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ABSTRACT 

Advances in recording technologies now allow us to record populations of 

neurons simultaneously, data necessary to understand the network dynamics of 

the brain. Extracellular probes are fabricated with ever greater numbers of 

recording sites to capture the activity of increasing numbers of neurons. 

However, the utility of this extracellular data is limited by an initial analysis step, 

spike sorting, that extracts the activity patterns of individual neurons from the 

extracellular traces. Commonly used spike sorting methods require manual 

processing that limits their scalability, and errors can bias downstream analyses. 

Leveraging the replication of the activity from a single neuron on nearby 

recording sites, we designed a spike sorting method consisting of three primary 
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steps: (1) a blind source separation algorithm to estimate the underlying source 

components, (2) a spike detection algorithm to find the set of spikes from each 

component best separated from background activity and (3) a classifier to 

evaluate if a set of spikes came from one individual neuron. To assess the 

accuracy of our method, we simulated multi-electrode array data that encompass 

many of the realistic variations and the sources of noise in in vivo neural data. 

Our method was able to extract individual simulated neurons in an automated 

fashion without any errors in spike assignment. Further, the number of neurons 

extracted increased as we increased recording site count and density. To evaluate 

our method in vivo, we performed both extracellular recording with our close-

packed probes and a co-localized patch clamp recording, directly measuring one 

neuron’s ground truth set of spikes. Using this in vivo data we found that when 

our spike sorting method extracted the patched neuron, the spike assignment 

error rates were at the low end of reported error rates, and that our errors were 

frequently the result of failed spike detection during bursts where spike 

amplitude decreased into the noise. We used our in vivo data to characterize the 

extracellular recordings of burst activity and more generally what an 

extracellular electrode records. With this knowledge, we updated our spike 
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detector to capture more burst spikes and improved our classifier based on our 

characterizations.  
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Introduction 

 

Recorded data are an incomplete representation of their subjects.  Even the very 

best recording of a symphony performance, for example, played on the best 

sound system cannot recreate the experience of attending that performance. The 

interaction between the conductor and musicians is not seen. The subtleties of 

acoustics, the response of the audience, and symphony hall are missing. 

 

In neuroscience, our recorded data rarely have the fidelity of beautiful sound 

engineering. In this dissertation I focus on extracellular neural recording which 

measures the activity of neurons outside of the cell. Each recording site captures 

a mixture of activity from multiple neurons. Out of these recordings, we would 

like to extract the signals from individual neurons, which produce not notes but 

voltage deflections called spikes. To distinguish spikes from individual neurons, 

we record from many sites. In symphony terms, this is like suspending many 

microphones from the ceiling of the symphony hall. Some mics end up between 

the symphony and the guy coughing in the first row. Another almost hits the 

second oboeist in the head. But, hopefully, most mics are more opportunely 
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placed. And from what these mics record, we are trying to understand the 

interactions of vast orchestra of millions of neurons, not just for Beethoven’s 

Fifth, but across all the pieces they play. 

 

To draw conclusions from any recorded data, it is critical to understand how the 

data is an imperfect or biased representation of its subject.  

• What sources of noise does the data contain?  

• How will those sources of noise impact analyses?  

• How do we assess fidelity?  

• Can we improve fidelity, by post-processing or improvements in our 

recording devices?   

• How do changes in our recording subjects impact the fidelity with which 

recording?  

In this dissertation, I address these questions as they relate to extracellular 

recording. 
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Chapter 1 - A theoretical investigation of how close-packed electrodes may 

support zero error automated spike sorting 

 

Author names and affiliations 

Caroline Moore-Kochlacs 

1 - Department of Mathematics and Statistics, Boston University, Boston, MA, 

USA 

2 - Synthetic Neurobiology Group, Media Lab and McGovern Institute, 

Departments of Brain and Cognitive Sciences and Biological Engineering, 

Massachusetts Institute of Technology, Cambridge, MA, USA 

Justin P. Kinney 

1- Synthetic Neurobiology Group, Media Lab and McGovern Institute, 

Departments of Brain and Cognitive Sciences and Biological Engineering, 

Massachusetts Institute of Technology, Cambridge, MA, USA 

2 - LeafLabs, LLC, Cambridge, MA, USA 

Jörg Scholvin 



 4 

1 - Synthetic Neurobiology Group, Media Lab and McGovern Institute, 

Departments of Brain and Cognitive Sciences and Biological Engineering, 

Massachusetts Institute of Technology, Cambridge, MA, USA 

Jacob G. Bernstein 

1 - Synthetic Neurobiology Group, Media Lab and McGovern Institute, 

Departments of Brain and Cognitive Sciences and Biological Engineering, 

Massachusetts Institute of Technology, Cambridge, MA, USA 

Brian D. Allen 

1 - Synthetic Neurobiology Group, Media Lab and McGovern Institute, 

Departments of Brain and Cognitive Sciences and Biological Engineering, 

Massachusetts Institute of Technology, Cambridge, MA, USA 

Nancy J. Kopell* 

1 - Department of Mathematics and Statistics, Boston University, Boston, MA, 

USA 

Edward S. Boyden* 

1 - Synthetic Neurobiology Group, Media Lab and McGovern Institute, 

Departments of Brain and Cognitive Sciences and Biological Engineering, 

Massachusetts Institute of Technology, Cambridge, MA, USA 



 5 

Abstract 

New technology is enabling ever-greater numbers of recording sites in the live 

mammalian brain. In extracellular recordings, each site records a mixture of 

neuronal signals. An initial analysis step, spike sorting, extracts the activity 

patterns of individual neurons from the traces. Commonly used spike sorting 

methods require manual processing that limits their scalability, and errors may 

bias downstream analyses. We here report that close-packed multi-electrode 

arrays allow automated spike sorting consisting of two steps: (1) a blind source 

separation algorithm to estimate the underlying source components, and (2) a 

classifier that finds components with spiking activity well separated from 

background. To assess the accuracy of our algorithm, we here simulate multi-

electrode array data that encompass many of the properties of in vivo neural data. 

We find that each extracted single unit contains every spike from its source 

neuron, and no additional spikes, even with physiologically realistic variations in 

neural firing rate and neuron density. Increasing recording site density 

throughout a given probe area increases the number of neurons the algorithm 

extracts, arguing for the potential of close-packed recording geometries to 

facilitate automated spike sorting with potentially very low error rate. 
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Author Summary  

Spike sorting is the process of taking brain signals recorded on electrodes, and 

assigning them to individual source neurons.  However, the method requires 

hand data analysis.  We here seek to determine whether it is possible to automate 

spike sorting, taking advantage of close-packed electrode geometries we recently 

developed.  We devise a simple strategy, and validate it on simulated data, for 

automatically sorting spikes without misattribution.  Thus, high density neural 

recording probes may not only increase the sheer count of brain cells recordable, 

but may facilitate their scalable data analysis. 

 

Introduction 

Neural electrode recording technologies have steadily increased in the number of 

neurons that can be recorded from simultaneously (Blanche, Spacek, Hetke, & 

Swindale, 2005; Gold, Henze, & Koch, 2007; Humphrey, Corrie, & Rietz, 1978; 

Jäckel, Frey, Fiscella, Franke, & Hierlemann, 2012; Shobe, Claar, Parhami, 

Bakhurin, & Masmanidis, 2015; Stevenson & Kording, 2011a; Swindale & Spacek, 

2014), facilitating network analysis of neural codes. For extracellular recordings, 
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breaking the mixtures of neural signals picked up on each electrode into 

individual neurons is called spike sorting (Gold et al., 2007; Lehmenkühler, 

Sykova, Svoboda, Zilles, & Nicholson, 1993; Lewicki, 1998; Schüz & Palm, 1989; 

Syková & Nicholson, 2008; Van Harreveld & Khattab, 1969; Van Harreveld & 

Malhotra, 1967). Commonly used spike sorting methods require manual 

processing and introduce errors in downstream analyses if spikes are 

misassigned to neurons (Ben-Shalom, Aviv, Razon, & Korngreen, 2012; Cohen & 

Kohn, 2011; Einevoll, Franke, Hagen, Pouzat, & Harris, 2011; Fabricius, 

Wörtwein, & Pakkenberg, 2008; Fee, Mitra, & Kleinfeld, 1996a; Gerstein, 2000; 

Harris, Henze, Csicsvari, Hirase, & Buzsáki, 2000; Hazan, Zugaro, & Buzsáki, 

2006; Mechler, Victor, Ohiorhenuan, Schmid, & Hu, 2011; Muthmann et al., 2015; 

Pazienti & Grün, 2006; Rossant, Kadir, Goodman, & Schulman, 2015; Ventura, 

2008; 2009a; 2009b; Wood, Black, Vargas-Irwin, Fellows, & Donoghue, 2004). To 

address these limitations, we here asked if it was possible to create a spike 

sorting algorithm that is both automated and extracts single neurons with spike-

for-spike accuracy, here defined as the condition in which an extracted neuron is 

assigned every spike it fired and no additional spikes. 
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Our group recently developed extracellular probes with close-packed recording 

sites (Gold, Henze, Koch, & Buzsáki, 2006; Harris et al., 2000; Henze et al., 2000; 

Mechler & Victor, 2012; Scholvin, Kinney, Bernstein, Moore-Kochlacs, Kopell, 

Fonstad, & Boyden, 2016a; Schomburg, Anastassiou, Buzsáki, & Koch, 2012) (Fig 

1.1D). Such close-packed designs (Fig 1.1C) allow the recording of a neuron’s 

activity on many recording sites. We hypothesized that with enough recording 

sites, at high enough packing density, the problem of spike sorting will be 

amenable to blind source separation (BSS) algorithms, which estimate the 

underlying signals from recorded mixtures. We constructed a spike sorting 

algorithm based on an existing BSS algorithm called Independent Component 

Analysis (ICA). We use ICA to estimate the underlying individual neuron 

sources from the extracellular recordings; these estimates are called components. 

We use a classifier to extract from the components only neurons that we are 

confident have no missing or additional spikes. 
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Figure 1.1 - The linear algebra of close-packed recording and spike sorting.  

(A,C) The signals from nearby neurons (circles) are captured by a set of 
recording sites (squares). The data from each recording site contains a mixture of 
the signals from nearby neurons as well as other neural signals, noise, and 
artifacts. When recording sites are closely packed (B), the signal from each 
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nearby neuron is recorded on multiple sites. With many copies of the same 
signal, even mixed with other signals, a blind source separation algorithm like 
Independent Component Analysis (ICA) can be used for unmixing the recorded 
data to recover the activity of individual source neurons. (B) Example probe with 
50 µm diameter sites at 250 µm pitch; each neuron will be captured on few sites. 
(D) Example probe with 2 columns and 102 rows; closely-packed 9x9 µm sites at 
11 µm pitch in both directions. (E) Zoom into (D) to show small site separation. 
 

To test our algorithm, we simulated the recorded activity of a population of 

neurons on a multi-electrode array. The design of these simulations incorporated 

realistic variations and noise characteristics seen in actual neural data. From 

simulated data from a set of pessimistic simulations parameters, we discovered 

classifier parameters that let us spike sort with spike-for-spike accuracy. Further, 

we showed that the spike-for-spike accuracy is robust to changes in simulation 

neural density, firing rate, noise, and probe layout, using the same classifier 

parameters we first determined.  

 

Next, to understand how the number of neurons extracted varies with neural 

properties of our simulations, which proxy differences in brain areas, states, and 

species. We found that increasing neural density and firing rates in the 

simulations both reduced the number of neurons extracted, likely because they 

increase the quantity of background signals, manifesting as biological noise. We 
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also evaluated how sources of environmental noise, modeled with a Gaussian 

distribution, impacted the number of neurons extracted. Increasing Gaussian 

noise shared between recording sites had no impact on the number of neurons 

extracted. In contrast, increasing the site-specific Gaussian noise on individual 

recording sites was associated with a decrease in number of neurons extracted.  

 

Finally, to consider for physical design choices encountered in multi-electrode 

probes, we looked at how the density and number of recording sites on the probe 

impacted the number of neurons extracted. For a fixed number of recording sites, 

we found there existed an optimal recording site density for maximal yield. 

Additionally, we found that increasing the recording site density for a given area 

increased the number of neurons extracted. The additional neurons extracted at 

higher site density were located at greater distances from the probe and showed 

large signal-to-noise improvements. This suggests that close packed probes can 

enable automated spike sorting with very low error rates.  

 

Results 
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Simulations 

 

To evaluate our spike sorting algorithm, we wanted data from multi-electrode 

array recordings of the electrical activity of populations of neurons, and spikes 

times for the activity of those neurons. In the absence of such experimental data, 

we used the computer simulations outlined in the Methods section. This 

simulation contained a population of simplified spiking neurons, randomly 

distributed across a small volume (Fig 1.2A, red dots with tails), and simulated 

electrical recordings of their activity by electrode arrays of various designs (Fig 

1.2A, black dots), resulting in extracellular-like traces for each electrode and 

spike times for each of the neurons (Fig 1.2F,G). The simulations were 

parameterized by neuron density, electrode density, spike rate, and noise level 

(both shared and not-shared across electrodes; see Methods for details of the 

simulation). Particular effort was made to encompass realistic variations and 

noise characteristics of actual neural data, particularly those aspects that 

confound spike sorting or independent component analysis. Background noise 

resulted from both direct noise parameters and the activity of simulated neurons 

distant from the electrode array. A distribution of spike waveforms was created 
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for each neuron (Fig 1.2B) and each spike waveform varied non-linearly across 

space (Fig 1.2D). Spike amplitude fell off as a(ds) = (q*ds2 + r*ds + s) -1, with ds = 

distance from site to soma and q, r, s fixed constants, and is multiplied by a 

random value to represent the heterogeneity of the neuropil (Fig 1.2E, gray area). 

The range of firing rates was specified and the spike times were chosen from a 

Poisson distribution (example spike times in Fig 1.2E). An example of the 

simulated traces is shown in Fig 1.2F. 
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Figure 1.2 - Construction of simulated data.  

