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ABSTRACT

Statistical mechanics pursues low-dimensional descriptions of systems with a very
large number of degrees of freedom. I explore this theme in two contexts.

The main body of this dissertation explores and extends the Yard Sale Model
(YSM) of economic transactions using a combination of simulations and theory. The
YSM is a simple interacting model for wealth distributions which has the potential
to explain the empirical observation of Pareto distributions of wealth. I develop the
link between wealth condensation and the breakdown of ergodicity due to nonlinear
diffusion effects which are analogous to the geometric random walk. Using this, I
develop a deterministic effective theory of wealth transfer in the YSM that is useful
for explaining many quantitative results.

I introduce various forms of growth to the model, paying attention to the effect
of growth on wealth condensation, inequality, and ergodicity. Arithmetic growth is
found to partially break condensation, and geometric growth is found to completely
break condensation. Further generalizations of geometric growth with growth in-
equality show that the system is divided into two phases by a tipping point in the
inequality parameter. The tipping point marks the line between systems which are
ergodic and systems which exhibit wealth condensation.

I explore generalizations of the YSM transaction scheme to arbitrary betting

functions to develop notions of universality in YSM-like models. I find that wealth
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condensation is universal to a large class of models which can be divided into two
phases. The first exhibits slow, power-law condensation dynamics, and the second
exhibits fast, finite-time condensation dynamics. I find that the YSM, which exhibits
exponential dynamics, is the critical, self-similar model which marks the dividing line
between the two phases.

The final chapter develops a low-dimensional approach to materials microstruc-
ture quantification. Modern materials design harnesses complex microstructure ef-
fects to develop high-performance materials, but general microstructure quantifica-
tion is an unsolved problem. Motivated by statistical physics, I envision microstruc-
ture as a low-dimensional manifold, and construct this manifold by leveraging mul-
tiple machine learning approaches including transfer learning, dimensionality reduc-

tion, and computer vision breakthroughs with convolutional neural networks.
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Chapter 1

Introduction and Background

1.1 What is Econophysics?

The body of work contained here is predominantly categorizable as Fconophysics
research, research which aims to tackle questions of an economic nature, and whose
methods are inspired by traditional physics research. My particular economic interest
is in studying the distribution of wealth and income in society.

Bulk properties of human populations have been of interest to mankind for quite
some time. In fact, the historical origin of the word “statistics” is in studying the
properties of the state [1|. In physics, the development of statistical mechanics by
Ludwig Boltzmann hailed a new era of tackling physical problems using probabil-
ity theory and the assumption of the interaction of simple, identical components.
Econophysicists seek to turn the resulting body of mathematics back at the original
social setting of statistics.

Econophysics is a young discipline [2-4], usually characterized as originating in
the 1990’s, formed in part by a dissatisfaction with the results of mainstream eco-
nomics [2-6]. Many concerns are cited regarding the Economist’s methodology. Per-
haps foremost is the development of models based on a priori expectations when
empirical data disagrees with these expectations [6-10]—e.g. the efficient market

hypothesis, the rational agent hypothesis, and general equilibrium theory. Econo-



physicists established themselves by successfully applying techniques from physics to
financial markets [2(-4], in particular defying the a typical economic assumption of
normally distributed returns.

However, Econophysics has not been well-received by economists, who in return
have criticized the econophysicist’s methodology. Gallegati et al. [5] raise several
objections: They decry the ignorance of physicists to the large body economic liter-
ature, lament the differences in statistical methodology, raise concerns over whether
the ‘universal’ facts taken by econophysicists are in fact universal, and perhaps above
all argue that physics models are not appropriate to economic situations, in particular
the invocation of conservation laws and transaction-only models. (This dissertation
deals in a model which addresses that concern.)

McCauley [6] reply from the econophysicists perspective, point by point address-
ing their perceived flaws in economics. In particular, while they agree that physicists
use different statistical methodology, they argue that relevant economic models are
plagued by too many variables to produce meaningful results on the amount of data
available, and this demands that researchers focus on simpler models and on the fal-
sifyability of these models. They do agree that there is a danger in over-simplifying
and that economics presents situations fundamentally different from physics: The
bare units of the model can make intelligent decisions, the decisions rules may dy-
namically respond to the state of the system.

The difficulty, then, is in producing simplified models which have meaningful and
reasonable economic interpretations (or what a physicist would call a physical inter-
pretation) that incorporate the flexibilty of economic entities. These models must be
amenable to analysis, and they must be in some way comparable to data. From this

perspective, the aim of the research in this dissertation is twofold. The basis of the



dissertation is a very simple model (the Yard Sale Model) which contains reasonable
assumptions and compelling dynamics (Wealth condensation), but does not capture
empirical phenomena. The first aim is to extend the dynamics in order to investigate
the potential to capture empirical data on wealth distributions. The second aim is
to generalize the framework of the Yard Sale Model in order to investigate whether

or not the compelling results can be said to be generally true.

1.2 The dissertation in brief

The economic focus of the research herein is the distribution of wealth. Empirical
studies of wealth distributions [11},|12]. have shown a consistent structure demon-
strated in a variety of domains—in different places, different times, and different met-
rics of wealth (see section |1.3|for more details).The wealth distribution is divided into
two regimes. The richest economic entities follow a power-law distribution known
as a Pareto law, after Vilfredo Pareto [13,/14]. The richest agents here constitute
somewhere between 1% and 10% of the economy, with fluctuations in this number
being governed both by the shape of the distribution and by the fitting methods
being applied. The bulk of the agents deviate markedly from the power law, with
various authors arguing for Boltzmann distributed or Log-normal distributed wealth.

In particular, I am focused on agent-based modeling of wealth exchange (see
section These models treat wealth as a scalar quantity which is transferred
from agent to agent via stochastic rules. For the most part, I have focused on a
particular model of wealth exchange known as the Yard Sale Model [15] (YSM) (See
section. The wealth exchange takes place between random pairs of agents, and
the quantity of wealth traded is a fixed fraction of the wealth of the poorer agent in

the trade. This parcel of wealth is then traded either from the richer to the poorer,



or the other way around, according to a fair coin flip.

The YSM is valuable for many reasons. Foremost it is a simple model, which itself
has many advantages. Conceptually simple models are easy to explain, and so they
are intrinsically valuable for interdisciplinary communication— many of the concepts
of statistical mechanics are foreign to the ecosystem of (pure) economics research,
and so simplicity is especially a virtue in these interdisciplinary pursuits. Models
with few parameters are most easily amenable to analysis; The fewer the buttons
and dials which can be adjusted, the easier it is to determine which parameters
control the state of the system, and how.

A particular aspect of this simplicity is that the model is scale-free; the bare
model’s only parameter is a dimensionless fraction of wealth, reflecting multiplicative
exchange dynamics. Real economies often exhibit multiplicative fluctuations, both
in the aggregate and when looking at individual components; A good example here
is the stock market [16-18]. Thus, multiplicative wealth exchange is a good ground
on which to build a model which exhibits multiplicative fluctuations. The scale-
free nature of the trading is a good set-up to explain the power-distributed Pareto
law. Moreover, multiplicative betting not only reflects empirical fluctuations, but is
in certain cases is theoretically justified as the strategic choice which optimizes an
individual’s the long-term growth rate [19].

Another advantage of the YSM is that it is an interacting model. Many economic
models seek to explain wealth distributions by allowing an ensemble of agents which
fluctuate independently in a fixed background (see section . Conceptually, then,
the analysis seeks to solve a simple one-body inverse problem: What background
landscape gives rise to a given steady-state distribution? The answer to this question

gives little insight into the economic processes at hand, as a prior: any background



landscape is allowed, because the landscape need not be consistent with the action
and evolution of the agents. In addition, this type of model assumes from the outset
that the economy can be described by an equilibrium process. A more coherent
model realizes the structure of the landscape via interactions within the economy—
this closes the loop of cause and effect, so that the wealth distribution is generated
by a mechanism, not just by another distribution.

I seek to explore the potential of the YSM to explain the structure of empirical
wealth distributions. Previous work [15,20-22] has established that the YSM exhibits
wealth condensation; Over time, the wealth condenses onto a single agent in the
system. I present further analysis of and extensions to the YSM. I establish that the
dynamics of the model are essentially dissipative, ergodicity-breaking dynamics, and
that these mathematical properties are the origin of wealth condensation.

I also introduce a new framework for conceptualizing and solving the model based
on the stochastic drift of individual agents, conceptualizing bridging this interact-
ing model with the autoregressive, independent-agent formulations from economic
literature. This framework is useful for considering dynamics which are essentially a
function of an agent’s rank in the economy, and is in this regard readily interpretable,
giving insight into the effective dynamics for each strata of an econophysics model.

While real-world wealth is not quite so monopolized, it is also not in a steady
state, but rather growing in time [23|. So, I consider driving the system with external
sources of growth in a driven-dissipative fashion, with an eye on the ergodicity of
the model as well as wealth condensation. Growth allows the model to break wealth
condensation and support various nontrivial wealth distributions. Different forms
of growth are explored and compared to the known structure of empirical wealth

distributions.



Finally, using this new framework, I consider the possibility of wealth condensa-
tion in more generalized asset exchange models, whose dynamics are given by a more
general function of the poorer agent’s wealth, as opposed to the strictly multiplicative
YSM. Using an effective theory of wealth transfer, I find that wealth condensation
in the absence of growth is a general phenomena, and that the rate of wealth con-
densation can be partitioned into slow models and fast models. The YSM turns out

to be the critical system which marks the dividing line between these cases.

1.3 Pareto Laws in Income and Wealth Distribution

The primary motivator for much of econophysics is a remarkable empirical fact first
observed by Pareto [13]: The distribution of wealth and income in society has a
universal form. His work established the power law distribution of wealth, now
known as the Pareto distribution, given as a probability distribution function p(w)

or a cumulative distribution function C'(w):

pw) o w ™ (1.1)

Clw) < w® (1.2)

The exponent «, called the Pareto Index or Pareto Exzponent of the distribution,
characterizes the inequality of the distribution. Pareto found approximately a =
1.5, but it is now known that the Pareto index is a fluxuating quantity over time
and regions, usually somewhere between 1.5 and 2.5, and almost always between 1
and 3. While Pareto originally believed this distribution to apply to the whole of
society, it is now understood that the power-law distribution of wealth applies only

to to the richest segment of society, usually between 1% and 10%. The bulk of the
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Figure 1.1: A schematic of the typical structure of a wealth distribution.

society follows a more centralized distribution, often characterized an exponential
distribution (e.g. e.g. [11]), but sometimes as a log-normal distribution (e.g. [12,
24])-see Fig. for a schematic.

This structure has been observed in many societies over a fairly wide spectrum of
time and space: Atkinson et al. [25] surveys studies of Pareto indices and inequality
in over twenty countries throughout the twentieth century, broadly finding inequality
decreased during the period of the world wars, but has been increasing in the last few
decades. There is modern data on the United States [26},27], Japan [24,26], the United
Kingdom [11,)28], India [29], Germany [28]. Looking back in time, there are historial
studies finding Pareto exponents for 19th centuria Prussia and England [12], 18th
century Peru [12], 15th and 16th century Augsburg [12], medieval Hungary [30] (using
the number of serfs owned as a proxy for wealth), and even ancient Egypt [31] (using
property area as a proxy for wealth). Internationally, the Forbes 400 data [27,32]
have been analyzed. The Pareto law has even been found in the modern electronic

Bitcoin crypto-currency [33].



1.3.1 On analyzing data of high inequality

Many statistical models are given in the context of distributions which are relatively
symmetric and centralized (with a tail that decays exponentially or faster). However,
the power law distributions present both in the statistical physics of phase transitions
and in economics thwart both of these common assumptions. In this case, averaging
summary statistics such as the mean and standard deviation may formally diverge.
In the context of finite data sets, this results in a population mean and standard
deviation which is highly dependent on the particular sample drawn. The practical
consequence of this is that any wealth data which one examines should be summarized
with more robust statistical measures, else one risks results which depend crucially
on the precise wealths of the wealthiest entities.

One common and viable approach is to use the median to characterize the central
tendency, and quantiles to determine the approximate spread. This approach is non-
parametric, and the median is insensitive to monotonic, invertible transformations
of the quantity in question. This is in line with the economic concept of wutility,
which postulates that economics can be explained by the supposition that the value
of wealth depends on how much wealth one currently has, i.e. added value is a
marginal function.

Several related approaches to economic modeling, including the one in this dis-
sertation, treat economic agents as undergoing some type of random multiplicative
process. In this case it is appropriate to examine the logarithm of wealth as a statisti-
cal summary- in particular, the typical wealth scale can be thought of as e{°8™) [34].

In economics, this school of thought is embodied in Theil’s L measure [35] of
inequality, L = log (w) — (logw). Theil’s economic measures were motivated by

Shannon’s information theory [36], and Theil’s T measure, T = (wlogw), is the



negative of Shannon’s information entropy, which was recognized in its inception as
connected to the theory of statistical mechanics. Shannon and Theil were interested
in measures of spread which obeyed certain axioms appropriate to complexity and
econometrics. On the other hand, statistical mechanical entropy concerns itself with
the measure of the number of microscopic states that may be taken by a system sub-
ject to macroscopic constraints. Theil’s measure can then be reconciled as measuring
the scale of the partitioning of wealth among various economic agents—the maxim-
ium equality is given by the maximum entropy condition, wherein wealth is divided
equally among the agents, and greater inequality can be understood as partitions of

the wealth in which the total wealth is dominantly owned by fewer agents.

1.4 Issues with non-interacting models of Economics

Modeling of wealth and income distributions begins with with Gibrat’s law of pro-
portional effect [37]. This scheme assumes that firms will grow and shrink with fluc-
tuations which are proportional to the size of the firm. This leads to a non-stationary
log-normal distribution of firm sizes. A conspicuous aspect of this scheme is that it
makes predictions on the assumption that firms can be thought to be completely
independent of each other—hence I refer to these models as non-interacting models or
one-body models. The second conspicuous aspect of the model is that it is a Markov
process-growth at one time is not influenced by growth in the past. Econophysicists
have more recently characterized the growth of firms and found an interesting struc-
ture that disobeys Gibrat’s fundamental assumption—empirical growth percentages
are dependent on firm size. [3§]

Champernowne [39] gave a more detailed model which provides an equilibrium

distribution—indeed, to solve his model he prescribes that it must have an equilibrium.
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He descritizes the income spectrum into discrete bins and posulates a Markov chain
model for income. The essential difference between his approach and Gibrats is
the assumption of the lower-boundedness of income. Similar approaches have been
made many times since [16}26,/40-51], with many approaches following the Kesten
process [52], which is the continuous analogue for the discrete Markov chain model
of Champernowne. The unifying aspect of these approaches is that agents fluctuate
purely in a background. The sources of these fluctuations are not clarified; they are
parameteric functions of random variables. Like Gibrat, they assume a particular
form of recurrence in wealth fluctuations (indeed, many of them make exactly the
same multiplicative supposition as Gibrat) but without further physical or empirical
justification.

There are two interrelated reasons why this approach is problematic. The first is
the assumption of equilibrium. The continually growing economy of the real world
assures that no wealth distribution is in equilibrium, even in the case that the econ-
omy appears roughly static over a short period of time (these particular periods are
sometimes cherry-picked when analyzing data [53]). In fact, studies have explicitly
refuted the markov property for income mobility [54-56] and there have been nu-
merous calls in recent years to avoid blind assumption of equilibrium [7,[8,57]. To
be careful about the issue, let me note that many non-interacting analyses do de-
rive whether or not their mathematical model is in equilibrium—-the problem is the
assumption that equilibrium results are the ones pertinent to the real world.

The second problematic aspect is the nature of the fluctuations. In non-interacting
models models, agents fluctuate being coupled to a noise source which is presumed
to represent a bath—the economy as a bulk—which gives the prescription for how a

single agent in the system will fluctuate. An equilibrium system (of sufficient size)
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can be modeled in such a way, and the nature of the bath is to capture fluctuations
induced in a single agent by way of interactions with other agents. An interacting
economy allows only self-consistent baths—the bath governs the agents, but the bath
is determined by the spectrum of agents and their interactions. The spectrum of
agents is itself governed by the interactions, and so the causal nature of the model is
clear—everything originates from the interactions. A non-interacting model suffers an
enormous difficulty in these regards. If one specify the bath (instead of the interac-
tions), then one can assert kinetic properties of agents (in the sense that kinematics
describes the motion of objects but not the origin of those motions)-that is, one can
recover a (possibly evolving) wealth distribution—but one cannot understand how
that wealth distribution should give rise to the bath, nor even whether it is possible
for the wealth distribution to give rise to the bath.

A self-consistent requires needs the bath to be determined by the interactions—
the bath is a dynamic environment which is determined collective motions of the
agents, which are in turn a product of their individual interactions. It is only in an
interacting picture of the economy that the concept of equilibrium can be established
(rather than presumed) and investigated. This is a key reason for investigating kinetic

models of wealth, usually termed Asset Exchange Models.

1.5 Asset Exchange Models

The most direct background to this dissertation is the field of asset exchange models.
These interacting models of the economy arose out of the work of Angle [58] and of
Ispolatov et al. [59] They conceive of the Economy in a purely interacting fashion,
such that economic motions consist entirely of exchanges between agents. Ispolatov

et al. treat two basic models: additive exchange and multiplicative exchange. In the
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additive method, two traders are selected, and a fixed unit of wealth is transferred
between them. In the multiplicative model, the amount of wealth exchanged is a
percentage of the losing agent’s wealth. They furthermore specialize to random
exchange and greedy exchange—in random exchange, the winner of the selected pair
is random, but in greedy exchange, it is always the richer agent. One of the key
limitations of this work is the notion that when rich agents lose the exchange, they
can very easily increase the wealth of the poorer agent by a factor of several.

Further work along these lines was considered by [60], which treat a similar multi-
plicative model. By relating their model to polymer physics, they are able to include
several extensions, including the agents additionally coupled stochastically and mul-
tiplicatively to a bath, which represents various external investment markets and
taxes, as well as agent connectivity. Results here show the renormalized wealth dis-
tribution can give power-laws with exponential cutoffs, and they demonstrate wealth
condensation in certain parameter regimes.

A similar conception which relates the market to ideal gas collisions was developed
by Dragulescu and Yakovenko [61]. They consider bare interactions between agents
which randomly split wealth between the agents. These results lead to distributions
of wealth which follow the Boltzmann distribution, with temperature corresponding
to the average wealth. They consider as well the effect of thermodynamic machines
upon such a wealth distribution. Chakraborti and Chakrabarti [62] augment this
conception with the concept of saving propensity, whereby agents elect only to en-
ter some fraction of their wealth into the process. In some sense this represents
multiplicative trading, and this results in markets where the most probable wealth
is non-zero. This was further extended by Chatterjee et al. [63], who incorporate

random (fixed) saving propensity for each agent, and discover Pareto tails in the
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wealth distribution. Slanina [64] produced a similar phenomenology with inelastic
mean-field Maxwellian mixing of wealth between agents. An early review on these

types of models was given by Chatterjee [65].

1.5.1 The Yard Sale Model

A key economic constraint was added to the picture with the invention of the YSM,
realized independently (and with slight variations) by Chakraborti [66] and Hayes
[15]. The constraint is the notion that traders are willing to risk fractions of their
wealth at most, however, they are not willing to risk more than their trading partner.
This ties the scale of economic transactions to the poorer agent. However realistic,
it also proved fatal to the notion of a steady-state economy. Impoverished agents are
no longer rescued by occasional large donations by the rich, and over time poverty
compounds upon itself.

Since then, the YSM has been re-examined [20},67] and extend many times, in-
cluding such factors as heterogeneity [68], biased trade direction probabilities [21,/69],
stochastic wealth fractions involved in the betting process [22], and wealth exchange
on networks [70,/71]. A short paper with my collaborators which highlights some

aspects of the work in this dissertation is available [72].

1.6 Ergodicity

A key concept in statistical physics is ergodicity [73-76]. In loose terms, an ergodic
system is one which does not contain any long-term memory. If a system is ergodic,
the long-term behavior of the system is independent of the details of its history—the
system exhibits a sort of stability and mixing. In statistical mechanics, ergodicity is

a prerequisite for thermodynamic equilibrium; If a system is not ergodic, then it is
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in some sense either unstable or does not thoroughly mix its components. Ergodicity
is of considerable interest to the problem of wealth and income distributions, as in
an ergodic system there can be some notion of long-term fairness between identical
agents; over long enough times, it does not matter whether or not an individual was
born rich or poor. However, if the proper model is not ergodic, then an agent may
be born into such a condition that they might never escape their origins.

Formally speaking, ergodicity can be expressed as the statement that time av-
erages are equivalent to ensemble averages, so that averaging the measurement of a
quantity over the trajectory of the system is equivalent to measuring that quantity
over an ensemble of systems. Boltzmann introduced ergodicity to statistical physics
as a hypothesis which was necessary in order to use statistical ensembles in order to
describe the behavior of a single system. Mathematicians have subsequently analyzed
this assumption and found that for some systems, it is effectively true. However, it
is now recognized that arbitrary systems are not necessarily ergodic.

Ergodicity for Markov chains is not difficult to establish |75}/77,78]. A Markov
chain is ergodic if it irreducible and has an aperiodic state. Irreducible means that it
is possible to get from any state to any other state in the chain; it cannot be factored
into spaces such that any space is absorbing or disconnected. Any state which has
a positive self-transition probability is aperioidic, which is a fairly easy condition to
fulfill in practice when concerning wealths or incomes binned into classes. In fact,
Champernowne [39] cites the convergence of Markov chains and associated analytical
simplicity as one of his motivations for studying such models, and explicitly neglects
economic growth, owing to the complications of such an analysis.

Ergodicity is less trivial for interacting systems in continuous domains is much

more complex, owing to the more sensitive dependence of the model’s evolution on
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its state space. Here we will find ourselves concerned with effective ergodicity—the
question of whether time averages tend towards ensemble averages, and if so, how
much time is required for said convergence. Effective ergodicity is a necessary but
not sufficient condition for formal ergodicity. Even in formally ergodic systems, er-
godicity is connected to the relaxation time of the system—time averages over very
short times will certainly not be representable by ensemble averages over configura-
tions; Sufficient time must pass for the system to sample the distribution of available
configurations. The timescale of effective ergodicity is also of economic interest, for
individual agents may only exist for a human lifespan. If the relaxation timescale is
on the same scale or larger, then the economy will appear non-ergodic to the agents
as individuals, that is, individual agents will experience limited mobility. Thiru-
malai and Mountain [79,/80] developed a simple, tractable measure to examine the
timescale of effective ergodicity which are used here to probe relaxation timescales

for the YSM.

1.7 Structure of this Dissertation
Chapter 1 gives background information useful for examing

1.7.1 Chapter 1: Introduction and Background

This chapter introduces the content and context of the dissertation, explaining the
structure of the dissertation, the empirical study of wealth distributions, and previous

econophysics models of wealth.

1.7.2 Chapter 2: The Yard Sale Model without growth

This chapter explores the Yard Sale Model (YSM) of an economy in some detail,

with attention to the features found in model simulations.
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1.7.3 Chapter 3: Theoretical descriptions of the YSM

This chapter developes theoretical tools for understanding evolution of the wealth
distribution in the YSM. I make connections with the geometric random walk, a
kinetic equation approach, and a mean-field-like approximate interaction. These
tools will be used throughout the work in order to shed light on the results uncovered

by direct simulation.

1.7.4 Chapter 4: The YSM with arithmetic growth

This chapter explores the addition of growth to the YSM in the simplest possible
form—growth which is additive and constant in time, which I call arithmetic growth.
This growth partially breaks wealth condensation—in the long-time limit, a single
agent absorbs all of the growth. However, the remaining agents are left with finite
non-zero wealth, and so there is still a wealth distribution to speak of. In the simplest
form of growth this distribution does in fact follow a power law, which is explained

using the theoretical tools outlined in chapter 2.

1.7.5 Chapter 5: The YSM with geometric growth

Explores geometric growth terms, such that the total wealth grows exponentially
in time. This slightly more complicated form of growth more closely mimics the
growth in the real world. Here, the wealth distribution approaches a rescaled steady
state- that is, a steady distribution multiplied by a global growth factor. The wealth
distribution corresponds to a power-law with an upper cutoff, which again can be
explained in terms of the tools outlined in chapter 2. Introducing skewed growth,
which allows for growth to depend dynamically on the current wealth, gives rise to

interesting phenomenology: A phase transition between the rescaled steady state,
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which is shown to be effectively ergodic, and a wealth condensation state, which is
non-ergodic. The transition has similar properties to a thermodynamic phase tran-

sition, including power law divergences, critical slowing down, and scaling collapse.

1.7.6 Chapter 6: Generalized framework for wealth condensation

Here I examine other generalized asset exchange models. Of particular interest is the
result that a large class of asset exchange models exhibit wealth condensation. This
class is characterized by “fair” (zero-expectation value) exchange between agents,
and monotonically increasing agent risk. I show how condensation emerges by using

the Ito calculus.

1.7.7 Chapter 7: Concluding remarks and future work

This chapter includes a summary of results and potential guidelines for more work

in the same field.

1.7.8 Chapter 8: Faithful Dimensionality Reduction of Materials Mi-

crostructure using Convolutional Neural Networks

This chapter details my work developing applications for data analysis for materials
science. I use state of the art Machine Learning algorithms for computer vision,
Convolutional Neural Networks (CNNs), to automatically compute distance between
texture images in a way that reflects the relevant structural parameters of the image.
A collection of related images is found to be highly ammenable to dimensionality
reduction, so that each image can be given a coordinate in a low-dimensional space.
I compare this with a baseline procedure using the Fourier content of the image, and

find the CNN-based approach to be far superior.



Chapter 2

The Yard Sale Model without growth

2.1 Purpose of this chapter

This chapter will explore the YSM without growth in detail. We cite and explain
results known from the literature, and give others which are new developments.
This chapter will likewise develop the language of the mathematics which we use to

characterize the system.

