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ABSTRACT 
                Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality 

worldwide. Current treatments are subpar, with late stage diagnosis and poor prognosis 

contributing to limited treatment options.  The evolutionarily conserved, ubiquitously 

expressed transcription factor LSF is overexpressed in HCC, and its expression is 

positively correlated with disease severity.  Certain small molecules, known as Factor 

Quinolinone Inhibitors (FQIs), specifically inhibit LSF DNA-binding activity, inhibit 

HCC cell proliferation in vitro and prevent tumor growth in an endogenous mouse liver 

cancer model without apparent toxicity. The targeting of transcription factors by small 

molecule inhibitors has been historically difficult, warranting further molecular 

investigation into the requirement for LSF in HCC to confirm that the anti-tumor effects 

of FQIs are the consequence of LSF inhibition. 

This body of work investigates a dual approach for inhibiting LSF function in 

order to determine the molecular consequences for HCC cells. To identify the specific 

point of the cell cycle where LSF is required for HCC proliferation, synchronous HCC 

cells were treated with FQI or with short interfering RNA to reduce levels of LSF. The 

results indicate that LSF is required for proper mitotic progression in HCC cells. 



 
 

viii 

Specifically, these data show a reduction of key mitotic regulators Aurora Kinase B and 

Cdc20, at the level of mRNA and protein expression. Time-lapse microscopy also 

demonstrated an increase in the time for progression through mitosis, with a 

prometaphase/metaphase delay. Immunofluorescence analysis revealed a prometaphase 

delay plus aberrant cell division and generation of multi-nucleated cells. These findings 

were consistent with both FQI1 treatment and RNA interference. Additionally, shorter 

incubation with FQI1 surprisingly revealed a distinct, non-transcriptional regulation of 

mitosis in HCC cells, suggesting that mitotic regulation by LSF is multi-faceted.   

As a targeted therapy for use in the clinic, the in vivo toxicity of FQIs is critical to 

investigate. Whole blood provides populations of rapidly dividing normal cells that can 

test susceptibility to anti-mitotic compounds. When mice were treated with FQI1, the 

blood analysis showed no toxicity. Taken together, these findings indicate that LSF is a 

mitotic regulator in HCC, further supporting the therapeutic promise of molecular 

therapies targeting LSF. 
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CHAPTER ONE 

INTRODUCTION 

The following is a collection of work probing the requirement for Late SV40 

Transcription Factor (LSF) function in Hepatocellular Carcinoma (HCC) cells.  

Reports have shown that small molecules targeting LSF, Factor Quinolinone 

Inhibitors (FQIs),  have successfully reduced and/or prevented tumor growth in 

both a mouse HCC xenograft model and an endogenous liver model (Grant et al., 

2012; Rajasekaran et al., 2015).  Using a dual approach to interrogate the 

functionality of LSF in HCC cells, a role in mitotic regulation has been identified and 

will be described in detail.  This chapter will provide the necessary background to 

define both the relevance of this work and to allow proper interpretation of the data 

to follow. 

Hepatocellular Carcinoma  

According to the National Cancer Institute, cancer is a collection of related 

diseases where some cells of the body begin to divide without stopping and spread into or 

invade surrounding tissues   Cancerous cells may form solid tumors which are masses of 

tissue or manifest as cancers of the blood which are not solid and may be referred to as 

liquid tumors.  Tumors that break off, travel through the blood or lymph and establish 

themselves at distal sites are called metastatic.   Hepatocellular Cancer is a form of solid 

tumor which arises de novo from hepatocyte cells in the liver; it is the predominant type 

of primary liver cancer. Unfortunately, the incidence of primary liver cancer is on the 

rise.    
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Liver cancer in adult men is the fifth most frequently diagnosed cancer 

worldwide, and is the second leading cause of cancer-related death in the world. In adult 

women, it is the seventh most commonly diagnosed cancer and the sixth leading cause of 

cancer death. Globally, liver cancer rates are 2 to 4 times that for men than women.   As 

of 2008, there were an estimated 748,000 new liver cancer cases and 695,900 cancer 

deaths worldwide, with half of these cases and deaths occurring in China (Jemal et al., 

2011). The histological subtype known as Hepatocellular carcinoma (HCC) dominates 

those primary liver cancer cases observed with incidence rates reaching 70-80% that of 

total liver cancer burden worldwide (El-Serag and Kanwal, 2014; Jemal et al., 2011).  In 

the United States (US), the annual incidence of hepatocellular carcinoma was at least 6 

per 100,000 in 2010 with men three times more susceptible than women.  The majority of 

cases, ~80%, are thought to be the result of chronic infection with HBV and HCV 

(Venook et al., 2010). 

While new treatments have emerged as curative agents for HCV and others in the 

works for HBV, the sheer number of infected people worldwide with both viruses 

indicates that HCC will remain an area of high unmet need for years to come.  While 

viral infections remain the top causative agents for the development of HCC, other 

factors such as chronic fatty liver and alcoholism also contribute.  In western countries, 

risk factors that dominate besides HCV include both alcohol related cirrhosis and non-

alcoholic fatty liver disease (NAFLD), a disease associated with obesity.  Other risk 

factors include aflatoxin B1, a toxin common to parts of Africa and Asia which has been 

shown to increase HCC incidence in HBV positive patients (Venook et al., 2010). 
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NAFLD, the hepatic manifestation of metabolic syndrome, affects approximately 

1/3 of the US adult population, a population that is on the rise (El-Serag and Kanwal, 

2014).  Typically, these patients can develop nonalcoholic steatohepatitis (NASH) where 

inflammation combined with fatty liver can trigger fibrotic development.  Epidemiology 

studies support an association between NAFLD or NASH and HCC.  An increasing 

disease prevalence of (NASH), impacting over 1 million adults and children to date, 

indicate that a significant increased HCC patient population is on the horizon as NASH 

fibrosis converts to HCC over time (Marengo et al., 2016).   

With HCC incidence rates expected to continue to be on the rise in the West, the 

introduction of universal HBV vaccinations are expected to continue to reduce incidence 

in the East.  However, the HBV vaccination will not impact those already afflicted with 

the virus.  With the rising epidemic of obesity in the western world the incidence of 

NASH related HCC is growing and may become the predominant driver for HCC in the 

developed world in the future (Venook et al., 2010).   A recent mathematical model 

generated using the prevalence and natural history of HCV in the U.S. population 

indicated that the number of HCC cases increased from 1990 to 1999 from 37,697 to 86, 

765 between 2000 and 2009, an increase of 130%, with a projected increase to 130,366 

(+50%) by 2019. However, this model simply examines HCV as a risk factor.  Even 

though HCC cases induced by HCV viral infections are projected to be reduced, the 

overall incidence likely will not decline as NASH related cirrhosis is increasing HCC 

incidence with metabolic syndrome incidence on the rise.   
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 The risk factors discussed above (mainly liver infections and NASH) operate by 

promoting development of cirrhosis which exerts a promotional effect via the induction 

of hepatocyte regeneration (Marquardt et al., 2012; Perz et al., 2006; Zhou et al., 2014).  

Exceptions are rare in HCV related HCC as most cases documented occur with the 

concurrence of some type of fibrosis.  Whereas most HBV related HCC cases also 

include cirrhosis, ~85%, there have been cases where HBV can cause HCC in the 

absence of advanced documented fibrosis or cirrhosis (Perz et al., 2006).  Several 

mechanisms have been proposed for progression of NAFLD to HCC in instances of mild 

or undetected fibrosis; however, there has not been a systematic analysis to quantify this 

contention.  The risk of developing HCC in patients with cirrhosis varies with the 

underlying condition (El-Serag and Kanwal, 2014; Perz et al., 2006). Combinations of 

various risk factors have increased risk of HCC development, for example heavy alcohol 

intake in HCV afflicted individuals has been documented to increase risk of progression 

to HCC.   

Current therapeutic options for the HCC population are subpar (Bruix and 

Sherman, 2011).   HCC is often diagnosed late in disease as it produces non-specific 

symptoms, lacks early diagnostic biomarkers, and the option to diagnose by biopsy is not 

ideal.  One third of those diagnosed qualify for invasive treatments including surgical 

resection or liver transplantation (Kim et al., 2016).  However, two thirds of patients do 

not qualify for such treatments as their disease is too far advanced, leaving only palliative 

treatment options.  Few molecular therapies have shown promise, with Sorafenib 

currently the only approved treatment.  Sorafenib, a molecular inhibitor of vascular 
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endothelial growth factor receptor (VEGFR) as well as C and B-raf kinase was originally 

approved for use in kidney cancer patients, but has demonstrated an improvement in 

overall survival rates of 3 months in clinical trials of HCC (Llovet et al., 2008; 

Santhekadur et al., 2012b).  Bevacizumab, a vascular endothelial growth factor (VEGF) 

pathway inhibitor, examined alone or in a combinatorial approach with chemotherapy, 

has also demonstrated limited positive responses (Torrecilla and Llovet, 2015).   The 

recent SHARP clinical trial which re-evaluated Sorafenib efficacy in HCC observed 

median survival rates of 7 to 11 months, an impact attributed to the improved clinical trial 

design for the HCC patient population (Llovet et al., 2015; Worns and Galle, 2014).  The 

re-examination of clinical trial design for this patient population paved the way for 

numerous other molecular targeted therapies to be evaluated as the trial established 

critical criteria required to determine drug efficacy.  Many types of therapies have been 

examined including anti-angiogenics, epigenetic modulators, pro-apoptotic or DNA 

damaging agents, immune modulators, and, lastly, cell cycle inhibitors.  Unfortunately, of 

the numerous therapies evaluated to date, not a single agent improved survival or 

progression free survival rates to a greater degree than Sorafenib (Bruix and Sherman, 

2011; Llovet et al., 2015).   

Clearly, given the lack of current effective therapies, the unmet need for novel 

approaches to treat HCC is very high.  The lack of clinical translation of therapies 

showing promise in pre-clinical models has been problematic. It has, however, led to 

multiple hypotheses as to what types of new or combined therapies might make an impact 

on this patient population.   
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A hallmark of cancer is loss of cell cycle and cell division control; whereas 

normal cell division is tightly regulated with multiple checkpoints to ensure genomic 

integrity.  Targeting oncogenic cell cycle regulators has been a favored hypothesis to 

preferentially target tumor cell populations in the body.  To navigate through the 

proposed molecular breakthrough therapies for HCC, many that target cell cycle 

regulators, we must first understand the complexities of cell cycle regulation.   

Mammalian Cell Division 

Mitosis, the portion of the mammalian cell cycle that results in cell division, 

comprises a spatiotemporal regulated system reliant on sequential expression/and 

degradation of key proteins as well as post translational modifications; processes that are 

tightly regulated to ensure proper cell division following DNA replication (Carmena et 

al., 2012; Foley and Kapoor, 2013; Guttinger et al., 2009; Hardwick and Shah, 2010).  

The cell cycle is comprised of Interphase and Mitosis (M), where the former 

encompasses the following phases: Gap 0 (G0), Gap 1 (G1), DNA synthesis (S), and Gap 

2 (G2).  External growth factors introduced to G0 cells, which are by definition quiescent 

or resting, can trigger cell cycle entry.   The overall cell cycle is depicted in Illustration 

1.1, a depiction which also includes the estimated time spent in each phase. 

Illustration 1.1 The Mammalian Cell Cycle  
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 Upon entry into the first Gap phase, G1, the cell stimulates production of both key 

proteins and cytoplasmic organelles in preparation for cellular division, so that the 

process, once complete, will result in the production of two identical daughter cells.  

Genome duplication is executed under intense scrutiny in Synthesis, or “S” phase.  

Completion of DNA synthesis is followed by the second Gap phase, G2, where the cell 

completes the growth phase and prepares for mitotic entry, a point at which all 

transcriptional activities will cease until re-entry into G1/G0 (Bertoli and de Bruin, 2014; 

Bertoli et al., 2013) (Illustration 1.1).  Completion of the G2 phase allows a rapid entry 

into Mitosis where telophase/cytokinesis completes successful cellular division.   
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Although normal mitotic progression requires the least time of all cell cycle 

stages, it is the most complicated with multiple sub phases regulated by post translation 

modifications, both prior expression and degradation of key proteins, cytoskeletal events, 

and chromatid separation and re-location.  Mitosis therefore comprises five sub stages, 

including prophase, prometaphase, metaphase, anaphase and telophase.  

Illustration 1.2 Microtubule Attachment is a Mitotic Requirement 

 

 

 Illustration 1.2 summarizes the events in each of the mitotic stages as the 

duplicated chromatids are separated into opposite sides of the cell by microtubules.  The 

microtubules, attached to the centrosomes located at each pole, first attach to the 
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kinetochore on each sister chromatid.  Once all kinetochores have successfully attached, 

only then can the microtubules facilitate successful separation with a bipolar orientation, 

pulling each sister chromatid to opposite sides of the cell.  The cleavage furrow forms 

immediately following telophase where cytokinesis permits the separation into two 

identical daughter cells.   

Each cell cycle phase has a surveillance system, or checkpoint, responsible 

for ensuring successful completion of each stage.  Following a successful growth 

period, the cell arrives at the G1 checkpoint, where a successful growth period and 

proper DNA integrity is confirmed prior to genome duplication in S phase.  The G1 

checkpoint, which has been studied extensively, ensures DNA integrity in order to 

allow proper entry in S phase.  If any risk factors identified at this check point 

cannot be remedied, then pathways may be activated to trigger cellular demise 

through apoptotic signaling or senescence (a state in which the cell will never 

divide).   A cell that satisfies the G1 checkpoint will duplicate its genome.  In mitosis, 

a distinct type of checkpoint occurs.  The proper attachment of microtubules to the 

kinetochores is closely monitored by the Spindle Assembly Checkpoint (SAC), involving 

a complex that includes Mad2 and Bub1.  The SAC delays or prevents the metaphase to 

anaphase transition through sequestering of Cdc20, the key member of the Anaphase 

Promoting Complex (APC/C).  Once the SAC has been satisfied through proper 

attachment of the microtubules to the kinetochores, Cdc20 will be released to 

associate with APC/C; this allows anaphase onset through degradation of key 

mitotic proteins.  The APC/C coordinates destruction of mitotic proteins including 
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Cyclin B1, the major mitotic cyclin upregulated prior to mitotic entry (Casimiro et 

al., 2012; Lim and Kaldis, 2013).   Successful anaphase is followed by telophase and 

cytokinesis.  Cancer cells have dysregulated division which can be a direct result of 

abnormal activity or expression of various factors controlling cellular division, a 

crucial observation that led to both the identification of dysregulated mitotic 

proteins and pathways in HCC. 

 

Clinical Targets for Cancer 

Given that cancers have dysregulated mitoses, is not a stretch that investigators 

have been proposing therapies targeting known mitotic regulators required for cell 

division as a means of exploiting this cancer cell vulnerability.  This vulnerability was 

hypothesized to allow for selective targeting of cancer cells as the majority of normal 

cells are typically in quiescence, a state in which the cells are not dividing.  To date, there 

have been a large number of small molecules targeting various aspects of mitotic 

regulation evaluated for anti-tumor activity. Two of different targets that have been 

extensively evaluated to date are microtubule (MT) binding agents (MBAs) and Aurora 

Kinase B inhibitors, both of which will be discussed below.   A third strategy for 

targeting mitotic regulation will also be reviewed, which involves inhibiting the 

Anaphase Promoting Complex (APC/C). This has merely been proposed as 

advantageous, although not yet clinically evaluated.   

 

Microtubule Dynamics  
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Microtubules have a critical regulatory function not only for proper mitotic 

progression, but also for maintenance of cytoskeletal shape, cell motility, and 

intracellular protein and organelle transport.  Composed of α and β tubulin heterodimer 

subunits, these subunits interact in a dynamic equilibrium allowing tubulin to both 

polymerize and depolymerize (Foley and Kapoor, 2013).  Two fundamental aspects of 

tubulin dynamics that occur in vivo are treadmilling and dynamic instability (Foley and 

Kapoor, 2013).  The first process, dynamic instability, is accelerated during mitosis, as 

required for spindle formation and attachment of the mitotic spindles to chromosomes.  

The second process, treadmilling, is defined as the net growth at one end of the 

microtubule and the net shortening at the opposite end, a process required in the polar 

movement of the chromosomes during anaphase.  These dynamics are regulated by 

various microtubule associated proteins and other regulatory proteins, variable expression 

of tubulin isotypes, post translational tubulin modifications and tubulin mutations.   

Microtubule binding agents, MBAs, are compounds that disrupt microtubule 

dynamics involving the mitotic spindle.  Suppression of these two key dynamic 

microtubule functions are the principal means by which MBAs disrupt cellular function 

and induce cellular death. A large collection of MBAs have been or are currently being 

evaluated in clinical trials, however few have are being tested in HCC (Loong and Yeo, 

2014).  Gene expression profiling studies have recently shown that microtubule–related 

cellular assembly and organization is crucial in HCC development indicating that 

molecular therapies targeting microtubules could be successful (Loong and Yeo, 2014).  

Evaluations of MBAs in clinical trials have had mixed results with clinical activity not 
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translating as well as expected based on preclinical models. Only moderate responses at 

best were observed in select patients.  The lack of efficacy was puzzling in light of the 

success of early MBA in other cancer settings.  For instance, two decades ago paclitaxel 

treatment achieved clinical response rates for 17-62% in breast cancer, 20-48% in ovarian 

cancer and 21-41% in lung cancer.  Although some individuals had a minimal response, 

there were positive results.  While these agents displayed clinical activity, they were not 

without side effects as they were unable to distinguish between tumor and normal cells, 

killing off both. Significant toxicities included neurotoxicity, impacts on movement, 

sensation, and even organ function failure.   

The challenge to identify safe and effective MTAs capable of specifically inhibiting 

mitosis of cancer cells but not normal cells remains.   

Illustration 1.3 The Expression Profile of Mitotic Cyclin 

 

Aurora Kinases 

Aurora Kinases include three major mitotic kinases required for mitotic entry, 

progression, and cellular division.  These three distinct isoforms were named A, B, and 
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C.   Aurora Kinase A has documented roles in early mitosis through regulation of 

centrosome maturation and disjunction allowing establishment of the bipolar mitotic 

spindle.  Aurora Kinase B is the key member of the chromosomal passenger complex 

(CPC) where it associates with survivin, INCENP, and borealin (Ditchfield et al., 2003; 

Kim et al., 2011; Le et al., 2013; Poon, 2013).  The CPC contributes to SAC function at 

kinetochores by correcting faulty spindle attachments.  One key role of Aurora Kinase B 

is for proper microtubule-kinetochore attachment, through phosphorylation of key mitotic 

proteins at the kinetochores where Aurora kinase B destabilizes incorrect attachments and 

stabilizes proper microtubule-kinetochore attachments.  Aurora Kinase B regulates 

modification of other phosphorylated proteins required for mitotic processes, such as 

Histone 3 on both Serine 10 and 28 as well CENPA;  more than 50 targets of Aurora 

Kinase B have been identified (Carmena et al., 2012; Ditchfield et al., 2003).  Another 

role for such protein modification occurs after anaphase, when Aurora kinase B regulates 

cytokinesis and localizes to the cleavage furrow (Vader and Lens, 2008).  

Abnormal activities of Aurora Kinases are associated with defects in cell division 

and aneuploidy.  Aurora Kinase A is amplified in multiple cancer types including breast, 

ovary, lung, bladder stomach, and colon whereas Aurora Kinase B is increased in breast 

cancer, glioblastoma, and prostate cancer (Andrews, 2005).  A role for Aurora Kinase C 

in cancer has not yet been described.  Aurora Kinase B is not only upregulated in HCC, 

but its expression positively correlates with disease severity. It has, therefore, been 

proposed as a promising therapeutic target for the HCC patient population (Sistayanarain 

et al., 2006).  In fact, Aurora Kinases in general generated great excitement in recent 
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decades for cancer therapeutics, as promising preclinical anti-tumor activity observed 

with various small molecules led to 30 entering into clinical trials (Andrews, 2005).  

However, the clinical translation of these targets has been disheartening.  

Danusertib, a pan Aurora Kinase inhibitor, resulted in meager efficacy when 

tested in chronic lymphocytic leukemia with a 13-22% response.  Investigation of 

Barasertib, an inhibitor specific to Aurora Kinase B (AurkB), resulted in complete 

response in 25% of the acute myeloid leukemia patients (Bavetsias and Linardopoulos, 

2015).  However, both therapies resulted in toxicities including myelosuppression and 

gastrointestinal effects.  The observed toxicities are most likely due to the requirement of 

these mitotic kinases in normal cell division. The surprising lack of efficacy observed has 

been attributed to dose limitations due to toxic side effects, the low proliferation index in 

human tumors, as well as pathway redundancy in human cells where the tumor cells are 

not reliant on Aurora Kinases.  The implication of pathway redundancy in ineffective 

tumor therapies is discussed in greater detail below.   

APC/C Proteasome: Cdc20/Cdh1 

 The Anaphase Promoting Complex (APC), has a key role in mitotic timing 

through formation of two functionally distinct E3 ubiquitin ligase sub complexes with 

cofactors, Cdc20 or Cdh1, responsible for targeting key mitotic proteins for 

ubiquitination resulting in subsequent degradation by the proteasome.  Most notably, the 

APC in complex with Cdc20 targets securin, the inhibitory protein for separase, allowing 

cleavage of cohesin thereby permitting the sister chromatids to separate and migrate to 

opposite poles.  Other key targets include cyclins, where Cyclin A is degraded in early 
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mitosis and Cyclin B is degraded prior to mitotic exit. This process is a requirement for 

mitotic exit in normal cells.   

Cdc20, a key cofactor of the APC/C complex, has not yet been targeted for 

inhibition in clinical trials.  However, Cdc20 is overexpressed in some cancers, and in 

complex with APC degrades p21, a tumor suppressor (Wang et al., 2015; Wu et al., 

2013).  Further, increased expression of Cdc20 was associated with clinical progression 

in human tumors.  Recently, Cdc20 was proposed as a potential target for tumor therapies 

(Wang et al., 2013).  Additionally, RNAi mediated knockdown of Cdc20 increased 

mitotic arrest in cancer cells treated with an anti-mitotic, a combinatorial treatment 

approach that resulted in mitotic death rather than mitotic slippage (Huang et al., 2009).   

 

Clinical Translation 

Thus far, large amounts of preclinical data have demonstrated robust anti-tumor 

responses, however, where explored these agents have not translated into positive tumor 

response or survival in clinical trials (Wang et al., 2015; Wu et al., 2013).  In certain 

cases it is possible that the lack of efficacy is due to functional redundancy in mammalian 

cell cycle control with multiple family members possibly covering for or being 

upregulated under selective pressure (Fernando et al., 2008; Sasai et al., 2004; Slattery et 

al., 2009). A second hypothesis takes into account the proliferation rate paradox put forth 

by Tim Mitchison (Mitchison, 2012).  He describes an obstacle that anti-mitotic drugs 

face in general, that they have been chosen based on their cytotoxic properties for rapidly 

proliferating cells, while HCC and many other tumor types are slow growing.  Other  key 
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characteristics include drug retention and the ability to kill quiescent cells (Mitchison, 

2012).   

Consistent with the family or pathway redundancy hypothesis, tumor escape 

has been observed in treatments with molecular therapies targeting a single 

oncogenic factor (Llovet et al., 2015; Torrecilla and Llovet, 2015; Villanueva and 

Llovet, 2011).  This phenomenon led to the hypothesis that targeting oncogenic 

transcription factors could provide a significant therapeutic benefit, in which inhibition of 

a broader oncogenic pathway could prevent tumor escape.  Additionally, cases of 

oncogene addiction have been highlighted, where certain tumor types are dependent on 

single genes that, when removed, result in immediate cancer cell death whereas normal 

cells with functional redundancy are spared.  Ideally if one were to attempt to target a 

transcription factor for cancer, it would be an oncogenic transcription factor to which 

cancer cells are addicted.   

A therapy targeting an oncogenic transcription factor (TF), a TF that was a proven 

case of oncogene addiction, would have multiple advantages: (1) In contradiction to the 

normal human cell that has built in functional redundancy for a complex operating 

system, the tumor cells are literally addicted to a single factor, incapable of surviving or 

proliferating without it.  (2)  Targeting an entire pathway could potentially eliminate 

tumor cell escape.  Exploiting a case of oncogene addiction would theoretically protect 

normal cells, however, identification of an oncogenic transcription factor that regulates 

mitotic cells would select for the proliferating tumor cells.  LSF has recently been shown 

to be on oncogenic transcription factor to which HCC tumors are addicted.   
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The Transcription Factor LSF 

LSF, a ubiquitously expressed, evolutionarily conserved transcription factor was 

first discovered while investigating Simian Virus 40 in HeLa cells, where it was 

identified as a transcriptional activator of the late promoter (Veljkovic and Hansen, 

2004).  LSF binds DNA as a homotetramer, targeting a bipartite site with two repeated 

consensus sequences spaced 10 bp apart (Huang et al., 1990; Veljkovic and Hansen, 

2004).  An LSF family member, LBP1a, can oligomerize with LSF suggesting that the 

regulation of key targets and pathways could potentially involve both TFs.  LSF is 

involved in many biological processes including cell growth, cell cycle regulation and 

development (Hansen et al., 2009; Saxena et al., 2009; Veljkovic and Hansen, 2004).  

Specifically, LSF binds the thymidylate synthase (Tyms) promoter and activates Tyms 

expression following cell cycle re-entry of quiescent cells. LSF is essential at the G1/S 

transition in a mouse fibroblast line as well as a human prostate cancer cell line, as 

expression of a dominant negative LSF caused apoptosis in S phase (Powell et al., 2000).  

Apoptosis was a consequence of reduction of Tyms, the rate limiting enzyme required for 

dTTP production for DNA synthesis, as apoptosis was circumvented with the addition of 

a low concentration of exogenous thymidine.   

Enhanced LSF expression was found in 90% of Hepatocellular Carcinoma patient 

samples analyzed, and its expression positively correlated with disease severity (Fan et 

al., 2011b; Yoo et al., 2010).  In vivo analysis in a mouse xenograft model demonstrated 

that increased expression resulted in increased tumorigenicity as shown with reduced 

tumor proliferation in a LSF dominant negative line and overexpression resulted in tumor 
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formation in a previously non-tumorigenic HCC cell line (Yoo et al., 2010).  In addition, 

expressing a dominant negative LSF in a highly tumorigenic HCC cell line reduced 

colony formation and tumorigenicity in vivo.   LSF is also linked to key oncogenic 

processes including angiogenesis, through regulation of matrix malloproteinase 9 

(MMP9)(Santhekadur et al., 2012a) and to the epithelial to mesenchymal transition 

(EMT) through mediating Snail 1 induced upregulation of fibronectin, an EMT marker 

(Porta-de-la-Riva et al., 2011).  EMT is a key process required for tumor metastasis. 

Finally, LSF is downstream of Notch 2, where activation of Notch 2 not only led to 

increased tumorigenicity, but increased LSF expression.  These data combined indicated 

that LSF is an oncogene in hepatocellular carcinoma.  Ideally one would be able to 

identify small molecules capable of inhibiting LSF activity for HCC.  Traditionally, 

however, inhibitors of transcription factors have been difficult to identify. Nonetheless, 

compounds capable of inhibiting LSF were recently identified. 

Factor Quinolinone Inhibitors 

A screen of 110,000 compounds identified small molecules that directly inhibited 

LSF DNA binding activity as ascertained in a fluorescent polarization assay combining 

fluorescently labelled DNA with purified LSF.  Named “Factor quinolinone inhibitors”, 

or FQIs, many of these compounds were synthesized (Grant et al., 2012).  The 

prototypes, FQI1 and FQI2, also inhibited LSF activity in a LSF-dependent luciferase 

reporter assay, showing their ability to inhibit LSF activity within cells. 

Both in vitro and in vivo, FQIs inhibited LSF DNA binding as detected by the 

electrophoretic mobility shift assay (EMSA) as well as chromatin immunoprecipitation 
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(ChIP) in an LSF inducible cell line.  Further evidentiary support for LSF specificity 

emerged when FQIs were found to be incapable of inhibiting the DNA-binding or 

transcriptional activation mediated by other classes of transcription factors including Sp1, 

Oct1, E2F3, USF, and p53 (Grant et al., 2012).  The three-dimensional structure of the 

LSF DNA binding region has been predicted to be quite similar to that of p53, a 

transcription factor that binds DNA in similar fashion as a homo-tetramer (Kokoszynska 

et al., 2008).  This intriguing report prompted the investigation as to whether FQIs could 

inhibit p53 binding to one of its direct targets, p21.  Grant et al. indeed confirmed that 

FQIs did not impact the ability of p53 to activate p21 gene expression.  These data 

provided confidence that FQI inhibition was specific to LSF.   

Evaluation of the FQIs in HCC cells resulted in significant growth inhibition 

which was translated in vivo in a mouse xenograft model (Grant et al., 2012).  

Particularly compelling data were also generated in an endogenous liver cancer model in 

transgenic mice that expressed c-Myc downstream of an albumin promoter, which 

developed cancer when administered a carcinogen N-nitrosodiethylamine (DEN).  FQI1 

or FQI2 treatment resulted in remarkable prevention or reduction of the endogenous liver 

cancer (Rajasekaran et al., 2015).  In both in vivo circumstances, evaluation of normal 

rapidly dividing cell populations, popular off target activities of the anti-mitotic drug 

modalities, were unchanged.  Evaluation of liver injury markers to identify potential toxic 

consequences of the FQIs indicated that the liver was not negatively impacted in the 

subcutaneous mouse xenograft model (Grant et al., 2012; Rajasekaran et al., 2015).  