Overview: Neurons are randomly placed at a specified density in the simulation 
volume (A). Then a set of waveforms (B) is generated for each neuron (C,D). The 
waveforms are scaled by amplitude (E) to define the waveform measured on 
each recording site. In detail: (A) Schematic (2D projection of the 3D simulated 
volume) of 24 recording sites (black), laid out with 10 µm pitch, and 1338 
neurons (red) at a density of 25x103 neurons per mm3 throughout a volume 
extending 200 µm in all directions from the probe. Red tails indicate neuron 
orientations. (B) Example spike waveforms. The distributions of waveforms for 
each neuron are generated from two seed template waveforms (top) defined at 
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specific locations: proximal (defined at the soma) and distal (defined at 60 µm 
away from the soma in the direction of the orientation vector). Interpolating and 
extrapolating using these two waveforms (dots shown indicate spline knots) 
enables nonlinear variation of spike shape as a function of recording site location. 
To create a variety of distributions of neuron waveforms, templates for each 
neuron are created (middle; 4 different neurons shown in different colors), and 
then a diversity of spike waveforms are generated for each neuron (bottom; 50 
waveforms shown, derived from the red neuron template), by perturbing knot 
amplitude and timing.  The spike waveform at a particular spike time is chosen 
(with replacement) from this set of waveforms. (C) Definition of parameters used 
to calculate waveforms and amplitudes at a particular recording site. The 
distance, ds, between the recording site and the soma is used to calculate the 
amplitude of a neuron’s spikes on a recording site in (E). When the neuron’s 
soma is on the front side of the probe, ds is the distance from s to the recording 
site; when the neuron is behind the probe, ds includes the distance the signal 
must travel around the probe (see Methods for detailed explanation). Another 
distance, dw, calculated as shown, is used to interpolate and extrapolate neuron 
waveforms from the templates. (D) Example of interpolation and extrapolation of 
neuron waveform from templates. To calculate a neuron’s waveform at a 
recording site, waveform knots are calculated at dw by interpolating the knots as 
described in (B). (E) Amplitude falloff curve, with both monopole and dipole 
characteristics. Specifically, the simulated spike amplitude falls off as a(ds) = 
(e*ds2 + f*ds + g) -1, where ds is the distance from the soma and e, f, g are set so that 
a(0) = 250 µV, a(20) = 150 µV, and a(100) = 20 µV, scaled by a heterogeneity 
factor, resulting in the variability shown in gray. (F) Spike times in our 
simulations are Poisson with each neuron’s firing rate chosen from a lognormal 
distribution; shown are spike times over a 1 second period for three neurons 
chosen from a distribution with median of 15 Hz and mean of 8.33 Hz. (G) 
Example simulated traces (1 s shown) using default parameters as defined in the 
Methods. Four simulated traces from a probe with 10 µm pitch, simulated for 5 
seconds at 30 kHz, panel F shows the activity of the 3 neurons closest to the four 
recording sites.   
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One confound in spike sorting is overlapping spikes, which occur when two 

neurons whose spike waveforms are recorded on an overlapping set of recording 

sites and both have a spike with a short time period (e.g. within 1 ms). The 

resulting mixing of the spike waveforms on different recording sites has proven 

difficult to spike sort (Bar-Gad, Ritov, Vaadia, & Bergman, 2001; Buzsáki, 2004; 

Fee, Mitra, & Kleinfeld, 1996b; 1996a; Harris et al., 2000; Hulata, Segev, & Ben-

Jacob, 2002; Lewicki, 1998; Takahashi, Anzai, & Sakurai, 2003a; 2003b; Zhang, 

Wu, Zhou, Liang, & Yuan, 2004; Zouridakis & Tam, 2000). Our simulation 

resulted in many overlapping spikes, under the default simulation parameters, 

98% of the units within 100 µm of the probe center have at least one overlapping 

spike with another unit (Fig 1.3). To spike sort a neuron with spike-for-spike 

accuracy, all of that neuron’s overlapping spikes must be assigned to that unit.  

 

Figure 1.3 - Rate of overlapping spikes.  



 17 

We defined a overlapping spike as a spike on a simulated neuron that occured 
within 1 ms of a spike on a second neuron that is within 30 µm of the first 
neuron. We measured the fraction of units within 100 µm of the probe center that 
had at least one overlapping spike, while varying the neural density (A) and 
mean firing rate (B). Five simulations with different random seeds were run per 
set of parameters; the fraction of units with overlapping spikes is in each 
simulation is plotted as a point. The trend between the simulations means is 
plotted as a dashed line. 
 

Primer on spike sorting and independent component analysis (ICA) 

 

Previous uses of ICA for spike sorting and other neural data 

Typically, the data recorded by an extracellular electrode is composed of an 

unknown mixture of activity from multiple neuron sources, as well as other 

underlying sources such as electrical noise and motion artifacts. To facilitate later 

analyses, the activities of individual neurons should be extracted from these 

mixtures, ideally without requiring knowledge of the number of neurons 

recorded or their activity patterns. Blind source separation techniques, such as 

Independent Components Analysis (ICA), have demonstrated the capability to 

separate sources from unknown mixtures (Bell & Sejnowski, 1995; Buzsáki, 

Anastassiou, & Koch, 2012) and have been broadly used in neuroscience, e.g., 
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extracting neural source components from extracellular microelectrode array 

recordings (Henze et al., 2000; Jäckel et al., 2012), imaging data from optical 

microscopes (Brown, Yamada, & Sejnowski, 2001; Bruno, Frost, & Humphries, 

2015; Dombeck, Harvey, Tian, Looger, & Tank, 2010; D. N. Hill, Mehta, & 

Kleinfeld, 2011; E. S. Hill, Moore-Kochlacs, Vasireddi, Sejnowski, & Frost, 2010; 

E. S. Hill, Vasireddi, Bruno, & Wang, 2012; Mechler et al., 2011; Mechler & Victor, 

2012; Prevedel et al., 2014), EEG recordings from scalp electrodes (Blanche et al., 

2005; Onton, Westerfield, Townsend, & Makeig, 2006), and simulations of 

extracellular microelectrode array recordings (Lehmenkühler et al., 1993; 

Madany Mamlouk, Sharp, Menne, Hofmann, & Martinetz, 2005; Syková & 

Nicholson, 2008; Van Harreveld & Khattab, 1969; Van Harreveld & Malhotra, 

1967). 

 

Description of ICA 

The goal of ICA is to take recorded traces containing unknown mixtures of 

unobserved underlying sources, and find a linear transformation that recovers 

the activity from those underlying sources (Bell & Sejnowski, 1995; Brown et al., 

2001; Buzsáki & Mizuseki, 2014; Comon, 1994; Griffith & Horn, 1966; K. W. Koch 
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& Fuster, 1989; Mizuseki & Buzsáki, 2013). In our case, the sensor observations 

were the recorded data from an array of electrodes, and the activity was the 

electrical activity patterns of individual neurons recorded by the array. The input 

into ICA was a set of vectors (e.g. high-pass filtered data from multiple 

electrodes). The output was an unmixing matrix and estimated underlying 

sources, called components. The input vectors (a linear transformation) 

multiplied by the unmixing matrix returned the components that estimated the 

underlying sources (e.g. activity patterns of individual neurons).  

 

ICA does not exploit spatial or temporal information 

The unmixing matrix was estimated without regard to the physical locations of 

the recording sites of the underlying sources and to the sequence of samples (K. 

W. Koch & Fuster, 1989; Makeig, Bell, Jung, & Sejnowski, 1996). ICA did not 

know the layout of the recording sites on the probe, e.g. which sites were close to 

each other. Similarly, ICA made no assumptions about the temporal dynamics of 

the underlying signal, e.g. shape of spike waveforms. 
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ICA shown to be robust to modest violations of independence in underlying sources  

The theoretical derivation of ICA relies on the central limit theorem: a sum of 

two or more independent random variable is more Gaussian than the original 

variables. However, even when the underlying sources are not actually 

independent, ICA returns components that are maximally independent. In 

practice, ICA has been shown to be robust to modest violations of independence 

(Baddeley et al., 1997; Griffith & Horn, 1966; McKeown & Sejnowski, 1998; 

Mukamel, Nimmerjahn, & Schnitzer, 2009; Reidl, Starke, Omer, Grinvald, & 

Spors, 2007). For Ca2+ imaging recordings of cerebellar Purkinje cells, cells 

signals with temporal correlations of up to 80% were correctly separated by ICA 

(Mizuseki & Buzsáki, 2013; Mukamel et al., 2009). Imaging data can have strong 

correlations between cells because the timing and shape of individual spikes are 

smeared temporally by calcium reporter kinetics (Mukamel et al., 2009). Similar 

robustness to correlation has also been noted when ICA was applied to 

extracellular recordings of spikes. Signals from neurons with highly correlated 

firing from central pattern generators (CPGs) in the seaslugs Tritonia and Aplysia 

(Brown et al., 2008; Bruno et al., 2015; E. S. Hill et al., 2010; 2012) have been 

successfully separated and validated intracellularly (E. S. Hill et al., 2010).  
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ICA assumes underlying sources have time-invariant distributions  

The derivation of ICA assumes the underlying sources have time-invariant 

distributions: The contribution of each source to the overall signal remains 

constant over time. Yet, multiple dynamic factors associated with extracellular 

recordings can cause variations of the neural signals over time: for example the 

relative motion between the electrode array and recorded neurons (electrode 

drift) over the timescale of minutes to hours (Perge et al., 2013), the degradation 

of the electrode array (Barrese et al., 2013), changes in neuronal morphology, or 

alterations in the cellular composition of local brain tissue over longer time scales 

of days to months (Freire, Morya, Faber, & Santos, 2011). For these effects with 

long time constants, the assumption of time-invariance can be met by restricting 

spike sorting to shorter blocks of recorded data. In practice, applying ICA to 

sources that display drift, or other time variations in distributions, results in a 

single source being split into multiple components (Takahashi & Sakurai, 2005) 

which can be recombined in post-processing. For this paper, we analyzed 5s 

blocks of simulated data without drift; an extension of this algorithm to handle 

longer blocks of recorded data is addressed in the Discussion. 
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Any component containing a stationary spiking source will contain all the spikes from 

that source  

By using a linear transformation to unmix the recorded signals into the 

underlying sources, we assumed that each electrode recording is a linear 

superposition of electric potentials originating from one or more nearby active 

neurons and noise. Because the linear transformation only adds and subtracts the 

recorded signals with weights optimized by ICA, any underlying signal that is 

temporally and spatially stationary, if extracted in a component, will be extracted 

in its entirety. Thus, any component containing a stationary spiking source will 

contain all the spikes from that source. In order to extract all the spikes from a 

source from a component, the amplitude of each spike must be unambiguously 

above the noise in that component.  

 

Classifier 

 

A component can contain single unit, multi-unit, or other activity  
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A linear transformation cannot return more underlying sources (i.e. rows in the 

output components) than recorded signals (i.e. rows in the input), because such 

an inversion would be underconstrained. Instead, the data must have the same 

(or fewer) number of underlying sources as there are recording sites. Yet, for in-

vivo extracellular recordings (with the possible exception of recording 

throughout the entire brain using close-packed recording sites) there will be 

more recorded neurons than recording sites. The result will be that some 

underlying sources (e.g. low amplitude signals from distant neurons) will not be 

completely unmixed, and thus some components may contain a single unit with 

poor signal-to-noise ratio or multi-unit spiking activity. Indeed, previous work 

(Jäckel et al., 2012) has shown that ICA components extracted from extracellular 

multi-electrode traces contained both single-unit activity and multi-unit activity. 

Additionally, some components will contain other underlying sources such as 

motion artifacts and sources of noise (E. S. Hill et al., 2010). Thus, we use a 

classifier to evaluate each component for well-defined single unit activity. 
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Classifier design  

In designing a classifier, our goal was a conservative assessment of single units, 

prioritizing choosing units with spike-for-spike accuracy over maximizing the 

total number of units extracted. Additionally, to avoid overfitting the classifier to 

the simulated data, we wanted the classifier’s criteria for identifying a single unit 

to use minimal assumptions about properties of a neuron’s activity (e.g. 

distribution of spike waveforms). To accomplish this, our classifier first 

identified the set of deflections (putative single unit spikes) in a component best 

separated from all other deflections (noise, smaller spikes). The best separated 

deflections were those above the largest gap in deflection amplitude values (Fig 

1.4E, details in Methods). To parameterize this classification, three values were 

derived from each component and its putative single unit spikes: (1) amplitude 

separation, the distance between the smallest putative single unit spikes and the 

next smallest spike (the size of the gap), (2) amplitude variation, the difference 

between the smallest and largest amplitudes of the putative single unit spikes, 

and (3) spike count. To pass the classifier, amplitude separation ≥ minimum 

separation, amplitude variation ≤ maximum variation, and spike count ≥ minimum spike 

count. We explore the performance of the classifier as we sweep minimum 
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separation and maximum variation, and fix minimum spike count at 5 spikes to avoid 

classifying components with a few noise deflections as single units. Note that, as 

defined, amplitude separation + amplitude variation + (spike detection 

threshold/maximum spike amplitude) ≤  1. For components that pass the classifier, it 

follows that amplitude variation ≤  1 – minimum separation -  (spike detection 

threshold/maximum spike amplitude), indicating that the values of the minimum 

separation and the spike detection threshold, also define an upper limit on amplitude 

variation.  

 

Figure 1.4 - Spike sorting workflow.  

We began with simulated extracellular traces (A), then applied independent 
component analysis (ICA), extracting the components (B), which we thresholded 
(dashed grey line), identifying (C) a set of suprathreshold deflection times and 
amplitudes (red dots). We normalized (D) each component’s deflection 
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amplitudes and spike detection threshold so that the median of the component 
was zero and the maximum amplitude was 1. We defined the amplitude 
separation metric as the maximum difference between amplitudes (including the 
spike detection threshold as a baseline amplitude) consecutive in sequence when 
sorted by magnitude (green, E). Then we considered those deflections above the 
higher amplitude of the separation pair as putative spikes (black circles, E). The 
amplitude variation metric (magenta, F) was calculated as the difference between 
the amplitudes of the highest and lowest putative spikes. If the amplitude 
separation was above a parameter we call the minimum separation, the 
amplitude variation below a parameter we called the maximum amplitude 
variation, and the spike count above a parameter we called the minimum spike 
count (first two parameters derived from the model results that follow, 
minimum spike count set to 5 spikes), then the component was declared to be a 
single unit (G). If two sets of single unit spike times matched (within 0.6 ms), 
then we treated them as the same single unit (H).   
 

When an underlying source varies non-linearly between detectors, ICA may split the 

source into multiple components 

When ICA finds a linear transformation to unmix the recorded traces, it assumes 

that underlying sources vary linearly across sensors. In other words, it is 

assumed that the signal from one neuron will only vary in magnitude at different 

locations in space. However, it is known that spike waveforms can vary non-

linearly based on where they are recorded (Henze et al., 2000; McKeown & 

Sejnowski, 1998; Mechler et al., 2011; Mukamel et al., 2009; Reidl et al., 2007; 

Schomburg et al., 2012), due to the unique distribution of active current densities 
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in particular neurons (Gold et al., 2006; Mukamel et al., 2009), and due to the 

low-pass filtering property of neuropil (Bédard & Destexhe, 2009; Mukamel et 

al., 2009). To fully test the spike sorting algorithm, we included spatial 

nonlinearities in the simulations (see section titled Simulation designed with spike 

waveforms that vary non-linearly in space previously). Previous work has shown 

that in cases of spatial non-linearities, ICA may split a single underlying source 

into multiple components with near identical spike times, but somewhat 

different spike shapes (Brown et al., 2008; Bruno et al., 2015; E. S. Hill et al., 2010; 

2012; Jäckel et al., 2012; Siegel, Duann, Jung, & Sejnowski, 2007).  

 

De-duplication design 

To account for single underlying sources appearing in multiple components, we 

include a de-duplication algorithm as a step of the spike sorting algorithm. To 

recognize duplicated sources, we compare all pairs of extracted single units and 

for any pairs in which all of their spikes occur within a defined narrow time 

window, for example 0.6 ms of each other (E. S. Hill et al., 2010; Litke et al., 2004). 