2.2 Postulates of Asset Exchange

An asset exchange model is an economic model of wherein wealth (assets) is ex-
changed between agents. An economic agent is an entity capable of holding wealth—
An individual, a corporation, or perhaps a nation.

Less concrete is the notion of wealth. In the real world, wealth is a complicated
construct; There are many types of assets one may hold, and many ways to call upon
those assets. The economic nature of an asset implies that it has monetary value.
While the precise, detailed process of ascribing a monetary value to each and every
asset would prove very difficult, if we allow some error the process is possible; more
concretely, I may not be able to tell you the exact value of a certain pair of shoes, but
I may be able to tell you with reasonable confidence that they are worth between 50

and 60 dollars. Applying the process in serial to an agent’s various possessions and

18
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summing the result produces a mathematical representation of wealth as a scalar
number. This is the notion of wealth used in this work—as a real number which
characterizes the sum total of the value of the assets of the agents.

Transactions between agents, then, consist of exchange of assets. If the values
of the assets exchanged between two individuals are equal, then the wealths of the
agents do not change. However, when the values of the assets exchanged are not
equal, then there is an exchange of wealth, and one agent will gain wealth, while the
other loses wealth.

Implicit in the previous paragraph is the idea that the exchange takes place
between two agents. Mathematically speaking, it is simple to write down more
complicated models in which wealth exchange takes place between three or more
agents. We limit ourselves to two-agent exchanges, though, on the dual grounds that
it seems to be the predominant form of economic activity, and that becomes a much
more difficult problem mathematically.

Another aspect of the model is stochasticity. This means that while the model
has rules, the rules will have a degree of randomness or unpredictability. Practically
speaking, this means that we assume that transactions depend on variables which do
not need to be in the model. That is to say that a given asset exchange model will as-
sume some set of facts about wealth exchange, but it will also acknowledge that there
are other variables that are not within the model which give rise to the transactions.

It presumes that these other factors can be usefully modeled by randomness.

2.3 The Model

The yard sale model (YSM), introduced in [15], is a pair-wise asset exchange model.

The model economy consists of N agents who own varying quantities of wealth. The
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model is initialized in a state where all the agents have equal wealth.

The agents exchange wealth according to the following scheme: We select two
agents at random and exchange a fraction a of the poorer person’s wealth. As a
fraction, the physically acceptable values of o range from 0 to 1. We refer to this
model, without growth or modification to the trading rule, as the bare YSM. The
justification for this scheme is that the size of the economic transaction must be
limited by the wealth of the poorer agent. Moreover, as the wealth of an agent
increases, the agent is more likely to engage in transactions at a higher scale; The
wealthier the agent is, the larger the value of assets in their transactions.

Mathematically speaking, this only gives rise to the constraint that trades are
monotonic with the wealth of the agents. However, the simple assumption that the
rate of growth of the scale of trade is proportional to the assets of the agent is the
most parsimonious way to invoke the monotonicity because it means that the YSM
does not have any implicit wealth scale, which we explore more carefully in the next
section.

Another of the assumptions built into the model is that the economy is fully
connected: Each agent is equally likely to be picked for each trade, and so all possible
pair of agents are equally likely to trade. Thus, there are many extensions to this
model wherein the trading is given more structure. This is possible by, for example,
placing the agents on a network structure. It is also possible to extend the model
such that the probability for picking agents for each trade is not equal. Broadly
speaking, there are two categories of extensions to the structure of the trading: static
and dynamic. A static trading structure is quenched or “frozen in” to the agents,
thereby distinguishing the agents from each other. This type of mathematics may

help model situations where there are inherent differences between the agents, e.g.
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agents which lie embeded on a geometric surface and can only trade with other agents
within a certain distance. The contrasting category of dynamic models, on the other
hand, allows us to account for various economic effects associated with the wealth
of the agents. An example here is to explore the possibility that richer agents trade
more or less frequently than poorer agents. In this way, we can explore a multitude
of possible feedback relations between the economic landscape and behavior of the
agents within that landscape.

The bare YSM uses an unbaised coin to indicate the direction of trade, so that
each agent is equally likely to win the exchange. While this assumption may seem
simplistic, it is important that it is virtually the most charitable assumption for the
poorer agent of the trade, for a great many of economic transactions are carried
out by vendors, whose economic transactions so constructed as to systematically be

profitable.

2.4 Conservation of Wealth

Wealth in the YSM is conserved: it is neither generated nor destroyed by any process,
but transfered from agent to agent. Clearly, then, the YSM fails to capture economic
activity which produces or destroys wealth, but rather is intended to capture the
dynamical effects of which are the result of transactions. We emphasize this for two
reasons:

1) Physically, the total wealth in the system is a constant of motion and is
unaffected by the dynamics.

2) Economically, we expect that wealth is created and destroyed by processes as-
sociated with human activity and the passage of time: The harvesting of resources,

the consumption of food, and others. Thus, if the YSM fails to describe the econ-
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omy on its own, it may still provide a useful model of trading processes within an
economy. Thus the mechanisms uncovered and conclusions drawn can still be useful
as a description of those aspects of the economy associated with trade. We likewise
expect that extensions to the yard-sale may be necessary to provide a more complete
description, but find this not to be a failure of the model, but rather relegate it

contextually; incomplete does not mean outright wrong.

2.5 Rescaling Invariance

In the YSM, the global wealth scale is arbitrary. The act of global wealth rescaling
commutes with the trading transactions, because each trade will also rescale by the

same fraction. That is, if we rescale all wealths by a factor R,

w—w =Rw = Aw — Aw' = RAw (2.1)

If we define the collection of wealths in the system as {w;} and a rescaling operator
R and a trading operation by 7, then RT {w;} = TR {w;}.

The first use of this property is that it tells us that the overall wealth scale of the
bare YSM is a free parameter. Hence, we may normalize the total wealth W = " w;
in the system as we deem appropriate: generally to either W =1 or W = N, so
that the initial wealth for each agent is 1/N or 1, respectively. Moreover, we are
free to switch between normalizations at will, as the overall wealth scale is decoupled
from the dynamics. Additionally, we will also find this property to be of good use
in growing systems, wherein the typical (or total) wealth of the system grows in a

predictable way, and this overall growth factor can be scaled out.
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Figure 2.1: The wealth condensation phenomenon. The fraction of wealth held by
the richest agent in the system is plotted as a function of the number of trade for
ten independent runs. N = 100, o = 0.1

2.6 Simulation Findings

We begin by exploring the YSM via explicit simulation without recourse to theoretical
treatment. After, in the subsequent section, we will explore theoretical arguments

which explain these facts via mathematics.

2.6.1 Wealth Condensation

One of the most conspicuous and immediate properties of the bare YSM is that after
a large number of exchanges, a single agent will hold nearly all of the wealth in the
system , as shown in Fig. Statistically, the longer the system is run, the
greater the fraction of wealth which is held by the largest agent, increasing towards
1 as t — oo. This property has been termed Wealth Condensation . Likewise,
every other agent will continue to decrease in wealth, asymptotically approaching 0
over time. At first glance, this is surprising, as every trade is fair in the sense of
an expectation value. Nonetheless, we will find in the following sections that the
compounding effect of multiple trades is systematically biased against poorer agents.

The wealth condensation phenomenon establishes the bare YSM as a nonergodic

model; we cannot follow the time trajectory of a single agent in order to sample
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the ensemble of agents. This is in itself quite remarkable from the perspective of
academic economics, which often posits a prior: that the economy can be described
by an ergodic process (q.v. Sec(L.4)). Thus the YSM shows that this assumption can

be violated by even a very simple non-equilibrium model.

2.6.2 The theromodynamic limit and scaling with system size

Statistical mechanical formulations generates systems which generally converge to-
wards a distribution in the thermodynamic limit, as the system size N grows to oo.
The most prototypical example of this is the central limit theorem , which demon-
strates that average of (well-behaved i.e. short-tailed) random variables converges
to the average of the variables, with fluctuations which shrink predictably as N—1/2
as N grows larger. Or, conversely, the existence of the thermodynamic limit can in
some circumstances be seen as a consequence of the central limit theorem.

Because our model is fully connected and not embeded geometrically, increasing
the size of the system is accomplished simply by increasing N, the number of agents
in the system. Hence, to establish a notion of thermodynamic limit for our system,
we need to identify what variables converge as N becomes very large.

Figure shows the evolution of the richest, median, and poorest agents in
the system for various numbers of agents. The first conspicuous property the data
indicates is that after a large number of trades, the median and poorest agents lose
wealth exponentially. Secondly, the data indicates that the evolution of the richest
agent over time scales with N2, while the median and poorest agents scale with N.
This paradoxically seems to indicate that a time-step for the system ought to be given

by both N2 trades and N trades, respectively. Thirdly, we note that by inspection

the wealth fraction for the median agents is approximately multiplicatively lower
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Figure 2.2: YSM time scaling with system size for N = 50 up to N = 10*. Left: The
plots show the maximum, median, and minimum wealth in the system as a function
on the number of trades. Right: The same data plotted against the number of trades
divided by N2, N, and N, respectively. o = 0.1
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Figure 2.3: Comparison of wealth density evolution for N = 1000 (Solid) and N =
10,000 (Dashed). Left: Rank slices in the economy over time every 10th percentile
from 10 to 90. Right: The same run, viewed in snapshots of the wealth density as a
function of rank for times from ¢ = 0 to 1000 in increments of 200. a = 0.1

with increasing N, reflecting the persistence of the initial wealth, which scales as
1/N.

The resolution to the paradox can be found in tandem with the third observation
by viewing the wealth as moving through the strata of the economy which are defined
by the relative rank in the economy: That is, the ith richest agent has relative rank
i/N. Likewise, we change normalizations from wealth fraction to wealth density, such
that each agent begins with wealth w;,;; = 1 regardless of system size.

Figure shows that under this normalization scheme, two large systems of
differing sizes follow approximately the same evolution. We thus define a single
time-step for the system to consist of N trades and an associated time variable
t = (# of trades)/N.

We choose the terminology wealth density in light of this convergence; since for
large IV, the wealth as a function of relative rank becomes independent of N, we are
motivated to seek a description of the system in terms of a wealth density function,
w(z,t), where the relative rank x varies quasi-continuously from z = 0 to z = 1. The

wealth density can be integrated across ranks to obtain a quantity of the total wealth
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Figure 2.4: The fraction of the richest agents, f, that hold a given fraction of the
wealth against time for condensation fractions of 80% and 99%. The dashed blue line
is included to guide the eye, and represents a power law with exponent —1. o = 0.1,

N = 10, 000.
in the system. The wealth density function can then be subject to the normalization
constraint fol w(z,t)dxr = 1, also independent of N.

Under this scheme, we see in figure that the wealth in the system collapses
to a small fraction of the agents f in a number of trades that that scales with % In

examining only the richest agent in the system for different system sizes, the fraction

f of the economy being examined scales down as f ~ %, so that the number of
trades for the wealth to condense to a single agent scales approximately with N2,

resolving the paradox from figure 2.2]

2.6.3 Scaling with «

We now turn to investigate the role of the trade fraction parameter v on the dy-
namics of the system, and to answer the following questions: What phenomena, are
independent of «, and what phonomena are dependent on a? How do the latter
change with a? The answer to these questions is paramount in light of the not only
of the fact that the appropriate value of a to model the real world is yet unknown,

but also that it seems quite possible that a may vary from time to time, place to
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Figure 2.5: The fraction of the agents that are richer than the initial wealth, plotted
for various trade fractions a. « varies from 1 to 0.003125, a factor of about 300.
Right: The same data plotted against the scaled time ot, showing a scaling collapse
for values of a which are not close to 1. Small deviations from the scaling collapse
are just visible for a = 0.9 and clear for « = 1. N = 10,000

place, and market to market. It’s furthermore realistic that e may vary stochastically
from trade to trade, a possibility which we will address in section. [3.3]

Intuitively speaking, since « scales the amount of wealth traded in each trade,
one expects that increasing v will increase the overall rate of wealth transfer through
the economy. Figure demonstrates this by plotting the fraction of agents above
the initial wealth in the system: The larger «, the faster agents lose wealth and fall
below the mean wealth. But moreover, we find also that these rates can be aligned
via a reparameterization of time from t to a®t. It is worthy of note that this collapse
takes place only when « is not close to 1, however, the collapse is fairly good even
up to a = 0.9.

In figure 2.4, we see that the same collapse is visible regardless of the wealth
threshhold examined. This indicates that within the collapse regime, the only effect

of o is to speed up time by a factor o?.
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Figure 2.6: Richest fractions above thresholds versus scaled time, showing conden-
sation scaling with o?. Threshold values: 10%,10,10~!,107%. N = 10,000
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2.6.4 Mobility

Rank Correlation Function

Another interesting economic variable to be examined is the mobility of agents within
the economy, that is, how the rank of an agent will fluctuate in time. One simple
way to characterize the mobility is to analyze the correlation of agent rank. At time
t1, the internally labeled agents, 7, are sorted by wealth and given a rank, n;, from 1
to N. The ranks are recalculated at t5, and the rank correlation for the two sets of
ranks n; and m; is then given by the Pearson Correlation coefficient for the ranks,

also known as Spearman’s rank correlation coefficient [81]:

N _

Cl(t,t2) = Z

- onam)

— m;)

T (2.2)

This makes for a useful measuring of mobility for a few reasons. Firstly, the
correlation function is invariant under rescaling of the data, and so is the same
whether or not we examine the ordinal ranks of the agents or the relative ranks,
x; = n;/N. In the same vein, a function of rank will be insensitive to the distribution
of the data, leading to the easily computed limit of C'(¢;,t3) = 1 when the ranks of
the agents have not changed from ¢; to t5. This is particularly important in our case
as functions of the wealth of the agents tend weight agents vary differently. We can
then compare the correlation between t and ¢ + At to examine the mobility as a

function of time:

C'as(t) = C(t, t + At) (2.3)

This is shown in figure 2.7, The data indicate that over time, the system decor-

relates more and more slowly, asymptotically approaching a fixed-rank economy,
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Figure 2.7: Rank correlation Cf(t) against time and against rescaled time ot for
various «. Right: The data asymptotically approach total correlation roughly as
a power law, with a kink around ot = 103, associated with bankrupt agents (see

figure 2.8 N = 10,000

with agents effectively quenched (in the sense of fixed) to static ranks in the econ-
omy. There is a noticable kink and other erratic behavior in the data around
a’t = 103, which can be attributed to bankrupt agents; those whose wealth has un-
dergone underflow below the minumum representable wealth, approximately 10738,
Bankruptcy causes the presence of multiple agents at the same wealth, and this causes
agent rank to become not well-defined. Idiosyncracies of the sorting algorithm may
then over or underestimate agent correlation, depending on how the agents at zero

wealth are ordered.

Bankruptcy

We likewise show bankruptcy for the agents in fig 2.8, demonstrating that agents
do become bankrupt around ot = 103, giving rise to the second order discontinuity
in fig 2.7l For a = 1, the number of bankrupt agents is much larger; this is to be
expected, as in this limit of the model, every time a poorer agent loses, they become

bankrupt. Thus approximately half of the agents are bankrupted per time-step,
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Figure 2.8: The number of bankrupt agents in time.
leading to the scaling 1 — B(t) ~ 27"

Permutation correlation

The permutation correlation is the correlation of the permutation of the agents which
ranks those agents; that is, it is the inverse function R~ of the rank function R(l) =
n; L = R™! gives the label of the agent at a specified rank. The value of the
permutation function is that it is sensitive to agents who have not changed rank
whatsoever, however, for agents which have changed rank, since the agent labels
are arbitrary, the permutation function essentially gives a random number. In this
way, the permutation correlation function allows us to see when agents have become

frozen in to a set place with unchanging rank. Mathematically, it is written

(0-L(t)0-L(t’)>%

Pt #) = ZN? (L(t): = L) (L;(t") = L(t'),) (2.4

and we adopt the same notation for the differential correlation:

P'ait) = P(t,t + At) (2.5)

This is shown in figure [2.9. The data indicate that initially, all permutation
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Figure 2.9: Permutation correlation Py (t) against time and against rescaled time
ot for various a. Right: The data asymptotically approach total correlation, P'(t) =
1, as a power law in time with exponent —1. N = 10,000

correlations are erased in a time shorter than At = 250; Indicating that no agents
are frozen over a timescale of 250 time steps. As time passes, correlations in the
permutation appear, indicating that some of the agents are “frozen in” to their
ranks in the economy. At larger still times, the entire system becomes frozen; such
that they are roughly perfectly correlated between two times 250 time steps apart.
Further transformation reveals that the correlation is approached inversely with time,

that is, as a power law with exponent —1.

2.6.5 FErgodicity

The TM metric and effective ergodicity.

Related to the mobility is the ergodicity of the model, which we address by way of
the Thirumalai-Mountain (TM) metric. The metric is formulated in terms of
energy variable E; for particles in a fluid. In its original context, the metric provides
a test for effective ergodicity by comparing the ensemble average of e to the time

average. The time average energy for each particle is given by
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1 t
e = Z/o dsE;(s), (2.6)

and the ensemble average of this is given by

1
€= NZei. (2.7)

The energy metric is then given by the average square deviation between the time

averages and the ensemble averages:

(e; —€)° (2.8)

=1

1
Q) = —
)=+

This quantity can be related to the time correlation function of energy fluctuations
averaged over the particles. Thirumalai and Mountain reason that an ergodic system,
this correlation function is, in the long term, independent of the origin of time, and

hence only a function of the time difference t5 —t; between the times ¢; and ¢, which

are being examined for correlation. This allows them to derive the long term scaling

Qt) ~ 1/t (2.9)

The presence of this scaling relation is an indication that the energy variable
is self-averaging [80], that is that measurements on a limited sample will coincide
with calculations performed over an ensemble average. In this way, the presence of
the scaling relation indicates that the system is effectively ergodic, that is, that it is
not distinguishable from an ergodic system under this metric. Effective ergodicity is
thus a necessary but not sufficient condition for a system to be ergodic; this is an

inevitable result of assessing ergodicity through any single aggregate variable.
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Figure 2.10: The TM metric applied to three observables: The wealth of the agents,
the log-wealth of the agents, and the rank of the agents. The fact that the metric

does not fall to zero in time indicates that indeed, the system is not self-averaging.
N =10,000, = 0.1

Applying the metric

The TM metric provides a useful structure to examine the properties of the YSM.
The fluctuation metric §2 need not be applied to an energy per se; Any instantaneous
observerable of the particles (agents, here) will do. We thus examine the effective
ergodicity for three agent observables: Wealth, Log(Wealth), and Rank.

We implement the metric in the case of discrete sampling, constructing time

averaged variables sampled at regularly spaced time intervals ¢;:

ilt) = % S Ei(t) (2.10)

k<j

The data is shown in figure 2.10l Far from decaying in time, the growth of
the metric for wealth and log-wealth indicates that deviations from the system-
wide average are in fact growing with time. The rank metric is asymptotically
constant, much in line with the result for rank correlations, which show that agents

become ordered after long times. These results are hardly surprising given the wealth
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condensation phenomenon we have already witnessed, however, we give them for

comparison with our results on the system with growth in the subsequent chapters.

2.6.6 Evolution of the Wealth Distribution

Moukarzel [22] shows that when agents are well-ordered into ranks, and separated
enough in wealth such that poorer agents can be neglected, the typical wealth of an
agent evolves as

w(z,t + At) =~ w(x,t) exp(—pxdt), (2.11)

where 3 is a parameter extracted from the trading scheme, which we will exam-
ine more carefully in the next chapter. The wealth for various ranks is shown in
figure 2.11] We see that this exponential decay form appears to hold eventually,
however, it (deliberately) neglects profits from poorer agents., meaning that it does
not describe the flow of wealth upwards into the rich agents in the economy. Since
log(w) ~ Bat, we plot 1log(w), confirming that the exponential decay rate is given
by the appropriate form as a function of rank and time for some parameter 5. Cru-
cial, here, is that the onset time for this scaling depends heavily on the rank of the
agents- lower ranks take much longer to reach this scaling regime. In mathemati-
cal parlance, it appears that the convergence to the scaling regime is not uniform
convergence.

Theoretical arguments, given in the next chapter, establish that we can under-
stand the data more coherently by examining the cumulative wealth distribution,
C(z,t), of the wealth at or below a given rank. We will show that the cumulative

wealth scales with the same relation,

C(z,t+ At) = C(x,t) exp(—SrAt), (2.12)
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Figure 2.11: Exponential wealth decay per rank. Left: The log-wealth for various
ranks in the economy. The poorest agents fall to astronomically low wealths, given
enough time. Right: By scaling the log-wealths by agent rank x, we verify the
asymptotic wealth decay as exp(—pxt). N = 10,000, = 0.1

but that this relation is accurate for much shorter times, even for extremely small

ranks. This is shown from simulation data in figure [2.12
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decay as exp(—pxt) in a few thousand time steps. N = 10,000, « = 0.1



Chapter 3

Theoretical descriptions of the YSM

3.1 Purpose of this chapter

We will also develop theoretical tools and perspectives which will aid in the analysis

of extensions to the basic model here and in other chapters.

3.2 Theoretical Treatments
3.2.1 Geometric Random Walk

To understand at heart why the trading mechanism alone is nonergodic, we first con-
sider a simplified, two-agent system. Furthermore, suppose that the two agents have
wealths on different orders of magnitude, so that the poorer agent is likely to remain
poorer after many time steps. In this case, the poorer agent is undergoing a Geo-
metric Random Walk (GRW); a random walk wherein the steps are multiplicative,
as opposed to additive.

In this limiting case, the poorer trader’s wealth after T" trades is given by

wy(T) = (14 kr) (L + kr—1)...(1 + K1)w,(0), (3.1)

where k is a random variable. (In the bare YSM, k € {—a«, +a}) Determining the

distribution of the trader’s wealth after a long time is complicated by the fact that

39
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the incremental changes in later steps are dependent on those in earlier trades; as
such we cannot simply examine each step independently and invoke central limit

theorem. However, the logarithm of the agent’s wealth is more amenable to analysis:

Inwy(t) = In[(1+kr)(1+ rr_1)...(1 + K£1)wy(0)] (3.2)
= Z In(1 + &;) + Inw,(0) (3.3)

Thus, Inw can be treated as undergoing an arithmetic random walk. By exam-

wp(T)
wp(0)

ining the total growth g(¢) = In provided the distribution of x is well-behaved

enough to apply the central limit theorem, the agent will have an effective step-wise

drift 4 =< In1+ xk >, and variance 02 =< (In1 + x)? >. After many steps, the dis-

w(T)

tribution of the agent will be peaked near In 2 (0)

= 1. We can use the elementary

series for In(1 + &) to find

po= —< Y (> (3.4)
_ _i(_1)n<’j> (3.5)

The typical (poorer) trader, then, will have wealth in the vicinity of w(T) =
w(0)e"T. There is an important observation to make here: Given fair trades (those
such that neither trader is expected to gain or lose in a signal trade), < k >= 0,
and the leading term to p is negative definite. The negative-definiteness extends to
all orders for symmetric trading, such that the amount traded between the agents
is independent from which agent is likely to win. Thus, even presented with a fair

trading scheme, compounding effect of multiplicative trading will typically lead to the
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poorer agent losing wealth over time. Nonetheless, as the trading is fair, the formal
average of the poorer trader’s wealth remains stationary over time. This is reconciled
by the fact that there are exponentially rare trajectories in which the poorest agent
wins a large fraction of the time, gaining wealth exponentially. The rareness of these
trajectories balances with the grandeur of their winnings to give a finite contribution
to the average. However, as these trajectories are exponentially rare, they do not
typically appear, and finite collections of trajectories will on average lose wealth over
time, as detailed in [82]. If the trading is biased enough in favor of the poorer agent
such that p is positive, the system will not exhibit wealth condensation. For more
details surrounding this phenomenon, see [22].

The time step is defined by N total trades, giving the poorer trader 2 trades per
time step, we switch definitions from the growth per trade u to the effective loss per
time 3 = —pu/2, so that the typical trajectory at time ¢ is near w(t) = w(0)e= "t

For the YSM, the effective loss rate is 3 = a? + %4 + ... This is consistent with
the analagous continuous-time analog, geometric Brownian motion [82], wherein the
multiplicative noise term o gives rise to an overall growth term —o? via the Ito

calculus (see chapter [6)).

3.2.2 Master Equation Approach

Here, we formulate the master equation approach to the agent density function
P(w,t), starting as given by Moukarzel. [22] This generates an integral expression
for the evolution of the density, P(w, t). We then extend this approach to show that
this expression can be written as an expansion over moments of the return distribu-
tion. The truncation of this expansion to various orders gives rise to the Mean Trade

approximation, detailed in section [3.2.3] and the differential equation approach given
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in [67]. By using a generic return distribution, we extend the equation found in [67]
to more generic models. Finally, the higher order terms of the series give a route to
numerical solutions of higher accuracy, as well as a more concrete understanding of

the error involved in truncation.

Master Equation

We begin with the process defined by

Winin — Winin (1 + K) (3.6)

Wmazx — Wmazr — RWmin (37)

where k is a random variable between —1 and 1 with distribution 7 (k).

We construct a master equation for the density of agents P(w,t) at a wealth w.
We presume that the two-agent distribution function P(z,y,t) can be written as a
product P(z,t)P(y,t) of one agent density functions. The master equation then has

the form

P(w,t) = /W(/ﬁ)dm/dydzP(y)P(z)I(w,y,z,/-f) (3.8)

where I(w,y, z, k) gives the probability function for the agents entering the trade with
wealth y and z to leave the trade with with wealth w, and the factors P(y)dy and
P(z)dz account for the probabilty for the agents entering the trade to have wealths y
and z. For notational brevity we introduce P(w, t|) as the second integral, so that
P(w,t) = <P(w,t]m)>n. We can assume without loss of generality that z > y; The
transfer terms for y > z will be the same, but for the relabeling of y and z. Since the

probability factors are identical in this relabeling, the contributions due to boths of
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these labelings are identical.

Iw, y, 2 8) = Oz — y){+3(w — (L+ K)y) + 8(w — 2+ ky) — 3w — y) — 3w — )}3.9)

The first two terms correspond to gain of agents at wealth w, and the second two
correspond to loss of agents at w.

