the trial initiation port, and (2) remain within 

the trial initiation port while continuously performing various orofacial behaviors, 

including whisking, licking, biting, and sniffing, until the reward tone sounded. 

Throughout this basic procedure, the vM1-EMG relationship—as quantified by task-
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related LFP-EMG coherence changes and MUA-EMG spike-field coherence—appeared 

highly similar among the three mice. No “action” was being decoded—the mice had no 

requirement other than to increase the BPR value, yet the vM1-EMG relationship 

appeared relatively consistent between the three mice. In contrast, monkeys engaged in 

various neural and behavioral strategies, even though it was shown that consistency in 

both was associated with higher decoding success. 

In the case of the mice, one possibility may explain the apparent paradox: the 

requirement to increase the BPR value may not be as generic as we thought. Beta band 

activity is associated with neural states and is a more global signal than higher frequency 

activity, but there may be more than one beta rhythm—not all of them volitionally 

controllable. It is possible that beta band activity that is possible to neuromodulate may 

be a more “intentional” beta that occurs within a narrow behavioral context. For example, 

preparatory-period-motor-command-adjustment-beta (Torrecillos et al., 2015) and tonic-

hold-beta (Baker et al., 1997) may be more intentional activity or is otherwise more 

“controllable”, whereas error-salience/forward-model-updating rebound-beta (Torrecillos 

et al., 2015; Cao and Hu, 2016; Tan et al., 2016) may be a more automatic process 

underlying neural plasticity and motor learning. The consistent vM1-EMG relationship 

and BPR increases during high EMG suggests the likelihood that the modulated beta 

rhythm was the tonic-hold-beta of the former beta description. This directly implicates 

tonic hold of those muscles for which the vM1 cortical area controls, implying the inter-

mouse behavioral similarity. 
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Neural and behavioral consistency from the monkeys would likely have improved 

decoder performance. The decoder would not have committed any errors if the monkeys’ 

neural activity was identical within each of the 6 targets, but this is of course not possible 

for many reasons (Faisal et al., 2008). Additionally, the electrode arrays were implanted 

in oculomotor and working memory areas, but because the decoding signal is high 

frequency activity that is likely to be of highly local origin, the exact placement of each 

electrode on the arrays may not be comparatively good between the monkeys for the 

specific targets. Monkey J had lower performance than monkey C throughout many 

earlier decoding sessions prior to this adaptation study, so exploratory behavior may have 

been the best strategy based on a circumstance of the electrodes—while consistency 

would have been advantageous during the course of the data collection period of the 

adaptation study, more effective learning may be achieved over the long term through 

exploratory neural “noise” (Krogh and Hertz, 1992b). 

The timescale of feedback and the size of neural integration windows is an 

important factor in how well subjects are able to learn BMI control (Cunningham et al., 

2011). Cunningham et al. (2011) found that whereas offline decoding simulations worked 

best using 100-200 ms neural integration windows, closed loop decoding worked best 

with 25-50 ms windows. This difference is very likely due to whether subjects’ 

continuous alterations of control strategy in response to decoder feedback occur within 

the neural integration window before the decoder can update its estimation of the neural 

state. Shorter windows increase system noise, for which subjects can compensate in a 

closed loop scenario; longer windows reduce the association between intent and decoder 
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estimate feedback, to which a subject is oblivious in an offline scenario. One recent 

offline saccade decoding study found that using the average firing rates of neurons across 

all task epochs, including the cue, delay, and response period had the highest decoding 

accuracy (Boulay et al., 2016). The results of this study are confounded by many of the 

problems outlined above, namely: (1) an offline study that does not account for subject 

interaction, (2) utilizing extremely large neural integration windows, and (3) using 

spiking activity, which may not be a valid long term solution. In our adaptation study, 

intended saccades were decoded using a 750 ms neural integration window (i.e. the 750 

ms delay period) and only provided one discrete target estimate as feedback. Were the 

task of a more continuous nature (e.g. a saccade sequence; Shanechi et al., 2012), the 

monkeys would have received more feedback in less time and might, therefore, have had 

different control strategies. As it was, monkeys could only guess in hindsight what it was 

they did that was more “correct” or “incorrect”. 