Among the identified duplicate sources, the source with the largest amplitude 

separation is retained for further analysis while the rest are excluded. (The 
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frequency with which extracted units were de-duplicated, as a function of site 

density, is shown in Fig 1.10.) 

 

Classifier accuracy 

 

Classifier performance used to choose default classifier parameters, spike for spike 

accuracy possible 

An analysis of the spike sorting algorithm for different classifier parameters and 

simulations parameters is shown in Fig 1.5. (When simulation parameters are not 

specified, default simulation parameters were used, see Methods: Default 

parameters for simulation.) We asked whether we could spike sort with spike for 

spike accuracy, which would be achieved when every component classified as a 

single unit contains no spike assignment errors (and thus is not noise or multi-

unit activity). This is equivalent to no false positives or a specificity = 1 (for more 

details, see Figure 4 caption or Methods: Error rate quantification). We found 

that with a minimum separation greater than 0.2, the classifier correctly identified 

single units with specificity = 1 (Fig 1.5A). With minimum separation = 0.2, the 

mean of spike detection threshold/maximum spike amplitude was 0.24, setting an 
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upper limit for amplitude variation of 0.56 (1-0.2-0.24=0.56). With this upper limit 

set by other parameters, we evaluated maximum variations of 0.5 and below. 

Maximum variation was not crucial for spike-for-spike accurate spike sorting; with 

minimum separation ≥ 0.2, value of maximum variation had no impact on specificity. 

For this simulated data, the variation in a component’s spike peak amplitude was 

unimportant to spike-for-spike accuracy if the maximum separation was set to at 

least 0.2. We elected to be conservative in choosing our default classifier 

parameters, as the exact parameters necessary for perfect specificity would not 

be known in real world applications. We choose to use minimum separation of 0.3 

and maximum variation of 0.4 as default classifier parameters. 

 

We also evaluated the impact of minimum separation and maximum variation on 

sensitivity. Sensitivity equals one when there are no false negatives, i.e. no single 

units incorrectly classified as multi-unit/noise. Fig 1.5B shows that sensitivity 

dropped as classifier parameters became stricter: as the minimum separation 

increased and as the maximum variation decreased. In any classifier, a trade off 

exists between specificity and sensitivity, and here we choose default classifiers 

favoring perfect specificity to achieve spike-for-spike accuracy. This results in 
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more false positives, which decreased the yield of extracted neurons (Fig 1.5B). 

Later, to address yield, we explored how probe site density can improve the 

number of neurons extracted (equivalent to true positives). 

 

 

Figure 1.5 - Classifier performance and robustness.  

Positives and negatives are defined as in Fig 1.4G (arrows and X’s respectively). 
False negatives are defined when a component’s putative spikes (black dots in 
Fig 1.4E) are a perfect match (spike-for-spike) with the spikes of a simulated 
neuron, but the component did not pass the classifier; true negatives are defined 
when there is no simulated neuron that matches a component’s putative spikes 
and the component did not pass the classifier. True positives are defined when a 
component’s putative spikes (black dots in Fig 1.4E) are a perfect match (spike-
for-spike) with the spikes of a simulated neuron, and the component did pass the 
classifier; false positives are defined when there is no simulated neuron that 
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matches a component’s putative spikes and the component passed the classifier. 
Specificity is classically defined as the ratio of the number of true negatives to the 
sum of the true negatives and false positives; sensitivity is similarly defined as 
the ratio of the number of true positives to the sum of the number of true 
positives and the number of false negatives.  (A) Specificity, as a function of 
minimum separation (see legend of Fig 1.4 for definition), plotted for various 
maximum amplitude variations (different colors); each point is the median of 10 
simulated recordings (with 25th and 75th percentile error bars); default 
simulation parameters were used.  (B) Sensitivity, as a function of minimum 
separation (see legend of Fig 1.4 for definition), plotted for various maximum 
amplitude variations (different colors); each point is the median of 10 simulated 
recordings (with 25th and 75th percentile error bars); default simulation 
parameters were used.  (C) Specificity, plotted for various simulations where one 
simulation parameter was varied from the default; minimum separation was 
held at 0.3 and maximum amplitude variation at 0.4.   
 

Spike for spike accuracy is robust to changes in simulation parameters 

Next we investigated whether the specificity of the classifier with the default 

classifier parameters was robust to changes in the simulation parameters. Ideally, 

the default classifier parameters would return spike-for-spike accuracy for a 

range of simulation parameters reflecting some likely physiological and system 

variations that occur in real extracellular recordings; specifically we individually 

varied neural density, mean firing rate, site-specific non-neural noise, or shared 

non-neural noise and held all other parameters at their defaults. The neural 

density parameter was swept between 5,000 to 240,000 neuron cell bodies/mm3, 

spanning below and through the range of neural densities measured in the 
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mouse cortex (Mukamel et al., 2009; Schüz & Palm, 1989) and hippocampus 

(Fabricius et al., 2008; Mukamel et al., 2009). Mean firing rates of 5 Hz, 15 Hz, and 

25 Hz were used spanning reported firing rates reported in rhesus monkey 

parietal cortex (K. W. Koch & Fuster, 1989), cat V1 (Baddeley et al., 1997; Griffith 

& Horn, 1966), and rat hippocampus (Mizuseki & Buzsáki, 2013). We varied the 

site-specific noise from 0.1µV to 25 µV RMS based on (Scholvin, Kinney, 

Bernstein, Moore-Kochlacs, Kopell, Fonstad, & Boyden, 2016a), which measured 

the increase in site-specific noise as site size decreased and found ~7.5 µV RMS 

site-specific noise for 3x3 µm gold-plated sites, approximately the pad size for 

our default pitch of 5 µm ((Scholvin, Kinney, Bernstein, Moore-Kochlacs, Kopell, 

Fonstad, & Boyden, 2016a) uses sub-micrometer wiring). Our shared non-neural 

noise values were 15µV to 75µV RMS, extending to well-above typical noise 

values in experimental recordings (Ben-Shalom et al., 2012; Cohen & Kohn, 2011; 

Desai, Rolston, Guo, & Potter, 2010; Einevoll et al., 2011; Fee, Mitra, & Kleinfeld, 

1996a; Ferguson, Boldt, & Redish, 2009; Gerstein, 2000; Harris et al., 2000; Hazan 

et al., 2006; Humphrey & Schmidt, 1990; Imfeld, Neukom, & Maccione, 2008; 

Jochum, Denison, & Wolf, 2009; Muthmann et al., 2015; Pazienti & Grün, 2006; 

Rossant et al., 2015; Tsai, John, Chari, Yuste, & Shepard, 2015; Ventura, 2008; 
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2009a; 2009b; Wood et al., 2004). For each of these simulations, the specificity of 

spike sorting was 1 (Fig 1.5C). Thus, we found that our default parameters 

resulted in spike-for-spike accuracy, robust to changes in simulation parameters 

representing differences in real data observed between brain regions, brain 

states, and recording systems. 

 

Yield 

 

Having established that spike-for-spike accuracy was possible, we were 

interested how the algorithm performed in terms of yield, specifically, how 

neural, system, and probe design parameters impacted the yield. 

 

Increases in neuron density and firing rate decreased the number of neurons extracted 

Over the same sweeps of simulation parameters performed in Fig 1.5C, we 

investigated how many neurons were extracted per simulation. For neuron 

density, we found decreased yield for densities lower and higher than 60,000 

neuron cell bodies/mm3 (Fig 1.6A). At low densities, there were simply fewer 

neurons to be recorded. At higher densities, there were more neurons 
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contributing to background neuronal noise. In (Jäckel et al., 2012), the authors 

similarly observed that increasing neuron density decreased the separability of 

the resulting ICA components. For the simulation parameter mean firing rate, Fig 

1.6B shows that increased mean firing rate results in decreased yield. Similar to 

increased neuron density, increased mean firing rate increased the background 

neuronal noise. We hypothesize that with this increased background noise, 

individual signals become more difficult to unmix.  
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Figure 1.6 - Dependence of units extracted on simulation parameters.   

We varied neural density (A), mean firing rate (B), site-specific non-neural noise 
(C), shared non-neural noise (D), site density for a fixed area (E), and site density 
for a fixed number of pads (F).  Five simulations with different random seeds 
were run per set of parameters; the number of units extracted in each simulation 
is plotted as a point. The trend between the simulation means is plotted as a 
dashed line (A-D); in (E-F) a solid black line connects the points from a single 
simulation. The x-axes for (C) and (F) are on a lognormal scale. 
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Increases in site-specific noise decreased the number of neurons extracted; increases in 

shared non-neural noise resulted in no change to number of neurons extracted 

We varied the two sources of non-neural noise: the site-specific noise, i.e. 

Johnson noise, and the noise shared between recording sites. Changes in site-

specific noise can have different physical origins: they can be white noise from 

the neural amplifier circuit, or they can be the result of changes in the area or the 

electrochemical condition of the recording site. For our default pitch of 5 µm, 

with gold-plated sites, the site-specific noise measured in (Scholvin, Kinney, 

Bernstein, Moore-Kochlacs, Kopell, Fonstad, & Boyden, 2016a) is approximately 

7.5 µV RMS. We vary the site-specific noise above and below this value. Lower 

site noise values represented larger sites or other plating strategies that result in 

lower site impedances; higher values reflected smaller sites or higher site 

impedances. The results in Fig 1.6C show that increasing the site-specific noise 

decreased the number of neurons extracted. The shared non-neural noise 

represented noise common across neighboring sites, including any coupling 

between channels on the probe (e.g. capacitive), environmental noise in the 

recording room, etc. We varied the shared non-neural noise from 15µV to 75µV 



 37 

RMS, a range extending to well-above typical noise values in experimental 

recordings (Ben-Shalom et al., 2012; Cohen & Kohn, 2011; Desai et al., 2010; 

Einevoll et al., 2011; Fee, Mitra, & Kleinfeld, 1996a; Ferguson et al., 2009; 

Gerstein, 2000; Harris et al., 2000; Hazan et al., 2006; Humphrey & Schmidt, 1990; 

Imfeld et al., 2008; Jochum et al., 2009; Muthmann et al., 2015; Pazienti & Grün, 

2006; Rossant et al., 2015; Tsai et al., 2015; Ventura, 2008; 2009a; 2009b; Wood et 

al., 2004) and three times our maximum site-specific noise. Fig 1.6D shows there 

was no change in number of neurons extracted for these different shared noise 

magnitudes. 

 

Spatial density of recording sites can be optimized for number of neurons extracted 

Next, we looked at how the density of recording sites on the probe affects the 

number of neurons extracted, while holding probe area constant (e.g., if one were 

to try to not increase brain damage) or while holding pad number constant (e.g., 

if one were limited by amplifier count or recording bandwidth). When the total 

probe area (20 µm by 400 µm) was held constant, increasing the site density (and 

thus number of sites), increased the number of neurons extracted (Fig 1.6E), 

albeit with diminishing returns towards the high end of the plot.  Of course, such 
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tiny electrodes would (if built with current technologies) present a higher 

impedance, and thus higher noise, which could counteract the trend of more 

neurons being extracted (e.g., Fig 1.6C); thus, for any actual probe material and 

geometry selection, the modeling of Fig 1.6E would have to be filtered through 

the kind of modeling shown in Fig 1.6C to achieve a realistic estimate of yield.  

When instead the number of pads was held constant at 405 (i.e., 5 columns of 81 

rows), and the density varied (thus changing the probe width and height), the 

number of neurons extracted peaked at an intermediate density (Fig 1.6F). As 

pads were packed tighter and tighter, the improved resolving of neurons near 

the probe was offset by poorer coverage of the region by the probe.   

 

As site density and as probe width increase, more units are extracted further from the 

probe 

To visualize how the distribution of neurons extracted looks throughput space, 

we repeated the kind of simulation of Fig 1.6E-F but now varying probe width 

(10-80 µm), while plotting the locations of neurons extracted for varying probe 

densities (Fig 1.6A; population data for 5 simulations shown plotted along 

distance from the center of the probe in Fig 1.6B). As one might expect, given the 
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simulations of Fig 1.6, increasing probe width and increasing pad density both 

resulted in greater numbers of neurons being extracted, roughly equivalent to an 

increase in the volume about the probe throughout which nearly all neurons can 

be extracted (although note that as pad density increases, the marginally 

extracted cells are embedded within a volume containing many unextracted 

cells, suggesting diminishing returns). Fewer units were extracted on the 

backside of the probe, reflecting the additional amplitude attenuation they 

received in the simulation.  
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Figure 1.7 - Neurons extracted by probe site density and width.   

(A) Simulated locations of extracted and not extracted units for varying probe 
widths (left to right) and probe site densities (color of dot), for one representative 
simulation. Black bar, probe (with back of the probe towards the negative z 
direction).  (B) Fraction of units within a given distance from the center of the 
probe (x-axis) which are extracted (y-axis), for five simulations as in (A). Widths 
are as in corresponding plots above. 
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Signal to noise ratio improvement 

The signal-to-noise ratio (SNR) for units extracted by this spikes sorting 

algorithm improved from simulated trace to component (e.g. Fig 1.4A to 4B), as 

previous work has also demonstrated for ICA based spike sorting (Brown et al., 

2001; 2008; E. S. Hill et al., 2010; Jäckel et al., 2012; Mukamel et al., 2009). We were 

interested in how this SNR improvement is impacted by increases in site density 

for a fixed probe area. Here we defined signal-to-noise ratio as the mean peak 

magnitude across all spikes divided by the noise standard deviation. For 

simulated traces, we used the SNR on the simulated trace on which that neuron 

has the highest magnitude. For components, we used the SNR for the extracted 

neuron on the component on which it was extracted. We defined SNR 

improvement for each extracted unit as the component SNR divided by the 

simulated trace SNR. We find that as the site density increases, the SNR 

improvement also increases (Fig 1.8), explaining how with greater site density 

additional more distant neurons are extracted. 
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Figure 1.8 - SNR improvement with increased density 

Signal to noise ratio (SNR) improvement from simulated trace to component, as a 
function of site density across a fixed area. We defined signal-to-noise ratio as the 
mean peak magnitude across all spikes divided by the noise standard deviation. 
For simulated traces, we used the SNR on the simulated trace on which that 
neuron has the highest magnitude. For components, we used the SNR for the 
extracted neuron on the component on which it was extracted. We defined SNR 
improvement for each extracted unit as the component SNR divided by the 
simulated trace SNR. Using the simulations shown in Fig 1.6E, we measure and 
plot the median signal-to-noise improvement for the set of well-defined single 
units extracted at each density. Different lines represent different simulations.  
 

Discussion 

 

We designed a spike sorting algorithm that resulted in spike-for-spike accuracy 

on challenging simulated data, suggesting the possibility of automated very low 

error rate spike sorting for extracellular data. Our simulation allowed us to 

explore how the number of neurons extracted depend on physiological, noise, 
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and probe parameters, and thus suggesting promising direction for new 

technologies. In particular, the results made design suggestions for probes to 

optimize the number of units extracted by the algorithm, directing us towards 

high-density, high-channel count probes (Bell & Sejnowski, 1995; Scholvin, 

Kinney, Bernstein, Moore-Kochlacs, Kopell, Fonstad, & Boyden, 2016a) in order 

to attain automated spike sorting.  