Straightforward integration in the above equation produces the expression

Plw,tlr) = —P(w)+ - i -P (1 :" R) A ( ad )+/O” Ply)P(w+ry)dy (3.10)

where
Awozij@My (3.11)

gives the number of agents richer than a wealth value w. The first term in equation
[3.10] is due to the local loss of agents who are trading. The second term is due to
the increase of poorer agents moving to wealth w due to gaining wealth percent k,
and the third term is due to the increase of richer agents moving to wealth w due to
losing wealth.

Comparing this expression to equation 19 in [67], we see that the equations are
not precisely the same; the third term appearing here differs in the sign of x. This
apparent discrepancy is resolved when averaging over the two values of x; The treat-
ment in [67] treats the cases of an agent gaining and losing wealth separately, and
as such is only consistent when the probability for those posibilities is equal. The
treatment in [22] and here is thus more general and can be applied to more general

return distributions for which (k) # 7(—k).
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Expansion by orders in

As in [67], we can expand this equation to second order in k. Explicitly doing so in

equation [3.10| produces the cumbersome result:

P(w,t|k) =+0

+kK (wP'(w)A(w) + P(w)A(w) — 2wP(w)* — P'(w) /Ow yP(y)dy)

:‘i2

+ (wQP"(w)A(w) +20P' (w)A(w)

— zP(w)* 4 2P(w)A(w) + P"(w) /Ow y2P(y)dy) (3.12)

As in [67], the second order term can be rewritten as

2

4 % (%) ([w?A(w) + My(w)] P(w)), (3.13)

where the set of partial moment integrals are defined by M, = fox y" P(y)dy. Moti-

vated by this form, we find one can rewrite the first order term as

+ K (%) ([FwA(w) + My (w)] P(w)) (3.14)

This indicates a general form. However, confirming this form by expanding equa-
tion |3.10] is quite cumbersome due to the complicated dependence on k. It turns
out that it is much easier to do this expansion in equation [3.8] before integrating.

Expanding in a Taylor series,

P(w, t|k) = / dydzp(y)P(z)i“—n {(%)nl(w,y,z,a)} . (3.15)

|
n=0 n B=0
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Notice that the model is only consistent when |x| < 1, so that there is some hope

that in practice we can truncate the series at finite n, and that the later terms in the

series are not paramount and may be neglected. This will depend, however, on the

form of P(w). By taking derivatives here, we find that the Oth order term is zero as

expected, and that the higher order terms are

Ki) Tw,y.z. a)] = 9z — ) [(~9)"6™ (w — (1 + a)y) + 46" (w — = + ay)]

a=0

- 0(z — y)[(—y)"8" (w — y) + y"6" (w — 2)]

0

_ 0z — ) (%) (—y)"8(w — y) + 6w — 2],

(3.16)

where 60 is the n'* derivative of the Dirac delta function. Inserting this into our

series expansion and integrating over the delta functions, we find

oo

Pluntl) = 355 (1) (-0 atw) + M) Plw).

n!
n=1

Physical interpretation of the series

Let us consider the first order term:

Py(w, ) = oy ([-wA(w) + My (w)] P(w))

This can be interpretted as a current equation:

OP 0
ot ow

(3.17)

(3.18)

(3.19)

(3.20)
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Which can further be decomposed in terms of the velocity of the agents through

wealth space:

Ji(w) = vy (w) - P(w) (3.21)

v1(w) = k(wA(w) — My (w)) (3.22)

Where the velocity of the agents at w is given in terms of the wealth distribution via

w = k(wA — M;(w)). (3.23)

Here each agent here agent gains a return fraction x of their wealth for each richer
agent they trade with, and loses a corresponding amount due to the the poorer agents
they trade with. When we average over the distribution of k, the first order term
gives the net motion of agents due to the expected value wealth transfer due to all
possible trades.

The second order term is

or k% 02

B = 2 gz (W AW) + My(w)] P(w)) (3.24)

Writing this as above in the form of a current, we have

Jo(w) = —n2% ([w?A(w) + Ma(w)] P(w))

— —R2A(w)P(w) 4 K2 <%2A(w) 4 %Mg(w)) %P(w) (3.25)
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This suggests a fluid velocity vo(w) = k?wA(w); this term corresponds to the
typical wealth loss due to the geometric random walk of poorer agents relative to

richer agents. The second term is a nonlinear diffusion with diffusion coefficient

Dy(w) = K2(% A(w) + 1 Ma(w))

Truncation of the series

3.2.3 Mean Trade Theory

Herein we develop the Mean Trade theory (MT) approach to analyzing the YSM.
The MT approach is somewhat akin to a mean field theory of classical statistical
mechanics; We examine an agent from the ensemble and consider the collective action
of the interactions which involve that agent. We then construct an effective theory by
replacing the statistically fluctuating interactions with their typical behavior, which
is then treated behaving deterministically (with no fluctuations). A key difference
between the MT model for the YSM and a Mean Field theory is that the agent’s
rank in wealth space is retained in the MT model as a relevant parameter. This
means that agents are not all equivalent, so that the MT can retain the character of
rich-poor interactions.

As we discussed in section concerning the GRW, when two agents trade
many times, the poorer agent will typically lose a fraction of their wealth. The first
basic ansatz of the MT is to assume we do not lose too much information about the
wealth distribution by replacing the trading scheme with a simpler one wherein the
poorer agent always loses a wealth fraction which, for future parsimony, we call §/2:

B

wpoor — (1 - E)wpoorv Wrich = Wrich + Ewpoor (326)

Although this scheme is deterministic, it still requires knowledge of (a) which agent
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is poorer and (b) how much wealth the poorer agent has in order to compute the
amount traded.

The second assumption of MT is that although the interactions take place between
randomly selected pairs of agents, due to the large number of trades taking place, we
can apply the process evenly to all agents at once. The normalization of N trades
per time step fixes this rate such that each agent is expected to undergo 2 trades per
time step.

Together these assumptions generate the process which evolves wealths under the

MT of the YSM. The wealths update as follows:

R s
]:wj<w1-
where R; = ) jawj>w, 1 18 the rank of agent ¢- the number of agents richer than agent

1. Equation fixes the normalization of 5 such that 3 represents the loss fraction
per time step that an agent experiences due to trades with richer agents; the factor
R;/N accounts for the probability of trading with a richer agent. We will see by
comparison to YSM simulations that the MT process in equation provides a
useful description of the wealth distribution of the system.

One of the most important practical consequences of these assumptions is that
agent rank in the MT is preserved. From the perspective deriving analytical tractabil-
ity, this is a good thing. On the other hand, this means that M'T does not contain
information about the mobility of agents within the economy; to obtain estimates of
these variables, we will have to supplement MT.

In considering a system composed of a large number of agents, it will be useful to
consider a representation of the system which, in the limit as N — o0, is independent

of N; in essence, we seek to deal with a thermodynamic variable. We rescale wealth
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so that the total wealth at time t = 0 is fixed at W (0) = 1 and rescale rank to
the continuous rank = = R;/N, which varies between 0 and 1. Then, the wealth
distribution of the system is dedscribed by a ranked wealth density function w(z, t)
— that is, the wealth in any given segment of the economy is given by the integral
over w. At t = 0, each agent has the same wealth, so that w(z,0) = 1. Converting
the mean trade process into the continuum language, we obtain the mean trade

differential equation:

dw(x,t !

% = —zfw(z,t) + ﬁ/ w(a!, t)da'. (3.28)
Notice that we have implicitly treated time as a continuous variable as well. The
treatment of these variables as continuous is not problematic, as the appropriate

discrete version of any results can be recovered by straightfoward conversion, correct

up to correction terms which vanish as N — oc.

Matching

An advantage of the MT approach is that it captures universal properties of multi-
plicative trade models; Regardless of details, a YSM model with any general return
distribution 7(k) can only generate wealth drift that is in proportion to the wealth
of the poorer agent, because there are no dimensionful parameters. Moreover, state-
ments that can be made independent of the value of g will be true for a large class of
models, as MT theory captures the behavior of the system due to this generalized net
drift. The only parameter in MT is the typical loss fraction #. As in the analogous
mean field theory, there are many asset exchange models which may map to the same
MT behavior; Since 5 must characterize the whole of the return distribution 7(«)

(see section [3.3), many return distributions will match to the same value of 5. While
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within the domain of the validity of MT, the distribution of the wealth will behave
similarly. However, the individual agents themselves will behave differently; for ex-
ample they may exhibit higher or lower mobility or wealth variation over time. The
MT approximation scheme will most accurately return distributions with low vari-
ability; the extreme limit being the “Greedy” multiplicative model of [59], wherein
the poorer agent always loses. In this case, under our normalization, § = 2a. How-
ever, the MT scheme will break down as the expected variability of an agent’s wealth
increases, as detailed in [22], if the trades are sufficiently biased in favor of the poorer
agent, there is eventually a phase transition as the effective drift 5 passes through
zero. At f = 0, the MT approach predicts no change in the wealth distribution-
all effects, then, are diffusive or higher order. Near g = 0, the diffusive effects will
dominate. When § < 0, MT predicts that the wealth distribution collapses to a
delta function at the mean agent wealth, whereas the actual system converges to a
steady-state whose shape, then, depends on the diffusive motion.

The matching in the bare YSM can be determined by examining the GRW; Since
a poorer agent will typically lose a fraction a?/2 per trade, the appropriate matching
is 8 = a?, as given in the theory of the GRW with a finite number of agents [82]. In
MT, the picture presumes that this lost wealth is distributed equally over the richer
agents; this maintains the conservation of total wealth by trading, and reflects the
fact that the wealth of the richer agent does not affect the trading process. This
assumption may break down when the trading agents are close enough in wealth

that they may change rank with one another.
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3.2.4 Connection between MT, GRW, and master equation

Here, we give show how the three theoretical approaches are related. The MT ap-
proach to solving the system is closely connected to the master equation given in
section [refsection]; The smooth, fluid-like flow of the mean-trade picture given by
the wealth evolution equation w = —xfw + 3 fxl w is equivalent to the smooth flow
from the first order effects of unfair trading, with 8 being the mean wealth fraction
< K >= fjl km(k)drk lost by the poorer agent. In the bare model with a fair coin,
this term does not contribute.

However, the second order of the master equation also contains a similar loss
term—one with coefficient k? (see section . This is precisely the loss expected
due to the nonlinear stochasticity of the geometric random walk. However, the gain
term which balances this loss is buried in the nonlinear diffusion coefficient- implying
that the wealth gain is local to the wealth loss- while typical agents at wealth w lose
wealth due to the loss term, there are rare agents at the same wealth w which gain
enough wealth to balance the loss, netting wealth conservation.

However, the locality of this effect (that both processes occur at the same wealth
w) is an artifact of the fact that the master equation presumes infinite ensemble of
agents. To see this, consider the formal average of the wealths in the infinite ensemble
of the GRW, of which the time average is indeed zero. Typical agents lose wealth,
but (exponentially) few gain an exceptionally large amount of wealth, such that the
net is zero. However, this is an oversight—in any finite GRW ensemble, the agents are
expected to lose wealth. If they are undergoing this random walk by trading with a
more wealthy ensemble of agents, then clearly the richer agents will gain wealth lost
by the poorer agents. Moreover, the nature of the system implies that all of the rich

agents are equally likely to absorb the wealth from the poor ensemble. Motivated
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by this, the MT approach takes the wealth lost by poorer agents in a GRW fashion,
and distributes it evenly among the richer agents.

We can summarize by saying that the M'T approach takes the wealth from agents
as predicted by the GRW and master equation approaches, and distributes it as
prescribed by the finite ensemble GRW. This approach is very sensible when there
are not exponentially many agents in any given region of wealth space. [82] As such
we expect that the M'T approach will not necessarily be valid very near the initial

condition given by wealth equality for all agents.

3.2.5 Solution to bare YSM under MT

The MT differential equation for the bare YSM ([3.28)) can be solved for its time
dependence by examining the cumulative function W(z,t) = fxl w(z! t)dz"; W(z,t)
counts the total wealth of all the agents poorer rank z. In terms of the cumulative

function, Eq. becomes

o . 0
%W(x,t) = —5%(95‘/‘/(33775)) (3.29)

Using the boundary condition W (1,t) = 0, we can integrate this equation to get

W(z,t) = —PxW(x,1). (3.30)

The transformation to the cumulative ranked wealth, W (z,t), has resulted in a local

differential equation, which is much easier to work with. This equation is solved by

W(z,t) = W(x,0)e P or (3.31)

w(z,t) = w(x,0)e ™ + W (x,0)te . (3.32)
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The first term in represents the loss of initial wealth due to richer agents,
and the second term represents wealth gained due to poorer agents. The principle
advantage of this treatment over the one given in Refs. [21,22] is that we no longer
neglect the wealth gain experienced by the richer agents in a trade, which has a
substantial effect on the richest agents.

In the long-time limit, as ¢t — oo, w(z) — 0, and the economy becomes im-
poverished. However, to properly recover the wealth of the richest agent, we must
remember that although the economy may be quite large, it is inevitably finite. The
wealth of the richest agent is the wealth contained between 0 and dz = 1/N. Thus,

the wealth of the richest agent is given by

Wrichest = W(0,) = W (dz, t) = W(0,0) = Y " w;(0)e /N, (3.33)
i#0
That is, the richest agent exponentially relaxes to having all of the wealth. This

confirms that number of trades required for wealth condensation to complete scales

with NZ2.
3.3 Generalized return distributions

One can very easily consider a more general family of asset exchange models. A good
formulation for doing so is as in Ref. [22] by introducing a return distribution which
characterizes the probability for fractional wealth change by the poorer agent in an
exchange. The return distribution (k) is the probability distribution for the poorer
agent to gain a wealth fraction . In order guarantee that the wealths in the system
are always positive, —1 < k < 1. For example, in the bare YSM, the distribution is

m(k) = 20(k — a) + 30(k + ).
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Biased coin The introduction of a biased coin introduces two possibilties. When
the coin is biased towards the richer agent, the resulting wealth distribution is quite
similar to the unbaised coin. This can be reconciled under the mean trade model in
section m The dynamics, however, are faster-scaling with « instead of a®>. When

the coin is biased towards the poorer agent, the wealth distribution stabilizes.



Chapter 4

The YSM with arithmetic growth

4.1 Form of the Growth and Dimensional Considerations

Here, we study arithmetic growth, wherein the growth is additive and constant in
time. We begin by generating the growth uniformly across the agents, so that each
agent gains a wealth g after each time step. Recalling that the YSM trading mech-
anism does not itself invoke any wealth scales, the only wealth scales in the system
are the initial wealth wq for each agent, and the growth per agent per time step, g.
We use the normalization such that ¢ = 1 and vary wqy to explore the evolution of
the system for different initial wealths. Using wy ~ g corresponds to fast growth,

and using wy >> g corresponds to slow growth.

4.2 Developing steady-state

Regardless of the value of wy, the input growth stabilizes the YSM, by prevent-
ing agents from falling to zero wealth. Figure demonstrates the ranked wealth
distribution as a function of time for large and small wj.

For small initial wealth, the typical agent wealth grows, with the poorest agents
leveling off much more quickly than the richer agents. The distribution settles to-
wards a power-law form in this way; from the poorest agents up. Starting with a

large initial wealth presents a similar but reflected picture: The typical wealth in the

%)
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Figure 4.1: The evolution of the wealth distributionfor arithmetic growth shown
through the survival function . On the left, the initial wealth in the system is equal
to the growth per time step. On the right, the initial wealth is much larger than the
growth, wy = 107g. The distribution appears approximately the same for long times.
Note also the power law form of the distribution. N = 1000, a = 0.25

system shrinks, with the poorest agents more quickly converging to the power-law
form. We thus see that the long-term form of the wealth distribution is independent
of the initial wealth. This is at odds with the notion that the total wealth in the two
systems is different. The difference is accounted for by the wealth of the richest few
agents.

In the long-term limit, all of the growth in the system is absorbed by the richest
agent, whose growth remains even when the second agent has reached steady state,
as shown in figure[£.2] Thus, the economy has not reached an equilibrium per se, but
rather has a steady-state form resulting from an effective driven-dissipative system,
where the driving force is provided by the growth, and the dissipation is provided
from within the trading model by the richest agent. Justification of this picture
implies the time-independence of the long-time form of wealth distribution.

Furthermore, since this late-time distribution is a risidual, finite amount of wealth,

it goes to show that in some sense wealth condensation is not broken. On the other
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Figure 4.2: Evolution of very rich agents under arithmetic growth. Left: In the long
term, the richest agent grows approximately linearly and asymptotically approaches
having all of the wealth in the system, regardless of the initial wealth in the system.
Right: The evolution of the total wealth, the richest person’s wealth, and the second
richest person’s wealth for large and small values of the initial wealth. This shows the
time scale at which the second richest agent reaches a steady state, around ¢ = 10°
time steps. N = 1000, a = 0.25

hand, the wealth condensation has been weakened, in the sense that in the thermo-
dynamic limit, all but a set of measure zero of the agents belong to a steady-state

wealth distribution, the nature of which we proceed to investigate.
4.3 Varying «

How does the trading parameter o affect the shape of the steady state distribution?
Simulations, shown in figure show that the shape of the distribution is fairly
consistent across a wide range of a: a power law with approximate index -1/2.
However, the scale of the distribution varies noticeably with «.

We can find this wealth scale by simple dimensional analysis on the parameters
of the system. The parameter list is small: only g, wy, and «. However, since the

steady state of the system does not depend on wy, it cannot factor into any formula

wealth

for the scale of the system in steady state. The dimension of g is 2%

. « is formally

dimensionless, but we know that it generates a wealth decay timescale such that
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Figure 4.3: The arithmetic growth steady state distribution for various a. The
data indicate that regardless of the value of «, the rich agents follow a power law
distribution with cumulative exponent roughly equal to -1/2. The data was recorded
at a time given approximately by ¢ = 20000/a? to ensure that the systems had
reached the steady-state regime. N = 10,000

a? has dimension of time from the MT and other theoretical arguments given in
chapter 3. Thus, the only viable wealth scale to be built of the parameters is a

wealth which scales as

g

By scaling the wealth thusly, the distributions approximately collapse, as shown
in figure Economically, this scaling gives credence to the simple logic that since
poor agents suffer under the YSM wealth exchange, when the exchange is slowed
down, they are able to save up more of their growth. We also note the more counter-
intuitive result that scaling this applies to the rich agents as well, as their position
is buoyed by the wealth of the poor ones. Nonetheless, many measures of inequality
in the system, such as the Gini coefficient and the Pareto Index will remain roughly
invariant through changes in «, since the distribution only changes by a scaling

factor. The only agent who suffers, then, is the richest agent, whose domination is
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delayed until the growth has supplied sufficient wealth to the rest of the system.
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Figure 4.4: Scaling collapse of the steady-state distributions for various «, demon-

strating that trading in smaller amounts actually benefits the bulk of the economy.
N = 10,000

Changing the value of « also adjusts the time-scale for approach to steady state
in much the same way. The length of time it takes to approach steady state is
dictated by the slowest time scale in the system. It is important to note that the
multiplicative motion of richest, low rank portion of the economy is slower than that
of the typical, poor agents. The timescale ¢ scales with the rank x ast ~ 1/x, as to
the rate at which an agent trades with a richer agent is proportional to 1/z.

This consideration by itself explains why the richest agent does not reach steady
state; the richest agent does not undergo any multiplicative motion, and hence there
is no combination of parameters to generate a time scale to reach steady state.

Likewise, as N — 00, the rank of the second richest agent diverges. This means
that in the thermodynamic limit, the time scale for the system as a whole to reach
steady-state is ill-defined. However, we can still define an effective time-scale for a

specific nonzero rank of the economy to reach steady state.
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4.4 Pareto Index

Removing the richest agent, this steady-state wealth distribution carries a Pareto
index just under k£ = 0.5 over the bulk of the distribution. As seen in figure [£.4] the
value of the index does not depend strongly upon «, the trading percentage. The MT
approach for this system predicts an exponent of k = 0.5, as shown in section [4.6|
The value of k ~ 0.5 is far too low (skewed towards the wealthy) to fit the
empirical data for a real economy. Realistic Pareto indices for income form a range

from about 1.5 to 2.5, and for wealth closer towards 1, as described in section [1.3]

4.5 Mobility

For the bare YSM, we found that the mobility of the agents decreased steadily in
time. The quasi steady-state nature of the YSM with arithmetic growth coupled
with the wealth fluctuations induced by trading allow for the economy to exhibit
mobility. The richest agent is excepted from this as this as their wealth grows apart

from the economy.

4.5.1 Rank Correlation

While the structure of the wealth distribution remains largely unaffected with changes
in «, the mobility of the economy is strongly dependent on «. This is visible in fig-
ure [4.5] which plots the rank correlation between adjacent time-steps for various .
In steady state, the decorrelation rate is approximately proportional to o?.

The structure of figure shows that initially, agents decorrelate very quickly.
The correlation function then approaches a maximum value, whereupon it decreases
somewhat to the steady state. The interpretation of this is as follows: Initially, the

diffusive motion of the agents and their localization in wealth space allow an agent
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Figure 4.5: Rank correlations against time for arithmetic growth. Left: C}(¢), the
correlation of agent ranks in adjacent time-steps. Right: Rescaling, we find that the
residual decorrelation is proportional to a?.

to traverse large ranks with only a few trades. As the agents spread in time, the
spreading effect of the YSM trading enhances correlations, as the YSM dynamics
tend all ranks to distinctly different wealth scales. However, this trend is inhibited
when the poorer agents approach their steady-state wealth, as in this state, a non-
trivial fraction of the economy, the poorest end, is actually 1) fairly localized in

wealth space and 2) undergoing multiplicative fluctuations.

4.5.2 Rank-Rank transfer data

In order to better visualize these facts, we give plots of the rank of the agents between
two times. A completely immobile economy has a rank structure which is static in
time, giving a diagonal line; the deviations in these rank-rank plots from a diagonal
demonstrate mobility in the economy.

We have overlain these rank-rank plots for increasing time intervals in figure [4.6]
This gives a sense of the mixing time for agents to become decorrelated; when the
agents fill the plot uniformly, they have completely decorrelated.

Striations are visible in figure [4.6] across one time-step. These striations are
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Figure 4.6: Rank-Rank transfer plots for various « over various time scales. Each

graph shows the migrations of agents through ranks by comparing their ranks at a
reference time to a time At later.
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present due to the discrete formula which dictates wealth transfer in the economys;
Since the economy is in steady-state, if two agents of both either win or lose in
trading, then they will be transfered to approximately the same rank; as agents with
slightly different wealths will then map to slightly different wealths in a continuous
fashion; This is a reflection of the continuity of the functions w — (1 + a)w and
w— (1 —a)w.

For o << 1, these striations are nearly symmetrical, indicating that a losing
agent will lose about as many ranks as a winning agent will win. On the other hand,
for v near or equal to 1, there is a strong asymmetric in the striations. This is a
reflection of the multiplicative asymmetry of the process for larger values of «; For
a = 0.9, an agent can nearly double their wealth by winning against a richer agent,
but on the other hand, on losing, loses an entire order of magnitude of wealth. This
is visible as well for a = 1 as a cloud of agents in the upper-left quadrant which have
become impoverished in only one time-step.

The graph for a = 1 is remarkable in itself and deserves some special treatment.
In this case, the wealths in the economy are nearly quantized, as a poorer agent losing
will fall to zero wealth, accruing a discrete amount when growing. Various diagonal
lines on the rank-rank transfer plot represent transitions between the wealth tiers;
vertical and horizontal lines which are aligned with the ends of the diagonal lines
represent the ranks which mark the division between the wealth tiers. Thus the strict
geometrical character of the plot is somewhat of an artifact of the artifical constant
growth in the system. Nonetheless, these lines give us some insight into the motion of
the agents between the wealth tiers and by examing their density, length, and other
characteristics we could probe the structure of the economic mobility in this economy

as a set of transitions between bands of states. For the wealthy agents, a striation is
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visible below the main diagonal-this is the counterpart to the impoverished agents
in the upper left, showing winning agents which are able to climb up the ranks
somewhat slowly.

Thus, for large «, the economy is not characterized by symmetric drift, but rather
by (relatively) slow climbs and sudden impoverishing failures. A similar picture is
available for the plots of & = 0.9 and a = 0.8.

For smaller «, the diagonal symmetry of the plots gives us the opposite picture:
Over many time steps, an agent is roughly equally likely to drift up compared to
drifting down, giving a sense of symmetric diffusive mobility.

Regardless of a, it is clear in all of the plots that poorer ranks are generally more
mobile than richer ranks. There are two reasons for this. The first is that poor ranks
are more likely to undergo larger, multiplicative fluctuations than richer ranks, who
predominantly trade with agents poorer than themselves. The second is that the
poorer agents are more closely spaced than the richer; we can see from the striations
in this plot as well as figure that a multiplicative change in w translates to a
much larger change in rank for a poor agent than for a rich agent; so it must go with

any heavy-right-tailed wealth distribution.

4.5.3 TM metric

We can likewise examine the TM metric on a system incorporating arithmetic growth
after a suitable equilibration time. Figure 4.7| shows the TM for wealth, log-wealth,
and rank on a system with o = 1. The metric grows linearly for wealth. The
absorption of the growth by the richest agent explains the wealth metric- the average
wealth in the system is growing, but most of the agents are not. Thus, the deviations

from the mean are growing, and so likewise with the time-averaged deviations and
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Figure 4.7: Unmodified TM metric for « = 1, N = 1000, indicating limited economic
mobility.

thus the metric. For log-wealth and rank, the metric shrinks in time; however, the
decrease is very slow—slower than a power law—indicating that the metric for these
quantities is likely asymptotically approaching a constant. We interpret this as also
connected to the richest agent, who presents a small but finite persistent deviation
from the system averages.