In contrast to discrete target selection, the mice in our neuromodulation learning 

study received continuous feedback, albeit over a 600-1000 ms neural integration 

window. Recognition of LFP oscillations, in the case of the BPR decoding feature, by its 

nature requires more than one cycle of the oscillation to occur, so the longer window may 

not have had much negative effect in this particular task. Further, longer neural 

integration windows with shorter feedback windows may even be helpful in reducing 

neural noise, stabilizing the neural reward criteria (Cunningham et al., 2011; Koralek et 

al., 2012). The auditory feedback frequency could be erratic and quick to increase 

(potentially due to the hardware implementation), however, and the mice may not have 
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utilized the continuous feedback effectively. Therefore we wonder if the timescale of 

feedback was effective for learning in either of our studies. 

 

The “Two-Learner” System 

 
Brain-machine interfaces (BMIs) have shown remarkable progress in the last 

decade (Taylor et al., 2002; Carmena et al., 2003; Guenther et al., 2009; Gilja et al., 

2012), and continued progress will one day help paralyzed patients regain lost motor 

function (Collinger et al., 2013). However, performance remains unacceptably low, 

considering the risks of invasive brain surgery. Increasing BMI performance partially 

relies on subjects learning how to use decoders, and partially on decoders adapting to 

changing neural activity of subjects. It is important to understand the roles that subject 

learning (Carmena et al., 2003; Wander et al., 2013) and decoder adaptation (Orsborn et 

al., 2012; Bishop et al., 2014) play in BMI skill acquisition, as well as how they interact 

(Taylor et al., 2002; Sanchez et al., 2009; Orsborn et al., 2014). Studies in which 

decoders are trained from direct motor observations show that learning to use the decoder 

is still a requirement of high performance (Taylor et al., 2002; Ganguly et al., 2011). This 

also suggests that decoder adaptation may play a part in the learning process (Vidaurre et 

al., 2011). 

A primary concern for brain-machine interfaces (BMI) is the development of 

adaptive closed loop decoding algorithms that account for co-learning between the brain 

and the machine (the “two-learner” system; Shenoy and Carmena, 2014). As the brain 
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learns a task, neural plasticity alters activity patterns; concurrently, decoding algorithms 

must both adapt to the new patterns and improve performance. 

While we looked at both sides of the co-adaptation problem, the two studies 

described in Chapters 2 and 3 have few direct comparisons in a “two-learner” context. 

The purpose of the learning and adaptive studies was to understand the neural and 

behavioral correlates of learning a neuromodulation BMI, and determine the causes of 

poor performance in an online adaptive decoding BMI performed by monkeys in a 

delayed saccade task, respectively. The neuromodulation learning study used low 

frequency oscillations as an indicator of a global state and was only used as a crude 

“switch” during the control of a one-dimensional auditory cursor; the adaptation study 

used high frequency field potentials to determine the intended direction of a saccade 

during delay period activity. Integrating multiple LFP frequency bands into the same 

decoder may enable complex motor BMI control (Bundy et al., 2016). The decoding 

methods used are indicative of the complexity of the respective tasks: the first study only 

used one logistic function to determine the frequency of an auditory tone; the second 

study used a recurrent neural network (composed of hundreds of logistical units) to 

determine intended saccadic direction. How a subject would learn to control the output of 

one logistic function, versus the recurrent output of hundreds of logistic functions is 

unclear. It is true that the first task was explicitly created for subject learning, for which 

the relatively simple decoder may be beneficial, and the second task was designed to 

minimize subject learning and use decoder adaptation (i.e. machine learning) in lieu of 

subject learning—which is not to say that subject learning could not co-exist. 
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Various bands in the beta and gamma range show coherence between peripheral 

muscles and sensory cortex, suggesting their importance for sensory processing (Baker et 

al., 2006; Witham et al., 2007). This fact is supported by the fact that neuromodulation of 

these and other bands affects the ability to process incoming information and to perform 

actions (Boulay et al., 2011; Schafer and Moore, 2011; Joundi et al., 2012; Khanna and 

Carmena, 2015; McFarland et al., 2015). Understanding the behaviors and underlying 

neural processes of neuromodulation is therefore an important step to take in the creation 

of competent BMIs. Problematically, if only specific beta rhythms like the tonic-hold-

beta can be intentionally modulated, then it is possible that sensory-deafferented patient 

populations may never be able to perform this neuromodulation task as described (Kilner 

et al., 2004; Witham et al., 2007). 