These data established a stark contrast to other anti-mitotic compounds evaluated in 
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preclinical contexts (Chan et al., 2012) as toxicities to the non-tumor cell populations, in 

the case of FQIs, were undetected.  These findings led to speculation that LSF could be 

the ‘Achilles heel’ to HCC with a robust anti-tumor activity that was specific to the HCC 

cell population, a case meeting the requirements of oncogene addiction (Shlomai, 2012; 

Weinstein, 2008; Weinstein and Joe, 2008).  The clean toxicity profile of compounds 

inhibiting LSF could be due to many reasons.  First, LSF may not in fact be required for 

normal cell division, as it is ubiquitously expressed only at low levels in normal cells.  It 

may also be redundant in normal cells whereas the HCCs are oncogene addicted.  Finally, 

some properties of the compounds themselves may render the exposure of the compounds 

higher in HCC cells than normal cells thus achieving a high therapeutic index.    

 
Targeting Transcription Factors 

Targeting transcription factors regulating pathways implicated in human 

disease has been an attractive therapeutic goal, especially for cancer.  As previously 

mentioned, tumor cells can escape molecular targeted therapies, resulting in the 

initial efficacy of a compound to vanish in a patient over time (Llovet et al., 2015; 

Torrecilla and Llovet, 2015; Villanueva and Llovet, 2011).  Targeting an entire 

pathway could potentially abrogate the tumor cells’ ability to adapt and prove more 

efficacious, as approaches that neutralize pathway redundancy are more difficult for 

a cancer cell to overcome.  However, transcription factors in general have been 

difficult to target by small molecule inhibitors as they are intrinsically disordered 

within their protein and DNA binding sites and lack stable tertiary and/or 
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secondary structure under physiological conditions in vitro (Dunker and Uversky, 

2010).  Further, many human TFs have small DNA binding pockets making them 

difficult to target.  In contrast, LSF has a relatively large DNA binding domain which 

could provide support for the rationale of why FQIs successfully inhibit LSF DNA 

binding (Dunker and Uversky, 2010; Yan and Higgins, 2013).  

Clearly, anti-tumor activity of FQIs requires further evaluation to understand why 

LSF is indeed required for hepatocellular carcinoma survival.  Early studies expressing a 

dominant negative LSF in a highly tumorigenic cell line reduced tumor cell growth, 

however, did not obliterate tumor formation.  This could simply be due to the endogenous 

LSF that remained partially active, or it could be that the dominant negative LSF did not 

alter LSF protein-protein interactions that could play a role in HCC cell survival, and 

possibly their proliferation.  To confirm that the FQI inhibition of LSF was the sole 

reason for its anti-tumor activity, and also to understand why HCC cells were dependent 

on LSF, a dual approach was taken to interrogate the molecular requirement for LSF.  

These studies led to the following novel results: 1) identification of LSF as a mitotic 

regulator in HCC cells, 2) demonstration that reducing LSF activity either with FQI1 or 

RNAi technology resulted in similar mitotic defects, including a prometaphase/metaphase 

delay, increased time for progression through mitosis, improper cell division, and 

production of multi-nucleated cells, 3) determination that loss of LSF activity led to a 

dose dependent reduction of Aurora Kinase B and Cdc20 levels, 4) establishment of an 

additional, non-transcriptional role for LSF in regulating mitotic progression in HCC 

cells, and finally, 5) further evidence of the lack of toxicity of FQI1 and FQI2 in mice, by 
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evaluating  hematopoietic cell types in whole blood.  In total, the work in this thesis 

further validates the promise of FQIs, or the targeting of LSF, for treatment of 

hepatocellular carcinoma patients, as LSF is a required mitotic regulator in this cancer 

type.   
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CHAPTER TWO 

Materials and Methods 

2.1 Cell lines, culturing, and cell cycle synchronization  

QGY-7703 cells (obtained from Devanand Sarkar’s laboratory, Virginia Commonwealth 

University) were cultured at 37oC in 10 % CO2 in DMEM (Dulbecco’s Modified Eagle’s 

Medium; Corning Cellgro) supplemented with 10% Fetal Bovine Serum (FBS; Atlanta 

Biologicals).  Cells were propagated in T-75 flasks (Corning).  Cells were split 1:10 using 

0.25 % Trypsin (Gibco) once cells were at 85 % to 90 % confluence.  Cells were frozen 

in 5 % DMSO (Sigma) in DMEM containing 10% FBS at passage 2 after a thaw.  After a 

thaw, cells were not passaged greater than 10 times to maintain the consistency of the cell 

line.  

QGY-7703 cells were plated at 0.45-0.9 x106 cells per 35 x 10 mm tissue culture 

plate in complete medium (DMEM+10% FBS), at 0.250 x 106 cells per well in a 6 well 

plate, and at 5,000 cells per well in a 96 well plate on Day 1 for each experiment.  All 

protocols were initiated 24 hours post plating unless otherwise specified.   

For synchronization, cells were then treated with freshly prepared 2 mM 

thymidine (Sigma) in complete medium for 18 hours, washed twice with 1xPhosphate 

Buffered Saline (PBS) acquired from ThermoFisher Scientific (1.5 mM Potassium 

Phosphate monobasic (KH2PO4), 137 mM Sodium Chloride (NaCl), 0.9 mM Calcium 

Chloride (CaCl2), 0.5 mM Magnesium Chloride (MgCl2-6H20), 2.7 mM Potassium 

Chloride (KCl) and 8.05 mM Sodium phosphate dibasic) and incubated with complete 

medium for 6 hours. The complete medium was then removed and 2 mM thymidine in 
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complete medium was added to the cells for second 18-hour incubation.  Cells were 

washed with 1xPBS twice and released from the G1/S block in complete medium.  For 

preparation of the 2 mM thymidine solution, thymidine was measured on an analytical 

scale, diluted into the appropriate amount of complete medium, and sterile filtered using 

a Corning vacuum top filter. 

For certain assays, the Factor Quinolinone Inhibitors were added after the first 

incubation with 2 mM thymidine and that concentration was maintained during the first 

release, the second block, and at the second release.  Alternatively, FQI1 was added into 

complete medium only at the second release.  For all siRNA experiments, the thymidine 

block was started 24 hours post transfection with siRNA.  At each release 20 μM of 

thymidine was added into complete media for certain studies investigating RNAi 

mediated LSF knockdown or FQI1 treatment.   

For all synchronization experiments, cells were then collected either at the final 

G1/S block, or at times after release from the second block, in order to investigate time 

points representative of the cell cycle phases: DNA Synthesis (S), Gap 2 (G2), Mitosis 

(M), and Gap 1 (G1).  For most analyses, the following protocol was used in order to 

ensure that rounded, mitotic cells were included at the point of cell harvest.  The media 

was first transferred into a 50 ml BD Falcon tube, then the cells were washed with 1xPBS 

which was then transferred into the same 50 ml Falcon tube to include all unattached 

cells.  In order to remove the attached cells, 0.25% trypsin was added to each well/plate 

and incubated for 5 minutes at 37oC in 10% CO2.  The media/PBS from the BD Falcon 

tube was added to its designated well to collect the trypsinized cell population and then 
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transferred back to the BD Falcon tube. The harvested cells were then treated for the 

appropriate analyses.   

 

2.2 siRNA transfection to achieve specific gene knockdown  

Cells were plated either in 100 mm x 20 mm culture dishes, 6 well, or 96 well Costar plates with 

no coating, or in 6 well glass plates (MatTek Corporation) specifically acquired for time lapse 

imaging.  Cells were plated on Day 0 at cell numbers ensuring that the cells would be between 

40-60 % confluent on day 2.  The confluence was essential as plating at too low a confluence 

resulted in toxicity due to the amount of lipid transfection reagent per cell.  On Day 1, the cells 

were transfected using RNAimax (Life Technologies).  The Imax reagent was diluted 1:25 into 

OptiMEM (Gibco) and incubated for 5 minutes at room temperature.  The siRNAs were also 

diluted into OptiMEM (Gibco).  All the dilutions were performed in 50 ml BD Falcon Tubes.  

After 5 minutes, the RNAimax/OptiMEM was carefully added to each siRNA dilution in a 1:1 

fashion.  The solution was then carefully swirled by hand to ensure that the integrity of the 

lipoplex was not compromised. Following a 10-minute incubation at room temperature, the lipid 

formulated siRNA was added to each well/plate according to the instructions provided by Life 

Technologies.  0.5 ml of siRNA/lipid was added to 2 ml of complete media in a 6 well plate, 2 ml 

to 8 ml of complete media in 10 mm plates, and 0.05 ml to 0.1 ml in a 96 well plate, respectively.  

The plates were then placed in the 37°C incubator at 10% CO2 for the rest of the study.  

Transfection efficiency was measured by fluorescent microscopy 24 hours post transfection by 

cellular uptake of the Cy3 labeled siRNA control sequence.   
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2.3 Preparation of FQIs  

FQI1 was synthesized by the Schaus laboratory at Boston University.  Solid FQI1 was 

stored at -20 °C for no more than 5 months.  FQI1 was suspended with DMSO (analytical 

grade from Sigma) and aliquoted for storage at -20 °C for no more than 1 month to a 

concentration of 20 mM.  Aliquots were then diluted to a 2 mM concentration into 

DMSO immediately before addition to cells in culture.  The final DMSO concentration 

added to the cells in any group was 0.5%.   

2.4 Reagents 

Table 2.1 Taqman Probes from Life Technologies 

Taqman probes were acquired from Life Technologies in order to determine relative gene 
expression levels.    

 

Human Gene 
Target Probe Information 

Catalog 
Number 

Aurora Kinase B HS009645858 M1 4331182 
Bub1 HS01557695 M1 4331182 
Cyclin A Hs00171105m1 4331182 
Cyclin B Hs01565448 g1 4331182 
Cdc20 HS00426680 M1 4331182 
Cdh1/FZZD HS00393592 M1 4331182 
GAPDH Not provided 4326317E 
LBP1a HS00232691 M1 4331182 
LSF HS00232185 M1 4331182 
Mad2 HS00365651 M1 4331182 

 
Table 2.2 Probe Information for Affymetrix Quantigene Kit 

The probes included below were acquired from Affymetrix from those currently in stock 
that successfully targeted the genes of interest in human samples.  The probes utilized in 
this body of work are listed below.   
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Human Target 
NCBI Accession Number  

(If required) Catalog number 
Aurora Kinase B   SA-10088 
Cdc20   SA-11364  
GAPDH  SA-10001  
TFCP2 NM_005653.3  QG0052 
18S   SD-10001  

 

 

Table 2.3 Reagent and Kit Product Information 

The following kits were acquired and utilized to investigate various aspects of the impact 

of LSF activity reduction in human cells.  The manufacturer’s protocol was strictly 

followed unless otherwise specified.  All kits were used prior to expiration date and 

stored according to protocol guidelines. 

Reagent/Kit Company 
Catalog 
Number 

Senescence kit Cell Signaling 9860 
FlowCellect™ Bivariate 
Cell Cycle Kit EMD Millipore Corporation FCCH025103 

Cell Titer Blue Promega G8081 
Thymidine Sigma Aldrich T1895-10G          
γH2AX Kit EMD Millipore Corporation FCCH025142 
Cell Cycle Kit EMD Millipore Corporation 4500-0220 
Apotoxglo assay Promega G6321 

 
Table 2.4 Antibody Information 

The following antibodies were acquired and utilized in the experiments conducted in this 

work.  They were chosen based on user ratings and those predicted for success for either 

immunocytochemistry or western blotting.  They all target, or were predicted to target the 

human protein.  The host species in which the antibody was derived was carefully 
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considered when co-staining was required.  Polyclonal antibodies were chosen if that 

option was available on candidates that fit the previously described criteria. 
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   Dilution 

Antibody 
Catalog 

Number 
Company 

Immuno-

fluorescence 

Western 

Blot 

Alpha tubulin AB7750 Abcam 50 - 

Aurora Kinase B AB2254 Abcam - 500 

Cyclin A AB38 Abcam - 200 

Cyclin B1 AB72 Abcam - 500 

Cdc20 AB26483 Abcam - 500 

γH2AX 9718S 

Cell 

Signalling 50 - 

phosphorylated-Histone 

3 (Serine 10) AB5176 Abcam - 1000 

phosphorylated Histone 

3 (Serine 28) AB5169 Abcam - 1000 

LBP1a ABE181 Abcam - 500 

LSF ABE180 Abcam 100 1000 

Gamma Tubulin AB11316 Abcam 50 - 

α-Tubulin 10002 Sigma - 1000 

Anti-rabbit Alexa 488 AB150069 Abcam 200 - 

Anti-mouse Alex 647 AB150111 Abcam 200 - 
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Donkey anti mouse 

IR800 926-32212 LI-COR,Inc. - 5000 

Donkey anti rabbit 

IR800 926-32213 LI-COR,Inc. - 5000 

 Goat anti rabbit IR680 926-68073 LI-COR,Inc. - 5000 

Goat anti mouse IR680 926-32214 LI-COR,Inc. - 5000 

 
2.5 Phase contrast and fluorescent microscopy.  

 Cells were imaged using an Axiovert 40 CFL (Zeiss) microscope for both phase 

contrast as well as fluorescent imaging in cultured cells. Paraformaldehyde fixed cells 

were analyzed using a Zeiss Axioimager M1 microscope utilizing both 63x and 100x 

magnifications to analyze mitotic progression based on both DNA staining by DAPI 

(Invitrogen) and actin staining by Alexa Fluor 488 Phalloidin (Thermo Fisher Scientific 

Inc. product number A12379) or with anti-antibodies detecting Alpha Tubulin or Aurora 

Kinase B.    

2.6 Cell flow cytometry 

 Attached cells were harvested with 0.25% Trypsin (Gibco) at pre-determined time 

points and combined with the media supernatant containing non-attached cells.  Cells 

were centrifuged at 23 x g for 5 minutes.  They were re-suspended in 1xPBS at a 

concentration of 1x106 cells per ml and centrifuged at 23 x g for 5 minutes.  Cell pellets 

were re-suspended in 150 µl of 3.33x PBS and 350 µl of 100% ethanol.  Cell solutions 

were fixed overnight at 4°C.  Cells were stored no later than one week at 4°C prior to 

analysis.  Cells were centrifuged at 22 x g for 5 minutes.  The PBS/ethanol solution was 
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decanted without compromising the integrity of the cell pellet.  Cells were washed with 

1xPBS and centrifuged at 23 x g for 5 minutes.  1xPBS was removed and Guava cell 

cycle reagent (EMD Millipore), which contains propidium iodide to determine the DNA 

content, was added at a ratio of 200 µl per 2x105 cells.  Cells were stained for 30 minutes 

at room temperature in the dark.  Cell solutions were transferred into 50 ml BD Falcon 

FACS tubes with straining caps (BD Falcon).  Samples were stored at 4°C in the dark for 

no more than 1 week prior to analysis on the BD Dickenson FACS Calibur. 

2.7 Immunofluorescence  

22 mm x 22 mm non-coated glass coverslips (Fisher Scientific) were placed in 

sterile 6 well Costar tissue culture plates in a sterile recirculating tissue culture hood.  The 

coverslips were submerged in 70% ethanol for 2 minutes.  70% ethanol was removed by 

suction and wells/coverslips were allowed to dry in the hood.  Once 70% ethanol was 

fully evaporated, UV light was utilized to sterilize the coverslips and wells for 10 

minutes.  Cells were plated on the coverslips.  For analysis, media was removed and the 

cells were placed in 2 ml of 4% paraformaldehyde for 10 minutes.  Cells were washed 

twice with 1xPBS.  Coverslips with cells were treated with 0.1% Triton X-100 (Thermo 

Fisher Scientific Inc.) for 10 minutes to permeabilize the cell membrane.  Coverslips 

were then incubated in 1% Bovine Serum Albumin (Sigma Aldrich) freshly prepared in 

1xPBS for 1 hour to block nonspecific interactions, followed by incubation with primary 

antibody alone or in combination with a second primary antibody at the indicated dilution 

(Table 2.4) containing 1% Bovine Serum Albumin overnight at 4°C.  Cells were washed 

three times with 1xPBS.  Secondary antibodies were added at a pre-determined dilution 
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(Table 2.4) and incubated for 2 hours at room temperature in dark.  Cells were washed 3 

times with 1xPBS.  The corner of the coverslip was blotted on a paper towel to remove 

excess 1xPBS.  Cells were then mounted using Anti-fade DAPI Mounting Medium 

(Invitrogen) or Permount mounting solution. Cells were dried overnight in the dark.  

Coverslips were sealed on glass slides with clear nail polish.  

2.8 Immunoblotting  

 Cells were lysed in RIPA buffer (125 mM Tris HCl, 150 mM NaCl, 0.1% NP-40, 

1.0% Sodium deoxycholate, 1.0% SDS, pH 7.6) containing ROCHE protease cocktail 

phosphatase inhibitors (Sigma Aldrich 4693159001) at the manufacturer’s recommended 

concentrations, prepared no greater than 1 week prior to the experimental end.  Lysates 

were placed on ice for 10 minutes then mixed by vortexing for 10 seconds.  Protein 

concentrations were determined by the Pierce BCA protein kit using a BSA standard 

prepared at concentrations from 25 to 2000 μg/ml. Equivalent protein concentrations 

were boiled for 10 minutes in 4x SDS Laemmli buffer (277.8 mM Tris-HCL pH 6.8, 

44.4% (v/v) glycerol, 4.4% lithium dodecyl sulfate, 0.02% bromophenol blue with 355 

nM β-mercaptoethanol; Bio-rad).  The final concentration of the SDS Laemmli buffer 

was 2x.   Lysates were loaded onto 10 or 15 well 4-20% Mini-PROTEAN® TGX™ 

Precast gradient gels (Bio-rad, product number 456-1096). The proteins were transferred 

to a PVDF membrane using the Bio-rad wet transfer apparatus for 30 minutes at 90 volts 

or the iblot system from Invitrogen according to the manufacturer’s protocol.  Ponceau 

red (Sigma) staining confirmed proper protein transfer.  The dual labeled molecular 

weight ladder (Bio-rad #13-032) with blue and red dye allowing visualization in both 600 
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and 800 channels available with the Licor odyssey was utilized in each experiment.  

PDVF membranes were incubated for 1 hour in odyssey blocking buffer (LI-COR 

Biosciences cat# 927-40000). The odyssey blocking buffer was PBS-based with 0.1% of 

sodium azide.  Primary antibodies were incubated at pre-determined concentrations (see 

Table 2.4) in PBS/Odyssey Blocking buffer overnight at 4°C.  Membranes were washed 

three times in 1xPBS 0.01% Tween 20 for 20 minute intervals.  Membranes were then 

incubated in a 1/5,000 dilution of appropriate secondary antibody (or antibodies) at room 

temperature for 2 hours.  Membranes were washed three times in 1xPBS in 20 minute 

increments.  PVDF membranes were then imaged using the Licor Odyssey (Boveia and 

Schutz-Geschwender, 2015).  Infrared detection quantitated each band on an individual 

pixel basis using western analysis tools in the Image Studio program.  This system 

allowed quantitation from each channel separately following the capture of single image, 

on an individual pixel basis (Boveia and Schutz-Geschwender, 2015).  Additionally, the 

background signal is subtracted from the area immediately surrounding the band being 

analyzed.    

2.9 RNA analysis: bDNA assay from Affymetrix 

RNA quantification was executed using a hybridization based assay, Quantigene 1.0 

and/or 2.0 systems, available from Affymetrix.  Probes were designed by Affymetrix 

according to NCBI accession numbers, or sequences were used according to previously 

developed probes for the gene of interest. The probe concentration for the assay was 

determined using a standard curve for each probe on untreated cell lysates plated at the 

10,000 cells per well in at 96 well plate at day 1 with cell lysates harvested 24 hours later.  
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The cell concentration was kept constant and the probe concentration was chosen based 

on the standard curve.  Media was removed by suction and 100 μl of the Affymetrix lysis 

buffer with proteinase K (Promega), added to the buffer immediately prior to the lysis 

step, was then added to each well.  Plates were placed on a shaker for 30 minutes at 56°C.  

Lysates were frozen at -20°C until analysis.  The manufacturer’s protocol was followed.  

Fluorescent signal was determined by 30 second reads on each well using the Victor plate 

reader (PerkinElmer).  Each target gene was normalized to a ubiquitous control gene.  

GAPDH, ACTB, and 18S rRNA were utilized as the ubiquitous control genes (see Table 

2.2).  

2.10 Measuring Gene Expression with RT-qPCR 

RNA isolation using the QIAzol reagent (trizol based chemical from Qiagen) was 

performed by adding the reagent either to growing cells immediately following a 1xPBS 

wash, or to frozen cell pellets collected after a 1xPBS wash and snap frozen at -80°C. 

Alternatively, RNA was isolated from samples using the Qiagen RNAeasy kit following 

the manufacturer’s instructions. RNA concentrations were determined using a Nanodrop 

spectrophotometer (ThermoFisher Scientific). The RNA concentrations were adjusted to 

25 ng/µl where 250 ng was then used to make cDNA using a Reverse Transcription kit 

from Applied Biosystems (catalogue number 4368814).  All probes for RNA 

quantification were acquired from Taqman gene expression system utilizing dual labeled 

probes which allowed for analysis of gene expression. TaqMan® gene expression assays 

consist of a pair of unlabeled PCR primers and a TaqMan® probe with a FAM™ or 

VIC® dye label on the 5' end, and minor groove binder (MGB) non-fluorescent quencher 
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(NFQ) on the 3' end. RNA from samples of interest was reverse transcribed into cDNA, 

and the synthesized cDNA served as a template for real-time PCR. Target gene 

expression was normalized to the GAPDH ubiquitous control in each well utilizing a dual 

label system where the control probe targeting GAPDH RNA was labeled with FAM and 

the probe targeting the gene of interest was labeled with VIC.  Ct values were measured 

using a Roche Light Cycler 480.  The following formula was used to determine relative 

gene expression:  2- (C
t 

Target)/2-(C
t
 Control). 

2.11 Caspase activity and viability 

 Caspase activity, viability, and cytotoxicity were measured using the Apo Tox-

GloTM kit (Promega).  The kit measured viability and cytotoxicity using substrates that 

were cleaved by live cell proteases or dead cell proteases, respectively, resulting in the 

emission of a fluorescent signal at different wavelengths (Niles et al., 2007). Specifically, 

the live-cell protease activity is restricted to intact viable cells and is measured using a 

fluorogenic, cell-permeant, peptide substrate (GF-AFC). The substrate enters intact cells 

where it is cleaved by the live-cell protease activity to generate a fluorescent signal 

proportional to the number of living cells. This live-cell protease becomes inactive upon 

loss of cell membrane integrity and leakage into the surrounding culture medium. A 

second, fluorogenic cell-impermeant peptide substrate (bis-AAF-R110) is used to 

measure dead-cell protease activity, which is released from cells that have lost membrane 

integrity. Because bis-AAF-R110 is not cell-permeant, essentially no signal from this 

substrate is generated by intact, viable cells. The live- and dead-cell proteases produce 

different products, AFC and R110, which have different excitation and emission spectra, 
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allowing them to be detected simultaneously.  Additionally, the kit measured the 

cleavage of Caspase 3/7 substrates by luminescence. Cells were cultured with FQIs or 

transfected with siRNA following plating of 2x105 cells per well in 96 well pates 

(Corning), and the Apoptoxglo kit was utilized using manufacturer’s instructions. The 

substrates for both live and dead cell proteases were added to wells with 100 μl of 

complete media. The plate was mixed on a lab rotator orbital shaker at a speed of 300 

units for 1 minute. The plate was incubated for 30 minutes at 37°C 10% CO2 prior to the 

measuring the luminescence or fluorescence on the VersaMaxTM plate reader (Molecular 

Devices). 

2.12 Viability determined by mitochondrial activity 

Cell Titer Blue (Promega) was utilized to measure cell viability via the ability of the cell 

to convert a redox dye into a fluorescent end product.  Cells were plated on day 1 on a 6-

well plate with 250,000 cells per well, on day 2 when the cells reached about 40% 

confluence they were treated with FQIs, vehicle, or transfected with siRNA utilizing 

RNAiMax transfection reagent (Invitrogen).  At selected time points, cell titer blue was 

added to the experimental wells at a volume of 500 μl into 2 ml of complete media for 6 

well costar plate and 20 μl into 100 μl of complete media for a 96 well costar plate.  Once 

the reagent was added, the plates were shaken for 1 min.  The cells were then incubated 

at 37°C with 10% CO2 for 1 to 4 hours.  The fluorescent signal was detected on a 

VersaMaxTM plate reader (Molecular Devices) exciting at 560 nM and measuring 

fluorescence emission at 590 nM.   
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2.13 Isolation of primary mouse hepatocytes. 

Primary mouse hepatocytes were isolated according to the protocol in Severgini et al. 

2012.  Once isolated, the hepatocytes were plated in 6 well plates with sterilized 

coverslips.  The cells were allowed to adhere to the coverslips for 4 hours, and then the 

cells were treated with FQI1 or vehicle.  The coverslips were collected at various time 

points, fixed for 20 min in 4% paraformaldehyde, washed twice with 1xPBS and stored in 

1xPBS at 4°C.  The cells were either stained with DAPI and Phalloidin or with 

Hematoxylin and Eosin prior to imaging. 

2.14 Ex vivo maintenance of primary mouse hepatocytes 

Primary hepatocytes isolated according to 2.13 were plated in 6 well plates at 500,000 

cells per well and maintained in Williams Media (ThermoFisher Scientific cat#1217901) 

supplemented with hepatocyte maintenance supplement pack (ThermoFisher Scientific 

cat#CM4000).  Specifically, cell culture plates were coated with 0.1% rat tail collagen 

(Sigma) 24 h before plating cells. After isolation, cell number and viability were 

determined. The cell pellet was re-suspended by gently pipetting up and down in the 

appropriate volume of 37 °C plating medium [Dulbecco’s Modified Eagle’s Medium, 2% 

bovine serum albumin (BSA, Sigma-Aldrich), Hepatocyte Plating/Thawing and 

Maintenance Supplement (ThermoFisher Scientific cat#C3000), 0.1% rat tail collagen 

(Sigma-Aldrich)].  Cells were seeded gently and incubated in a tissue culture incubator 

set at 37 °C, 5% CO2. After 4.5–5 h, cells were washed once with 1xPBS and 2 ml of 

maintenance medium was added to each well.  At this time FQI1 or vehicle control was 
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added to the media at a final concentration of 5 µM.  Phase-contrast pictures were taken 

with an Axiovert 40 CFL (Zeiss) microscope. 

2.15 Generation and LSF knockdown of QGY-7703 mEmerald Alpha-Tubulin and QGY-

7703 YFP Histone H2B cell lines 

Calcium Phosphate Transfection of HEK-293  

Packaging Cells (GP2-293 packaging cells; Clontech) were cultured at 37oC in 5% CO2 

in DMEM (Dulbecco’s modification of Eagle’s Medium (Corning Cellgro) supplemented 

with 10% FBS (Atlanta Biologicals), 6 mM L-Glutamine (Cellgro), and 1 mM sodium 

pyruvate (Cellgro). Since L-Glutamine degrades over time at 4oC, the media was re-

supplemented with L-glutamine when the cells began to exhibit slow growth. Cells were 

grown on 10 cm tissue culture plates coated with 0.1% collagen (extracted from rat tails; 

gift from the Bradham laboratory) for 30 minutes at 37oC and washed twice with PBS. To 

begin, 5x106 GP2-293 cells were plated on a 10 cm collagen coated tissue culture plate. 

The next day, the cells were transfected with 10 μg of pVSV-G expression plasmid 

(Clontech) and 10 μg of a pBABE vector containing a gene for YFP-tagged histone H2B 

protein and a gene encoding G418 resistance (gift from Jagesh Shah laboratory, Harvard 

Medical School) via calcium phosphate method (Kingston, et al., 2003). Five hours post 

transfection, the DNA-containing media was removed, and the plates were washed once 

with 1x PBS. Then, 10% sterile glycerol in DMEM was added to the plate and left to 

incubate at room temperature for 1.5 minutes. The glycerol/DMEM was then removed, 

the plate was washed once more with 1x PBS, and 10 mL of the supplemented DMEM 
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was added to the plate. [Performed by Mark Roberto of the Hansen laboratory at Boston 

University.] 

Preparation of virus-containing media and Infection of QGY-7703 cells 

Two days after transfection of the packaging cell line with the retroviral vector, the media 

from the plate of GP2-293 cells was collected into a 50 mL conical tube. The media was 

then filtered using a 45 μm syringe filter (Pall Corporation) in order to remove any GP2-

293 cells, and 8 μg/mL polybrene was added. The virus-containing supernatant was then 

transferred to a 10 cm plate of QGY-7703 cells that were at 60-70% confluence. QGY-

7703 cells were cultured at 37oC in 5% CO2 in DMEM (Dulbecco’s modification of 

Eagle’s Medium (Corning Cellgro) supplemented with 10% FBS (Atlanta Biologicals).  

The following day, the virus-containing media was replaced with 10 mL of DMEM + 

10% FBS + 500 μg/mL G418 anti-biotic (Gibco). The G418-containing DMEM was 

replaced every 3 days for about 10 days until the majority of cells expressed the YFP-

histone fusion protein. Presence of the fluorescent protein was checked using an Endow 

GFP/EGFP Bandpass filter (Chroma) in an Olympus IX50 inverted fluorescent 

microscope, exciting the protein at 514 nm and detecting subsequent emission at 527 nm. 