In light of this possibility, we modify the TM metric € to a metric 2 which
examines the fluctuations in the bulk of the system, ignoring the richest agent. The
results are shown in figure

The wealth metric fluctuates greatly, regardless of a. This is due to the highly
unequal distribution of wealth in the system and the long times that would be neces-
sary for each agent to become rich. The log-wealth and rank metrics are more tame,
as they do not weight this inequality so severely. These metrics are also shrinking in
time, indicating that fluctuations in the system are steadily erased by the dynamics;
agents are completely mobile throughout the system.

As indicated in section [2.6.5] an effectively ergodic system will have a TM metric
which decays as 1/t. This scaling behavior is evident and present to some extent.

For o = 1 it is evident that this is not the case for agent rank, which resembles
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Figure 4.8: The modified metric which examines the fluctuations of all but the richest
agent, for various a.
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the unmodified metric; however, it may be the case for the log-wealth of the agents.
For a = 0.9 the scaling appears for both rank and log-wealth. For moderate values,
a = 0.5, the scaling form appears at late times.

For small o, the scaling form has not appeared, but is neither ruled out by the data
present. It seems quite likely that the system is effectively ergodic, however, the time-
scale over which this behavior is evident is beyond the reach of a simple simulation.
This is corroborated by the rank-rank transfer data for small o, which indicates that
the agents are diffusive among ranks. For a non-interacting particle, diffusion within
a bounded domain is necessarily ergodic; for this collection of interacting particles in

steady state, we expect that background can be treated as approximately stationary.

4.6 Arithmetic growth in the MT approximation

To handle the case of arithmetic growth, let us introduce a growth function g(z)
which gives a constant-in-time growth to agents which may generally depend on the

rank of the agents. The dynamical equation becomes

w(z,t) = —Prw + B/ w(2!, t)dr' + g(x) (4.2)

In tandem to introducing g(z), we introduce likewise a cumulative growth func-

tion G(z) = fxl g(z')dx’. Then, integrating as in the no-growth case, we see that

W(x,t) = —BxW(z,t) + G. (4.3)

This is solved by

Wz 1) = g(x)e—r= + ;—xG(x), (4.4)
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where ¢(x) can be used to match the initial conditions.

Evidently, the steady-state is given by

W) = 2 (45)
_9l@) , Gl
ws(x) = B + R (4.6)

Notice that while the steady-state formally exists, the time required to converge to
the steady-state diverges as we approach x — 0, that is, for the richest agents in
this economy. Except for the richest agent, every agent will eventually converge to
the steady-state value. Hence, the richest agent will eventually absorb all of the
growth, growing at a rate G(0). Specifying uniform growth g(z) = go, we have
G(x) = go(1 — z), and the steady state is

wg(x) = %. (4.7)

Notice that The cumulative wealth distribution is the inverse of the ranked wealth
function, hence the cumulative distribution that asymptotically approaches c(w) ~
w™2, or a Pareto index of 1/2. Note that this result is robust in that it does not
depend on the MT rate 5. This value of the Pareto index represents a model economy

with too much wealth disparity to be realistic.

4.7 Skewed arithmetic growth
4.7.1 Constrained arithmetic growth

Alternatives to uniform growth may be considered.

If we introduce skewed arithmetic growth as a function of relative wealth while
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fixing the overall growth, there are a few possibilities. Let us start with constrained
growth, where the growth of the total system is fixed at a constant in time.

First, if the growth is monotonically increasing with relative wealth, all but one
agent will go bankrupt; Inequities in the system are self-reinforcing. As an example,

suppose that we consider a skewed distribution of growth

wy

ow; = oW —-, 4.8
w S (48)

where the normalization factor S is the sum

S=> uj. (4.9)

The skew parameter vy ranges from 0 to 1; v = 0 returns the distribution of growth to
the even distribution, above. If we examine the rescaled wealth for v > 0. As in the
unskewed growth, the richest agent will eventually come to absorb a large fraction
of the growth. However, in this case, the richest agent’s increase will decrease the
absolute growth of the other agents, thus decreasing their wealth.

On the other hand, if the growth is decreasing function of wealth, the situation
may be reversed. This may depend on the precise form of the growth, but certainly
for the specific model v < 0, the poorest agents will not be impoverished, for in the
limit that a set of agents becomes largely impoverished, they begin to receive the
dominant fraction of the wealth. On the other hand, as the richest agent in this

model will receive less and less growth as they become more and more wealthy.

4.7.2 Unconstrained growth

If we introduced skewed growth where the total growth is a function of wealth as

opposed to of relative wealth, we obtain a developing steady-state, provided that the
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growth function is non-zero in the limit where an agent’s wealth approaches 0.

Let us treat growth which is a function of rank. We can work backwards to
engineer what forms of arithmetic growth might lead to a realistic Pareto index.
Assuming that the richest segment of the economy is well-described by a Pareto index
k, we have c(w) ~ w™*. The clear ansatz for a growth function is G(x) ~ C — Ax4
near x = 0 for some constant C' and some power ¢. Inserting this into Eq. we
find

227 o A(g —1)z9 + C. (4.10)

There are two possible solutions. The first is ¢ = 1, which is the uniform growth
case already covered. The second is C' = 0, with A < 0 so that the total growth is
positive, and ¢ < 0 to ensure that g(z), the agent-wise growth, is positive. Then the
Pareto index given by k = ﬁ, ensuring that k£ < 1/2. The wealth disparity is even

greater in this case, and which puts us even further from a realistic Pareto index.

4.7.3 On physical expectations for the growth

From a more physical perspective, if we consider modifying the growth function, we
can only lower the disparity between the rich and the poor by reducing the growth
function for the rich relative to the poor. The assertion that the assets of the richer
agents would actually inhibit their ability to grow is incredibly counter to economic
intuition. Hence the arithmetic growth model will always have a wealth disparity
at least as strong as in uniform growth; we thus conclude that arithmetic growth
models cannot give rise to realistic Pareto exponents. It is certainly the case within

the context of MT theory.



Chapter 5

The YSM with geometric growth

Next, let us examine geometric growth. Economic growth rate is usually measured
as a fractional growth rate. If a growth rate remains constant, then the system
undergoes a geometric (exponential) growth over time. We use a growth rate p and

grow the system such that the total wealth W grows as

SW = pW (5.1)

during each growth step. This assumption may reflect, for example, an economy in
which some of the wealth is used to create technology which enables more efficient

production of wealth.

5.1 Uniform geometric growth

We initially consider uniform growth, where each agent receives the same amount of

wealth in each time step:

ow = W/N (5.2)

In this case, all agents grow without bound; see figure The overall distribution

grows at the same rate as the total system, and so when we rescale the system to

71
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Figure 5.1: The wealth distribution for a = 0.5, = 0.001, N = 10,000, taken at
different times. The growth in the system leads to a rescaled steady state, seen on
the right as a constant additive change in the Log of the wealth in time.
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Figure 5.2: The rescaled wealth distribution for a = 0.5, = 0.001, N = 10, 000,
taken at different times; the rescaled wealth is in a steady-state.

wealth fractions, this distribution is in steady-state, see figure[5.2] For this reason we
term the system to be in a “rescaled steady state”. This rescaled steady state includes
even the richest agent, and so, unlike in arithmetic growth, the wealth condensation
has been totally broken. For the rest of the chapter we will deal in rescaled wealths

unless otherwise specified.

5.1.1 Wealth distribution

The rescaled steady state varies as a function of the model parameters. As shown in
chapter |2 the trading drives the inequality in the system with a rate proprotional

to o?; this force is contrasted with the geometric growth rate . The dimensionless
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Figure 5.3: The rescaled steady state for various trading and growth param-
eters: « ranges over the set (0.8,0.3,0.1,0.03), and p ranges over the set
(0.1,0.03,0.01,0.003). The curves are colored with respect to a?/u, which reflects
the inequality in the system. N = 10,000

constant which specifies the resulting distribution is thus a?/u. Figure shows
the steady state for various systems, with lines colored by the inequality parameter
a?/pu. The results show that the steady states are indeed very well sorted by a?/u.
When a?/u >> 1, the wealth distribution spans many orders of magnitude. When
a?/pu << 1, the agents are narrowly localized in wealth space.

The mean trade analysis of this system given in section |5.4] predicts that the
wealth distribution in the system obeys that of a power law with a finite cutoff. We
explore this possibility by ploting the wealth distribution as a function of the shifted
rank, ' = 1+a?z/p. The results, shown in figure , show that when o?/p is large,
that is, much greater than 1, the system approaches this state. Since the cut-off to
the power law likewise shrinks as this limit is approached, this gracefully explains
the large inequality seen in this limit.

We likewise would like to test the overall scale of the wealth distribution against

the mean trade prediction. Due to deviations at the extreme edges of the distribu-
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Figure 5.4: Wealth against shifted rank, showing the quality of the MT solution for
uniform geometric growth: When the inequality in the system is large, the wealth
distribution follows a shifted power law; a power law in the shifted rank =’ = 1 +
a?x/p. Thus o /p not only reflects the inequality in the system, but is also a viable
mean trade parameter which indicates the quality of the mean trade. N = 10,000

tions, it is most stable to test this by examing the scaling of the median agent. The
comparison is shown in figure [5.5 There is very good agreement between the mean
trade solution and the data. It is key to note that as the inequality increases and
the power-law form of the data takes hold, the median wealth shrinks away from
the mean wealth (which is always 1 in this normalization). This is characteristic
of heavy-tailed distributions and so this mean-median disparity holds in real-world
wealth distributions as well, as discussed in section [1.3.1]

On the other hand, we should seek a description of the regime of the system where
the mean trade parameter a?/pu is small. In this regime, the mean-trade solution
from section [5.4] confines the normalized wealths to be close to 1. The dynamics
are dominated from the deviations from the mean trade approximation—the diffusive
terms. This gives us a picture of an economy where the agents are able to drift

multiplicatively, with fluctuations decaying due to the growth p exceeding the drift
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Figure 5.5: Scaling of the median wealth for geometric uniform growth. The mean
trade solution, (1 + a?/u)/(1 + o?/212)?, (obtained in section agrees very well
with the data. The same systems are shown as in figures and N = 10,000

rate. Figure demonstrates that this is in fact the case: For o?/u << 1, the

moments of the log of the distribution converge to those for a normal distribution.

5.2 Skewed Growth

We now consider skewed growth parameterized by a skew parameter v. Each agent,

labeled by ¢, grows by an amount

wy

Sw; = W=k,

S

where the normalization factor S is the sum

S = Zw;’

(5.3)

(5.4)

Tuning over the range v = 0 to 7 = 1 continuously varies the system from uniform

growth to proportional growth, and as we move to v > 1, the growth is weighted

even more towards the rich agents. We take v > 0, presuming that increasing wealth
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Figure 5.6: The standardized moments of the log-wealth distribution. Left: The
skewness (conventionally denoted ;) is the third moment of the distribution nondi-
mensionalized by the variance. It characterizes the symmetry of the distribution
about the mean; 73 = 0 denotes no skew. Right: The excess kurtosis (convention-
ally denoted 73) is the fourth moment of the distribution nondimensionalized by
the variance. It characterizes the spread of the distribution; large kurtosis indicates
a distribution with tails, whereas small kurtosis indicates a distribution which ends
abruptly. The excess kurtosis is defined such that the normal distribution has vy, = 0.

does not decrease the potential for growth.

5.2.1 Duality with wealth tax

The fact that the rescaled wealth tends towards a steady-state distribution makes it
natural to examine the dynamics of rescaled wealth. We can reinterpret the system

by examining the wealth fractions

yi = wi/W. (5.5)

This change does not effect the trading dynamics because of the rescaling in-
variance of the YSM exchange mechanism. At each growth step, the change in the

rescaled wealth becomes
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Figure 5.7: The wealth distribution for v approaching 1, very close to the phase
transition. The wealth inequality in the system is very large, with wealths spanning
150 orders of magnitude, but the system nonetheless reaches a rescaled steady state.
v =0.995,a = 0.2, = 0.01, N = 10, 000.
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Sus — S
Yi =g~ WY (5.6)
Yy

with ¢/ = ﬁ, and S, = >, y/. By transforming the dynamics of the system to
see how we are operating on rescaled wealths, we see that we are taking a fraction
of each rescaled wealth at each time step and distributing this taxed wealth across
the agents. v = 0 is a flat redistribution of the taxes. As 7 increases, the wealthy

benefit more from the taxes, and as v — 1 the dy; vanish because the redistribution

matches the taxed amount exactly.

5.2.2 Dynamical phases

The introduction of growth skewed by the v parameter leads to different dynamical
phases of the system. Since 7 = 0 reduces to the uniform growth model, it has the
phase described by the previous section: a rescaled steady state. As we increase 7,
we find that between 0 and 1, the system behaves much as it does when v = 0, with a

rescaled steady state distribution. This is obtained as long as v < 1 (see figure .
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v = 1 presents a special point in the phase space. When v = 1, the normalization
factor S in equation becomes precisely equal to the total wealth W, and hence
the growth terms simplify to dw; = pw;, which is equivalent to a global rescaling
of wealth. Because the bare YSM exchange system commutes with global wealth
rescaling, this means that the dynamics of the system completely factor, and each
wealth can be written as w; = w; paree’. This means that at this point, the steady
state vanishes. There is wealth condensation in the sense that there is one agent
whose fraction of the wealth approaches 1. However, if the growth rate is high
enough, i > o2, even the poorest agents will continue to grow over time.

For v > 1, the wealth quickly condenses on to the richest agent. Figure
shows the wealth of the richest x agents as v is varied; As v — 1, the wealth of
the richest agent approaches the wealth of the entire system approximately as a
power law. Likewise, figure [5.9| shows a similar pattern in the finite size scaling
for the wealth of the richest agent when using different system sizes. These figures
highlight the nature of the phases: When + < 1, the wealth distribution is scalable in
the continuum limit, so that when the number of agents is large enough, the wealth
distribution as a function of rank approaches a continuous distribution. When v > 1,
the wealth strongly condenses onto the richest agent.

The timescale required for the system to reach steady state is also divergent as
v — 1. This is shown in figure [5.10, The data was obtained by observing the
inequality of the system as a proxy. The inequality measure ® = % > —In(w) (see
also section is at a minimum in the initial state, and increases steadily and
smoothly as the system enters into the rescaled steady state. Data was taken to
establish the mean value of ® in steady state. The actual value of ®(¢) fluctuates

about this mean, although very little. The timescale was then assigned by finding
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Figure 5.8: Left: The wealth in the richest segments of the economy for various
growth skew parameters 7. Each line represents the amount of wealth in the top n
agents. Right: The wealth of the richest agents approaches the wealth in the system
as a power law in 1 —~. a = 0.2, 4 = 0.01, N = 10, 000.
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Figure 5.9: Left: The wealth of the richest agent approaching as the transition as
the system size increases. Right: This wealth approaches the wealth in the system
as a power law in 1 —~. o = 0.2, 4 = 0.01, N = 10, 000.
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Figure 5.10: The timescale 7 associated with the approach to steady state as the
skew parameter v is varied from 0 to 0.995. Left: Linear plot of the time scale 7
vs. 7. Inset: 1/7 vs. 1 —~. Right: A log-log plot confirms that the timescale
diverges with the distance between 7 and 1 with a power of approximately —1.
a=0.2,u=0.01, N =10, 000.

the first time in the data series where the value of ® exceeded the mean steady-state
value. An example is shown in figure[5.11} This process was repeated for 10 identical
copies and the results log-averaged; variations in the individual data points were on

order 15% or less, giving a standard deviation of the mean expected to be good to a

few percent.

5.2.3 System sensitivity to u, o

We begin by investigation the steady-state timescale for the system as a function of
a, u, and . Figure shows the most significant result: The timescale 7 obeys
T ~ % as € — 0, regardless of the value of o or p.

Figure demonstrates the variation in the steady-state timescale with o. The

variation of this timescale with « is given by competition between two effects. The
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Figure 5.11: The method for obtaining steady-state times. The inequality & is
monitored until it exceeds its steady-state value. a = 0.2, u = 0.01,v = 0.995, N =
10, 000.
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Figure 5.12: The steady-state timescale 7 for different values of a and p against
the skew . This demonstrates that the steady-state timescale diverges with ap-
proximately the same power-law regardless of the trading and growth parameters.
Average over 10 realizations per parameter point. N = 10, 000.
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Figure 5.13: The steady-state timescale 7 for v = 0 and g = 0.01 against different
values of the trading size a. Here we see that the timescale saturates as the trading
rate becomes much smaller than the growth. Likewise, the timescale is not strongly
dependent on a. This is because although the system slows down as a decreases, the
final state is one of decreasing inequality—that is, the final state is not as different
from the initial, equal state. Average over 100 realizations per parameter point. «
ranges from 0.9 to 0.001. N = 10, 000.

first is the rate that the system may evolve due to trading, which is given roughly by
a?, as shown in section [2.6.3] This effect accounts for the increase in the timescale
as the trading size is decreased. On the other hand, the timescale is also influenced
by the distance between the initial, even wealth distribution, and the final state
distribution. As a? < pu, in steady state the agents become confined near their
initial wealth, and so this effect tends to decrease the steady state timescale as « is
decreased.

Figure [5.14] shows the variation in the steady-state timescale with p. In this
case, the two effects are aligned. For one, when p has dimension of 1/¢, so when
is decreased, the timescale of evolution is naturally increased. However, this is the
timescale associated with the growth, which drives the agents together as opposed to
apart. The timescale appropriate to reaching the steady state is going to be driven
by the force which drives the agents apart, which is the timescale associated with

trading. Thus we do not expect a large effect due to this change. The second effect
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Figure 5.14: The steady-state timescale 7 for v = 0 and o = 0.1 against different
values of the growth rate u. The time-scale increases noticably as p — 0, however a
functional form is not readily discernable. Average over 10 realizations per parameter
point. u ranges from 0.1 to 107°. N = 10, 000.

is that when p is decreased, the inequality in the steady-state is increased, meaning
that the initial state and the steady state are further apart. This too increases the

steady-state timescale with decreasing pu.

5.3 Ergodicity

In addition to noting the steady-state properties of the system surrounding the phase
transition at v = 1, we would also like to investigate the ergodicity of the system. We
use the TM metric 2 introduced in section 2.6.5 Figure [5.15] shows the TM metric
for varying v approaching the phase transition. The asymptotic form Q ~ 1/t is
clearly present for the metric applied to wealth, log-wealth, and rank. This indicates
that the system is effectively ergodic when v < 1.

On the other hand, when ~ > 1, the metric is constant, as the system quickly
evolves to a static wealth-condensed state.

Since the metric has the appropriate asymptotic form for v < 1, we can also

extract the mixing time from this data. The mixing time Dg, is the coefficient of the
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Figure 5.15: The TM metric for the Wealth, Log Wealth, and Rank of the agents
against time, for different values of the skew v approaching the phase transition. The
metric demonstrates that the system is effectively ergodic only for v < 1. The system

was allowed to equilibrate for 10° time steps, and then the metric was recorded for
5 x 10° time steps. o = 0.1, = 0.01, N = 1, 000.
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least-squares methods for logQ) = —logt + log D, for t > 10°. The data indicate
that the mixing time diverges relatively strongly near the transition, suggestive of
a power law with index —2 (Shown for comparison as a dashed black line). Right:
An example of the fits produced using the Rank metric, showing good fit quality.
a=0.1,p=0.01,N =1,000.

asymptotic scaling form:

Qt) = — (5.7)

Measurements of Dg using the metric data are given in figure[5.16] They are sugges-
tive of but not conclusive evidence for the hypothesis that the mixing time diverges
as €2, although it appears that the mixing time is less according to the Wealth
metric. This may be because wealth is such a strongly skewed variable among the
agents.

This result is also interesting because it seems to imply that if € is small enough,
the mixing time, which scales like e~2, will become larger than the time to reach

steady state, which scales like e 1. This means that although mixing is possible, it is
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very slow, and that the random bias induced in the initial trades should determine
which agents are rich; In effect, the spontaneous symmetry breaking presented by
the bare YSM will appear to be present on timescales much shorter than the mixing

time.

5.3.1 Wealth distribution approaching the transition

Much like a thermodynamic phase transition, the phase transition in the geometric
growth model occurs approaching a point of self-similarity. Near this point, the
steady-state wealth distribution exhibits a scaling collapse with the distance € from
the phase transition. The form of this scaling collapse can be found as well in the
mean trade version of the model in section[5.4] We find that the shape of steady-state
wealth distribution ws(x,€) as a function of rank and skew obeys a relation

elog (%) = —g(a). (5.8)

The negative sign in this equation reflecting the notion that w(x), a function of
the sorted wealths, is inherently a decreasing function; this implies g(z) > 0. This
scaling relation, combined with normalization of rescaled wealth, implies a further
relation on scale of the wealth distribution:

g0)

€

ws(0,€) =

(5.9)

When combined, these relations imply that near the phase transition the wealth

follows the form

(5.10)
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This is derived in appendix . Both of these scaling relations can be seen in the
data, as shown in figure [5.17
In tandem, we find that there is not a power law for the wealthy segement of the

economy, but rather a finite cutoff.

5.4 MT with geometric growth

Let us now consider geometric growth as given in section [5] where the total wealth
grows by dW = uW. For generality, consider a normalized growth function #(x)
which distributes growth based on the agent rank. ¢(z) = 1 for uniform growth. The
ranked wealth density will obey

dw(z,t)
dt

= —zfw(x,t) + ﬁ/ w(x' t)de" + pt(x)W. (5.11)

Knowing that the quantity which converges to a steady state is the rescaled wealth,

we introduce the rescaled ranked wealth y(z) = w(z)/W. In terms of y(z),

dy(z, 1)
dt

= e )+ [ WO ) ). 612
If we transform as before to the cumulative version of this equation, we have

Y = —(Bx + p)Y + uT(z), (5.13)
where T'(x) = f; t(z). The time-dependent solution is

Y (x,t) = q(z)e”Fetmt 4 HT(x) (5.14)

Bx + p
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with the steady state

T(x)

Y, = Ery (5.15)
T Bz
ys(z) = ) + £ (@) (5.16)

zB zB8y2
1+ (142
For uniform growth, this reduces to

1—=zx

Y, = 5.17
1+ f—jx ( )
L (5.18)

BT W gap '

This indicates that the agents obey a power law as a function of the shifted rank
x' = x4+ pu/B; the agents exhibit a power law up to a wealth cut-off of y(0) = 14 5/p.

Now let us consider skewed growth, as in section [5.2} The growth term is

dw(z) w(x)?
——|rowth = p——"—""—. 5.19
dt |growth Mf;w(x’)”dx’ ( )
The rescaled system will then obey
dy(z ! x)Y
w) _ —zfy(x,t) + 5/ y(a', t)da’ + u# — py(x) (5.20)
dt . Jo y(z')vda!

This equation has been studied numerically; The properties of the instability
around v = 1 have been verified to be nearly identical to those in the YSM with
the same growth distribution. This includes the scaling of the wealth of the richest
agent, the scaling of the time scale, the steady-state scaling collapse. See figure [5.17]

This equation does not admit a simple steady state solution for general v. How-

ever, there is an approximate solution near € = 0 found using the scaling form shown
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in section [5.3.1} Solving the mean-trade equation in this regime requires some sub-
stantial algebra shown in appendix The solution form is given by a shifted

power law:
;1

y(x) = y(0) (1 + %) 6 (5.21)

1

Using the substitutions A = 1 — - and p' = we find that this approximate

=3
B’

solution is valid provided that the function

14+ A
L — g (2550

c(\, 1) (5.22)

with the limit € — 07 replaced with A — —oo. We call the function ¢ the “conden-
sation function”, as when ¢ shrinks to zero, the system enters into the asymptotic
form approaching wealth condensation.

The denominator of ¢ increases exponentially in this limit, hence this scaling
form will eventually be approached regardless of the value of u; However, the rate of
approach to zero depends crucially on the value of pu.

For large growth, p/ > 1, ¢ goes to zero slowly, meaning that the scaling form is
only reached for very small values of €. In this regime,

14+ A

1— \E

Which, when translated into €, gives that the approximation becomes very good
when i < 1. The system remains in a state of relative equality until this is reached,
whereupon condensation occurs.

In the case of small growth, ' <« 1, ¢ shrinks quickly to zero very quickly with
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Figure 5.18: The collapse function indicating the convergence of the mean trade
solution to the near-collapse shifted power law. Left: Plotted against e linearly,
showing saturation for small 11/5. Right: Plotted against € logarithmically, showing
that the collapse parameter is approximately epu.

€, as here the asymptotic expansion of c is
(A 1)~ e (5.24)

This makes the asymptotic solution to the mean trade equation very accurate.
Nonetheless, since ¢(0, ') = 1 regardless of p/, the solution can only hold for a
limited range. For very small /', the scaling form requires approximately € < 1/2.
A summary showing ¢ as a function of € for various values of y’ is shown in
figure [5.18] and as a phase diagram in figure |5.19, This allows us to roughly define a
condensation transition near the onset of this scaling form; the scaling form indicates
that we are approaching wealth condensation. Reiterating, for low growth, this

occurs for any € < 1/2, and for high growth, it requires that e < /.
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Figure 5.19: A top-down perspective on the collapse function. In the purple region,
the mean-trade solution is in the scaling regime.



Chapter 6

Generalizations

6.1 Generalized Wealth Condensation

Motivated by the phase transition found in the previous chapter, in this section we
develop a notion of how the mechanisms at play give rise to wealth condensation in
more general asset exchanges models.

Suppose that we have an asset exchange model which is given by a generalized
fair pairwise wealth transfer function f which depends on the wealth of the two
agents involved in the trade and a random variable R such that —1 < R < 1 and the

expectation value < R >= 0.

wy — wy + RAw (6.1)
wy — we — RAwW (6.2)
Aw = Aw(wy, wy) (6.3)

In the yard-sale model, Aw = a Min(w;, wsy) generates losses for the poorer agent
in a similar manner to the geometric random walk. In what conditions will such a
system tends towards wealth condensation? To ask the question in a more active

sense, is it possible for agents to choose f so that they can remain competitive and

93
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Figure 6.1: A diagram of the wealth space for 3 agents; the product space of the
wealth of the individual agents.

a steady-state economy can arise? In particular, we will focus on the case where
agents choose their risk separately, that is where Aw(w,wy) = Min(B(wy), B(w,))

for a betting function B(w).