Fixed decoders may not be able to accommodate trial-trial variability, which an 

adaptive decoder might. The results from Orsborn et al. (2011) indicate that while trial 

success remained statistically similar before and after adaptation ceased, movement 

trajectories significantly declined once the decoder was fixed (Orsborn et al., 2011). This 

may be because fixed decoders are initialized from a limited repertoire of intended 

actions and thereafter shape subject neural activity to this initialization, causing the 

decoder to overfit the data and likely limiting the potential dimensions of control 

(Ganguly and Carmena, 2009). Wu and Hatsopoulos (2008) adapted a Kalman filter after 

each trial, which increased long term performance more than non-adaptive decoding (Wu 

and Hatsopoulos, 2008). This was likely due to unstable, drifting neural activity patterns. 
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These studies show the necessity of adaptive decoders that make reasonable assumptions 

about desired outcomes and are more amenable to exploratory learning (Orsborn et al., 

2012; Fan et al., 2014). 

It is vital to understand neurofeedback effects on neural plasticity, although 

decoder adaptation can mitigate alterations to the normal neural-behavior relationship, 

especially if appropriate situational context and goals are considered (Fan et al., 2014). 

Specifically in the context of the first study, if beta rebound is functionally associated 

with the maintenance of forward motor programs (Tan et al., 2014, 2016; Torrecillos et 

al., 2015; Cao and Hu, 2016) or are generated by tactile feedback (Parkkonen et al., 

2015), then the specific selection of beta rhythm neuromodulation could be at odds with 

decoding algorithms’ interpretation of increased beta power. Decoders that are not 

biologically informed may have trouble distinguishing between neural contexts, such as 

between preparatory activity and activity underlying desired action (Canolty et al., 2012). 

Adaptive decoders with more advanced knowledge of network interactions and brain 

function may better interpret intended outcomes (Kao et al., 2015; Panzeri et al., 2016). 

Additionally, subjects modulating any rhythm in a context not normally associated with 

the rhythm may reinforce undesirable cortical interactions. 

A combination of learning and adaptation studies is thought to be a key step in 

improving BMI performance (Gilja et al., 2011). Before motor BMIs can be translated 

from the laboratory, it is critical for researchers to understand more of the dynamic 

between learning and adaptation (Ryu and Shenoy, 2009). Only when we can avoid 
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detrimental interactions between learning and adaptation, will their full potential as 

medical devices be realized. 
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APPENDIX 

Learning Study Supplemental Information 

Histology 

 

Figure 38: Mouse A histology 

This slice shows the site of the reference electrode. Note the electrode 

tracts visible in the medial left hemisphere, in the deeper layers of vM1. 

The reference electrode was likely in the white matter or lateral ventricle 

(Paxinos and Franklin, 2001). This slice is located approximately +0.74 

mm from Bregma. 

 



 

 

135 

 

Figure 39: Mouse B histology 

This slice shows the site of the reference electrode. Note the electrode 

tracts visible in the medial left hemisphere, in the deeper layers of vM1. 

The reference electrode tract is clearly visible to the left of the lateral 

ventricle, potentially in the lateral ventricle or striatum (Paxinos and 

Franklin, 2001). This slice is located approximately +0.86 mm from 

Bregma. There is more extensive damage to the cortex in this mouse as 

compared with mouse A, but because the mouse was sacrificed more than 

6 months after surgery, it is unclear the extent of the damage during the 

relevant brain control sessions. Given the relatively good signals and 
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MUA recorded, we suspect the damage may have been minimal during 

that time. 

“Bad” Electrodes 

 

Figure 40: "Bad" electrodes 

“Bad” electrodes (in yellow), as determined by visual and auditory 

inspection at the start of daily sessions for mouse C. These electrodes were 

not included in the online BPR calculation, and are ignored in all data 

analyses. Note that session 1 is the top row and session 10 is the bottom 

row. 
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Mouse Motivation After Recent Water Deprivation 

 

Figure 41: Low motivation for reward within 24 hours of deprivation 

Left: Mice initiate significantly fewer trials during the 1
st
 session of a 

contiguous block of sessions than during the 2
nd

 and later sessions within 

the block (median 169 vs. 222, 𝑝 = 0.0014, Wilcoxon rank sum test, 

Holm-Bonferroni corrected). Right: Significantly more timed out trials 

also occur per trial initiation during the 1
st
 session of a contiguous block 

(median 0.09 vs. 0.02, 𝑝 < 0.001, Wilcoxon rank sum test, Holm-

Bonferroni corrected). 
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BPR-Auditory Tone Transformation 