[Performed by Mark Roberto of the Hansen laboratory at Boston University.] 

The QGY-7703 cells were also infected with a lentivirus to express the mEmerald Alpha-

tubulin, selected in 5 μg/ml Blasticidin, and sorted by FACS to enrich for positive cells. 

[Performed by Dr. Kelly George of the Shah Laboratory at Harvard Medical School.] 
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 siRNA Knockdown of LSF and/or LBP1a in Asynchronous QGY-7703 Cells Expressing 

Fluorescently Tagged H2B 

Fluorescently tagged H2B-QGY7703 cells were plated on 6-well glass plates (MatTek) at 

5x104 cells/well. The next day, the cells were transfected with a siRNA against firefly 

luciferase GL3 at a 20 nM concentration or siRNA against LSF at either a 10 nM or 20 

nM concentrations by using 70 μL of RNAiMax (Invitrogen) per plate with a final 

volume of 2.5 mL DMEM with transfection mixture. The cells were incubated at 37OC 

with the transfection mixture for 48 hours, after which the mixture was removed and the 

cells were washed twice with 1x PBS. Fresh DMEM + 10% FBS was then added to each 

well. The cells were imaged by time lapse microscopy the next day (72 hours post-

transfection), or two days later (96 hours post-transfection).  

 

Double and single thymidine block synchronization of fluorescently tagged QGY-7703 

cells after siRNA Knockdown 

The fluorescently tagged H2B-QGY7703 cells were synchronized by using a single 

thymidine block. Two days after the cells were transfected with either control siRNA 

against luciferase or siRNA against LSF, LBP1a, or the combination of the two, the 

siRNA-containing media was removed and cells were washed twice with 1x PBS. The 

media was then replaced with 2 mL of DMEM containing 2 mM thymidine. After 18 

hours, the media was removed, the cells were washed once with PBS, and 2 mL of 

DMEM was added to the cells. Following 6-7 hours, the DMEM was removed and 

replaced with 2 mL of DMEM containing 2 mM thymidine. After 16-24 hours, the media 
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was removed, the cells were washed twice with 1x PBS, and 2 mL of complete media 

was added to the cells with or without 20 μM thymidine. The cells were imaged by time 

lapse microscopy at 48 hours after transfection.  Additionally, some experiments were 

executed using a single thymidine block.  There, the cells were transfected with siRNA, 

24 hours later 2 mM thymidine was added for 24hours.  The cells were then released 

from the block following a 1XPBS wash and imaged.   

 

2.16 Time lapse microscopy 

Single thymidine block synchronization of QGY-7703 Cells Expressing Fluorescently 

Tagged H2B after siRNA knockdown 

QGY-7703 cells with H2B labeled with YFP or with alpha tubulin labeled with 

mEmerald were plated at 250,000 cells per well in 6 well glass plates acquired from 

MatTek Corporation. The cells were placed in the 37°C 10% CO2 incubator overnight.  

For siRNA studies, the cells were transfected on day 2 with RNAiMAX at 1:25 dilution 

into OptiMEM (Gibco).  The siRNA was diluted in OptiMEM at appropriate 

concentrations and mixed 1:1 with the RNAimax/OptiMEM solution; 500 µl of the 

siRNA/Lipid mix was added to 2 ml of complete media. Following 10 minute incubation 

at room temperature, the lipid/siRNA mixture was added to the 6 well plates. The cells 

were placed in the 37OC 10% CO2 incubator overnight.  Twenty-four hours later the 

media was removed and 2 mM of sterile filtered thymidine in Complete media was added 

to each well.  The cells were placed in the 37OC 10% CO2 incubator overnight.  Cells 

were washed with 1xPBS and were imaged in the CO2 independent medium (Leibovitz's 
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L-15 without phenol red) on a Nikon TA10 Eclipse with a 20X objected with a heated 

environment (37°C).  

Treatment of QGY-7703 Cells Expressing Fluorescently Tagged H2B with FQI1 

QGY-7703 cells with H2B labeled with YFP or with alpha tubulin labeled with 

mEmerald were plated at 500,000 cells per well in 6 well glass plates acquired from 

MatTek Corporation. The cells were placed in the 37OC 10% CO2 incubator overnight.  

Vehicle control or FQI1 was added at final concentrations of 0.9, 1.8, or 3.6 µM in CO2 

independent medium (Leibovitz's L-15 without phenol red).  Cells were imaged 

immediately after adding FQI1 in on a Nikon TA10 Eclipse with a 20X objective with a 

heated environment (37°C).  

Measuring mitotic times 

Images were acquired for cells, treated with either FQI1 or transfected with siRNAs, 

every four minutes at 7-10 positions per condition for at least five hours.  Length of 

mitosis was measured from nuclear envelope breakdown to anaphase.  Nuclear envelope 

breakdown as demonstrated by disordered condensed chromosomes was used to 

demarcate entry into mitosis.  Anaphase was determined as the first image in which sister 

chromatid separation is apparent (for normal anaphases) or when a furrow begins to form 

over the chromosomes. The pictures were then compiled into a video at a speed of five 

frames per second.  Imaging and photo compilation was carried out by Dr. Kelly George 

of the Shah Laboratory at Harvard Medical School.  
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2.17 Analysis of γ H2AX to assay for double stranded DNA breaks 

Levels of γ-H2AX were analyzed by both flow cytometry and immunofluorescent 

microscopy.  Immunofluorescence staining for γH2AX was performed in similar fashion 

to all immunofluorescence imaging previously discussed using an anti γH2AX antibody 

from Abcam at a 1:50 dilution.  Images were gathered using the methodology described 

in 2.2 and 2.3.  These cells analyzed following siRNA transfection of FQI1 treatment 

were either asynchronous or synchronized using a double thymidine block.   

γH2AX staining was also measured by flow cytometry using a kit from EMD Millipore 

(17-344).  The cells were treated with FQI1 or siRNA knockdown (2.1-2.3).  Cell 

samples were collected and washed in 1xPBS.  The cell pellets were then fixed and 

permeabilized with overnight incubation in a 70% ethanol solution prior to staining and 

detection.  Histone H2A.X phosphorylated at serine 139 was detected by the addition of 

the anti-phosphorylated-Histone H2A.X, FITC conjugate.  Cells were then analyzed by 

flow cytometry to quantitate the number of cells staining positive for phosphorylated 

Histone H2A.X. 

2.18 β-Galactosidase activity to determine cellular senescence 

QGY-7703 cells synchronized with a double thymidine block with either FQI1 treatment 

or LSF knockdown in 6 well plates were washed once with 1xPBS.  The cells were then 

stained for β-galactosidase using the activity kit from Cell Signaling Technologies.  The 

Senescence β-Galactosidase Staining Kit is designed to conveniently provide reagents 

needed to detect β-galactosidase activity at pH 6, a known characteristic of senescent 

cells not found in presenescent, quiescent or immortal cells.  The cells were fixed using 



 
 

44 

the fixation buffer including in the Cell signaling Technology kit.  The staining reagent 

was prepared according to the manufacturer’s protocol and the pH was adjusted to 6.0 

using 1 M HCl.  The cells were then washed twice with 1xPBS and 1 ml of the staining 

solution was added to each well in 6 well plates.  The plate was sealed with aluminum 

foil and incubated overnight at 37°C.  Cell images were gathered following the overnight 

incubation on a phase Axiovert 40 CFL (Zeiss) microscope.  The number of positive 

cells, as determined by blue staining, was determined in comparison to cells without blue 

signal.  Intensity of signal was not measured.  

2.19 Blood collection and analysis 

C57BL6 male mice (Charles River Laboratories) were acquired at approximately 8 weeks 

of age.  Animals were kept on normal diet and light cycling conditions. Mice were dosed 

intraperitoneally with FQI1, FQI2 or vehicle control (DMSO) injected into each animal at 

40 µl/gram.  Both the vehicle and FQI injections contained 5% DMSO.  One group of 

animals were dosed with 40 µl/gram of Saline as an additional control.  The 8 mg/kg dose 

was injected daily for 5 days.  Blood was collected utilizing the retro-orbital eye bleed 

procedure 24 hours post the final dose.  For this procedure, the mice were anesthetized 

using isoflurane.  Heparin coated capillary tubes (Fisher Scientific) were inserted into the 

posterior corner of the mouse eye; the tube was inserted at a 45-degree angle to 

approximately 1 cm and rotated until the blood from the retro-orbital sinus was released.  

Approximately 200 µl was collected from the left eye each mouse according to the 

IACUC protocol for blood collection.  The blood was collected either in Becton 

Dickinson (BD) serum separator tubes or with BD plasma tubes coated with EDTA.  
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Serum samples were kept at room temperature for 1 hour and then spun in a micro-

centrifuge at 22 x g at room temperature for 10 minutes.  Serum was transferred to 1.5 ml 

micro-centrifuge tubes for storage at -80°C until samples were processed.  Whole blood 

samples were collected and held at room temperature with mixing every 5 min to ensure 

EDTA was properly distributed to avoid clotting. The whole blood and sera samples were 

analyzed using an ADVIA® 120 Hematology System from Siemens. All procedures were 

conducted in accordance with IACUC procedures.  
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CHAPTER THREE  

FQI1 Treatment for short intervals causes reversible mitotic defects with minimal 

transcriptional consequences 

 (Figures 3.2, 3.3d, and 3.4a include data published in Rajasekaran et al.) 

Introduction 

 Hepatocellular carcinoma represents approximately 70-85% of the primary liver 

cancers, and is one of the major causes of death worldwide (Bruix, 2011; Bruix and 

Sherman, 2011; Wang et al., 2002).  Risk factors include, but are not limited to, viral 

infection, toxins, and alcohol.  HCC, a disease which slowly progresses over decades, 

presents with both non-specific symptoms and a lack of biomarkers which often lead to 

late diagnosis.  One third of patients diagnosed may qualify for potential curative, yet 

invasive treatments, including surgical resection and liver transplantation.  Those who 

have progressed into late stage disease do not qualify for such curative treatments leaving 

patients with only palliative treatment options as systemic therapies are limited.  Current 

systemic therapeutic options are subpar as Sorafenib, the only approved molecular 

therapy, extended patient survival, at best, only 11 months (Bruix and Sherman, 2011; 

Llovet et al., 2015).  New molecular therapies, which have demonstrated promising anti-

tumor activity in preclinical models, have yet to match (or improve upon) Sorafenib, 

leaving a large population with a severe unmet medical need. 

 The ubiquitously expressed, evolutionarily conserved transcription factor LSF is 

overexpressed in HCC, with increased expression positively correlating with disease 

severity in clinical samples (Fan et al., 2011b; Yoo et al., 2010).  LSF expression, which 
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is at relatively low levels in hepatocytes, is necessary and sufficient for HCC 

tumorigenicity in vivo as expressing LSF induced tumorigenicity in a HCC line and 

expression of a dominant negative LSF inhibited both subcutaneous tumor growth and 

metastasis formation in xenograft mouse models.  These data implicated LSF as an 

oncogenic transcription factor in hepatocellular carcinoma. 

A small molecule inhibitor of LSF (in the Factor Quinolinone Inhibitor (FQI) 

family), was identified from a screen of 110,000 compounds utilizing a fluorescent 

polarization assay designed to detect molecules able to directly inhibit LSF DNA binding 

(Grant et al., 2012).  FQI1 and FQI2 were identified from the screen and confirmed as 

inhibitors of LSF in several assays including a LSF transcriptional activation in a 

luciferase reporter assay and a LSF- DNA binding electrophoretic mobility shift assay 

(EMSA).  In addition, the molecules proved capable of inhibiting LSF DNA binding to a 

target gene, POLA1, in vivo as ascertained by chromatin immunoprecipitation (ChIP) in a 

tagged-LSF inducible cell line (Grant et al., 2012).  The first compound identified (FQI1) 

was demonstrated to be specific for LSF as it was not capable of inhibiting the DNA-

binding activity of other classes of transcription factors, including E2F3, Oct1, or SP1.  

Further, FQI1 treatment did not impact the transcriptional activation by p53 or USF 

(Grant et al., 2012).  These data collectively indicated strongly that LSF is specifically 

targeted by both FQI1 and FQI2 resulting in the inability to transcriptionally regulate 

their direct targets.  Further, treatment of HCC cells with FQI1 and FQI2 caused loss of 

viability as determined by reduced mitochondrial activity and an increased level of 

apoptosis.  In vivo, FQI1 and FQI2 inhibited HCC tumor growth in both a subcutaneous 



 
 

48 

HCC xenograft mouse model, and more recently, in an endogenous mouse liver model 

(Rajasekaran et al., 2015).  Taken together, these data indicate that FQI1 or FQI2 

inhibition of LSF results in hepatocellular carcinoma cell death in preclinical models 

suggesting that LSF small molecule inhibitors may provide therapeutic benefit to the 

HCC patient population.   

Transcription factors are generally believed to be undruggable and few bona fide, 

specific transcription factor inhibitors have been identified to date despite a great deal of 

effort both in academic and industrial settings (Yan and Higgins, 2013). Given the 

proposed unusual mechanism of action of FQI1 and 2, confirming that their observed 

biological effects are specifically and solely due to inhibition of LSF, as well as 

identifying the mechanism of HCC death resulting from FQI1 treatment are important to 

provide clarity around their therapeutic potential for HCC. 

Previous reports have shown that LSF is required prior to the G1/S transition for 

cell cycle progression (Powell et al., 2000; Saxena et al., 2010).  Expression of a 

dominant negative mutant of LSF resulted in apoptosis during S phase, as thymidylate 

synthase, regulated by LSF, was not as substantially induced; this phenotype was rescued 

with supplementation of exogenous thymidine.  The dominant negative LSF utilized for 

these studies, a double amino acid substitution mutant of LSF named Q234L/K236E, was 

unable to bind DNA (Santhekadur et al., 2012a; Shirra et al., 1994).  These results 

suggested that LSF regulation of G1/S progression in HCC cells may be responsible for 

the FQI1/FQI2 anti-tumor activity.   
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To elucidate the molecular requirement of LSF in HCC cell survival, I evaluated 

the impact on cell cycle progression by FQI inhibition of LSF in QGY-7703 cells.  Here, 

I show that treatment of synchronized HCC cells with FQI1 starting at the G1/S border 

results (during the subsequent mitosis) in a prometaphase arrest followed by cell death.  

This is evidenced by cell cycle arrest following the completion of DNA synthesis, 

followed by multi-nucleation and/or cell death.  Accumulation of cells at prometaphase is 

reversible if the compound is removed from the HCC cells after a short prometaphase 

block, suggesting that this phenotype is not related to LSF-mediated transcription.  

Together, these data indicate that LSF is required for proper mitotic progression in 

hepatocellular carcinoma cells and that this may significantly involve non-transcriptional 

regulation by LSF. 

Results 

The LSF inhibitor FQI1 causes dose dependent inhibition of cellular division and loss of 

viability following Caspase 3/7 activation 

To investigate whether LSF was required for HCC cell cycle progression, QGY-

7703 cells were synchronized at the G1/S border and released in the presence of FQI1 or 

vehicle (Illustration 3.1).  The half maximal concentration for growth inhibition of QGY-

7703 cells was reported to be 1.3 µM (Christadore, 2013).  This was consistent with the 

G150s generated in two human tumor cell lines ranging from 0.79 to 6.3 µM (Grant, et al 

2012).  The concentrations were chosen to bracket the half maximal concentration, with 

3.6 μM demonstrating maximal growth inhibition (Christadore, 2013).  Measurement of 

cell numbers following release (Figure 3.1a) revealed a dose dependent reduction in total 
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cells upon treatment for 10 hours with FQI1. The experimental conditions chosen should 

result in the cell population doubling at approximately 8 hours after release, the amount 

of time needed for the cells to complete both DNA synthesis and mitosis.  Indeed, the 

control cells increased in number by 2-fold, consistent with the expected division rate.  In 

contrast progression through cell division was inhibited in a dose dependent manner with 

FQI1 treatment.  Specifically, at the highest FQI1 concentration of 3.6 µM, the cells still 

had not progressed through cell division 8 hours after release from the G1/S block.  At 

the lower FQI1 concentrations, however, cell division was able to occur in at least a 

subset of the cells at 1.8 µM, and in most of them at 0.9 µM.    

To determine if the lack of cell division upon FQI1 treatment was due to cell 

death, apoptosis and cell viability assays were conducted in parallel.  Caspase 3/7 

activation (which occurs early in the apoptotic pathway) was measured at 6, 24, and 48 

hours post release from a G1/S block (Figure 3.1b).  Enzyme activity increased in a dose 

dependent manner and was elevated even at 6 hours, at which point the control cells 

would have been predicted to complete DNA synthesis. However, cell viability was not 

impacted until later, after 24 h (at 24 h, treated cells still retained full viability, data not 

shown).  FQI1 concentrations that increased caspase 3/7 activity also decreased viability 

at 48 h, as measured by a reduction in intracellular live cell protease activity that is lost 

upon cell membrane disruption (Figure 3.1c).  Together, these data indicate that while 

cells treated with FQI1 initiate cell death pathways early following release from a G1/S 

block, phenotypic programmed cell death is delayed.  The loss of cell viability is 

consistent with previous reports showing reduced mitochondrial activity by an MTT 
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assay, TUNEL staining and Annexin V staining (the latter two being indicative of 

apoptosis).  TUNEL staining was documented after 48 hours of incubation with 10 µM 

FQI1 in asynchronous HCC cell populations (Grant, et al 2012).  Annexin V staining and 

caspase 3 activity were assayed in asynchronous QGY-7703 cells after 24 hours of 

incubation with 2 µM FQI1 or FQI2 (Rajasekaran et al 2015).  Because Annexin V 

staining measures apoptotic signaling through the flipping of phosphatidylserine in the 

plasma membrane to the cell surface, one of the earliest responses in the apoptotic 

pathway, it is not surprising that this occurred within 24 hours of incubation even in the 

asynchronous population.   

 

FQI1-mediated inhibition of cellular division in HCC cells results from mitotic defects 

The observation of cellular death following the inhibition of cellular division 

suggested that LSF was required for cell cycle progression.  To determine at what point 

LSF was required for HCC cell cycle regulation we evaluated cell cycle progression in 

G1/S synchronized HCC cells released in presence of 2 or 5 µM of FQI1 or vehicle.  Cell 

cycle progression was analyzed by cellular DNA content using flow cytometry.  Because 

tumor cells in general, and QGY-7703 in particular, are aneuploid, DNA content as 

ascertained by flow cytometry does not reflect a true 2n.  Given the aneuploid nature of 

the cells, I aligned the cell populations with non-replicated DNA at the 2n peak, with 4n 

representing a successful round of DNA synthesis (Figure 3.2).  Utilizing this protocol, 

successful synchronization of the cells at the G1/S border was demonstrated by the peak 

of cellular DNA at 2n immediately prior to release (compare Figures 3.2a and b).  
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Subsequent cell cycle progression following the release (0 hours) of control cells results 

in a doubling of DNA content to G2/M levels at 7 hours, followed by a return to G1 

levels 3 hours later (Figure 3.2c).  Unexpectedly, unlike the vehicle-treated cells, the 

FQI1-treated cells remained at 4n DNA content at the 10-hour time point.  At 17 hours 

post release, the 5 µM FQI1 treated cells remained arrested, except for a small population 

with sub-G1 DNA content, indicative of cell death.  A lower concentration of FQI1 also 

resulted in accumulation at 4n DNA shortly after control cells had exited mitosis (10 

hours), however, seven hours later when controls were still in G1 three populations were 

observed:  a population of cells with 4n DNA content, a population with sub G1 DNA 

content, and a population that appears to have re-entered G1.  The mixed populations 

observed with the lower concentrations of FQI1 are consistent with a partial inhibition of 

LSF activity at those doses. 

The observation of both a cell proliferation defect along with an accumulation at 

4n DNA content indicated that the impact of FQI1 inhibition on the cells likely occurred 

after completion of DNA synthesis, however, whether the cells had actually entered 

mitosis remained unclear.  To investigate this, I measured both Cyclin A and B levels in 

FQI1 treated cells that had entered mitosis at 6-7 hours after G1/S (Figure 3.3).  In 

normal cells Cyclin A and B levels change during mitosis as Cyclin Dependent Kinase 1 

(CDK1) associates with different cyclins at different points to phosphorylate key targets.  

Cyclin A levels degrade in late prophase whereas levels of Cyclin B are maintained 

through mitosis until anaphase (Casimiro et al., 2012; Malumbres, 2007; Sherr and 

Roberts, 1995, 2004).  While cyclin A gene expression at 8 hours after G1/S release was 
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unaltered by FQI1 treatment (Figure 3a), Cyclin A protein levels were reduced at both 0.9 

and 1.8 μM relative to the controls (Figure 3b,c).  This result was particularly striking as 

the control cells at that point had an elevation of Cyclin A protein, these results suggest 

that as opposed to the control cells that had successfully gone through mitosis, the treated 

cells remained in mitosis (Figures 3.3b and c). However, the cells treated with 5 µM 

FQI1 surprisingly had comparable Cyclin A levels in comparison to the control, which 

combined with the DNA profiling data (Figure 3.2) suggested that these cells were 

arrested earlier (e.g. G2 or early mitosis) than the cells treated at the lower FQI1 

concentrations.  To determine whether the cells had progressed at least to late G2 by 7 

hours after G1/S release, Cyclin B expression was also measured. The vehicle treated, 

control cells show an initial increase in Cyclin B expression when the cells are about to 

enter mitosis (7 hours), which is then reduced at 10 hours after the G1/S release 

(consistent with the cellular DNA profiles) indicating mitotic exit and G1 re-entry at this 

time (Figure 3.3d).  In contrast, the Cyclin B protein levels remained elevated at 10 and 

17 hours in both of the FQI1-treated samples. Together, these data suggest that the FQI1 

treated cells are arrested at in late G2/early mitosis.  However, since Cyclin B RNA 

levels in FQI1 treated cells at 7 hours after G1/S was comparable to that of the control, 

the persisting, higher protein levels must result from the G2/mitotic arrest, rather than 

from transcriptional dysregulation (Figure 3.3e).  Collectively, these data are suggestive 

of a G2/mitotic arrest in FQI1 treated cells where the higher concentrations result in a 

delay in late prophase whereas at the lower concentrations there is an arrest following 

mitotic entry.   
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To investigate further the apparent mitotic defect caused by FQI1, cells were 

imaged for progression through mitosis by visualizing their cellular morphology as 

determined by staining for alpha tubulin and DNA.  Eight hours after release from the 

G1/S block, FQI1-treated cells revealed increased numbers of cells in prometaphase 

whereas the vehicle-treated cells were in final stages of mitosis or interphase (Figure 

3.4a). These cells, analyzed at 63x magnification, were deemed to be arrested in 

prometaphase as the DNA had condensed, however, the chromosomes were not aligned 

as expected in metaphase.  FQI1 treatment for 48 hours led to a reduced number of cells 

in comparison to the control (not shown).  The cells remaining were multi-nucleated 

(Figure 3.4b).  When progression of synchronized HCC cells was followed over time, 

those treated with 5 µM FQI1 that had entered mitosis at 6 hours after release from the 

G1/S block, were predominantly in prometaphase, whereas the vehicle-treated cells that 

had entered mitosis were predominantly in metaphase (Figure 3.4c).  At later timepoints, 

the control cells had divided and eventually were again observed in metaphase, whereas 

the FQI1-treated cells were both lower in cell number and generally multi-nucleated, as 

indicated by the arrows at 19 hours (Figure 3.4c 16.5, 19, and 23 hours).   

Higher magnification (100x) of cells treated for 7.5 to 9 hours with FQI1 and 

imaged for both α-tubulin and DNA revealed additional phenotypes: occasional cells with 

multi-asters (cells with more than two microtubule structures known as asters), and cells 

in prophase (defined by rounded cells with non-condensed DNA), in addition to cells in 

prometaphase (rounded cells with condensed DNA that had not formed a metaphase 

plate) (Figure 3.5a and b).  Image quantitation revealed that FQI1 treatment resulted in an 
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increasing proportion of cells in prophase, particularly with those that display protrusions 

(Figure 3.5b) and correlated with increasing FQI1 concentrations at 9 hours post release 

(Figure 3.5d).  The increase in both prophase and prometaphase cells was the most 

prominent phenotype of FQI treatment (Figure 3.5d, e, and f). These findings are 

consistent with the analysis of DNA content by flow cytometry where the FQI1 treated 

cells showed a cell cycle arrest at 4n levels of DNA (Figure 3.2).  An additional FQI-

induced phenotype was multi-aster prometaphase cells, whose proportion increased in 

particular at higher FQI1 concentrations and later time points, approaching 20% at 3.6 

µM FQI1 (Figure 3.5g).  It is noteworthy that the extent of the multi-aster prometaphase 

phenotype may have been underestimated due to limitations of analyzing selected time 

points in fixed cell populations. 

Finally, multi-nucleation, a phenotype resulting when a cell exits mitosis in the 

absence of bipolar separation of its chromosomes, was observed following in 80% of the 

cells after incubation with 5 μM FQI1 (Figures 3.4b and c, 3.5c).  Both the prophase and 

prometaphase arrest and the accumulation of cells with 4n DNA content are consistent 

with the maintenance of elevated levels of Cyclin B expression at 7, 10 and 17 hours after 

release from the G1/S block in the presence of the LSF inhibitor (Figure 3.3e) as Cyclin 

B expression is elevated during mitosis, but degraded prior to mitotic exit.  Together, the 

data indicate that FQI1 treated cells are accumulating in mitosis whereas the control cells 

re-enter the cell cycle at G1.   

Short term incubation with FQI1 does not impact transcription of key mitotic genes 
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Given that LSF is a transcription factor and previous studies indicated that FQI1 

and FQI2 could inhibit LSF DNA-binding activity, we hypothesized that direct 

dysregulation of mitotic gene transcription might be the mechanism of the observed FQI1 

mediated prometaphase arrest. To investigate this hypothesis, we looked a gene 

expression changes via qPCR across cells treated with various concentrations of FQI1 

versus control cells.  In particular, expression levels of both Aurora kinase B and Cdc20 

(two genes that are required for prometaphase and mitotic exit) in the presence of FQI1 

were comparable to levels in control cells (Figures 3.6a-c, e-g).  Unexpectedly, the 

highest FQI1 concentration, unlike that observed at lower concentrations, was absent of 

phosphorylated Histone 3, a crucial event for mitotic onset.  However, these findings are 

consistent with the increased Cyclin A expression shown in Figure 3.3c and large number 

of prophase cells (Figure 3.5e and f) indicating that at 8 hours the cells treated with 5 μM 

FQI1 are delayed from entering prometaphase.  Regardless, the lack of expression 

changes in genes encoding mitotic regulators (Figures 3.3 and 3.6) suggested that the 

FQI-induced prophase/prometaphase arrest might not be the result of changes in 

transcription but possibly that of translation, phosphorylation or protein: protein 

interactions.   

Short-term FQI1-mediated mitotic arrest in QGY-7703 cells is reversible 

In order to independently test whether LSF transcriptional activity was involved 

in any of the mitotic phenotypes, a washout experiment was performed in which FQI1 

treated cells were arrested and then the compound removed.  If FQI1 induced cellular 

phenotypes by blocking transcriptional induction of key genes during cell cycle 
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progression (prior to mitotic entry), the phenotypes would not be reversible after a mitotic 

block had been established, as transcription is inhibited during mitosis and would not be 

able to reinitiate (Delcuve et al., 2008; Gottesfeld and Forbes, 1997; Long et al., 1998).  

However, if the mitotic phenotypes were reversible by washing out FQI1, it would 

strongly suggest that the effects were independent of the transcriptional activity of LSF 

and due to other mechanisms.   

  To this end, QGY-7703 cells synchronized at the G1/S border (Figure 3.7a) were 

initially released back into the cell cycle in the presence or absence of 5 μM FQI1 for 10 

hours.  A group treated with 5 μM FQI1 for 10 hours was washed with 1xPBS whereas 

all other groups were incubated further with either FQI1 or vehicle.  Thirteen hours after 

the wash, the cell cycle distributions of the different populations were compared by DNA 

flow cytometry profiles (Figure 3.7b-d).  As expected (Figure 3.2), the vehicle-treated 

cells exhibited cells throughout the cell cycle (Figure 3.7b) while the cells treated 

continuously with FQI1 remained in an arrested mitotic state (Figure 3.7c).  Interestingly, 

the FQI1-treated cells that had been briefly washed 10 hours post release to remove the 

compound resulted in cells in all stages of the cell cycle (Figure 3.7d), clearly 

demonstrating reversibility of the FQI1 phenotype. Consistent with these data, phase 

contrast images demonstrated that the population in which FQI1 was washed out was 

similar to the vehicle control cells (Figure 3.7g, e), with most cells flattened and firmly 

attached to the surface of the plates. In contrast, cells treated with FQI1 for the duration 

of the study (Figure 3.7f) exhibited rounded morphology typical of a mitotic cell arrest, 

as described previously in this chapter.   
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Discussion 

The finding that LSF promotes oncogenesis of HCC prompted previous 

preclinical studies regarding the potential utility of LSF small molecule inhibitors in 

treatment of HCC. These studies demonstrated that FQI1 and FQI2, which inhibit LSF 

DNA-binding activity, both in biochemical assays and in cellular contexts, induce HCC 

cell death in vitro and inhibit tumor growth. (Grant et al., 2012; Rajasekaran et al., 2015).  

Strikingly, at concentrations that significantly inhibited tumor growth, no general toxicity 

was evident.  Based on these data, it was important to better characterize the mechanism 

by which FQI1 caused HCC cell death, its specificity of action, and its relationship to 

LSF inhibition. 