6.1.1 Diffusion in Wealth Space

We can conceptualize the wealth as an N-dimensional vector w (see ﬁgure which
evolves due to the trading rule specified above; random components of W are selected
and modified as per the trading rule by =Aw. In this scheme, wealth conservation
is given two notions. The first is that the components of the wealth vector must
add up to a constant; the dot product W - (1,1,1,...) is constant. The second is the
notion that the ensemble of all possible W has a constant centroid; if the wealth is
imagined as a cloud diffusing from a point, it diffuses such that the center of mass is
constant. The motion is diffusive in nature because at each step, the wealth vector

is equally likely to migrate one direction or another.
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Figure 6.2: An example betting function obeying the constraint B(w) < w with a
zero at w*

In this scheme, we wish to analyze the likely trajectories of the wealth through
this space. Because the steps Aw depend on the wealths being exchange, the diffusion
is nonlinear in nature. This nonlinear nature gives rise to a drift term such that the
typical wealth walks in a biased direction.

What we will show is that when the wealth of an agent approach the zeros of
the betting function B(w*) = 0, the nonlinear drift attracts the agent towards the
zero. This trapping effect drives the agents towards w*, the location of the zero
of the betting function. This trapping prevents the wealth from leaving the plane
formed by w; = w*, and inevitably leads to a slowing down, or condensing of the
economy; after enough time, there is an asymptotic fixed point towards which the
wealth vector only approaches. Critically, if there is only one zero w*, then all the
wealths except for one must end at w*, leaving all of the free wealth condensed onto
one agent.

Importantly, physical constraints dictate that the betting function must have a

zero, for B(w) < w, elsewise the agent is risking more wealth than they have; See



96

figure|6.2] This assumption requires that agents have a minimum wealth, but it does
not dictate that the minimum wealth map to no assets; an asset exchange model
could very well reflect an economy incorporating debt and so on. We seek to show
that that the nature of the approach of the betting function to zero will give rise the

time-scales associated with the wealth condensation.

6.1.2 Dynamics near betting function zeros

First, consider the behavior of one of the agents closest to the zero of the betting
function. Near the zero of the betting function, the amount that the agent trades
will become dominated by small amount that agent is willing to risk, B(w). We will
show that the wealth of the poorest agent will trend down inevitably.

Because the poor agent is so dominated by these small fluctuations, we may treat
their motion using the Itd calculus [75,83-86], which allows us to treat this type
of generalized Brownian motion. An Ito6 process for one variable is described by a
stochastic differential equation dw = pudt + odn, with drift term p and noise term o.
The stochastic process associated with the motion of an agent at wealth w near w*
is given by the process

dw = 0dt + B(w)dn, (6.4)

where dn represents underlying Gaussian noise, and the drift term p = 0 for this
process. In order to understand the trajectories given by this process, we would like
to find an ergodic measure for this process—that is, one where the noise is constant.
To do this we will make use of It6’s lemma, which prescribes how to convert one

stochastic process w into another stochastic process on a transformed variable y(w):

([ Ox | o* O ox
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This is the stochastic equivalent of the chain rule from ordinary calculus. The only

L . 2 92
additional term is the %%

which arises because 1 and t are not independent vari-
ables; n fluctuates in ¢ in a Brownian fashion, and the repeated action of fluctuations
picks up a drift term which scales as t; see the geometric random walk in section [3.2.T}
[t0’s lemma merely prescribes the appropriate extension of this effect into the domain
of continuous motion.

Again, we search a process with linear noise: a variable for which the fluctuations

do not vary as we change the variable. From Itd’s lemma, eq.[6.5] and from, eq. [6.4]

we need
ox 1
= = 6.6
ow  B(w) (6.6)
This gives us a stochastic differential equation for the variable y:
10B(w)
dy = ——————=dt + 1d 6.7
X = =5 —dt+1dy (6.7)

Typical trajectories from the linearized noise

Now that we have a process y, we can understand the limiting state for the typical
trajectory of w. The story is very similar to the geometric random walk: Although it
would appear from eq. that the average over w gives 0, this is only formally true
for an infinite ensemble average. The reality is that the typical trajectory from the
infinite ensemble is not stationary, but rather falls in time. The average is formally
balanced by exponentially rare trajectories which grow quickly.

By transforming to the linearized variable x, we find a variable whose fluctua-
tions are predictable and controlled. Simple Brownian motion dictates that these
fluctuations scale as v/t. The drift term, then, will overwhelm the fluctuations for

long times. Because the fluctuations are controlled, exponentially rare trajectories
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cannot contribute finite contributions to the infinite ensemble average. We can thus
track typical trajectory of x by the ensemble average. This allows us to write

10B(w)

2w (6.8)

AXtyp = Py dt =

and analyze the typical trajectory xi,, as a deterministic quantity. The “trapping”

quality of the solutions will become apparent in the analysis that follows.

The potential function

The evolution equation for y now follows that for a particle diffusing under the

influence of an external force f(x) and diffusion coefficient D [75]:

dx = f(x)dt + Ddn (6.9)
fx) = —%g—i (6.10)
D=1 (6.11)

This analogy allows us to conceive of the stochastic nonlinearity of B(w) as giving

rise to a potential function V' given by

0B
Vi) = — | fdy=— [ Za 12
(x) / fdx 5 X (6.12)
By making use of the defining condition of y, Eq. we can write

Vo — ;/aifj“)%“ _ %/% = SIn(B). (6.13)

Note that as B — 0, V — —o0, regardless of the form of the approach to zero. This

will help tremendously in understanding the limiting behavior of the agent.
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Figure 6.3: Types of betting functions behavior near w*. The dynamic rate of
condensation in a model is dependent on the shape of the approach of the betting
function to zero, which can be characterized as either linear, sublinear, or superlinear.

Linear zeros and GRW

Let us suppose that the form of B(w) near the zero can be written in the form

B(w) ~ a(w — w"). (6.14)

Let us transform coordinates without loss of generality to shift w such that w* =
0. Then B(w) ~ aw. The transformation required to get an ergodic variable is

determined by dx /0w = 1/(aw), or

(6.15)

Inserting into eq. ,
dXtyp — —Oédt (6].6)

This tells us that the typical x scales as

Xtyp ~ O (6.17)
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Inverting, we find that the typical w obeys
dwiyp = — P wyy,dt (6.18)

and so follows

Wiy ~ exp(—a’t) (6.19)

A poor agent at rank x will undergo these fluctuations decreased at a rate x, so we
need only replace t — xt to see the reduction of this effect with rank. The MT
formulation discussed in section [3.2.3]is a further correction to this which adds back
in the contributions lost by poorer agents to richer ones. There is a small caveat
here in that we are assuming the betting function increases monotonically; If it does
not, then we need to sort agents by the rank of B(w) instead of by w.

In terms of the potential V(x), we find that,

1 1
V= 5 In(aw) = 9% (6.20)

where we have made use of the fact that V' is defined only up to a constant. The
poorer walker in the trade experiences a constant force towards y — oo, which is

w — 0; this force is constant due to the self-similarity of the betting function.

Non-linear zeroes

The preceding section indicates that a linear approach B(w) toward zero will give
rise to wealth condensation which is much like the YSM. Here we will treat different

approaches to zero of the form

B(w) = a(w — w*)? (6.21)
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V(y) Superlinear
4 —— Linear
— — - Sublinear

Figure 6.4: Types of potential functions. In all three cases, the potential function
diverges as y approaches its lower limit. In the case of linear and sublinear betting
functions, this limit is co. However, the case of a superlinear betting function, yx
exhibits a lower bound.

Since B(w) has dimension of wealth, we note that « is, for ¢ # 1, a dimensionful
variable. « can be associated with a wealth scale at which an agent is willing to bet
all of their wealth.

As in the case of the linear approach zero, we transform w by a shift so that
w* = 0. The reparameterized wealth y should satisfy dx/0w = 1/(aw?). This gives
us

1 w4
X(Q) _

- 6.22
P (6.22)

(It is worth noting that x is only determined up to an additive constant. To clean
up the notation and unify these solutions with the linear case, we can assign this
constant as a function of ¢, writing x in terms of the ¢-logarithm [87}88|:

1
X9 = = In,(w) (6.23)

«

In the in the limit as ¢ — 1, the ¢-log reduces to the usual natural log: In,(w) —
In(w). However, this formulation complicates the analysis of the asymptotic motion

of x.) The form of y exhibits a transition as g goes through 1; For ¢ < 1, x has a
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lower bound but no upper bound, and for ¢ > 1, x has an upper bound but no lower
bound. The presence or absence of an upper bound does not concern us greatly, as
this corresponds to w far away from w*. However, the lower bound of y corresponds
to the lower bound of w. This means that for ¢ < 1 the closed nature of endpoint
at w* is preserved, but for ¢ > 1, the closed endpoint becomes an open one. This
topological change gives rise to significant differences between the two cases.

Using It0’s lemma,

dXtyp = —agw_(l_q)dt (6.24)

Which gives
T
2(1—q)

This equation has a very different character depending on whether ¢ < 1 or ¢ > 1.

Xtydetyp = — dt (6 25)

Furthermore, the potential V' is given by

1
V= 3 InB = ] In(1 —q)x, (6.26)

2(1-q)
which also exhibits very different characteristics depending on the sign of ¢ — 1.
Sublinear (or slow) zeros

For ¢ > 1, this is solved with an asymptotic solution

q

2 o —t ¢ 2
Xtyp 2(q - 1) ) (6 7)

where x? grows in time, and the wealth obeys

wiyp ~ (a?q(q — 1)) 2= (6.28)
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This class of solutions demonstrate a wealth which slowly shrinks in time according
to a power-law. Thus, for ¢ > 1, the agents inevitably approach zero, but at a very
slow rate; slower than for any linear zero (see section )

The potential function V', making use of the free constant, looks like

q

V(x) = =g

In(—x). (6.29)

This diverges logarithmically as y — —o0o, explaining the slow power-law approach
of w(t) to zero. Likewise, we can consider this the result of a renormalization process.
As we scale in towards the zero of B, o decreases, and so the drift is a decelerating

one.

Superlinear (or fast) zeros

On the other hand, if ¢ < 1, x? shrinks in time:

Xy =C(0) — —1—i (6.30)

2(g—1)

The typical trajectory will reach y = 0 in a finite time. When ¢ < 1, x = 0 is
identified with w = 0. We thus have a ‘fast’ approach to zero. This can be reconciled
by realizing that if ¢ < 1 and w* = 0, it is not actually possible to satisfy B(w) < w,
thus agents drift downward in wealth until they inevitably risk everything they have.
This process inevitably bankrupts the agents in a finite time; if the betting function
approaches zero in this way, then all but one agent will reach w* in finite time; the
remaining wealth will have condensed onto the last agent.

The potential function reflects this likewise:

q

Vix) = g

In(x). (6.31)
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Thus V diverges drastically near the closed endpoint x = 0. Again, we can also de-
scribe this using a renormalization approach. As we scale in on the zero, « increases.
This means that the drift for y is accelerating. Coupled with the fact that y has an

endpoint, this makes it very natural to see that inevitably y — 0 and so w — 0.

6.1.3 The next-to-poorest agent and so on

In the case of linear and sub-linear betting functions where the wealth of the poorest
agent is finite but ever decreasing, the next-to-poorest agent will follow approximately
the same dynamics as the poorest agent, with the exception of the few interactions
between the poorest and the next-to-poorest, from which the next-to-poorest will
profit as the poorest diminishes. Nonetheless, the rate which the poorest agent
diminishes will itself decrease steadily, leading us to the conclusion that the next-to-
poorest agent will become impoverished as well. Thus, the trapping quality of the
stochastic drift in the vicinity of a zero cascades up to affect even fairly rich agents;

however, the rate at which richer agents are trapped may be quite slow.

Upper zeros of the betting function

We may also consider the behavior of zeros of the betting function, those points
above which an agent does not participate in trading. Fortunately, these can be
approached with the same analysis as zeros which form a lower bound for the betting
function; The stochastic equation for w, eq. [6.4] will not change, which implies that
the singularity or zero of x will remain at w*. However, 0B/0w will change sign,
giving rise to a reflected positive drift in x in Eq. [6.7 Thus the dynamics arise in
the same way via the same mechanisms, but reflected, drawing the agent upwards in

wealth towards the zero.
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6.1.4 The thermodynamic limit and the emergence of wealth condensa-
tion

As agents fall into the traps created by zeros of the betting function, their wealth falls

predictably over large time scales. These trapped agents must thus be systematically

growing the wealth of un-trapped agents. Let us refer to the unbound wealth as free

wealth. This free wealth determines the wealth of the final unbound agent in the

system.

There must always be an unbound agent in the system unless a specific criteria is
met: The wealth values of the zeros of the betting function must be commensurate
with the number of agents in the system and the starting wealth, that is, there
exists a linear diophantine combination of the w* which adds to the total wealth
in the system. This is easy to create in a deterministic model, but any small noise
in the initial conditions or model parameters will destroy this process; thus we can
generically expect there to be at least one unbound agent in the system. Moreover,
the trapping phenomena implies that the number of unbound agents in time can only
decrease. Thus, eventually the system will evolve to a state where there is only one
free agent.

As the system evolves, the bound agents settle into a distribution along the traps.
This limiting distribution is well-defined in the thermodynamic limit (as N — o0)
because agent interactions depend only on the wealth of the pairs of agents.

This implies that the free wealth in the system grows linearly in the thermo-
dynamic limit. Thus the free wealth, accumulating on the unbound agent, scales
with N. Thus a thermodynamically measurable (macroscopic) amount of wealth
condenses onto a single agent.

To see this behavior at finite times, we expect to see a thermodynamically signif-
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icant amount of wealth condensing onto a thermodynamically insignificant number
of agents. Thus, we if we plot the normalized cumulative wealth W (z) in the system
below a given rank x, wealth condensation means W (z) is not smooth, but rather

decreases very suddenly for small z.

6.1.5 Measuring Inequality

Here we consider metrics which asses the inequality in the asset exchange system.
An easy form to measure wealth inequality is to use an inequality function ¢(w)

applied to each wealth averaged over the system to create an inequality measure ®:

P({wi}) = + Z o(w;) (6.32)

A good inequality function will increase whenever we increase the wealth differ-
ence between agents; we want a function ¢ such that if we transfer wealth from the

poorer agent to the richer agent,

w, = w,— Aw (6.33)
w, = w,+ Aw (6.34)
O(w,) + o(wy) > o(w,) + ¢(wp). (6.35)

It turns out that this requirement is exactly that ¢ be a convex function of wealth.
We give a short proof in the differentiable case: Suppose we exchange the wealth
continuously over the course of a time interval. In an infinitesimal time, the wealth

transferred, Aw, is infinitesimal. So, the inequality ® changes by

00 = ———[p(wr) — d(wp)] (6.36)
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For this to be true over the entire interval of the trade, we must have, for all w, > w,,

¢ (wr) > ¢'(wp) (6.37)

Since we want this property to hold for any (w,,w,) where w, > w,, this require-
ment is satisfied by any convex function ¢: One which satisfies ;—qugzﬁ > 0 over the

appropriate interval, which in this case is w > 0.

6.1.6 Inequality evolution and Jensen’s Inequality

Convex functions are often characterized by the fact that the function itself lies
below the secant line between any two points. The secant line itself is a structure
which gives the value of the weighted average of the function applied to the two
points, where different points on the line are the result of different weightings. This
statement can be generalized to higher dimensional structures—first two finite lists
of points and then to probability distributions. These various generalizations are
referred to as Jensen’s Inequality [89]. The precise statement is that the expectation
of a convex ¢ function applied to a random variable X is larger than the function of

the expectation of X:

El¢p(X)] = ¢(E[X]) (6.38)
Consider, now, the change in inequality after a trade:

AD({wi}, {Awi}) % S Bl + du) — D) (6.39)

In particular, if we consider the w; all fixed and vary the Aw;, A® is a convex function

of the Aw,;. This implies that the expectation of the inequality is nondecreasing in
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time:

E[A®] > AD({w,}, E[{Aw)]) = AS({w;},0) = 0 (6.40)

In terms of inequality, then, the system must tend towards maxima. We can shed
more light on this evolution more carefully by treating the components of ® using

stochastic calculus:

d® = pedt + opdt (6.41)

By examining the evolution of the inequality ® in this way, we can understand
how Eq. arises as a result of a result of the mechanism of the system—the
trading rules. In order to understand the tendency of the inequality to increase or
decrease, we need to have some understanding of the nonlinearity of the noise o¢ as
the inequality increases. We aim to show that

aO'q)

and

fip > 0 (6.43)

for the microscopic fluctuations in ®. Together these entail that & will tend to
increase in time, and investigating how this arises will give us insight into how an

asset exchange model produces inequality.
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1
do = Z de; (6.44)
1
1 o2 02, 0¢;
= — Wi dt w, ——dn; 6.46
N - 2 8w2 to lé)wi 1 ( )

)

If wealth Bj; is traded from trader [ to trader j, this gives rise to

1 (By? (0% D¢ dop; Oy
= [Lq;.dt + O'(pdnjl (648)

This problem was tackled in the case of the individual agents by chosing a function
x which made the noise constant for the agent which was setting the bet. Let us
make, for the moment, the assumption that B(w) is an increasing function of w.
This means that y(w), through equation , is a naturally concave-down function
which linearizes the noise in the poorer wealth. This gives a natural choice for the
inequality function ¢(w) = —x(w), Making this substitution, the fluctuation term

due to the poorer wealth will be 1, and the noise becomes

+ 1, (6.49)

where we have denoted the richer wealth of j and [ of w, and the poorer with w,,.
If the inequality ® increases due to this trade, then w, decreases and w, increases.

Using the presumption that B is monotonic in w, we have that B(w,) decreases and
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B(w,) increases, which implies that the noise decreases with increasing inequality,
demonstrating equation [6.42] Likewise, the convexity of ¢ ensures that the drift term
in equation [6.47] will also be positive, demonstrating equation [6.43

Thus we see how the evolution of macroscopic inequality is connected to the
microscopic betting system used by the agents: The function linearizing the noise of
the agents also provides an appropriate measure of inequality.

What more can be said about the inequality in the system? The form of equa-
tion suggests that the drift can be known more precisely if we can pick ¢ such

that the quantity

op = B(wj, wy) [¢'(w;) — ¢'(wi)] (6.50)

is invariant as the wealth of the traders changes. Even if B(w;,w;) only locally
depends on the wealth of one of the agents (such as the poorer agent), it will not
be possible to construct ¢ such that og is constant for all pairs of wealths; Even if
og is locally flat around some pair (wq,ws), it will not be flat around (wy, wy + €),
because ¢ must be strictly convex in order to be a well-formed inequality measure.
Essentially, there are not enough degrees of freedom in ¢ to linearize the noise in P,
which is inherently depends on both w; and ws even if the betting function reduces
to a function of only one wealth. This entails that although a functional form such
as ® may be a good way to measure inequality, it is not easy (and may not be
possible) to construct a generic Langevin equation which describes the evolution of
the inequality in time; ® functionally depends on the wealths as standalone objects
as an inequality, but its evolution is tied to the pairs of wealths and thus to nonlocal
qualities of the wealth distribution.

Supposing that the betting function is not strictly monotonic, how should we

construct our inequality function? In this case, the bet is not necessarily determined



111

by the poorer agent, so let us rather refer to the agent with the lower betting func-
tion as the controlling agent of the bet. Let us divide the betting function into
monotonic intervals, labeling the betting function in each i*" interval B;. Define
%gﬁi = |B'(w)|/B(w)?%* when B(w) is increasing, use ¢; = —x;, and when it is de-
creasing, adjoin it with ¢; = x;, using the freedom of the additive constant in y to
make ¢ continuous. In this way, ¢(w) will be entirely convex, with inflections which
occur at the ends of the intervals.

We find that the drift function pe is identical to equation and therefore
positive. Equation [6.50| will begiven by the rather cumbersome expression:

Sgn(B(w;))  Segn(B(w))
B(w;) B(uw)

op = B(wj, w;) (6.51)

The analytic expression for the derivative do,/0w; is even more cumbersome and
not in itself particularly illuminating. The expression for ¢ is constructed so that
there is no contributions to dog /0P for the motion of the controlling agent, however,
the contributions from the non-controlling agent can be positive, depending on the
form of B(w), if either of the agents are in a region of decreasing B. So, the proof
that dog/d® < 0 falls apart, and it is no longer clear how macroscopic inequality is

generated from microscopic rules.

6.1.7 Drift Terms, Growth, and Trade bias: Condensation stability

The framework above also gives an method of determining whether or not an asset
exchange model breaks wealth condensation, either partially or totally.

Partially broken condensation, as in chapter [ requires that the poorest agents
remain afloat. In this case it is required that the growth terms the typical drift as

the poorest agent approaches zero wealth. In the case of an external growth term
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Iig, the typical decay can be extracted from section [6.1.2}
fieyp = tg — 5 B(w)B'(w) (6.52)

The result is natural: Each category of condensation rate requires a growth rate
which matches the strength of the decay rate near zero. Sublinear zeroes require
very little external growth to prevent bankruptcy of the poorest agents.

Linear zeroes such as the YSM require a growth term which satisfies j1y > %aQw;
the growth may vanish as the wealth vanishes, so long as the growth vanishes more
slowly.

Superlinear zeroes, however, can only break wealth condensation if the external
growth is nonzero even when the wealth is zero; because agents will risk their entire
wealth at some given point of impoverishment, the poorest agents will require finite
growth just to stay active in the system.

As a further generalization, it is interesting to consider asset exchange models
where the trading is biased towards either the poorer or the richer agent. Using the
framework described here, the appropriate bias can be inserted into the drift term

of the Ito calculus, and the dynamics analyzed in a similar fashion.

6.1.8 Example system simulations

We give examples of the behavior described by implementing three models: the
critical model (the yard sale model), a super-linear model (fast condensation), and
a sub-linear model (slow condensation). The models can be parameterized by ¢ into
the form:

aw? w <1

By =y " (6.53)
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Figure 6.5: Wealth quantiles versus time for various types of wealth condensation.
The simulations use N = 100 agents and a trading parameter o« = 0.1. Note the
differing axes scales for the different behaviors.

We run simulations for ¢ = 0.5,1,2, corresponding to fast condensation, the
yard sale model, and slow condensation respectively, and using N = 100 agents and
a = 0.1. Figure [6.5] shows the quantiles of wealth for the various models. The
slow condensation model generates wealths which decay in time with an exponent
of roughly —1/2; the wealth in YSM agents decays exponentially in time; and the
agents in the fast condensation fall to exactly zero wealth over the course of the
simulation. Likewise, figure shows the number of active agents in the system
above a very small wealth threshold; From this we see the expected fast rate for the
fast model, an interrim rate for the YSM, and that in the slow condensation model,
agents do not fall to numerically unmeasureable values of wealth in the simulation

time frame.
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Figure 6.6: The number of nonbankrupt agents (those whose wealth exceeds 107°
times their initial wealth), plotted for the various models implemented.
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Figure 6.7: The fraction of the wealth not held by the richest agent in the system;
In all systems this becomes small, however, the class of model determines the rate
at which the condensation occurs.



Chapter 7

Concluding remarks and further directions

So ends our journey through extensions to the yard-sale model. Although there
are many technical results which are of some interest when examining the model in
careful detail, here I give a condensed set of the most important conclusions in this
dissertation with special attention to the contextual importance within the related

work outlined in the introductory chapter.

7.1 The Yard-Sale Model

In chapters 2] and [3] I analyze the Yard Sale Model (YSM). As an asset exchange
model (AEM), the YSM differs from traditional economic models of wealth and in-
come in that transitions are made by way of interactions with other agents; the dis-
tribution of wealth is not externally imposed but internally generated by the model.
The key difference between the YSM and many other AEMs is that transactions are
limited to the scale of the poorer agent’s wealth. This is a key physical assumption
which reflects the inability of a poor agent to spontaneously grow by many orders of
magnitude in a single transaction.

The YSM results in wealth condensation, where the richest agent continually
acretes all of the wealth in the system. This is found to be a result of the Ito drift

associated with the nonlinear character of fluctuations in the YSM. This is similar

115
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to the St. Petersburg Paradox [90], the poor agent is exponentially unlikely to gain
wealth, but the amount of wealth gained may be exponentially large. This effect is in
proportion to the number of agents which are richer than the agent of interest, and
so it is proportionally smaller on rich agents. The longer a system is run, the larger
the inequality in the wealth distribution. I thus characterize the YSM as a non-
ergodic system, and quantify this using the TM metric for effective ergodicity. This
non-ergodicity can be ascribed to the Ito drift in combination with open boundary
character of the phase space; drift encourages poorer agents to lose wealth, and
multiplicatively speaking, there is always room for them to do so. This is in contrast
to the classical model of Champernowne [39] and similar models in the lineage of
Kesten [52] that incorporate lower-boundedness, which prevents the collapse of the
wealth distribution.

The YSM also exhibits power-law scaling for a number of quantities. Of foremost
interest is the Pareto exponent, which for the bare YSM is asymptotically zero, which
is far more unequal than is observed in typical empirical data. This is a result of
the diverging inequality. It is related to the result that YSM suffers a breakdown
in mobility, as evidenced in the rank correlation function. This shows that the non-
ergodic wealth transfer mechanism applies to every strata in the wealth distribution,
so that all agents become separated from each other as time goes on—inequality
increases between every combination of agents in the YSM.

Further developments focus on the development of effective dynamics. The It6
drift gives rise to a a characteristic timescale of the YSM which is proportional
to a2, where « is the trade fraction parameter, and this manifests in many mea-
surements, including the the condensation fraction, the bankruptcy rate, and the

economic mobility.
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I write the mean-field version of the wealth transfer mechanism in the YSM,
which I called here “Mean Trade” (MT) theory. In the MT, I find that the effective
wealth transfer between rich and poor can be succinctly expressed in the cumulative
distribution of the wealth, which solves the dynamics of the mean-field version of the
Ito drift, and allows for simple incorporation of growth into the model.