 

Figure 42: BPR-auditory tone transformation 

We found a logistic transformation to be the most appropriate form to use, 

given that the BPR range could vary slightly between sessions, and the 

range-limit of the logistic curve reduced the need for parameter changes. 
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MUA Quality Control 

 

Figure 43: Mean MUA shape grouped by FWHM 

The full-width half-max value color coding shifts from blue (FWHM=2) 

to red (FWHM=38). The reddish waveforms tend to display non-neural 

waveform characteristics, while the blueish waveforms tend to look more 

neural. The three columns show mean MUA activity for mice A, B, and C, 

respectively. 
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Figure 44: MUA-coincidences based on chance 

Shown is one mouse. We attempted to determine the frequency with 

which MUA activity should co-occur on 12 different electrodes, binned in 

1 ms samples. Based on the 95% bootstrapped confidence intervals, it 

appears that no more than 2-3 electrodes should have had coincident MUA 

activity in the same 1 ms interval. MUA activity co-occurring on more 

than ~3 electrodes is increasingly likely to be due to noise or motion 

artifacts. To eliminate erroneous MUA activity, without removing 

coincident MUA activity due to common neural activity, we excluded all 

MUA activity that co-occurred on 6 or more electrodes. 
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Figure 45: Mean MUA shape grouped by coincidences 

Shown are the 𝒏 coincidences for all three mice. The color coding shifts 

from blue (no other coincidences) to red (12 coincidences). Highly 

coincident MUA activity tends to display non-neural waveform 

characteristics. Note that it was possible to have more than 11 

coincidences if multiple spikes occurred within the same 1 ms bin on the 

same electrode (note the double peaks for the red traces representing 12 

coincidences). The three columns show mean MUA activity for mice A, 

B, and C, respectively. 
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Figure 46: Mean quality-controlled MUA shapes 

In black are the final mean MUA shapes over all electrodes. These MUA 

appear neural and were used in all MUA-based analyses. The three 

columns show mean MUA activity for mice A, B, and C, respectively. 

Video Analysis 

 Slow speed video (480 x 720 pixels/frame, 29.97 frames/s) was used to provide 

measures of behavioral activity. Frame alignment was necessary for multi-session and 

within-session video analysis, due to non-fixed positions of the camera and the presence 

of jitter. Video frame alignment was performed in three steps: 
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(1) Due to the presence of jitter, each video frame potentially needed an X- or Y-shift 

correction to an intra-session common average frame. The common average 

frame was calculated via the following algorithm: 

STEP 1: For all video frames i, 

𝑋𝑌𝑆ℎ𝑖𝑓𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖 = argmin𝑥,𝑦 𝑥𝑐𝑜𝑟𝑟2𝑑(𝑓𝑟𝑎𝑚𝑒𝑖, 〈𝑓𝑟𝑎𝑚𝑒〉) 

STEP 2: 〈𝑓𝑟𝑎𝑚𝑒〉 =
1

𝑛
∑ (𝑓𝑟𝑎𝑚𝑒𝑖 + 𝑋𝑌𝑆ℎ𝑖𝑓𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖)𝑛  

STEP 3: REPEAT STEPS 1 AND 2 IF ∆𝑋𝑌𝑆ℎ𝑖𝑓𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖 > 𝜀 

(2) Due to the fact that the position and perspective of the video camera was not 

identical between sessions, an affine transformation was calculated for each jitter-

corrected intra-session mean video frame (see (1)). The mean jitter-corrected 

frames from each session were annotated to mark the four corners of the 

behavioral arena, and an affine transformation was calculated from these four 

corners and the inter-session mean of the four corners for all sessions. 

(3) Each individual video frame from a given session was corrected by applying the 

de-jittering X-Y-shift (1) and affine transformation (2). 