LSF has long been appreciated to play a role in mammalian cell cycle, with 

previous studies mainly focused on G1/S transition (Powell et al., 2000; Saxena et al., 

2010), however it remained unclear if cell cycle defects were the trigger by which FQI1 

treatment induced cell death.  To investigate this mechanism of FQI1 further, three 

approaches were taken:  A flow cytometry based characterization of cell cycle and 

apoptotic effects of different concentrations of FQI1 (supplemented with investigating 

levels of activated caspase and selected protein markers of mitosis); a microscopy based 

characterization of cellular morphological effects of FQI1 treatment, and finally a 

compound washout experiment to investigate the mechanism of the observed FQI1 

effects.  Interestingly the effects of FQI1 on cell cycle arrested HCC cells at prophase and 
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prometaphase and occasionally caused multi-aster formation prior to cell death or the 

appearance of multi-nucleated cells. 

FQI1 treatment of synchronized QGY 7703 cells resulted in Caspase 3/7 

activation, followed by loss of viability and subG1 content of cellular DNA (Figure 3.2). 

These data, while consistent with previous reports, also suggested that FQI1 treatment 

resulted in a defect in mitosis. Specifically, the defect was most significantly in prophase 

and prometaphase. In addition, these data show that the loss of viability occurred well 

after mitotic arrest.  The observations including a prometaphase arrest, elevated cyclin B 

levels and observations of multi-nucleated cells prior to cell death suggest that death 

through mitotic slippage may be occurring.  The process by which cells escape mitosis 

when they cannot satisfy the SAC requires the ubiquitination and/or proteolysis of cyclin 

B and is known as mitotic “slippage” (Brito and Rieder, 2006; Brito et al., 2008; Hunt et 

al., 1992; Yang et al., 2009).  Consistent with this notion, at 17 hours (Figure 3.3d), the 

cyclin B levels appear to be diminishing in the FQI1 treated cells in comparison to earlier 

time points.  Further evaluation would be need to determine whether cyclin B degradation 

has triggered mitotic slippage. Slow degradation of cyclin B can occur in mitotic arrest 

induced by microtubule depolymerizing agents (Dai et al., 2004; Xu et al., 2010), an 

interesting potential parallel given the appearance of multi-asters suggests microtubule 

disruption in FQI1 treated cells.  Elevated levels of Cyclin B in FQI1 treated G1/S 

synchronized cells 10 hours post release from G1/S (Figure 3.3) are consistent with the 

observation of a mitotic defect as Cyclin B must be degraded, or Cdk1 inactivated in 

some other manner, prior to mitotic exit (Guadagno and Newport, 1996; Irniger, 2002).  
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In Rajesekaran et al., FQI1 inhibition of LSF resulted in a prometaphase arrest (presented 

in Figure 6) and was associated with increased Cyclin B.  Here, the data indicate that the 

increased expression of Cyclin B protein levels is actually a consequence, and not 

causative of the prometaphase arrest, as Cyclin B RNA levels were not altered as would 

have been anticipated if the gene were a direct target of LSF as a transcription factor.  It 

is not surprising that Cyclin B protein levels would be elevated as the cells arrested in 

prometaphase.  It is only once cells have reached anaphase that Cyclin B protein is 

degraded by the Anaphase Promoting Complex.    

These results are quite distinct from those of (Powell et al., 2000) where a 

dominant negative version of LSF demonstrated apoptosis in S phase.  The differences in 

phenotypes could represent disparate mechanisms of action of the agents utilized.  

Dominant negative LSF disrupts the ability of LSF to bind DNA and activate 

transcription, however, interactions with other protein cofactors may be left intact.  Of 

course, endogenous LSF may still have been active in the dnLSF evaluation confounding 

the results.  The small molecule on the other hand also prevents LSF DNA binding, but 

may interfere with other activities of LSF creating more of a null phenotype.  

Alternatively, a trivial explanation for the difference in phenotypes could be that separate 

cell lines were utilized in the experiments. Indeed, whereas dominant negative LSF 

expression abolished thymidylate synthase expression in the cells in which it caused S 

phase death, it diminished, but did not eliminate, thymidylate synthase expression in 

HCC cells (Yoo et al., 2010; Yoo et al., 2009).  FQI1, on the other hand, may be a more 

robust inhibitor, in that it appears to cause similar phenotypes (accumulation of cells with 
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4n DNA content) in multiple cell types, including the HCC Hep3b and Huh7 cells 

(Rajasekaran et al., 2015).  The phenotypes observed by microscopy were entirely 

consistent with the DNA profiling, showing rounded cells with and without condensed 

DNA that had not formed a metaphase plate indicative of a prophase/prometaphase arrest 

(Figure 3.5a, b, d and e).  Also consistent was the elevated levels of Cyclin B expression 

at 7, 10 and 17 hours after release from the G1/S block in the presence of the LSF 

inhibitor (Figure 3.3a), as Cyclin B is elevated during mitosis.  

Since Cyclin B RNA levels were unaffected by FQI1 treatment, I examined 

expression of other potential LSF targets whose dysregulation could cause prometaphase 

arrest.  Aurora B Kinase inhibition also causes accumulation of cells in prometaphase due 

to incomplete kinetochore attachment, subsequently resulting in multi-nucleation and 

apoptosis (Kallio et al., 2002; Wang et al., 2006).  Additionally, a coactivator of the 

Anaphase promoting complex (APC), Cdc20, is required for proteolysis of Cyclin B. 

However, a Cdc20 deficiency would most likely arrest the cells immediately before 

anaphase rather than in prometaphase.  Under these conditions, in which cells were 

incubated with FQI1 only starting at the G1/S border, neither RNA nor protein levels of 

these two genes were altered.  Further, phosphorylation of Histone 3 on Serine 10, which 

is catalyzed substantially by Aurora kinase B, was not reduced.  Surprisingly, 

phosphorylation of Histone 3 on Serine 10 was diminished when cells were treated with 5 

µM of FQI1, the same concentration at which Cyclin A protein levels are not reduced.  

These data indicate that at sufficiently high FQI1 concentrations, LSF may have an 

additional role required for mitotic progression that is crucial in prophase.   
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In the absence of identifying specific mitotic regulatory genes whose expression 

was altered by short-term FQI1/2 treatment, a general scheme was developed to test 

whether or not the mitotic defect was due to transcriptional regulation.  Transcription 

mediated by RNA polymerase II does not generally occur during mitosis (Delcuve et al., 

2008; Gottesfeld and Forbes, 1997; Long et al., 1998) thus expression of mitotic genes 

occurs during G2 and S phases, but not in mitosis.  If transcriptional dysregulation were 

the main driver of the FQI1-mediated mitotic defect, removing FQI1 at the time of arrest, 

when cells are in mitosis with condensed chromosomes, would not be reversible.  The 

cells would not recover, as LSF-mediated transcriptional events could not resume. 

Interestingly the results demonstrated that the mitotic defect in HCC cells was reversible 

upon removal of the LSF inhibitor (FQI1) within a few hours of inducing the mitotic 

block, allowing proper cell cycle progression to G1.  In these experiments, the cells were 

synchronized at the G1/S border to allow specific interrogation of the impact of FQI1 

incubation on different cell cycle stages, and FQI1 was added only at the time of release 

from this cell cycle block at G1/S.  Although FQI1 has been demonstrated to inhibit LSF 

DNA-binding activity (Grant et al., 2012), the question remains as to whether FQI1 

would be able to compete off pre-bound LSF from the DNA. If not, FQI1 may be unable 

to inhibit LSF-mediated gene expression under these circumstances.  Overall, these data 

support a role for LSF, the target of FQI1, in regulating prometaphase to metaphase 

transition through a non-transcriptional means.   

However, these results open the question of whether FQI1 has targets besides 

LSF.  FQI1s do inhibit LSF family members, but only the close paralogs: LBP1a/b and 
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LBP9.  FQIs do not inhibit the Grainyhead proteins (T. Grant and U. Hansen, 

unpublished), more distant family members to LSF.  If specific knockdown of LSF by 

RNAi result in a similar phenotype, it would confirm the role for LSF in mitosis in HCC 

cells.   

The elucidation of a potential mitotic role for LSF was unanticipated. Powell et al. 

(Powell et al., 2000) demonstrate that expression of dominant negative LSF resulted in 

apoptosis in S phase due to reduction of thymidylate synthase levels, however, all these 

experiments were performed in cells synchronized prior to S phase, defects later in the 

cell cycle, as in mitosis, would not have been observed.  Alternatively, the non-

transcriptional role uncovered by reversibility of the prometaphase arrest by FQI1 

removal may suggest a regulatory role for LSF in proper mitotic progression through 

protein-protein interactions. It is possible that the dominant negative LSF would maintain 

all protein-protein interactions and not be defective in this regard. 

The collective evidence supporting that FQIs specifically target LSF and LSF 

paralogs indicates that the anti-tumor activity observed in preclinical tumor models is 

likely not a result of an off target effect.  FQI1 was previously identified to inhibit LSF 

DNA binding and shown not to inhibit transcriptional activity of other transcription 

factors including p53, a transcription factor predicted to be structurally similar to LSF. 

Further, FQIs did not impact transcriptional activation of the Grainyhead family members 

(Trevor Grant, Ulla Hansen, unpublished observations), transcription factors that have 

similar DNA binding domains but have diversified from the LSF subfamily of factors 

(Traylor-Knowles et al., 2010).  Finally, compound structure-activity relationships (SAR) 
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demonstrated a linear relationship between the G150 and the IC50 generated using the LSF 

activity assay.  This high degree of correlation indicates that FQI inhibition of LSF 

resulted in growth inhibition (Christadore, 2013).  These data, among others, provide 

confidence that FQI1 and FQI2 specifically target LSF, in comparison to other 

transcription factors.   

In summary the results in this chapter indicate that by a non-transcriptional 

mechanism, FQI1 inhibition induces a prophase/prometaphase arrest prior to cell death, 

and suggest that this may occur by interfering with an LSF protein-protein requirement 

for proper mitotic progression.  Further work is needed to evaluate what key interactions 

LSF may have with proteins required for spindle formation, DNA condensation, or 

microtubule-kinetochore attachments, or to eliminate the alternative hypothesis, that the 

mitotic defect is a secondary event characteristic to the compound, rather than to LSF 

itself.   
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Figures 

Illustration 3.1 FQI Incubation in Synchronized HCC Cells (Short incubation) 
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Figure 3.1   Treatment of QGY-7703 cells with FQI1 inhibits cell division, activates 

Caspase 3/7 and results in loss of cell viability in a concentration-dependent manner. 

(a) QGY-7703 cells were synchronized at the G1/S border and released in presence of the 

indicated concentrations of FQI1. The averages of total cell counts at 0 and 10 hours after 

release from the G1/S block are shown.  Standard deviations represent 3 independent 

experiments.  Absence of error bars due to data being averaged from 2 independent 

experiments.   (b) QGY-7703 cells were synchronized at the G1/S border and released in 

the presence of increasing amounts of FQI1, or in the presence of only vehicle or no 

treatment as controls. Cells were analyzed for Caspase 3/7 activity at the indicated times 

after release by directly measuring cleavage of a luminogenic caspase 3/7 substrate.  Data 

are depicted as percent of the activity in the vehicle-treated cells. Dashed line represents 

control cells (100%).  Standard deviations represent technical triplicates. Data are 

representative of two independent experiments.  (c) Caspase 3/7 activation and cell 

viability were measured by a luminogenic caspase 3/7 substrate (as in b) and by cleavage 

by intracellular protease(s) of a fluorogenic permeant peptide (Promega Apotoxglo kit), 

respectively, at 48 hours post incubation with FQI1 or vehicle. Standard deviations 

represent technical triplicates. Loss of viability was observed at 1.8 µM and 3.6 µM 

FQI1, concomitantly with increased Caspase 3/7 activity. Statistical significance was 

determined using a Student T Test; * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001 
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Figure 3.2    Treatment of synchronized QGY-7703 cells with FQI1 results in 

accumulations of cells with G2/M and/or subG1 DNA content.   

HCC cells were synchronized at the G1/S border and released in the presence of 

increasing amounts of FQI1 or vehicle. Cells stained with propidium iodide were 

analyzed at 7, 10, and 17 hours following release to evaluate DNA content.  10,000 

events were assayed per condition.  The area measures the DNA content per event.  (a) A 

parallel untreated asynchronous population of cells shows the expected distribution of 

cellular DNA across phases of the cell cycle.  (b)  Synchronized cells were collected 

immediately prior to the time of release, confirming appropriate synchronization at G1/S.  

(c)  Cells released in presence of 2 or 5 μM FQI1 were analyzed at the indicated time 

points and directly compared with the cells treated with vehicle to evaluate cell cycle 

progression. 
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Figure 3.3 Cyclin B protein expression is increased and maintained in QGY-7703 

cells treated with FQI1. 

Synchronized HCC cells were collected at the indicated time points after release from a 

G1/S block in the presence or absence of FQI1. (a) RNA was isolated for gene analysis 

by Taqman.  CCNA1 RNA levels were normalized to levels of GAPDH RNA in QGY-

7703 cells released in the absence or presence of FQI1 for 7 hours.  (b) Immunoblot for 

cyclin A1 and β-actin (as a loading control) of lysates collected at 8 hours post release 

from a G1/S block in presence of 0.9, 1.8 or 5 μM of FQI1 or vehicle as a control.  (c) 

Quantitation of cyclin A1 protein expression was determined using the Odyssey Licor 

detection system.  Data are depicted as the area of pixels determined for Cyclin A1 

normalized to that for β-actin.  (d) Immunoblots of cyclin B1 and β-actin from cell 

lysates collected at 0, 7, 10 and 17 hours after release from a G1/S block in presence of 2 

or 5 µM FQI1 or vehicle.  The data are representative of 3 independent experiments. (e) 

CCNB1 RNA levels normalized to those of GAPDH in QGY-7703 cells 8 hours post 

G1/S release with increasing FQI1 concentrations. Data are from a single experiment. 

The results are representative of two independent experiments.  
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Figure 3.4    Treatment of QGY-7703 cells with FQI1 results in prometaphase arrest 

and subsequent multi-nucleation. 

HCC cells were synchronized at the G1/S border and released in presence of 5 µM FQI1 

or vehicle. (a) Fixed HCC cells stained with DAPI and an antibody against alpha tubulin 

were analyzed on a Zeiss axioimager at 63x magnification. DAPI staining reveals a 

prometaphase arrest in the FQI1-treated QGY-7703 cells 8 hours post release from a 

G1/S block, as shown by the arrows. (b)  Hematoxylin and Eosin staining of 

asynchronous QGY-7703 cells treated with 5 μM of FQI1 or vehicle for 48 hours at 63x 

magnification.  (c) DAPI staining for synchronized cells treated with DMSO or 5 µM 

FQI1 and analyzed at 20x magnification.  Samples were collected at 0, 3.5, 6, 8, 16.5, 19 

and 23 hours post release from a G1/S block in presence of DMSO or FQI1.  Insets 

represent individual cells in more detail.  Arrows represent cells in metaphase or 

prometaphase, respectively, at the 6 hour time point, and multi-nucleated cells at the 19-

hour time point.   
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Figure 3.5    Treatment of synchronized HCC cells results in a concentration-

dependent increase of cells in prometaphase as well as mitotic anomalies such as 

multi-asters and prophase cells with protrusions. 

HCC cells were synchronized at the G1/S border and released in presence of vehicle or 

increasing concentrations of FQI1 or FQI2. HCC cells, fixed and stained for α-tubulin 

and DNA.  (a, b) Representative images of cells analyzed using a Zeiss Axioimager 7.5 

hours post release from the G1/S block, showing examples of (5µM) FQI1-mediated 

phenotypes including multi-aster (a, bottom right) and cells in prometaphase/metaphase 

(a, bottom left).   Examples of prophase cells with and without protrusions (b, bottom 

right).  All images were taken at 100x magnification. (c) Representative image of a multi-

nucleated cell observed post treatment with 5 µM FQI1 in synchronous cells 24 hours 

post release. (d) Quantification from 75-100 total cells 7.5 hours post release from a G1/S 

block that were in interphase, prometaphase, metaphase and cytokinesis, as determined 

by DNA and alpha tubulin characteristics. There are no phenotypes shown for the highest 

concentration of FQI2 (3.7 µM), because at this time point, all cells remained in 

prophase.  (e) Quantification from the same population of 75-100 total cells as in (d), 

analyzed by DNA and alpha tubulin morphologies indicating cells containing prophase 

cells, with and without protrusions, and multi-asters analyzed 8 hours post release from a 

G1/S block.  (f) Quantification from 75-100 total cells analyzed by DNA and alpha 

tubulin morphologies indicating cells containing interphase, prophase, prometaphase, 

metaphase, and cytokinesis, fixed for imaging at 9 hours post release from a G1/S block. 

(g) Quantification from 75-100 total cells analyzed by DNA and alpha tubulin 
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morphologies indicating cells containing multi-asters, at 9 hours post release from a G1/S 

block.  Data are representative of 2 quantitation experiments.  
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Figure 3.6. FQI1 addition to synchronized HCC cells at the G1/S transition does not 

alter subsequent expression of Aurora B Kinase or Cdc20 prior to mitosis. 

 
Synchronized HCC cells were released from a G1/S block in the presence or absence of 

FQI1 at the indicated concentrations. Cell lysates were prepared 9 hours post release from 

the G1/S block.    (a)  Aurora kinase B RNA levels were determined using bDNA 

(Affymetrix) and normalized to those of beta actin within each lysate.  Error bars 

represent standard deviation of two independent experiments. (b) Immunoblots of Aurora 

kinase B and β-actin. Data are representative of greater than 4 experiments.  (c) 

Immunoblot measuring phosphorylation of Histone 3 Serine 10 on lysates collected 9 

hours post release. (d) Protein expression was quantitated using the Odyssey Licor 

detection system.  Data are depicted as the area of pixels determined for Aurora Kinase B 

normalized to the area of pixels detected for β-actin.   (e) Gene expression determined 

using bDNA (Affymetrix) of CDC20 RNA levels were normalized to ACTB RNA within 

each lysate.  Error bars represent standard deviation of technical triplicates. Data are 

representative of two independent experiments. (f) Immunoblots of CDC20 and β-actin in 

lysates collected 9 hours post release from a G1/S block.  Each lysate was probed for beta 

actin as a loading control.  Data are representative of 3 experiments.  (g) Data are 

depicted as the area of pixels determined for Cdc20 normalized to the area of pixels 

detected for the beta actin loading control.   
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Figure 3.7    The prophase/prometaphase arrest mediated by short-term FQI1 

treatment of synchronized HCC cells is reversible.   

Synchronized QGY-7703 cells were released in the presence of 5 µM of FQI from a G1/S 

block.  Ten hours after the release, the cells were washed and then either incubated with 

media alone or re-incubated with media in the presence of 5 µM FQI1.  Samples were 

collected 24 hours post release.  Fixed cells were stained with propidium iodide to 

analyze DNA content.  (a) Synchronized cells harvested immediately prior to release 

from the G1/S block.  Cellular DNA profiles 10 hours post release for (b) vehicle control 

and (c) cells released with 5 µM FQI1.  Cellular DNA profiles 24 hours post release for 

(d) cells treated throughout only with vehicle (e) cells treated throughout with 5 µM FQI1 

and (f) cells treated initially with 5µM FQI1 for 10 hours, but then incubated in the 

absence of FQI1.  Phase contrast images of QGY-7703 cells treated with (g) vehicle 

control, (h) 5 µM FQI1 treated cells and (i) cells treated with 5 µM FQI1 at release, 

washed, and incubated with complete media 10 hours post release.  This is representative 

of two independent experiments. 



 
 

88 

 



 
 

89 

 

  

 

  



 
 

90 

CHAPTER FOUR  

The transcription factor LSF regulates mitotic progression in hepatocellular 

carcinoma cells  

  
Contributions 

Kelly George generated mEmerald Tubulin QGY-7703 cells, the time lapse imaging data, 

and analysis for mitotic time determinations 

Mark Roberto generated the YFP H2B QGY-7703 cell line 

 
 
Introduction 

Primary liver cancer is the fifth most common cancer worldwide and the third 

leading cause of cancer mortality (Bruix, 2011; Bruix and Sherman, 2011; Llovet et al., 

2015; Marengo et al., 2016; Torrecilla and Llovet, 2015; Wang et al., 2002).  

Hepatocellular carcinoma (HCC) represents approximately 70-80% of primary liver 

cancer cases (Bruix, 2011; Bruix and Sherman, 2011; Llovet et al., 2015; Marengo et al., 

2016; Torrecilla and Llovet, 2015).  The leading risk factors, worldwide, include 

Hepatitis, both B and C, and alcoholism.  More recently metabolic syndrome and obesity 

have resulted in Non-Alcoholic Steatohepatitis (NASH) development, another precursor 

to HCC.  Today, one million individuals in the US alone are afflicted with NASH 

(Marengo et al., 2016), a condition for which there are no approved treatments, and  

therefore put large numbers of individuals at risk for developing hepatocellular 

carcinoma (Zoller and Tilg, 2016).  Regardless of the disease etiology, each HCC case 

follows a lengthy disease progression with the majority of patients developing fibrosis, 

with a percentage of those patient’s livers progressing to cirrhosis and eventually to frank 
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carcinoma.  The factors that cause some patients to progress rapidly while others slowly 

or never are unknown and are currently under intense investigation.  However, a major 

risk factor for HCC is cirrhotic liver (Bruix and Llovet, 2003; Llovet, 2006).  Patients 

with HCC are often diagnosed in the late stages, with few meeting the requirements for 

invasive procedures, such as surgical resections, with the majority qualifying for mere 

palliative treatments (Bruix and Sherman, 2011).  Further, hepatocellular carcinoma 

patients, in general, have not responded to standard chemotherapeutics.  Sorafenib, a 

small kinase inhibitor shown to target vascular endothelial growth factor receptors, 

platelet derived growth factor receptors and Raf kinases (originally approved for renal 

cell carcinoma) has demonstrated modest improvement in survival rates in HCC patients 

suggesting that molecularly targeted therapies may be helpful in mitigating the disease 

(Torrecilla and Llovet, 2015). The improvement in overall survival rates with this 

treatment, however, is subpar and patients suffer with significant side effects leaving the 

hepatocellular carcinoma patient population with a large unmet medical need.  

 LSF was identified as an oncogene in hepatocellular carcinoma by virtue of being 

necessary and sufficient, in the background of a non-tumorigenic, but tumor-primed 

hepatocyte cell line, for HCC tumor growth in mouse xenograft models.  Dominant 

negative LSF expression reduced tumor growth, and conversely, LSF overexpression in a 

non-tumorigenic HCC cell line resulted in increased tumorigenicity (Yoo et al., 2010).  

Small molecule inhibitors of LSF, Factor Quinolinone Inhibitors (FQIs), were identified 

from a compound screen in a fluorescent polarization assay where FQIs inhibited the 

DNA binding of purified LSF.  Additionally, FQIs have no effect on the DNA binding 
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activity of transcription factors from multiple structural classes, including Oct1, E2F3, 

and Sp1 (Grant et al., 2012).  Specific inhibition of LSF with these FQIs resulted in 

growth inhibition of HCC cells in vitro and in vivo as initially ascertained in a 

subcutaneous mouse xenograft HCC tumor model (Grant et al., 2012). More recently, 

FQIs were shown to inhibit growth and apparently cause regression in a mouse 

endogenous liver tumor model (Rajasekaran et al., 2015).  In all cases, inhibition of HCC 

tumor growth was accompanied with no signs of toxicity, as assessed by liver injury 

markers or histopathology of tissues with rapid cell turnover, suggesting a case of 

oncogene addiction of HCC to LSF.   

Oncogenic transcription factors are promising therapeutic targets given that they 

regulate tumorigenic pathways.  Transcription factors, in general, have been notoriously 

difficult to target with small inhibitors as their DNA binding pockets are commonly small 

and the proteins themselves are intrinsically unstructured, a feature allowing binding site 

promiscuity (Dunker and Uversky, 2010; Yan and Higgins, 2013).  The DNA binding 

pocket of LSF, however, is uncharacteristically large (Kokoszynska et al., 2008; Shirra et 

al., 1994).  Identification of the transcription factor LSF as an oncogene in HCC and the 

significant inhibition of tumor growth upon LSF inhibition with no observed toxicity 

indicate that LSF holds great promise as an HCC therapeutic target (Grant et al., 2012; 

Santhekadur et al., 2012b; Yoo et al., 2010).  The molecular role by which LSF is 

necessary for HCC survival, however, has yet to be identified.  Targeting a transcription 

factor has been challenging, therefore clarifying the mechanism by which inhibition of 
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LSF leads to hepatocellular carcinoma cell death would further support the candidacy of 

FQIs as a molecular therapy.   

Initial studies (Rajasekaran et al., 2015) revealed that short term FQI1 treatment 

in HCC cells caused cells to accumulate at prometaphase, suggesting that inhibition of 

LSF activity resulted in a mitotic defect.  Furthermore, reversibility of the phenotype 

through FQI1 removal at the time of mitotic arrest revealed a non-transcriptional role for 

LSF in mitosis (Chapter 3). Previous investigations that indicated a transcriptional role 

for LSF in cell cycle progression during the G1/S transition were performed by 

overexpressing a dominant negative LSF mutant (Powell et al., 2000)(). These studies, 

with a very distinct type of inhibitor, did not investigate mitotic progression. Since FQI1 

was initially identified based on its ability to inhibit LSF DNA-binding and 

transcriptional activation potential, its ability also to apparently inhibit non-

transcriptional functions of LSF suggests that FQI1 treatment results in a null phenotype 

for LSF.   

To both fully evaluate the hypothesis that LSF regulates mitosis and investigate 

whether or not the mitotic arrest was due to perturbation of an off target of FQI1, we 

interrogated LSF activity in HCC cells using RNAi technology to recapitulate the LSF 

null phenotype.  Titrating LSF activity with either FQI1 or siRNA in HCC cells resulted 

in similar mitotic phenotypes, indicating that LSF is the major target of FQI1. 

Surprisingly, we did not fully recapitulate the persistent prometaphase arrest observed 

upon short-term FQI1 treatment (Chapter 3. (Rajasekaran et al., 2015)), but instead 

observed a similar phenotype of prometaphase/metaphase delays leading to lengthening 
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of times to progress through mitosis.  In addition to the delay, mitotic phenotypes 

included defective cell division and multi-nucleation.  At the mechanistic level, in 

contrast to the short-term FQI1 treatment, long-term inactivation of LSF by both 

approaches did reveal specific RNA and protein reduction of key mitotic regulators. In 

particular, both Aurora Kinase B, a major mitotic kinase, and Cdc20, a major component 

of the proteolysis complex, were downregulated upon LSF inhibition. Thus, this study 

also shows that LSF controls gene expression of mitotic proteins.   

 

Results 

Identification of potent and durable siRNAs targeting LSF and LBP1A expression.   

To optimize transfection conditions for the HCC cells, a control siRNA targeting 

the luciferase transcript was synthesized with a Cy3 fluorescent tag.  This allowed visual 

confirmation of a successful transfection.  The luciferase targeting siRNA is an excellent 

control siRNA, as it is a non-targeting siRNA in the QGY-7703 cells in that they do not 

express the luciferase gene.  Thus, complications from knockdown of additional targets 

of non-interest are eliminated.  The fluorescent distribution following transfection with 

this tagged siRNA (Figure 4.1a) reveals efficient uptake, with approximately 90% of the 

cells depicted in the phase contrast image (Figure 4.1b), overlapping the fluorescent 

signal.  The degree of background fluorescence was measured at the same exposure using 

LSF siRNA-transfected cells (Figure 4.1, c and d), where no fluorescent tag was 

included.  
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To identify potent molecules targeting LSF or LBP1A, multiple siRNAs targeting 

each were synthesized.  In order to recapitulate the findings generated by the FQIs in 

HCC, it was imperative to also investigate the other widely-expressed LSF family 

member, LBP1A, since FQI1 also inhibits the activity of LBP1A (T. Grant and U. 

Hansen, unpublished results).  Therefore, to interrogate the mechanism of FQI1 anti-

tumor activity, the role of LBP1A, if any, in HCC cell proliferation must also be 

investigated.  The siRNAs (designed using algorithms generated to reduce off target 

hybridization by either the sense or antisense strand) were chemically modified and 

included a 21/23 design (21 nucleotides on the guide strand and 23 complementary 

nucleotides with an overhang on the 3’ end of targeting strand, a siRNA scheme 

previously shown to result in potent and durable knockdown (Zimmermann et al., 2006).   

Specifically, 24 siRNAs designed to target LSF were synthesized and screened in a two 

dose screening paradigm to identify potent molecules.  siRNAs were transfected into both 

Hep3B (Figure 4.1e) and QGY-7703 (Figure 4.1f) cells at concentrations of either 2 or 10 

nM.  Hep3b and QGY-7703 are both HCC cell lines that overexpress LSF (Grant et al., 

2012; Yoo et al., 2010), with QGY-7703 cells those utilized to create the subcutaneous 

xenograft model that was responsive to FQI1 treatment.  Normalized LSF transcript 

levels from these transfections are depicted as the percentage of LSF RNA levels in HCC 

cells treated with LSF siRNA compared to the levels in cells treated with the non-

targeting luciferase control siRNA.  Multiple siRNAs were determined to be potent, as 

defined by inducing a minimum of 80 percent target knockdown at 10 nM and greater 

than 50 percent knockdown at 2 nM.  In particular, siRNA 9 and 22, henceforth referred 
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to as LSF siRNA and as LSF siRNA 2 respectively, were chosen and utilized for all 

subsequent experiments in this chapter and the Appendix.  Additionally, 8 siRNAs 

targeting LBP1A were designed and synthesized using the same design scheme, and 

screened at a 20 nM dose in QGY-7703 cells (Figure 4.1i).  Relative gene expression 

levels showed significant knockdown of the LBP1A transcript; siRNA 28 was chosen for 

investigating the impact of LBP1A knockdown in QGY-7703 cells.   