The MT also bridges the gap with non-interacting models of the economy by
allowing one to predict the behavior of single agents with a minimal number of
variables, explicitly eschewing detailed knowledge of the distribution of wealth. The
MT formalism shows that approximately speaking, the dynamics of an individual
agent can be represented in terms of that agent’s current wealth as well as the rank
of the agent in the economy. Thus, the YSM as a statistical mechanical model has
two relevant parameters for any given agent, the wealth and the rank.

I furthermore show that the MT is also the first term in an infinite series expansion
of a complex integro-differential equation describing the YSM in terms of its kinetic
equation. Although solutions to the full equation appear difficult, each term can be
written in closed form. This provides a starting point for further analytical analysis,

such as evaluation of the error involved in the MT approximate theory.

7.2 Extending the Yard-Sale Model with growth:

This work extends the YSM with growth of two forms. The first is arithmetic (con-

stant in time), and the second is geometric (exponential in time).

7.2.1 Arithmetic growth

Uniform arithmetic growth is characterized by a single growth rate parameter. We

find that the growth rate is equivalent to an initial condition on the total wealth. The



118

long term wealth distribution is independent of this initial condition, except for the
wealth of the richest agent. This is remarkable in itself because it means that in the
long time limit the YSM with uniform arithmetic growth is exactly as parsimonious
as the original YSM, effectively having no more tuning parameters.

The system acquires a steady state in a time-scale which depends on system
size—a quasi-steady state—which starts with the wealth of the poorest agents, and
propagates upwards rank-wise to the richest agents. The steady state has a form
which is reminiscent of real economic data; the rich segment of the economy has
a power-law distribution of wealth, and the poor segment is concentrated together.
The size of the poor segment, and thus the overall scale of the wealth distribution, is
set by a?. However, the Pareto index of the distribution is approximately 1/2, which
is a stronger inequality than exhibited in real-world data. Both the Pareto exponent
and the scale of the poor agents are explained by the MT effective theory.

Mobility in the arithmetic growth model is highly rank-dependent, with wealth
agents being less mobile. The mixing time scales up with decreasing trading fractions.
For large «, the poor segment of the economy can mix in only a few trade steps. For
small «, the rich agents can take tens of thousands of trades to mix with the bulk of
the economy.

The TM metric shows that the richest agent, which absorbs the growth in the
system, gives rise to a non-ergodic system. For a finite system, the metric applied
only to the rest of the agents indicates that over long times, the system is effectively

ergodic, in line with the rank-rank mobility data.
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7.2.2 Geometric growth

Geometric growth is given by a rate which changes multiplicatively in time. For
uniform growth, this gives rise to a rescaled steady state, where wealth is steady-
state when rescaled by the factor e*. The distribution of rescaled wealth is given
by a dimensionless parameter o*/u. The steady state is ergodic: Wealth condensa-
tion is totally broken by geometric growth. When the inequality is low, the wealth
distribution is approximately normal. For high inequality, the form of the wealth
distribution is a shifted power law—a power-law with a finite cutoff-that is predicted
by the MT theory. The form of the wealth distribution, similar to arithmetic growth,
is reminiscent of real wealth distributions, but not identical to them. An exhaustive
search of the parameter space might identify some regions where the model feasibly
fits data, but this would require fine tuning.

Also explored is a non-uniform distribution of growth, where richer agents are
able to use their capital to generate wealth more quickly. This is accomplished using
an inequality parameter v by apportioning the exponential growth among the agents
in proportion to their wealth to the power of gamma. When v = 0, the original
uniform growth is recovered. Increasing values of v lead to increasing inequality of
the wealth distribution. A steady state is maintained until v = 1 (the point where
growth becomes proportional to wealth), whereupon the steady state disappears, and
wealth condensation is restored. This phase-transition-like behavior is associated
with a divergence of the steady-state time, the wealth inequality, the mobility, and
the mixing timescale of effective ergodicity. These divergences have a power-law form
which is reminiscent of second order phase transitions. We show that the form of the
wealth distribution obeys a scaling relation. Both the form and the scaling can be

predicted by the MT theory. The form is given by a power-law with a finite upper



120

cutoff, similar to the uniform growth case, but with variable Pareto index. The index
shrinks to zero as the transition is approached, and the system returns to a wealth
condensing state.

Although the system is effectively ergodic below the condensation transition,
the mixing time diverges quite rapidly. This leads one to ask whether or not it is
important that mixing times are related to human timescales. A system which is
formally ergodic, but only on the scale of centuries, will not appear ergodic to agents
which live in human timespans.

There is a duality of the geometric growth model with a wealth tax model; the
wealth tax model is identical to the growth model after rescaling. This implies that

the two models can be mixed together by appropriately combining parameters.

7.3 Extensions to generalized trading schemes

The final extension considered to the YSM is to modify the trading scheme. This is
done to investigate the universality of the dynamics of the YSM. This is accomplished
by examining a more generalized betting function which allows the wealth set forth
for trading to be an arbitrary function of an agent’s current wealth. In this framework
the YSM has a linear betting function. By analyzing repeated transactions between
two agents as a stochastic process, we find that exchange between agents can be
written as a potential function with diffusion terms, much as in a Fokker-Planck
equation.

Wealth Condensation behavior is tied to the fairly natural assumption that the
only zero of the betting function is at a lower bound on the agent’s wealth. Conden-
sation is direct (i.e. there is no metastable state before condensation) if the betting

function is monotonically increasing. The long-term rate of Wealth Condensation
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is tied to the form of the betting function near zero. Sub-linear (conservative) bet-
ting processes result in a slow condensation, exhibiting power-law dynamics in time.
Super-linear (aggressive) betting processes exhibit fast condensation, where wealth
condenses onto a single agent in finite time. The YSM is the critical dividing line

between these cases, where condensation trajectories are exponential.

7.4 Future directions

The Pareto index is the most intriguing empirical observation in the study of wealth
and income distributions, and it is typically in the range of 1 to 3. The findings here
indicate that external growth in YSM leads to a typical index of 0.5. Further work
on asset exchange models would do quite well to seek a model with a natural index
in the typical range for real economies. The difficulty here is to find models which
give rise to such an index naturally, that is, without fine-tuning model parameters.
Furthermore, extensions should keep in the statistical mechanical spirit of the YSM:
they should represent a microscopic process that agents undergo in the economy.
The MT theory demonstrates that these interactions are likely to be approximately
solvable if they are in some way a function of the agents’ ranks.

Potential modifications to the bare YSM may include a notion of trading rate
attached to different wealths or ranks, or the notion of connectivity between agents
of differing wealths.

The form of growth considered in this dissertation is an as an external process
which influences agents individually. It also would be interesting to consider economic
growth which is the result of transactions, that is, some rule which allows the total
wealth after agent exchange to actually be larger (or smaller) than before. Depending

on the form, such a growth may give rise to an effective version of the growth functions
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used here, or it may give rise to a new phenomena. Another thing to consider is
that the skewed geometric growth given here has a constraint on the total growth,
which is then portioned out to agents. This fixes the overal system to mimic real
economic data, but it could prove useful to write down growth whose total value is
not externally constrained, but rather emergent—generated within the dynamics of
the system.

Likewise, alternative taxation systems can be considered. The taxation herein is
a wealth tax. One alternative is redistribution which originates from transactions,
similar to a sales tax. Another would be redistribution of earned wealth over time,
i.e. an income tax.

Other novel couplings to the YSM might include the incorporation of social in-
stitutions. For example, an unemployment support scheme which prevents agents
from bankrupting, but does not act on richer segments of the economy. There is
also a body of work related to agent-based simulation of markets [18,91]. It may
be interesting to consider a hybrid YSM and market model, which incorporates the
effects of individuals trading with pools and with individuals.

The difficulty in extending theoretical models is the draw towards complexity.
It is quite simple to write models which are completely intractable. In other cases,
complex models are tractable but uninterpretable, as they have many more parame-
ters than can be actually measured. Even the purely theoretical analysis of a model
is very difficult when there are many parameters. This means that regardless of the
direction of further work, it should focus on models which have an interpretation of
a known ecnomic interaction. The models should contain a few parameters at most,
and the parameters should be readily interpretable. Furthermore, the aim should

be to explain empirical observations, such as the appearance of Pareto exponents
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without fine tuning.
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Figure 7.1: The 2013 Forbes Global 2000 dataset. Ranked plots of Assets, Sales,
Market Value, and Profits given in billions of dollars. The Assets and Market Value
plots show strong evidence of an upper cutoff to pareto behavior.

From an empirical standpoint, it is interesting that the growth models in this
dissertation lead to a power law with a cutoff which is dependent on the growth, trade,
and inequality parameters. Many physics models result in power-law distributions
with exponential cutoffs, but the economic literature predominantly imagines Pareto
behavior as having no cutoff. It would be useful to do some careful statistical work
to determine whether or not there is an upper cutoff to Pareto behavior. This kind
of behavior can certainly be seen for some datasets: shown in Fig. are data for

the year 2013 Forbes Global 2000 list of largest public companies [92]. This list
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is constructed by using a combination of company assets, sales, market value, and
profits over the year. Strong evidence of upper cutoff behavior is visible for plots of
company assets and market value, and possible evidence is visible in company profit.
While distributions of sales and profits do show some turnover in the upper ranks,
it is not large, and may be due to statistical fluctuations. This tantalizing data
indicates that further, more comprehensive statistical analysis should be carried out

both for this data and other datasets.



Chapter 8

Part II: Inferring low-dimensional microstructure representations using

convolutional neural networks

Chapter Abstract I apply recent breakthroughs in computer vision and machine
learning to a central problem in materials informatics: The statistical representation
of microstructural images. [ present dimensionality reduction on a set of related
texture images through a two-step process which involves high-dimensional charac-
terization of the textures of using a pre-trained convolutional neural network, and low
dimensional embedding of the results using manifold learning. I demonstrate that
the low-dimensional embedding faithfully captures the relevant parameters of the
input image set, and demonstrate superior fidelity when compared to the comonly

used spectral representation of microstructure.

8.1 Introduction

An central outstanding problem in materials science is the characterization of materi-
als microstructure. Microstructure is generated by non-equilibrium processes during
the formation of the material, and plays a large role in the bulk material’s proper-
ties [93-97].

In recent years, machine learning and informatics based approaches to materials

design have generated much interest [98-100]. These frameworks are powered by
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quantitative representations of materials, and so effective statistical representation
of microstructure have become a central problem [96,101-103].

The standard approach [101,[104H107] to characterizing microstructure are based
on n-point correlation functions, and is typically restricted to pair correlations. Pair
correlations are essentially capable of assessing the scale of domains in a system,
but do not capture complexities such as the relative shape or relative orientation of
nearby domains [106,(108,/109]. However, three-point functions (and their successors)
are generally computationally infeasible approaches to capturing a texture. Instead,
many approaches involve engineering a set of modified two-point functions to better
capture certain microstructural features [106}/110/112].

Machine learning approaches to computer vision have developed extensive tech-
nology for the purpose of automated analysis of image content |113H117] and texture
reconstruction and modeling [118-124]. T present a new framework for character-
izing materials microstructure based on state-of-the-art convolutional neural net-
works [125] (CNNs). As a test of its capability, I demonstrate that it produces
low dimensional representations of microstructure manifolds which are superior to
traditional methods based on pair correlations.

I use the CNN feature vector introduced by Gatys et al. [118,119] as a rich char-
acterization of texture images. The feature vector synthesizes stunningly accurate
resampled materials micrograph images, see figure[8.1] This can be attributed to the
hierarchical and non-linear aspects of a CNN, which are capable of describing higher
order dependencies in the data which are not available to two point correlations.

As a framework for the characterization of microstructure, I demonstrate that
for an ensemble of similar images, this CNN vector is ripe for embedding into low-

dimensional spaces to characterize textures; the latent variables which are used to
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Figure 8.1: Texture synthesis of materials microstructures using the CNN texture
synthesis algorithm of Gatys et al. [118] The algorithm synthesizes each image by
characterizing a single sample.
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generate images are the primary sources of variation in the low-dimensional repre-
sentation, and the correlations between the generating and CNN representations are
robust even in the presence of noisy, varied patterns.

I establish these characteristics in an unsupervised learning context—the algorithm
does not need to be guided by targets—and on small data sets. These are very desir-
able properties for further informatic analysis, such as regression between materials
microstructure and materials properties or processing techniques. It is particularly
important to generate high-quality low dimensional features for materials analysis
because generating new samples is an expensive process, and [ anticipate that this
framework will provided an excellent basis for design of high-performance materials.

Our approach exemplifies a technique from Machine Learning known as transfer
learning, wherein the data processing capabilities developed in one machine learning
effort are used to boot-strap the capabilities of another. Here, the neural network is
trained on the task of classifying a database of a million natural images into a thou-
sand classes [126]. I are thus leveraging the power of deep learning on very large,
high-dimensional datasets to generate an appropriate framework for the processing of
small, high-dimensional datasets. This leveraging is not without a cost—this method-
ology is limited to the domain of the origin network, in this case two-dimensional

RGB channel images.

8.1.1 Structure of this chapter

The remainder of the paper is organized as follows: Section II gives background on
CNNs for image recognition. Section III details our methods for image ensemble
analysis, and Section IV demonstrates the results of these methods on test datasets.

Section V discusses the primary reasons for the success of this approach, and Section
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VT offers some concluding remarks and directions for further research.

8.2 Background
8.2.1 Convolutional Neural Networks for image processing

Convolutional Neural Networks have emerged in recent years as state-of-the-art sys-
tems for computer vision tasks [113H117]. They form a modern basis for image
recognition and object detection tasks [126], and in some cases now outperform hu-
mans [117,]127].

The basic computational structure is that of a deep neural network (for a brief
overview, see Ref. [125], for comprehensive text, see Ref. [128]). These networks
consist of layers of artificial computational units called neurons. The neurons are fed
weighted inputs and compute a simple nonlinear function (known as the activation
function) of those inputs, and pass that output as input to further neurons in the
network. The weights and parameters of the activation function can be tuned in
order to adjust the behavior of the network. Deep structures include many layers,
allowing for the network to perform complex data processing tasks. In the common
supervised learning framework, the network is trained to perform a task by being
shown input data with a desired output, and the network is trained to produce the
correct output by some variation on gradient descent.

Image recognition tasks require an algorithm to analyze very high dimensional
datasets. Furthermore, the relevant information in the image is hidden in the complex
correlations between the pixels, which give rise to the shapes and textures of the
objects to be recognized. However, CNNs are particularly suited to analyzing this
type of data by encoding the concept of locality into the neural network. Natural

images often have features which are stationary with respect to translation, meaning
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that many patterns which appear in a given image are likely to recurr in the same
image or a different image at a different location. By convolving the image with a
filter, one can identify the locations in an image which correspond to a given local
correlated pattern. The CNN is a neural network whose neurons consist of stacks
of nonlinear convolutional kernels, which are scanned across the image, forming a
higher-order image plane whose channels constitute the features of the image in that
region. Also commonly introduced is a pooling operation, which coarse-grains the
image plane. By interleaving convolutional and pooling layers, CNNs are able to
develop features which incorporate complex correlations over large scales. These
complex features encode relevant information about the content of the image as
information about large regions, and can be fed into classification architectures. In
addition, CNNs can be thought of as a regularization via parameter sharing-adding
the appropriate constraints to a fully connected network based on locality greatly

decreases the number of parameters in the network.

8.3 Methods
8.3.1 Baseline method: Power spectrum for texture characterization

As a baseline for texture characterization, I use the power spectrum (PS), which
measures the two-point correlations in the image. I use grayscale (single-component)
images, corresponding to a single scalar field reffered to as ¢. The two-point corre-

lation function of the order parameter is

P(8T) = [ 9ol + AT) a7 (8.1)

The structure factor or power spectrum S (E) is the Fourier transform of P, which

can be expressed in terms of the fourier representation of the order parameter, QS(E)
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as

S(F) = o(k) (k). (8.2)

For this analysis, I compute the structure factor after normalizing the datasets with

the mean of ¢ to zero, and the range from —1 to 1.

8.3.2 CNNs for texture characterization

Intermediate representations of a neural network can reveal the hierarchy of features
learned by the network [129,]130]. Gatys et al. [118/119] have developed a robust
algorithm for texture synthesis by using the statistics of the activations in intermedi-
ate layers of a CNN as a feature vector. Examples of the algorithm applied to create
synthetic versions of materials microstructure are shown in Figure 8.1}

They construct a feature vector as follows: Suppose we desire to construct a
texture vector out of the intermediate activations on layer [. They will consist of a
bank of features across a hyper-image planes. We can then label the activation of the
1th feature on the jth pixel of the hyper-image plane Ffj This object is equivariant
with respect to translations in the source image plane-a suitable translation can
be performed by translating the filter bank in the same direction. To construct a
texture vector, one desires an object invariant to translations in the image plane-this
can then be constructed by any suitable summary statistics of the Fjj over the image
plane.

For the construction of a texture vector, we use the Gram matrix summarizing

the correlations between feature ¢ and feature k:
Gy =Y FiF, (8.3)
J

The inclusion of the correlations between features greatly increases richness of the
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representation. It is also a logical with respect to the architecture of the CNN-the
weight structure of neural networks dictate that individual features need not carry
meaning directly, but rather combinations of the features, which are selected by
deeper layers for further processing. Thus it is desirable to construct a summary
statistic which considers correlations between features. The Gram matrix is then
viewed elementwise as a layer-wise texture vector G! for the purposes of further
analysis by treating the matrix elementwise.

For the purposes of texture synthesis, Gatys et. al introduce a scalar, positive-

definite loss between two images x and ' with Gram matrices G! and G

1 - -
L'z,2') = X(Gl — G2 (8.4)
I

A; = AN?M? is a normalization factor for the loss on layer | with N features and
M; hyperpixels. The factor 4 was introduced for convenience of the expression for
the derivatives used in their optimization.

I use the square root of this loss function for the comparison of similar textures,

introducing a distance matrix d;;:

(dij)* = wiL!(x;, ;) (8.5)

where w; is a weighting factor for each layer. In this work, I use th same normalized
version of the VGG network |[115] used in [118[119], using layers“convl_1”, “conv2_1",
“conv3_1", “conv4_1", and “convb_17, with equal weighting for each layer.

It is notable that there are several free parameters in this which may subtly
modify this process, of which the layer weighting is only one. For example, one
might also scale the activations within the layers according to the mean activation

strength on each layer, either individually according to each image or over the set



133

of images. Dissimilarities can be generated using a variety of norms, such as LP
norms or cosine distances. The conventions used here define a Euclidean distance
over the features, which ensures that a set of N images can be embedded into an

N-dimensional euclidean space.

8.3.3 Manifold Learning with Multidimensional Scaling

To assess the quality of the texture vectors for characterizing images, I perform unsu-
pervised dimensionality reduction—manifold learning. The goal of manifold learning
is to find a low-dimensional structure which represents the data.

Because the dimensionality of the texture vector is large (roughly & ~ 28 or
2.5 x 10°), one desires to work with methods which do not scale poorly with respect
to the number of input features. Multidimensional scaling [131H133] (MDS) is well-
suited to this task, as it minimizes a reconstruction objective on an N x N distance
matrix over the data set. I factor out the stage of the problem which scales with k
by computing the distances between data points in the high-dimensional space, and
can then very quickly assess the ability of MDS to capture the structure of the data.

The goal of multidimensional scaling is to reproduce a distance (or dissimilarity)
matrix over a dataset while embedding the data points in a low dimensional space.
In particular, I use Kruskal-Shephard scaling, for which the objective is to minimize

the stress S between the input distances d;; and the embedded distances czij:

o [2(dy—dy)?

S (8.6)
5 .
di;
MDS is conceptually simpler than many other nonlinear manifold learning schemes
available, and its conceptual clarity aids us to better understand the morphology of

the high-dimensional data being compared. The aim is not to produce the absolutely
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most effective low dimensional basis for a specific manifold of images but to demon-
strate the general viability of this scheme of microstrucure data processing and pave
the way for further work. I use the implementation of MDS found in scikit-learn [134]

which seeks low-stress configurations by an iterative majorization algorithm [135].

8.4 Tasks
8.4.1 Image generation process

Microstructural evolution can be viewed as a process governed by low-dimensional
latent generating variables (e.g. material composition, thermodynamic conditions
during formation) which manifest in a high dimensional space by way of smooth,
local noise.

As a prototype for microstructural analysis, I generate a synthetic dataset which
factors into latent variables and noise. The latent variables govern the abstract
qualities of the image, and when the noise vanishes, the latent variables define a
unique image; A small number of variables sets the statistical qualities of the texture,
but raw dimensionality of the resulting manifold of images is exponentially large.

I use the procedural texture generation method due to Perlin |136] known as
turbulence to generate images conforming to this scheme. The turbulence patterns
are constructed by generating a lattice of coordinate values, and distorting the values
on the lattice using smooth multi-scale noise. A template function is applied to these
distorted values to generate textures—in this case, a sine function with an angle and a
scale parameter. By controlling the amplitude of the noise, one can tune the images
from exactly periodic stripes to a noisy, marble-like pattern of stripes.

In this work I vary three generating parameters for the textures- the angle of the

texture, the amplitude of the noise, and the scale at which the texture is viewed.
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Figure 8.2: The space of synthetic textures, generated by three tunable parameters.

Figure [8.2 demonstrates these explicitly. I parameterize noise amplitude as relative
to the stripe scale, as opposed to the pixel size, so that images with the same noise
parameter but different scale parameters will appear visually to be the same pattern

viewed from a different distance.

8.4.2 Angle reconstruction task

The first task is to reconstruct a manifold of images of fixed noise and stripe scale,
but varying angle. For each trial, the stripe parameter was fixed to 15 (shown in
ﬁg. A number of images were generated by stepping the angles uniformly from
0 to m. I place the images on a manifold by computing their distance via the CNN
procedure in section and embedding the resulting distance matrix into a two
dimensional space with MDS.

Even when the embedded manifold reflects the structure of the generating mani-
fold very well, there are two things necessary to align them for quantitative analysis.
The first is that the generating angle is periodic over the range 0 to m, whereas

the embedded manifold places points over an angular range of 0 to 2w. Therefore
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Texture Image

Power Spectrum

Figure 8.3: Samples images at different noise values. Top: Image textures. Bottom:
Associated power spectrum, zoomed to show relevant area. For the purposes of
this visualization, the power spectra images are increased in brightness by factors of
approximately 2, 5, and 240, associated with the relative magnitude of their maxima.
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we double the generating angles to make the ranges commensurate with each other.
Furthermore, the origin of the angular coordinates is not necessarily aligned. I rotate
about the embedded manifold to maximally align it with the generating manifold
using a least-squares procedure on the error between the generating and embedded
angles.

Samples of this embedding procedure are shown in Figure for ensembles of 50

images with varying noise.

Quality of embeddings

Qualitatively, we find that the CNN reconstructions to be quite favorable to the
spectral ones. For low noise, the CNN produces a continuous ring structure which
reflects. The CNN representation is not perfectly rotationally symmetric, and so
there is some bias in the reconstruction, evident in the skewed shape of the ring.
As the noise is raised, the ring widens somewhat, however, the CNN performs well
up across a large range of noise. The CNN is also very robust to small datasets.
Conversely, the PS performs poorly for low and high noise values. There is a narrow
band of mid-range noise amplitudes where the PS can perform comparably to the
CNN, but only if it has access to a large number of images.

I quantify reconstruction error by measuring the root-mean-square deviation of
the embedded angles from the target generating angles. (This is the quantity mini-
mized when rotating the manifold.) The results are shown in Figure for a variety
of number of images, and a variety of noise values when generating the images. I
note that for 5 images in the ensemble, (not shown in the figure to decrease clutter)
the neural network performs just as well, but the spectral method performs roughly

equally badly for all noise values.
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Figure 8.4: The reconstructions of the angle image manifold (cf. Fig. using the
CNN and PS representations. CNN reconstruction (red filled circles) dramatically

outperforms the PS (blue unfilled squares).
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Figure 8.5: The reconstruction error of the angle reconstruction task as a function
of noise. Each data point is an average over 100 trials.

The data shows that the CNN reliably reconstructs the image manifold regardless
of the number of images in the manifold, and with a high degree of tolerance to
noise. On the other hand, the power spectrum method is capable of reconstructing
this manifold only for a window of noise ranges, and requires a much larger number

of images to reach a high degree of accuracy.

Stress of embeddings

We can also asses the quality of the embedding procedure by examining the residual
stress (Eq. of the embedded configuration found by MDS, shown in Figure [3.6]
The data indicate that the CNN texture vector, though of very high dimension
(~ 2.5 x 10%), can be captured much more effectively in two dimensions than the PS
embedding.

The stress of the embeddings grows with the noise, and this is to be expected.
With zero noise, the subset of images specified by this procedure is exactly a ring

which can be embedded exactly into a two dimensional plane. However, adding the
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Stress

Figure 8.6: The MDS stress of the embedding into two dimensions for the angle
reconstruction task as a function of noise. Markers are the same as in fig [8.5]

high-dimensional noise to the image perturbs this ring into a very high dimensional
space. The phase space of the noise grows rapidly with its amplitude, and so a highly
noisy image manifold has a very large volume. The CNN texture embedding is re-
silient to this noise, mapping two images with the same latent parameters to very
similar texture vectors; in the CNN representation, the volume of space associated
with different realizations of the noise is much smaller than the volume associated
with angle. The power spectrum features, however, are quite susceptible to the noise
(see fig , and thus the effective dimensionality of the power spectrum represen-

tation greater (cf. similar results in later section [8.4.3) Fig. [8.7).
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8.4.3 Three dimensional manifold reconstruction task

The second task is the reconstruction of a 3-D manifold of images, of varying angle,
scale, and noise parameters, each in 10 increments, for a 1000-image manifold. The
angle parameter spans the gamot from 0 to 7, the scale parameter ranges from 5
to 14, and the noise parameter varies from 0.5 to 2. As before, we determine the
distances between images using the CNN texture vector and the power spectrum,

and embed the resulting distances into a low dimensional space using MDS.