 

What biases does this spike sorting algorithm introduce or avoid? All 

extracellular recordings are biased towards neurons with large magnitude 

signals arising from, for example, cellular morphology akin to that of pyramidal 

cells (Harris et al., 2000; Henze et al., 2000) or proximity to the recording array 

(Blanche et al., 2005). Certainly, ICA is biased towards extracting neurons with 

larger magnitude signals. However, we see that as the site density increases, 

neurons are extracted from further away (Fig 1.7) and with increasing gains in 

SNR (Fig 1.8). Spike sorting algorithms that threshold individual raw channel 

traces to detect spikes (Gibson, Judy, & Markovic, 2012; Nicolelis et al., 2003; 

Quiroga, Nadasdy, & Ben-Shaul, 2004; Rossant et al., 2016) ignore the 

opportunity to utilize correlations across traces to reject noise and thereby detect 
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more (e.g. smaller) spikes. In the method presented here, Independent 

Component Analysis (ICA) boosts SNR when estimating the signals underlying 

the recorded mixtures, so that spike detection on activity traces of the estimated 

underlying sources after unmixing detects more (lower-amplitude) spikes. Our 

method also explicitly excludes neurons with low spike rate, e.g 0.2-0.8 Hz, 

because our ignoring of waveform shape means that sometimes noise will cross 

our threshold and appear as a spike. One intriguing possibility is that longer data 

sets containing more spikes will allow low-firing rate neurons to be extracted  

(Hengen, Torrado Pacheco, McGregor, Van Hooser, & Turrigiano, 2016; Okun, 

Lak, Carandini, & Harris, 2016), as will data sets that record from more complete 

populations of neurons and achieve very low rates of spike-sorting errors (Marre 

et al., 2012). For this paper, we considered spike sorting for recordings in which 

the neuronal signals remain stationary for the length of a recording. While this is 

a reasonable assumption for shorter (e.g. < 10 min) acute recordings (Jackson & 

Fetz, 2007; Jäckel et al., 2012; Perge et al., 2013), for longer recordings an 

extension for this algorithm to track electrode-neuron drift is needed (Brown et 

al., 2001; Bruno et al., 2015; Dombeck et al., 2010; D. N. Hill et al., 2011; E. S. Hill 

et al., 2010; 2012; Prevedel et al., 2014; Takahashi & Sakurai, 2005). Finally, in 
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these simulations while we include variability in spike waveform amplitude, we 

do not include the large spike amplitude attenuation observed when neurons 

burst [cite]. Our classifier’s minimum separation requirement would likely mean 

that components containing signals from bursting units would not be classified 

as single units. Future iterations of our classifier for experimental data could 

account for this attenuation.  

 

To test the spike sorting algorithm experimentally, we would need recordings 

from multi-electrode arrays, ideally in vivo from awake behaving animal, and, to 

calculate errors, we must have knowledge of the underlying neural activity at the 

single-cell and single-spike resolution. Gathering such data is technically 

challenging, and no suitable data set has been made publically available. In 

designing a simulation, we chose parameters that would be challenging for spike 

sorting. When aspects of the simulation were poorly characterized in the 

literature, we chose to model them in ways that would create a more difficult 

spike sorting problem. For example, whereas a large fraction of neurons may be 

silent or have low-firing rates in vivo (Olshausen & Field, 2005; Onton et al., 

2006), all of the units in the simulation were firing with a mean firing rate of 15 
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Hz in the default simulations, higher than is typical in mammalian recordings 

(see Methods, (Hengen et al., 2016)). In simulations using the default parameters, 

the background activity of distant neurons contributed tens of thousands of non-

Gaussian signals, such that resulting superposition on each channel looked like 

noise with little discernable single unit activity (Fig 1.2G). Every neuron included 

a spatial non-linearity in waveform, a violation of an assumption built into ICA. 

The simulation parameters of neural density, mean firing rate, site-specific noise, 

and shared noise were evaluated across experimentally observed ranges. With 

ICA and a classifier, we were able to spike sort all of these simulations with 

spike-for-spike accuracy.  

 

For this spike-for-spike accuracy, we sacrificed some yield. In selecting our 

default classifier parameters to conservatively result in spike for spike accuracy, 

we selected against a higher yield with some units is misassigned spikes. While 

our simulation is conservative, we suspect that the application of this spike 

sorting algorithm will result in lower yield per site than current spike sorting 

methods on existing extracellular recording devices. Users of the a microwire 

array, arranged like a bed of nails, extracted 0.6-0.9 neurons per microwire, 
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where the trace from each microwire was analyzed separately and there were 16-

32 microwires (Nicolelis et al., 2003). Tetrodes, which are often placed by 

lowering until spikes with high SNR are found, have been reported to yield 

between 2.5-5 units/site (Rossant et al., 2016). Polytrodes are more similar to the 

probes we simulated, with 54 recording sites at pitches from 50-75 µm. Polytrode 

data has been routinely spike sorted into 0.37-0.92 units/site (Blanche et al., 2005). 

For the simulations we ran closest to existing probes, 3 columns by 41 rows at 10 

µm pitch, the mean number of neurons extracted was 7.2, for 0.06 units/site. We 

believe that our simulated data is challenging and actual yields will be higher 

than seen in the simulation. The advantage of this algorithm is that for 

sufficiently high channel count, close packed probes, this spike sorting can be 

completely automated and the results will have very low error rates.  

 

Early work using ICA for spike sorting applied ICA to the spike waveforms 

(Takahashi, Anzai, & Sakurai, 2003a; 2003b), as extracellular probes with many 

densely packed recording sites were not available. Spike sorting using  ICA was 

successfully validated for photodiode array recordings of isolated ganglia of the 

seaslugs Tritonia and Aplysia, where the neurons were so large that there were 
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more detectors than underlying signals from neurons (Brown et al., 2008; E. S. 

Hill et al., 2010). (Jäckel et al., 2012) evaluated ICA for spike sorting multi-

electrode array data, and identified possible difficulties due to spatial non-

linearities resulting in neurons extracted on multiple components, components 

containing multi-unit activity, and decreased yield at higher neural densities. 

Building on this previous work, we included classification and deduplication 

steps in our ICA-based spike sorting algorithm, to address neurons extracted on 

multiple components and components with multi-unit activity. Then we 

systematically evaluated how spike-for-spike accuracy and yield with regard to 

firing rate, neural density, site-specific and shared noise, as well as probe site 

density, channel count, and width, discovering that our classifier and de-

duplication steps compensate for split and multi-unit activity and that higher 

channel count and site density can be used to improve low yield. 

 

To record from a specific volume of brain tissue or to minimize brain tissue 

displacement, the size of probes is limited. Our simulations suggest that yield 

improvements are possible when increasing the recording site density, given a 

fixed probe surface area (Fig 1.6E). With advances in microfabrication, probe 
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technology can enable probes with increasing wiring densities as well as sub-

micrometer feature sizes that can enable smaller recording sites and increased 

density. Of course, a major concern is that as pad size becomes smaller, holding 

all else equal, the impedance grows (Scholvin, Kinney, Bernstein, Moore-

Kochlacs, Kopell, Fonstad, & Boyden, 2016a).  However, processing of the 

recording site surface can reduce electrode impedance and therefore noise and 

mitigate the increase of the electrode impedance that is a consequence of 

reducing the size of the recording site. For example, platinum black exhibits an 

increase in surface area of 2000x compared to shiny platinum (Bowden & Rideal, 

1928), and 300x lower impedance (Robinson, 1968). If, on the other hand, the 

maximum number of recording sites per probe is limited, then our simulations 

suggest that in such a case an optimum recording site density exists that 

maximizes yield (Fig 1.6F) and depends on simulation parameters, in particular, 

neuron density, firing rate, and signal attenuation in brain tissue. 

 

We implemented a conservative classifier that enabled spike-for-spike accurate 

spike sorting that was also simplistic and compared spikes solely by amplitude 

to avoid overfitting the classifier to simulated data. As a result of this 



 50 

conservatism the algorithm misses some components that do contain single units 

(i.e., the sensitivity is less than 1). Once experimental data becomes available, the 

classifier can be optimized for the data set by using more features of spike 

waveforms than just amplitude as used here, and continue to have very low 

error rates with improved yield. 

 

Methods 

 

Simulation of Micro-Electrode Array Data 

 

Simulation volume designed to include activity of distant neuron sources 

Each simulation encompasses a three-dimensional volume centered on a planar 

array of recording sites (Fig 1.2A). Our goal was to include background neural 

activity as a source of noise. Our model was inspired by the simulations in (Bell 

& Sejnowski, 1995; Brown et al., 2001; Comon, 1994; Martinez, Pedreira, Ison, & 

Quian Quiroga, 2009; Quiroga et al., 2004). In previous literature, the distances 

over which neuronal spiking activity can be detected with extracellular recording 
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techniques were typically between 50-150 µm (Blanche et al., 2005; Gold et al., 

2006; Henze et al., 2000; Humphrey & Schmidt, 1990; Moffitt & McIntyre, 2005) 

with some neurons tracked over intracortical distances of up to 300 µm 

(Humphrey et al., 1978; McKeown & Sejnowski, 1998; Mukamel et al., 2009; Reidl 

et al., 2007). Conservatively we chose the simulated distance to extend beyond 

the probe 300 µm, the maximum of the spike detection distances from the 

literature. For consistency, we wanted to keep the simulated volume constant for 

all simulations, so we based the volume on the largest probe we simulated, 800 

µm high by 50 µm wide (more details on probe layout below). Thus, the 

simulated volume was chosen to be a cylinder capped with half spheres on either 

end with cylinder height set to 800 µm and the cylinder and sphere radii set to 

350 µm. Thus for all simulations, the volume extended at least 300 µm beyond 

each recording site. The coordinates of the volume were defined such that the 

center of the probe was set at (0,0,0) with x, y, and z axes relative to the probe as 

right-left, front-back, and up-down, respectively. 
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Neurons distributed throughout volume with specified density and uniform distribution 

A neural density parameter was set between 5,000 to 240,000 neuron cell 

bodies/mm3, spanning neural densities measured in the mouse cortex (Mukamel 

et al., 2009; Schüz & Palm, 1989) and hippocampus (Fabricius et al., 2008; 

Mukamel et al., 2009) and including lower densities to evaluate their effect on the 

performance of the algorithm. Neuron coordinates were chosen from a uniform 

distribution across the simulation space. An example of their placement can be 

seen in Fig 1.2A.  

 

Simulation designed with spike waveforms that vary non-linearly in space  

Spike waveforms from an individual neuron can vary in shape across recording 

sites, beyond simple scaling, e.g. non-linearly (Brown et al., 2008; Bruno et al., 

2015; Gold et al., 2006; Harris et al., 2000; Henze et al., 2000; E. S. Hill et al., 2010; 

2012; Schomburg et al., 2012). These spatial non-linearities occur because of 

variations in spike waveform across soma and distal processes (Buzsáki et al., 

2012; E. S. Hill et al., 2010). It was important to capture this effect in the 

simulations to test ICA’s robustness to spatial non-linearities in spike shape and 

test the effectiveness of the de-duplication step. We chose a simple way of 
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introducing spatial non-linearities in the neuronal spike waveform. In brief, our 

design was as follows: We created two seed waveform templates, one proximal 

at the soma and one at distal processes, with different peak amplitudes and 

timing (Fig 1.2B). These seed templates were inspired by extracellular spike 

waveform shapes plotted in (Blanche et al., 2005; Chen et al., 2013; Flusberg et al., 

2008; Harris et al., 2000; Henze et al., 2000; Kodandaramaiah, Franzesi, Chow, 

Boyden, & Forest, 2012; Prevedel et al., 2014; Stevenson & Kording, 2011b; 2011a; 

Swindale & Spacek, 2014). The two seed templates were used to create proximal 

and distal templates for each neuron. In turn, the neuron templates were used to 

create a distribution of proximal and distal waveforms for each neuron. 

Interpolation between these two waveforms was used to calculate the 

distribution of waveforms at every recording site.  

 

In detail: The proximal waveform was constructed to have one large deflection 

followed by a small deflection of reverse polarity. The distal waveform was 

constructed to have two large deflections followed by a small deflection of same 

polarity (Fig 1.2B, top row). The two seed waveform templates were piecewise 

continuous functions over time, defined by 8 knots (control points for cubic 
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splines, shown as circles in Fig 1.2B). The knots were located at peaks and 

troughs connected by cubic spines with the knots at zero-valued first derivatives. 

For the purposes of the seed templates, the maximum amplitude and duration of 

the spike were set to 1 in arbitrary units, to be scaled later. To create a diverse 

population of unique neurons, i.e. with different spike waveforms (Fig 1.2B, 

center row), each neuron was assigned a proximal and distal template, derived 

from perturbations to the two seed templates. For both templates, knots 3-6 were 

perturbed in both voltage and time by the addition of an amount selected from a 

normal distribution, amplitude limited to 3.5 standard deviations, with mean 

zero and standard deviation arbitrarily chosen to be 0.25 for voltage and 0.024 for 

time (relative to the scale of maximum amplitude and duration set to 1), resulting 

in the neuron’s template waveform. Knots 1, 2, 7, and 8 were fixed in voltage and 

time so that the waveform edges were zero. To generate a diversity of spike 

waveforms for each neuron (Fig 1.2B, bottom row), fifty pairs of proximal and 

distal spike waveforms were created per neuron by giving smaller perturbations 

to a neuron’s template waveforms, which were arbitrary chosen to use standard 

deviations of 0.025 for voltage and 0.00625 for time. (Standard deviations again 

were amplitude limited to 3.5 standard deviations.)  
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In addition to this set of paired proximal and distal waveforms, we need a 

direction over which the waveform varies, so we assigned an orientation vector 

to each neuron. The proximal waveforms were located at the cell’s soma, s, and 

the distal waveforms were located a point 60 µm along the neuron’s orientation 

vector, o (Fig 1.2D, red line). The orientation vector values, ox, oy, and oz, for each 

neuron were chosen uniformly between -1 and 1. For each pair of waveforms in 

the set of fifty for a neuron, the waveform seen at an arbitrary recording site was 

calculated as follows: First, we found the point, c, on the orientation line closest 

to the recording site and then calculated the distance, dw, between c and s (Fig 

1.2D). If c was in the negative direction of the orientation vector, then the 

waveform at the recording site was set to the proximal spike waveform. If the c 

was in the positive direction, and between the soma and distal point (dw between 

0 and 60 µm), then the knots of the waveform at the recording site were a linear 

weighted average of the proximal and distal knots. Finally, if the intersection was 

in the positive direction and beyond the 60 µm distal point, then the knots were a 

linear weighted average of distal knots and a waveform with all knots at zero, 

located at 10,000 µm to approximate infinity. We fit the waveform spline 
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function to these knots, scaling time such that the duration of a waveform was 

set at 1.5 ms, which includes the time for the waveform to return to baseline, in 

the range of experimental measurements of waveform length (Blanche et al., 

2005; Henze et al., 2000; Lewicki, 1998; Mechler et al., 2011; Perge et al., 2013). Fig 

1.2C shows an individual spike, with spatial interpolation.  