Previous reports (Hubner et al., 2010) have described an off target effect with 

certain siRNAs, which resulted in nonspecific reductions in MAD2 mRNA and protein 

levels.  Given the critical importance of MAD2 in mitosis, siRNAs targeting LSF or 

LBP1A were transfected into HCC cells, and RNA was isolated 72 hours after the 

transfection to evaluate Mad2 transcript levels.  Transfection with either the siRNA 

targeting LSF or LBP1A (Figures 4.1g, h and j) did not reduce Mad2 transcript levels 

when directly compared to cells transfected with the control siRNA, demonstrating that 

they were specific and effective.  

 

Both RNAi-mediated knockdown of LSF and FQI1 treatment inhibit HCC cellular 

division prior to cell death 

In order to investigate potential cell cycle defects in QGY-7703 cells we first 

evaluated cellular proliferation.  QGY-7703 cells synchronized at the G1/S border (0 

hours) were treated with increasing concentrations of FQI1 or siRNAs targeting LSF, as 

they were released into S phase.  Since FQIs inhibit the activity of both LSF and LBP1A 

(T. Grant and U. Hansen, unpubl. results), siRNAs against both were included for 
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evaluation.  A detailed protocol schematic is depicted in Illustration 4.2.  The success of 

this protocol depended on durability of LSF knockdown, given the long half-life of LSF 

protein (Hansen et al., 2009).  20 nM LSF siRNA resulted in ~90% LSF RNA reduction 

at 72 hours, and 95% reduction at 96 hours (Figure 4.2a).  As expected given the half-life 

of 24 hours, levels of LSF protein decreased more slowly than those of the transcript, 

with maximum decline of protein being achieved at ~48 hours after transfection (Figure 

4.2c).  With this degree of durability of RNA knockdown, LSF protein knockdown was 

able to persist through the entire course of the experiment (Figures 4.2d).  The double 

thymidine block synchronization protocol spanned approximately 48 hours and could not 

be initiated on the day of siRNA transfection as the combination resulted in severe 

toxicity.  Similarly, expression of LBP1A RNA after transfection with 20 nM LBP1A 

siRNA yielded 96% knockdown at 24 hours post transfection- a level of knockdown that 

was maintained as far out as 96 hours post transfection (Figure 4.2b).  These results 

demonstrate potent and long-lasting knockdown of both LSF and LBP1A with the 

siRNAs.   

To attempt to recapitulate effects of FQI1, we tested the impact of decreased 

protein levels of LSF, LBP1A or the combination of both.  A single cell division of HCC 

cells treated with one or more siRNAs was monitored by arresting cells at the G1/S 

border and then releasing them to continue cell cycle progression.  After the 

synchronization protocol, cell populations that had been transfected with LSF siRNA, at 

any concentration or in combination with LBP1A, had fewer cells. Upon release from the 

G1/S block, populations treated with LSF siRNA did not divide.  In contrast, control cells 
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substantially completed the first mitosis and cellular division, as did cells treated with 

LBP1A siRNA. Phase contrast images of synchronized QGY-7703 cells treated with 

control or LSF siRNAs (Figure 4.2 h,i) are consistent with reduced total cell counts 

following LSF knockdown.  Note that many of the LSF siRNA-treated cells are rounded 

up, a phenotype of mitotic cells.  These data suggest that LSF alone, but not LBP1A, is 

necessary for timely HCC cellular division at the first mitosis following reduction in 

protein expression.   

To determine if FQI1 treatment, which inhibits LSF activity, would mirror the 

reduction in cellular division observed upon loss of LSF protein, a similar 

synchronization experiment was performed in the presence of FQI1.  QGY-7703 cells 

were treated with FQI1 at 0.9, 1.8, and 3.6 µM, or vehicle, for 24 hours immediately 

following the first thymidine block and continually thereafter, including release in the 

presence of FQI1 from the G1/S block at the same concentration as the initial incubation 

(Illustration 4.1).  In previous growth inhibition assays, 1.3 µM of FQI1 resulted in half 

maximal growth inhibition in the QGY-7703 cell line (Christadore, 2013).  Therefore, 

concentrations were chosen in order to flank the GI50 concentration. Figure 4.2g shows 

that with progressively increasing FQI1, there is an increasingly pronounced decline in 

cell division. Phase contrast images of synchronized QGY-7703 cells treated with control 

(Figure 4.2j) or with 1.8 µM of FQI1 (Figure 4.2k) are consistent with the reduced cell 

number reflected in total cell counts.   Again, many cells in the FQI1 treated group are 

rounded up.   
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To determine if the LSF knockdown or FQI1 treatment resulted in cell death, the 

viability of the treated cells was assayed using multiple methods (Figure 4.3).  

Asynchronous HCC cells were treated either with FQI1 or LSF siRNA, and the Trypan 

Blue positive cells were counted. Trypan blue staining occurs only if the cell membrane 

is compromised, as in dying cells.  By this measurement, 20 nM of LSF siRNA or 3.6 

µM of FQI1 resulted in reduced percentage of viable cells (Figure 4.3a and 4.3b).  FQI1 

treatment resulted in reduced viability at the 24 hour time point whereas the cells with 

RNAi mediated LSF knockdown do not show signs of reduced viability until 96 hours 

following transfection.  The differential timing in viability loss is consistent with the 

modalities (small molecule and siRNA) utilized to inhibit LSF as most small molecules 

are anticipated to interact with their targets fairly rapidly upon incubation whereas the 

reduction of LSF levels by siRNAs takes 48-72 hours. When cell viability was measured 

by mitochondrial functionality in synchronized cells, 3.6 µM of FQI1 or 20 nM of LSF 

siRNA resulted in approximately 40% reduction of viability or reduced cell number when 

assayed 24 hours post release from a G1/S block (Figure 4.3c).  Reduced mitochondrial 

activity may simply reflect reduced cell number, rather than cell death at this time point, 

as the cells do not proliferate upon LSF inhibition (Figure 4.2 f and g).  To determine 

whether cells were dying as a consequence of LSF knockdown or FQI1 treatment, and 

whether this immediately followed inhibition of cellular division, synchronized HCC 

cells incubated with various concentrations of LSF targeting siRNA or with various FQI1 

concentrations were assayed for apoptosis by measuring Caspase 3/7 activity (Figure 

4.3e).  Both LSF knockdown and LSF small molecule inhibition (Grant et al., 2012) 
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resulted in induction of apoptosis by 48 hours, with caspase activity undetectable as the 

cells entered the first mitosis.     

 

LSF knockdown or inhibition in QGY-7703 cells results in multiple cellular phenotypes 

including cell cycle delay in G2 or M and cellular senescence 

To elucidate how LSF knockdown inhibited cell division, cellular DNA content 

was measured in synchronized QGY-7703 cells after LSF inhibition, focusing on times 

spanning when cells would normally progress from the G1/S transition through mitosis 

and re-entry into G1.  Because HCC cells are generally aneuploid, the DNA content as 

ascertained by flow cytometry would not be a true 2n or 4n.  However, for ease I aligned 

the cell populations with non-replicated DNA at the 2n peak, with 4n representing 

successful DNA synthesis.   

The QGY-7703 cells were transfected with increasing amounts of LSF siRNA, 

from 0 to 20 nM, and compared to cells transfected with highest amount of control 

siRNA.  All cell populations showed the expected profile of cellular DNA, predominantly 

at the G1/S border, after synchronization (Figure 4.4, 0 hours).  Control cells were in S 

phase at 3.5 hours after release from the block, in G2 or mitosis at 8 hours, and back in 

G1 phase by 18 hours, having divided.  However, with levels of LSF diminishing from 

RNAi activity during the course of the synchronization procedure, at the end of the 

double thymidine block procedure a subpopulation of all the LSF siRNA-treated cells no 

longer was able to progress into DNA replication, but instead was arrested with 2n DNA.  

The remainder of the cells continued to progress through the cell cycle.  Consistent with 
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the viability and caspase activity assays, subG1 DNA populations (Figure 4.4), indicative 

of apoptosis, were observed by flow cytometry in all the LSF siRNA-treated samples, but 

not significantly in the control cells. These data indicate that whereas gradual LSF 

knockdown generates a population of cells that no longer progresses into S phase, the 

remaining cells do progress from G1 into mitosis, accompanied by some cell death 

thereafter.   

Synchronized QGY 7703 cells in which LBP1A was knocked down showed no 

apparent difference in cell cycle progression, as compared to the control cells (Figure 

4.5).  These results are consistent with the analysis of cellular division (Figure 4.2f) 

where cell progression of cells with LBP1A knockdown was comparable to the siRNA 

control group. 

In order to compare cell cycle phenotypes generated by LSF small molecule 

inhibitors with those produced by RNAi treatment, QGY-7703 cells were also treated 

with FQI1 during the synchronization protocol (Illustration 4.1). At the lower 

concentrations of 0.9 and 1.8 µM, the FQI1-treated cells were initially delayed in 

returning from G2/M to G1, remaining with 4n DNA content, compared to the control 

cells that had re-entered G1 (Figure 4.9, 8.5 h), an observation consistent with previous 

studies (Chapter 3, Christadore, 2010, (Rajasekaran et al., 2015)).  At 16 hours, some of 

these FQI1-treated cells had either divided (2n DNA) or initiated cell death (subG1 DNA 

content). At the highest FQI1 concentration, cells also were delayed with 4n DNA 

content, but the entire population converted to subG1 content by 16 hours post release 

from the G1/S block (Figure 4.6).    



 
 

102 

The surprising inability of cells to progress into S phase after synchronization 

coupled with LSF inhibition led to the hypothesis that the decreasing LSF levels during 

the previous cell division might have caused defects leading in G1 to senescence. To test 

this hypothesis, β-galactosidase activity, indicative of senescent cells (Debacq-Chainiaux 

et al., 2009), was measured. QGY-7703 cells were synchronized as before by a double 

thymidine block in the presence of 0 to 3.6 µM of FQI1, LSF siRNA at 20 nM, or the 

appropriate controls.  Cells were fixed at the time when control cells were approximately 

at mitotic entry and the levels of β galactosidase activity, which is indicated by blue 

staining upon phase contrast microscopy (Figure 4.7 a-j), were imaged.  Reduction in 

LSF levels or inhibition of its activity resulted in significantly greater numbers of cells 

expressing β-galactosidase activity compared to control samples. Quantitation of the 

number of cells analyzed as well as the number of cells positive for β galactosidase 

activity with LSF knockdown resulting in 88% of β-galactosidase-positive cells 

compared to 24% in the control group.  Increasing FQI1 treatment resulted in 47% and 

72% in the 1.8 and 3.6 µM groups, respectively, whereas the vehicle control group and 

0.9 μM FQI1 group had 6 and 4 percent of a positive cell population.  The observed 

increase in β-galactosidase-positive cells with reduced LSF activity correlates with the 

analysis of DNA content by flow cytometry, as fewer cells continue progression through 

the cell cycle with increasing siRNA or FQI1 concentrations (Figures 4.4 and 4.6).  

Furthermore, increasing FQI1 or LSF siRNA concentration positively correlated with the 

percentage of β galactosidase-positive cells (Figure 4.7 k and l). These data demonstrate 

that reduced LSF levels or activity during previous cell cycles can predispose cells to 
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senescence.  In contrast to data with short-term incubation of FQI1 (Chapter 3), here, 

when cells are incubated with FQI1 throughout the entire synchronization process there is 

a population that remains at 2n upon cell cycle release, albeit a minor percentage of the 

cells analyzed.  This is especially apparent in the 3.6 µM treated group and is consistent 

with the observation of senescence in the FQI treated cells (Figure 4.6).   

 

Cell cycle progression defects in QGY-7703 cells upon LSF inhibition do not result from 

DNA damage  

LSF has previously been shown to be necessary for appropriate cell cycle 

progression at the G1/S transition, due to its requirement for upregulation of thymidylate 

synthase expression (Powell et al., 2000).  Indeed, in the non-HCC cells previously 

examined, the requirement for LSF at this transition was eliminated by exogenous 

addition of low levels (20 µM) of thymidine (Powell et al., 2000).  However, in HCC 

cells, the requirement for LSF in expressing adequate thymidylate synthase is not as 

severe.  In particular, the enzyme levels were not abolished upon inhibition of LSF (Yoo 

et al., 2009).  Furthermore, addition of thymidine did not affect FQI1-mediated reduction 

in cell viability, indicating that altered thymidylate synthase expression is not the 

mediator of FQI-mediated cell death (Grant et al., 2012).  To determine whether 

reduction in thymidylate synthase expression might impact the senescent or cell cycle 

phenotypes, thymidine was added to synchronized cells at the time of release from the 

G1/S block for QGY-7703 cells treated with either LSF siRNA or FQI1.  Cell cycle DNA 
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profiles generated from flow cytometry were indistinguishable in the presence or absence 

of 20 µM of thymidine (data not shown). 

Nonetheless, to test directly whether S phase defects potentially caused by 

deficiency in LSF function might be responsible for the defects prior to G1 re-entry, 

DNA damage was monitored using antibodies to phosphorylated H2AX (γ-H2AX).  We 

assayed this by two separate techniques:  flow cytometry and immunofluorescence.  Cells 

treated with LSF siRNA were imaged by fluorescent microscopy at multiple time points 

following release of synchronized cells from a G1/S block; cells harvested at time points 

representing completion of DNA synthesis (4 hours) and re-entry into G1 (16 hours) 

showed comparable γ-H2AX staining (Figure 4.8 a, right) to those treated with control 

siRNA (Figure 4.8a, left).  Similarly, cells treated with FQI1 (Figure 4.8b, left) have 

similar profiles as compared to the control cells treated only with vehicle, exhibiting a 

small population with positive γ-H2AX staining (Figure 4.8b, right).  At the later time 

point, 16 hours, it is noteworthy that both groups with reduced LSF activity do have 

increased γ-H2AX staining in comparison to the control cells at the same time point, but 

this would be long after the mitotic defects occurred, and consistent with induction of 

apoptosis in such cells.  To confirm the results obtained by flow cytometry, a similar 

experiment was performed, however, the synchronized cells were then analyzed for γ-

H2AX signal by immunofluorescence at 8 hours post release (Figure 4.8 c and d).  A 

positive control was included (Figure 4.8c, bottom) where UV-irradiated HCC cells 

showed strong γ-H2AX staining.  Both the siRNA (Figured 4.8c) and FQI1 (Figure 4.8d) 

treated groups had comparable levels of phosphorylated H2AX as did controls, and 
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dramatically reduced levels compared with the positive control (Figure 4.8c bottom).  

Evaluation of asynchronous HCC cells treated with either LSF siRNA (Figure 4.8e) or 

FQI1s (Figure 4.8f) did result in increased γ-H2AX in both cases, however, this occurred 

approximately 24 hours following the documented aberrant mitosis, indicating that a 

defective mitosis, rather than any defects during initial progression through DNA 

synthesis, was responsible for the DNA damage (Orth et al., 2012).  Overall, these data 

indicate that LSF knockdown or inhibition does not induce double stranded DNA breaks 

prior to mitotic entry, consistent with LSF being required more directly for regulation of 

proper progression through G2 or M in hepatocellular carcinoma cells. 

 

Reduced LSF Activity Results in a Prometaphase Arrest, Cell Division Defects, and 

Multi-Nucleation 

To further investigate the consequences of mitotic delay and aberrant cell division 

induced by LSF inhibition, synchronized cells treated with LSF targeting siRNA or FQI1 

along with their respective controls were phenotypically analyzed at time points when 

control cells had exited mitosis by visualizing fixed cells for LSF, α-tubulin, and DNA 

(Figures 4.9a, c).  Both LSF loss and FQI1 treatment resulted in cells persisting in 

prometaphase, with those that exited from faulty mitoses leading to various phenotypes 

including multi-nucleation (Figure 4.9a, c). These data combined show that inhibition of 

LSF activity, by either method, results in persistence of mitotic cells much later than 

normal, with a prometaphase (Figure 4.9b, d) delay followed by aberrant cell division.  

Representative images gathered from immunofluorescent analyses (Figures 4.10-4.12) 
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show that synchronized cells with reduced LSF activity resulted in a prometaphase delay 

(Figure 4.10), defective cytokinesis (Figure 4.11) and multi-nucleation (Figure 4.12).  

These data are consistent with our previous findings indicating that high concentrations 

of FQI1 induce a profound prometaphase arrest in HCC cell lines (Chapter 

3;(Rajasekaran et al., 2015)).   

 

Expression of Aurora kinase B and Cdc20 is significantly down regulated upon LSF 

knockdown or inhibition in HCC cells 

Given that inhibition of Aurora kinase B can result in prometaphase delay, 

cytokinesis defects, and multinucleation (Andrews, 2005; Ditchfield et al., 2003; Vader 

and Lens, 2008), and that ChIP-seq data in an LSF inducible system identified multiple 

binding sites both within the Aurora Kinase B promoter and in presumptive enhancer 

regions (Gene Chin, Sriharsa Pradhan, Ulla Hansen, unpublished results), I determined 

whether loss of LSF activity would impact expression of key mitotic regulators such as 

Aurora kinase B. QGY-7703 cells treated with LSF siRNA or control siRNA were 

analyzed for expression of multiple mitotic regulators at various time points from G1/S to 

M.   

In order to investigate the delay in mitosis observed by immunofluorescent 

microscopy, expression of key drivers of mitotic entry, Cyclin A and Cyclin B, was 

examined first in synchronized QGY-7703 cells.  Eight hours after release of cells from a 

G1/S block, at which time the control cells should have completed mitosis and re-entered 

G1, Cyclin B levels were significantly decreased by both siRNA and FQI1 treatments in 
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a dose dependent manner (Figure 4.13a and 4.14a, respectively).  Cyclin A levels were 

also reduced correlating with reduced LSF activity suggesting that cells had completed 

late prophase and, unlike the controls, had not re-entered G1 (Figures 4.13 and 4.14).  

Interestingly cyclin B protein levels under this experimental design were inconsistent 

with those published (Rajasekaran et al., 2015) and those reported in Chapter 3 of this 

thesis where cyclin B protein levels remained elevated in the presence of FQI1.  This 

difference is due to distinct experimental protocols.  The studies here included incubation 

of HCC cells with FQI1 for an extended time, whereas in the previous experiments 

(Chapter 3) cells were incubated with FQI1 only after release from the G1/S block.  

Consistent with this interpretation, whereas Cyclin B RNA levels were not affected by 

the short-term incubation with FQI1 (Chapter 3 and (Rajasekaran et al., 2015)), when 

FQI1 treatment was extended RNA levels diminished in line with the protein levels 

(Figure 4.15j).  However, Cyclin B RNA levels in the cells treated with LSF siRNA was 

comparable to those in the control at the same time point (Figure 4.15k).  The apparent 

discrepancy between the siRNA and FQI1 results may be due to a timing difference 

between the two technologies utilized to deplete LSF activity where LSF knockdown, 

and its impact on downstream regulation may occur earlier than with the FQI1 treatment.  

In addition, many of the siRNA-treated cells by this protocol appear not to progress back 

into G2 or M upon release from G1/S, which may dilute any differences in cell cycle-

dependent RNA expression. 

Upon examination of Aurora kinase B expression, both LSF siRNA and FQI1 

treatments reduced protein expression of Aurora Kinase B (Figures 4.13a and 4.14a, 
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respectively).  Consistent with this observation, phosphorylation of direct targets of 

Aurora Kinase B, Serines 3 and 28 on Histone 3 (pH3 S10 and pH3 S28), were also 

reduced when either LSF levels or activity were diminished by siRNA or FQI1, 

respectively (Figures 4.13a and 4.14a).  Because RNAseq studies in HEK293 cells 

implicated LSF regulation of APC/C proteins, Cdc20 was also evaluated (Gene Chin, 

unpublished).  Cdc20 protein expression was also reduced in a dose dependent manner 

(Figures 4.13a and 4.14a), with decreasing LSF expression or activity resulting in 

decreasing Cdc20 expression.   

To determine whether the changes in Aurora Kinase B and/or Cdc20 levels were 

potentially transcriptional in nature, the relative RNA levels of both genes were measured 

following LSF inhibition or knockdown.  Gene expression of both AURB and CDC20 

was indeed down-regulated; and correlated to the degree of LSF protein decreased by 

RNAi knockdown (Figures 4.15 a-d) or via treatment with increasing concentrations of 

the LSF inhibitor, FQI1 (Figure 4.15 f,g). As expected, Cdc20 levels increased as the 

control cells progressed through the cell cycle with peak levels at mitosis (Inbal et al., 

1999) (Figure 4.15c, g), however, cells with LSF loss had significantly reduced levels at 

all time points indicating that Cdc20 was no longer being transcriptionally activated 

during G2.  Although Aurora Kinase B RNA levels normally also increase during G2 due 

to transcriptional activation (Kimura et al., 2004), in the untreated QGY-7703 cells 

Aurora Kinase B gene expression (Figures 4.15a, f) did not show a substantial increase as 

the cells entered mitosis.  This is likely due to the constitutive overexpression of Aurora 

Kinase B in HCC cells (Sistayanarain et al., 2006; Tanaka et al., 2008; Yasen et al., 
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2009).  Nonetheless, both LSF siRNA and inhibitor led to decreased AURKB expression. 

Overall, both methods of reducing LSF activity resulted in a significant loss of expression 

of CDC20 and AURKB.    

LSF knockdown or FQI1 treatment results in increased mitotic time, due to a 

prometaphase/metaphase delay followed by aberrant cellular division 

Given the complexity of multiple phenotypes, it was critical to analyze the 

phenotype and fate, cell by cell, of those that continue cell cycle progression beyond 

G1/S in the absence of or inhibition of LSF. QGY-7703 cells stably expressing 

fluorescently labeled histone H2B or α-tubulin (YFP-H2B and Emerald-α-tubulin, 

respectively) were generated. H2B labeled cells allowed visualization of the DNA 

structure and α-tubulin labeling allowed visualization of spindle formation, kinetochore 

attachment, and cytokinesis. Synchronized QGY-7703 YFP-H2B cells were transfected 

with siRNAs targeting LSF, LBP1A, both LSF and LBP1A, or a non-expressed control.  

For these experiments, a single thymidine block protocol was chosen for synchronization 

(Illustration 4.3), as the double thymidine block protocol resulted in monotonically fewer 

cells being released through S phase and ultimately into mitosis upon treatment with 

increasing amounts of LSF siRNA (Figure 4.4 and data not shown).  Using a single 

thymidine block, a larger percentage of cells reached mitosis. Representative time lapse 

images of cells treated with the highest concentration (20 nM) of either LSF targeting 

siRNA or control highlight dramatic changes in mitotic progression.  The control cells 

exhibit normal mitosis with progression through prometaphase, metaphase, anaphase and 

telophase in a timely manner (Figure 4.16a).  However, the cells with diminished LSF 



 
 

110 

levels exhibit a prometaphase/metaphase delay followed by cell division defects (Figure 

4.16b). Upon quantitation, the time required for each cell to progress through mitosis, 

measured from the start of nuclear envelope breakdown (NEB) to anaphase, was 

dramatically increased in the cells with reductions in LSF (Figure 4.16c).   

Counterintuitively, the lower concentrations of LSF siRNA resulted in longer times for 

mitotic progression.  

LBP1A knockdown alone resulted in only a subtle increase in mitotic time. Taken 

together with the cell viability and DNA profiling data (Figures 4.3 b and c; 4.5) this 

minor increase does not significantly impact either proper HCC cellular mitotic 

progression or cellular division. Further, no abnormal mitotic phenotypes were observed 

in the time-lapse studies of cells with LBP1A knockdown.  LBP1A siRNA (10 nM) 

added in combination with LSF siRNA (10 nM) diminished the effect on mitotic 

progression compared to 10 nM LSF siRNA alone (Figure 4.16c), which may relate to 

the lesser effect of 20 nM LBP1a siRNA alone.  

Upon examining the outcomes for individual cells treated with LSF siRNA as 

they progressed through mitosis, major defects were observed. Most striking was an 

extended delay in prometaphase and/or metaphase (representative images in Figure 4.16 

b, e and f).  On a cell-by-cell basis, this was often followed by aberrant cellular division 

(Figure 4.16 b, g-j).  Figure 4.16 e and f show the same cell delayed in 

prometaphase/metaphase with 4.16e exhibiting a prometaphase phenotype and 4.16 f 

exhibiting a metaphase phenotype.  Figure 4.16 g represents a cell arrested in 

prometaphase in which the DNA condensed into a near-apoptotic state, whereas Figure 
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4.16i and j display a cell that, following a prolonged prometaphase/metaphase arrest, 

divided in a multi-polar fashion without separating into two daughter cells. Quantitation 

indicated a significant increase in both the prometaphase/metaphase and aberrant cellular 

division phenotypes over a range of degrees of LSF knockdown (Figure 4.16d).  In 

addition, some cells remained in prometaphase-metaphase by the end of the analysis (e.g. 

Figure 4.16 g,h); thus it is not certain that these cells would exit mitosis at all.    

Asynchronous H2B YFP QGY-7703 cells were also treated with increasing 

concentrations of FQI1 and imaged by time-lapse microscopy.  Synchronization was not 

regarded as necessary in this case, as time-lapse imaging allowed the tracking of 

individual cells as they pass through mitosis and FQI1 addition to asynchronous cells was 

hypothesized to relatively rapidly interact with LSF following addition.  At the highest 

concentration (3.6 µM), representative images show cells that apparently arrested in 

prometaphase with no observable transitioning to metaphase throughout the 640 minutes 

of imaging (Figure 4.17c).  This was in stark contrast to control cells, which progressed 

through mitosis within the normal timespan (Figure 4.17a).  Cells treated with half the 

maximal concentration of FQI1 (1.8 µM) were delayed in prometaphase and/or 

metaphase, with cells subsequently progressing through defective cellular division 

(Figure 4.17b).  Upon quantitation, mitotic time (time from nuclear envelope breakdown 

(NEB) to anaphase) increased with increasing concentrations of FQI1 (Figure 4.17d).  

The time was indeterminable for cells treated with 3.6 µM of FQI1, as the cells never 

reached anaphase during the course of the experiment.  Overall, phenotypes were similar 

to those documented with LSF siRNA treatment (compare Figure 4.16e with Figure 
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4.17d). By following individual cells as they progressed through mitosis, it became 

apparent that cells delayed progression either in prometaphase (e.g. Figure 4.17f) or 

metaphase (e.g. Figure 4.17g), and subsequently exited mitosis aberrantly (Figure 4.17h, 

i). A recurring consequence was multi-nucleation upon mitotic exit (Figure 4.17i).   

Lastly, Figure 4.18 d and e are representative images where upon reduced LSF activity, 

regardless of the method utilized, appearance of cellular protrusions was evident.  As to 

whether loss of LSF directly leads to the membrane protrusions or whether this 

observation is secondary to the mitotic arrest is unknown. 

Discussion 

LSF, a ubiquitously expressed transcription factor, is an oncogene in human 

hepatocellular carcinoma (Santhekadur et al., 2012b; Yoo et al., 2010). Recent studies 

have shown that small molecule inhibitors directly targeting LSF inhibited HCC cell 

proliferation in vitro and tumor growth in vivo (Grant et al., 2012; Rajasekaran et al., 

2015).  These inhibitors, FQI1 and FQI2, both resulted in significant anti-tumor activity 

in an endogenous liver model with no signs of toxicity at the doses required for tumor 

inhibition (Grant et al., 2012; Rajasekaran et al., 2015).  Together, these data indicate that 

LSF is an exciting therapeutic candidate for HCC patients.  The recent reports used 

Factor Quinolinone Inhibitors as a tool to inhibit LSF activity showing robust anti-tumor 

activity, and were consistent with earlier observations of a dominant negative LSF 

reducing HCC tumorigenicity (Yoo et al., 2010).  However, although the data support 

specific targeting of the transcription factor LSF by FQIs, this result was surprising given 
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the generally encountered difficulties in targeting transcription factors with small 

molecules (Yan and Higgins, 2013).   

Here, the combinatorial use of small molecule inhibitors that eliminate LSF DNA 

binding with RNAi technology which specifically reduces LSF synthesis was utilized to 

confirm FQI1 specificity.  The data show that titrating LSF activity by either small 

inhibitors or LSF activity resulted in extensive mitotic defects prior to cell death.  These 

data provide definitive evidence both that the FQI1-induced mitotic defects previously 

published are not a secondary effect of FQI1, and that LSF regulates mitosis in 

hepatocellular carcinoma cells.  

Eliminating LSF activity inhibited HCC cellular division and resulted in the 

duplicated DNA remaining in one cell prior to cell death.  Analysis of cell cycle 

progression revealed a population of cells undergoing mitotic delay prior to cell death 

through apoptosis, as well as a population of senescent cells.  The mitotic delay, 

particularly in prometaphase or metaphase, was highlighted by time lapse microscopy, 

upon inhibition of LSF activity by the two independent approaches.  Mitotic time, 

measured as the amount of time from NEB to anaphase, was similarly boosted upon 

increasing either FQI1 or LSF siRNA concentrations.  Strikingly, the lower siRNA 

concentrations produced greater delays in mitotic progression than higher siRNA 

concentrations.  One interpretation of this result is that LSF targets multiple mitotic 

components, and higher levels of LSF inhibition may be required to solidify the 

mechanism of prometaphase arrest.   
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Presence of DNA damage as cells enter mitosis can result in mitotic delay 

(Ganem and Pellman, 2012).  However, this was ruled out by two types of controls. First, 

misregulation of thymidylate synthase was not the cause of the mitotic defects because 

supplementation of these cells with exogenous thymidine in order to circumvent a 

thymidylate synthase deficiency did not impact the phenotype (Grant et al., 2012).  