Stress of embedding

The embedding stress is shown as a function of dimension in fig[8.7] The data indicate
that the CNN vectors can be more easily embedded into a much lower dimensional
space than the spectral vectors.

The embedding stress of the CNN approach decays rapidly and roughly exponen-
tially over the first few dimensions, implying that they capture a very large fraction
of the variation in the data. As an unsupervised analysis, choosing the appropriate
embedding dimension is not an exact science. While from an exponential standpoint,
there are diminishing returns on embedding into any dimension greater than 3, it
seems reasonable to choose an embedding into any dimension between 3 and 6 to
produce good fidelity while minimizing the number of parameters used to describe
each image.

The embedding stress of the spectral method, on the other hand, decays roughly
as a power law. This implies that the intrinsic dimensionality of the space is very
large, and the scale-free nature likewise implies that there is no natural dimensionality

of the data in this representation.
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Figure 8.7: The MDS embedding stress for the three dimensional manifold recon-
struction as a function of embedding dimension. Red: Using CNN texture vec-
tor. Blue: Using power spectrum. Left: Low-dimensional embedding highlights the
approximately exponential gain in fit quality with dimension for the CNN metod.
Right: Higher dimensional embeddings demonstrate that the power spectrum cannot
be easily embedded into a lower dimensional space.

Three dimensional embedding

Here, I present visualizations and explore the results of the embedding of the CNN
method into a three dimensional space, matching the latent dimensionality of the
images. The CNN embedding is highly structured with respect to the generating pa-
rameters. The manifold as a whole has a cone-like structure elucidated in Figure[8.8|
The noise parameter varies roughly according to the depth from the outer surface
of the cone, and the scale parameter roughly as an arc length away from the axis of
the cone. Figure shows the angular variable is distributed in sharp regions which
are uniformly around a central axis, capturing the angular distribution of the images

with very high fidelity.

Higher dimensional embeddings

The three dimensional embedding produces a coherent manifold which smoothly

embedds the generating parameters, however, as indicated in fig. 8.7 the distance
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(a) Angle (b) Scale (c) Noise

Figure 8.8: The three dimensional embedding of the three dimensional image man-
ifold. The cone axis was manually rotated to align with the z-axis. Top: Views of
the embedding colored by generating parameter. Bottom: Corresponding schematic
representations of the manifold.

Figure 8.9: Axis-aligned view of the 3-D embedding colored by angle, demonstrating
strong separation of images with differing angles.
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Figure 8.10: Images of the 3-D image manifold embedded into four dimensions;
this is a particular linear projection of the data into three dimensions. This three
dimensional projection coordinatizes the generating parameters in an approximately
cylindrical coordinate system, where angle is mapped to the polar angle, scale is
mapped to the radial variable, and noise is mapped to the longitudinal variable.

data can be embedded with exponentially smaller stress in four dimensions. With
a higher number of dimensions, it is easier to find directions which represent the
generating parameters in a regular fashion. Figure [8.10] shows a projection of this
4-D embedding into three dimensional space where the conic nature of the manifold
is almost negligible, and the generating variable are approximately encoded as a
cylindrical coodinate system.

CNNs invoke complicated nonlinear processing techniques which entangle infor-
mation from the source image to produce their output. Though it is clear that the
embedded manifolds are smooth, one may be interested in the type and extent of
entanglement in these representations between the various generating parameters of
the image. In the cases above, the scale parameter is entangled with the angle pa-
rameter as a radius and azimuthal angle. Is this always the case? What are the
linear subspaces which best represent the generating parameters, and how well do
they fit the data?

To investigate these questions, I explored simple linear regression of the generat-
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Figure 8.11: Projection from the six dimensional embedding into the two dimensions
which best capture scale and noise variations using linear regression. Left: Colored
by scale value. Right: Colored by noise value.

Dim. || Angle | Scale | Noise
31 437 | 720 | .231

41 464 | 901 | .908

51 487 | 916 | .950

6| .522 916 | .951

10| .671 | .930 | .972
50 || .787 | 980 | .983

Table 8.1: R? coefficients for linear regression between the manifold coordinates and
generating parameters for varying embedding dimensions.

ing parameters in higher dimensional embeddings. Figure [8.11| shows a two dimen-
sional projection from a six dimensional embedding space using the space spanned
by the regression vectors. There is global cross-correlation of the noise and scale
regressions in that the regression vectors are not orthogonal, visible in the figure by
the skew of the structure. Furthermore, there is some local entanglement within the
manifold, evident in the curvature of the manifold with respect to the variables.

Table gives the Pearson R? coefficients as a for several higher dimensional
embeddings, which demonstrates that for modest embedding dimensions, scale and
noise parameters can be isolated as a single manifold coordinate.

The global cross-correlation was found consistently between the scale and noise

parameters, but little was found between the angle parameter and the others. Lin-



146

ear regression of the angle parameter, due to its cyclical topology, proves difficult.
Multi-class Linear discriminant analysis (LDA) [133], which can handle the cyclical
structure better, was also investigated for the angle parameter. Although it was more
successful than linear regression, for dimensions larger than 4, LDA did not find sub-
spaces which captured the distribution of angles more faithfully than the embeddings
shown in figs. and [8.10}this is likely because LDA is a somewhat coarse procedure
for this data: It does not seek an explicitly angular representation (it penalizes radial
variance), and it treats all classes equally, rather than incorporating angular locality.
The two dimensional linear subspace found by LDA on the angle parameter did not
correlate with the subspaces found for the noise and scale parameters, indicating
that the discriminanting plane for angle is effectively orthogonal to scale and noise

regardless of embedding dimension.

8.5 Discussion
8.5.1 Power spectrum performance

The effectiveness of the spectral method and the stress of the embeddings are best for
moderate values of the noise. Since the images consist of perturbed sine functions, it
would seem that the power spectrum would be the appropriate basis for examining
these images. Indeed, inspection of the power spectrum provides a indication of the
information in the image in regimes where the manifold learning procedure does not
succeed to capture the structure of the images.

I offer the following explanation: When the noise is very low, the spectral peaks
between images have little to no overlap, and so the distance matrix is roughly uni-
form; all points are equidistant from each other, as in an n-dimensional simplex, and

relationship between generating and reconstruction angles is essentially random, with
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no correlation. As the noise blurs the spectral peaks, they begin to overlap. As they
do, this brings adjacent points in the generating space closer together, allowing for
a lower-dimensional space to capture some of the distance structure between points.
However, the noise strongly influences the individual features of the power spectrum,
and as the noise amplitude grows, adjacent points in the generating space again be-
come orthogonal, such that spectral distances are again no longer meaningful.

This paradigm is backed up by the increased effectiveness of the spectral method
for a larger number of images, and likewise reflected in a dip in stress of the embed-
dings near the optimal effectiveness of the spectral method. While the problem can
be to some extent mitigated using larger datasets, it cannot overcome the intrinsic
large dimensionality of the images in the power spectrum representation.

This highlights a failure mode for spectral methods when used for automatic
processing: Although the basis functions for the power spectrum are orthogonal,
there is a geometry to the basis functions provided by the reciprocal space. This
relationship allows one to extract meaningful relationships between nearby compo-
nents (even when they are formally orthogonal) by the application of small spatial
transformations such as rotation and dilation.

Understanding of this geometry serves the knowledgable observer well, however,
it is not incorporated into machine learning frameworks. By incorporating this form
of domain expertise, it is possible to solve this particular simple problem using au-
tomatic methods; one can characterize these power spectra by computing statistics
under the assumption that they consist of noise with two diametrically opposed spa-
tial peaks for an envelop. One can then derive formulae to extract the center of
position and width of the peaks. However, such an approach will not easily general-

ize to complex microstructures, which contain nontrivial power spectra. It also does
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not overcome the limitations of two-point statistics—it is made simple in this case
because the parameters of interest aside from the noise, correspond to single points
in the power spectrum.

These concerns will apply to any unitary basis transformations used to process
the images—distances in the transformed space will only be meaningful to the extent
that the basis is aligned with meaningful aspects of the image. This basis alignment
problem prevents information-preserving (or almost-information preserving) trans-
formations from being useful for detecting similarity unless the basis is very well
taylored to the features of interest. In the case of the power spectrum, the detectable
features of interest are relevant reciprocal space vectors characterizing length scales
and anisotropy angles. I have shown that even whenthe microstructural features are
length scales and anisotropy angles, the power spectrum approach on its own does

not lend itself to dimensionality reduction.

8.5.2 CNN performance

The performance of the CNN texture vector is much better, achieving high accuracy
and consistent performance across the spectrum of noise. This can be attributed to

several advantages of the CNN-based approach.

Local feature support The CNN uses local features with finite support. The
global nature of the spectral basis means that when similar patterns appear at dif-
ferent locations, there can be a beating effect which actually decreases the response
at the wave vectors in question and pushes the feature response (which ought to
be aggregated due to their similarity) into neighboring modes. The CNN, on the
other hand, will respond to a similar pattern a long distance away and produce the

same response to that pattern. When averaging over the hyperimage plane, these
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responses are aggregated.

Richness of features Secondly, the neural network exhibits a very rich variety of
features, on account of the fact that the filter complexity is higher than that of a
fourier transform, and that filters are hierarchically composed.

Convolutional filters can represent arbitrary cross-correlations between the pix-
els within their receptive fields, such that individual filters themselves can estimate
higher order statistics. This stands in contrast to the Fourier basis: although the
Fourier basis is complete, individual components are completely insensitive to sensi-
tive to higher order statistics.

Curved filters can assist in the identification of features in an images when the
noise parameter is large, and linear correlation lengths become diluted. Higher or-
der filters provide another benefit which is particularly showcased when the noise
parameter is low. In this case, a curved filter may respond to two images of differing
angles. Curves and other higher-n-point features can give rise to correlated features
between similar images which are uncorrelated in the real space or fourier domains.
This explains the ability of the neural network to reconstruct the proper angles even
when there are very few images in the ensemble.

The hierarchical composition of filters after pooling enables the CNN to generate
highly complex responses patterns [137] which aid the network in its design goal-
recognition of objects in natural images. The complexity of these features is what
allows for the reconstruction of complex textures with large correlation lengths and
hierarchical patterning. This is exhibited in fig. 2 from [11§], where reconstruc-
tions of the texture are generated using different layers from the network, affirming
using higher layers is necessary for the reconstruction of larger and more intricate

correlation structures.
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The intrinsic difficulty in dealing with these higher-order correlations statistics is
to decide which statistics are important to compute. The space of two-point statistics
is already the same size as the original image space, and the dimensionality of three-
point statistics (requiring the specification of two separation vectors) is the square
of that for two-point statistics. Many of them may not be informative about the set
of images of interest, and so a brute-force approach will waste a lot of effort.

The neural network architecture represents a prior about the statistics of interest,
in that all short-range statistics can be computed, but longer range correlations must
factor into combinations of short-range correlations, which helps prune down the
space of higher-order correlations.

Still, the neural structure is a very high-dimensional space, and random points
in that space do not lend themself to an appropriate basis for texture reconstruc-
tion [118]. The image space itself is also a very high-dimensional space, however, the
subset of all natural images is much smaller; A given image with completely random
pixels will always be distinguishable from a photograph. This enables us to distill a

good basis for natural image analysis by training of the neural network.

Feature Pooling As a general scheme, pooling similar features is an useful tool for
data analysis. Although not usually phrased in this language, the supposition that
textures can be represented by stationary statistics with respect to translation gives
rise to natural pooling in analysis. Pixel-level correlations are aggregated together
based on the difference vector between the pixels. Mathematically phrased, we use
the stationarity assumption to justify pooling the raw two-point configuration func-

tion P(Z, %) to the two-point correlation function, with the pooled variable being
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the center of the points, ¥ = (71 + 72)/2:

P(fl,@) = Qb(fl)(b(@) (8-7)

PyAT) = / P(j— AT/2,§ + AF/2) df (8.8)

Likewise, in Fourier space, where spatial translations correspond to phase modula-
tion, and a translationally stationary signal is constructed by considering only the
amplitude of the components, i.e. pooling over the phase variables, and the result is
the power spectrum of the signal.

In the texture-vector approach using a CNN, local correlations are constructed by
the neurons, and a translational stationary texture vector is constructed by pooling
across the entire image plane.

The pooling layers of the CCN serve to reduce the complexity of the spatial
information in higher levels of the network, a process usually known to physicists as
coarse-graining. Coarse-graining has proven to be an enormously effective tool for
the analysis of physical systems and the construction of field theories which explain
universality of phase transitions.

In the context of power spectra (two-point functions), coarse graining is a trivial
procedure which simply discards high-frequency (short distance) information. This
can provide for sophisticated action, however, in the context of hierharchical anal-
ysis, such as in a neural network. Here, statistics are computed, the system is
coarse-grained, and further statistics are computed. Coarse-graining (pooling layers)
pool long range composite features over perturbations to the local configuration of
their component features. This gives high-complexity, long-range features a higher
degree of flexibility—activations on higher levels correspond to a whole set of spatially

similar correlations in the image plane, related by small deformations of the com-
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ponent features. Furthermore, increasing flexibility is associated with longer-range
correlations, whose phase space is inherently much higher. It is in these high-volume
regions of phase space that a unitary approach to feature selection will be propor-
tionally more sensitive to alignment of basis, and cross-correlations become infeasible
to compute. So, spatial pooling allots feature flexibility in measure to its need.

It is worth noting that for all the advantages of the lossy, many-to-one aspects
of pooling, it is disadvantageous from the perspective of a physical analysis, and
the nonlinearities in the CNN compound this problem. Individual activations in
CNNs cannot be deterministically inverted to generate a response function, and so
it becomes difficult to understand concretely what a particular activation in a CNN
may represent.

The neural embedding’s RMSE in the angular reconstruction task reflects a con-
sistent degree of bias due to the lopsided shape of the reconstructed manifold. This is
itself due to the fact that the neural network architecture does not explicitly capture
rotational symmetry, but rather it is implicitly encoded in the variation of learned
filters in the network. However, systematic but smooth deviations do not provide
any large obstacle to effective regression between neural embeddings and param-
eters of interest—processing parameters or material parameters. Furthermore, one
may seek rotationally invariant features by averaging the texture vector applied to
several passes of rotated images through the network, or the use of Cyclic Symme-
try CNNs [138] or Deep Symmetry networks [139], which can architecturally encode

features which are robust to rotation.
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8.6 Conclusions and future directions

I have introduced a method for detecting the low-dimensional structure of a distri-
bution of similar texture images using CNN. Although the manifold of noisy texture
images is inherently of very large dimension, I show that the CNN can embed these
images meaningfully into a low dimensional manifold which reflects the structure of
the latent variables used to generate the image, performing extreme dimensionality
reduction. I present this as a framework for the analysis of materials microstructure
to determine the dimensionality, topology, etc. of materials microstructures, charac-
terizing materials directly by state instead of by processing. By faithfully capturing
the variations in microstructure using an unsupervised low dimensional represen-
tation, this approach forms a platform for further model development to connect
processing to microstructure, and microstructure to properties.

I demonstrate the superiority of our approach to a similar pipeline using more tra-
ditional statistical approaches to microstructure characterization. The CNN-based
approach demonstrates a pattern recognition sensitivities with a much wider range
of response, including conditions of very high stochasticity as well as very low sample
size. The latter is a common constraint many disciplines, such as materials science,
where data is expensive. The low sample size is circumvented by the use of transfer
learning, reaping the benefits from image charcacterization of large datasets.

In addition, I discuss the features of CNNs which allow for these remarkable ca-
pabilities, with an emphasis on the relationship between these techniques and the
standard physics approach. These pave the way for future microstructure character-
ization techniques which synthesize physics-based and machine learning approaches.
For example, the the incorporation of frameworks which obey the appropriate phys-

ical symmetries of a given system [138-141]. Another avenue is the incorporation of
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latent variable models (e.g. [142]) which reflect the microstructural generation pro-
cess. It may also be feasible to construct or tune CNNs which are optimized for the

detection of texture elements which are particular to materials microstructure.
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Appendix A

Mean Trade Equations Approaching the Phase Transition

A.1 Scaling of the richest agent

Given the scaling relation:

d%(%gg):—ﬁﬂ, (A1)

or equivalently,

ws(z, €) = ws(0, e)efég(’”) (A.2)

and the normalization of rescaled wealth:

Ai%@ﬁmx:1 (A.3)

We can factor out the wealth scale w;(0, €) from the integral and evaluate the integral:

I:/O exp(—e 'g(x))dz (A.4)

As € — 0, the contributions to the integral will become dominated by the behavior

of g(x) near x = 0, so expand ¢ in a taylor series. Note that g(0) = 0 by the original
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scaling relation.:

1= [l (o Zroe)|e 0o

24'(0),

Using the substitution u =

I= /::1 exp l—u + ﬁi})?g”(()) + } g’EO)du (A.6)

Equation insists that the equation w,(0)I = 1 is independent of €. Moreover
the u? term in the exponent cannot dominate the integral because g(z) is increasing.

The ratio of the second term of the expansion to the first is

(A7)

So as long as r remains small while u is on order 1, this contribution to the integral
will be negligible, which will always occur for sufficiently small e. We can then

evaluate the integral straightforwardly, giving:

I = 70) (A.8)
w(0,€) =~ 9i0)+0(1) (A.9)

Further analysis gives the integral to another order proceeds by the usual method of

completing the square:

o0 k 2
I'= / exp (—u — %) du (A.10)
0

(A.11)
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Analysis of this in the limit as £ — 0 requires examining only a right-handed limit
k — 0", as I, acquires an imaginary component for & < 0. This is not actually a
problem for our case since we are looking only to find the perturbative correction
to this integral for small k, knowing that the correction contributions come from
deformations to the exponential shape around x = 0. Moreover, we will eventually

find that the solution satisfies £ > 0. We may then expand to find:

2
I'(k ~0) zl—k+3%+... (A.12)

The k% component is not reliable since we have not included the ¢"(0) term to our

correction, which should contribute at the same order in €. In our case, k = —

Including the first two orders gives:

€ eg”(0)
]”gw>0+gmv) (A.13)

Which can be rearranged to the equivalent expansion

w(0,€) ~

0 + O(e) (A.14)

~—

2
Q

A.2 Solution to the scaling form near the phase transition

For the YSM with skewed geometric growth, and the scaling form

ctog (220 ) = ~g(0), (A.15)

near the phase transition at v = 1;e = 0. Let us insert the function

g(x) =log(1 +z3/p) (A.16)
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into the mean-trade equation at steady state:

0= —zBy(x 1 2" dx' ﬂ— x A17
By( )+ﬁ/x y(a') +Mf01y(x')vdx/ py () (A.17)

For convenience, we divide out by  and set p/ = u/p.

The form of g(x) gives us a form for y:

o) =) (1+5) (A.15)

This allows us to compute:

/x ly(x')dx’ — 4(0) / 1 (1+§)€1dx’ (A.19)

#'y(0) (1+ %)1_6_1 _ (H%)H_l] (A.20)

1—et
and likewise, the integral for S can be computed similarly with the substitution

(1 + %) T 1] (A.21)

Likewise, we can use normalization to compute y(0):

€ €

a

s= [yar = 1007
0

1+2

— _ et (1+ M/>€71
y(O) - (1 )Iu,efl(l 4 M') . ,LL/(l i /L/)e 1 (A23)
)‘M/)\_l
- T (A.24)

1

where A = 1 — ¢ is a notational convenience. 0 < ¢ < 1 is mapped to the domain

—00 < A< 0.
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We take the derivative of the mean trade steady state equation with respect to

x, and regroup. 3’ denotes g—z.

0= ot (!
=—xy —2y+p'y 5 —1 (A.25)

which can be further rearranged to

Wy’ W S

2 71
A (A.26)

(Dividing by 3 is not perilous because y(z) is a strictly decreasing function). At this

point we insert the solution from eq. [A. 18] which has the convenient property that
y x
v —eu' (1 + E) (A.27)

Simplifying the steady-state equation to

’Y —€
(1 =200+ ) = gu(O (1 + ) (A.28)
(1—2¢) = %y(orﬁ (A.29)
O =1, (A.30)

With y(0) determined by the expression in eq. and S by eq. This cum-

bersome expression can be algebraically manipulated to the statement that

14 A
O\ 1) = AN (A.31)
L = p ()

with the limit € — 0" replaced with A — —oo0.



Bibliography

Online Etymology Dictionary. Entry: Statistics. http://www.etymonline.

com/index.php?term=statistics, 2016.

7. Burda, J. Jurkiewicz, and M. A. Nowak. Is Econophysics a Solid Science?
Acta Physica Polonica B, 34:87, January 2003.

Dean Rickles. Econophysics for philosophers. Studies in History and Philoso-
phy of Science Part B: Studies in History and Philosophy of Modern Physics,
38(4):948 — 978, 2007.

Franck Jovanovic and Christophe Schinckus. The emergence of econophysics:

A new approach in modern financial theory. History of Political Economy,

45(3):443-474, 2013.

Mauro Gallegati, Steve Keen, Thomas Lux, and Paul Ormerod. Worrying
trends in econophysics. Physica A: Statistical Mechanics and its Applications,

370(1):1-6, 2006.

Joseph L. McCauley. Response to “Worrying trends in econophysics”. Physica
A: Statistical Mechanics and its Applications, 371(2):601-609, 2006.

Jean-Philippe Bouchaud. The (unfortunate) complexity of the economy.

Physics World, 22(04):28, 2009.

161


http://www.etymonline.com/index.php?term=statistics
http://www.etymonline.com/index.php?term=statistics

8]

[15]

[16]

162

J. Doyne Farmer and Duncan Foley. The economy needs agent-based modelling.

Nature, 460(7256):685-686, 08 2009.

Christophe Schinckus. Is econophysics a new discipline? The neopositivist
argument. Physica A: Statistical Mechanics and its Applications, 389(18):3814

— 3821, 2010.

Christophe Schinckus. Econophysics and economics: Sister disciplines? Amer-

ican Journal of Physics, 78(4):325-327, 2010.

Victor M. Yakovenko and J. Barkley Rosser. Colloguium: Statistical mechanics

of money, wealth, and income. Rev. Mod. Phys., 81:1703-1725, Dec 2009.

Wataru Souma. Physics of personal income. In Hideki Takayasu, editor, Em-
pirical Science of Financial Fluctuations: The Advent of Econophysics, pages

343-352. Springer Japan, Tokyo, 2002.
V Pareto. Cours d’économie politique. Droz, Geneva, 1896.

MEJ Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary

Physics, 46(5):323-351, 2005.

Brian Hayes. Computing science: Follow the money. American Scientist, pages

400-405, 2002.

Zhi-Feng Huang and Sorin Solomon. Stochastic multiplicative processes for fi-
nancial markets. Physica A: Statistical Mechanics and its Applications, 306:412
— 422, 2002. Invited Papers from the 21th ITUPAP International Conference on

Statistical Physics.



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

163

Anirban Chakraborti, Ioane Muni Toke, Marco Patriarca, and Frédéric

Abergel. FEconophysics review: 1. Empirical facts. Quantitative Finance,

11(7):991-1012, 2011,

Anirban Chakraborti, Ioane Muni Toke, Marco Patriarca, and Frédéric
Abergel. Econophysics review: II. Agent-based models. Quantitative Finance,

11(7):1013-1041, 2011.

J. Kelly. A new interpretation of information rate. IRE Transactions on In-

formation Theory, 2(3):185-189, September 1956.

Sitabhra Sinha. Stochastic maps, wealth distribution in random asset ex-
change models and the marginal utility of relative wealth. Physica Scripta,

2003('T106):59, 2003.

C. F. Moukarzel, S. Gongalves, J. R. Iglesias, M. Rodriguez-Achach, and
R. Huerta-Quintanilla. Wealth condensation in a multiplicative random asset

exchange model. The Furopean Physical Journal Special Topics, 143(1):75-79,
2007.

Cristian F. Moukarzel. Multiplicative asset exchange with arbitrary return
distributions.  Journal of Statistical Mechanics: Theory and Fxperiment,

2011(08):P08023, 2011.

The World Bank. World development indicators. http://data.worldbank.

org/indicator/NY.GDP.MKTP.KD.ZG, September 2014.

Wataru Souma. Universal structure of the personal income distribution. Frac-

tals, 09(04):463-470, 2001.


http://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG
http://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG

[25]

[26]

[27]

28]

[29]

[30]

164

Anthony B. Atkinson, Thomas Piketty, and Emmanuel Saez. Top incomes in
the long run of history. Working Paper 15408, National Bureau of Economic
Research, October 2009.

Makoto Nirei and Wataru Souma. A two factor model of income distribution

dynamics. Review of Income and Wealth, 53(3):440-459, 2007.

Moshe Levy and Sorin Solomon. New evidence for the power-law distribution
of wealth. Physica A: Statistical Mechanics and its Applications, 242(1-2):90 —
94, 1997.

Fabio Clementi and Mauro Gallegati. Pareto’s law of income distribution:
Evidence for germany, the united kingdom, and the united states. In Arnab
Chatterjee, Sudhakar Yarlagadda, and Bikas K. Chakrabarti, editors, Fcono-

physics of Wealth Distributions, pages 3-14. Springer Milan, Milano, 2005.

Sitabhra Sinha. Evidence for power-law tail of the wealth distribution in India.

Physica A: Statistical Mechanics and its Applications, 359:555 — 562, 2006.

Géza Hegyi, Zoltan Néda, and Maria Augusta Santos. Wealth distribution
and Pareto’s law in the Hungarian medieval society. Physica A: Statistical

Mechanics and its Applications, 380:271 — 277, 2007.

A.Y. Abul-Magd. Wealth distribution in an ancient egyptian society. Phys.
Rev. E, 66:057104, Nov 2002.

Oren S. Klass, Ofer Biham, Moshe Levy, Ofer Malcai, and Sorin Solomon. The
Forbes 400 and the Pareto wealth distribution. Economics Letters, 90(2):290

— 295, 2006.



[33]

[34]

[35]

[41]

165

D Kondor, M Pésfai, I Csabai, and G Vattay. Do the rich get richer? An
empirical analysis of the Bitcoin transaction network. PLoS ONE, 9(2):e86197,

02 2014.