 

Variation in spike amplitude with distance from neuron cell body 

The attenuation of neural signals in extracellular space remains an open area of 

investigation, difficult to approximate given the complex and variable 

morphological and electrical properties of cell bodies and processes (Barrese et 

al., 2013; Ben-Shalom et al., 2012; Buzsáki et al., 2012; Cohen & Kohn, 2011; 

Einevoll et al., 2011; Fee, Mitra, & Kleinfeld, 1996a; Gerstein, 2000; Harris et al., 

2000; Hazan et al., 2006; Muthmann et al., 2015; Pazienti & Grün, 2006; Rossant et 

al., 2015; Ventura, 2008; 2009a; 2009b; Wood et al., 2004). In extracellular 

recordings, this attenuation of signal gives rise to a fall off in spike amplitude 

with increasing distance, ds, from the neuron’s soma. Many experimental and 

theoretical studies have explored the best approximations for this spike 

amplitude fall off. Theoretical estimates in the 1950s and 60s (Fatt, 1957; Freire et 
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al., 2011; Rall, 1962; Scholvin, Kinney, Bernstein, Moore-Kochlacs, Kopell, 

Fonstad, & Boyden, 2016a; Tasaki, Polley, & Orrego, 1954) showed that for 

neurons with spherical soma and radially symmetric dendrites, with a current 

source infinitely far away and uniform, spike amplitude falls off inversely with 

distance, ds-1, as a Coulomb potential for a monopole. Experimental work by 

(Brown et al., 2001; 2008; Fatt, 1957; E. S. Hill et al., 2010; Jäckel et al., 2012; 

Mukamel et al., 2009; Takahashi & Sakurai, 2005) showed that a ds-1 fall off 

approximated extracellular potentials in antidromically activated spinal motor 

neurons in anaesthetized cat. (Jäckel et al., 2012; Martinez et al., 2009; Quiroga et 

al., 2004; Rall, 1962) created a somewhat more detailed approximation of a 

neuron, treating it as a spherical cell body with cylindrical dendrites, and 

showed the resulting more realistic current distributions result in a falloff faster 

than ds-1.  Even more detailed considerations of neuron morphology have 

considered the neuron’s cell body and processes to compose a dipole, which 

would have amplitude fall off as ds-2.  (Blanche et al., 2005; Gold et al., 2006; 

Henze et al., 2000; E. S. Hill et al., 2010; Humphrey & Schmidt, 1990; Moffitt & 

McIntyre, 2005; Rosenthal, Woodbury, & Patton, 1966) showed that a dipole 

model approximated antidromic activations of pyramidal cells in the 
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anaesthetized cat somatosensory cortex. Using extracellular spike amplitudes 

from detailed multi-compartmental models based on reconstructed 

morphologies of neurons from rat CA1 pyramidal cells, (Gold et al., 2007; 

Humphrey et al., 1978; Jäckel et al., 2012) found that when fitting spike 

amplitude fall off to a power law dsx, x was approximately -1.27, somewhat 

between a monopole and a dipole. (Gold et al., 2007; Lehmenkühler et al., 1993; 

Schüz & Palm, 1989; Syková & Nicholson, 2008; Van Harreveld & Khattab, 1969; 

Van Harreveld & Malhotra, 1967) also fit an exponential fall off, e-xds which they 

found fit better than a power law. Experiments from (Fabricius et al., 2008; 

Mechler et al., 2011) and (Gold et al., 2006; Harris et al., 2000; Henze et al., 2000; 

Mechler & Victor, 2012; Schomburg et al., 2012), recording from anesthetized cat 

and macaque visual cortex, showed that a dipole ds-2 model was a good 

approximation for the spatial variation of spike amplitude for r > 2-50 µm, and 

below r a monopole ds-1 model fit best. r was dependent on cell size and 

membrane properties, larger for larger cells and models with active 

conductances. (Buzsáki et al., 2012)’s review work suggested monopole, dipole, 

and possible other multipole contributions to the fall off. Because most of 

experimental and modeling work found multipole models a good 
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approximation, we decided to model the amplitude falloff with the equation: 

a(ds) = (e*ds2 + f*ds + g) -1 , which includes monopole and dipole contributions. (e, 

f, and g are fitted constants.) 

 

To fit this equation, we re-examined the literature for amplitude values for 

extracellular spikes. (Henze et al., 2000), recording from CA1 pyramidal cells of 

anesthetized rats, regularly observed extracellular spikes >250 µV in amplitude 

and found that neurons with amplitudes >60 µV could be recorded from a 

distance ≤ 50 µm. (Mechler et al., 2011; Mechler & Victor, 2012)’s recordings from 

anesthetized cat and macaque visual cortex found maximum amplitudes in a 

range of range of 25–313 µV, with mean 91 µV. Using silicon electrodes in the 

visual cortex of anesthetized cats and rats, (Blanche et al., 2005) found neurons 

with a mean voltage of 144 +/-118 µV, recording voltages up to 1.2 mV.  

 

Keeping in these ranges, we chose to fit with a(ds), with ds in micrometers, a(0) = 

250 µV, a(20) = 150 µV, and a(100) = 20 µV.  The amplitude of a spike on a 

particular recording site depends not only on ds but also on the specific electrical 

properties of the brain tissue between the recording site and the neuron. The 
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electrical properties of brain tissue are known to be heterogeneous 

(Lehmenkühler et al., 1993; Syková & Nicholson, 2008; Van Harreveld & Khattab, 

1969; Van Harreveld & Malhotra, 1967). To represent that heterogeneity, the 

spike amplitude for each neuron and recording site pair was multiplied by a 

heterogeneity factor, hn,s, chosen arbitrarily with uniform sampling from 0.7-1.3. 

Fig 1.2E shows a(ds) as the black line and in gray, the extent of possible values for 

the product of hn,s and a(ds). hn,s was chosen independently for each neuron-site 

pair. For simulations with the most closely packed electrode sites (Fig 1.6F), hn,s 

≠1 results in spike amplitude differences over spatial scales that are 

unphysiological. Therefore, for the set of simulations evaluating the impact that 

increasing site density for a constant number of sites has on number of neurons 

extracted (Fig 1.6F), hn,s = 1 for all neuron-site pairs. For neurons with somata on 

the front side of the probe (sy>=0), the ds was calculated as the distance from the 

site to the neuron’s soma, s. For neurons on the back side of the probe (sy <0), the 

ds was calculated as the minimum distance from the site, over the probe’s surface 

to the neuron.  
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Each neuron assigned a firing rate, spike times chosen from Poisson process with that 

rate 

A lognormal distribution of firing rates was used to reflect the experimentally 

observed skewness of neural firing rate distributions (Buzsáki & Mizuseki, 2014; 

Griffith & Horn, 1966; K. W. Koch & Fuster, 1989; Mizuseki & Buzsáki, 2013). As 

a default, the mean firing rate for the distribution was chosen to be 15 Hz and 

mean firing rates of 5 Hz and 25 Hz are also evaluated, spanning firing rates 

observed in behaving rhesus monkey parietal cortex (K. W. Koch & Fuster, 1989), 

V1 of awake and anesthetized cat (Baddeley et al., 1997; Griffith & Horn, 1966), 

and rat hippocampus (Mizuseki & Buzsáki, 2013). The standard deviation of the 

lognormal distribution is fixed at 8.3 Hz. Each simulated neuron received a firing 

rate, λ, from the lognormal distribution. Spike times were simulated by choosing 

interspike intervals from an exponential distribution with a mean of 1/ λ and a 

minimum interspike interval was set at 5ms, to account for neuron’s refractory 

periods (Blanche et al., 2005; Chen et al., 2013; Flusberg et al., 2008; 

Kodandaramaiah et al., 2012; Prevedel et al., 2014; Shobe et al., 2015; Stevens & 

Wang, 1995; Stevenson & Kording, 2011a; Swindale & Spacek, 2014). Fig 1.2E 
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shows example spike times from three neurons with firing rates chosen from the 

default distribution. 

 

Electrical noise on individual recording sites 

Electrical noise is contributed by the recording electrode (site), the neural 

amplifier, and the wiring connecting the two (Gesteland, Howland, Lettvin, & 

Pitts, 1959; Hassibi, Navid, & Dutton, 2004; Lewicki, 1998). We model this noise 

for each electrode as independent white noise, with a root mean squared (RMS) 

amplitude of 5 µV and an amplitude limit of 3.5 standard deviations. The noise 

level depends on the physical implementation of the recording sites (Ben-Shalom 

et al., 2012; Cohen & Kohn, 2011; Einevoll et al., 2011; Fee, Mitra, & Kleinfeld, 

1996a; Gerstein, 2000; Harris et al., 2000; Hassibi et al., 2004; Hazan et al., 2006; 

Muthmann et al., 2015; Pazienti & Grün, 2006; Rossant et al., 2015; Scholvin, 

Kinney, Bernstein, Moore-Kochlacs, Kopell, Fonstad, & Boyden, 2016a; Ventura, 

2008; 2009a; 2009b; Wood et al., 2004) and the neural amplifier designs (Harrison 

& Charles, 2003; Scholvin, Kinney, Bernstein, Moore-Kochlacs, Kopell, Fonstad, 

& Boyden, 2016a), and our choice of 5 µV RMS is based on measurements 

reported in (Bell & Sejnowski, 1995; Harrison & Charles, 2003; Scholvin, Kinney, 



 63 

Bernstein, Moore-Kochlacs, Kopell, Fonstad, & Boyden, 2016b; 2016a). 

Additionally, we evaluated the performance across a broader range of 

parameters (0.1, 1, 10, and 25 µV RMS), to understand the sensitivity of 

performance to noise.  

 

Additional Gaussian noise shared between recording sites 

As an additional test of robustness, and to account for unknown noise sources, 

we included noise shared across recording sites. To do so, we populated the 

simulation volume with noise sources on a 3D grid (40 µm pitch). The noise 

values were drawn from a Gaussian distribution with an amplitude limit of 3.5 

standard deviations. The amplitude of each noise source contributes to each 

recording site with a magnitude determined by the distance between the noise 

source and the site, using the same fall off curve used for neural signals. On each 

recording site, the sum of the noise from these simulated unknown noise sources 

is arbitrarily normalized to a default root median square value of 15 µV RMS, 

and varied between 15 and 75 µV RMS. 
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Arrangement of recording sites and simulation of recorded data 

Electrical noise is contributed by the recording electrode (site), the neural 

amplifier, and the wiring connecting the two (Gesteland et al., 1959; Hassibi et 

al., 2004; Jäckel et al., 2012). We model this noise for each electrode as 

independent white noise, with a root mean squared (RMS) amplitude of 5 µV 

and an amplitude limit of 3.5 standard deviations. The noise level depends on 

the physical implementation of the recording sites (Brown et al., 2001; Bruno et 

al., 2015; Dombeck et al., 2010; Hassibi et al., 2004; D. N. Hill et al., 2011; E. S. Hill 

et al., 2010; 2012; Prevedel et al., 2014; Scholvin, Kinney, Bernstein, Moore-

Kochlacs, Kopell, Fonstad, & Boyden, 2016a) and the neural amplifier designs 

(Harrison & Charles, 2003; Onton et al., 2006), and our choice of 5 µV RMS is 

based on measurements reported in (Harrison & Charles, 2003; Madany 

Mamlouk et al., 2005; Scholvin, Kinney, Bernstein, Moore-Kochlacs, Kopell, 

Fonstad, & Boyden, 2016a; 2016b). Additionally, we evaluated the performance 

across a broader range of parameters (0.1, 1, 10, and 25 µV RMS), to understand 

the sensitivity of performance to noise. 

 

Default parameters for simulation 
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All simulated recordings were 5 seconds in duration. Sampling rate for the 

simulated recordings was 30 kHz, comparable to sampling rate in typical neural 

amplifiers [http://intantech.com]. For each parameter set, five or ten simulations 

were run, each initialized with a different random seed for random number 

generation, resulting in five simulations with identical parameters but different 

resulting traces. In the default simulation (i.e., as used throughout the paper 

unless otherwise specified), a probe with recording sites arranged as 81 rows and 

5 columns and 5 µm pitch sampled the activity of a neuron population (density 

of 60·103 neurons per mm3) with mean firing rate of 15 Hz and variance of 8.3. 

Each recording site also sampled non-neural noise including a 5µV RMS 

component that was independent across sites and another 15µV RMS component 

that was shared across multiple sites. Fig 1.2F shows example traces using 

default parameters.   

 

Subsampling sites from simulated recording data 

We simulated probes with numbers of rows ranging from 41 to 321 and numbers 

of columns ranging from 3 to 17, always with odd numbers of rows and 

columns. For analyses of the impact of site density on number of neurons 
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extracted, we subsampled a simulation’s sites to track the impact of changes in 

site density in one simulation. This also allowed us to reduce the number of 

simulation runs, from a practical standpoint. Subsampling occurred with one of 

three possible rules. For a specified subset of rows and columns, a recording site 

was included in the subsampling if:  (1) site row and column are both members 

of specified rows and specified columns, respectively (square grid), (2) either site 

row exclusive-or column is a member of specified rows or specified columns, 

respectively (diamond grid), or (3) site row or column is a member of specified 

rows or specified columns, respectively (i.e. like window panes) – the exact 

method of subsampling did not matter. 

 

Implementation details for simulation 

All of the simulation code as well as the Matlab files containing the simulations 

analyzed in Figs 4-8 will be placed online.  Data simulation routines were written 

in C++ , using the Eigen linear algebra library (http://eigen.tuxfamily.org/), and 

will also be made available online, along with a MATLAB implementation. 

Simulations were run on either a Mid-2009 MacBook Pro with 8GB RAM, an Intel 

Xeon E5-1650 V3 3.5GHz Six Core 15MB 140W workstation with 128 GB RAM 
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running Ubuntu 14.04 LTS (purchased from Puget Systems, Auburn, WA), or the 

OpenMind computing cluster (details here: 

http://mcgovern.mit.edu/technology/computing-cluster/openmind-cluster-

specifications). The simulation run time scales with O(firing rate*length of 

simulation*number of neurons*number of recording sites). A run of 81 rows by 5 

columns for 5 seconds with ~30,000 neurons (using default simulated volume of 

~0.5 mm3) took 86 minutes on the Puget machine and 250 minutes on the 

MacBook Pro. 

 

Spike Sorting Algorithm 

 

The steps we used in our spike sorting algorithm are shown in Fig 1.4. 