The results of the first two steps of the alignment process can be seen in Figure 47, in 

which we can see the inter-session mean frame of the mean frames across all sessions 

from mouse C. 
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Figure 47: Video frame alignment across sessions 

Left: the inter-session mean video frame before affine transformation 

correction, consisting of 10 intra-session-averaged video frames from 

mouse C. Note the appearance of multiple shifts of the LED (lower left) 

and the experimental beam break ports (right), indicating that the video 

camera was not in the identical position from session to session. Right: the 

inter-session mean video frame after affine transformation correction. 

Note that there is much less “ghosting” or shifting than the pre-corrected 

image, and that the experimental beam break ports (at right) are clearly 

visible. Also note that the LED (lower left) shows ghosting and shifts, due 

to the fact that the LED was frequently adjusted between sessions. Also 

note the blurry figure in front of the two behavioral ports, on the right, 

which is where the mouse was most commonly situated. 
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Electrode Correlations 

 

Figure 48: Electrode correlations around BPR threshold 

Electrode 7 (for both mice A and B) were not marked as “bad” during the 

recording sessions and it is unclear why their correlation is relatively 

lower (~0.9) than the other electrodes. Electrode 10 (for mouse C) was 

marked as “bad” during all recording sessions, so its relatively low 

correlation (~0.7) is not unexpected. 
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FA/TP Latency within Sessions 

 

Figure 49: FA/TP latency for mouse A 

Red: 10-pt moving average of FAs. Black: 10-pt moving average of TPs. 
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Figure 50: FA/TP latency for mouse B 

Red: 10-pt moving average of FAs. Black: 10-pt moving average of TPs. 
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Figure 51: FA/TP latency for mouse C 

Red: 10-pt moving average of FAs. Black: 10-pt moving average of TPs. 
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Figure 52: Behavioral Index increase not due to behavior 

Lack of difference between median true positive and false alarm latencies 

indicates random reward seeking and suggests behavioral index 

improvement is due to neuromodulation performance. Inset, top left: 

longer true positive latencies than false alarm latencies may indicate that 

reward status is due to delayed reward seeking response (i.e. if mice wait 

long enough, there is a growing chance that reward will be available). 

Inset, top middle: similar true positive and false alarm latencies may 

indicate that reward status is due to neuromodulation performance (i.e. if 
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mice seek reward randomly, then earlier reward availability increases the 

chances of success). Inset, top right: longer false alarm latencies than true 

positive latencies may indicate that false alarms are committed after the 

“usual” reward availability latency has passed (i.e. if mice wait long 

enough without reward, there is a higher chance they will seek reward). 

The first behavioral regime (TP latencies longer than FA latencies) is 

indicative of behavioral and/or neuromodulation inexperience, and the 

third behavioral regime (FA latencies longer than TP latencies) is 

indicative of behavioral and/or neuromodulation learning. 
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Trial Progressions Over Sessions 

 

Figure 53: Distribution of TPs, FAs, and TOs within sessions 

Distribution of true positives (rewards), false alarms, and trial time outs 

within sessions suggest the following: (1) mice committed more false 

alarms than true positives both during the first few sessions of the 

experiment and often during the beginning of later sessions (e.g. mouse C, 

session 10); and (2) trial time outs occur later in sessions, when mice are 

more satiated (e.g. mouse B, session 1). Events are plotted at the time at 
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which they occurred on the x-axis, and at the number of previous similar 

event types (i.e. rewards, false alarms, or trial time outs) on the y-axis. 

Sessions are plotted in order from left to right. 

Mouse Response to Auditory Feedback 

 

Figure 54: Mouse C seeks reward ~400 – 600 ms after reward tone 

Mouse C performed several brain control sessions in which the feedback 

was pre-recorded—which therefore pre-determined the reward latency. 

From this data, we are able to reconstruct the actual distribution of reward 
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seeking responses to the true reward time. There was a significant 

correlation between reward threshold latency and response latency 

(𝒍𝒐𝒈𝟏𝟎 𝒑 < −𝟑𝟑 ; Spearman rank correlation), with a clear density of 

responses ~400 – 600 ms after the reward tone. Red dashed line: reward 

tone. 

 

 

Figure 55: Auditory feedback frequency is possibly informative 

Average auditory tone frequencies of all false alarm (FA) trials suggest 

utilization of frequency information in feedback. The 2
nd

 and 3
rd

 mice 

show some signs that they utilize the frequency content of the auditory 
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tone in their behavioral responses. FAs committed during late sessions 

(sessions 8-10; red) occur when the auditory frequency is higher than 

when FAs were committed during early sessions (sessions 1-3; blue). 