Sidney Redner. Random multiplicative processes: An elementary tutorial. Am.

J. Phys, 58(3):267-273, 1990.

Henri Theil. Economics and information theory, volume 7 of Studies in math-

ematical and managerial economics. Amsterdam : North-Holland, 1967.

C. E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27(4):623-656, Oct 1948.
Robert Gibrat. Les inégalités économiques. Recueil Sirey, 1931.

Michael H. R. Stanley, Luis A. N. Amaral, Sergey V. Buldyrev, Shlomo Havlin,
Heiko Leschhorn, Philipp Maass, Michael A. Salinger, and H. Eugene Stanley.
Scaling behaviour in the growth of companies. Nature, 379(6568):804-806, 02
1996.

D. G. Champernowne. A model of income distribution. The Economic Journal,

63(250):318-351, 1953.

Moshe Levy, Sorin Solomon, and Givat Ram. Dynamical explanation for the
emergence of power law in a stock market model. International Journal of

Modern Physics C, 07(01):65-72, 1996.

Didier Sornette and Rama Cont. Convergent multiplicative processes repelled
from zero: Power laws and truncated power laws. J. Phys. I France, 7(3):431—

444, 1997.



[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

166

Xavier Gabaix. Zipf’s law for cities: An explanation. The Quarterly Journal

of Economics, 114(3):739-767, 1999.

Gerhard Sorger. Income and wealth distribution in a simple model of growth.

Economic Theory, 16(1):23-42, 2000.

Jayasri Dutta, J. A. Sefton, and M. R. Weale. Income distribution and income
dynamics in the United Kingdom. Journal of Applied Econometrics, 16(5):599—
617, 2001.

William J Reed. The Pareto, Zipf and other power laws. Fconomics Letters,

74(1):15 — 19, 2001.

Jeremy Greenwood, Nezih Guner, and John A. Knowles. More on marriage,
fertility, and the distribution of income. International Fconomic Review,

44(3):827-862, 2003.

Moshe Levy. Market efficiency, the Pareto wealth distribution, and the Lévy
distribution of stock returns. The Economy As an Evolving Complex System,

I1I: Current Perspectives and Future Directions, page 101, 2005.

Urna Basu and PK Mohanty. Modeling wealth distribution in growing markets.
The European Physical Journal B, 65(4):585-589, 2008.

Juan Carlos Cordoba. A generalized Gibrat’s law. International Economic

Review, 49(4):1463-1468, 2008.

Jess Benhabib, Alberto Bisin, and Shenghao Zhu. The distribution of wealth
and fiscal policy in economies with finitely lived agents. Fconometrica,

79(1):123-157, 2011.



[51]

[52]

[53]

[55]

[56]

[57]

[58]

[59]

167

Guglielmo D’Amico, Giuseppe Di Biase, and Raimondo Manca. Income in-
equality dynamic measurement of Markov models: Application to some Euro-

pean countries. Economic Modelling, 29(5):1598-1602, 2012.

Harry Kesten. Random difference equations and renewal theory for products

of random matrices. Acta Mathematica, 131(1):207-248, 1973.

Yoshi Fujiwara, Wataru Souma, Hideaki Aoyama, Taisei Kaizoji, and Masanao
Aoki. Growth and fluctuations of personal income. Physica A: Statistical

Mechanics and its Applications, 321(3-4):598 — 604, 2003.

A. F. Shorrocks. Income mobility and the Markov assumption. The Economic

Journal, 86(343):566-578, 1976.

Frank Bickenbach and Eckhardt Bode. Markov or not Markov—This should be

a question. Technical report, Kieler Arbeitspapiere, 2001.

Frank Bickenbach and Eckhardt Bode. Evaluating the Markov property
in studies of economic convergence. International Regional Science Review,

26(3):363-392, 2003.

J. Doyne Farmer and John Geanakoplos. The virtues and vices of equilibrium

and the future of financial economics. Complexity, 14(3):11-38, 2009.

John Angle. The surplus theory of social stratification and the size distribution

of personal wealth. Social Forces, 65(2):293-326, 1986.

S. Ispolatov, P. L. Krapivsky, and S. Redner. Wealth distributions in asset
exchange models. Fur. Phys. J. B, 2(2):267-276, 1998.



[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

168

Jean-Philippe Bouchaud and Marc Mézard. Wealth condensation in a sim-
ple model of economy. Physica A: Statistical Mechanics and its Applications,

282(344):536 — 545, 2000.

A. Dragulescu and V.M. Yakovenko. Statistical mechanics of money. The Euro-
pean Physical Journal B - Condensed Matter and Complex Systems, 17(4):723—
729, 2000.

A. Chakraborti and B.K. Chakrabarti. Statistical mechanics of money: how
saving propensity affects its distribution. The European Physical Journal B -
Condensed Matter and Complex Systems, 17(1):167-170, 2000.

Arnab Chatterjee, Bikas K. Chakrabarti, and S.S. Manna. Pareto law in a
kinetic model of market with random saving propensity. Physica A: Statistical

Mechanics and its Applications, 335(1a2):155 — 163, 2004.

Frantisek Slanina. Inelastically scattering particles and wealth distribution in

an open economy. Phys. Rev. E, 69:046102, Apr 2004.

A. Chatterjee and B. K. Chakrabarti. Kinetic exchange models for income and

wealth distributions. The European Physical Journal B, 60(2):135-149, 2007.

Arniban Chakraborti. Distributions of money in model markets of economy.

International Journal of Modern Physics C, 13(10):1315-1321, 2002.

Bruce M. Boghosian. Kinetics of wealth and the Pareto law. Phys. Rev. E,

89:042804, Apr 2014.

J.R. Iglesias, S. Gongalves, G. Abramson, and J.L. Vega. Correlation between

risk aversion and wealth distribution. Physica A: Statistical Mechanics and its



[69]

[70]

[74]

[75]

[76]

169

Applications, 342(142):186 — 192, 2004. Proceedings of the VIII Latin American

Workshop on Nonlinear Phenomena.

JR Iglesias. How simple regulations can greatly reduce inequality. arXww

preprint arXiw:1007.0461, 2010.

R Bustos-Guajardo and Cristian F' Moukarzel. Yard-sale exchange on networks:
Wealth sharing and wealth appropriation. Journal of Statistical Mechanics:
Theory and Ezperiment, 2012(12):P12009, 2012.

M. L. Bertotti and G. Modanese. Discretized kinetic theory on scale-free net-

works. ArXiv e-prints, February 2015.

K. Liu, N. Lubbers, W. Klein, J. Tobochnik, B. Boghosian, and H. Gould. The
Effect of Growth On Equality in Models of the Economy. ArXiv e-prints, May

2013.

Roman Frigg, Joseph Berkovitz, and Fred Kronz. The ergodic hierarchy. In
Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. The Meta-
physics Research Lab, Center for the Study of Language and Information,

Stanford University, summer 2014 edition, 2014.
A. Ishihara. Statistical Physics. Academic Press, 1971.

N. G. Van Kampen. Stochastic processes in physics and chemistry. Elsevier,

third edition, 2007.

J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. Newman. The Theory of
Critical Phenomena: An Introduction to the Renormalization Group. Oxford

University Press, Inc., New York, NY, USA, 1992.



[77]

[78]

[79]

[30]

[81]

[82]

[83]

[36]

[87]

170

John G Kemeny, James Laurie Snell, et al. Finite Markov chains, volume 356.

van Nostrand Princeton, NJ, 1960.
James R Norris. Markov chains. Cambridge university press, 1998.

D. Thirumalai, Raymond D. Mountain, and T. R. Kirkpatrick. Ergodic be-
havior in supercooled liquids and in glasses. Phys. Rev. A, 39:3563-3574, Apr
1989.

D. Thirumalai and Raymond D. Mountain. Ergodic convergence properties of

supercooled liquids and glasses. Phys. Rev. A, 42:4574-4587, Oct 1990.

C. Spearman. The proof and measurement of association between two things.

The American Journal of Psychology, 15(1):72-101, 1904.

O. Peters and W. Klein. Ergodicity breaking in geometric brownian motion.

Phys. Rev. Lett., 110:100603, Mar 2013.

Kiyosi 1t6. 109. stochastic integral. Proceedings of the Imperial Academy,
20(8):519-524, 1944.

Kiyosi [to. Diffusion Processes. Wiley Online Library, 1974.

N. G. Kampen. Ito versus Stratonovich. Journal of Statistical Physics,

24(1):175-187, 1981.

loannis Karatzas and Steven Shreve. Brownian motion and stochastic calculus,

volume 113. Springer Science & Business Media, 2012.

Constantino Tsallis. What are the numbers that experiments provide. Quimica

Nova, 17(6):468-471, 1994.



3]

[92]

[93]

[94]

[95]

[96]

171

Constantino Tsallis, RenioS Mendes, and Anel R Plastino. The role of con-
straints within generalized nonextensive statistics. Physica A: Statistical Me-

chanics and its Applications, 261(3):534-554, 1998.

J. L. W. V. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs

moyennes. Acta Mathematica, 30(1):175-193, 1906.
Ole Peters. Menger 1934 revisited. arXiv preprint arXiv:1110.1578, 2011.

Egle Samanidou, Elmar Zschischang, Dietrich Stauffer, and Thomas Lux.
Agent-based models of financial markets. Reports on Progress in Physics,

70(3):409, 2007.

Forbes. Forbes Global 2000: The world’s biggest public companies. http:

//www.forbes.com/global2000/1ist/., April 2013.

H. Kumar, C.L. Briant, and W.A. Curtin. Using microstructure reconstruc-
tion to model mechanical behavior in complex microstructures. Mechanics of

Materials, 38(8-10):818 — 832, 2006. Advances in Disordered Materials.

Martin Ostoja-Starzewski. Microstructural randomness and scaling in mechan-

1cs of materials. CRC Press, 2007.

Moran Wang and Ning Pan. Predictions of effective physical properties of
complex multiphase materials. Materials Science and Engineering: R: Reports,

63(1):1 — 30, 2008.

David T. Fullwood, Stephen R. Niezgoda, Brent L. Adams, and Surya R. Ka-
lidindi. Microstructure sensitive design for performance optimization. Progress

in Materials Science, 55(6):477 — 562, 2010.


http://www.forbes.com/global2000/list/
http://www.forbes.com/global2000/list/

[97]

[98]

[100]

[101]

[102]

103]

172

S. Torquato. Optimal Design of Heterogeneous Materials. Annu. Rev. Mater.

Res., 40(1):101-129, 2010.

Turab Lookman, Francis J. Alexander, and Krishna Rajan, editors. Infor-
mation Science for Materials Discovery and Design. Springer International

Publishing, 2016.

Surya R. Kalidindi. Data science and cyberinfrastructure: critical enablers
for accelerated development of hierarchical materials. International Materials

Reviews, 60(3):150-168, 2015.

Krishna Rajan. Informatics for materials science and engineering: data-
driven discovery for accelerated experimentation and application. Butterworth-

Heinemann, 2013.

Surya R. Kalidindi, Stephen R. Niezgoda, and Ayman A. Salem. Microstruc-
ture informatics using higher-order statistics and efficient data-mining proto-

cols. JOM, 63(4):34-41, 2011.

Yu Liu, M. Steven Greene, Wei Chen, Dmitriy A. Dikin, and Wing Kam Liu.
Computational microstructure characterization and reconstruction for stochas-
tic multiscale material design. Computer-Aided Design, 45(1):65 — 76, 2013.

Computer-aided multi-scale materials and product design.

Stephen R. Niezgoda, Anand K. Kanjarla, and Surya R. Kalidindi. Novel mi-
crostructure quantification framework for databasing, visualization, and anal-

ysis of microstructure data. Integr. Mater. Manuf. Innov., 2(1):3, 2013.



[104]

105

[106]

[107]

[108]

109]

[110]

[111]

173

Y. Jiao, F. H. Stillinger, and S. Torquato. Modeling heterogeneous materials
via two-point correlation functions: Basic principles. Phys. Rev. E, 76:031110,

Sep 2007.

David T. Fullwood, Stephen R. Niezgoda, and Surya R. Kalidindi. Microstruc-
ture reconstructions from 2-point statistics using phase-recovery algorithms.

Acta Materialia, 56(5):942 — 948, 2008.

Y Jiao, F H Stillinger, and S Torquato. A superior descriptor of ran-
dom textures and its predictive capacity. Proc. Natl. Acad. Sci. U. S. A.,
106(42):17634-17639, 20009.

Dongdong Chen, Qizhi Teng, Xiaohai He, Zhi Xu, and Zhengji Li. Stable-
phase method for hierarchical annealing in the reconstruction of porous media

images. Phys. Rev. E, 89(1):1-10, 2014.

Y. Jiao, F. H. Stillinger, and S. Torquato. Geometrical ambiguity of pair

statistics: Point configurations. Phys. Rev. F, 81:011105, Jan 2010.

Yang Jiao, Frank H. Stillinger, and Salvatore Torquato. Geometrical ambiguity

of pair statistics. ii. heterogeneous media. Phys. Rev. E, 82:011106, Jul 2010.

S.R. Niezgoda, D.T. Fullwood, and S.R. Kalidindi. Delineation of the space
of 2-point correlations in a composite material system. Acta Materialia,

56(18):5285 — 5292, 2008.

Chase E. Zachary and Salvatore Torquato. Improved reconstructions of random

media using dilation and erosion processes. Phys. Rev. E, 84(5):1-5, 2011.



[112]

[113]

[114]

[115]

[116]

[117]

[118]

119

174

Kirill M. Gerke, Marina V. Karsanina, Roman V. Vasilyev, and Dirk Mallants.
Improving pattern reconstruction using directional correlation functions. EPL

(Europhysics Letters), 106(6):66002, 2014.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324,

Nov 1998.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classifica-
tion with deep convolutional neural networks. Adv. Neural Inf. Process. Syst.,

pages 10971105, 2012.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXww preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. arXiv preprint arXiv:1409.4842,
2014.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image

Recognition. ArXiv e-prints, 2015.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Texture synthesis
and the controlled generation of natural stimuli using convolutional neural

networks. CoRR, abs/1505.07376, 2015.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A neural algorithm
of artistic style. arXiv, abs/1508.06576, 2015.



[120]

[121]

[122]

[123]

[124]

[125]

175

Tele Hao, Tapani Raiko, Alexander Ilin, and Juha Karhunen. Gated Boltz-
mann machine in texture modeling. In Alessandro E.P. Villa, Wiodzistaw
Duch, Péter Erdi, Francesco Masulli, and Giinther Palm, editors, Artif. Neu-
ral Networks Mach. Learn. — ICANN 2012, volume 7553 of Lecture Notes in

Computer Science, pages 124-131. Springer Berlin Heidelberg, 2012.

Jyri J Kivinen and Christopher Williams. Multiple texture boltzmann ma-
chines. In International Conference on Artificial Intelligence and Statistics,

pages 638-646, 2012.

Heng Luo, Pierre Luc Carrier, Aaron Courville, and Yoshua Bengio. Tex-
ture Modeling with Convolutional Spike-and-Slab RBMs and Deep Extensions.
Proc. 16th Int. Conf. Artif. Intell. Stat., 31:415-423, 2013.

Qi Gao and Stefan Roth. Texture Synthesis: From Convolutional RBMs to
Efficient Deterministic Algorithms. In Pasi Franti, Gavin Brown, Marco Loog,
Francisco Escolano, and Marcello Pelillo, editors, Struct. Syntactic, Stat. Pat-

tern Recognit., volume 8621 of Lecture Notes in Computer Science, pages 434—

443. Springer Berlin Heidelberg, 2014.

Lucas Theis and Matthias Bethge. Generative image modeling using spatial
Istms. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems 28, pages 1927—

1935. Curran Associates, Inc., 2015.

Yann LeCun, Yoshua Bengio, and Geoffrey E Hinton. Deep learning. Nature,
521(7553):436-444, 2015.



[126]

[127]

128]

[129]

[130]

[131]

[132]

[133]

176

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet large scale visual recognition

challenge. International Journal of Computer Vision, 115(3):211-252, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
The IEEE International Conference on Computer Vision (ICCV), December
2015.

[an Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Book in

preparation for MIT Press, 2016.

Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson.
Understanding neural networks through deep visualization. arXiv preprint

arXw:1506.06579, 2015.

Dumitru Erhan, Aaron Courville, and Yoshua Bengio. Understanding repre-
sentations learned in deep architectures. Technical Report 1355, Université de

Montréal /DIRO, 2010.

J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a

nonmetric hypothesis. Psychometrika, 29(1):1-27, 1964.

[. Borg and P. J. F. Groenen. Modern Multidimensional Scaling: Theory and

Applications. Springer Series in Statistics. Springer-Verlag New York, 2005.

James Franklin. The elements of statistical learning: data mining, inference

and prediction. The Mathematical Intelligencer, 27(2):83-85, 2008.



[134]

[135]

[136]

[137]

[138]

[139]

[140]

141]

177

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825—
2830, 2011.

Jan De Leeuw. Recent developments in statistics. Chapt. Applications of convex
analysis to multidimensional scaling, Amsterdam: North-Holland, pages 133—

145, 1977.

Ken Perlin. An image synthesizer. SIGGRAPH Comput. Graph., 19(3):287—
296, July 1985.

The Keras Blog. How convolutional neural networks see the world. http:
//blog.keras.io/how-convolutional-neural-networks-see-the-world.

html, January 2016.

Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu. Exploiting cyclic

symmetry in convolutional neural networks. CoRR, abs/1602.02660, 2016.

Robert Gens and Pedro M Domingos. Deep symmetry networks. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 2537-2545. Cur-

ran Associates, Inc., 2014.

Stéphane Mallat. Group invariant scattering. Communications on Pure and

Applied Mathematics, 65(10):1331-1398, 2012.

Taco S. Cohen and Max Welling. Transformation properties of learned visual

representations. CoRR, abs/1412.7659, 2014.


http://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
http://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
http://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

178

[142] D. P Kingma and M. Welling. Auto-Encoding Variational Bayes. ArXiv e-

prints, December 2013.



Curriculum Vitae

Nicholas Lubbers

Boston University, Physics Department Telephone: 617-353-3845
590 Commonwealth Avenue Cellphone: 719-244-2622
Boston, Massachusetts 02215 USA E-mail: nlubbers@bu.edu
EDUCATION

e 2016, Ph.D. Physics, Boston University, Boston, MA, USA
Advisor: Professor William Klein
Dissertation: A STATISTICAL MECHANICAL MODEL OF ECONOMICS

e 2008, B.S. Engineering Physics, Colorado School of Mines, Golden, Colorado,
USA

RESEARCH EXPERIENCE

e Aug 15 — Present, Research Assistant, Theoretical Division and Center for
Nonlinear Studies, Los Alamos National Laboratory, Machine learning applied

to statistical physics systems

e Aug 12 — Present, Research assistant, Boston University Physics Department,
W. Klein Group, Statistical physics of heterogenous systems, earthquakes, and

econophysics.

179



180

e Sept 10 — July 12, Research assistant, Boston University Physics Depart-
ment, High energy theory group, Dark matter direct detection and signatures

of Technicolor physics.

TEACHING EXPERIENCE

e September 09 — May ’15, Teaching assistant, Boston University Physics De-
partment, Teaching Lab and Discussion sections for the follow undergraduate

physics courses: PY103, PY105, PY106, PY212, PY251, PY252, PY313.
e Spring 2012, Grader, Boston University, PY551: Particle Physics.

e September 06 — December ’08, Tutor, Colorado School of Mines, Walk-in tu-

toring services for various undergraduate science and engineering courses.

AWARDS

e 2008, Physics Faculty Distinguished Graduate Award, Colorado School of Mines.

COMPUTER SKILLS

o ITEX

e Python, Mathematica, Fortran, Java, C++
TALKS

e October 2013, contributed talk, “An Asset Exchange Model with Tunable
Pareto Index” Greater Boston Area Statistical Mechanics Meeting, Brandeis

University.



181

e May 2013, preliminary oral exam, “Agent-based Economics and the Rela-

tionship Between Growth and Wealth Inequality,” Boston University.

e November 2014, contributed talk, “Growth and stability in an asset exchange
model economy” Greater Boston Area Statistical Mechanics Meeting, Brandeis

University.

e November 2014, departmental seminar, “The Statistical Mechanics of Wealth:

Agent-based economics with ergodic transitions.” Boston University.

e November 2015, student talk, “Deep Learning, Image Processing, and Mate-
rials Microstructure” CNLS Students Seminar, Center for Nonlinear Studies,

Los Alamos National Laboratory, Los Alamos, NM.

e April 2016, invited talk, “Machine Learning Capabilities and Concepts” Work-
shop: Machine Learning and Earthquakes, Center for Nonlinear Studies, Los

Alamos National Laboratory, Los Alamos, NM.

e July 2016, dissertation defense, “Inferring low-dimensional microstructure

representations using convolutional neural networks,” Boston University.

POSTERS

e January 2016, “Learning low-dimensional representations of textures using con-
volutional networks ,” Workshop: Physics Informed Machine Learning, Santa

Fe, NM.

e May 2016, “Learning low-dimensional representations of textures using convo-
lutional networks ,” Workshop: Data Science and Optimal Learning for Mate-

rials Discovery and Design, Santa Fe, NM.



182

PUBLICATIONS

1. M. Coffey and N. Lubbers, “On generalized harmonic number sums,” Applied
Mathematics and Computation 216, 689-698 (2010)

2. A. Liam Fitzpatrick, Wick Haxton, Emanuel Katz, Nicholas Lubbers, Yim-
ing Xu “The Effective Field Theory of Dark Matter Direct Detection”, 2012

arXiv:1203.3542 [hep-phl]

3. A. Liam Fitzpatrick, Wick Haxton, Emanuel Katz, Nicholas Lubbers, Yiming
Xu “Model Independent Direct Detection Analyses”, 2012 arXiv:1211.2818

[hep-ph]

4. Kang Liu, N. Lubbers, W. Klein, J. Tobochnik, B. Boghosian, and H. Gould,
“The effect of growth on equality in models of the economy,” 2013 arXiv:1305.0794

[q-fin]

5. N. Lubbers, K. Liu, W. Klein, J. Tobochnik, B. Boghosian, and H. Gould,
“Phase transitions in the modified asset exchange model,” manuscript in prepa-

ration.

6. N. Lubbers, T. Lookman, K. Barros, “Inferring low-dimensional microstructure
representations using convolutional neural networks,” manuscript in prepara-

tion.

7. Bertrand Rouet-Leduc, Claudia Hulbert, Nicholas Lubbers, Kipton Barros, and

Paul A. Johnson, “Learning the Physics of Failure,” manuscript in preparation

8. N. Lubbers, K. Liu, W. Klein “Universality and Wealth Condensation in gen-

eralized yard-sale models of the economy,” manuscript in preparation.



	Introduction and Background
	What is Econophysics?
	The dissertation in brief
	Pareto Laws in Income and Wealth Distribution
	On analyzing data of high inequality

	Issues with non-interacting models of Economics
	Asset Exchange Models
	The Yard Sale Model

	Ergodicity
	Structure of this Dissertation
	Chapter 1: Introduction and Background
	Chapter 2: The Yard Sale Model without growth
	Chapter 3: Theoretical descriptions of the YSM
	Chapter 4: The YSM with arithmetic growth
	Chapter 5: The YSM with geometric growth
	Chapter 6: Generalized framework for wealth condensation
	Chapter 7: Concluding remarks and future work
	Chapter 8: Faithful Dimensionality Reduction of Materials Microstructure using Convolutional Neural Networks


	The Yard Sale Model without growth
	Purpose of this chapter
	Postulates of Asset Exchange
	The Model
	Conservation of Wealth
	Rescaling Invariance
	Simulation Findings
	Wealth Condensation
	The theromodynamic limit and scaling with system size
	Scaling with 
	Mobility
	Ergodicity
	Evolution of the Wealth Distribution


	Theoretical descriptions of the YSM
	Purpose of this chapter
	Theoretical Treatments
	Geometric Random Walk
	Master Equation Approach
	Mean Trade Theory
	Connection between MT, GRW, and master equation
	Solution to bare YSM under MT

	Generalized return distributions

	The YSM with arithmetic growth
	Form of the Growth and Dimensional Considerations
	Developing steady-state
	Varying 
	Pareto Index
	Mobility
	Rank Correlation
	Rank-Rank transfer data
	TM metric

	Arithmetic growth in the MT approximation
	Skewed arithmetic growth
	Constrained arithmetic growth
	Unconstrained growth
	On physical expectations for the growth


	The YSM with geometric growth
	Uniform geometric growth
	Wealth distribution

	Skewed Growth
	Duality with wealth tax
	Dynamical phases
	System sensitivity to , 

	Ergodicity
	Wealth distribution approaching the transition

	MT with geometric growth

	Generalizations
	Generalized Wealth Condensation
	Diffusion in Wealth Space
	Dynamics near betting function zeros
	The next-to-poorest agent and so on
	The thermodynamic limit and the emergence of wealth condensation
	Measuring Inequality
	Inequality evolution and Jensen's Inequality
	Drift Terms, Growth, and Trade bias: Condensation stability
	Example system simulations


	Concluding remarks and further directions
	The Yard-Sale Model
	Extending the Yard-Sale Model with growth:
	Arithmetic growth
	Geometric growth

	Extensions to generalized trading schemes
	Future directions

	Part II: Inferring low-dimensional microstructure representations using convolutional neural networks
	Introduction
	Structure of this chapter

	Background
	Convolutional Neural Networks for image processing

	Methods
	Baseline method: Power spectrum for texture characterization
	CNNs for texture characterization
	Manifold Learning with Multidimensional Scaling

	Tasks
	Image generation process
	Angle reconstruction task
	Three dimensional manifold reconstruction task

	Discussion
	Power spectrum performance
	CNN performance

	Conclusions and future directions

	Appendices
	Mean Trade Equations Approaching the Phase Transition
	Scaling of the richest agent
	Solution to the scaling form near the phase transition

	Bibliography
	Curriculum Vitae