Background and a complete description of the algorithm can be found in the 

Primer on spike sorting and ICA in the Results section. Briefly: simulated traces 

are run through the Independent Component Analysis (ICA) algorithm, 

resulting in estimated underlying signals, called components. These components 

are then classified to determine if they contain a single spiking unit, which can be 

well separated from noise and any other spiking units.  
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Classification 

How we find all potential spikes in a component 

For each component, we found its set of deflections by applying a threshold at 

4.5 standard deviations of the background noise and recorded the amplitude of 

the deflection as the highest value between threshold crossings. (The estimated 

standard deviation of the background noise is defined in (Bell & Sejnowski, 1995; 

Brown et al., 2001; Comon, 1994; Donoho & Johnstone, 1994) as the median of the 

absolute value of the data, divided by 0.6745, and is less sensitive to large 

deflections than standard deviation.) This threshold value is within the range of 

threshold values we found in the literature (about 2-6, from (Marre et al., 2012; 

Quiroga et al., 2004; Rossant et al., 2016)), though our classifier is designed to be 

independent of the applied threshold. The threshold is applied to both the 

positive and negative direction, because sign is not preserved through the linear 

transformation that ICA performs. To reject incomplete spikes, data within 0.4 

ms of the beginning or end of the recording are ignored. Components with no 

deflections above the threshold are not evaluated further. All other components 
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are considered to potentially have spiking activity and are evaluated further. For 

these components, the direction of the maximum deflection is arbitrarily chosen 

to be the positive direction, and the amplitudes of these deflections are analyzed 

further.  

 

For components with potential spikes, how we determine if (a portion of) those spikes 

could be a single unit 

Next, the set of deflection amplitudes in each component are normalized, such 

that the maximum amplitude is 1, and these amplitudes are sorted by value. 

Then, the difference between sequential amplitude values is calculated. For the 

lowest amplitude, the difference between it and the noise threshold is calculated. 

The maximum of these differences is the amplitude separation (Fig 1.4C, green). 

The amplitude variation (Fig 1.4C, magenta) is calculated as one minus the larger 

of the two (normalized) amplitudes that define the amplitude separation. To 

employ these parameters, a component (and its spikes derived in this process) is 

classified as a well-defined single unit, if the component’s amplitude separation, 

amplitude variation, and firing rate satisfy the following constraints. Specifically, 

amplitude separation must be larger than a minimum separation, amplitude variation 
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must be smaller than a maximum variation, and firing rate must be larger than a 

minimum firing rate. Minimum separation and maximum variation are swept in the 

Results to find parameters that result in spike-for-spike accuracy. These 

parameters are found using simulations with the default simulation parameters 

and then they are validated by testing if they still result in spike-for-spike 

accuracy when the simulation parameters are swept. The classifier also includes 

a minimum spike count set at 5 spikes, to exclude any components that have a few 

large deflections resulting from noise, not a single unit.  

 

Error Rate Quantification 

To quantify the error rate of the classifier in recognizing single neuron activity, 

we evaluate the classification accuracy of each component in each simulation, 

and calculate two statistical measures - specificity and sensitivity. There are four 

cases covering correct and incorrect classification: true/false positive (TP/FP) 

when the component was correctly/incorrectly classified as the activity of a 

single neuron, and true/false negative (TN/FN) when the component was 

correctly/incorrectly classified as not the activity of a single neuron. For an 

extracted singled unit to be confirmed as having single neuron activity, there 
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must be at exactly one underlying source neuron in the simulation whose spike 

times exactly match each and every spike of the extracted single unit. If even one 

spike in either the extracted single unit or source neuron is off, either missing or 

extra or misaligned in time, then the extracted single unit was not the activity 

from a single neuron. Specificity as commonly defined is the rate at which true 

negatives (component is not a single neuron) are correctly classified, 

TN/(TN+FP). If specificity = 1, there are no false positives, and all extracted 

neurons are single neurons and spike-for-spike accurate. Sensitivity is the rate at 

which true positives (component is a single neuron) are correctly identified, 

TP/(TP+FN). If sensitivity = 1, there are no false negatives, and so each ICA 

component containing a well-defined single unit is identified as such. 

 

Implementation details for spike sorting 

Spike sorting routines were written in MATLAB (Mathworks, Natick, MA). We 

used the Infomax version of ICA (Bell & Sejnowski, 1995; Perge et al., 2013), as 

implemented for EEGLAB in MATLAB (runica) (Barrese et al., 2013; Makeig, 

Jung, Bell, Ghahremani, & Sejnowski, 1997). The Infomax ICA algorithm 

iteratively estimates the matrix that transforms the recorded traces into the 
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components. We ran this estimation for up to 75 iterations, or until the difference 

in the estimated weights matrix between iterations was less than 0.000001. The 

MATLAB implementation is integrated into the spike sorting routines and will 

be included in the code repository; the original can be found here: 

http://sccn.ucsd.edu/eeglab/allfunctions/runica.m. We ran spike sorting on the 

same set of machines as the simulations: an Intel Xeon E5-1650 V3 3.5GHz Six 

Core 15MB 140W workstation with 128 GB RAM running Ubuntu 14.04 LTS 

(purchased from Puget Systems, Auburn, WA and the OpenMind computing 

cluster (details here: http://mcgovern.mit.edu/technology/computing-

cluster/openmind-cluster-specifications). The Matlab files containing the 5457 

recording site simulation are ~7Gb. 

 

Run time and scalability 

ICA run time scales with the square of the number of recording, and is linearly 

with the recording time window, i.e. O(length of simulation*number of sites^2). 

The classifier run time scales with the number of recording sites, and the de-

duplication step scales with the square of the number of spiking components. As 

both the classifier and the de-duplication step scale with a function that grows 
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less than or equal to ICA, the algorithm overall scales as ICA does: O(length of 

simulation*number of sites^2). Spike sorting a simulated data set of 405 

recording sites with a 5 second time window took 6 minutes on the Puget 

machine. The largest analyzed data set, with 5457 simulated recording sites for 5 

seconds, took 33.5 hours to run on the Puget machine. (Run time in minutes as a 

function of number of recording sites in Fig 1.10.) Simulations with over 7,000 

recording sites did not complete finish spike sorting after four days and so were 

not pursued further. In the Addendum, we propose to address scalability issues 

by splitting the recording into multiple overlapping spatiotempral segments, and 

stitching them back together. 
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Supporting figures 

 

Figure 1.9 - De-duplication 

The number of duplicative units found by the de-duplication step, as a function 
of site density on a fixed area. Different lines represent different simulations. 
Same simulations as Figs 5E and 7A. 
 

 

Figure 1.10 - Run time 

Run time of spike sorting on the Puget machine (see Methods) as a function of 
the number of recording sites. Simulations from Fig 1.6E were used; each 
simulation is plotted as a point. The trend between the simulation means is 
plotted as a dashed line.  
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Addendum 

 

Yield for site-specific noise and site density 

An open question in the work above is how small can you make recording sites 

to increase packing density and increase yield (Fig 1.6E) before that increase in 

yield is offset by a decrease in yield caused increased site noise (Fig 1.6C) due to 

small recording sites. Decreasing site size is associated with increasing pad 

impedance which increases Johnson noise. However, a good model of recording 

site size to achieveable impedence does not exist, and so we felt it was beyond 

the scope to put into the model above. For example, electroplating with the 

PEDOT polymer can increase a site’s surface area greatly and thus decrease its 

impedance (Ludwig et al., 2011), and we have had good success with this in our 

own group. However, the question is of internal interest as we consider how to 

optimize probe design. Thus, with our simulations we evaluated how yield 

covaried with site-specific noise and increasing density (Fig 1.11). We note that 

the relationship between yield and site density is approximately linear for these 

site densities, and increased site-specific noise is associated with a decrease in 

slope. Not in every case though: the order of magnitude increase in noise from 
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0.1 to 1 µV RMS had little impact on the slope or the yield, but the order of 

magnitude increase in noise from 1 to 10 µV RMS consistently more than halved 

the yield. In designing new probes, it will be important to understand where a 

particular site size and electroplating technique fall on these curves to determine 

if effort to reduce site impedance is worthwhile.  
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Figure 1.11 – Yield by site density and site-specific noise 

We varied site density (x-axis) and site-specific noise (colors) and measured the 
number of single units extracted by our spike sorting algorithm. Five simulations 
with different random seeds were run per set of parameters; a solid line connects 
the points from a single simulation. 
 

Extensions 
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Tracking drift  

One challenge to spike sorting is drift, when the distribution of a neuron’s 

waveforms across recording sites changes over time. An extension to address this 

would be to use ICA to calculate the unmixing matrix on overlapping time 

segments and co-register those time segments based on spike timing. This would 

allow continuous tracking of electrode-neuron pairs that experience drift until a 

neuron drifts out of a recording.  

 

Decreasing memory usage and computational time 

This extension to track drift additionally points towards a direction to speed up 

the analysis through parallelization and/or decrease the memory usage and 

points towards a solution for real time spike sorting. ICA uses large amounts of 

computer memory when it analyzes the full dataset at once. Longer recording 

and recordings with more sites take longer to spike sort.  Using the drift tracking 

extension, time segments are sorted sequentially, decreasing the memory load. 

With a higher memory machine, the ICA portion of spike sorting for each time 

segment could be parallelized and then stitched back together sequentially. The 

segmenting and stitching back together strategy could also be applied to 
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overlapping sets of electrodes. We have begun to explore this possibility in new 

(and as-yet untested) code; in preliminary explorations, we have been successful 

at stitching together spatially overlapping segments, but temporally overlapping 

segments may require extensive tuning.  

 

Real time spike sorting 

For real time analysis, the unmixing matrix and single unit thresholds could be 

calculated based on the beginning of the recording and then used to sort the rest 

of the recording (Brown et al., 2001; Jäckel et al., 2012; Madany Mamlouk et al., 

2005; Martinez et al., 2009; Quiroga et al., 2004; Rall, 1962; Takahashi & Sakurai, 

2005). To account for drift and neurons not active at the beginning of a recording, 

the unmixing matrix and single unit thresholds could be updated as more data 

comes in. Such an online spike sorting method could result in real time spike 

sorting for large number of channels, enabling closed loop experiments on 

spiking network activity. A more sophisticated method would be to implement 

an online version of ICA, updating its weights as new data is collected, and 

designing a classifier for online analysis of single units and their drift. 
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Future directions for spike sorting 

We do not believe this algorithm to be the final spike sorting algorithm, but 

rather an example and an algorithm for spike-for-spike accurate rate spike 

sorting. As we discuss above, the classifier can be further optimized for 

extracellular recordings. ICA may also be replaced by another blind source 

separation algorithm, such as non-negative matrix factorization, or a more 

sophisticated machine learning algorithm that is designed using greater 

knowledge of characteristics of neural recordings that ICA does not, e.g. the 

sparsity and peakiness of spikes, the similarity of spike waveforms from a single 

neuron, or the expectation that sources will come from one location. ICA does 

not assume these characteristics, allowing us to use them as a part of validating 

the results of extracellular recordings. But as we become confident in zero-error 

rate spike sorting, these characteristics could inform the source separation 

algorithm. Additionally, as extracellular datasets begin to exist where we are 

confident in the spike sorting, we will better understand signatures of single 

units, e.g. distributions of particular characteristics such as waveforms, and other 

sorts of algorithms may prove optimal; e.g. mining these datasets we may 

develop good distributions of spike waveforms that allow more accurate 



 81 

template matching approaches. Such knowledge may eliminate the need for 

probes of such density for automated spike sorting.  
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Chapter 2 - Decomposition of the spike sorting problem 

 

Introduction 

In considering spike sorting, we found it useful to start by creating a descriptive 

mathematical model of the problem. This model allowed us to identify the 

assumptions made in different spike sorting algorithms and what particular 

challenges to those algorithms would be. Here we present this model and our 

evaluation of different spike sorting methods relative to it. 

 

Descriptive model of spike sorting 

 

We start by defining a discrete spike time for each spike from each neuron as the 

time of spike initiation in at the axon hillock.1 We then represent the sequence of 

spike times for spikes belonging to neuron j by a vector of zeros and ones, , 

where  at each spike time and  otherwise. We treat time as 

                                                

1 This choice of definition is the most physiologically accurate, however, without 
loss of generality, a more practical definition could be used, e.g. based on the 
time of minimum extracellular amplitude on a given detector or a definition 
based on an intracellular trace, like the time at a spike’s maximum first 
derivative. 

Sj t[ ]

Sj t[ ]= 1 Sj t[ ]= 0



 83 

discretized for all variables in the model, as the data will be recorded digitally. 

For , time t spans the length of the recording.  The goal of spike sorting is to 

recover . 

 

Next, we consider spike waveforms as recorded by a multi-electrode 

extracellular array.  Spike waveforms from a given neuron have been shown to 

vary in shape over time, e.g. as a function of duration since the last spike (Fee, 

Mitra, & Kleinfeld, 1996b) and of behavioral state (Henze et al., 2000).2 To 

represent this variability, we will treat each spike waveform as an instantiation 

from a distribution of possible spike waveforms.  Additionally, waveforms from 

a given neuron can be picked up on multiple extracellular detectors, and the 

shape and magnitude of the spike waveform varies between detectors, e.g. as has 

been shown for pyramidal cells for electrodes distributed along their dendritic 

extent (Harris et al., 2000; Henze et al., 2000), and for retinal ganglion cells 

recorded via a planar multielectrode array (Jäckel et al., 2012).3 Thus we define 

                                                

2 Examples of changes in waveforms in our own data are shown in Fig 3.2 and 
3.3 
3 Examples of this in our own data shown in Fig 3.4 

Sj t[ ]

Sj t[ ]
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distribution of spike waveforms from neuron j on detector i as a random vector, 

 where t is the (discretized) time during the spike waveform.  

 

Determining  from a recording is confounded by additive noise in the 

system that is composed of electronic and environmental noise. Signals from 

distant neurons may also be considered noise. This noise has been shown to be 

not necessarily Gaussian and the spectrum of noise has been shown to vary over 

the course of the recording (Fee, Mitra, & Kleinfeld, 1996a). We represent the 

additive noise over the length of the recording on channel  as , without 

assumptions about its distribution.  

 

To describe what each extracellular electrode records in terms of , , 

and , we take into account the fact that with the exception of saturation of 

the voltage signal on the electrodes, neural signals and noise recorded by the 

extracellular electrode largely add linearly. The neural signal from a single 

neuron j on detector i over the course of the recording can be described as the 

convolution of  and . When a series of 1s and 0s is convolved with a 

Wij t[ ]

Sj t[ ]

€ 

i Ni t[ ]

Sj t[ ] Wij t[ ]

Ni t[ ]

Wij t[ ] Sj t[ ]
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vector, that vector appears at each 1. Here the convolution inserts a realization 

from  at each occurrence of a 1 in . 

 

Each detector records the noise at that location plus the sum across all neurons of 

a spike waveform occurring at each spike time. We define the trace recorded 

from extracellular electrode i across the discretized length of the recording, as 

. We can represent  in terms of , , and  as follows, 

where * represents the convolution.  is the noise on that channel plus the 

sum across all neurons of each realization of the spike waveform convolved with 

the spike times: 

  

   [1] 

  

The goal of spike sorting, then, is to invert this equation, retrieving the spike 

times, , for the underlying single neural units from the traces recorded from 

each extracellular electrode, .  