Middle: the late FAs from the 2
nd

 mouse happen within ~0.5 s after a 1000 

Hz increase in the auditory tone. Bottom: the auditory frequency around 

~0.5 s before late FAs is higher than in early FAs. All traces are mean ± 

s.e.m. 

 

Figure 56: Little or no dependence on feedback frequency for reward seeking 
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Density of false alarm response latencies to tone frequency shows little or 

no dependence of reward seeking behavior on feedback frequency. Top 

row: mouse A shows a slight increase in reward seeking responses ~750 

ms after 4.5+ kHz auditory frequency in late sessions (top right). Middle 

row: mouse B shows more high frequency-dependent reward seeking 

during early sessions (middle left) than in late sessions (middle right). 

Bottom row: mouse C shows no clear FA response behavior based on 

auditory frequency. All bins are normalized by the total number of events 

within each frequency bin. 
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Behavioral Correlates 

 

Figure 57: Increased EMG associated with trial success 

Black: mean (± s.e.m.) EMG activity during true positive trials, up to, but 

not including, reward threshold. Red: mean (± s.e.m.) EMG activity during 

timed out trials. 
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Figure 58: Mouse position at trial initiation predictive of outcome 

Timed out trials occur when mice do not intend to participate in the 

neuromodulation task. Left column: mean frame at trial initiation for all 

true positive trials. Center column: single video frame with the highest 

correlation to the mean trial initiation frame (at left), for comparison. 
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Right column: mean frame at trial initiation for all timed out trials. Note 

that the general shape and features of the mice are visible in the frames in 

the left column, and that there is no discernible mouse shape in the frames 

in the right column, despite there being fewer frames in the average (e.g. 

n=112 vs. n=681 in the top row). Red triangles: position of the mouse 

snouts. Orange triangles: position of the mouse rumps, where the tail 

meets the abdomen. 

LFP-EMG Correlations 

 

 

Figure 59: Low EMG-LFP correlation 
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Lack of EMG-LFP correlation suggests little or no motion artifact is 

present in the electrode activity. 

LFP-EMG Coherence Phase 

 

Figure 60: Increased contralateral EMG-LFP coherence around reward availability 

More consistent increases in beta-range and theta-alpha-range right EMG-

LFP (bottom row) coherence prior to reward availability than in left EMG-

LFP coherence (top row). Both left and right EMG have an increase in ~6 

– 12 Hz LFP-EMG coherence prior to reward availability, but right EMG-

LFP show a consistent increase in coherence within beta-range 
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frequencies. The positive slopes of phase in the beta range (right column) 

for the right EMG suggest the vM1 LFPs lead EMG and coherence is 

driven by vM1, not afference from the whisker pads (Schoffelen et al., 

2005). 

MUA-EMG Phase Preference 

 

Figure 61: MUA-triggered EMG traces show protraction phase preference 

MUA activity was found for each of the 12 electrodes, and then EMG 

traces were filtered (frequencies correspond to Fig. MUA Phase) and 
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averaged together. The peaks of EMG activity should correspond to the 

start of whisker protraction (Schroeder and Ritt, 2013). Red traces: mean 

EMG for phase-selective MUA. Black traces: mean EMG for non-phase-

selective MUA. 

EMG-EMG Coherence Changes 

 

Figure 62: EMG-EMG coherence decreases around reward threshold 

8 – 16 Hz EMG-EMG coherence decreases around reward threshold in 

late control sessions. 
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Burst Durations vs. Amplitudes 

 

Figure 63: Burst duration vs. session-normalized power 

Burst duration vs. session-normalized power in early (top row) and late 

sessions (bottom row). The duration of the bursts appears to have no 

relation to the power of the bursts, arguing against the idea that the 

increased duration is due to higher overall burst power. 
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Adaptation Study Supplemental Information 

Batch Model Learning Parameters 

Learning 

Rate 

Momentum L2 Weight 

Decay 

Dropout 

Rate 

Bayesian 

Targets 

Input 

Resampling 

Rate 

0.0025 0.95 0.0001 0.2 0.87 0.04 

Table 1: Batch learning parameter values 

 