Second, staining for double stranded DNA breaks indicated that minimal, if any DNA 

damage occurred under these conditions prior to mitotic progression. 

Key phenotypes observed in the HCC cells with LSF depletion included: cellular 

senescence, prometaphase/metaphase arrest, cell division defects and multi-nucleation.  

To identify potentially relevant LSF targets, we assayed expression of key mitotic 

proteins that generate similar phenotypes when inhibited, showing that levels of both 

Aurora kinase B and CDC20 decrease when LSF is inhibited by either siRNA or small 

molecule inhibitors.  Notably, phenotypes previously documented for agents that inhibit 

Aurora Kinase B are consistent with all those described for LSF inhibition in Chapters 3 

and 4 (Kim et al., 2011; Le et al., 2013; Poon, 2013; Sistayanarain et al., 2006; Vader and 

Lens, 2008).  In addition, reduction of Cdc20 levels also results in increased mitotic times 

(Huang et al., 2009; Irniger, 2002). Cdc20 is required for proteolysis of key mitotic 

regulators, including securin, and is a prerequisite for the promotion of anaphase and 

mitotic exit.   

When Cdc20 is depleted with siRNA, cells remain in mitotic distress for lengthy periods, 

and die in mitosis (Huang et al., 2009; Irniger, 2002).  The increase in mitotic time with 

the reduced Cdc20 expression jive with a strategy that has been proposed as promising 
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for anti-tumor therapies (Gascoigne and Taylor, 2008, 2009; Kimura et al., 2013).  

Overall, that both Aurora Kinase B and Cdc20 are down regulated at the mRNA and 

protein levels when LSF is diminished begs the question as to whether LSF directly 

activates expression of these two target genes during G2.  This hypothesis is being 

actively pursued in the Hansen laboratory.         

The mitotic phenotypes prove that LSF is required for mitotic progression in HCC, and 

that Aurora Kinase B and Cdc20 expression are downstream from LSF.  The mechanism 

by which LSF regulates these targets remains to be determined.  However, ChIP-seq data 

generated in a non-HCC cell line revealed multiple LSF DNA binding sites in Aurora 

Kinase B regulatory regions (Gene Chin, unpublished results) raising direct regulation as 

a possibility.  In addition, separate analyses of clinical HCC samples have shown 

increased LSF (Fan et al., 2011a; Gu et al., 2015; Yoo et al., 2010) and Aurora Kinase B 

expression, albeit independently, that positively correlate with HCC disease severity.   

These observations are consistent with our data that LSF regulates Aurora Kinase B 

expression, albeit whether the interaction is direct or indirect remains to be proven.  The 

indirect hypothesis is that Aurora Kinase B and Cdc20 reductions are a secondary 

consequence of a mitotic defect initiated through another form of regulation, perhaps 

such as a non-transcriptional mechanism suggested from results in Chapter 3.  Whether 

the interaction is direct or indirect,  however, the observed phenotypes including cellular 

senescence, prometaphase/metaphase delay, aberrant cell division, multi-nucleation and 

cell death, are all consistent with Aurora Kinase B inhibition/knockdown (Andrews, 

2005; Ditchfield et al., 2003; Vader and Lens, 2008).    
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The mitotic phenotypes generated by either LSF knockdown or FQI1 treatment 

were similar in many respects, although not identical. With FQI1 treatment, cell division 

defects included a unique chromosome alignment (shaped like a boomerang) and the 

highest FQI1 concentration resulted in a complete prometaphase arrest.  In contrast, 

diminishment of LSF protein levels (even at siRNA concentrations as high as 20 nM) did 

not result in a complete arrest in mitosis, but instead mitotic slippage to aberrant cell 

divisions.  The differences in phenotypes may simply be due to LSF RNAi knockdown 

not completely ablating LSF, whereas high concentrations of the small molecule inhibitor 

may well inhibit LSF completely.  Alternatively, since FQI1 inactivates, but does not 

remove LSF from the cell, it may only inhibit some of LSF functions.   

Finally, FQIs also inhibit LSF paralogs, including the ubiquitously expressed 

LBP1a (Trevor Grant and Ulla Hansen, unpublished).  Therefore, to accurately 

recapitulate the FQI1 phenotype to confirm target specificity we perturbed LSF and 

LBP1a levels, both alone and in combination.  Our results, however, show that LBP1A 

has only limited impact indicating that LBP1A is likely not involved in producing the 

LSF-related mitotic phenotypes.  In fact, individual loss of LBP1A did not affect cellular 

division or induce death of the HCC cells.  The one noted consequence of LBP1A 

knockdown, however, was a small, but statistically significant, increase in the amount of 

time required to progress from NEB to anaphase.  This prolonged mitosis did simply not 

result in aberrant phenotypes or cell death.   

These findings support the notion that LSF is a strong clinical candidate to treat 

the afflicted hepatocellular carcinoma population, a patient population increasing globally 
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with a strong unmet medical need.  Aurora Kinase B inhibitors, initially clinical 

candidates with great promise, have dwindled in the clinic as off target effects and 

minimal efficacy have plagued the trials (Chan et al., 2012). Targeting LSF, an oncogenic 

transcription factor, could have greater impact on the HCC patient population.  FQIs were 

non-toxic in preclinical tumor models and this work now implicates LSF as being 

upstream of a major mitotic kinase, APC/C member, Cdc20, whose knockdown in tumor 

cells with induced mitotic delay, has been hypothesized to having an advantage in 

targeting and killing tumor cells (Huang et al., 2009).  Together, the interrogation of LSF 

by multiple means, including the two described here, has corroborated the clinical 

candidacy for this target, as well as revealing a previously unknown role in mitotic 

regulation.  Targeting an oncogenic transcription factor that is necessary for 

hepatocellular proliferation and survival could have a significant impact on a significant 

disease population.   
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Figures 

Illustration 4.1 FQI1 Treatment in Synchronized HCC Cells (Long Incubation) 

 

Illustration 4.2 siRNA Transfection in Synchronized HCC Cells-Double Thymidine 

Block 

 

Illustration 4.3 siRNA Transfection in Synchronized HCC Cells-Single Thymidine 

Block 
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Figure 4.1 Lipid transfection of siRNA in HCC cells results in efficient knockdown 

of LSF and LBP1A   

(a-d) QGY-7703 cells plated in 100 mm x 20 mm dishes were transfected using 

Invitrogen RNAimax with either 20 nM of control siRNA or TFCP2 targeting siRNA.  

The Control siRNA was tagged with Cy3 to follow cellular uptake.  Images were taken 

on a Zeiss microscope at a 40x magnification approximately 24 hours following lipid 

transfection. Cy3 channel images of Control siRNA-Cy3 transfected (a) or LSF siRNA 

transfected (c) cells, Phase contrast images of Control siRNA-Cy3 transfected (b) or LSF 

siRNA transfected (d) cells. Images in (a) and (c) were taken at the same length of 

exposure.  (e,f) Twenty-four candidate siRNAs targeting TFCP2, the gene encoding LSF, 

were identified.  Each siRNA was transfected using RNAimax into two different HCC 

cell lines - Hep3B (e) and QGY-7703 (f), at 20, 10, or 2 nM.  LSF RNA harvested at 24 

hours post transfection was quantified using a hybridization-based bDNA assay 

(Affymetrix).  LSF RNA levels were normalized to those of an internal control gene, 

GAPDH, and are depicted as percentages of LSF RNA levels in the control siRNA-

treated cells.  (g, h) Mad2 RNA harvested at 72 hours (g,h) and 96 hours (h) post 

transfection was quantified using the Taqman gene expression system.  Relative gene 

expression was determined by normalizing MAD2 RNA levels to those of an internal 

control, GAPDH.  Mad2 gene expression was not altered following treatment with the 

siRNA targeting LSF.  This finding was consistent across 2 independent experiments for 

the lead siRNA chosen.  (i) Eight candidate siRNAs designed to target LBP1A were 

transfected into QGY-7703 cells at 20 nM.  Expression at 72 hours post transfection of 

UBP1, the gene encoding LBP1A, was determined using a Taqman qPCR assay. LBP1A 
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RNA levels were normalized to those of GAPDH and are depicted as percentages of 

LPB1a RNA levels in the control siRNA-treated cells. (j) Relative MAD2 RNA levels 72 

hours post transfection in asynchronous QGY-7703 cells treated with control siRNA or 

the each of the 8 siRNAs targeting LBP1A. 
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Figure 4.2 Division of synchronized HCC cells is abrogated upon inhibition of LSF.  

siRNAs targeting LSF, LBP1A or a non-expressed target were transfected into to QGY-

7703 cells at 20 nM. (a-b) LSF and LBP1A mRNA levels were detected using a Taqman 

gene expression assay. Remaining (a) LSF RNA and (b) LBP1A RNA levels were 

measured at 24, 48, 72 and 96 hours post transfection.  Relative RNA levels, normalized 

to those of GAPDH, are depicted as percentages of the levels in the control siRNA-

treated cells. (c-e) Representative immunoblots of LSF and beta tubulin are shown for (c) 

lysates collected at 24, 48 hours post transfection during cell synchronization or (d) 

lysates collected following synchronization and release from the final G1/S block for 0, 4 

and 8 hours. (e) LBP1A protein expression measured 24, 48 and 72 hours post 

transfection.  α-Tubulin was used as a loading control.  Control siRNA was transfected at 

20 nM and analyzed 24 hours post transfection.  LBP1A siRNA was transfected at a 10 

nM concentration. (f) siRNAs targeting LSF or both LSF and LBP1A were transfected 

into QGY-7703 cells at 10 or 20 nM.  Cells were synchronized using a double thymidine 

block as depicted in Illustration 4.2 and counted at 0 or 16 hours following release from 

the G1/S block. (f-g) QGY-7703 cells were synchronized using Illustration 4.1 or 4.2. 

The total cell number had increased 1.5-fold in comparison to the total cell number 

measured at 0 hours.  The control cells may contain less than 2-fold the number of cells at 

0 hours due to cell loss during washing of the cells upon change of media for release 

from the G1/S block.  However, such loss would have been consistent across all 

populations.  (f) Cells treated with siRNAs targeting either control, LSF, LBP1a, or LSF 

and LBP1a in combination.  (g) Cells were treated with vehicle control, 0.9, 1.8 or 3.6 



 
 

126 

µM FQI1 and counted at 0 and 16 hours following a release from a G1/S block. Standard 

deviation represented of 3 biological experiments. (h-k) Synchronized QGY 7703 cells 

were transfected with 20 nM Control siRNA (h) or 20 nM LSF siRNA (i) or treated with 

1.8 µM FQI1 (j) or vehicle (k).  Phase contrast images were taken at 96 hours post release 

from the G1/S block at a magnification of 20x.   
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Figure 4.3    LSF knockdown and FQI1 treatment in HCC cells results in reduced 

cell number and induction of caspase activity 

(a-b) Asynchronous QGY-7703 cells were (a) transfected with siRNA targeting either 

LSF or a control, or (b) treated with 3.6 µM of FQI1 or vehicle.  The cells were analyzed 

at 24, 48, 72, 96, and 120 hours post treatment for cell viability/number by Trypan blue 

staining.  Fifty individual fields were quantitated for the number of trypan blue positive 

cells; which is depicted as a percentage of the cell count for those 50 fields.  Data 

represent 3 independent experiments.   (c) Viability, as determined by cell permeability 

(Trypan Blue), of asynchronous QGY 7703 cells treated with 20 nM of control siRNA or 

siRNAs targeting either LSF or LBP1A.  Data were generated 120 hours post transfection 

and include 3 independent experiments.  (d) QGY-7703 cells were transfected with 

control siRNA targeting either LSF or a control, or treated with 3.6 µM of FQI1 or 

vehicle.  The cells were synchronized at the G1/S border and released. Cells were 

analyzed 48 hours after release for cell viability using cell titer blue (Promega).  Standard 

error bars were derived from 3 independent experiments. (e) Synchronized QGY-7703 

cells were analyzed for caspase activation at 8 and 48 hours post release in presence of 20 

nM of LSF or 3.6 µM of FQI1.  Compiled data from all three time points depicted as 

percent of the vehicle control.  Standard deviation derived from two independent 

experiments.  Statistical significance was determined using a Student T Test; * P<0.05, ** 

P<0.01, *** P<0.001, **** P<0.0001 
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Figure 4.4   Synchronization of HCC cells after LSF knockdown reveals two distinct 

phenotypes: a static 2n DNA population and a population progressing from 2n to 4n 

DNA content transitioning to a subG1 population. 

QGY-7703 cells were synchronized at the G1/S border post transfection with 20 nM 

control siRNA or 5, 10, or 20 nM LSF siRNA (Illustration 4.2). At 0, 3.5, 8 and 18 hours 

after release from the block, cells were fixed and stained with propidium iodide for 

analysis of DNA content by flow cytometry.  Data are representative of greater than 4 

experiments.    
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Figure 4.5    Synchronization of HCC cells after LBP1A knockdown does not impact 

cell cycle progression. 

QGY-7703 cells were synchronized at the G1/S border 24 hours post transfection with 

LBP1A or control siRNA at 20 nM (Illustration 4.2). At 0, 4, and 8 hours post release, 

cells were fixed and stained with propidium iodide for analysis of DNA content by flow 

cytometry.  (a) Untreated cells were synchronized and analyzed at 0 hours. Synchronized 

HCC cells transfected with (b) control siRNA or (c) siRNA targeting LBPA1a.  Data are 

representative of 3 independent experiments. 
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Figure 4.6 Synchronized HCC cells treated with FQI1 reveal a G1/S population, and 

accumulation at 4n 

FQI1-treated QGY-7703 cells were synchronized at the G1/S border using a double 

thymidine block (Illustration 4.1). Cells were incubated with 0.9, 1.8, or 3.6 µM of FQI1 

or vehicle.  At 0, 4.5, 5.5, 8.5, and 16 hours post release from the G1/S block, cells were 

fixed and stained with propidium iodide for analysis of DNA content by flow cytometry.  

These data are representative of at least 3 independent experiments.  
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Figure 4.7 LSF removal or inhibition in synchronized HCC cells results in cellular 

senescence  

FQI1-treated QGY-7703 cells were synchronized at the G1/S border using a double 

thymidine block. Cells were incubated with 0.9, 1.8, or 3.6 µM of FQI1 or vehicle 

(Illustration 4.1), or with Control or LSF siRNA (Illustration 4.2), and then fixed and 

stained for β-galactosidase activity at 8 h after release from the G1/S block. Phase 

contrast images were taken at 20x magnification.  Representative images are shown for 

cells treated with (a) 20 nM Control siRNA, (b) 20 nM LSF siRNA, (c) Vehicle (DMSO) 

or (d, e and f) 0.9, 1.8, and 3.6 µM of FQI1, respectively.  Images in (a-f) are 

representative of 3 independent experiments. (g-j) Representative images are shown from 

three independent experiments evaluating LSF siRNA at dose levels including 5, 10, and 

20 nM in comparison to control siRNA at 20 nM.  (k,l) The correlation of increasing 

FQI1 concentrations or increasing siRNA concentrations with the number β-galactosidase 

positive cells is depicted as a percentage of the control for each individual experiment.  

75 cells were analyzed per condition.  Statistical significance was determined using a 

Student T Test; * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001 
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Figure 4.8 γ-H2AX levels remain minimal prior to mitosis in synchronized QGY-

7703 cells treated with either LSF knockdown or FQI1 treatment. 

(a) QGY-7703 cells were treated with LSF siRNA or control siRNA at 20 nM and 

synchronized with a single thymidine block, as indicated in Illustration 4.3. Cells were 

collected at 4 and 16 hours post release from the G1/S block, fixed, and probed with an 

anti γ-H2AX antibody directly conjugated Alexa 488 to measure double stranded DNA 

breaks. In addition, the cellular DNA was stained with propidium iodide.  Data were 

analyzed by flow cytometry.  (b) QGY-7703 cells were synchronized with a single 

thymidine block at the G1/S border following incubation with 1.8 µM FQI1 or vehicle 

and then released.  γ-H2AX staining in FQI1 treated cells versus vehicle was analyzed as 

in (a) at 4 and 16 hours post release from the G1/S block.  The percentage of cells in the 

indicated gate is shown in each panel at the top.  (c,d) Cells treated as in (a) and (b), 

respectively, were stained with anti-γ-H2AX antibody but analyzed by 

immunofluorescence at 63x magnification 8 hours post release from a G1/S block.  All 

images were taken at the same exposure.  Representative images are displayed in (c) for 

control siRNA (left) and LSF siRNA (right), and an ultra-violet treated control (bottom 

left) and in (d) for vehicle (left) and 1.8 µM FQI1 treated cells (right). (e) Asynchronous 

QGY-7703 cells treated with LSF siRNA or control were collected at 24 and 48 hours 

post treatment and stained for anti-γ-H2AX.  (f) Asynchronous cells treated with 0.9, 1.8 

or 3.6 μM of FQI1 were collected at 24 and 48 hours post treatment and stained for anti-

γ-H2AX.  Representative images are shown for each time point.  
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Figure 4.9 Immunofluorescent analysis of synchronized HCC cells with LSF 

knockdown or FQI1 treatment reveal multi-nucleation and cell division defects 

(a,b) QGY 7703 cells were synchronized at the G1/S border following transfection with 

LSF or control siRNA at 20 nM, and then released to progress through the cell cycle, as 

depicted in the schematic at the top.  Cells were fixed and probed with an anti-LSF (red) 

and anti-alpha tubulin (green) antibody and stained with DAPI (blue) at multiple time 

points to analyze mitotic figures.  Images were analyzed at 16 hours post release at 63x 

magnification. 89-102 individual cells were analyzed within each group.  (a) 

Representative images 16 hours post release revealing cells still in 

prometaphase/metaphase, aberrant cell division and multi-nucleation in cells with LSF 

knockdown as well as examples of normal mitotic figures in the control siRNA group 

including metaphase and telophase at earlier time points. (b) Quantitation of mitotic cells 

as well as observations of apoptosis determined by fragmented nuclei and multi-

nucleation. 100 individual cells were analyzed within each group at 16 hours post release.  

(c,d) QGY 7703 cells were synchronized at the G1/S border following incubation with 

vehicle control or FQI1 at concentrations of 1.8 or 3.6 µM and then released (Illustration 

4.1).  QGY 7703 cells were fixed and probed with an anti-LSF antibody, anti-α-tubulin 

antibody and then stained with DAPI to analyze mitotic figures.  Images were analyzed at 

16 hours post release at 63x magnification. 100 individual cells were analyzed within 

each group.  (c) Representative images 16 hours post release revealing signs of aberrant 

cytokinesis, and multi-nucleation in the FQI1 treated cells.  (d) Quantitation of cellular 

phenotypes.  98-107 individual cells were analyzed within each group.   
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Figure 4.10 Immunofluorescent analysis of FQI1 and siRNA treated HCC cells 

reveals prometaphase/metaphase arrest 

Synchronized HCC cells were treated with either 20 nM of LSF siRNA or 1.8 μM FQI1.  

Cells were collected 8 hours post release from the final G1/S block and stained for α-

tubulin and DNA. DNA is shown in FQI1 treated or LSF siRNA treated cells on bottom 

(b,d), Alpha-Tubulin staining shown on top (a,c). Representative images of a 

prometaphase-metaphase delay are shown. 
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Figure 4.11 Immunofluorescent analysis of FQI1 and siRNA treated HCC cells 

reveal aberrant cell division 

Synchronized HCC cells were treated with either 20 nM of LSF siRNA or 1.8 μM of 

FQI1.  Cells were harvested 16 hours post release and stained for α-tubulin and DNA. 

DNA is shown in FQI1 treated or LSF siRNA treated cells on the right (b,d,f), α--tubulin 

staining is shown on the left (a,c,e). Representative images of cells exhibiting an aberrant 

cell division are shown. 
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Figure 4.12 Immunofluorescent analysis of FQI1 and siRNA treated HCC cells 

reveals multinucleated cells 

Synchronized HCC cells were treated with either 20 nM of LSF siRNA or 1.8 μM of 

FQI1.  Cells were harvested 16 hours post release and stained for α-tubulin and DNA. 

DNA is shown in FQI1 treated or LSF siRNA treated cells on bottom (b,d), alpha-tubulin 

staining shown on top (a,c). Representative images of multinucleated cells are shown. 
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Figure 4.13 Protein expression of Aurora Kinase B, Cdc20, and Cyclin B is 

decreased in synchronized HCC cells upon reduction of LSF protein levels 

QGY-7703 cells transfected with siRNA were synchronized and harvested 8 hours post 

release from a G1/S block. Cell lysates were probed for a variety of proteins involved in 

mitosis. (a) Immunoblot images of lysates collected 9 hours post release from a G1/S 

block for LSF, Cyclin A, Cyclin B, Cdc20, Aurora Kinase B, pH3 Ser10, and pH3 Ser28.  

Beta actin levels were used to control for differential loading. Quantitation of the levels 

of (b) Aurora Kinase B and (c) Cdc20 normalized to beta actin levels.  Data are 

representative from 3 independent studies.  Statistical significance was determined using 

a Student T Test; * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001 
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Figure 4.14 Protein expression of Aurora Kinase B, Cdc20, and Cyclin B are 

significantly reduced in synchronized HCC cells treated with FQI1 

FQI1 treated QGY 7703 cells were synchronized at the G1/S border using a double 

thymidine block. Cells were incubated with 0.9, 1.8, or 3.6 µM of FQI1 or vehicle 

control.  Lysates were probed for proteins of interest. (a)  Western blot images for lysates 

collected 9 hours post release from a G1/S block for LSF, Cyclin A, Cyclin B, Cdc20, 

Aurora Kinase B, and pH3 S10.  Beta actin levels were used to control for differential 

loading.  Quantitation of the levels of (b) Cdc20 and (c) Cyclin B, (d) Aurora B Kinase, 

(e) Phosphorylated Histone 3 Serine 10 normalized to Beta Actin levels.  Data are 

representative of 2-4 independent experiments.  Standard error calculated where data 

were averaged from 3 independent studies.  Statistical significance was determined using 

a Student T Test; * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001 
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Figure 4.15 Aurora Kinase B and Cdc20 gene expression is reduced in HCC cells 

upon inactivating LSF with either LSF siRNA or FQI1 

(a-d) QGY-7703 cells transfected with siRNA were synchronized and released as 

indicated in Illustration 4.2. Cells were harvested between 0 and 8 hours post release 

from a G1/S block. RNA was isolated for gene expression analysis by qPCR using 

Taqman probes. The relative levels of gene expression were determined by normalizing 

RNA levels to those of GAPDH as an internal control.  (a) Aurora Kinase B gene 

expression measured at 0, 4, and 8 hours post release from a G1/S block.  Standard error 

is based on 4 biological replicates for the 8 hour time point.  (b) Aurora Kinase B 

expression normalized to siRNA control 8 hours post release from a G1/S block 

following treatment with 5, 10, 20 nM of LSF siRNA, 10 nM LBP1A or 10 nM of both 

LSF and LBP1A siRNA.  (c) Cdc20 gene expression was determined on samples treated 

with the various siRNAs alone or in combination 0, 4, 6 and 8 hours post release from the 

G1/S block.  Standard error is based 4 biological replicates for the 8 hour time point (d) 

Cdc20 expression determined on samples treated with siRNA targeting a control, LSF, 

LBP1A or a combination at 8 hours post release from a G1/S block. Concentrations were 

20 nM for the control siRNA, 5, 10, or 20 nM for LSF siRNA, or a combination of with 

10 nM of LBP1A siRNA and 10 nM of LSF siRNA.  Standard error is based on 2 

biological experiments for the 0 and 4 hour time points, and 4 biological experiments for 

the 8 hour analysis.  (e-g) FQI1-treated QGY-7703 cells were synchronized at the G1/S 

border using a double thymidine block, according to Illustration 4.1. Cells were incubated 

with either 1.8 µM of FQI1 or vehicle starting at the release from the first G1/S block and 

maintained throughout the remainder of the time course. Samples were harvested at 0, 4, 
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and 8 hours post release from the final G1/S block and RNA for gene expression was 

analyzed by qPCR using Taqman probes. Relative levels of gene expression were 

determined by normalizing RNA levels to those of GAPDH as an internal control. RNA 

levels are depicted for (e) LSF, (f) Aurora Kinase B (g) Cdc20 following incubation with 

either 1.8 µM FQI1 or vehicle.  Standard error of the mean was derived from 4 

independent experiments.  Gene expression for Cyclin A (h,i) or Cyclin B (j,k) was 

determined at 8 hours post release from the G1/S block for samples treated either with 

0.9, 1.8 or 3.6 µM FQI1 vs vehicle control (h,j), or with 20 nM control siRNA or 20 nM 

LSF siRNA (i,k).    SEM derive from 2 independent experiments.  Statistical significance 

was determined using a Student T Test; * P<0.05, ** P<0.01, *** P<0.001, **** 

P<0.0001 
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Figure 4.16 LSF knockdowns in synchronized HCC cells results in increased mitotic 

time with prometaphase/metaphase delay and cell division defects 

Synchronized QGY-7703 cells expressing YFP-labeled H2B were analyzed utilizing time 

lapse microscopy.  Cells were transfected with 20 nM of either control siRNA, or siRNA 

targeting LSF, LBP1A, or LSF and LBP1A in combination. Cells were treated with a 

single thymidine block and released prior to imaging (Illustration 4.3). (a-b) 

Representative images of cells treated with control siRNA (a) or with LSF siRNA (b) are 

pictured. Numbers represent minutes from nuclear envelope breakdown.  (c) Quantitation 

of mitotic time determined on 100 cells following nuclear envelope breakdown treated 

with control siRNA or siRNAs targeting LSF or LBP1A separately or in combination.  

Standard error is depicted based on the number of cells analyzed in a single experiment. 

(d) Quantitation of cellular events including numbers of cells entering mitosis, exhibiting 

delay in prometaphase/metaphase, and defects in cell division at the indicated 

concentrations of transfected LSF siRNA.  The controls had neither of the indicated 

defects among the cells counted.  Approximately 120-140 cells were analyzed per 

condition. Statistical significance was determined using a Student T Test; * P<0.05, ** 

P<0.01, *** P<0.001, **** P<0.0001. (e-i) Representative images of individual cells to 

demonstrate mitotic phenotypes in cells transfected with 5 nM LSF siRNA: (e-f) 

prometaphase/metaphase delay, (g-h) cells that never divided within the time course (16 

hours) of the experiment, and (i-j) cells undergoing aberrant cell division.  
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Figure 4.17    FQI1 treatment of HCC cells causes a dose dependent increase in 

mitotic time, prometaphase/metaphase delay and cell division defects  

Asynchronous QGY-7703 cells expressing YFP-labeled H2B were analyzed utilizing 

time lapse microscopy after treatment with increasing concentrations of FQI1.  

Representative images of cells treated with (a) vehicle, (b) 1.8 µM FQI1 or (c) 3.6 µM 

FQI1.  Numbers represent minutes from nuclear envelope breakdown.  (d) Quantitation 

of mitotic time determined on 101 cells following nuclear envelope breakdown treated 

with 0.9 µM or 1.8 µM FQI1 or vehicle.  Standard error is depicted based on the number 

of cells analyzed in a single experiment. Cells treated with 3.6 µM were not included as 

those entering mitosis did not reach anaphase during the overnight imaging period.  (e) 

Quantitation of cellular events including number of cells entering mitosis, delayed in 

prometaphase/metaphase, and exhibiting cell division defects.  120-140 events were 

analyzed per condition. Statistical significance was determined using a Student T Test; * 

P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001. (f-i) Representative images of 

prometaphase/metaphase delay and cell division defects, taken of cells treated with 1.8 

µM FQI1.  (f-g) Cells delayed in prometaphase/metaphase; (h-i) cells undergoing 

aberrant cellular division are the same as those in (f-g), although at later times. 
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Figure 4.18 HCC cells delayed in prometaphase/metaphase upon LSF inhibition or 

knockdown often exhibit cellular protrusions  

(a,b) Asynchronous HCC cells expressing mEmerald labeled α-tubulin were analyzed 

phenotypically utilizing time lapse microscopy following treatment with 3.6µM of FQI1 

or vehicle.  Representative images of QGY-7703 cells labeled with mEmerald α-tubulin 

treated with vehicle control (a) or 1.8 µM FQI1 (b) or (c) 3.6 µM FQI1.  The numbers 

represent the time in minutes from nuclear envelope breakdown.  (d) Synchronized HCC 

cells were treated with either 20 nM of LSF siRNA (Illustration 4.3) or 1.8 μM of FQI1 

(Illustration 4.1).  Cells were collected 8 hours after release from the final G1/S block and 

fixed for IF analysis with an anti-α-tubulin antibody and stained with DAPI.  Anti-α-

tubulin staining is shown in vehicle control (d), FQI1-treated (e), or LSF siRNA-treated 

(f) cells.  Arrows indicate the cytoskeletal protrusions.  siRNA control images were 

identical to those in vehicle control (d) (data not shown). 
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CHAPTER FIVE  

LSF inhibition by FQI1 does not impact primary mouse hepatocytes ex vivo nor 

does FQI1 or FQI2 treatment in wild type mice reduce circulating rapidly dividing 

cell populations.   