 

Wij t[ ] Sj t[ ]

Di t[ ] Di t[ ] Sj t[ ] Wij t[ ] Ni t[ ]

Di t[ ]

Di t[ ]= Ni t[ ]+ Wij t[ ]∗Sj t[ ]
j
∑

€ 

S j t[ ]

Di t[ ]
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Evaluation of spike sorting methods based on descriptive model 

 

ICA-based spike sorting 

Different spike sorting methods can be described and evaluated in terms of this 

model. Our ICA-based spike sorting method, as described in Chapter 1, 

implicitly makes the simplifying assumption that the change in spike waveform 

is linear across detectors.  This assumption denotes that for any spike time from 

neuron i, the waveform for that spike appears with identical waveform but 

scaled differently on each detector. We can define the random vector, , as 

having identical shape on each detector (though the shape may still vary spike to 

spike), and  as the weight constant representing scale for each neural 

waveform on each detector j, and replace  with , as below. 

 

     [2] 

 

We now define the spike activity from one neuron, independent of detector (and 

thus without scale) as , where  and simplify [2] as: 

Wi t[ ]

cij

Wij t[ ] cijWi t[ ]

Di t[ ]= Ni t[ ]+ cijWj t[ ]∗Sj t[ ]
j
∑

M j t[ ] M j t[ ]=Wj t[ ]*Sj t[ ]
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   [3] 

 

Which can be rewritten in matrix form, with  and  becoming D and N, 

respectively, with rows representing detectors and the columns represent time. 

 becomes M; the rows represent neurons and the columns represent time. 

 becomes C which transforms M from neuron space to detector space. Thus: 

 

 [4] 

 

ICA solves for C, in the presence of noise, and results in an estimate of M. For 

ICA-based spike sorting to work as described in Chapter 1, our estimate of M 

must have low enough noise that the neural activity is separable. We are limited 

at maximum to extracting the number of neurons as recording sites. (Though in 

practice, noise and artifacts set the maximum number of neurons extracted 

lower.) We have shown in Chapter 1, that ICA was still capable of spike sorting 

despite violations of the assumption of spatial linearity, and that to extract many 

Di t[ ]= Ni t[ ]+ cijM j t[ ]
j
∑

Di t[ ] Ni t[ ]

M j t[ ]

cij

D = N +CM
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neurons with ICA-based spike sorting we require high-channel count probes 

with close packed recording sites. 

 

Cluster cutting and template matching 

From the earliest extracellular recordings, it was noted that in some recordings 

neurons have unique spike waveforms that can be used for spike sorting 

(Humphrey & Schmidt, 1990). Thus many methods of spike sorting exist to 

estimate the distribution of Wij or features of Wij (e.g. amplitude or width). Wij is 

difficult to estimate. Spike waveform has been observed to change over time 

(Bowden & Rideal, 1928; Okun et al., 2016) due to changes in neural firing 

profiles, like bursting or adaptation, or electrode drift (Lewicki, 1998; Robinson, 

1968), or tissue remodeling (Bell & Sejnowski, 1995; Brown et al., 2001; Comon, 

1994; Dickey, Suminski, Amit, & Hatsopoulos, 2009; Jackson & Fetz, 2007; 

Martinez et al., 2009; Quiroga et al., 2004; Sohal et al., 2014). Furthermore, the 

waveform of individual spikes can be obscured due to overlapping spikes, when 

multiple spikes occurring within a few milliseconds on the same recording site 

(Bar-Gad et al., 2001; Blanche et al., 2005; Gold et al., 2006; Henze et al., 2000; 

Humphrey & Schmidt, 1990; Moffitt & McIntyre, 2005). 
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Broadly methods of estimating Wij or its features fall into two categories: cluster 

cutting and template matching. In cluster cutting, first, the set of all Sj, across all 

neurons j, is estimated. In other words, all potential spike times for all recorded 

neurons are estimated. This is done by thresholding the extracellular data. Next 

waveforms are extracted from the extracellular data at these times, and features 

are extracted from them. The values of these features are clustered; each cluster is 

an estimate for the distributions of features of Wij. The spike times associated 

with a particular cluster are an estimate of a particular neuron j’s Sj and are 

returned as an extracted unit. Several challenges exist for cluster cutting: (1) The 

set of all Sj is estimated by a threshold, which will almost always exclude some 

real spikes and include some noise. (2) There is difficulty in picking the number 

of clusters (Wood et al., 2004). (3) The real distributions of a neuron’s spike 

waveforms in feature space will contain outliers if there are any overlapping 

spikes, burst spikes that change amplitude and shape, and other waveform 

changes. 

 



 90 

Template matching addresses some of these challenges. Similar to cluster cutting, 

template matching first estimates the set of all Sj, and extracts the extracellular 

waveforms at those times. However, in clustering the waveforms, template 

matching estimates for some set of neurons of the distribution of their Wij’s. 

These Wij’s are then swept through the data to find the spike times that best 

match that Wij distribution. These templates have the potential to find spikes that 

may have been discarded in cluster cutting, e.g. overlapping spikes, or spikes 

that may have been lost in thresholding. A challenge for estimating the 

distribution of Wij is major changes in the spike waveform that are difficult to 

identify as coming from the same spike e.g. spike amplitude attenuation and 

shape change during bursting. The estimated Wij are created by an initial 

clustering of waveforms, so waveforms that are outside of that distribution, that 

vary by more than multiplication or addition, are unlikely to be matched by the 

associated Wij template. 
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Chapter 3 - Challenges in data analysis of extracellular recording 

 

Introduction 

Many challenges exist in the data analysis of extracellular recordings, 

particularly in spike sorting and biases in downstream analyses resulting from 

errors in spike sorting. Here we summarize these challenges, remarking on their 

impact on downstream analyses. We also look for examples of these challenges 

in a dataset from a series of in vivo experiments we performed. These 

experiments combined extracellular recordings from a multi-electrode array 

(MEA) with recordings using a patch pipette that had direct electrical access to a 

nearby neuron. This gave us precise spike times for one neuron that was 

recorded by the MEA. 

 

Challenges 

 

Filtering 

The first step in spike sorting is high-pass or bandpass filtering the data to 

remove low frequency signals that may confound spike detection. While this step 



 92 

often goes unmentioned in reviews of spike sorting, online causal filtering may 

lead to noise spuriously appearing to be spikes (Quian Quiroga, 2009). 

Commonly used Butterworth bandpass filters distort spike waveforms, a 

confound when extracted spike waveforms are used to infer cell properties or 

model extracellular potentials (Quian Quiroga, 2009; Wiltschko, Gage, & Berke, 

2008). 

 

Spike detection  

In many spike sorting algorithms the next step after filtering the data is spike 

detection, most commonly performed by thresholding at some multiple of the 

standard deviation or the noise standard deviation. In our literature search we 

found a range of 2-6x the (noise) standard deviation (Marre et al., 2012; Quiroga 

et al., 2004; Rossant et al., 2016). Thresholding can result in the spike detection of 

a subset of a neuron’s spikes, if a neuron’s spike amplitude fall both above and 

below the threshold. In our co-localized recordings, we find that threshold effects 

impact even neurons with mean amplitudes above 1 mV. In Fig 3.1, each plot 

contains the magnitude of extracellular spikes from one neuron against the rise 

time (a proxy for burst spikes). Dashed lines are plotted at 1-8x the noise 
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standard deviation. Rise time from the patch spikes is plotted on the y-axis, 

higher rise times are a proxy for burst spikes. For six of the recordings threshold 

of 2x noise standard deviation will not detect some of the patched neurons’ 

spikes, including a neuron with mean amplitude above 1mV and particularly 

common in recordings with many spikes with higher rise times.  
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Figure 3.1 – Extracellular spike magnitude vs. patch spike rise time 

For eleven recordings, the recording site with the highest spike amplitude for the 
patch extracted spike times was determined. For each spike time, the 
extracellular magnitude was plotted against the patch rise time. Dashed lines 
mark 1-8 multiples of noise standard deviation. 
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Spikes lost and gained in spike sorting 

Spike assignment errors can happen in two ways. An extracted neuron may be 

assigned a spike that it did not produce (false positive) or may lose a spike it did 

produce (false negative). Typical false positive and false negative rates are not 

known for the field of spike sorting as there are many variations in methods and 

system, and little ground truth data exists. As discussed in Chapter 1, all 

classifiers must make a tradeoff between false positives and false negatives, and 

this is the case for both manual and semi-automated spike sorting methods 

(Harris et al., 2000). (Harris et al., 2000) reported that the nine people they had 

spike sorting tended towards either a ‘conservative’ bias (more false negatives) 

or a ‘liberal’ bias (more false positives).4 Both false positive and false negative 

spikes introduce bias into downstream analyses, e.g. rate code estimates 

(Ventura, 2009b), correlation metrics (Cohen & Kohn, 2011; Gerstein, 2000; 

Ventura & Gerkin, 2012), and synchrony analyses (Pazienti & Grün, 2006). 

                                                

4 In observing and discussing manual cluster cutting with a variety of people in 
the Boston-based Cognitive Rhythms Collaborative, I found that most subscribed 
to the ‘conservative’ bias. 
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Overlapping spikes and burst spikes are systematically false negatives in spike 

sorting because they are dissimilar to other extracellular waveforms produced by 

a neuron. In the case of an overlapping spike, that dissimilarity is caused by 

another neurons spike appearing on the same detector (or set of detectors) in the 

same time window. Spike waveforms with putative overlapping spikes are 

shown in Fig 3.1 (those with multiple deflections). Overlapping spikes are very 

difficult to tease apart using cluster cutting methods (see Chapter 2) because 

their features (e.g. height, width) are outside a particular neuron’s norm. 

Template matching methods (see Chapter 2) have the potential to more 

accurately resolve overlapping spikes (Franke, Natora, Boucsein, Munk, & 

Obermayer, 2010; Zhang et al., 2004), if the templates and matching procedure 

are a good representation of a neuron’s distribution of waveforms.  



 97 

 
Figure 3.2 – Extracellular spike waveforms for one neuron, clustered by 
similarity for visualization purposes  

Using spike times derived from a patched neuron, extracellular spike waveforms 
were extracted from the extracellular trace from one recording site (the site on 
which the neuron had the highest magnitude spikes).  For visualization, 8,000+ 
spikes were divided into 25 clusters, using k-means on their complete 
waveforms. Waveforms in individual clusters are overlaid. All are plotted on the 
same scale. Waveforms with multiple deflections likely represent overlapping 
spikes. Waveforms with low amplitude are burst spikes. 
 

For burst spikes, the source of the changes in spike waveform arise from spike 

adaptation when a neuron fires spikes in rapid succession. This results in both 

magnitude and shape changes for the spike waveform. Example low magnitude 

extracellular burst spike waveforms are shown in Figure 3.2. Bursts were 

common in our co-localized recordings; Figure 3.3 shows that patch burst 
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patterns were found in 10 out of 12 of our co-localized recordings. The spike 

waveform attenuates in both intracellular (Fig 3.4, blue) and extracellular traces 

(Fig 3.4, black). In Figure 3.4, notice the large variability in the extracellular spike 

magnitudes (pink dots) and times when the extracellular spike magnitudes are 

all but indistinguishable from noise (pink ?s). A summary of this phenomena can 

be seen in Figure 3.1, where spikes with higher patch rise times, a proxy for burst 

spikes, are commonly low magnitude.  

 

Burst spikes are often not a linear scaling of the non-burst spike waveform 

(Harris et al., 2000). We see this in our data, when we correlate each spike to the 

mean waveform (Fig 3.5). Spikes with higher rise times are less correlated to the 

mean waveform (perfect correlation = 1). The dissimilarity between burst spikes 

and other spikes fired by the same neuron makes it particularly difficult to 

cluster them correctly or build them into a neuron’s template, resulting in many 

burst spikes being false positives. 
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Figure 3.3 – Bursts in patch traces 

For our twelve recordings with the highest amplitude extracellular spikes, we 
found 10/12 showed bursting activity, shown here in patch traces. 
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Figure 3.4 – Bursts in patch and extracellular recording 

(Above) Three examples of spiking activity from the same patched neuron are 
shown: the first not bursting and the second two bursting. (Below) Comparison 
of spiking activity on the extracellular and patch trace. When possible, pink 
circles were placed at the trough of the extracellular trace when a spike occurred. 
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Figure 3.5 – Correlation to mean extracellular waveform vs. patch spike rise time 

For eleven recordings, the recording site with the highest spike amplitude for the 
patch extracted spike times was determined. The mean spike waveform for that 
site was calculated and the correlation of each spike to that extracellular rise time 
is plotted against the patch rise time.  
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False positive spikes can also occur when a neuron has a broad distribution of 

waveforms, e.g. in Fig 3.5, 6 of the 11 recordings show spikes with shorter rise 

times that have correlations of less than zero to the mean waveform. The spikes 

with lower correlations will be a challenge to assign to these neurons with 

clustering or template matching.  

 

The systematic biases against overlapping spikes and burst spikes suggest that 

the more neurons actively firing there are, the more false positives will result in 

spike sorting.5 This is of particular concern for analyses of neural dynamics, like 

correlation metrics (Cohen & Kohn, 2011; Gerstein, 2000; Ventura & Gerkin, 

2012) and synchrony analyses (Pazienti & Grün, 2006), where the relationships 

between the firing of different neurons is evaluated. Overlapping spikes in 

particular occur between neurons that fire similarly and are spatially close. Loss 

of overlapping spikes will lead to underestimates of correlation and synchrony. 

                                                

5 In Chapter 1, we saw the more neural activity in a simulation, the lower the 
yield of extracted units was. 
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Any characterization of a neuron’s properties with regards to its propensity to 

burst will be biased as well. 

 

Biases in which neurons are extracted by spike sorting 

Spike sorting is biased toward extracting neurons that have spikes with high 

SNR on the recording sites and thus can be detected with thresholding. A 

neuron’s SNR on a recording site is dependent both on proximity as well as 

morphology. Some morphologies may result in large dipoles being created and 

high SNR (e.g. pyramidal cells). Other morphologies may result in multipoles 

that cancel each other out. Spike sorting is also biased again extracting neurons 

with low firing rates (Hengen et al., 2016; Okun et al., 2016; Olshausen & Field, 

2005). 

 
Drift 

The magnitude with which the signal from a particular neuron appears across 

recording sites may change over time for reasons such as the relative motion 

between the electrode array and recorded neurons (electrode drift) over the 

timescale of minutes to hours (Perge et al., 2013), the degradation of the electrode 
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array (Barrese et al., 2013), changes in neuronal morphology, or alterations in the 

cellular composition of local brain tissue over longer time scales of days to 

months (Freire et al., 2011). Manual spike sorting methods often enable the user 

to spot drift and correct for it (Rossant et al., 2016).  