Online Model Learning Parameters 

Learning 

Rate 

Momentum L2 Weight 

Decay 

Dropout 

Rate 

Bayesian 

Targets 

Input 

Resampling 

Rate 

0.0001 0 1e-20 0.1 0.87 0.01 

Table 2: Online learning parameter values 

 

Generalization Techniques 

Dropout approximates the training of 2𝑛 different network architectures (where 𝑛 

is the total number of hidden units) by zeroing a random subset of the hidden units’ 

outputs during each training iteration (Srivastava et al., 2014). For each trial in a training 

batch, a hidden unit’s activation is set to 0 with probability 𝑝. If set to 0, then all 

downstream units receive no input from the unit, and the backpropagation algorithm will 
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not assign any portion of the calculated error to any of the ingoing or outgoing 

connections from the unit, negating learning for the associated weights on that trial and 

leaving those weights unchanged. The effect of dropout is a form of bagging for RNNs. 

L2 weight decay ensures that only meaningful weights stay large and that 

weights are less biased by the specific training set by providing a proportionally 

increasing penalty to weights of large magnitude (Krogh and Hertz, 1992a). At each time 

step in a training iteration, weights are decreased by 𝑑w(𝑡), where 𝑑 is the weight decay 

rate, and w(𝑡) is the weight at time step 𝑡. 

Input resampling helps decrease the variance of the model by artificially 

increasing the size of the training set. We have defined input resampling to mean that at 

each time step in a training trial, with probability 𝑝, we substitute the remainder of the 

training trial time steps with another random same-target trial, matching electrodes and 

time steps. For example, while training on a trial in which the macaque successfully 

reached target B, we randomly draw a number below 𝑝 on time step 7. Then, we choose a 

random trial in which the macaque also successfully reached target B and substitute the 

data for time steps 7 through 10 from that trial into the current training trial’s time steps 7 

through 10. Now we continue training as before, and at each successive time step we 

again determine whether to substitute a random same-target trial. We found an input 

resampling rate of 0.04 to be suitable for the generalized version of the RNN. 

Probabilistic targets relax the assumption that the monkey always desires to 

saccade to the correct target for the entire 750 ms duration of the delay period. In a 

normal softmax output, the desired response is set to 1, and all other responses are set to 



 

 

165 

0 when the error gradient is calculated. With probabilistic targets, the correct target 

probability is set below 1, representing a Bayesian prior on the “correct” response, and 

the error gradient would therefore be smaller for incorrect responses. We found 0.87 to be 

a suitable value for the generalized version of the RNN. As far as we know, this 

generalization technique is novel.  

 

Figure 64: Generalization techniques used in RNN creation 

Top left: L2 weight decay regularizes weight parameters to prevent many 

weights from growing too large. Top right: dropout simulates the training 

of 𝟐𝒏 networks, approximating the bagging of many RNN architectures. 

Bottom left: input resampling effectively generates new training data, 

reducing the bias of having a limited training data set. Bottom right: 
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probabilistic targets approximate uncertainty in subject intention, 

preventing incorrectly labeled training data from severely impacting 

performance. 

 

Saccade Behavior 

 

Figure 65: Most initial saccade activity complete by ~350 ms 

Saccade velocity indicates that most movement to initial targets during 

both CORRECT and INCORRECT trials was completed around ~350 ms, 

and that there are often secondary targets after ~350 ms. Based on this 
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analysis, we chose to display only the first 350 ms after GO in Fig. 

COR/INC. 

Reconstruction of 80-475 Hz Power 

 

Figure 66: Reconstruction bias weights for monkey C are large 

Largest 2% of weights (by absolute magnitude) in each layer for monkey 

C (session 20140304). This shows that the bias weights (which are 

included in this image) are generally large between the hidden layer and 

the output layer, indicating a power floor exists for 80-475 Hz. Note that 

most of the largest weights (bright red) are coming from the 1-2 Hz power 

inputs (first 1/3
rd

 of inputs at left). 
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Figure 67: Reconstruction bias weights for monkey J are large 

Largest 2% of weights (by absolute magnitude) in each layer for monkey J 

(session 20140304). This shows that the bias weights (which are included 

in this image) are generally large between the hidden layer and the output 

layer, indicating a power floor exists for 80-475 Hz. Note that most of the 

largest weights (bright red) are coming from the 1-2 Hz power inputs (first 

1/3
rd

 of inputs at left). 
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