Introduction 

Current treatments for those afflicted with Hepatocellular carcinoma (HCC) are 

subpar with the majority of patients qualifying for only palliative treatments (Bruix and 

Sherman, 2011; Farazi and DePinho, 2006; Torrecilla and Llovet, 2015).  A minority of 

patients do qualify for invasive therapies including surgical resection or a liver transplant.  

Currently, Sorafenib, a tyrosine kinase and Raf inhibitor initially approved for renal cell 

carcinoma, is the only approved molecular therapy for HCC.  Sorafenib has been shown 

to be efficacious in a subset of HCC patients where 71 patients had stable disease versus 

67 in the placebo control, with only 2 patients showing complete response to 1 observed 

in the control group (Llovet et al., 2008).  Further, the improvement in survival rates was 

subpar leaving the afflicted population with a significant unmet need (Llovet et al., 2008).  

Following the improvement observed with Sorafenib, a large number of molecularly 

targeted therapies were tested in clinical trials (Torrecilla and Llovet, 2015; Villanueva 

and Llovet, 2011).  These drugs include both new agents and agents that have proven 

effective in other types of cancer, including inhibitors of angiogenesis, oncogenic 

signaling pathways, and histone deacetylases (Torrecilla and Llovet, 2015; Villanueva 

and Llovet, 2011).  
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Chemotherapeutics have long been a mainstay of therapy for a broad range of cancer 

types.  The majority of chemotherapeutics demonstrate a robust ability to kill rapidly 

dividing cancer cells, however they also target rapidly dividing non- tumor cell 

populations. These normal cell populations include epithelial cells in both the intestine 

and hair follicles, resulting in two or the more notorious side effects experienced by 

cancer patients (diarrhea and hair loss). Approaches to specifically target cancer cells are 

ongoing with efforts to identify cancer specific receptors or to eliminate the uptake by 

non-carcinogenic cells of cancer therapeutics.  Once a cancer cell population is 

successfully targeted by a drug, regardless of whether it targets one or multiple proteins, 

that tumor cell population could potentially escape rendering the therapy ineffective  

(Bergmann-Leitner et al., 2003; Khong and Restifo, 2002).  Targeting of an oncogenic 

transcription factor would be advantageous as it might be possible with this approach to 

target an entire oncogenic pathway.   

In the last decade, certain molecular targets were identified and hypothesized to be 

cases of oncogene addiction (Pagliarini et al., 2015; Weinstein and Joe, 2008; Weinstein 

and Joe, 2006).  These cases involve the dependence of oncogenic cell proliferation and 

survival on a single target or pathway, which once removed, completely incapacitated the 

tumor cell, inducing cell death. Most importantly, the removal of this protein or pathway 

did not impact the healthy, non-tumor cell populations (Weinstein and Joe, 2008).  The 

concept of therapies targeting an oncogene to which cells have become addicted has been 

tested in clinical trials, however, the results have been mixed with some therapies having 

a positive effect and others having no effect at all (Torti and Trusolino, 2011). The lack 
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of translation in those patients could potentially be due to heterogeneity in the molecular 

signature.  None of these therapies however have targeted transcription factors or whole 

pathways.  The inhibition of an oncogenic transcription factor to which HCC tumor cells 

are addicted is a new approach that could provide a promising therapeutic option HCC, a 

disease with very high unmet medical need. 

 

We have shown that small molecular inhibitors of LSF, FQI1 and FQI2, inhibit 

human hepatocellular tumor growth in a subcutaneous xenograft mouse model (Grant et 

al., 2012).  Animals receiving efficacious doses of FQI1 or FQI2 (that substantially 

reduced tumor growth), resulted in no detectable elevations in markers of liver toxicity.  

Specifically, there were no elevations in alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), or albumin (ALB) following total doses of 10 or 20 mg/kg over 

a 1-week period. Furthermore, histopathological analysis of various tissues, including 

those with rapidly dividing cell populations (such as the epithelial lining of the small 

intestine) did not reveal any observable toxicity one week following treatments (Grant et 

al., 2012).  More recently, FQI1 and FQI2 administration to an endogenous liver cancer 

mouse model also resulted in significant tumor inhibition (Rajasekaran et al., 2015).  In 

that study, there were no gross signs of toxicity in mice dosed with either compound 

using a 4 mg/kg dose for each of the five dosing treatments.  The significant inhibition of 

tumors in vivo combined with the lack of toxicity observed in non-tumor cell populations 

led to a proposal of oncogene addiction (Grant et al., 2012; Shlomai, 2012).  
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As discussed above, a case of oncogene addiction would indicate that LSF is not 

absolutely required for cell survival in non-tumorigenic cells and therefore that LSF 

inhibition would not impact the healthy cell populations.  FQI inhibition of LSF would 

result in a significant advantage in the hepatocellular carcinoma (HCC) patient 

population compared to the currently approved therapeutics that not only target the 

rapidly dividing cancer cell, but could negatively impact rapidly dividing non tumor cells 

in the body. Sorafenib for instance causes lymphopenia, neutropenia, and 

thrombocytopenia as well as diarrhea, nausea, hand-foot skin reaction and fatigue, all 

hallmarks of chemotherapeutics that impact normal cells (Bruix and Sherman, 2011). 

 

In Chapters 3 and 4, I demonstrated that inhibition by FQI1 and FQI2 in 

hepatocellular carcinoma cells resulted in reduced cell viability following significant 

mitotic defects.   Here, I show that FQI1 treatment of primary mouse hepatocytes ex vivo 

did not result in any observable toxicity.  Additionally, I show that intraperitoneal dosing 

of FQI1 or FQI2 administered at dose levels 2 to 4 times those required to inhibit tumor 

growth (Grant et al., 2012; Rajasekaran et al., 2015), did not result in reduction in non-

tumor cell populations analyzed at a time point where toxicity is typically observed (Scott 

Barros-Alnylam Pharmaceutical Toxicology Expert, Personal comm.). 

 

Results 

LSF inhibition is without consequence in primary mouse hepatocytes 
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To determine whether LSF inhibition would result in cell death in normal, non-

carcinogenic and non-dividing hepatocytes, mouse hepatocytes were isolated from 

C57BL6 mice using a rapid two step isolation method and plated for maintenance in 

culture (Chapter 2). The protocol generated a pure population of hepatocytes (Severgnini 

et al., 2012).  Following confirmation of a successful isolation, with the adherent cells 

showing expected cellular morphology (Figures 5.1a and c), cells were incubated with 5 

µM of FQI1 or vehicle.  Cells were collected 24, 48, or 72 hours after FQI1 treatment, 

and stained with both DAPI and Phalloidin allowing visualization of DNA and actin 

filaments to evaluate cellular morphology.  Representative images of vehicle-treated cells 

(top) and 5 µM FQI1-treated cells (bottom) are comparable in cell morphology with no 

discernible differences (Figure 5.1b).  In a separate study a distinct batch of primary 

mouse hepatocytes were treated with vehicle or 5 µM FQI1 for 48 hours, and then stained 

with hematoxylin and eosin.  Representative images (Figure 5.1d) of the vehicle control 

(top) and FQI1 treated cells (bottom) confirm the initial observations that there are no 

discernible differences between the treated or control cells.  

 

FQI1 or FQI2 treatment in mice does not result in weight loss, elevation of liver enzyme 

levels or reduction in circulating whole blood cell populations.     

 

LSF inhibition results in mitotic defects followed by cell death in rapidly dividing 

HCC cells (Chapters 3 and 4); however, in tumor bearing animals dosed with FQI1 or 

FQI2 there was no elevation in liver enzyme levels or cytotoxicity of tissues analyzed by 
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H&E staining (Grant et al., 2012).  This result was surprising given the small inhibitors 

generally have exposure to tissues (including those with dividing cells) outside of HCC 

tumor cells.  It is also unusual for a chemotherapeutic that targets dividing tumor cells to 

have no impact on normal and dividing cell populations. Therefore, I asked whether FQI1 

or FQI2 in vivo is toxic to the rapidly dividing cell populations (assayed via FACS) or 

normal liver cells (assayed by measuring liver enzyme elevations) in peripheral blood. 

Furthermore, I specifically tested early timepoints (24 hours after the final compound 

dose), as previous studies had tested later timepoints at which it was theoretically 

possible that compound effects were missed due to are resolution of any defects.  

Animals were treated with 2 to 4 times the therapeutic dose levels (Grant et al., 2012; 

Rajasekaran et al., 2015) reported to treat HCC xenograft animals or the mice with 

endogenous liver cancer.  Specifically, C57BL/6 male mice were dosed intraperitoneally 

(i.p.) with 8 mg/kg of compound, vehicle or saline daily for five consecutive days with 

four animals per group.  Male mice were used as in the previous studies, because HCC 

occurs with higher frequency in males, both in mice and humans. Body weights were 

recorded prior to the treatment regimen and at end of the study.  No significant difference 

in weight was observed when comparing mice before and after FQI1 or FQI2 exposure, 

in comparison to controls (Figure 5.2). 

Serum was collected 24 hours after the final dose (Table 5.1).  Albumin levels 

were unchanged in treated versus the controls indicating that liver protein levels were not 

elevated significantly in treated animals.  There was no statistical difference between the 

FQI treated animals and the vehicle control group as measured by the Student T Test.  As 
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another measurement of whether any of the liver protein levels in the blood were 

abnormal, the data were compared to the reference standards generated for C57BL/6 

males. The values in all groups were comparable to or lower than those observed in non-

treated C57BL6 males at a similar age range (http://www.criver.com/products-

services/basic-research/find-a-model/c57bl-6n-mouse).  These data confirm that there is 

no liver toxicity.   

Whole blood was also analyzed from each animal 24 hours after the final dose of 

controls or compound, in order to assay for alterations in rapidly dividing blood cell 

populations.  All whole blood cell populations following both FQI1 and FQI2 treatments 

were similar overall as comparable to those of the vehicle control (Table 5.2).  Further, 

the data were comparable to the reference standards generated for C57BL/6 males 

(http://www.criver.com/products-services/basic-research/find-a-model/c57bl-6n-mouse), 

indicating that this dosing regimen did not result in any statistically significant abnormal 

findings.   

 

Discussion 

The robust inhibition of HCC tumor growth in vivo with either FQI1 or FQI2, 

combined with the apparent lack of toxicity from previous studies, suggested that the 

tumor cells could be addicted to LSF.  To properly investigate whether FQI1 or FQI2 

would harm non-tumor cells, the compounds were analyzed in mouse primary 

hepatocytes ex vivo and in untreated C57BL/6 mice in vivo.   
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Evaluation of the cellular morphology of primary mouse hepatocytes ex vivo with 

FQI1 revealed no obvious signs of toxicity consistent with previous observations.  

Specifically, liver enzymes were not elevated and histopathological analysis was 

unremarkable in vivo with subcutaneous xenograft models (Grant et al., 2012).  The lack 

of toxicity of FQI1 on mouse hepatocytes in vivo is promising given that FQI1 and FQI2 

caused cell death of hepatocellular carcinoma cells.  One obvious difference between 

HCC cells and primary isolated hepatocytes, however, is that the isolated mouse 

hepatocytes are not capable of cell division.  Previous studies have documented roles for 

LSF during cell cycle progression, both at the G1/S transition and in mitosis (Chapter 3 

and 4)(Powell et al., 2000).  Thus, one interpretation would be that LSF activity is only 

critical for dividing cells. Nonetheless, it is promising that LSF inhibition does not impact 

non-dividing primary hepatocytes but could potentially benefit HCC patients as the 

rapidly dividing tumor cells are LSF dependent.  A therapy that does not impact normal 

hepatocytes in HCC patients is important as their liver function is already compromised, 

often by non-tumor disease such as cirrhosis, and keeping whatever normal hepatocytes 

they have left is key to both the toxic profile of the therapy but also the ability of the liver 

to possibly regenerate.  One area for further investigation is to determine what role (if 

any) LSF or its family members play in liver regeneration.  

The in vivo examination of the impact of FQI1 and FQI2, at 2-4 times 

therapeutically relevant dose levels, on various mouse cell populations (Figures 5.2 and 

Tables 5.1 and 5.2) are consistent with previous reports with no loss of body weight or 

significant elevation of key liver injury markers.  Here, I evaluated the cell populations 
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24 hours after the final dose levels eliminating the possibility that the liver could recover 

at late time points. Further, for the first time I show that FQI1 and FQI2 doses in vivo do 

not significantly impact various hematopoietic cells populations (summarized in 

Illustration 5.1). Whether FQI1 or FQI2 do not impact these populations because LSF is 

not required in these cells types or because insufficient drug levels have permeated these 

cells populations to result in impairment cannot be determined from these studies.  

However, these data are consistent with the proposed model of LSF in HCC being a case 

of oncogene addiction.     
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Illustration 5.1 

 

In summary, these data support the notion that the LSF requirement in HCC cells 

is a case of oncogene addiction.  LSF inhibition via treatment with FQI1 and 2 

specifically inhibits HCC tumor growth without compromising normal hepatocytes or 

other rapidly dividing cell populations such as blood cells in mouse models (as assayed at 

early or later time points).  Consistent with the tumor model data in vivo, isolated 

primary hepatocytes also appear to be unaffected by treatment with LSF inhibitors.  
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Taken together the data support further investigation of LSF as a target for the treatment 

of HCC and the FQI family of compounds in particular.  
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Figures 

Figure 5.1. LSF inhibition by FQI1 is without consequence in primary mouse 

hepatocytes 

Primary mouse hepatocytes were isolated from wild type C57BL6 mice acquired from 

Charles River Laboratories.  Hepatocytes were isolated, plated, and treated with 5 µM 

FQI1 or vehicle.  Cells were analyzed for morphology 24, 48, and 72 hours post 

incubation with FQI1 treatment.  Representative images above were taken following 

fluorescent staining with DAPI and Phalloidin (a,b) or following fixation and staining 

with Hematoxylin and Eosin (H&E) (c,d).  Images were gathered using a Zeiss 

axioimager at 63x magnification. (a) Representative image of the cells 4 hours post 

plating.   (b) Representative images of cells collected and fixed at approximately 24, 48 

or 72 hours post incubation with vehicle (top) or with 5 µM FQI1 (bottom).  H&E stained 

isolated primary mouse hepatocytes with successful plating 4 hours post isolation (c) or 

treated with (d) vehicle control (top) and with 5 µM FQI1 (bottom) for 48 hours.    
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Figure 5.2. Mice retain expected body weight upon treatment with FQI1 or FQI2 at 

doses that exceed efficacious levels 

C57BL/6 male mice were dosed intraperitoneally (i.p.) daily for 5 consecutive days at 8 

mg/kg of FQI1 or FQI2, or vehicle (DMSO), or physiological saline.  Body weights were 

taken prior to the first dose and 24 hours following the final dose.   n=5 per group.  

Standard error of the mean is depicted.  These data are representative of two independent 

experiments.   
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Table 5.1. Mice treated with higher than efficacious levels of FQI1 or FQI2 have 

comparable liver function readouts in comparison to controls, assayed shortly after 

dosing.   

These data are representative of two independent experiments in which n=4 per group. 

The reference intervals (last row) were generated by Charles River Laboratories 

(http://www.criver.com/products-services/basic-research/find-a-model/c57bl-6n-mouse) 

on at least 123 C57BL6 male mice at 8-10 weeks of age using a Drew Scientific 

HemaVet analyzer. 

 

 

 

 

 

 

  

http://www.criver.com/products-services/basic-research/find-a-model/c57bl-6n-mouse
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Table 5.2. Higher than efficacious treatments with FQI1 or FQI2 in C57BL6 male 

mice do not alter blood cell distributions or levels in comparison to levels in 

controls. .   

Data are representative of two independent experiments in which n=4 per group. 

Abbreviations include: Red blood cells (RBC), Hemoglobin (HGB), Hematocrit  (HCT), 

Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin (MCH), Mean 

Corpuscular Hemoglobin Concentration (MCHC), Platelets (PLT), White Blood Cells 

(WBC), Neutrophil  (NEUT), Neutrophil count (NEUT ABS), Lymphocyte  (LYM), 

Lymphocyte count (LYM ABS), Monocyte (MONO), Monocyte Count (MONO ABS), 

Eosinophil  (EOS), Eosinophil Count (EOS ABS), Basophil (BASO), Basophil count 

(BASO ABS), Large Unstained Cells (LUC), Large Unstained Cell Count (LUC ABS), 

Reticulocyte (RETIC), Reticulocyte count (Retic ABS). The reference intervals (last row) 

were generated by Charles River Laboratories (http://www.criver.com/products-

services/basic-research/find-a-model/c57bl-6n-mouse)on at least 123 C57BL6 male mice, 

8-10 weeks of ageusing a Drew Scientific HemaVet analyzer.   
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CHAPTER SIX DISCUSSION  

 
In this body of work, I have investigated the role of LSF in Hepatocellular 

Carcinoma.  I utilized two approaches to understand the requirement for LSF in HCC and 

why inhibition of LSF activity significantly reduced tumor growth in preclinical models, 

as well as to generate additional evidence that the FQI anti-tumor effect was specific to 

LSF inhibition.   

I demonstrated that short incubations with FQIs revealed a non-transcriptional 

based, mitotic interruption resulting in cell death.  The major phenotype was 

prometaphase arrest, followed by multi-nucleation which suggested interruption in proper 

kinetochore-microtubule attachment, an event that can result in mitotic arrest (Hauf et al., 

2007; Hauf et al., 2003).  However, levels of proteins involved in microtubule-

kinetochore attachment and mitotic exit, Aurora Kinase B and Cdc20, were unchanged, 

as were their RNAs.  To rule out that FQI1 impacted Aurora B kinase activity rather than 

expression, phosphorylation of the Aurora Kinase B target Histone 3 was evaluated and 

confirmed as comparable to the control.  I also found that the upregulation of Cyclin B 

protein expression, as documented in Rajesekaran et al (2015), was due solely to mitotic 

arrest as Cyclin B RNA levels were unperturbed in the FQI treated cells.  Furthermore, to 

confirm that the prometaphase arrest was not due to transcriptional misregulation of LSF 

target genes, FQI1 was removed after the arrest, resulting in phenotype reversal.  Since 

transcription of protein-encoding genes (with the possible exception of cyclin B) is not 

believed to occur following mitotic entry, the release from prometaphase arrest must 

therefore be due to an alternative mechanism. 
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Utilization of RNAi interference to ablate LSF expression as well as a “long-term 

FQI incubation protocol” revealed a second mitotic requirement for LSF, implicating 

involvement of mitotic regulators Aurora kinase B and Cdc20.  Both investigative 

approaches revealed consistent phenotypes upon the reduction of LSF activity, including 

prometaphase delay and subsequent cell death and senescence.  Furthermore, the loss of 

LSF activity lengthened passage through mitosis, as determined with time lapse 

microscopy.     

Cellular senescence, prometaphase/metaphase delay, aberrant cell division, and 

multi-nucleation are also all phenotypes previously reported using various methods to 

eliminate Aurora Kinase B expression and/or activity (Andrews, 2005; Carmena et al., 

2012; Ditchfield et al., 2003; Hauf et al., 2007; Hauf et al., 2003; Huck et al., 2010; Kim 

et al., 2011; Sistayanarain et al., 2006; Vader and Lens, 2008).  The connection between 

LSF and Aurora kinase B was supported in that direct substrates of Aurora Kinase B 

were no longer modified, consistent with observed loss of Aurora Kinase B expression 

and/or activity.  

The deduction that short incubation with FQI1 apparently impeded microtubule 

attachment to kinetochores, as indicated by the prometaphase arrest, is intriguing.   

Microtubule-kinetochore attachment requires a multitude of proteins, and is the primary 

process transitioning cells from prometaphase to metaphase.  Aurora Kinase B is a key 

regulator of this process, so it was notable that prometaphase arrest occurred under these 

conditions without decreasing levels of the kinase.  Phosphorylation of Histone H3 on 

Serine 10 was also not reduced in the cells treated with FQI1 for short periods, however, 
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this particular Histone H3 Serine is redundantly targeted by other mitotic kinases.   

Therefore, phosphorylation of other Aurora Kinase B targets should be tested in the 

context of the short incubation protocol.  Regardless, additional work is required to 

understand how loss of LSF activity might impact microtubule-kinetochore attachments 

through a non-transcriptional type of regulation.   

Regarding longer times of inhibition, whether LSF directly regulates Aurora 

kinase B or Cdc20 is unknown and should be examined further.  ChIP-seq against LSF in 

HCC cell lines treated with and without FQI1 would be informative as would an 

evaluation of Aurora Kinase B isoform regulation in circumstances of reduced LSF 

activity.  The latter is of specific interest as upregulation of specific Aurora Kinase B 

isoforms has been described in HCC patients, an observation which positively correlated 

with poor prognosis (Yasen et al., 2009).  

Finally, I have demonstrated that FQI1 and FQI2 are non-toxic to either freshly 

isolated primary mouse hepatocytes or in wild type non-tumor bearing mice following 

consecutive doses of FQIs at levels 2 to 4 times those required for therapeutic benefit in 

pre-clinical models.  Analysis in non-dividing primary mouse hepatocytes did not result 

in observable toxicity, consistent with the lack of elevated liver enzyme levels detected in 

the anti-tumor analysis of FQIs assayed in a subcutaneous mouse xenograft model.  For 

the first time, the studies reported here evaluated the impact of FQI1 or FQI2 on 

hematopoietic cell populations that divide rapidly, and could therefore be susceptible to 

an anti-mitotic therapy.  The results indicated that neither FQI`1or 2 have a significant 

impact on hematopoietic populations. Whether the lack of observed toxicity is because 
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the FQI compounds were not exposed to or did not penetrate these cells types in vivo 

remains unknown.  Proper pharmacokinetic and exposure studies need to be completed.   

However, these data are consistent with  the accumulating evidence that FQI inhibition of 

LSF activity in non-immortalized or non-tumor cell populations is non-toxic, lending 

additional support to the argument that LSF may in fact be the Achilles heel of 

hepatocellular carcinoma (Shlomai, 2012).  The anti-tumor activity of LSF should also be 

evaluated in other cancer types to determine whether inhibiting LSF could provide a 

therapeutic benefit and the impact of LSF knockdown in HCC should strongly be 

considered for further preclinical and possibly clinical evaluation. 

LSF has been shown to be an oncogenic transcription factor in HCC, whose 

activity does not appear to be required for immediate survival of normal cells (Grant et 

al., 2012; Porta-de-la-Riva et al., 2011; Rajasekaran et al., 2015; Santhekadur et al., 

2012a; Santhekadur et al., 2012b).  I report here that LSF is a mitotic regulator for HCC 

cellular progression.  LSF has also been reported to regulate fibronectin in Snail induced 

EMT.  As to whether inhibition of LSF activity would inhibit EMT would be worth 

further investigation given that EMT is the precursor to metastasis.  A more important 

question is whether inhibition of LSF would inhibit metastasis.  It has been shown that 

expression of dnLSF did reduce wide spread tumor formation in an artificial metastasis 

model in vivo (Yoo et al., 2010).  However, whether this is due to the inhibiting tumor 

cell proliferation, inhibition of EMT, or a combination was untested.  This concept should 

be evaluated as this would have enormous implications for LSF as a molecular target for 

a HCC therapy.   



 
 

204 

Identifying potent molecular therapies can be complex and often trials fail due to 

an improper design.  The SHARP trial (designed in 2004 to determine the impact of 

Sorafenib on HCC survival rates) evaluated the compound across various etiologies and 

ethnicities with great success as it reported survival rates to be in the range of 7-11 

months, rates greater than those observed in earlier clinical evaluations (Torrecilla and 

Llovet, 2015).  The increased success was attributed to improved strategies regarding 

clinical trial design for the HCC patient population.  While the data were not stunning, 

the SHARP trial generated information allowing better future study designs for molecular 

therapies to be evaluated in the HCC populations. Unfortunately, a number of recent  

molecularly targeted  therapies (Sunitinib, Brivanib, Erlotinib, Lifnifanib, Everolimus), 

have failed to show a survival benefit (Torrecilla and Llovet, 2015).  One hypothesis set 

forth to explain the failures was that Sorafenib’s “success” was most likely due to a 

balance of targeting cancer cells and the microenvironment, a feature absent from the 

new molecular candidates.  Regardless, alternative molecular therapies have failed, even 

with new information on how to properly evaluate efficacy bringing no new relief to this 

population with an unmet need. 

LSF remains unique among potential HCC clinical targets in that the data 

generated here suggest LSF-mediated mitotic regulation both potentially through non 

transcriptional interactions impacting microtubule-kinetochore attachment and through 

expression of a major mitotic kinase and mitotic proteolysis member.  The inhibition of 

LSF does not appear to impact non-dividing cells as shown with primary mouse 

hepatocytes and in vivo studies.  These data, combined with previous reports, support the 



 
 

205 

anti-tumor activity specific to HCC cells as a case of oncogene addiction (Weinstein and 

Joe, 2008).  Current suggestions to design the ideal HCC molecular target include 

proposals to target oncogenic transcription factors, microtubule regulators (Komlodi-

Pasztor et al., 2011), proteolysis members, and those that enhance EMT (Sekyrova et al., 

2012; Torrecilla and Llovet, 2015).  These are all criteria for which LSF may qualify and 

therefore generate further excitement around the clinical candidacy for LSF.  Given the 

high unmet need in HCC with worldwide primary liver cancer rates on the rise, as well 

as, very limited available safe and effective therapies, the possibility that targeting LSF in 

HCC could represent a major breakthrough is exciting.  Further experiments to validate 

LSF as a target and uncover its full mechanism of action as well as optimization of the 

FQI family of compounds for possible application in clinical studies are clearly 

warranted. 
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APPENDIX I 

siRNAs Targeting LSF, with off target reduction of Mad2, result in HCC cell death 

following decreased mitotic time and reduced expression of both Aurora B kinase and 

Cdc20.   

Introduction 

The ability to robustly knockdown a gene of interest in molecular biology has 

enabled acquisition of significant insight in recent years.  Information generated utilizing 

specific gene silencing has provided mechanistic insights into the functionality of 

proteins of interest that, prior to this technological advance, may have once been deemed 

out of reach.  This is particularly true in the case of transcription factors, which have been 

notoriously difficult to target utilizing small molecular inhibitors due to the smaller size 

of their DNA binding domains coupled with their intrinsic structural instability, a trait 

allowing their promiscuity, enabling binding to various proteins resulting in diverse 

functionality (Yan and Higgins, 2013). However, as with all technologies, proper 

investigational practices must be followed in order to rule out any nonspecific events.  

Identifying siRNAs capable of specific and robust gene silencing can be a rigorous 

exercise.  Generating siRNA sequences that are proficient at accessing the target site is a 

requirement as the structure of native mRNA or co-factor association could inhibit access 

and impact silencing capabilities. Direct hybridization to off-target sequences also must 

be minimized by using algorithms to reduce the probability of this occurring.  Finally, 

rescue experiments should be executed, when feasible, to confirm the restoration of the 

observed phenotype.   



 
 

207 

 

However, as reported in Hubner et al 2010, results may be misleading if the phenotype is 

inadvertently rescued by another mechanism (Hubner et al., 2010).  Mitotic Arrest 

Deficient 2 (Mad2) is a key member of the spindle assembly checkpoint (SAC) required 

for proper chromosome segregation (Ditchfield et al., 2003).  Mad2 is required for cells 

to transit from metaphase to anaphase. Even minimal levels of Mad2 knockdown can 

result in cell death and multi-nucleation as cells with an inactivated checkpoint and an 

inappropriate spindle attachment inappropriately enter anaphase.  The Hubner et al. 

report showed that transfection of certain siRNAs resulted in non-specific reduction of 

Mad2 expression impacting both its gene expression (mRNA) and protein levels (Hubner 

et al., 2010).  Furthermore, the Mad2 knockdown was not a consequence of direct 

hybridization of the siRNAs to the Mad2 transcript, based on homology predictions, but 

rather of an upstream event in the Mad2 pathway.  This target or mechanism has yet to be 

identified.  The reduction of Mad2 levels occurred with multiple, but not all siRNAs 

suggesting that this observation was a sequence, not target, dependent event that resulted 

in the initial misinterpretation of the role of Plk1-interacting checkpoint helicase (PICH) 

regulating the spindle assembly checkpoint (SAC) (Hubner et al., 2010; Llovet et al., 

2015).  To investigate the phenotype of LSF knockdown in hepatocellular carcinoma, 

multiple siRNAs were designed to specifically target LSF messenger RNA.  A single 

siRNA (LSF siRNA2) was observed to have off-target effects on Mad2.  LSF siRNA2 

was identified as a potent siRNA for reducing LSF expression (Figure 4.1e and f).  

However, additional assessment revealed that Mad2 was also nonspecifically reduced, 
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albeit with different kinetics (a slower rate and to a lesser extent) when compared to the 

predicted target (LSF) of the siRNA, but nevertheless had an impact on the phenotypes 

observed in the experiments.  In particular, knockdown of LSF with siRNA 2 resulted in 

decreased amount of time to transit mitosis, followed by HCC cell death including 

apoptosis and multi-nucleation. These phenotypes are consistent with Mad2 reduction 

(Michel et al., 2004a; Michel et al., 2004b).  LSF siRNA 2 treatment also resulted in dose 

dependent reduction of Aurora B Kinase and Cdc20 protein and RNA.  A comparison of 

cellular consequences of siRNAs specific for only LSF (LSF siRNA) versus LSF plus 

Mad2 reductions (LSF siRNA2) therefore showed overlapping but not identical 

phenotypes.  Both siRNAs caused reduction of Aurora kinase B, reduction of Cdc20, 

multi-nucleation, and apoptosis, however only the specific knockdown of LSF alone 

resulted in an increase in mitotic time (Chapter 4). 