 
Extent of a neuron’s extracellular waveform  

Spikes from a single neuron have been detected over 50-150 µm of an MEA 

(Blanche et al., 2005; Gold et al., 2006; Henze et al., 2000; Humphrey & Schmidt, 

1990; Moffitt & McIntyre, 2005) with some neurons tracked over intracortical 

distances of up to 300 µm (Humphrey et al., 1978; McKeown & Sejnowski, 1998; 

Mukamel et al., 2009; Reidl et al., 2007). The footprint of a particular neuron’s 

spikes over an MEA will depend on its proximity to the MEA and its 

morphology. In our recordings, we find distances of 100s of micrometers typical, 

the example in Fig 3.6 shows an extent of over 300 µm. Extents in other 

recordings have been up to to 600 µm. Spikes with such large spatial extent may 

confound the usage of spike triggered local field potentials (LFPs). The LFP is a 

measure of population activity found in extracellular recordings when low-

passed below 100 Hz. A spike triggered LFP takes the average LFP for all spike 
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times. (Ray, 2015) reviewed the challenges of spike triggered LFPs, the most 

significant being that spike waveforms bleed into LFP frequency spectrum and 

thus can contaminant the spike triggered LFP. Spike waveforms are broadband 

because of their short latency and large deviation from the mean. Broadband 

signals are difficult to completely filter out because their spectral extent often 

overlaps with the spectrum of the frequency of interest. A standard way of 

avoiding this contamination is to perform the spike triggered LFP on a different 

electrode or recording site than the spikes were extracted from, perhaps 400 µm 

away. We here experimentally confirm (Ray, 2015)’s modeling that found that 

spike waveforms may still be seen at this distance. 
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Figure 3.6 – Patch spike triggered mean waveform across an MEA 

To calculate the patch spike triggered mean waveform, the waveform on each 
site for each spike time was extracted and then an average waveform for each 
recording site was calculated. This MEA had 32 rows by 2 columns of recording 
sites at 11 µm pitch. A red star marks the site with the greatest amplitude mean 
waveform. 
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Methods 

 

Co-localized recordings 

Patch recordings in primary visual cortex of head-fixed, lightly-anesthetized (0.5-

1.2% isoflurane) or awake adult male mice (n=3) were performed simultaneously 

with co-localized, ultra-dense recordings with 64-256 channel multi-electrode 

arrays (MEA).  Patch recordings were either in the cell-attached or whole cell 

configuration. 

 

Surgery 

Male C57Bl/6 mice of 8-12 weeks of age were surgerized for head plate 

installation under isofluorane anesthesia (1.5-2.5%) with multiple analgesia, 

following guidelines laid out by the Committee on Animal Care at MIT.  Two 

stainless steel screws with attached stainless steel wires were implanted in the 

skull over the cerebellum and frontal cortex, to act as electrical reference and to 

provide extra stability for the head plate.  The head plate was secured with 
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Metabond dental cement, and the skull was sealed in with Kwikcast silicon 

elastomer.   

 

Recordings commenced after 1-5 weeks.  For the subset of awake recordings, 

mice were habituated to head-restraint over 3 days for 15, 30, and then 45 

minutes with periodic condensed milk reward.  On the day of or before 

recording, craniotomies were drilled under isoflurane anesthesia.  200-300um 

diameter circular craniotomies were drilled stereotaxically either with a hand 

drill or with the autodriller robotic system.  Coordinates for the MEA were [-2.8 

A/P, 3.0 M/L] for motor-controlled (Thorlabs) probe insertion perpendicular to 

the brain surface (23 degrees to vertical) of the primary visual cortex (V1) to a 

final depth of x, y, or 0.960mm, aiming to span layers 2-5 with recording sites.  

Craniotomies for the patch pipettes were located 0.5mm and 1.0mm to the right 

of the MEA craniotomy, for pipette insertion at 40 or 45 degrees.  Craniotomies 

were periodically doused with saline or lactated Ringer’s solution to prevent 

dehydration, and were sealed up with Kwikcast.   

 

Recording session 
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In preparation for a particular recording session, a mouse was initially 

anesthetized with isoflurane in an induction chamber and affixed by his head 

plate to a metal holder, with his body snuggly inside a 3D-printed tube.  A 

fluidic heating pad was placed in contact with the tube to maintain core body 

temperature.  A cone was placed over the nose for continuous delivery of 

isoflurane anesthesia.  A thin layer of eye lube was placed over the eyes to 

maintain moisture.  For anesthetized recording sessions, isoflurane was tuned to 

the lowest value between 0.5-1.2% that didn’t result in any motion of the animal.  

For an awake session, a mouse anesthetized as above was awakened by the 

cessation of isoflurane delivery.  Electrical ground was shared between the patch 

and MEA recording apparatuses through a silver chloride pellet placed above 

the skull in saline or lactated Ringer’s solution.  Electrical reference for the MEA 

recording was connected to either the cerebellum or cortex skull screw wire.  The 

MEA was then inserted to its target depth, and allowed to settle for at least 10 

minutes.   

 

Patching 
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Patch recordings were performed with the aid of the Autopatcher robotic system 

(Kodandaramaiah et al., 2012) with pipettes pulled to 4-8MOhm filled with 

internal solution containing 0.4% biocytin.  The autopatcher utilizes periodic 

square wave voltage pulses to monitor series resistance, while advancing a fixed 

distance with each pulse volley, and algorithmically decides when to attempt a 

seal onto a neuron.  These square wave pulses were increased in amplitude to +/- 

100mV, corresponding to a current of ~10-15nA to allow for their easy detection 

on the MEA, aiding in the co-localization process.  Upon insertion of the patch 

pipette into the patch amplifier, the pipette was lowered while monitored under 

a microscope to the center of the inserted MEA, just above the brain surface 

using a Siskiyou manipulator, and then touched down to the patch craniotomies 

to check alignment.  If the pipette tip didn’t line up with roughly the center of the 

craniotomy, the angle in the plane of the ground was changed and the process 

was repeated until successful.   

 

The neuron hunt portion of the patching session typically began from ~200um 

from the target depth and proceeded until the autopatcher detected a candidate 

neuron to seal on to.  If the pipette was estimated to be within ~50um of the 
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target portion of the MEA, a seal attempt was made.  Otherwise the autopatcher 

program was directed not to attempt a seal, and either re-commence the neuron 

hunt or withdraw the pipette for another attempt.  For many initial recordings, 

the distance estimation was made stereotaxically, aided by the amplitude of the 

voltage pulse signal from the pipette on the MEA.  Later recordings utilized a 1/r 

physical model of voltage spread from the pulse volleys to aid in the decision. 

 

When a candidate neuron was discovered by the autopatcher and deemed to be 

within ~50um of the MEA, attempts were made to seal onto the neuron using the 

autopatcher’s standard protocol.  If a seal was formed but a membrane break-in 

was not achieved through suction pulses, the neuron was recorded from in cell-

attached mode.  If a break-in was achieved, membrane resistance and 

capacitance were estimated in voltage clamp mode, and the patching system was 

switched to current clamp mode, where 1s long hyperpolarizing and 

depolarizing current steps were injected to measure cell electrical properties and 

spiking threshold.  A visual stimulus, below, was then played to elicit activity.  If 

a neuron did not spike within a few minutes of the onset of the visual stimulus 

presentation, 50-150nA of current was injected in steady state to increase 
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excitation.  The visual stimulus would then be played again.  In some cases, a 

non-spiking neuron that became active with current stimulation was then re-

recorded from without current stimulation, when its basal activity had increased.   

 

Visual stimulus 

A small computer screen was placed at a roughly 45 degree angle in the mouse’s 

right visual field.  8 minutes of a visual stimulus were played of either sinusoidal 

drifting gratings (1Hz) or a natural scene of reeds blowing in the wind (Chicago 

motion database) to elicit neural activity.  A photodiode was placed in the lower 

left of the screen and was digitized with the patch signal, for synchronization.  A 

typical recording session consisted of 1 or more 8 minute presentations in 

succession.  

 

MEA 

Ultra-dense probes were designed and constructed by Jorg Scholvin at the MIT 

MTL core facility.  Recording sites were 9-10um x 9-10um, at a pitch of 11-

11.5um.  Prior to experiments, recording sites were electroplated with PEDOT to 

a target impedance of 300-600kOhm, with 0.5-1nA of constant current for 10-12s.  
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Shorts and open circuits were assessed to determine a probe’s experimental 

suitability, and probes with at least ~90% good pads were selected for use.  In 

some cases, the back of the probe was painted with 2% DiI in ethanol for 

subsequent tissue processing.  Probes were rinsed with deionized water post-

experiment, and were cleaned with ethanol or 5% trypsin and isopropanol for re-

use.   

 

Data Acquisition 

For a subset of recordings, the patch and MEA signals were acquired with 

separate acquisition systems, Multiclamp 700B and the Intan RHD2000 eval 

board, respectively, at 25kHz.  To account for clock drift, a 25Hz sync pulse was 

recorded by both systems for post-hoc temporal alignment.  All but 1 of the 256-

channel recordings were acquired with the Willow system from LeafLabs at 

30kHz simultaneously with the patch signal which was amplified as before with 

an Axoclamp 2B amplifier and routed to the Willow system for synchronized 

digitization.   

 

Spike times 
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Spike times from co-localized recording were at the maximum of the derivative 

of each spike in the patch trace.  
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Chapter 4 – Evaluation of automated spike sorting algorithm on in vivo data 

 

Introduction 

 

In Chapter 1, we tested our spike sorting algorithm on simulated data designed 

to encompass many of the real variations and noisinesses of experimental data. 

Our evaluation of known challenges to spike sorting in Chapter 3 revealed larger 

variations in spike amplitude than we had modeled (Fig 3.1). Some of this 

variability was due to bursting, which we did not include in our simulated data. 

This is an example of the difficulty of modeling real data, as . A simulation 

allows you to explore parameters spaces beyond experimental constraints but is 

not a substitute for the experimental data.  

 

Here we test our spike sorting data on the experimental dataset discussed in 

Chapter 3. First we update our algorithm to account for bursting data. We find 

that our spike sorting algorithm does not extract as single units any of the co-

localized neurons in the twelve recordings we analyzed. Seven of the co-

localized neurons were found in poorly separated components, with combined 
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error rates between 2-68%. We also looked at the yield for these recordings and 

found 1-16 single units extracted and up to 96 poorly separated components with 

spiking activity. We conclude that ICA based spike sorting has potential to be a 

low error rate automated spike sorting method, however, more work must be 

done to increase yield and evaluate error rates. 

 

Methods 

 

Algorithm updates 

As reported in Chapter 3, most of our co-localized neurons contain bursts. The 

spike detection and classification process in our spike sorting algorithm (Chapter 

1) relies on some consistency in waveform amplitude. Components that contain 

bursting spikes are unlikely to be classified as a single unit because of the burst 

spike amplitude attenuation. To address this, we updated our spike detection 

and classification process to find burst spikes and exclude them from the 

separation analysis. We also decided to allow a few deflections in the separation 

region. 
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The updated spike detection and classification process was as follows: (1) Orient 

component such that the larger deflections are in the positive direction. (2) 

Threshold each component for deflections at two thresholds, 3.5x and 6x the 

standard deviation of the noise, obtaining the deflection times D3.5 and D6. (3) For 

each deflection in D6, remove any deflections in D3.5 that occur between 2-16 ms 

of the D6 deflection times and are less than 0.5 * the D6 deflection. For all 

deflections removed from D3.5, remove any deflections from D3.5 that occur 

between 2-16 ms of the removed spike times and are less than 0.5 * the removed 

spike (Fig 4.1). (4) Amplitude separation is found as before, with the new 

allowance for 5 deflections in the separation region. (5) Putative spikes are the 

spikes above the separation region. (6) For each putative spike, add as a putative 

spike any deflections that were removed in step 23 and occur between 2-16 ms of 

a putative spike time. Do this recursively. (6) Amplitude variation calculated as 

before. (7) If amplitude separation > 0.1 and amplitude variation <  0.5, classify as 

a single unit. (8) If not a single unit, find maximum local minima to use as best 

guess threshold. (9) If no local minima, use 4.5x noise standard deviations as best 

guess threshold.  
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Figure 4.1 – Removal of putative burst spikes from classifier analysis 

Histograms of deflections above 3.5x standard deviations of the noise for one 
component (blue) and after putative burst deflections are removed (red). Right, 
zoom on normalized deflection amplitude > 0.35.  
 

Results 

 

Co-localized neurons 

Using the updated algorithm, we spike sorted the twelve co-localized recordings 

in which the patched neurons have the largest signal on the MEA. One recording 

had maximum mean extracellular amplitude of >1mV, the other eleven had 

maximum mean extracellular amplitudes between 50-100 µV. Table 4.1 reports 

how well the co-localized neurons were extracted. Seven out of twelve co-



 119 

localized neurons matched spikes extracted from a component, but none of those 

components passed the classifier. We report the combined error rate using the 

best guess threshold, measured as the (false positive spikes + false negative 

spikes)/true positive spikes. K, which showed a combined error rate of 2%, was 

the >1mV amplitude co-localized neuron. 
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Table 4.1 – Extraction of co-localized neurons with spike sorting 

Recording 
Component  

Match? 
Classification of matched 

component 
Combined 
error rate 

A No 
  

B Yes Poorly separated activity 17% 

C 
No 

   

D No 
  

E No 
  

F 
No 

   

G Yes Poorly separated activity 9% 

H Yes Poorly separated activity 63% 

I Yes Poorly separated activity 36% 

J Yes Poorly separated activity 52% 

K Yes High amplitude variation 2% 

L Yes Poorly separated activity 68% 
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Yield 

The spike sorting algorithm extracted other units from the 12 recordings. Yield 

results are shown in Table 4.2. 1-16 well-separated units were from the 

recordings and up to 96 other components showing spiking activity. Fig 4.2 

shows an example of the spike rasters for 14 well-separated units.   
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Table 4.2 – Spike sorting yield 

Recording Channel count 
Well separated 

units 
Poorly separated 

activity 

A 256 9 70 

B 256 9 64 

C 256 3 95 

D 256 11 59 

E 256 6 48 

F 256 1 75 

G 256 16 96 

H 128 5 29 

I 64 9 44 

J 128 16 60 

K 128 2 48 

L 128 11 49 
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Figure 4.2 – Spike times for 14 extracted single units 

Spike rasters for 14 extracted single units across an eight minute recording. 

 

Conclusions 

Automated spike sorting was possible for the co-localized dataset, but no 

components matched the co-localized neurons so the accuracy of the spike 

sorting algorithm could not be assessed. With the exception of one neuron with 

extracellular spikes > 1mV, the rest of these neurons had amplitudes between 50-

100 µV, at the beginning of the amplitude range that is typically spike sorted. As 

we were able to spike sort some units, perhaps a larger set of experiments should 
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be run to find neurons in the 100-1000 µV and examine whether larger amplitude 

units can be spike sorted with our algorithm, and how accurately we can do so. 

Given the semi-manual nature of most commonly used spike sorting algorithms, 

it is difficult to compare our algorithm to others and determine if other 

algorithms would have extracted the co-occuring units and how accurately they 

would have done so. 

 

We limited this analysis to ICA + spike detection and classifier based on spike 

amplitude. There may be opportunity to extract more units by leveraging what 

we have learned about the distribution of spike waveforms to extract single units 

from the components with poorly separated activity. Seven out of the twelve co-

localized units were found in poorly separated components. Table 4.2 shows 

many components had spiking activity that was poorly separated. Extracting 

those into single units would provide big gains for our yield. 

 

Alternatively, yield could be improved by building probes with more sites and 

higher site density, based on the modeling results from Chapter 1. Designing and 

making new probes is no small task, so further analyses of this dataset must be 
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completed first, evaluating how yield changes when sites are subsampled and 

building a better understanding of the characteristics of units that are and are not 

extracted. 
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