 

Results 

Treatment with LSF siRNA 2 results in cell death following mitotic exit 

A potent siRNA targeting LSF, (duplex 9) LSF 2, was identified from the screen 

described in chapter 4.  HCC cells with LSF knockdown with LSF siRNA 2 revealed cell 

death following progression through the cell cycle.  By phase contrast imaging, the cell 

number was reduced following transfection with LSF siRNA 2 compared to with control 

siRNA (Figure A1.1).  Further, cellular DNA profiles of HCC cells treated with LSF 

siRNA 2 revealed an increasing amount of cells with sub-G1 DNA content in comparison 

to control (Figure A1.2a).  Aurora Kinase B and Cdc20 levels were evaluated, as FQI1 
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inhibition of LSF (Chapter 3) generated phenotypes that were similar to those previously 

reported upon inhibition of AurkB or Cdc20.  To determine if Aurora kinase B or Cdc20 

levels were altered, both RNA and protein expression were evaluated in synchronized 

cells treated with LSF siRNA 2.  The data revealed dose dependent reduction of both 

targets (Figure A1.3).  To confirm loss of the mitotic kinase activity, phosphorylation of 

substrates of Aurora Kinase B, on serine 10 and serine 28 of Histone 3, were also 

examined.  Modification on both of these targets was reduced, concomitant with 

increasing siRNA levels and consistent with the observed reduction in AurkB (Figure 

A1.3).  

 

Due to the reduction in key mitotic proteins Aurora Kinase B and Cdc20, mitotic 

progression was assessed following treatment with LSF siRNA 2 or control.  Mitotic 

phenotypes were analyzed by cellular morphology of the DNA (with DAPI) and mitotic 

spindles (with antibody against alpha tubulin).  The analysis revealed an increased 

number of apoptotic cells as identified by fragmented nuclei, decreased numbers of cells 

in prometaphase and metaphase, and an increased number of multi-nucleated cells in 

comparison to the controls at various time points (Figure A1.4, Tables A1.1 and A1.2). 

For this analysis, 91 to 100 cells were analyzed per condition.  The off center phenotype 

was one in which the condensed DNA was not located in the center of the cell as is 

typically observed prior to microtubule attachment from either spindle pole.  These data 

collectively suggested a reduced number of cells in mitosis following LSF knockdown 

with LSF siRNA 2 as well as incidents of multi-nucleation.  To more fully understand the 
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mitotic impact of LSF siRNA 2 treatment in HCC treated cells, live cell imaging was 

performed with QGY-7703 cells expressing mEmerald-tagged histone H2B, following 

transfection with either control siRNA or LSF siRNA 2.  The LSF siRNA 2-treated cells 

reached nuclear envelope breakdown (NEB) earlier than those treated with control 

siRNA as determined by the time lapse analysis.  Additionally, the LSF siRNA2 treated 

cells exhibited a significant reduction in mitotic time as measured from NEB to anaphase 

(Figure A1.5) with most cells traversing this in 16-24 minutes from NEB to anaphase, as 

compared to 24-36 minutes for the control siRNA treated cells.  Spending less time to 

passage through mitosis is consistent with a reduced number of cells at a given time point 

in prometaphase or metaphase, and increased numbers of cells at a given point exhibiting 

cytokinesis in the cells treated with LSF siRNA 2.  Consistent with these data were the 

DNA profiles of synchronized cells at various time points after release from the final 

G1/S block (Figure A1.6) where the LSF siRNA treated cells appear to progress rapidly 

from 2n DNA content to subG1 content.  Combined with the time lapse results, we 

conclude that the cells progress rapidly through the cell cycle prior to cell death.   

 

A potent siRNA targeting LSF also reduces Mad2 gene expression, albeit, with slower 

kinetics than those observed with the siRNA direct target 

Given the impact of LSF on mitosis, which was previously undescribed, when 

using siRNA to reduce LSF levels and determine its biological role, it was essential to 

take into account that some siRNAs can cause off target effects on Mad2 expression 

(Hubner et al., 2010).  To determine whether the potent LSF siRNA2 exhibited similar 
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same off target effects, Mad2 gene expression was measured in HCC cells treated with 

LSF siRNA 2 or control siRNA.  Mad2 RNA levels were indeed reduced after treatment 

with this LSF siRNA (Figure A1.7).  Mad2 gene expression was reduced to 

approximately 50 percent of the control levels at the time when maximal LSF protein 

reduction was predicted to have occurred, 72 hours post transfection (Figure A1.3c).  

 

Discussion 

Previous reports have shown that certain siRNA sequences can non-specifically 

reduce Mad2 transcript and protein levels through an unknown mechanism (Hubner et al., 

2010).  Transfection with the specific LSF siRNA 2, unlike transfection with the LSF 

siRNA used in Chapter 4, revealed an approximately 50% reduction in MAD2 RNA 

expression. A search using the National Center for Biotechnology Information (NCBI) 

revealed that the neither the sense nor antisense strand of LSF siRNA 2 duplex showed 

significant homology with the Mad2 mRNA, suggesting that the siRNA itself was 

unlikely to directly hybridize to the Mad2 RNA sequence.  As shown in asynchronous 

cells, Mad2 gene reduction occurs at a slower rate than that observed for the intended 

target of LSF siRNA 2, consistent with the notion that the non-specific event is not 

hybridization based but occurring upstream in the Mad2 pathway.  These data suggest 

that to confirm the impact of a particular siRNA on Mad2 regulation, the appropriate test 

is to measure gene expression levels in comparison to the controls as a semi-quantitative 

western blot may not reveal the subtle reduction in Mad2 expression.  Preferably, proper 

controls when examining cellular phenotypes would include an siRNA previously 
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confirmed not to result in this phenotype or an addition of an untreated cell population.  It 

is worth noting that the Mad2 reduction with this LSF siRNA was observed in both 

asynchronous and synchronous populations.  Finally, since the Mad2 off target effect 

occurred with slower kinetics compared to the LSF knockdown, confirmation of siRNA 

specificity requires evaluation of Mad2 expression at time points at least 72 hours 

following RNAi transfection. 

 The evaluation of LSF knockdown in hepatocellular carcinoma cells, using LSF 

targeting siRNAs with and without a non-specific Mad2 reduction, generated both 

overlapping and distinct phenotypes.  The identification of the Mad2 reduction for LSF 

siRNA2 induced a re-screen of candidate LSF siRNAs to identify sequences that did not 

impact Mad2 gene expression.  The data generated with the LSF siRNA utilized in 

experiments in Chapter 4 largely resulted in observations consistent with those from LSF 

siRNA2, with the exception of the length of time to progress through mitosis.  In 

addition, pure LSF knockdown resulted an observation of cellular senescence. The 

increased mitotic time is consistent with the results obtained with the LSF small inhibitor 

(Chapter 4), indicating that loss of LSF function is responsible for the lengthening of 

mitosis.  LSF knockdown in both contexts resulted in HCC cell death along with multi-

nucleation, and reduction in both Aurora B kinase and Cdc20 expression.  I hypothesize 

that the reduced mitotic time observed here was solely due to the incapacitation of the 

Spindle Assembly Checkpoint (SAC) due to nonspecific reduction of Mad2 levels.  

Importantly, the phenotypes described in Chapter 4, generated with the LSF siRNA that 

did not inadvertently reduce Mad2 levels, were consistent with the phenotypes generated 
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with small molecular inhibitors of LSF. Together, these data implicate LSF as a mitotic 

regulator and confirm the reduction of Aurora B Kinase and Cdc20 as an observation 

related to LSF mitotic regulation in HCC cells.    

     These findings support the requirement for screening siRNAs for nonspecific 

knockdown of Mad2 and doing so at multiple time points as the off target event could 

result in improper interpretation of data.  This is especially true when investigating 

mitotic proteins or when one needs to identify siRNAs that have no toxic consequence.   
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Figures 

Illustration A1.1 

 

 

Illustration A1.2 
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Figure A1.1 Phase contrast imaging of LSF siRNA 2-treated QGY-7703 cells 

suggests reduction in cell proliferation. 

QGY-7703 cells were transfected with either (a) 20 nM Control siRNA or (b) 20 nM LSF 

siRNA 2 prior to imaging according to illustration A1.1.  Cells were synchronized using a 

double thymidine block.  72 hours post release from the G1/S block phase contrast 

images were taken at a magnification of 20x.  Images are representative of greater than 

five experiments.  

  



 
 

216 
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Figure A1.2    Treatment of asynchronous HCC cells with LSF siRNA2 reveals an 

increase in cells with sub-G1 DNA content  

HCC cells were treated with LSF siRNA 2 or control siRNA at concentrations of 10 or 20 

nM. QGY-7703 cells, fixed and stained with propidium iodide, were analyzed at 24, 48, 

72 and 96 hours post release on a FACS Calibur to analyze DNA content. Cells 

transfected with control siRNA were analyzed at 0 hrs to determine instrument settings. 

Synchronized HCC cells transfected with control siRNA or LSF siRNA 2 were directly 

compared to evaluate cell cycle progression.  These results are representative of 3 

independent experiments.   



 
 

218 
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Figure A1.3.  Aurora Kinase B and Cdc20 expression is significantly reduced upon 

LSF knockdown 

Synchronized, LSF siRNA-transfected HCC cells were lysed at various time points 

following G1/S release. (a) Immunoblots of the indicated proteins and protein 

modifications from cells at 0, 4, and 9 hours after release from the G1/S block.  Levels of 

Beta Actin were used for normalization.  Numbers depicted below each band represent 

percentage of protein relative to the level in the siRNA control sample.  Protein 

expression or phosphorylation was quantitated using the Odyssey Licor detection system 

where integrated intensity for the target protein or phosphorylation was normalized to the 

beta actin control.  Data are depicted as the area of pixels determined for (b) LSF (c) 

Aurora Kinase B (d) Cdc20 (e) Phosphorylated Histone Serine 3 and (f) Phosphorylated 

Histone Serine 28 normalized to the area of pixels detected for beta actin.  Results are 

representative of 3 independent experiments. mRNA expression is depicted for (g) Aurora 

kinase B and (h) Cdc20, with each target gene normalized to Beta Actin. Data are 

representative of two independent experiments.  
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Figure A1.4 Immunofluorescent analysis of synchronized QGY-7703 cells after LSF 

knockdown with LSF siRNA 2 reveals fewer cells in mitosis as well as observations 

of both multi-nucleated and apoptotic cells 

QGY-7703 cells were transfected with 20 nM of either LSF or control siRNA, and then 

synchronized at the G1/S border.  At 0, 5, 9 and 21 hours after release from G1/S, QGY-

7703 cells were fixed and stained with anti-alpha tubulin antibody and with DAPI.  

Images were analyzed on a Zeiss Axioimager at a 63x magnification. Approximately 100 

individual cells were analyzed within each group.  Representative images 9 hours after 

release from G1/S of the cells treated with control siRNA (left panels) or LSF siRNA 

(right panels).  Control cells show normal mitotic phenotypes, including examples of 

metaphase and cytokinesis.  LSF siRNA-treated cells show various defects, including 

cells with fragmented nuclei and multi-nucleation. 
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Figure A1.5 HCC cells expressing mEmerald-tagged histone H2B were analyzed by 

time lapse microscopy upon treatment with either LSF siRNA2 or control siRNA.   

Synchronized cells, using a double thymidine block, were imaged every 4 minutes at 63x 

magnification. Time from nuclear envelope breakdown to anaphase was determined for 

56-100 cells per sample treated with 20 nM of either LSF siRNA 2 or Control siRNA.  

The results here include multiple samples, 2 controls receiving the non-specific siRNA 

and 2 groups receiving LSF siRNA 2.  One experiment received 20 µM exogenous 

thymidine at the release from the G1/S block.  Because addition of thymidine did not 

affect the outcome, the error bars are standard deviations of the averages from the 

samples, plus or minus thymidine addition.   
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Figure A1.6 Synchronized HCC cells with LSF and Mad2 knockdown results in 

increasing numbers of cells with sub-G1 DNA content over time   

QGY-7703 cells were synchronized at the G1/S border post transfection with 20 nM 

control siRNA or 20 nM LSF siRNA (Illustration 5.1). At 0, 3.5, 9 and 21 and 27 hours 

after release from the G1/S block, cells were fixed and stained with propidium iodide for 

analysis of DNA content by flow cytometry.  Data are representative of greater than 4 

experiments.    
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Figure A1.7 Mad2 RNA levels are reduced in LSF siRNA 2 treated cells   

 LSF and Mad2 RNA levels from cells treated with either LSF siRNA 2 or Control 

siRNA. For asynchronous cells, samples were analyzed at 24, 48 or 72 hours post 

transfection. For examination in synchronous cells, the protocol in Illustration in A1.1 

was used.  RNA was isolated at 4 and 8 hours after the final release from G1/S.  Standard 

error represents averages from two independent experiments.  These data are consistent 

across 3 independent experiments, with the third experiment having slightly different 

time points. 
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Table AI.1.  Immunofluorescence of synchronized QGY 7703 cells after LSF 

knockdown reveals fewer cells in mitosis. 
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Table AI.2.  Immunofluorescence of synchronized QGY 7703 cells after LSF 

knockdown reveals multi-nucleated and apoptotic cells. 
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Publications 
Butler, J. S., A. Chan, et al. (2016). "Preclinical evaluation of RNAi as a treatment for 
transthyretin-mediated amyloidosis." Amyloid 23(2): 109-118. 
 ATTR amyloidosis is a systemic, debilitating and fatal disease caused by 
transthyretin (TTR) amyloid accumulation. RNA interference (RNAi) is a clinically 
validated technology that may be a promising approach to the treatment of ATTR 
amyloidosis. The vast majority of TTR, the soluble precursor of TTR amyloid, is 
expressed and synthesized in the liver. RNAi technology enables robust hepatic gene 
silencing, the goal of which would be to reduce systemic levels of TTR and mitigate 
many of the clinical manifestations of ATTR that arise from hepatic TTR expression. To 
test this hypothesis, TTR-targeting siRNAs were evaluated in a murine model of 
hereditary ATTR amyloidosis. RNAi-mediated silencing of hepatic TTR expression 
inhibited TTR deposition and facilitated regression of existing TTR deposits in 
pathologically relevant tissues. Further, the extent of deposit regression correlated with 
the level of RNAi-mediated knockdown. In comparison to the TTR stabilizer, tafamidis, 
RNAi-mediated TTR knockdown led to greater regression of TTR deposits across a 
broader range of affected tissues. Together, the data presented herein support the 
therapeutic hypothesis behind TTR lowering and highlight the potential of RNAi in the 
treatment of patients afflicted with ATTR amyloidosis. 
 
Parmar, R., J. L. Willoughby, et al. (2016). "5'-(E)-Vinylphosphonate: A Stable 
Phosphate Mimic Can Improve the RNAi Activity of siRNA-GalNAc Conjugates." 
Chembiochem. 
 Small interfering RNA (siRNA)-mediated silencing requires siRNA loading into 
the RNA-induced silencing complex (RISC). Presence of 5'-phosphate (5'-P) is reported 
to be critical for efficient RISC loading of the antisense strand (AS) by anchoring it to the 
mid-domain of the Argonaute2 (Ago2) protein. Phosphorylation of exogenous duplex 
siRNAs is thought to be accomplished by cytosolic Clp1 kinase. However, although 
extensive chemical modifications are essential for siRNA-GalNAc conjugate activity, 
they can significantly impair Clp1 kinase activity. Here, we further elucidated the effect 
of 5'-P on the activity of siRNA-GalNAc conjugates. Our results demonstrate that a 
subset of sequences benefit from the presence of exogenous 5'-P. For those that do, 
incorporation of 5'-(E)-vinylphosphonate (5'-VP), a metabolically stable phosphate 
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mimic, results in up to 20-fold improved in vitro potency and up to a threefold benefit in 
in vivo activity by promoting Ago2 loading and enhancing metabolic stability. 
 
Rajasekaran, D., A. Siddiq, et al. (2015). "Small molecule inhibitors of Late SV40 Factor 
(LSF) abrogate hepatocellular carcinoma (HCC): Evaluation using an endogenous HCC 
model." Oncotarget 6(28): 26266-26277. 
 Hepatocellular carcinoma (HCC) is a lethal malignancy with high mortality and 
poor prognosis. Oncogenic transcription factor Late SV40 Factor (LSF) plays an 
important role in promoting HCC. A small molecule inhibitor of LSF, Factor 
Quinolinone Inhibitor 1 (FQI1), significantly inhibited human HCC xenografts in nude 
mice without harming normal cells. Here we evaluated the efficacy of FQI1 and another 
inhibitor, FQI2, in inhibiting endogenous hepatocarcinogenesis. HCC was induced in a 
transgenic mouse with hepatocyte-specific overexpression of c-myc (Alb/c-myc) by 
injecting N-nitrosodiethylamine (DEN) followed by FQI1 or FQI2 treatment after tumor 
development. LSF inhibitors markedly decreased tumor burden in Alb/c-myc mice with a 
corresponding decrease in proliferation and angiogenesis. Interestingly, in vitro treatment 
of human HCC cells with LSF inhibitors resulted in mitotic arrest with an accompanying 
increase in CyclinB1. Inhibition of CyclinB1 induction by Cycloheximide or CDK1 
activity by Roscovitine significantly prevented FQI-induced mitotic arrest. A significant 
induction of apoptosis was also observed upon treatment with FQI. These effects of LSF 
inhibition, mitotic arrest and induction of apoptosis by FQI1s provide multiple avenues 
by which these inhibitors eliminate HCC cells. LSF inhibitors might be highly potent and 
effective therapeutics for HCC either alone or in combination with currently existing 
therapies. 
 
Matsuda, S., K. Keiser, et al. (2015). "siRNA conjugates carrying sequentially assembled 
trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in 
vivo in hepatocytes." ACS Chemical Biology 10(5): 1181-1187. 
 Asialoglycoprotein receptor (ASGPR) mediated delivery of triantennary N-
acetylgalactosamine (GalNAc) conjugated short interfering RNAs (siRNAs) to 
hepatocytes is a promising paradigm for RNAi therapeutics. Robust and durable gene 
silencing upon subcutaneous administration at therapeutically acceptable dose levels 
resulted in the advancement of GalNAc-conjugated oligonucleotide-based drugs into 
preclinical and clinical developments. To systematically evaluate the effect of display and 
positioning of the GalNAc moiety within the siRNA duplex on ASGPR binding and 
RNAi activity, nucleotides carrying monovalent GalNAc were designed. Evaluation of 
clustered and dispersed incorporation of GalNAc units to the sense (S) strand indicated 
that sugar proximity is critical for ASGPR recognition, and location of the clustered 
ligand impacts the intrinsic potency of the siRNA. An array of nucleosidic GalNAc 
monomers resembling a trivalent ligand at or near the 3' end of the S strand retained in 
vitro and in vivo siRNA activity, similar to the parent conjugate design. This work 
demonstrates the utility of simple, nucleotide-based, cost-effective siRNA-GalNAc 
conjugation strategies. 
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Rajeev, K. G., J. K. Nair, et al. (2015). "Hepatocyte-specific delivery of siRNAs 
conjugated to novel non-nucleosidic trivalent N-acetylgalactosamine elicits robust gene 
silencing in vivo." Chembiochem 16(6): 903-908. 
 We recently demonstrated that siRNAs conjugated to triantennary N-
acetylgalactosamine (GalNAc) induce robust RNAi-mediated gene silencing in the liver, 
owing to uptake mediated by the asialoglycoprotein receptor (ASGPR). Novel 
monovalent GalNAc units, based on a non-nucleosidic linker, were developed to yield 
simplified trivalent GalNAc-conjugated oligonucleotides under solid-phase synthesis 
conditions. Synthesis of oligonucleotide conjugates using monovalent GalNAc building 
blocks required fewer synthetic steps compared to the previously optimized triantennary 
GalNAc construct. The redesigned trivalent GalNAc ligand maintained optimal valency, 
spatial orientation, and distance between the sugar moieties for proper recognition by 
ASGPR. siRNA conjugates were synthesized by sequential covalent attachment of the 
trivalent GalNAc to the 3'-end of the sense strand and resulted in a conjugate with in vitro 
and in vivo potency similar to that of the parent trivalent GalNAc conjugate design. 
 
Nair, J. K., J. L. Willoughby, et al. (2014). "Multivalent N-acetylgalactosamine-
conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene 
silencing." Journal of American Chemical Society 136(49): 16958-16961. 
 Conjugation of small interfering RNA (siRNA) to an asialoglycoprotein receptor 
ligand derived from N-acetylgalactosamine (GalNAc) facilitates targeted delivery of the 
siRNA to hepatocytes in vitro and in vivo. The ligands derived from GalNAc are 
compatible with solid-phase oligonucleotide synthesis and deprotection conditions, with 
synthesis yields comparable to those of standard oligonucleotides. Subcutaneous (SC) 
administration of siRNA-GalNAc conjugates resulted in robust RNAi-mediated gene 
silencing in liver. Refinement of the siRNA chemistry achieved a 5-fold improvement in 
efficacy over the parent design in vivo with a median effective dose (ED50) of 1 mg/kg 
following a single dose. This enabled the SC administration of siRNA-GalNAc 
conjugates at therapeutically relevant doses and, importantly, at dose volumes of </=1 
mL. Chronic weekly dosing resulted in sustained dose-dependent gene silencing for over 
9 months with no adverse effects in rodents. The optimally chemically modified siRNA-
GalNAc conjugates are hepatotropic and long-acting and have the potential to treat a 
wide range of diseases involving liver-expressed genes. 
 
Conforto, T. L., Y. Zhang, et al. (2012). "Impact of CUX2 on the female mouse liver 
transcriptome: activation of female-biased genes and repression of male-biased genes." 
Molecular Cell Biology 32(22): 4611-4627. 
 The growth hormone-regulated transcription factors STAT5 and BCL6 
coordinately regulate sex differences in mouse liver, primarily through effects in male 
liver, where male-biased genes are upregulated and many female-biased genes are 
actively repressed. Here we investigated whether CUX2, a highly female-specific liver 
transcription factor, contributes to an analogous regulatory network in female liver. 
Adenoviral overexpression of CUX2 in male liver induced 36% of female-biased genes 
and repressed 35% of male-biased genes. In female liver, CUX2 small interfering RNA 
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(siRNA) preferentially induced genes repressed by adenovirus expressing CUX2 (adeno-
CUX2) in male liver, and it preferentially repressed genes induced by adeno-CUX2 in 
male liver. CUX2 binding in female liver chromatin was enriched at sites of male-biased 
DNase hypersensitivity and at genomic regions showing male-enriched STAT5 binding. 
CUX2 binding was also enriched near genes repressed by adeno-CUX2 in male liver or 
induced by CUX2 siRNA in female liver but not at genes induced by adeno-CUX2, 
indicating that CUX2 binding is preferentially associated with gene repression. 
Nevertheless, direct CUX2 binding was seen at several highly female-specific genes that 
were positively regulated by CUX2, including A1bg, Cyp2b9, Cyp3a44, Tox, and 
Trim24. CUX2 expression and chromatin binding were high in immature male liver, 
where repression of adult male-biased genes and expression of adult female-biased genes 
are common, suggesting that the downregulation of CUX2 in male liver at puberty 
contributes to the developmental changes establishing adult patterns of sex-specific gene 
expression. 
 
Grant, T. J., J. A. Bishop, et al. (2012). "Antiproliferative small-molecule inhibitors of 
transcription factor LSF reveal oncogene addiction to LSF in hepatocellular carcinoma." 
Proceedings of the National Academy of Science U S A 109(12): 4503-4508. 
 Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. 
Despite the prevalence of HCC, there is no effective, systemic treatment. The 
transcription factor LSF is a promising protein target for chemotherapy; it is highly 
expressed in HCC patient samples and cell lines, and promotes oncogenesis in rodent 
xenograft models of HCC. Here, we identify small molecules that effectively inhibit LSF 
cellular activity. The lead compound, factor quinolinone inhibitor 1 (FQI1), inhibits LSF 
DNA-binding activity both in vitro, as determined by electrophoretic mobility shift 
assays, and in cells, as determined by ChIP. Consistent with such inhibition, FQI1 
eliminates transcriptional stimulation of LSF-dependent reporter constructs. FQI1 also 
exhibits antiproliferative activity in multiple cell lines. In LSF-overexpressing cells, 
including HCC cells, cell death is rapidly induced; however, primary or immortalized 
hepatocytes are unaffected by treatment with FQI1. The highly concordant structure-
activity relationship of a panel of 23 quinolinones strongly suggests that the growth 
inhibitory activity is due to a single biological target or family. Coupled with the striking 
agreement between the concentrations required for antiproliferative activity (GI(50)s) and 
for inhibition of LSF transactivation (IC(50)s), we conclude that LSF is the specific 
biological target of FQIs. Based on these in vitro results, we tested the efficacy of FQI1 
in inhibiting HCC tumor growth in a mouse xenograft model. As a single agent, tumor 
growth was dramatically inhibited with no observable general tissue cytotoxicity. These 
findings support the further development of LSF inhibitors for cancer chemotherapy. 
 
Nakayama, T., J. S. Butler, et al. (2012). "Harnessing a physiologic mechanism for 
siRNA delivery with mimetic lipoprotein particles." Mol Ther 20(8): 1582-1589. 
 Therapeutics based on RNA interference (RNAi) have emerged as a potential new 
class of drugs for treating human disease by silencing the target messenger RNA 
(mRNA), thereby reducing levels of the corresponding pathogenic protein. The major 
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challenge for RNAi therapeutics is the development of safe delivery vehicles for small 
interfering RNAs (siRNAs). We previously showed that cholesterol-conjugated siRNAs 
(chol-siRNA) associate with plasma lipoprotein particles and distribute primarily to the 
liver after systemic administration to mice. We further demonstrated enhancement of 
silencing by administration of chol-siRNA pre-associated with isolated high-density 
lipoprotein (HDL) or low-density lipoprotein (LDL). In this study, we investigated 
mimetic lipoprotein particle prepared from recombinant apolipoprotein A1 (apoA) and 
apolipoprotein E3 (apoE) as a delivery vehicle for chol-siRNAs. We show that apoE-
containing particle (E-lip) is highly effective in functional delivery of chol-siRNA to 
mouse liver. E-lip delivery was found to be considerably more potent than apoA-
containing particle (A-lip). Furthermore, E-lip-mediated delivery was not significantly 
affected by high endogenous levels of plasma LDL. These results demonstrate that E-lip 
has substantial potential as delivery vehicles for lipophilic conjugates of siRNAs. 
 
Severgnini, M., J. Sherman, et al. (2012). "A rapid two-step method for isolation of 
functional primary mouse hepatocytes: cell characterization and asialoglycoprotein 
receptor based assay development." Cytotechnology 64(2): 187-195. 
 Primary mouse hepatocytes are an important tool in the biomedical research field 
for the assessment of hepatocyte function. Several methods for hepatocyte isolation have 
been published; however, many of these methods require extensive handling and can 
therefore compromise the viability and function of the isolated cells. Since one advantage 
of utilizing freshly isolated cells is to maintain an environment in which the cells are 
more comparable to their in vivo state, it is important to have robust methods that 
produce cells with high viability, good purity and that function in a similar manner to that 
in their in vivo state. Here we describe a modified two-step method for the rapid isolation 
and characterization of mouse primary hepatocytes that results in high yields of viable 
cells. The asialoglycoprotein receptor (ASGPR), which is one of the most abundant cell 
surface receptors on hepatocytes, was used to monitor the function of the isolated 
hepatocytes by demonstrating specific binding of its ligand using a newly developed flow 
cytometry based ligand-receptor binding assay. Also, an in vitro screening method for 
siRNA drug candidates was successfully developed utilizing freshly isolated hepatocytes 
with minimum culture time. 
 
 
Nguyen, D. N., S. C. Chen, et al. (2009). "Drug delivery-mediated control of RNA 
immunostimulation." Mol Ther 17(9): 1555-1562. 
 RNA interference (RNAi) has generated significant interest as a strategy to 
suppress viral infection, but in some cases antiviral activity of unmodified short-
interfering RNA (siRNA) has been attributed to activation of innate immune responses. 
We hypothesized that immunostimulation by unmodified siRNA could mediate both 
RNAi as well as innate immune stimulation depending on the mode of drug delivery. We 
investigated the potential of immunostimulatory RNAs (siRNAs) to suppress influenza A 
virus in vivo in the mouse lung. Lipidoid 98N12-5(1) formulated with unmodified siRNA 
targeting the influenza nucleoprotein gene exhibited antiviral activity. Formulations were 
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optimized to increase antiviral activity, but the antiviral activity of lipidoid-delivered 
siRNA did not depend on sequence homology to the influenza genome as siRNA directed 
against unrelated targets also suppressed influenza replication in vivo. This activity was 
primarily attributed to enhancement of innate immune stimulation by lipidoid-mediated 
delivery, which indicates increased toll-like receptor (TLR) activation by siRNA. Certain 
chemical modifications to the siRNA backbone, which block TLR7/8 activation but 
retain in vitro RNAi activity, prevented siRNA-mediated antiviral activity despite 
enhanced lipidoid-mediated delivery. Here, we demonstrate that innate immune 
activation caused by unmodified siRNA can have therapeutically relevant effects, and 
that these non-RNAi effects can be controlled through chemical modifications and drug 
delivery. 
 




